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Background: Cuproptosis is a newly identified unique copper-triggered modality
of mitochondrial cell death, distinct from known death mechanisms such as
necroptosis, pyroptosis, and ferroptosis. Multiple myeloma (MM) is a
hematologic neoplasm characterized by the malignant proliferation of plasma
cells. In the development of MM, almost all patients undergo a relatively benign
course from monoclonal gammopathy of undetermined significance (MGUS) to
smoldering myeloma (SMM), which further progresses to active myeloma.
However, the prognostic value of cuproptosis in MM remains unknown.

Method: In this study, we systematically investigated the genetic variants,
expression patterns, and prognostic value of cuproptosis-related genes (CRGs)
in MM. CRG scores derived from the prognostic model were used to perform the
risk stratification of MM patients. We then explored their differences in clinical
characteristics and immune patterns and assessed their value in prognosis
prediction and treatment response. Nomograms were also developed to
improve predictive accuracy and clinical applicability. Finally, we collected
MM cell lines and patient samples to validate marker gene expression by
quantitative real-time PCR (qRT-PCR).

Results: The evolution from MGUS and SMM to MM was also accompanied by
differences in the CRG expression profile. Then, a well-performing cuproptosis-
related risk model was developed to predict prognosis in MM and was validated in
two external cohorts. The high-risk group exhibited higher clinical risk indicators.
Cox regression analyses showed that the model was an independent prognostic
predictor in MM. Patients in the high-risk group had significantly lower survival
rates than those in the low-risk group (p < 0.001). Meanwhile, CRG scores were
significantly correlated with immune infiltration, stemness index and
immunotherapy sensitivity. We further revealed the close association between
CRG scores and mitochondrial metabolism. Subsequently, the prediction
nomogram showed good predictive power and calibration. Finally, the
prognostic CRGs were further validated by qRT-PCR in vitro.
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Conclusion: CRGs were closely related to the immune pattern and self-renewal
biology of cancer cells in MM. This prognostic model provided a new perspective
for the risk stratification and treatment response prediction of MM patients.

KEYWORDS

multiple myeloma, cuproptosis, prognostic gene signature, tumor microenvironment,
tricarboxylic acid cycle

1 Introduction

Multiple myeloma (MM) is a cytogenetically heterogeneous
malignant plasma cell proliferative disorder and is the second
most common hematologic malignancy (Laubach et al., 2011;
Siegel et al., 2021). The clinical features, attributed to monoclonal
protein, or cytokines secreted by the malignant plasma cells, are
referred to as CRAB characteristics, including hypercalcemia, renal
insufficiency, anemia, and osteolytic bone lesions (Rajkumar et al.,
2014). MM may precede a precancerous state of MGUS and an
asymptomatic stage called SMM (van de Donk et al., 2021).

The prognosis of MM patients has significantly improved over
the past decade, mainly due to the application of novel therapies.
However, survival outcome heterogeneity and relapse still persist in
MM patients (Landgren and Rajkumar, 2016; Wallington-Beddoe
et al., 2018). Therefore, more accurate methods are needed to better
risk stratify MM patients for predicting survival and therapy
decisions (Chng et al., 2014). The Revised International Staging
System (R-ISS) is currently the most widely used prognostic staging
system, incorporating the ISS with high-risk cytogenetic alterations
[del (17p), t (4; 14) (p16; q32) or t (14; 16) (q32; q23)] and serum
lactate dehydrogenase (LDH) (Palumbo et al., 2015). Whilst it has
been validated in an analysis of an independent cohort of unselected
patients with MM (Kastritis et al., 2017), it does not better reclassify
patients from the ISS, suggesting that more reliable prognostic
factors are needed to clarify the prognosis of patients (Cho et al.,
2017; Jung et al., 2018).

Copper is one of the essential trace elements for all organisms
(Kim et al., 2008). However, if the concentration exceeds a certain
threshold, it can cause cell death. Recently, Tsvetkov et al. further
clarified the potential mechanism of copper-induced toxicity and
proposed a novel form of cell death termed cuproptosis (Tsvetkov
et al., 2022). Depending on mitochondrial respiration, cuproptosis
occurs through the direct combination of copper with the lipoylated
components of the tricarboxylic acid (TCA) cycle. This leads to the
aggregation of lipoylated proteins and the subsequent loss of iron-
sulfur cluster protein, resulting in proteotoxic stress and eventually
cell death (Tsvetkov et al., 2022).

Not only is the intrinsic apoptotic pathway most directly
regulated by mitochondria (Carneiro and El-Deiry, 2020), but
other forms of cell death, including autophagy (Gozuacik and
Kimchi, 2004), necroptosis (Weinlich et al., 2017), pyroptosis
(Bergsbaken et al., 2009), ferroptosis (Dixon et al., 2012) and,
more recently, cuproptosis, are also tightly regulated by
mitochondria. Mitochondria are the central hub of copper
metabolism and homeostasis (Ruiz et al., 2021). Meanwhile,
mitochondrial metabolism plays a determining role in the
growth, survival, and therapeutic outcome of MM. MM is a
malignancy of antibody-producing plasma cells from

differentiated B cells. Increased expression of mitochondrial
biogenesis and oxidative phosphorylation (OXPHOS) marker
genes was consistently found in MM cells compared to normal
plasma cells. Furthermore, the expression of mitochondrial
biogenetic characteristic genes in recurrent and drug-resistant
MM patients is higher than that in newly diagnosed patients,
which has been proven to be related to the progression of MM
(Zhan et al., 2017). Studies performed onMM show high anti-MM
efficacy for both in-vitro and in-vivo models (Skrott et al., 2017;
Xu et al., 2020), even in bortezomib -resistant cells (Salem et al.,
2015; Chroma et al., 2022) and myeloma stem cells (Jin et al.,
2018), when using copper ionophores. However, the effect of
cuproptosis on the prognosis of MM patients remains largely
unknown.

In the current study, we aimed to construct a risk-scoring model
related to cuproptosis to predict the prognosis of MM and guide
clinical treatment. The model was further validated in two
independent external datasets and our clinical cohort. Finally, we
explored the heterogeneity of biological functional status and tumor
microenvironment ( ) among subgroups to reveal the underlying
mechanisms.

2 Materials and methods

2.1 Data acquisition

The gene expression data and corresponding clinical
information of multiple myeloma patients were attained from the
Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/), including GSE136337, GSE24080, GSE4204, and
GSE6477. The gene expression profiles were log2 transformed
and normalized between different arrays. The dataset
GSE136337 was used as the training set because it has detailed
clinicopathological information, including age, sex, albumin, β2-
microglobulin, LDH, t [4; 14], t [14; 16], del [17p], ISS, R-ISS staging
and survival data. The GSE24080 and GSE4204 datasets were used
for validation. The dataset GSE6477 was applied in the analysis of
the difference in CRGs expression profile between normal subjects
and MGUS, SMM, and active MM. Ten cuproptosis-related genes
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A) were retrieved from the literature (Tsvetkov et al., 2022).

2.2 Gene interaction network and the
landscape of genetic alterations

The correlation network of 10 CRGs was derived from the
“circlize” R package. The interaction network for the overlapping
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prognostic CRGs was generated by the STRING database (version
11.5) (Szklarczyk et al., 2011).

Given the limited data on myeloma, to determine the somatic
mutations of 10 CRGs, the single nucleotide variant (SNV) data of
these CRGs in all cancers of The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) were mined in Gene Set Cancer
Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/GSCA/#/) [28].
We also used cBioPortal for Cancer Genomics (http://www.
cbioportal.org/) to analyze the frequency of gene mutation and
corresponding mutation sites on the chromosome in hematologic
malignancies.

2.3 Construction and validation of a
prognostic cuproptosis-related gene
signature

The GSE136337 dataset was used as the training dataset to
establish the cuproptosis-related risk score. Univariable Cox
regression analysis was performed to obtain CRGs associated
with prognosis (p < 0.05). To minimize the risk of overfitting,
the Least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was applied to determine the best weighting
coefficient of CRGs using the R software package “glmnet”
(Friedman et al., 2010). After 1000-fold cross-validation of the
maximum likelihood estimate of the penalty, the minimum
criterion was determined by the optimal value of the penalty
parameter λ, and finally, a cuproptosis-related prognostic model
was constructed. The GSE24080 and GSE4204 datasets were used for
validation. The risk scores of the subjects were calculated according
to the normalized expression level of each gene and its
corresponding regression coefficients. Stratifying patients into
high- and low-risk groups by median risk score with the
“survival” and “survminer” R packages.

2.4 Comprehensive analyses of the
prognostic model

The R software package “pRRophetic” was performed to
evaluate the chemotherapeutic sensitivity between different
groups. The weighted gene co-expression network analysis
(WGCNA) was performed to explore the potential mechanisms
associated with the prognostic model using the “WGCNA” R
package (Langfelder and Horvath, 2008; 2012). First, we used the
gene expression profile of the training set to calculate the median
absolute deviation (MAD) of each gene, excluding the top 25% of the
genes with the lowest MAD. Then we filtered out the optimal soft
threshold to construct the scale-free co-expression network. In
addition, we performed an association analysis between modules
and clinical traits. The key genes most related to the risk score were
identified by WGCNA analysis. Furthermore, we used the
metascape online website (https://metascape.org/gp/index.html)
to implement the Gene Ontology (GO) analysis about the key
genes (p-value cutoff: 0.01).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were employed to reveal the underlying basis of
cuproptosis-related risk score. Enriched pathways in different

cuproptosis-related risk score datasets were evaluated by Gene
Set Enrichment Analysis (GSEA v4.2.2 software, http://software.
broadinstitute.org/gsea/login.jsp). p < 0.05 and a false discovery rate
q < 0.25 were considered indicative of statistical significance.
Multiple GSEA were carried out with the R package “ggplot2”.
Glycolysis-related genomes and TCA cycling-related genomes were
downloaded from GSEA (http://www.gsea-msigdb.org/gsea/
msigdb). The Gene Set Variation Analysis (GSVA) method
implemented in the R package “GSVA” was used to calculate the
enrichment score of each sample in the glycolytic gene set and TCA
cycle gene set (Hanzelmann et al., 2013).

2.5 Characterization of the TME and
immunotherapy responsiveness based on
the cuproptosis-related model

To eliminate the effect of different algorithms, we used three
algorithms to assess the immune infiltration level between different
subgroups, including the single-sample gene set enrichment analysis
(ssGSEA), the xCell (Aran, 2020) and ESTIMATE (Yoshihara et al.,
2013). These algorithms use gene expression data and cytogenetic
signatures to infer the level of infiltrating stromal cells and immune
cells in tumor tissue. The microenvironment score in xCell and the
ESTIMATE score in ESTIMATE are the sum of their respective
immune and stromal scores. Additionally, the ESTIMATE
algorithm converts the ESTIMATE score into a [0,1] range for
tumor purity prediction. Themore immune cells and stromal cells in
the sample, the lower the tumor purity. Tumor immune dysfunction
and exclusion (TIDE) was performed to identify potential factors of
tumor immune escape (Jiang et al., 2018). Furthermore, the mRNA
expression-based stemness index (mRNAsi) was used to compute
the stemness index according to one-class logistic regression
(OCLR)-based transcriptomic and epigenetic signatures (Malta
et al., 2018). Ultimately, the T cell inflamed score (TIS) (Ayers
et al., 2017) and immunophenotype score (IPS) (Charoentong et al.,
2017) were used to evaluate the sensitivity to immune checkpoint
blockade (ICB). The TIS score was calculated based on 18 marker
genes with ssGSEA. Because of the lack ofHLA-DRB1 in the dataset,
we used 17 genes.

2.6 External validation of cuproptosis-
related mutations using an online database

We used the Cancer Cell Line Encyclopedia database (CCLE,
https://portals.broadinstitute.org/ccle) to further validate the
expression of cuproptosis-related genes highlighted by the risk
score in MM.

2.7 Establishing a predictive nomogram

A nomogram for the combined model including age, the ISS
phase and cuproptosis-related risk score was constructed using the
“rms” package. A calibration curve was plotted for self-verification
of the nomogram. R-ISS, cuproptosis-related risk scores, and the
nomogram were compared with time-dependent receiver operating
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TABLE 1 The clinical characteristics of the subjects included in this experiment.

Characteristics Levels MM (n = 31) Normal (n = 14) p

Sex Female 20 (65%) 8 (57%) 0.637

Male 11 (35%) 6 (43%) -

Age ≤65 years 9 (29%) 5 (36%) 0.920

>65 years 22 (71%) 9 (64%) -

Isotype IgG 16 (52%) - -

IgA 8 (26%) - -

IgD 1 (3%) - -

Light chain 6 (19%) - -

Albumin ≥3.5 g/dL 12 (39%) - -

<3.5 g/dL 19 (61%) - -

β2M <3.5 mg/L 11 (35%) - -

3.5–5.5 mg/L 7 (23%) - -

≥5.5 mg/L 13 (42%) - -

LDH ≤250 U/L 24 (77%) - -

>250 U/L 7 (23%) - -

Del (17p) False 31 (100%) - -

True 0 (0%) - -

IgH rearrangement False 30 (97%) - -

True 1 (3%) - -

Del (13q) False 22 (71%) - -

True 9 (29%) - -

Amp1q False 21 (68%) - -

True 10 (32%) - -

ISS I 4 (13%) - -

II 14 (45%) - -

III 13 (42%) - -

R-ISS I 4 (13%) - -

II 25 (81%) - -

III 2 (6%) - -

Myeloma cells <10% 11 (35%) - -

≥10% 20 (65%) - -

Calcium ≤2.65 mmol/L 30 (97%) - -

>2.65 mmol/L 1 (3%) - -

Serum creatinine <177 μmol/L 24 (77%) - -

≥177 μmol/L 7 (23%) - -

Hb ≥85 g/L 19 (61%) - -

<85 g/L 12 (39%) - -

Bone lesions 0 11 (36%) - -

(Continued on following page)
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characteristic curves (time-ROC curves) for 1-,3- and 5-year survival
using the “timeROC” R package (Blanche et al., 2013).

2.8 Cell lines and cell culture

LP-1, I9.2, and U266 cells were obtained from Fenghui
Biotechnology Co., Ltd. (Hunan, China). Cells were cultured in
RPMI-1640 medium (Gibco, Shanghai, China) supplemented with
10% fetal bovine serum (FBS), 0.1 mg/mL streptomycin, and 100 U/
mL penicillin G and incubated at 37°C and 5% CO2 in a humidified
atmosphere.

2.9 Patients

31 MM patients were enrolled in the study at the Department
of Clinical Hematology of the First Affiliated Hospital of Wenzhou
Medical University. Diagnoses were based on the
2014 International Myeloma Working Group (IMWG) criteria
(Rajkumar et al., 2014). Meanwhile, normal bone marrow samples
from 14 healthy donors were collected as controls for PCR on cell
lines and patient samples. The distribution of clinical parameters
and clinicopathological characteristics of the patients is shown in
Table 1. The baseline characteristics of the MM and control groups
were equally consistent in terms of gender and age (p > 0.05).
Informed consent was obtained from the subjects for all collected
samples. The Ethics Committee of the First Affiliated Hospital of
Wenzhou Medical University approved the study, and all
procedures were conducted in compliance with the Declaration
of Helsinki.

2.10 RNA extraction, reverse transcription,
and quantitative real-time PCR

The total RNA was extracted from bone marrow samples by
Righton DNA&RNA Blood and Tissue Kit (Righton Bio,
Shanghai, China) according to the manufacturer’s
instructions. Reverse transcription was performed with the
cDNA synthesis kit (Vazyme, Nanjing, China) to generate
cDNAs. Quantitative PCR was performed to detect the
expression levels of CRGs by using Taq Pro universal SYBR
qPCR Master Mix (Vazyme, Nanjing, China), β-ACTIN served
as an internal control. Relative expression was calculated using
the comparative threshold cycle (Ct) method (Livak and
Schmittgen, 2001). A complete list of primers used was
shown below:

DLD forward primer (FP): 5′-GAAATGTCCGAAGTTCGC
TTGA-3′; DLD reverse primer (RP): 5′-TCAGCTTTCGTAGCA

GTGACT-3′; PDHA1 FP: 5′-TGGTAGCATCCCGTAATTTTGC-
3′; PDHA1 RP: 5′-ATTCGGCGTACAGTCTGCATC-3′; MTF1 FP:
5′-CACAGTCCAGACAACAACATCA-3′; MTF1 RP: 5′-GCACCA
GTCCGTTTTTATCCAC-3′; LIPT1 FP: 5′-TTGCTAAAGAGC
CCTTACCAAG-3′; LIPT1 RP: 5′-TCATCCGTTGGGTTTATT
AGGTG-3′; β-ACTIN FP: 5′-TCAAGATCATTGCTCCTCCTG
AG-3′; β-ACTIN RP: 5′-ACATCTGCTGGAAGGTGGACA-3′.

2.11 Statistical analyses

SPSS software vision 24.0 (SPSS, Inc., Chicago, IL,
United States), GraphPad Prism 9.0.0, and R software vision
4.1.1 (R Foundation for Statistical Computing, Vienna, Austria)
were used for statistical analyses. For quantitative variables,
Student’s t-test is used to analyze the differences between groups
of normal distribution variables, and Wilcoxon test is used for
skewed data. To compare the CRG expression differences of the
four groups (normal, MGUS, SMM, and MM), one-way ANOVA
was used, followed by the LSD multiple comparisons test. And chi-
square test is used for difference analysis of categorical variables. If
not specified above, p-value <0.05 was considered statistically
significant, and all p values were two-tailed.

3 Results

3.1 Subject selection and baseline clinical
covariates

The flow chart of this study is shown in Figure 1. The
GSE136337 cohort was used to construct a cuproptosis-
related prognostic risk score. The GSE24080 and
GSE4204 datasets were used for model validation. Survival
data were available for 1,514 subjects in the three datasets
(GSE136337, n = 424; GSE24080, n = 556; GSE4204, n =
534). A sufficient number of subjects had clinical co-variates
for univariate and multivariate Cox regression analysis in the
training dataset (GSE136337; n = 415) and the first validation
cohort (GSE24080; n = 556), but not in the second validation
dataset (GSE4204). The detailed clinical characteristics of these
patients are summarized in Table 2.

3.2 Gene interaction networks and genetic
alteration profiles of CRGs

As shown in Figures 2A,B, there is a close relationship between
CRGs. Mutations in genes are closely associated with the occurrence
and development of cancer. Due to the limited data on MM in the

TABLE 1 (Continued) The clinical characteristics of the subjects included in this experiment.

Characteristics Levels MM (n = 31) Normal (n = 14) p

1–3 2 (6%) - -

>3 18 (58%) - -
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FIGURE 1
Schematic diagram of the study design. (A) The gene expression data and clinical information of MM patients were attained from the GEO database.
10 cuproptosis-related genes were retrieved from the literature. (B) Univariable Cox regression analysis and LASSO Cox algorithms were combined to
develop the cuproptosis-related gene signature for prognosis. (C) The prognostic and predictive capacities of the model were validated in different
datasets and methods. (D) Comprehensive analyses of therapeutic responses, and enriched pathways using GSEA and mRNA expression levels in
CCLE. ****p < 0.0001.
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database, we explored the genetic alterations of CRGs in pan-cancer
as well as hematologic tumors using TCGA and cBioPortal
databases, respectively (Figures 2C,D). We found a wide range of

mutations of CRGs in cancer. Among them, CDKN2A showed the
highest mutation frequency both in two analyses. Figure 2E revealed
the major mutation sites of CDKN2A in hematologic malignancies.

TABLE 2 Clinical covariates of the training and validation cohorts.

Characteristics Training cohort Validation cohort Validation cohort

GSE136337 GSE24080 GSE4204

(n = 415) (n = 556) (n = 534)

Sex

Female 158 (38%) 222 (40%) -

Male 257 (62%) 334 (60%) -

Age

≤65 years 297 (72%) 421 (76%) -

>65 years 118 (28%) 135 (24%) -

Alb

≥3.5 g/dL 331 (80%) 481 (87%) -

<3.5 g/dL 84 (20%) 75 (13%) -

β2M

<3.5 mg/L 187 (45%) 320 (58%) -

3.5–5.5 mg/L 109 (26%) 118 (21%) -

≥5.5 mg/L 119 (29%) 118 (21%) -

LDH

≤250 U/L 392 (94%) 507 (91%) -

>250 U/L 23 (6%) 49 (9%) -

Del (17p)

False 400 (96%) - -

True 15 (4%) - -

t (4,14)

False 401 (97%) - -

True 14 (3%) - -

t (14,16)

False 414 (99%) - -

True 1 (1%) - -

ISS

I 163 (39%) 296 (53%) -

II 133 (32%) 142 (26%) -

III 119 (29%) 118 (21%) -

R-ISS

I 149 (36%) - -

II 243 (59%) - -

III 65 (16%) - -

Risk score

High 209 (50%) 278 (50%) 267 (50%)

Low 206 (50%) 278 (50%) 267 (50%)

Survival

Alive 239 (58%) 386 (69%) 442 (83%)

Alb albumin, β2M β2-microglobulin, LDH, lactate dehydrogenase.
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FIGURE 2
Gene interaction networks and genetic alteration profiles of CRGs. (A) The correlation network of candidate genes. The correlation coefficients are
represented by different colors. (B) The PPI network downloaded from the STRING database indicated the interactions among the 10 candidate genes. (C)
The genetic changes of CRGs in pan-cancer analysis (D) The genetic changes of CRGs in various hematologic malignancies. (E) Major mutation sites of
CDKN2A in hematological malignancies. (F) Differences in CRG expression profile during the evolution of MM. PPI, protein-protein interaction;
MGUS, monoclonal gammopathy of undetermined significance; SMM, smoldering myeloma. ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 3
Construction and validation of the cuproptosis-related risk score model in the training cohort. (A) Forest plot of hazard ratios demonstrating the
prognostic values of CRGs. (B) Construction of the prognostic model using LASSO. (C) Kaplan-Meier curves for the OS of subjects in the high-risk group
and low-risk group. (D) The sensitivity and specificity of the cuproptosis-related risk scoremodel were assessed by time-dependent ROC analysis. (E)Dot
plots compared the survival outcomes of subjects between the high- and low-risk groups. The heat maps manifested the expressions of the four
genes in the training cohort.
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TABLE 3 Univariate and multivariate Cox regression analyses of overall survival in the training and validation datasets.

Characteristics Training cohort GSE136337 (n = 415) Validation cohort GSE24080 (n = 556)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Regression coefficient (SE) p Hazard ratio (95% CI) p Regression coefficient (SE) p Hazard ratio (95% CI) p

Age (<65 vs. ≥65 years) 0.579 (0.155) <0.001 1.807 (1.33–2.455) <0.001 0.174 (0.177) 0.327 - -

Sex (female vs. male) −0.248 (0.154) 0.107 - - −0.052 (0.156) 0.739 - -

Albumin (≥3.5 vs. <3.5 g/dL) 0.410 (0.177) 0.021 - - 0.595 (0.194) 0.002 - -

β2m (<3.5 vs. 3.5–5.5 vs. ≥5.5 mg/L) 0.469 (0.091) <0.001 - - 0.512 (0.088) <0.001 - -

LDH (≤250 vs. >250 U/L) 0.732 (0.270) 0.007 - - 1.316 (0.197) <0.001 - -

del (17p) 0.098 (0.417) 0.814 - - - - - -

t (4,14) 0.035 (0.455) 0.939 - - - - - -

t (14,16) 0.719 (1.003) 0.474 - - - - - -

ISS (Ⅰ vs.Ⅱ vs.Ⅲ) 0.503 (0.095) <0.001 1.584 (1.314–1.910) <0.001 0.526 (0.090) <0.001 1.659 (1.389–1.982) <0.001

R−ISS (Ⅰ vs.Ⅱ vs.Ⅲ) 0.595 (0.133) <0.001 - - - - - -

Risk (low vs. high) 0.618 (0.155) <0.001 1.658 (1.223–2.246) 0.001 0.435 (0.155) 0.005 1.437 (1.058–1.952) 0.020

Albumin, β2M, and LDH, were not included in the multivariate analysis, because of co-linearity with the ISS, or R-ISS.

Alb albumin, β2M β2-microglobulin, LDH, lactate dehydrogenase.
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In addition, to investigate the role of CRG expression profile in the
development of MM, we further analyzed the differences in CRG
expression between normal subjects, MGUS, SMM, and
symptomatic MM with GSE6477 (Figure 2F). From normal
group to SMM and MM, GLS showed a downward trend, and
the expression of DLD in MM was higher than that of SMM and
MGUS (p < 0.01). Similarly, the expression of DLAT in MM was
higher than that of MGUS (p < 0.05). In MM, SMM and MGUS
populations, the expression of CDKN2A was higher than that in the
control group (p < 0.001).

3.3 Construction of a prognostic
cuproptosis-related model

We extracted 10 candidate CRGs based on the literature
(Tsvetkov et al., 2022). In the GSE136337 training dataset,
4 genes were significantly associated with survival in univariate
Cox regression analysis (p < 0.05) (Figure 3A). Penalty maximum
likelihood estimation was performed for 1,000 bootstrap replicates
using lasso Cox regression analysis. The optimal weighting
coefficient for each gene was determined by the regularization

FIGURE 4
Comparative analysis between high- and low-risk groups. (A)Relationship between risk scores and clinicopathological parameters inGSE136337. (B)
Sankey diagram showing the changes of β2M level, LDH level, R-ISS stage, cytogenetic mutation risk, cuproptosis-related risk score, and survival
outcome. (C) Drug sensitivity assessment based on the cuproptosis-derived signatures in the training cohort. ns, no significance; *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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FIGURE 5
Characterization of TME and immunotherapy responsiveness based on the cuproptosis-related model. (A) Differences in immune infiltration
between the cuproptosis subgroups with ssGSEA algorithm. (B) Evaluation of the immune infiltration with the ESTIMATE method. (C) Comparison of
immune scores obtained from the xCell method. (D) Correlation analysis between risk score and immune checkpoint expression (upper left) and TIS
(bottom right). (E) The association between the risk score and mRNAsi. (F) Differences in TIDE score between the cuproptosis subtypes. (G)
Comparative analysis of IPS scores between the high- and low-scoring groups. TIS, T cell inflamed score; mRNAsi, mRNA expression-based stemness
index; TIDE, tumor immune dysfunction and exclusion; IPS, immunophenotype score; MHC, antigen presentation; EC, effector cells; SC, suppressor
cells; CP, checkpoint marker; z-score, AZ. ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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parameter lambda using the min standard. Four genes with high
coefficients were selected to build the cuproptosis-related risk score
(Figure 3B). The formula for the risk score was as follows:
cuproptosis-related risk score = (0.2859× expression of DLD) +
(0.3637× expression of PDHA1)—(0.2480× expression of
LIPT1)—(0.0596× expression of MTF1). Using the established
formula, a cuproptosis-related prognostic risk score for each
sample was calculated. The patients were divided into high-risk
and low-risk cohorts according to the median risk score of the
corresponding datasets.

3.4 Validation of the prognostic
cuproptosis-related risk score in each
cohort

Kaplan–Meier curves were used to compare the survival of high-
and low-risk groups in the training (Figure 3C) and validation
datasets (Supplementary Figures S1A, S1D). Subjects in the high-
risk group had worse survival compared to the low-risk group (HR =
1.86, 95% CI = 1.38–2.51, p < 0.0001; HR = 1.55, 95% CI = 1.14–2.10,
p = 0.0048; HR = 1.53, 95% CI = 1.01–2.31, p = 0.043). To evaluate
the prognostic accuracy of the model, time-dependent ROC analysis
was conducted, with the AUC for the 1-, 3-, and 5-year survival
being 0.66 (95% confidence interval [CI]: 0.54,0.79), 0.72 (0.65,
0.79), and 0.73 (0.68, 0.79) in the GSE136337 training dataset
(Figure 3D). AUCs for the validation datasets are shown in
Supplementary Figures S1C, S1D. Consistently, dot plots
demonstrated that patients with higher risk scores exhibited
worse overall survival in each dataset (Figure 3E). Moreover, the
differences in the expression of four prognostic CRGs between high
and low-risk groups were observed (Figure 3E).

3.5 Uni- and multi-variable analyses

To evaluate the independent prognostic force of the 4-gene
signature, both the uni- and multi-variable Cox proportion hazard
regression models were implemented (Table 3). We analyzed the
clinicopathological traits correlated with survival, including sex, age,
albumin, β2-microglobulin, LDH, t [4; 14], t [14; 16], del [17p], ISS
and R-ISS phase in the GSE136337 training dataset, as well as sex,
age, albumin, β2-microglobulin, LDH, and ISS stage in the first
validation dataset (GSE24080). Results from the multi-variable
analysis showed that the cuproptosis-related risk score was
independently associated with survival with a HR = 1.658 (1.223,
2.246; p = 0.001) in the training dataset and HR = 1.437 (1.058,
1.952; p = 0.020) in the first validation dataset (GSE24080; Table 3).

3.6 Comparative analysis between high- and
low-risk groups

To determine the specificity of the cuproptosis-related risk score
in patients with different clinical features, we analyzed the
relationship between clinical traits and risk scores in the
GSE136337 training dataset. Patients with high β2M or LDH was
found to be significantly associated with higher risk score

(Figure 4A). With the increase of the ISS or R-ISS stage, the risk
score also showed a gradually increasing trend (Figure 4A). Based on
previous studies (Chng et al., 2014; Sonneveld et al., 2016; Abdallah
et al., 2020;Wallington-Beddoe andMynott, 2021), we defined high-
risk cytogenetic abnormalities (HRCAs) as at least one of the
following: del17p, amp1q, t (4; 14), t (14; 20), t (14; 16) or MYC
aberrations determined by fluorescent in situ hybridization (FISH)
or conventional karyotyping. Other abnormalities in the training set
were classified as non-high-risk group [del13q, del16q, del1p, del1q,
t (11; 14), t (12; 14)]. The rest were divided into the non-mutation
group. A high score indicated a greater risk of cytogenetic mutations
(Figure 4A). The sankey diagram was used to visualize the changes
in patient characteristics (Figure 4B).

Further research indicated that the high-risk group was more
resistant to lenalidomide and metformin, while it was more sensitive
to bortezomib and elesclomol (a kind of copper ionophore),
compared with the low-risk group (Figure 4C).

3.7 Characterization of TME and
immunotherapy responsiveness based on
the cuproptosis-related model

Overall, the proportion of immune cell infiltration was higher in
the TME of the low-risk group, such as activated B cells, central
memory CD8+ T cells, effector memory CD8+ T cells, NK cells, and
activated dendritic cells (Figure 5A). Figures 5B,C further confirmed
our findings. The low-risk group exhibited higher immune cell
abundance, while the high-risk group possessed higher tumor
purity. In addition, cuproptosis-related scores were negatively
correlated with the expression levels of immune checkpoint and
TIS gene signatures (Figure 5D). TIS can reflect sustained adaptive
Th1 and cytotoxic CD8+ T cell responses. Having a high TIS implies
high responsiveness to anti-PD-1/PD-L1 drugs (Ayers et al., 2017).
mRNAsi was used to estimate the ability of cancer cells to self-
renew. Correlation analysis demonstrated a positive correlation
between risk score and mRNAsi (Figure 5E), implying a higher
risk of recurrence in the high-scoring group. TIDE evaluates the
level of tumor immune escape by assessing the dysfunction and
exclusion of T cells. The higher the TIDE score, the higher the
likelihood of immune escape, indicating that the patient is less
responsive to ICB treatment. We found that the high-risk group was
more likely to have a state that prevents T-cell infiltration
(Figure 5F). IPS can visualize four different immunophenotypes
(antigen-presenting, effector, suppressor cells, and checkpoint
markers) in tumor samples (Charoentong et al., 2017). At the
same time, it can generate a z-score with the combination of
these four categories. The higher the z-score, the more
immunogenic the tumor is and the more sensitive it is to
immunotherapy. Consistently, the low-risk group had a higher
IPS z-score (Figure 5G). In conclusion, the low-scoring group
may be more sensitive to ICB.

3.8 Building a combined nomogram

Due to the lack of cytogenetic data in the validation set, we
constructed an integrated nomogram model featuring ISS stage,
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age, and cuproptosis-related risk score (Figure 6A). The
calibration curve manifested a satisfactory agreement
between predictive and observational values at the
probabilities of 1-, 3- and 5-year survival (Figure 6B). The
merged risk score showed more accuracy in predicting 1-, 3-
and 5-year survival than other covariates including the ISS and
R-ISS. In the training dataset, the nomogram improved the
prediction accuracy from an AUC of 65.40% (0.59, 0.71),
60.71% (0.55, 0.67) and 62.86% (0.58, 0.68) of the R-ISS to
an AUC of 75.50% (0.67, 0.84), 66.76% (0.60, 0.74) and 70.61%
(0.65, 0.76) (Figure 6C). As for the GSE24080 validation dataset,
the 1-, 3- and 5-year AUCs increased from 65.98% (0.58, 0.74),
62.19% (0.57, 0.68) and 63.82% (0.58, 0.69) of the ISS to an AUC
of 72.01% (0.64, 0.80), 68.00% (0.62, 0.74) and 68.08% (0.62,
0.74) (Figure 6D).

3.9 Comprehensive analyses of biological
function differences

To determine the interaction of the risk model with other
genes, we used WGCNA to construct a weighted gene co-
expression network. The soft threshold parameter was set as
four so that the threshold value of the adjacency matrix could
meet the criterion of the network approaching scale-free
(Figure 7A). These co-expression modules were then
constructed and similar modules were clustered to finally obtain
sixteen gene modules (Figure 7B). The results of the correlation
analysis between gene modules and clinical characteristics showed
that the red module had the highest correlation with risk scores
(Correlation = 0.40, p < 0.001) (Figure 7C). The red module
contains 284 genes, and then we performed GO functional

FIGURE 6
Construction of the nomogram for predicting survival in patients with MM. (A) The nomograms consisting of age, the ISS stage and risk score for
predicting 1-, 3-, and 5-year OS. (B) Calibration curves of nomograms in terms of the agreement between predicted and observed 1-, 3-, and 5-year OS.
(C, D) Time-dependent ROC curves for 1-, 3-, and 5-year OS predictions for the nomograms compared with other clinical covariates. C displays
GSE136337, D displays GSE24080.
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enrichment analysis on these genes with Metascape and selected
the top 20 clusters to construct a gene function clustering network
(Figure 7D). Gene modules were mainly enriched in important

biological processes of tumorigenesis and development. Such as
mitotic cell cycle, DNA repair, and regulation of transcription of
cell cycle genes by TP53.

FIGURE 7
The weighted gene co-expression network. (A) Soft power value screening of genes in co-expression modules. (B) Hierarchical clustering
dendrogram of genes. (C) Correlation analysis of gene module with risk model and clinical characteristics. (D) Enrichment clustering network in the
Metascape database.
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GSEA was performed in each dataset to elucidate the biological
functions and pathways that were associated with the risk score.
Significantly enriched pathways were concentrated in the high-risk

cohort and were mainly related to cuproptosis, including the TCA
cycle, oxidative phosphorylation, valine leucine, and isoleucine
degradation, pyrimidine metabolism, cell cycle, and DNA

FIGURE 8
Comprehensive analyses of biological function differences. (A) The top 10 pathways were enriched in the training cohort and validation cohorts. (B)
The different distribution ratios of glycolysis and TCA cycle. (C) mRNA expression by RNA sequencing of the four genes in the Cancer Cell Line
Encyclopedia (CCLE) database.
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replication pathways (Figure 8A). Considering the close relationship
between cuproptosis and the TCA cycle, we further used GSVA to
calculate the per-sample overexpression level of the glycolytic gene

list and TCA cycle gene set by comparing the ranks of the genes in
that list with those of all other genes (Hanzelmann et al., 2013). The
two groups exhibited different distribution ratios of glycolysis and

FIGURE 9
External experimental validation of prognostic signature. (A)Validation of prognostic CRGs expression inMM cell lines (LP-1, I9.2, and U266) (Mean ±
SEM). (B) Expression of prognostic CRGs was compared by qRT-PCR in MM patients and control samples. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001.
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TCA cycle. The TCA cycle was mainly concentrated in the high-risk
group (Figure 8B).

In the CCLE database, DLD and PDHA1 were over-expressed at
the cellular level, while LIPT1 and MTF1 were under-expressed
(Figure 8C), corresponding to the model equation above.

3.10 External experimental validation of
prognostic signature

To assess the expression status of these prognostic signature
genes in MM, we first evaluated their expression in 3 MM cell lines
(LP-1, I9.2, and U266) and the control group. As shown in
Figure 9A, DLD and PDHA1 were significantly upregulated in
these 3 cell lines compared with the control group (p < 0.01).
The opposite was true for MTF1 and LIPT1 (p < 0.05). We
further examined the expression levels of prognostic CRGs in the
bone marrow samples of 31 MM patients. Consistently, we found
that the expression levels of DLD and PDHA1 were significantly
higher in MM samples than in healthy donors (p < 0.0001), and
MTF1 and LIPT1 were significantly lower than in control samples
(p < 0.01, Figure 9B).

4 Discussion

Changes in metabolism are increasingly recognized as one of the
characteristics of cancer cells, including MM (Hanahan and
Weinberg, 2011). Cancer cells depend on specific aspects of
mitochondrial function for growth and survival, despite
exhibiting elevated aerobic glycolysis (Weinhouse, 1956; Dalva-
Aydemir et al., 2015; Porporato et al., 2018). Furthermore,
mitochondria are involved in the regulation of multiple forms of
cell death, such as apoptosis (Carneiro and El-Deiry, 2020),
autophagy (Gozuacik and Kimchi, 2004), necroptosis (Weinlich
et al., 2017), pyroptosis (Bergsbaken et al., 2009), ferroptosis
(Dixon et al., 2012), and, more recently, cuproptosis (Tsvetkov
et al., 2022). Cuproptosis, a recently proposed form of copper-
dependent cell death, is mainly characterized by the proteotoxic
stress induced by the direct combination of intracellular copper ions
and lipoylated components in the TCA cycle (Tsvetkov et al., 2022).

MM is characterized by the accumulation of clonal plasma cells
in the bone marrow and the consequently elevated
immunoglobulins in serum and/or urine. And the differentiation
of plasma cells begins with the activation of naive B cells, which leads
to increased glucose uptake and promotes glycolysis and OXPHOS
(Doughty et al., 2006). Activated B cells were observed to show
progressive upregulation of the TCA cycle and electron transport
chain (ETC.) genes to support increased OXPHOS and eventually
immunoglobulin production (Price et al., 2018; Waters et al., 2018).
In addition, MM cells exhibit addiction to glutamine (Bolzoni et al.,
2016). And glutamine is the main carbon source for the TCA cycle in
many cancer cells, including MM (DeBerardinis et al., 2007; Bajpai
et al., 2016; Bolzoni et al., 2016). Mitochondrial transfer has been
shown an important function in restoring mitochondrial respiration
in cancer cells with damaged mitochondria and in assisting cells to
escape apoptosis (Wang and Gerdes, 2015; Porporato et al., 2018).
Similarly, it has been reported the mitochondrial exchange between

stromal cells and MM cells in the myeloma microenvironment
(Marlein et al., 2019). Translocated mitochondria were found to
promote tumor progression and contribute to the survival response
of cancer cells to chemotherapy (Marlein et al., 2019).

Therefore, the increase of OXPHOS is a critical plasma cell-
specific metabolic dependence, and mitochondrial function plays
an important role in maintaining plasma cell biology. Moreover,
gene expression profiles associated with the mitochondrial TCA
cycle and the, ETC predispose MM patients to bortezomib
resistance and poor prognosis (Song et al., 2013; Tomlin et al.,
2017; Zaal et al., 2022).

Given the important role of copper homeostasis and
mitochondrial function in MM, targeted therapy of copper and
the mitochondrial metabolism is a key and promising strategy in
cancer therapy. Mitochondrial respiration complex I inhibitor
metformin and glucose uptake inhibitor ritonavir could
cooperatively induce cell death in MM cells (Dalva-Aydemir
et al., 2015). Many previous studies have also revealed the great
potential of Cu metal-binding compounds in cancer treatment.
Among these, Cu ionophores can induce cuproptosis by
increasing the intracellular Cu levels (Steinbrueck et al., 2020;
Oliveri, 2022). Many different kinds of Cu ionophores have been
used as anticancer agents to promote cuproptosis, including
elesclomol (ES) and diethyldithiocarbamate (DTC), which is the
active form of the disulfiram (DSF) (Denoyer et al., 2015; Hunsaker
and Franz, 2019; Lelievre et al., 2020; Ge et al., 2022). ES has
demonstrated its powerful targeted-killing effect on drug-resistant
cancer cells, including cisplatin and proteasome inhibitor resistance
(Wangpaichitr et al., 2009). Moreover, in both solid and
hematological tumors, Cu-DSF has been shown to preferentially
target cancer cells and can also selectively target and kill ALDH+

MM stem cell populations that lead to chemoradiotherapy resistance
and recurrence (Yip et al., 2011; Liu et al., 2013; Xu et al., 2017; Jin
et al., 2018; Wu et al., 2019; Sun et al., 2020). Studies have shown the
potent anti-myeloma activity of Cu-DSF both in vivo and in vitro,
even in cells resistant to proteasome inhibitors (Salem et al., 2015;
Skrott et al., 2017; Xu et al., 2020). Cu-DSF kills MM cells,
independent of disease stage and treatment (Chroma et al.,
2022). Recently, a phase I, open-label trial of disulfiram in
combination with copper gluconate in patients with treatment-
refractory MM is underway (NCT04521335). However, studies
investigating cuproptosis-related genes and their prognostic value
in MM patients are limited.

The R-ISS is now the most widely accepted as standard
prognostic model for MM patients. However, relevant studies
have shown that stage II included populations with more
heterogeneous survival outcomes (Cho et al., 2017; Jung et al.,
2018). Many biomarkers that may improve the prediction
accuracy of R-ISS have been studied, such as circulating tumor
cells (CTCs) (Gonsalves et al., 2014; Chakraborty et al., 2016), 18F-
fludeoxyglucose positron emission/computed tomography (Fonti
et al., 2012; Zamagni et al., 2015), bone turnover markers (Patel
et al., 2014), serum free light chain (FLC) levels (El Naggar et al.,
2015) and genomics including next-generation sequencing (Bolli
et al., 2020). But these indicators still need to be further verified.
Therefore, the purpose of this study was to explore the cuproptosis-
related prognostic biomarkers of MM, hoping to provide a new
perspective on the risk stratification of MM patients.
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In the current study, we constructed a novel prognostic model
integrating four cuproptosis-related genes and validated it in two
independent external cohorts. In the Cox regression analysis, the
risk score was identified as an independent prognostic factor.
Patients with different risk scores showed significantly different
clinicopathological characteristics and drug susceptibility.
Compared with the low-risk group, the high-risk group was
confirmed to have higher levels of β2m and LDH, and higher
R-ISS or ISS stages, as well as the probability of cytogenetic
abnormalities. As for drug sensitivity, the high-risk group showed
more sensitivity to bortezomib and ES, while it was resistant to
lenalidomide and metformin, which is an inhibitor of mitochondrial
complex Ⅰ. ES is a copper ionophore compound. In the previous
research, ES demonstrated synergistic enhancement of bortezomib
in the in situ mouse model of MM (Tsvetkov et al., 2019). The
combination of ES and bortezomib or other proteasome inhibitors
may provide a viable therapeutic strategy for MM.

Additionally, we found that cuproptosis-related scores could be
applied to predict the level of immune infiltration, the ability of
cancer cells to self-renew and differentiate in the TME of MM
patients, and the sensitivity to ICB treatment. The low-risk group
had a higher abundance of immune cells and, correspondingly, a
higher sensitivity to immunotherapy. Moreover, the risk score was
observed a positive correlation with the stemness index. Activation
of cancer stem cells has been considered as the critical driving factor
of tumor metastasis, recurrence, progression, and drug resistance
(Clarke, 2019; Xu et al., 2021).

In the consensus on risk stratification, the IMWG has proposed
that prognostic markers can be divided into host factors, tumor-
related factors, tumor burden/stage, and treatment responsiveness,
among which age is the most important host factor, while genetic
aberration and gene expression profile are the most important
tumor factors (Chng et al., 2014). Most previous studies on
prognostic models of MM, including those investigating ISS,
R-ISS, and gene expression profile (GEP), have concentrated only
on tumor-related prognostic factors (Greipp et al., 2005; Kuiper
et al., 2012; Kuiper et al., 2015; Palumbo et al., 2015). However,
integrating tumor-related and patient-related factors should also be
considered as an important strategy for the improvement of the
staging system. Thus, in order to improve the ability for survival
prediction, we established a nomogram combined with the ISS, age,
and cuproptosis-related risk score to quantify the risk assessment.
Compared to other traditional features including the R-ISS, the
nomogram exhibited the highest accuracy and discrimination in
survival prediction.

As mentioned above, mitochondrial respiration plays an
important role in MM. Meanwhile, copper induces cell death by
targeting lipoylated TCA cycle proteins, mitochondrial respiration is
required for copper-induced cell death (Tsvetkov et al., 2022). The
GSEA displayed that TCA cycle-related pathways were highly
enriched in the high-risk score group. The TCA cycle is the
ultimate metabolic pathway for sugars, lipids, and amino acids.
The degradation of valine, leucine, and isoleucine provides the
feedstock for the TCA cycle, the intermediate products of which
are involved in pyrimidine synthesis and oxidative phosphorylation
for the synthesis of ATP. Correspondingly, the GSVA also showed a
higher proportion of TCA in the high-risk group than that in the
low-risk group. In conclusion, the high-scoring group was more

closely related to the TCA cycle. Moreover, we further verified the
abnormal expression of these four genes through the online database
CCLE and our in vitro experiments. The gene expression trends were
consistent with our results.

In our prognostic model, DLD and PDHA1 were shown to be
risk-associated genes, whereas LIPT1 and MTF1 were identified as
protective genes. The pyruvate dehydrogenase (PDH) complex is a
nuclear-encoded mitochondrial multienzyme complex that
catalyzes the overall conversion of pyruvate to acetyl-CoA and
CO2 and provides the primary link between glycolysis and the
TCA cycle. The PDH complex is composed of pyruvate
dehydrogenase (PDH, E1), dihydrolipoamide acetyltransferase
(DLAT, E2), and lipoamide dehydrogenase (DLD, E3) (Yu et al.,
2008). PDHA1, the main regulatory site of PDH activity, is
considered to promote cuproptosis (Dahl et al., 1992; Tsvetkov
et al., 2022). PDH is a potential therapeutic target for MM. PDHA
was found to enhance the anti-MM effect of bortezomib by
modulating metabolic reorganization (Findlay et al., 2023).
Furthermore, pyruvate dehydrogenase kinase 1 (PDK1) is a PDH
inactivator. Studies have shown that PDK1 inhibitors such as
JX06 and dichloroacetate can induce cell cycle arrest, apoptosis,
and can synergistically kill MM cells with bortezomib (Fujiwara
et al., 2013; Sanchez et al., 2013; Kawano et al., 2022). The
downregulation of DLD expression was shown to increase
intracellular ROS production and reduce mitochondrial
membrane potential, thereby inducing autophagic cell death in
melanoma cells and significantly inhibiting tumor proliferation in
vivo (Yumnam et al., 2021). However, other studies have also noted
that human cancer cells express DLD at lower levels than normal
cells, which is associated with poor survival outcomes in several
cancers, including kidney, colon, and cervical cancers (Shin et al.,
2020). Recent studies show that DLD and PDHA have
transcriptomic alterations in the progression of MM, which are
associated with poor prognosis (Findlay et al., 2023). LIPT1, an
enzyme that activates 2-ketoacid dehydrogenases related to the TCA
cycle and promotes cuproptosis (Solmonson and DeBerardinis,
2018), has been reported the association with the prognosis of
urothelial carcinoma and lung cancer in the Pathology Atlas
project (Uhlen et al., 2017). MTF1 protects cells from heavy
metals by binding toxic metal ions to activate metallothionein
expression (Takahashi, 2015). Increased expression of MTF1
could lead to cell cycle arrest and apoptotic responses of B-cell
lymphoma lines (Lecane et al., 2005). Additionally, its deletion
would enhance the tolerance of chronic myeloid leukemia to
arsenic trioxide (Sobh et al., 2019). However, another research
has also found that MTF1 shows high expression levels in glioma
cells, and its knockout inhibits malignant progression (Ruan et al.,
2020). Whether these genes play a role in the prognosis of MM
patients by affecting the process of cuproptosis remains to be
elucidated, as few relevant studies have been reported on these
genes, especially in MM and even hematological tumors.

Our study, however, had several limitations that should be
addressed. First, our prognostic model was constructed and
validated with retrospective data from public databases and our
clinical samples, so the prognostic robustness and clinical usefulness
of the CRG signature need further validation in larger prospective
studies. Second, the validation datasets we used lacked complete
clinical information, such as R-ISS. Finally, the potential complex
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molecular mechanisms of CRGs in MM and the prognostic and
diagnostic value of each gene still need to be explored and validated
in more experiments and large sample clinical trials.

5 Conclusion

Overall, this study provides new insight into understanding the
relationship between cuproptosis and MM. The prognostic model
related to cuproptosis characterized the heterogeneity of
clinicopathological features, treatment responsiveness, TME, and
prognosis in MM patients. These findings may provide a feasible
strategy for predicting clinical outcomes in MM, individualized
treatment based on risk scores and developing new therapeutic targets.
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Glossary

MM Multiple myeloma

MGUS monoclonal gammopathy of undetermined significance

SMM smoldering myeloma

CRGs cuproptosis-related genes

qRT-PCR quantitative real-time PCR

TME tumor microenvironment

R-ISS The Revised International Staging System

HRCAs high-risk cytogenetic alterations

LDH lactate dehydrogenase

β2M β2-microglobulin

TCA cycle tricarboxylic acid cycle

OXPHOS oxidative phosphorylation

RNA-seq RNA sequencing

GEO the Gene Expression Omnibus

SNV single nucleotide variant

TCGA The Cancer Genome Atlas

GSCA Gene Set Cancer Analysis

LASSO the Least absolute shrinkage and selection operator

WGCNA the weighted gene co-expression network analysis

MAD median absolute deviation

GO the Gene Ontology

KEGG the Kyoto Encyclopedia of Genes and Genomes

GSEA Gene Set Enrichment Analysis

GSVA the Gene Set Variation Analysis

ssGSEA single-sample gene set enrichment analysis

TIDE tumor immune dysfunction and exclusion

mRNAsi mRNA expression-based stemness index

OCLR one-class logistic regression

TIS T cell inflamed score

IPS immunophenotype score

MHC antigen presentation

EC effector cells

SC suppressor cells

CP checkpoint markers

ICP immune checkpoint blockade

CCLE the Cancer Cell Line Encyclopedia database

time-ROC curves time-dependent receiver operating characteristic curves

IMWG International Myeloma Working Group

FP forward primer

RP reverse primer

(Continued in next column)

(Continued)

PPI protein-protein interaction

FISH fluorescent in situ hybridization

ETC electron transport chain

ES elesclomol

DTC diethyldithiocarbamate

DSF disulfiram

CTCs circulating tumor cells

FLC free light chain

GEP gene expression profile
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