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Background: Nephron sparing nephrectomy may not reduce the prognosis of

nephroblastoma in the absence of involvement of the renal capsule, sinus

vessels, and lymph nodes, However, there is no accurate preoperative

noninvasive evaluation method at present.

Materials and methods: 105 nephroblastoma patients underwent contrast-

enhanced CT scan between 2013 and 2020 in our hospital were

retrospectively collected, including 59 cases with localized stage and 46 cases

with non-localized stage, and then were divided into training cohort (n= 73) and

validation cohort (n= 32) according to the order of CT scanning time. After lesion

segmentation and data preprocessing, radiomic features were extracted from

each volume of interest. The multi-step procedure including Pearson correlation

analysis and sequential forward floating selection was performed to produce

radiomic signature. Prediction model was constructed using the radiomic

signature and Logistic Regression classifier for predicting the localized

nephroblastoma in the training cohort. Finally, the model performance was

validated in the validation cohort.

Results: A total of 1652 radiomic features have been extracted, from which TOP

10 features were selected as the radiomic signature. The area under the receiver

operating characteristic curve, accuracy, sensitivity and specificity of the

prediction model were 0.796, 0.795, 0.732 and 0.875 for the training cohort

respectively, and 0.710, 0.719, 0.611 and 0.857 for the validation cohort

respectively. The result comparison with prediction models composed of
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different machine learning classifiers and different parameters also manifest the

effectiveness of our radiomic model.

Conclusion: A logistic regression model based on radiomic features extracted

from preoperative CT images had good ability to noninvasively predict

nephroblastomawithout renal capsule, sinus vessel, and lymphnode involvement.
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Introduction

Nephroblastoma, also known as Wilms tumor, is the most

common renal tumor in pediatric patients (1), accounting for

more than 90% of all malignant kidney tumors in children (2), it

is also the most frequent pediatric abdominal malignant tumor and

the fourth most frequent pediatric malignant tumor overall (3).

Under the comprehensive treatment of surgery, chemotherapy, and

radiotherapy, the five-year survival rate of nephroblastoma patients

has exceeded 90% (4). The current focus of treatment is on how to

better protect kidney function and improve long-term survival

quality based on ensuring survival rates.

Nephron sparing surgery (NSS) helps to protect the kidneys in

the long term and prevent the development of chronic kidney

disease, which is especially important in children with a long

survival period and facing progressive renal insufficiency (5, 6).

Since the successful application in bilateral nephroblastoma, NSS

has also been increasingly used to remove selected cases of

unilateral nephroblastoma (7–9). Studies have found that in the

group of patients with localized disease, the event-free survival and

overall survival after NSS appeared to be as good as after total

nephrectomy (TN), and local recurrence rates were the same as

after TN (8). The application of NSS in unilateral nephroblastoma is

limited due to the possible risk of recurrence caused by positive

margins. If nephroblastoma patients without the involvement of

renal capsule, sinus vessels, and lymph nodes (named localized

stage here) can be accurately distinguished before surgery, it will be

of great significance to the management of nephroblastoma and will

promote the precision treatment of nephroblastoma.

Radiomics is a novel technology that can extract a large number

of quantitative information describing the pathophysiological status

and phenotypic characteristics of lesions from CT, PET, MRI and

other medical images (10–12). Models can be built through in-

depth analysis of the extracted mineable radiomic features,

combined with clinical examinations and testing information, and

using suitable machine learning algorithms to provide clinical

decision support. It has shown great advantages in metastasis

prediction (13), tumor diagnosis (14), treatment response

evaluation (15), and prognosis analysis (16).
02
The purpose of this study is to establish a radiomic approach

based on CT images to develop a non-invasive tool for preoperative

prediction of localized nephroblastoma of pediatric patients.
Materials and methods

Patients and study flow diagram

This retrospective study was approved and the requirement for

informed consent was waived by the Institutional Review Board of

our participating institution (Children’s Hospital of Zhejiang

University School of Medicine, Zhejiang, China). Inclusion

criteria are: (a) computed tomography (CT)-enhanced abdominal

scan before surgery, biopsy, radiotherapy, or chemotherapy; (b)

successful tumor resection; (c) postoperative pathology proved to be

nephroblastoma. Exclusion criteria are: (a) Contrast-enhanced CT

imaging of the tumor was not accomplished or treatment was

performed before CT scanning; (b) CT images were poor (e.g.

motion artifacts); (c) Radiotherapy, chemotherapy or both were

applied prior to surgery; (d) Pathology was unclear; (e) bilateral

nephroblastoma. We retrospectively collected 105 patients

diagnosed as nephroblastoma from December 2013 to September

2020. There are 59 patients in non-localized stage and 46 patients in

localized stage. These patients were divided into the training and

validation cohorts according to the order of CT scanning time

(training cohort, December 2013 to March 2019; validation cohort,

April 2019 to September 2020). The training cohort and the

validation cohort consist of 73 patients and 32 patients,

respectively. Details of our dataset in this study are provided in

Table 1. The flow diagram of this radiomics study consists of lesion
TABLE 1 Details of our dataset in this study.

Training cohort Validation cohort Total

localized 41 18 59

Non-localized 32 14 46

Total 73 32 105
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segmentation, data preprocessing, feature extraction, feature

selection and model construction. More details are provided below.
Definition of localized and
non-localized stage

Localized stage refers to stage I of the COG nephroblastoma

staging system1, excluding items related to surgery.
Fron
a. Tumor is limited to the kidney.

b. The renal capsule is intact.

c. The tumor is not ruptured or biopsied before being

removed.

d. No involvement of renal sinus vessels.

e. All lymph nodes sampled are negative.
All the other cases were considered as non-localized stage,

equivalent to preoperative stage II-V.

Both localized and non-localized stage were identified based on

postoperative pathology.
CT image acquisition and
lesion segmentation

Before CT examination, all of the patients were asked to fast for

4 to 6 hours. Somatom Emotion 16 (SIEMENS) and Optima CT660

CT (GE Medical Systems) were used for examination. Scanning

parameters of Somatom Emotion 16 CT scanner were tube voltage

110 kV, tube current 75 mA, layer thickness 1.5 mm, field of view

(FOV) 350mm × 350 mm, matrix 512 × 512. Parameters of GE
tiers in Oncology 03
Optima CT660 CT were tube voltage 120 kV, tube current 80 mA,

layer thickness 0.625 mm, FOV 350mm × 350 mm, and matrix 512

× 512. High pressure syringe (Mallinckrodt Injection System,

Liebel-Flarsheim Co.) was used for nonionic iodine contrast agent

injection according to body weight (1.5 ml/kg) at a rate of 1.5-2 ml/

s. Portal venous phase images were scanned 50s after the injection.

Portal venous phase CT images were uploaded to a secure

laptop. Then 3-Dimensional Slicer (3DSlicer, 4.11.0, http://

www.slicer.org/) was used to delineate the three-dimensional (3D)

regions of the renal masses with a semi-automatic segmentation

procedure, which was performed by two senior radiologists who

had more than 10 years of clinical experience. Both of the results

they obtained were used to extract radiomic features for evaluating

inter- and intra- observer repeatability through Intra Class

Correlation Coefficient (ICC).
Data preprocessing and feature extraction

Volume of interest (VOI) including the whole mass of each

nephroblastoma patient was segmented according to radiologists’

delineation (Figure 1), then, VOI of all the images were resampled

and gray-level normalized by PyRadiomics before feature

extracting. We utilized the nearest neighbor algorithm to

interpolate each VOI into isotropic data. The voxel spacing of our

isotropic data was set to 1×1×1 mm3, 3×3×3 mm3, or 5×5×5 mm3.

Radiomic features were extracted from original and derived

interpolated VOIs using PyRadiomics v2.2.0 (17), an open-source

python package (https://pyradiomics.readthedocs.io/en/latest/).

These derived interpolated VOIs were obtained by applying six

built-in optional filters (including Laplacian of Gaussian, Wavelet,

Square, Square Root, Logarithm and Exponential) to original
FIGURE 1

3D-Slicer was used to semi-automatically delineate the whole mass as the volume of interest for radiomics feature extraction.
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interpolated VOIs. Feature classes consist of shape, first order

statistics and texture features. Texture features contain gray level

cooccurence matrix (GLCM), gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM), neigbouring gray

tone difference matrix (NGTDM), and gray level dependence

matrix (GLDM) features. All radiomic features were normalized

(Z-score) to balance the feature contribution and make each feature

at the same quantity level. All feature classes with the exception of

shape can be extracted on original and derived interpolated VOIs.
Feature selection and model construction

In this study, we devised a multi-step procedure for the selection

of radiomic features to produce radiomic signature. First, Pearson

correlation analysis (13, 18, 19) was used to identify the redundancy

of radiomic features in the training cohort. We calculated Pearson

correlation coefficients of pair-wise radiomic features to build

Pearson correlation matrix. Each feature with the mean absolute

correlation higher than Pearson threshold was considered

redundant thus eliminated. The Pearson threshold between 0.70

and 0.95 (the stride was 0.5) was utilized to identify the highly

correlated feature pairs. Then the radiomic signature was identified

by sequential forward floating selection (SFFS) algorithm (20). We

utilized Logistic Regression (LR), ten-fold cross validation, and area

under the receiver operating characteristic (ROC) curve (AUC)

value as the classifier, K-fold cross validation, scoring criterion of

the SFFS algorithm respectively. The number of retained features

varies from 1/15 to 1/10 of total patient sample size (the stride was

1) (21–23), that is, the number of retained radiomic features ranged

from 7 to 11. Next, the corresponding radiomic signature of the

validation cohort were obtained according to the radiomic signature

of the training cohort.

Considering the voxel spacing of isotropic data, the Pearson

threshold and the number of retained features vary the radiomic

signature, we constructed prediction models with different
Frontiers in Oncology 04
parameters and LR classifier to classify patients with localized and

non-localized nephroblastoma in the training cohort. The

discrimination performance was quantified by the AUC value. In

addition to the LR classifier, we further compared the performances

of prediction models using the optimal parameter combination and

other machine learning classifiers. These classifiers include Support

Vector Machine with Recursive Feature Elimination (SVM-RFE),

Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient

Boosting Decision Tree (GBDT), and eXtreme Gradient Boosting

(XGBoost). Finally, the performance was validated in the validation

cohort. The flow chart was shown in Figure 2.
Results

A total of 105 patients (50 males/55 females) were enrolled in

the study, including 59 cases with non-localized stage and 46 cases

with localized stage. They were divided into training cohort (n= 73,

37 males/36 females) and validation cohort (n= 32, 13 males/19

females) according to the order of CT scanning time. Age of the

total study sample ranged from 0.1 to 10.3 years, with a median age

of 2.1 years. Age of the training cohort ranged from 0.1 to 7.9 years

with a median age of 1.9 years, whereas age of the validation cohort

ranged from 0.1 to 10.3 years with a median age of 2.9 years.

A total of 1652 radiomic features have been extracted on each

VOI. For original interpolated VOIs, 105 radiomic features were

obtained including 14 shape features, 18 first order statistics

features and 73 texture features. The remaining 1547 radiomic

features were extracted from derived interpolated VOIs. They

consisted of 306 first order statistics features and 1241 texture

features. ICC analysis showed that the radiomic features from the

VOIs delineated by the two senior radiologists had good inter- and

intra- observer repeatability (ICC ranged from 0.73 to 1.0).

In order to determine the optimal parameter combination, we

have adjusted different parameters (including the voxel spacing of

isotropic data, the Pearson threshold and the number of retained
FIGURE 2

Flow chart of radiomics analysis of localized nephroblastoma.
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features) and then established the corresponding LR models in the

training cohort. The LR model with the optimal parameter

combination was chosen as the final LR model. We found that

the optimal parameter combination was the voxel spacing of 1×1×1

mm3, the Pearson threshold of 0.90 and the feature number of 10.

When one parameter remains unchanged and other parameters

change, the AUC values of the LR models are shown in Figure 3.

The AUC value decreases with the increase of the voxel spacing of

isotropic data, illustrating that clearer image data is more conducive

to radiomics analysis. A total of 11 patients (including 4 cases of

non-localized stage and 7 cases of localized stage) were able to

correctly predict whether they were localized or not, even if the

voxel spacing was changed. As for the Pearson threshold and the

number of retained features, no clear pattern was observed in this

single-center study. In the Pearson correlation analysis, a total of

354 radiomic features (including 3 shape features, 73 first order

statistics features and 278 texture features) were obtained with

threshold 0.90. About 78.57% of radiomic features have been

eliminated. After the SFFS feature-ranking algorithm, top 10

radiomic features (including 3 first order statistics features and 7

texture features) were selected as our radiomic signature (Table 2).

In addition to the final LR model, SVM-RFE, RF, AdaBoost,

GBDT, and XGBoost models were constructed using the optimal

parameter combination and the corresponding machine learning

classifiers. Table 3 shows the AUC values of these models for

predicting the localized status in patients with nephroblastoma.

Although the same radiomic signature was used, only AUC values of

the final LR model were higher than 0.70 in the training and validation

cohorts (training cohort, 0.796; validation cohort, 0.710). Other

prediction models performed poorly in distinguishing localized group

from non-localized group. It designates the potential of LR-based

radiomics in classifying localized and non-localized nephroblastoma

in pediatric patients. For the final LR model, the radiomic signature

calculation formula is presented as follows: Rad_ signature = 0.22 - 0.52

× Feature_1 - 0.56 × Feature_2 - 0.21 × Feature_3 - 0.35 × Feature_4 -

0.84 × Feature_5 - 0.02 × Feature_6 + 0.58 × Feature_7 + 0.27 ×

Feature_8 + 0.33 × Feature_9 - 0.31 × Feature_10.

We further explored the performances of our radiomic

signature calculation formula based on the final LR model using
Frontiers in Oncology 05
more performance metrics (such as accuracy, sensitivity and

specificity). All performance metrics of the final LR model for

predicting the localized nephroblastoma are presented in Figure 4.

The AUC, accuracy, sensitivity and specificity are 0.796, 0.795,

0.732 and 0.875 for the training cohort respectively, and 0.710,

0.719, 0.611 and 0.857 for the validation cohort respectively. Results

manifest the effectiveness in distinguishing patients with localized

and non-localized nephroblastoma (Figure 5).
Discussion

The overall survival outcomes of most nephroblastoma patients

are good, and further studies should focus on how to use the
TABLE 2 Details of the radiomic signature in this study.

Feature Image
Type

Feature
Class Specific Name

Feature_1
Log-sigma-5-
0-mm-3D

NGTDM Strength

Feature_2
Wavelet-
HLH

GLSZM LargeAreaLowGrayLevelEmphasis

Feature_3
Wavelet-
HHH

GLCM ClusterShade

Feature_4
Wavelet-
HHH

GLSZM GrayLevelNonUniformity

Feature_5 Wavelet-LLL Firstorder Maximum

Feature_6 Square Firstorder Kurtosis

Feature_7 Square GLSZM SmallAreaEmphasis

Feature_8 Square GLSZM ZoneVariance

Feature_9 Logarithm GLCM ClusterProminence

Feature_10 Exponential Firstorder Kurtosis
“Log-sigma-5-0-mm-3D” means that the 3D Laplacian of Gaussian filter with the kernel
width “sigma” of 5.0 was implemented. “Wavelet-HLH” means that a high-pass filter, a low-
pass filter and a high-pass filter was applied on x, y and z-axis of the wavelet filter, which was
named analogously for “Wavelet-HHH” and “Wavelet-LLL”. “Firstorder” means first
order statistics.
A B C

FIGURE 3

AUC values of LR models with various parameters including the voxel spacing of isotropic data (A), the Pearson threshold (B) and the number of
retained features (C) in the training cohort.
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optimal treatment under more precise risk-stratified strategies (24)

to improve the long-term prognosis of patients with

nephroblastoma. Our result can be regarded as a kind of non-

invasive risk-stratified strategies prior to surgery for

nephroblastoma patients using radiomics technique, which goes

beyond the ability of the human eye to identify the completely

localized status in CT images.

Unlike previous surveys that concerned of all stages of

nephroblastoma, our current study highlighted on the detection

of nephroblastoma patients at a very early stage without

involvement of renal capsule, sinus vessels, and lymph nodes.

These patients can not only undergo complete tumor resection,

but also have the potential to perform nephron sparing

nephrectomy. Therefore, we developed a new method to divide

patients into localized group and non-localized group non-

invasively before operation, so as to guide the personalized

treatment of nephroblastoma. To the best of our knowledge, the

relationship between radiomic features and the involvement of

renal capsule, sinus vessels, and lymph nodes of nephroblastoma

has not been evaluated previously.

At present, lots of studies have shown that radiomic technology

has the power to predict metastasis of different diseases. For

example, one of our previous studies showed that radiomic

features could effectively predict preoperative lymph node

metastasis in patients with gastric cancer (13). In that study,
Frontiers in Oncology 06
tumor radiomics and LN radiomics were integrated to build an

effective non-invasive tool to guide treatment decision-making in

gastric cancer, which was notably useful in patients with T2-stage,

diffuse subtype, and moderately/well differentiated gastric cancer.

Zhao et al. found that radiomic features from preoperative CT

images could predict future distant metastasis of local renal cell

carcinoma after surgical resection, and these predictive radiomic

features were related to certain important biological pathways

(extracellular matrix-receptor interaction, focal adhesion and

Phosphoinositide 3-kinases/Akt pathways) (25). Their study

suggested that these findings provided support for the biological

interpretation of radiomics model and might enhance the molecular

basis of radiomics. Both of the above studies showed that the

radiomic technology has offered a possible solution for studying

the correlation between medical imaging and tumor metastasis in

patients with nephroblastoma.

In this study, we found that the radiomic features extracted

from enhanced CT images of preoperative nephroblastoma patients

could be used as an independent predictor of localized

nephroblastoma. 10 radiomic features related to early localized

stage of nephroblastoma were screened out from a large amount

of data through a generalized methodology for radiomic feature

selection and modeling developed by our team (23), in which

Pearson correlation analysis and SFFS algorithm were used for

feature selection. The methodology was verified by our own three

data sets (Gastric cancer dataset, Osteosarcoma dataset, Pancreatic

neuroendocrine tumors dataset) and performed well in these three

different origin and different types of solid tumors, which proves the

stability and reliability of this methodology in feature selection.

Similarly, the results of our LR-based model in this study

demonstrated the effectiveness of radiomic features based on

preoperative enhanced CT images for predicting localized

nephroblastoma at the training cohort (AUC, 0.796; accuracy,

0.795; sensitivity, 0.732; specificity, 0.875) and the validation

cohort (AUC, 0.710; accuracy, 0.719; sensitivity, 0.611;

specificity, 0.857).
FIGURE 4

Performances of the final LR model for predicting the localized
nephroblastoma.
FIGURE 5

ROC curves of the final LR model for predicting the localized
nephroblastoma.
TABLE 3 AUC values of different prediction models for predicting the
localized nephroblastoma.

Model Training cohort Validation cohort

LR 0.796 0.710

SVM-RFE 0.697 0.808

RF 0.643 0.657

AdaBoost 0.531 0.619

GBDT 0.608 0.647

XGBoost 0.643 0.694
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In addition to a single machine learning classifier, the performance

of different classifiers based on same radiomic features was also worth

exploring. Parmar et al. found that classifiers had a significant impact

on the model performance (accounting for 34.21% of the total model

differences) (26), so it was a very important step to determine the best

machine learning classifier and apply it to radiomics. Our results also

supported this conclusion. Through the comparison of 6 machine

learning classifiers (LR, SVM-RFE, RF, AdaBoost, GBDT, and

XGBoost), we found that LR was the most suitable classifier for our

dataset –only the AUC of LR was higher than 0.75 in training cohort

(training cohort: 0.796), and it performed equally well on the validation

cohort (validation cohort: 0.710). Dong et al. applied multiple machine

learning methods based on radiomics to differentiate intracranial

ependymoma from medulloblastoma and found that the performance

of RF classifier was the best (AUC 0.91,95% CI 0.787-0.968), followed

by Support Vector Machines and K neighbors, and Adboost was the

worst (AUC 0.75,95% CI 0.604-0.857) (27). Then Paired test showed

significant difference (P<0.05) in ROC curve among the classifiers used.

In this study, we also compared the model performance of LR with

other machine learning methods, which used the same radiomic

features for predicting the absence of involvement of the renal

capsule, sinus vessels, and lymph nodes in nephroblastoma. The

results illustrated that the radiomic model of LR achieved the best

performance both in the training cohort and validation cohort (P<0.05).

By comparing radiomic features based on three different types

of interpolated images, it was found that features extracted from

images with the smallest voxel spacing (1 × 1 × 1 mm3) resulted in

the best model accuracy, which was consistent with the truth that

smaller voxel associated with the higher resolution (28), even

though this smaller voxel was obtained by a resampling technique.

Despite the aforementioned important findings, our study still

had several limitations. First of all, this study was retrospective and

had a relatively small size of cohort, although external validation was

used. In order to obtain a higher level of clinical application evidence,

it needed to be verified with prospective and larger data sets.

Secondly, our study did not take into account some other features,

such as clinical features, genomics and so on. The combination of

multi-dimensional data may further improve the predictive ability of

the model and thus providing better clinical decision support.

Overall, the results showed that the LR-based radiomic model

had a good ability of non-invasive prediction of nephroblastoma

without renal capsule, sinus vessels and lymph node involvement.,

and had the potential to help make surgical decisions for precise

treatment and improve the long-term quality of life of

nephroblastoma patients. However, more data is needed to

improve the global applicability and robustness of the method.
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