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Remote mapping of chlorophyll concentration in leaves is highly important for
various biological and agricultural applications. Multiple spectral indices calculated
from reflectance at specific wavelengths have been introduced for chlorophyll
content quantification. Depending on the crop, environmental factors and task,
indices differ. To map them and define the most accurate index, a single multi-
spectral imaging system with a limited number of spectral channels is insufficient.
When the best chlorophyll index for a particular task is unknown, hyperspectral
imager able to collect images at any wavelengths and map multiple indices is in
need. Due to precise, fast and arbitrary spectral tuning, acousto-optic imagers
provide highly optimized data acquisition and processing. In this study, we
demonstrate the feasibility to extract the distribution of chlorophyll content from
acousto-optic hyperspectral data cubes. We collected spectral images of soybean
leaves of 5 cultivars in the range 450–850 nm, calculated 14 different chlorophyll
indices, evaluated absolute value of chlorophyll concentration from each of them
via linear regression and compared it with the results of well-established
spectrophotometric measurements. We calculated parameters of the chlorophyll
content estimationmodels via linear regression of the experimental data and found
that index CIRE demonstrates the highest coefficient of determination 0.993 and the
lowest chlorophyll content root-mean-square error 0.66 μg/cm2. Using this index
and optimized model, we mapped chlorophyll content distributions in all inspected
cultivars. This study exhibits high potential of acousto-optic hyperspectral imagery
for mapping spectral indices and choosing the optimal ones with respect to specific
crop and environmental conditions.
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1 Introduction

Chlorophyll is responsible for capturing light energy and transferring it to other
molecules that drive the synthesis of organic compounds. This pigment plays a vital role
in maintaining the balance of oxygen and carbon dioxide in the atmosphere, making it
essential for the survival of plants and many other organisms. Chlorophyll content (CC)
indicates multiple physiological and ontogenetic characteristics at vegetative and generative

OPEN ACCESS

EDITED BY

Keshav Singh,
Agriculture and Agri-Food Canada
(AAFC), Canada

REVIEWED BY

Nasem Badreldin,
University of Manitoba, Canada
Mohsen Yoosefzadeh Najafabadi,
University of Guelph, Canada

*CORRESPONDENCE

Anastasia Guryleva,
guryleva.av@ntcup.ru

RECEIVED 27 January 2023
ACCEPTED 03 April 2023
PUBLISHED 20 April 2023

CITATION

Zolotukhina A, Machikhin A, Guryleva A,
Gresis V and Tedeeva V (2023), Extraction
of chlorophyll concentration maps from
AOTF hyperspectral imagery.
Front. Environ. Sci. 11:1152450.
doi: 10.3389/fenvs.2023.1152450

COPYRIGHT

© 2023 Zolotukhina, Machikhin,
Guryleva, Gresis and Tedeeva. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Methods
PUBLISHED 20 April 2023
DOI 10.3389/fenvs.2023.1152450

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1152450/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1152450/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1152450/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1152450&domain=pdf&date_stamp=2023-04-20
mailto:guryleva.av@ntcup.ru
mailto:guryleva.av@ntcup.ru
https://doi.org/10.3389/fenvs.2023.1152450
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1152450


developmental stages (Judkins & Wander, 1950; Zhang et al., 2009;
Dai et al., 2016). Molecules of chlorophyll foster conversion of
absorbed solar radiation into chemical energy by collecting photons
and supplying electrons to the transport chain that results in the
production of NADPH for Calvin-Benson cycle reactions
(Blankenship, 2008). CC is defined by the plants’ productivity
and stress from biotic and abiotic factors (Houborg et al., 2015).
Thus, CC is a quantitative merit of photosynthetic capacity (Croft
et al., 2017) and plant growth (Hotta et al., 1997). This information is
necessary for timely and accurate decision-making regarding
fertilization, irrigation and other agricultural activities. Moreover,
CC correlates with nitrogen, which is an essential component of all
proteins and nucleic acids (Liu et al., 2020; Sage et al., 1987) and
plays an important role in development of new plant cells, crop
growth, and plant metabolic activity.

Well-established techniques for CC measurements such as
chromatography and spectrophotometry require an extract of
plants and are quite time-consuming (Chappelle et al., 1992;
Dhanapal et al., 2016). With accurate calibration, they provide
concentrations of individual photosynthetic pigments and suit
well for laboratory measurements (Pinckney et al., 1994). For
field experiments, portable fluorescence spectrometers and
colorimeters have been developed (Linder, 1974; Gitelson et al.,
1999). These devices enable CC evaluation in individual plants in
natural environmental conditions but are barely applicable to
monitoring large areas with high spatial and temporal resolution.

For precision agriculture, variable deficit irrigation and many
more agricultural tasks, mapping chlorophyll concentrations over
large areas is necessary. That is why remote and high-throughput
imaging modalities are in demand. Reflectance spectroscopy seems
the most promising for fast and non-destructive evaluation of CC
distribution among them. Spectral image acquisition and processing
allows non-contact detection and quantification of multiple
substances (Buddenbaum et al., 2015; Couture et al., 2016;
Arellano et al., 2017). Rather low spectral and spatial resolution
of remote spectral imaging systems and their sensitivity to
environmental factors lead to inability of direct chemical
composition measurements. To overcome these challenges and
characterize foliage state and properties quantitatively, multiple
vegetation indices (VI) have been introduced.

VIs are mathematical combinations of plant’s reflectance in a
few spectral bands (Koh et al., 2022). Depending on the application,
they normally involve two or three bands in visible and infrared
ranges, and do not require the whole hyperspectral data cube. Thus,
VIs deliver a simple and fast approach to extraction of multiple
parameters of plant growth, phenology stress symptoms,
photosynthetic activity, nutrient composition, etc. (Basso et al.,
2004; Sharifi, 2020; Zhao et al., 2020). For CC evaluation, VIs are
also widely in use (Haboudane et al., 2002; Wu et al., 2008; Qiao
et al., 2022). Accurate calculation of chlorophyll concentration often
requires exhaustive research on spectral reflectance for each plant
and introduction of plant-specific models and indices (Daughtry
et al., 2000a; Kooistra & Clevers, 2016; Cui et al., 2019). Even for one
plant, chlorophyll indices (CIs) may differ depending on its type,
vegetation stage, growing region, etc. (Lu et al., 2018; Wu et al.,
2008). To map them and define the most accurate index, a single
multi-spectral imaging system with a limited number of spectral
channels is insufficient. When the best CI for a particular task is

unknown, hyperspectral imaging (HSI) is preferrable. HSI data
allows estimating multiple indices and weighing whether it makes
sense to apply them for CC mapping under given environmental
conditions.

Multiple whiskbroom (Green et al., 1998; Whiting et al., 2006;
Perry & Roberts, 2008; Oppelt & Mauser, 2010) and
pushbroom (Vane et al., 1983; Patel et al., 2010; Lucieer et al.,
2014; Martín et al., 2023) hyperspectral systems have been proposed
for CC monitoring in various crops. They require spatial scanning
for HSI data cube acquisition and therefore are not optimal with
respect to VI mapping applications when only several images at
selected wavelengths are required. Hyperspectral imagers based on
spectral scanning are able to collect images right in the spectral
bands included in required chlorophyll indices (CIs) and thus enable
data volume reduction as well as faster data acquisition and
processing. The main approaches to the implementation of
spectrally tunable imaging modality include Fabry-Perot
(Pölönen et al., 2013), liquid crystal (Chen et al., 2008) or
acousto-optical (Calpe-Maravilla et al., 2006) tunable filters.

In this study, we demonstrate the applicability of spectral-
scanning hyperspectral imagery for selecting the optimal CI and
extraction of accurate chlorophyll concentrations. We assembled
the imager based on acousto-optical (AO) tunable filters (AOTFs)
which are able to address assigned spectral bands randomly and rather
fast (Hagen &Kudenov, 2013; Lu & Fei, 2014), and suit well for this task.

For the experiments, we chose soybeans. Soybean is the most
important seed legume as well as a valuable ingredient in formulated
feeds for poultry and fish (Agarwal et al., 2013). Soybeans are rich
source of essential nutrients including manganese, phosphorus and
iron for both farm animal feed and human consumption (Latifinia &
Eisvand, 2022). Increasing the yield potential of soybeans is highly
important due to growing demand in soyfood products. Soybean
production sustainability is an important factor for food security
and people’s quality of life (da Silva et al., 2021). The increased
demand for soy driven by a growing need for meat, dairy, oil and
aquaculture leads to the necessity of its productivity management
and timely physiological diagnosis. Chlorophyll concentration in
soybean foliage is an important indicator of the crop growth and
health (Buttery & Buzzell, 1977; Brennan et al., 1987). Monitoring
and immediate responding to CC temporal and spatial variability
is one of the main ways to improve soybean production
sustainability (Hesketh et al., 1981; Ma et al., 1995; Wang et al.,
2020; Shi et al., 2023).

2 Materials and equipment

2.1 Experimental plants

In our study, we selected soybean leaves of five different
cultivars (Table 1). They are adapted to North Caucasus region,
which is one of the major soybean planting territories in Russia
(Sinegovskii et al., 2018) and one of the most perspective areas for
extending soybean production in southern Europe (Nendel et al.,
2023) due to mild climate similar to Central European weather
conditions. These cultivars are resistant to lodging and diseases, and
respond well to fertilizers and irrigation. Though these cultivars
differ in plant height, vegetation period, ripeness group, protein
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content and yield, they all are successfully cultivated and possess
rather high productivity (Table 1). In practice, they are often grown
at the same fields, which means that CI and CI-based model for CC
evaluation should suit all of them. Such a wide variety of properties
within one plant allowed us to check the proposed strategy of
choosing the optimal index for accurate CC extraction from
spectral-scanning HSI imagery.

2.2 Experimental field

Location, orientation, dimensions and appearance of the
experimental field are shown in Figure 1. Its total area is 964 m2.
It consists of 15 equal plots, i.e., 3 plots per each of 5 selected soybean
cultivars. The seeding rate is 500,000 germinating soybean seeds per
ha−1. The natural background of mineral fertilizers is N30P45K45. We
sowed all plants on 6 May 2022 and carried out the presented
spectrophotometric and HSI studies on 30 August 2022.

The field is located in the forest-steppe zone on the Ossetian sloping
plain. The average annual temperature is 8.4°C. Yearly mean relative
humidity is 77%.Mean annual precipitation is 670mmand is distributed
unevenly over the seasons. In winter (from December to March), the
precipitation is just about 120mm. Rains in the warm season are mostly
short and intense. Dry periods in summer may last 18–20 days.

The soil of the field is leached chernozem characterized by a
high content of nitrogen and phosphorus. Granulometric
composition of the soil includes 25%–30% of sand
(0.05–1.00 mm) and 30%–40% of dust (0.001–0.05 mm)
fractions. Hydrolytic acidity is low and does not exceed
2.4–3.0 meq/100 g soil in the upper horizon. Degree of
saturation is about 95%. Total porosity is 47%–57%. Ph value
of the soil is 6.5. The topsoil layer contains 3.3%–4.7% of humus.

2.3 Experimental equipment

For the experiments, we assembled the laboratory setup
shown in Figure 2. It includes 150 W halogen light source
(Dedolight DLH4) LS and AOTF-based HSI system. Optical
system includes two AO cells AOC1 and AOC2. Each of them
is driven from PC via control unit CU and operates as an AOTF.
Tandem AO filtration ensures absence of chromatic shift between
the spectral images (Machikhin et al., 2015) and simplifies setup
calibration and data processing. By varying the ultrasound
frequency applied to AOC1 and AOC2, one can obtain the image
of the sample at any wavelength within 450–850 nm range with
spectral bandwidth 5 nm (at 632 nm), field of view 5° × 5° and spatial
resolution 500 × 500 pixels (Pozhar et al., 2018).

TABLE 1 Main features of the experimental plants.

Property Soybean cultivar

Iriston Vita Inei Lira Slavia

Ripeness group Mid-season Very early Mid-early Very early Early

Plant height, cm 90–130 78–85 100–110 75–85 110–125

Vegetation period, days 105–111 92–96 110–115 92–98 103–108

Protein content, % 32–34 40–43 40–41 40–43 40–43

Productivity, t/ha 3.5–4.0 2.7–3.6 3.4–4.4 2.6–3.2 3.2–4.0

FIGURE 1
Image of the experimental field (left) with the region involved in the study (yellow rectangle). Colors of 15 plots correspond to five selected soybean
cultivars. Three types of plot hatching designate the duplicate number. Right part of the figure illustrates the images of two plots with Iriston and Lira
soybean cultivars.
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3 Materials and methods

3.1 Reference chlorophyll concentration
measurement protocol

To obtain reference CC values, we carried out a well-
established spectrophotometric analysis. Measurement
procedure is illustrated in Figure 3. To prepare solution, we
cut the leaves manually and mixed them (3 g) with 96% ethanol
(25 mL) and crushed glass (5 g), shook this mixture in a conical
flask within 90 min and then filtered through paper filter.
Solution’s absorbance spectrum measured by
spectrophotometer (SF-2000) allows accurate estimation of

the optical density D at the red peaks of chlorophyll a (Chl a)
and chlorophyll b (Chl b), i.e., at the wavelengths 649 nm and
665 nm. To get reliable reference values of D649 and D665, we
repeated the measurements three times and averaged the
obtained CC values.

The relationships between the optical densities D649 and D665

and chlorophyll Chl a and Chl b concentrations are given by the
following equations (Wintermans & de Mots, 1965):

Chl a � 13.7 · D665 − 5.76 · D649 (1)
Chl b � 25.8 · D649 − 7.6 · D665 (2)

Values of Chl a and Chl b in these equations are volumetric
and expressed in mg/L. To transform them to μg/cm2 and get
area-averaged values Chls, we applied the formula given in (Datt,
1998):

Chls � V · ChlV
S · 106 (3)

where V is the volume of the solution in ml, ChlV is pigment
concentration in mg/L, S is area of leaves in cm2. Calculated CC
accordingly described protocol for chosen cultivars are presented in
Table 2.

3.2 Hyperspectral data acquisition and pre-
processing

Inspected leaves were placed in 25 cm white plate with uniform
spectral reflectivity (Figure 2). For radiometric calibration of the
setup, reflectance spectrum of the plate ISP_REF(λ) and LS
illumination spectrum ISP_LS(λ) were measured by spectrometer
(Ocean Insight Flame-T-UV-VIS). To correct spatio-spectral
distortion caused by illumination non-uniformity, optical
vignetting, wavelength-dependent sensor’s quantum efficiency and
transmittance of the optical components (Yu et al., 2015; Henriksen,
2019), 401 spectral images of the empty plate IHSI_REF(x,y,λ)

FIGURE 2
Scheme (left) and appearance (right) of the experimental setup. It
consists of the light source (LS) for sample illumination, AOTF-based
HSI system for data acquisition and PC for data processing and
storage. HSI system includes two acousto-optical crystals
AOC1 and AOC2 with polarizer P located between them, optical
couplers L1 and L2, AOTF control unit CU and monochrome
camera CAM.

FIGURE 3
Protocol of spectrophotometric analysis applied for reference CC measurements.
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in the range 450–850 nm with 1 nm step at exposure time 50 m
were collected.

In the experiments, we acquired five hyperspectral data cubes
IHSI_SAM(x,y,λ) of the soybean leaves of each cultivar at the same
wavelengths λ as IHSI_REF(x,y,λ). After high-frequency noise smoothing
bymedian andGauss filtration, spatial distribution of spectral reflectivity
R(x,y,λ) of the inspected sample may be calculated as

R x, y, λ( ) � IHSI SAM x, y, λ( )
IHSI REF x, y, λ( ) · ISP LS λ( )

ISP REF λ( )
(4)

Since the leaves may not cover the entire plate, we filtered out the
leaf-free pixels using the spectral angle mapping (SAM)
classification method (Padma & Sanjeevi, 2014). To implement it,

we calculated spectral angle map to mark pixels in which the
dependence R(λ) differs greatly from typical foliage reflectivity.
As soon as hyperspectral cube R(x,y,λ) is calculated, we may
evaluate and map any CIs. Complete hyperspectral data
processing pipeline implemented in MATLAB is shown in Figure 4.

4 Results

4.1 Selection of chlorophyll indices

We selected 14 indices reported as effective for chlorophyll
concentration measurements in certain conditions. All these CIs
are calculated from the sample’s reflectivity values in the wavelength

TABLE 2 Reference SS values obtained from three (spectrophotometric) measurements.

Chlorophyll concentration Cultivar

Iriston Vita Inei Lira Slavia

Chl a, μg/cm2 14.31 ± 2.40 5.62 ± 1.02 13.52 ± 2.27 3.71 ± 0.78 2.69 ± 0.43

Chl b, μg/cm2 10.37 ± 1.74 3.08 ± 0.53 9.12 ± 1.55 3.17 ± 0.53 1.77 ± 0.29

FIGURE 4
Data processing pipeline implemented for chlorophyll concentration mapping. It requires light source illumination and plate reflectance spectra as
well as spectral images of the sample and an empty plate. Joint processing of these data allows accurate measuring the spectral reflectivity R (x,y,λ) of the
sample and background removal. After R (x,y,λ) is obtained, any CI may be evaluated and then converted to chlorophyll concentration Shl via linear
model.
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range 500–800 nm available in our experimental setup. Table 3
presents their definitions, reported applications, achieved
coefficients of determination R2 and reference sources.

The index-based models for CC evaluation are mainly
linear (Dorigo et al., 2007). To establish how well selected SIs
(Table 3) calculated from HSI data and averaged over the samples

area fit the reference CC values (Table 2), we calculated coefficient of
determination R2 (Figure 5).

We may see that almost all CIs have high linear correlation with
spectroscopic CC measurements. To proceed with data processing and
CC mapping, six CIs were selected based on two criteria. Firstly, they
needed to have a high R2 value. Secondly, they should be applicable for

TABLE 3 Selected CIs, their definitions, reported applications and reference sources.

Chlorophyll
index

Definition Inspected crop(s) R2 Application References

Normalized Difference
Vegetation Index

ND705 � (R750 − R705)
(R750 + R705)

Herbaceous,
sclerophyllous,

succulent, grasses and
others (53 species)

0.78 Forecasting CC in various crops
at different growth stages

Sims & Gamon
(2002)

Modified Simple Ratio
MSR705 � (R750/R705) − 1�������������(R750/R705) + 1

√ Winter wheat, eared,
no-eared corn

0.67 Studying CC with respect to LAI
variations

Wu et al. (2008)

Red edge chlorophyll
index

CIRE � R760

R710
− 1

Maize, soybean 0.95 Studying CC in different leaf
structure and canopy

architecture

Gitelson et al.
(2005)

MERIS terrestrial
chlorophyll index

MTCI � (RNIR − R705)
(R705 + R660)

Fir, maple 0.75 CC evaluation from moderate-
resolution

Dash & Curran
(2004)

HSI data

Modified Chlorophyll
Absorption Ratio

Index

MCARI � [(R750 − R705) − 0.2 · (R750 − R550)] · (R750

R705
) Winter wheat, eared and

no-eared corn
0.7 Studying CC with respect to LAI

variations
Wu et al. (2008)

Transformed
Chlorophyll

Absorption Ratio
Index

TCARI � 3 · [(R750 − R705) − 0.2 · (R750 − R550) · (R750

R705
)] Winter wheat, eared and

no-eared corn
0.8 CC evaluation at leaf, canopy

and regional scales in a wide
range of CCs

Wu et al. (2008)

Xiao et al.
(2014)

Optimized Soil-
Adjusted Vegetation

Index

OSAVI � (1 + 0.16) · (R750 − R705)
(R750 + R705 + 0, 16)

Rice 0.96 Studying CC in the presence of
atmospheric distortions and LAI

variations

Wu et al. (2008)

Yuhao et al.
(2020)

MCARI
OSAVI MCARI

OSAVI
�
3 · [(R750 − R705) − 0.2 · (R750 − R550) · (R750

R705
)]

(1 + 0, 16) · (R750 − R705)
(R750 + R705 + 0, 16)

Winter wheat, eared and
no-eared corn

0.94 Studying CC with respect to LAI
variations

Wu et al. (2008)

Red-Edge-Chlorophyll
Absorption Index RECAI �

(R800 − R720) · (R700

R550
)

R550

Winter wheat 0.9 Studying CC in a wide range of
cultivars, growth stages, stress
treatments, and growing season

at the canopy level

Cui et al. (2019)

SR705 SR705 � R750

R705

Herbaceous,
sclerophyllous,

succulent, grasses and
others (53 species)

0.71 Studying CC stability within a
single crop and between

different crops in a wide range of
CCs at different growth stages

Sims & Gamon
(2002)

MTCI × RDVI
MTCIxRDVI � (R750 − R705)

(R705 + R660) ·
(R750 − R680)�����������(R750 − R680)
√ Winter wheat, soybean 0.86 Improving the accuracy of CC

evaluation and resistance to LAI
changes by a combination of
MTCI and LAI-related VI

Sun et al.
(2021)

MTCI × LNDVI
MTCIxLNDVI � (R750 − R705)

(R705 + R660) ·
1.2 · (R750 − R680)
(R750 + 5 × R680)

Winter wheat, soybean 0.82 Improving the accuracy of CC
evaluation and resistance to LAI
changes by a combination of
MTCI and LAI-related VI

Sun et al.
(2021)

Ratio spectral index
RSI � R815

R704

Rice, wheat, corn,
soybean, sugar beet and

grass

0.89 Studying the stability of CC
evaluation accuracy to the type

of the crop

Inoue et al.
(2016)

Modified Datt’s index
MDATT � (R701 − R742)

(R701 + R740)
White poplar,
Chinese elm

0.9 Studying the stability of CC
evaluation accuracy to the effects

of adaxial and abaxial leaf
surface structure

Lu et al. (2015)
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SS measurements on individual leaves without requiring the
introduction of leaf area index (LAI) to the mathematical model or
the need for experimental retrieval of LAI (Zheng&Moskal, 2009). As a
result, the following indices were selected: ND705, MSR705, CIRE,
MCARI/OSAVI, MCARI, and OSAVI. The LAI-free CC
measurement capability has been previously validated for all of these
indices on certain crops (Table 4).

Model for measurement of chlorophyll concentration, CC is
largely predetermined by location, growing season length and other
factors specific for plant cultivation in a particular region (Li et al.,
2018). Though the selected CIs demonstrate high correlation with
reference measurements (Figure 5), reported models (Table 4) based
on these indices may be inefficient for CC measurements in our
soybean experiment. Thus, we calculated parameters of the models
Chl = k × CI – b via linear regression of the experimental data for
6 selected CIs. Parameters k and b as well as coefficient of
determination R2 and CC root-mean-square error (RMSE) for all
obtained models are presented in Table 5.

All 6 models have R2 close to 1 and rather low RMSE. To
compare CIs and obtained CI-based models in terms of HSI CC
measurements, we calculated CC distributions with each of them.
Table 6 shows CC values in different soybean cultivars averaged over
the area covered with the leaves. All obtained models deliver similar
results close to the reference values with maximal error less than
3.78 μg/cm2. To proceed with CC mapping, we chose index ClRE,
which provides the smallest RMSE (Table 5).

4.2 Chlorophyll concentration mapping

After we identified ClRE as the best CI for our experimental data
and optimized the parameters of CC calculation model based on this
index, we may demonstrate CC mapping capability of our AOTF-
based HSI system. CIRE includes reflectivity at just two wavelengths,
i.e., 710 nm and 760 nm. Thus, after 14 selected CIs were analyzed,
we found that CC maps in our experiment may be calculated from
just two spectral images. All other images in the acquired
hyperspectral cubes turned out to be excessive in our particular
case. Figure 6 illustrates the examples of CIRE and CC distributions
across the inspected leaves of five soybean cultivars. Histograms in
Figure 6D represent the frequency distributions of CC values in
these maps. Mean values in the histograms are close to the reference
CC values for the same cultivars presented in Table 2. This fact
confirms the correctness of the chlorophyll concentration
evaluation.

5 Discussion

Precise two-dimensional distribution of chlorophyll
concentration indicates the efficiency of the photosynthesis
process as well as sheds the light on the properties and state of
the plants. CC is dependent on multiple soil-climate conditions and

FIGURE 5
Coefficient of determination R2 of linear correlation between average values of calculated CIs and reference CCs for all experimental plants.

TABLE 4 CIs with the highest R2 values (Figure 5) and LAI-free CC measurement
capability demonstrated for different crops.

Chlorophyll index Inspected crop References

ND705 Maize Wu et al. (2010)

MSR705 Maize and wheat Wu et al. (2008)

CIRE Maize and soybean Clevers & Gitelson (2013)

MCARI

OSAVI
Wheat Bannari et al. (2007)

MCARI Maize Daughtry et al. (2000b)

OSAVI Rice Liu et al. (2010)

TABLE 5 Calculated parameters k and b of linear models Chl = k × CI – b used to
evaluate chlorophyll concentrations Chl from various CIs, and the
corresponding values of the error functions (R2 and RMSE).

CI k, μg/cm2 b, μg/cm2 R2 RMSE, μg/cm2

ND705 85.30 19.90 0.985 0.99

MSR705 33.57 11.82 0.987 0.94

CIRE 21.48 6.85 0.993 0.66

MCARI

OSAVI
13.44 14.32 0.942 1.97

MCARI 18.02 4.23 0.95 1.83

OSAVI 84.55 21.65 0.982 1.09
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thus is non-constant in time and space. Development of temporal
and spatial patterns for CC dynamics even for a specific field
requires big statistical data collection and leads to inevitable
inaccuracies due to barely predictable environmental factors. For
precise chlorophyll concentration measurements, any index-based
model has to be verified with respect to current reference
measurements.

When a well-proven CI for specific crop and field is
unknown, CC evaluation becomes even more difficult. In this
case, it is necessary to define the most suitable CI first, then

specify the CC estimation model and apply it to calculate CC
distribution. That is why it is important to have the system
able to collect spectral images in the wavelength bands involved
in the indices that may suit. For this application, the entire HSI data
cube is excessive in terms of data volume and acquisition time,
and thus spectrally tunable systems seem much more effective than
pushbroom imagers.

We demonstrated the flexibility of AO imagery by calculating
and comparing well-known CIs for extraction CC distribution in
soybean leaves. We showed experimentally that AOTF-based

FIGURE 6
Color images of inspected soybean leaves (A) and calculated maps of the index CIRE (B). Chlorophyll concentration distributions (C) are evaluated
fromCIREmaps (B) using linearmodel presented in Table 5. Chlorophyll histograms (D) illustrate frequency distributions of CC values in (C) and shows that
their mean values (green dashed line) are close to the reference ones (pink dashed line).
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hyperspectral imager allows CC mapping in a few soybean
cultivars without a priori information on the proper CI. We
selected 14 potential CI candidates, then chose six of them
with suitable reported models and finally left only one,
which had the highest correlation with reference measurements.
In fact, we could limit the number of spectral images to 16 that
were necessary for evaluating 14 CIs or then to 5 to compare
6 indices with LAI-free models. As soon as the proper CI
and CC calculation model are specified, the imager can
switch between just two wavelengths involved in CIRE and
map CC very fast. Wavelength scanning often considered
as the drawback of such systems is almost insignificant in
this mode. Further periodic reference measurements and
correction of the model will lead to reliable spatio-temporal
dynamics of measured CC distribution. If we considered more
than 14 CI candidates, we would need more than 16 spectral
images but the discussed strategy for choosing the best CI would
stay the same.

Though we demonstrated the proposed approach to the best CI
selection and CC mapping with AOTF-based HSI system, it is
applicable to any spectral-scanning hyperspectral imager. Due to
ability to tune precisely to the required wavelengths, such imager
may be efficient for various VI-related mapping tasks and is a good
all-in-one alternative to multiple devices with fixed amount and
positions of spectral channels.

Further research may be related to field CC mapping
experiments with respect to LAI, recognition of symptomatic
stress and disease signatures using machine-learning algorithms
and long-term in-lab studies of photosynthetic features.

6 Conclusion

AO spectral imaging systems deliver a good compromise in
terms of spectral bandwidth, tuning range, aperture and switching
time. Being compact, solid state and electronically controlled,
AOTFs seem attractive for building reliable and versatile
devices. Ability to address rapidly and accurately any wavelengths
eliminates the need to collect the entire hyperspectral data cube

and thus fosters fast data collection and processing. This feature
is especially important with regard to VI mapping tasks.
When the index is predefined, AOTF-based system enables
immediate acquisition of images in the required spectral bands
and mapping any parameters calculated from the index. In
this study, we demonstrated the efficiency of AO imager when it
is necessary to compare VIs and VI-based models and estimate
whether they make sense for particular task. We validated this
approach on CC mapping, i.e., found the most suitable CI and
calculated chlorophyll maps of five soybean cultivars. This study
exhibits high potential of AO hyperspectral imaging for precise
chlorophyll mapping as well as for many more index-related
biological and agricultural applications.
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