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The cubic fuzzy graph structure, as a combination of cubic fuzzy graphs and fuzzy
graph structures, shows better capabilities in solving complex problems, especially in
cases where there are multiple relationships. The quality and method of determining
the degree of vertices in this type of fuzzy graphs simultaneously supports fuzzy
membership and interval-valued fuzzy membership, in addition to the multiplicity of
relations, motivated us to conduct a study on the regularity of cubic fuzzy graph
structures. In this context, the concepts of vertex regularity and total vertex regularity
have been informed and some of its properties have been studied. In this regard, a
comparative study between vertex regular and total vertex regular cubic fuzzy graph
structure has been carried out and the necessary and sufficient conditions have been
provided. These degrees can be easily compared in the form of a cubic number
expressed. It has been found that the condition of the membership function is
effective in the quality of degree calculation. In the end, an application of the degree
of vertices in the cubic fuzzy graph structure is presented.
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1 Introduction

Graphs have many applications in different fields such as computers, systems analysis,
networks, transportation, operations research, and economics. Graphs are usually used to
model relationships among objects. But there are many issues that are vague and uncertain as a
result of the information loss, lack of evidence, incomplete statistical data, etc. In general,
uncertainty exists in many real life problems and is an integral part of them. In a classical graph,
for each vertex or edge, the probability of uncertainty existence or non-existence is assumed.
Therefore, classical graphs cannot model uncertain problems. However, often real-life problems
are uncertain, which makes it difficult to model using conventional methods. Zadeh [1]
presented an extended version of sets, called fuzzy set (FS), where objects have different degrees
of membership between zero and one. This concept quickly found wide applications in
computer science, information science, system science, management science, theoretical
mathematics and other fields of sciences. A decade after the introduction of FS, Zadeh [2]
presented an interval-valued fuzzy set (IVFS) as a branch of FS in which an interval between
0 and 1 was used as the membership value instead of a fuzzy number. These two concepts gave
rise to different types of graphs called fuzzy graphs, which were first introduced by Kaufman [3]
in 1973. Later, fuzzy graph theory was developed as a generalization of graph theory by
Rosenfeld [4] in 1975. He explained some concepts including tree, cut vertex, cycle, bridge, and
end vertex in fuzzy graphs. The researchers studied different types of fuzzy graphs. Talebi [5]
had a study on Kayley fuzzy graph. Borzooei et al. [6] had many studies on vague graphs.
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Atanassov [7] introduced the concept of intuitionistic fuzzy set (IFS)
as a generalization of FS. Akram and Dudek [8] gave the idea of an
interval-valued fuzzy graph (IVFG) in 2011. Talebi et al. [9, 10]
introduced some new concepts of interval-valued intuitionistic
fuzzy graph (IVIFG). Kosari et al. [11–13] studied new results in
vague graph and vague graph structures. Some trend concepts in fuzzy
graphs were explained by Pal et al. [14]. Samanta et al. [15, 16]
reviewed some results from fuzzy k–competition graphs.

Graph structures were presented by Sampathkumar [17] in
2006 as a generalization of signed graphs and graphs with labeled
or colored edges. Fuzzy graph structure (FGS) is more important than
graph structure because uncertainty and ambiguity in many real-
world phenomena often occur as two or more separate relationships.
Dinesh [18] introduced the notion of an FGS and discussed some
related properties. Ramakrishnan and Dinesh [19] generalized this
concept in studies. Akram [20] presented new results on m-polar
FGSs. Akram and Akmal [21–23] investigated the concepts of bipolar
FGSs and intuitionistic FGSs. Akram et al. [24–28] defined new
concepts of operations in FGSs. Kou et al. [29] studied vague
graph structure. Continuing his studies in 2020, Denish [30]
presented the concept of fuzzy incidence graph structure. Akram
and Sitara [31] introduced decision-making with q-rung orthopair
FGSs. Sitara and Zafar [32] studied the application of q-rung picture
FGSs in airline services.

Fuzzy graphs were previously limited to one or more degrees of
fuzzy membership or interval-valued fuzzy membership. Jun et al. [33]
introduced the idea of a cubic fuzzy set (CFS) in the form of a
combination of FS and IVFS, serving as a more general tool for
modeling uncertainty and ambiguity. By applying this concept,
various problems that arise from uncertainties can be solved and
the best choice can be made using CFS in decision making. Jun et al.
[34] combined the neutrosophic complex with CFS and proposed the
idea of neutrosophic CFS. Jun et al., also, studied some CFS-based
algebraic features including cubic IVIFSs [35], cubic structures [36],
cubic sets in semigroups [37], cubic soft sets [38], and cubic
intuitionistic structures [39]. Muhiuddin et al. [40] presented the
stable CFSs idea. Kishore Kumar et al. [41] examined the regularity
concept in CFG. Rashid et al. [42] introduced the concept of a CFG
where they introduced many new types of graphs and their
applications. A modified definition of a CFG is given by
Muhiuddin et al [43] along with concepts such as the strong edge,
path, path strength, bridge, and cut vertex. Rashmanlou et al [44]
explained some of the concepts of the CFG.

The concept of node order and degree plays an important role in
graph theory and its applications, including the analysis of social
networks, road transmission networks, wireless networks, etc. Vertex
degree is an accepted concept to represent the total number of
relations of a vertex in a graph that can be used in graph analysis.
Gani and Radha [45] offered the notation of the regular FG. Samanta
and Pal [46] introduced the concept of the irregular bipolar fuzzy
graphs. Borzooei et al. [47] investigated the Regularity of vague graphs.
Gani and Lathi [48] defined the concept of irregularity, total
irregularity, and total degree in an FG. Huang et al. [49] studied
regular and irregular Neutrozophic graphs with real applications.
Samanta et al. [50] investigated the completeness and regularity of
generalized fuzzy graphs. These concepts have been gradually
developed by researchers into different types of FGs.

Cubic fuzzy graph structure (CFGS), as a combination of FGS and
CFG, has better flexibility in modeling and solving problems in

ambiguous and uncertain fields. The study of regularity in the
CFGS that supports multiple relationships is important and
decisive in its own way. In fact, checking regularity is essential
from the point of view that most of the issues around us are
composed of several different relationships. The quality and
method of determining the degree of the vertices in the cubic fuzzy
graph structure, has fuzzy membership and interval-valued fuzzy
membership at the same time besides the multiplicity of existing
relations, made us carry out a study on the regularity of cubic fuzzy
graph structures. In this paper, we introduce regularity in a CFGS. We
were able to investigate the corresponding properties by defining the
degree of a vertex and the total degree of a vertex. In the following, by
introducing the order and size in the CFGS, some relevant results were
studied. Finally, an application of the CFGS in the detection of bank
criminals is presented.

2 Preliminaries

In this section, we have an overview of the basic concepts in fuzzy
graphs in order to enter the main discussion.

A graph is a pair of G = (V, E), where V is a non-empty set of
vertices and E is the set of edges of G. A graph structure (GS) of
X = (V, E1, E2, . . ., Ek) consists of a set V with relations of E1, E2,
. . ., Ek on V, all of which are mutually disjoint and each Ei is
irreflexive and symmetric, for i = 1, 2, . . ., k. If (x, y) ∈ Ei for some
i = 1, 2, . . ., k, then, it is called an Ei−edge and is simply written xy.
A GS is complete whenever each Ei−edge appears at least once and
between each pair of vertices of x, y ∈ V, xy ∈ Ei for some i = 1, 2,
. . ., k. A path between two vertices of x and y consisting of only
Ei−edges is named Ei−path. Reciprocally, Ei−cycle is a cycle
consisting of only Ei−edges. A GS is a tree, if it is connected
and contains no cycle. If the subgraph structure induced by
Ei−edges is a tree, then, it is an Ei−tree. A GS is an Ei−forest,
if the subgraph structure induced by Ei−edges is a forest [17].

A fuzzy graph (FG) on V is a pair of G = (τ, μ), where τ is a fuzzy
subset (FS) of V and μ is a fuzzy relation on τ so that μ(x, y) ≤ τ(x) ∧
τ(y), ∀x, y ∈ V. The underlying crisp graph of G is the graph G* = (τ*,
μ*), where τ* = {x ∈ |τ(x) > 0} and μ* = {xy ∈ V × V|μ(xy) > 0}. An FG
S = (λ, η) on V is a partial fuzzy subgraph of G if λ ≤ τ and η ≤ μ. A
fuzzy subgraph S is a spanning fuzzy subgraph of G if τ = λ [14].

An interval-valued fuzzy set (IVFS) A on V is described by

A � α x( ), β x( )[ ] | x ∈ V{ }
where α and β are FSs of V so that α(x) ≤ β(x) for all x ∈ V. [14]

A cubic fuzzy set (CFS) [33] A on V is described as

A � 〈 α z( ), β z( )[ ], γ z( )〉 | z ∈ V{ },
where [α(z), β(z)] is named the interval-valued fuzzy membership
degree and γ(z) is named the fuzzy membership degree of z, so that α,
β, γ: V → [0, 1].

The CFS A is called an internal CFS if γ(z) ∈ [α(z), β(z)], and
external CFS whenever γ(z)∉[α(z), β(z)], for all z ∈ V.

Definition 2.1 [19]. Let Z = (V, E1, E2, . . ., Ek) be a GS. Then,
Z � (τ,φ1,φ2, . . . ,φk) is named the fuzzy graph structure (FGS) of Z
whenever τ, φ1, φ2, . . ., φk are fuzzy subset on V, E1, E2, . . ., Ek,
respectively, so that

φi ab( )≤ τ a( ) ∧ τ b( ), ∀a, b ∈ V, i � 1, 2, . . . , k.
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If ab ∈ supp(φi), then, ab is called a φi−edge of Z.
Definition 2.2 [43]. A cubic fuzzy graph (CFG) on a non-empty set

V is a pair of G � (A,B) whereA � {〈[α(z), β(z)], γ(z)〉 | z ∈ V} is a
CFS on V and B � {〈[α(wz), β(wz)], γ(wz)〉 | wz ∈ E} is a CFS on
V × V, so that for all z, w ∈ V,

αB zw( ) ≤ αA z( ) ∧ αA w( ),
βB zw( ) ≤ βA z( ) ∧ βA w( ),
γB zw( ) ≤ γA z( ) ∧ γA w( ).

Definition 2.3. Let V be a non-empty set and G* = (V, E1, E2, . . .,
Ek) be a GS. Then, G � (A,B1,B2, . . . ,Bk) is named a cubic fuzzy
graph structure (CFGS) on G* ifA � {〈[α(z), β(z)], γ(z)〉 | z ∈ V} is
a CFS on V and Bi � {〈[αBi(wz), βBi

(wz)], γBi
(wz)〉 | wz ∈ Ei} is

CFS on Ei, respectively, so that

αBi zw( ) ≤ αA z( ) ∧ αA w( ),
βBi

zw( ) ≤ βA z( ) ∧ βA w( ),
γBi

zw( ) ≤ γA z( ) ∧ γA w( ), for all zw ∈ Ei and i � 1, 2, . . . , k.

If zw ∈ supp(Bi), then, zw is named asBi-edge of CFGS G. Obviously,
[αi, βi] and γi are named the membership function of Bi− edges.
Furthermore, B1,B2, . . . ,Bk are mutually disjoint so that each αi, βi
and γi is symmetric and irreflexive, for 1 ≤ i ≤ k.

Example 2.4. Consider the GS G* = (V, E1, E2, E3) where V = {x,
y, z, t, u, w}, E1 = {xy, tu}, E2 = {yz, tw}, and E3 = {wy, tz}. We define
the CFSs A, B1, B2, and B3 on V, E1, E2, and E3, respectively, as
follows:

A � x, 〈 0.2, 0.5[ ], 0.6〉( ), y, 〈 0.4, 0.6[ ], 0.7〉( ),{
z, 〈 0.3, 0.5[ ], 0.4〉( ), t, 〈 0.3, 0.4[ ], 0.5〉( ),
× u, 〈 0.6, 0.7[ ], 0.2〉( ), w, 〈 0.5, 0.7[ ], 0.8〉( )},

B1 � { xy, 〈 0.2, 0.4[ ], 0.5〉( ), tu, 〈 0.2, 0.4[ ], 0.2〉( )},
B2 � { yz, 〈 0.2, 0.3[ ], 0.4〉( ), tw, 〈 0.3, 0.4[ ], 0.4〉( )},
B3� { wy, 〈 0.4, 0.6[ ], 0.7〉( ), tz, 〈 0.3, 0.4[ ], 0.4〉( )}.

Then, the CFGS G � (A,B1,B2,B3) on G* is shown in Figure 1.
Definition 2.5. A CFGS G � (A,B1,B2, . . . ,Bk) is Bi-strong if

αBi zw( ) � αA z( ) ∧ αA w( ),
βBi

zw( ) � βA z( ) ∧ βA w( ),
γBi

zw( ) � γA z( ) ∧ γA w( ), for all zw ∈ Ei.

If G is Bi-strong for all i = 1, 2, . . ., k, then, G is named strong CFGS.
Definition 2.6. A CFGS G � (A,B1,B2, . . . ,Bk) is named

complete CFGS if

αBi zw( ) � αA z( ) ∧ αA w( ),
βBi

zw( ) � βA z( ) ∧ βA w( ),
γBi

zw( ) � γA z( ) ∧ γA w( ), for all z, w ∈ V.

Definition 2.7. A CFGS G � (A,B1,B2, . . . ,Bk) is named
Bi-connected if all vertices are connected by Bi-edges.

Some abbreviations in the article are listed in Table 1.

3 Vertex regularity in cubic fuzzy graph
structures

In this section, vertex regularity in cubic fuzzy graph structures is
discussed and some of its properties are examined.

Definition 3.1. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. Bi-degree
of a vertex z is determined as DBi(z) � 〈[Dαi(z),Dβi(z)],Dγi(z)〉,
where

Dαi z( ) � ∑
wz∈Ei,z≠w

αBi wz( ),
Dβi z( ) � ∑

wz∈Ei,z≠w
βBi

wz( ),
Dγi z( ) � ∑

wz∈Ei,z≠w
γBi

wz( ).

Also, Bi1 i2/ir-degree of a vertex z is determined as
DBi1 i2/ir

(z) � 〈[Dαi1 i2/ir
(z),Dβi1 i2/ir

(z)],Dγi1 i2/ir
(z)〉, where

Dαi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
αBij

wz( ),

Dβi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
βBij

wz( ),

Dγi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
γBij

wz( ).

FIGURE 1
CFGS G � (A,B1 ,B2 ,B3).

TABLE 1 Abbreviations.

Notation Meaning

FS Fuzzy set

FG Fuzzy graph

GS Graph structure

IFS Intuitionistic fuzzy set

IVFS Interval-valued fuzzy set

IVFG Interval-valued fuzzy graph

IVIFS Interval-valued intuitionistic fuzzy set

IVIFG Interval-valued intuitionistic fuzzy graph

FGS Fuzzy graph structure

CFS Cubic fuzzy set

CFG Cubic fuzzy graph

CFGS Cubic fuzzy graph structure
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The full-degree z is defined as DG(z) � 〈[Dα(z),Dβ(z)],Dγ(z)〉,
where

Dα z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
αBi wz( ),

Dβ z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
βBi

wz( ),

Dγ z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
γBi

wz( ).

Definition 3.2. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. If all
vertices have the same Bi-degree 〈[a, b], c〉, then, G is named a
〈[a, b], c〉-Bi-vertex regular CFGS. Also, G is named a 〈[a, b], c〉-
Bi1 i2/ir-vertex regular CFGS whenever all vertices have the same
Bi1 i2/ir-degree 〈[a, b], c〉. It is clear that every connected CFGS
with two vertices is regular.

Considering the membership degree of the vertex, we define the
total degree of the vertex as follows:

Example 3.3. Consider CFGS G � (A,B1,B2) is shown in Figure 2,
where

A � 〈z1, 0.6, 0.7[ ], 0.8〉, 〈z2, 0.5, 0.6[ ], 0.7〉,{
〈z3, 0.7, 0.8[ ], 0.9〉, 〈z4, 0.8, 0.9[ ], 1〉},

B1� 〈z1z2, 0.4, 0.5[ ], 0.6〉, 〈z3z4, 0.4, 0.5[ ], 0.6〉{ },
B2� 〈z1z4, 0.3, 0.4[ ], 0.5〉, 〈z2z3, 0.3, 0.4[ ], 0.5〉{ }.

The B1-degree of vertices is equal to 〈[0.4, 0.5], 0.6〉. Also, B2-degree
of vertices equals 〈[0.3, 0.4], 0.5〉. Therefore, B1,2-degree of vertices is
equal to 〈[0.7, 0.9], 1.1〉. Hence, G is a 〈[0.4, 0.5], 0.6〉-B1-vertex
regular, 〈[0.3, 0.4], 0.5〉-B2-vertex regular, and 〈[0.7, 0.9], 1.1〉-
B1,2-vertex regular CFGS.

Definition 3.4. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The total
Bi-degree of a vertex z is shown as
TDBi(z) � 〈[TDαi(z),TDβi(z)],TDγi(z)〉, where

TDαi z( ) � ∑
wz∈Ei,z≠w

αBi wz( ) + αA z( ),
TDβi z( ) � ∑

wz∈Ei,z≠w
βBi

wz( ) + βA z( ),
TDγi z( ) � ∑

wz∈Ei,z≠w
γBi

wz( ) + γA z( ).

Also, total Bi1i2/ir-degree of a vertex z is determined as

TDBi1 i2/ir
z( ) � 〈 TDαi1 i2/ir

z( ),TDβi1 i2/ir
z( )[ ],TDγi1 i2/ir

z( )〉,
where

TDαi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
αBij

wz( ) + αA z( ),

TDβi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
βBij

wz( ) + βA z( ),

TDγi1 i2/ir
z( ) � ∑

r

j�1
∑

wz∈Eij ,z≠w
γBij

wz( ) + γA z( ).

The totally full-degree z is defined as
TDG(z) � 〈[TDα(z),TDβ(z)],TDγ(z)〉, where

TDα z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
αBi wz( ) + αA z( ),

TDβ z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
βBi

wz( ) + βA z( ),

TDγ z( ) � ∑
k

i�1
∑

wz∈Ei,z≠w
γBi

wz( ) + γA z( ).

Definition 3.5. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. If all
vertices have the same total Bi-degree 〈[a, b], c〉, then, G is named
a 〈[a, b], c〉-Bi-total vertex regular CFGS. Also, G is named a 〈[a, b],
c〉-Bi1 i2/ir-total vertex regular CFGS whenever all vertices have the
same total Bi1 i2/ir-degree 〈[a, b], c〉.

The following definitions determine the maximum or minimum
degree of a vertex in CFGS.

Definition 3.6. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The
minimum vertex Bi-degree of G is defined as
δBi(G) � 〈[δαi(G), δβi(G)], δγi(G)〉, where

δαi G( ) � ∧ Dαi z( ), z ∈ V{ },
δβi G( ) � ∧ Dβi z( ), z ∈ V{ },
δγi G( ) � ∧ Dγi z( ), z ∈ V{ }.

Also, the minimum vertex Bi1 i2/ir-degree of G is determined as

δBi1 i2/ir
G( ) � 〈 δαi1 i2/ir

G( ), δβi1 i2/ir
G( )[ ], δγi1 i2/ir

G( )〉,
where

δαi1 i2/ir
G( ) � ∧ Dαi1 i2/ir

z( ), z ∈ V{ },
δβi1 i2/ir

G( ) � ∧ Dβi1 i2/ir
z( ), z ∈ V{ },

δγi1 i2/ir
G( ) � ∧ Dγi1 i2/ir

z( ), z ∈ V{ }.

Definition 3.7. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The
maximum vertex Bi-degree of G is defined as
ΔBi(G) � 〈[Δαi(G),Δβi(G)],Δγi(G)〉, where

Δαi G( ) � ∨ Dαi z( ), z ∈ V{ },
Δβi G( ) � ∨ Dβi z( ), z ∈ V{ },
Δγi G( ) � ∨ Dγi z( ), z ∈ V{ }.

Also, the maximum vertex Bi1 i2/ir-degree of G is defined as
ΔBi1 i2/ir

(G) � 〈[Δαi1 i2/ir
(G),Δβi1 i2/ir

(G)],Δγi1 i2/ir
(G)〉, where

FIGURE 2
The 〈[0.4, 0.5], 0.6〉-B1-vertex regular CFGS, G � (A,B1 ,B2).
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Δαi1 i2/ir
G( ) � ∨ Dαi1 i2/ir

z( ), z ∈ V{ },
Δβi1 i2/ir

G( ) � ∨ Dβi1 i2/ir
z( ), z ∈ V{ },

Δγi1 i2/ir
G( ) � ∨ Dγi1 i2/ir

z( ), z ∈ V{ }.

Definition 3.8. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The
minimum total vertex Bi-degree of G is defined as
δtBi

(G) � 〈[δtαi(G), δtβi(G)], δtγi(G)〉, where
δtαi G( ) � ∧ TDαi z( ), z ∈ V{ },
δtβi G( ) � ∧ TDβi z( ), z ∈ V{ },
δtγi G( ) � ∧ TDγi z( ), z ∈ V{ }.

Also, the minimum total vertex Bi1i2/ir-degree of G is determined as

δtBi1 i2/ir
G( ) � 〈 δtαi1 i2/ir

G( ), δtβi1 i2/ir
G( )[ ], δtγi1 i2/ir

G( )〉,
where

δtαi1 i2/ir
G( ) � ∧ TDαi1 i2/ir

z( ), z ∈ V{ },
δtβi1 i2/ir

G( ) � ∧ TDβi1 i2/ir
z( ), z ∈ V{ },

δtγi1 i2/ir
G( ) � ∧ TDγi1 i2/ir

z( ), z ∈ V{ }.

Definition 3.9. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The
maximum total vertex Bi-degree of G is defined as
Δt
Bi
(G) � 〈[Δt

αi
(G),Δt

βi
(G)],Δt

γi
(G)〉, where

Δt
αi

G( ) � ∨ TDαi z( ), z ∈ V{ },
Δt
βi

G( ) � ∨ TDβi z( ), z ∈ V{ },
Δt
γi

G( ) � ∨ TDγi z( ), z ∈ V{ }.
Also, the maximum total vertex Bi1i2/ir-degree of G is determined as

Δt
Bi1 i2/ir

G( ) � 〈 Δt
αi1 i2/ir

G( ),Δt
βi1 i2/ir

G( )[ ],Δt
γi1 i2/ir

G( )〉,
where

Δt
αi1 i2/ir

G( ) � ∨ TDαi1 i2/ir
z( ), z ∈ V{ },

Δt
βi1 i2/ir

G( ) � ∨ TDβi1 i2/ir
z( ), z ∈ V{ },

Δt
γi1 i2/ir

G( ) � ∨ TDγi1 i2/ir
z( ), z ∈ V{ }.

Example 3.10. Consider CFGS of G � (A,B1,B2) as shown in
Figure 3, where

A � 〈z1, 0.7, 0.9[ ], 1〉, 〈z2, 0.5, 0.6[ ], 0.6〉, 〈z3, 0.6, 0.8[ ], 1〉, 〈z4, 0.4, 0.5[ ], 0.6〉{ },
B1 � 〈z1z2, 0.3, 0.4[ ], 0.5〉, 〈z2z4, 0.2, 0.3[ ], 0.4〉, 〈z3z4, 0.4, 0.5[ ], 0.5〉{ },
B2 � 〈z1z4, 0.3, 0.4[ ], 0.5〉, 〈z1z3, 0.1, 0.2[ ], 0.3〉, 〈z2z3, 0.4, 0.5[ ], 0.6〉{ }.

The totalB1-degree of vertices is equal to 〈[1, 1.3], 1.5〉. Therefore, G is
a 〈[1, 1.3], 1.5〉-B1-total vertex regular CFGS. As it can be seen

δtB1
G( ) � Δt

B1
G( ) � 〈 1, 1.3[ ], 1.5〉.

Remark 3.11. A CFGS G � (A,B1,B2, . . . ,Bk) is named 〈[a, b],
c〉-Bi-vertex regular if

δBi G( ) � ΔBi G( ) � 〈 a, b[ ], c〉,
and G is named 〈[a, b], c〉-Bi1 i2/ir-vertex regular if

δBi1 i2/ir
G( ) � ΔBi1 i2/ir

G( ) � 〈 a, b[ ], c〉.

Also, G is named 〈[a, b], c〉-Bi-total vertex regular if

δtBi
G( ) � Δt

Bi
G( ) � 〈 a, b[ ], c〉,

and G is named 〈[a, b], c〉-Bi1 i2/ir-total vertex regular if

δtBi1 i2/ir
G( ) � Δt

Bi1 i2/ir
G( ) � 〈 a, b[ ], c〉.

Theorem 3.12. Let G � (A,B1,B2, . . . ,Bk) be a CFGS which is
both aBi-vertex regular and aBi-total vertex regular, then, αA, βA, and
γA are constant.

Proof. Suppose G � (A,B1,B2, . . . ,Bk) is a 〈[a, b], c〉-Bi-vertex
regular and a 〈[a′, b′], c′〉-Bi-total vertex regular CFGS. Then, for all
z ∈ V

DBi z( ) � 〈 Dαi z( ),Dβi z( )[ ],Dγi z( )〉 � 〈 a, b[ ], c〉,
TDBi z( ) � 〈 TDαi z( ),TDβi z( )[ ],TDγi z( )〉 � 〈 a′, b′[ ], c′〉.
Thus, by definition

TDαi z( ) � Dαi z( ) + αA z( ),
TDβi z( ) � Dβi z( ) + βA z( ),
TDγi z( ) � Dγi z( ) + γA z( ).

Therefore,

αA z( ) � a′ − a, βA z( ) � b′ − b, γA z( ) � c′ − c, for all z ∈ V.

Hence, αA, βA, and γA are constant.
The following example shows that the opposite of the above

theorem is not necessarily true.
Example 3.13. Consider CFGS G � (A,B1,B2) is shown in

Figure 4, where

zi � 〈 0.4, 0.5[ ], 0.6〉, i � 1, 2, . . . , 6,
B1 � 〈z1z2, 0.3, 0.4[ ], 0.5〉, 〈z3z4, 0.4, 0.5[ ], 0.6〉, 〈z3z6, 0.3, 0.4[ ], 0.5〉{ },
B2 � 〈z1z3, 0.1, 0.2[ ], 0.3〉, 〈z2z4, 0.5, 0.6[ ], 0.7〉, 〈z3z5, 0.2, 0.3[ ], 0.4〉{ }.

Here, αA, βA, and γA are a constant functions. But G is neither
Bi1 i2-vertex regular CFGS nor a Bi1 i2-total vertex regular CFGS.

FIGURE 3
The 〈[1, 1.3], 1.5〉-B1-total vertex regular CFGS, G � (A,B1 ,B2).
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Definition 3.14. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. Then, G is
called perfectly Bi-vertex regular if G is a Bi-vertex regular and Bi-total
vertex regular. Also, G is called perfectly Bi1 i2/ir-vertex regular if G is a
Bi1 i2/ir-vertex regular and Bi1i2/ir-total vertex regular.

Remark 3.15. The Bi-total vertex regularity does not imply the
Bi-vertex regularity of a CFGS, and vice versa. Also, The Bi1 i2/ir-total
vertex regularity does not imply the Bi1 i2/ir-vertex regularity of a
CFGS, and vice versa.

Example 3.16. Consider the CFGS G � (A,B1,B2) as drawn in
Figure 3. G is a Bi-total vertex regular CFGS, but it is not a Bi-vertex
regular CFGS.

Theorem 3.17. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. Then, αA,
βA, and γA are constant functions on V if and only if the following are
equivalent:

(1) G is a Bi-vertex regular CFGS.
(2) G is a Bi-total vertex regular CFGS.
Proof. Suppose G � (A,B1,B2, . . . ,Bk) to be a CFGS and αA, βA,

and γA are constant functions on V. i.e.,

αA z( ) � k, βA z( ) � m, γA z( )
� n, for some k,m, n ∈ R and all z ∈ V.

(1) 0 (2) Let G be a 〈[a, b], c〉-Bi-vertex regular. Then, for all z ∈ V

DBi z( ) � 〈 Dαi z( ),Dβi z( )[ ],Dγi z( )〉 � 〈 a, b[ ], c〉.

On the other hand, we have

TDαi z( ) � Dαi z( ) + αA z( ) � a + k,
TDβi z( ) � Dβi z( ) + βA z( ) � b +m,
TDγi z( ) � Dγi z( ) + γA z( ) � c + n.

Therefore, G is a 〈[a+k, b + m], c + n〉-Bi-total vertex regular
CFGS.(2)0 (1) Let G be a 〈[a′, b′], c′〉-Bi-total vertex regular, a′, b′,
c′ ∈ R. Then,

TDBi z( ) � 〈 TDαi z( ),TDβi z( )[ ],TDγi z( )〉 � 〈 a′, b′[ ], c′〉.

Therefore,

Dαi z( ) � TDαi z( ) − αA z( ) � a′ − k,
Dβi z( ) � TDβi z( ) + βA z( ) � b′ −m,
Dγi z( ) � TDγi z( ) + γA z( ) � c′ − n.

Thus, G is a 〈[a′ − k, b′ − m], c′ − n〉-Bi-vertex regular
CFGS.Conversely, suppose (1) and (2) are equivalent. We
prove that αA, βA, and γA are constant functions. Suppose αA
not to be a constant function. Then, there exist z, w ∈ V so that
αA(z) ≠ αA(w). Let G be a Bi-vertex regular. According to the
definition we have

TDαi w( ) � Dαi w( ) + αA w( ),
TDαi z( ) � Dαi z( ) + αA z( ).

Since αA(z) ≠ αA(w), then TDαi(w) ≠ TDαi(z). Thus, G is not
Bi-total vertex regular. Now, suppose that G is aBi-total vertex regular.
Then, TDαi(w) � TDαi(z). It follows that
Dαi(w) −Dαi(z) � αA(w) − αA(z) ≠ 0. Therefore,
Dαi(w) ≠ Dαi(z). Thus, G is not Bi-vertex regular. This is contrary
to the assumption. Therefore, αA is a constant function. Similarly, βA,
and γA are constant functions.

Corollary 3.18. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. Then, αA,
βA, and γA are constant functions on V if and only if the following are
equivalent:

(1) G is a Bi1 i2/ir-vertex regular CFGS.
(2) G is a Bi1 i2/ir-total vertex regular CFGS.
Proof. It is proved similar to the above theorem.
Corollary 3.19. Let G � (A,B1,B2, . . . ,Bk) be a CFGS.

Then, αA, βA, and γA are constant functions on V if and only
if G is a perfectly Bi-vertex regular or perfectly Bi1 i2/ir-vertex
regular.

Definition 3.20. The order of a CFGS G � (A,B1,B2, . . . ,Bk) is
defined as P(G) � 〈[Pα(G),Pβ(G)],Pγ(G)〉, where

FIGURE 4
A CFGS with αA , βA , and γA constant, G � (A,B1 ,B2).
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Pα G( ) � ∑
z∈V

αA z( ),
Pβ G( ) � ∑

z∈V
βA z( ),

Pγ G( ) � ∑
z∈V

γA z( ).

The Bi-size of a CFGS G � (A,B1,B2, . . . ,Bk) is defined as
QBi(G) � 〈[Qαi(G),Qβi(G)],Qγi(G)〉, where

Qαi G( ) � ∑
wz∈Ei

αBi wz( ),
Qβi G( ) � ∑

wz∈Ei

βBi
wz( ),

Qγi G( ) � ∑
wz∈Ei

γBi
wz( ).

The size of a CFGS G � (A,B1,B2, . . . ,Bk) is defined as
Q(G) � 〈[Qα(G),Qβ(G)],Qγ(G)〉, where

Qα G( ) � ∑
k

i�1
∑

wz∈Ei

αBi wz( ),

Qβ G( ) � ∑
k

i�1
∑

wz∈Ei

βBi
wz( ),

Qγ G( ) � ∑
k

i�1
∑

wz∈Ei

γBi
wz( ).

Theorem 3.21. Let G � (A,B1,B2, . . . ,Bk) be a 〈[a, b], c〉-
Bi-vertex regular CFGS with n vertices. Then, the Bi-size of G is
equal to QBi(z) � 〈[na2 , nb2 ], nc2 )〉.

Proof. Suppose G is a 〈[a, b], c〉-Bi-vertex regular CFGS with n
vertices. Then, for all z ∈ V

DBi z( ) � 〈 Dαi z( ),Dβi z( )[ ],Dγi z( )〉 � 〈 a, b[ ], c〉.

On the other hand,

∑
z∈V

Dαi z( ) � 2 ∑
xy∈Ei

αBi xy( ) � 2Qαi G( ),

∑
z∈V

Dβi z( ) � 2 ∑
xy∈Ei

βBi
xy( ) � 2Qβi G( ),

∑
z∈V

Dγi z( ) � 2 ∑
xy∈Ei

γBi
xy( ) � 2Qγi G( ).

Therefore,

2Qαi G( ) � ∑
z∈V

Dαi z( ) � ∑
z∈V

a � na,

2Qβi G( ) � ∑
z∈V

Dβi z( ) � ∑
z∈V

b � nb,

2Qγi G( ) � ∑
z∈V

Dγi z( ) � ∑
z∈V

c � nc.

Hence, QBi(z) � 〈[na2 , nb2 ], nc2 )〉.
Theorem 3.22. Let G � (A,B1,B2, . . . ,Bk) be a 〈[a′, b′], c′〉-

Bi-total vertex regular CFGS with n vertices. Then,

2Qαi G( ) +Pα G( ) � na′,
2Qβi G( ) +Pβ G( ) � nb′,
2Qγi G( ) +Pγ G( ) � nc′.

Proof. Suppose G is a 〈[a′, b′], c′〉-Bi-total vertex regular CFGS
with n vertices. Then, for all z ∈ V

TDBi z( ) � 〈 TDαi z( ),TDβi z( )[ ],TDγi z( )〉 � 〈 a′, b′[ ], c′〉.
Therefore,

TDαi z( ) � Dαi z( ) + αA z( ) � a′,
∑
z∈V

Dαi z( ) + ∑
z∈V

αA z( ) � ∑
z∈V

a′,

2Qαi G( ) +Pα G( ) � na′.

Correspondingly,

2Qβi G( ) +Pβ G( ) � nb′,
2Qγi G( ) +Pγ G( ) � nc′.

Example 3.23. Consider CFGS G � (A,B1,B2) shown in Figure 3.
G is a 〈[1, 1.3], 1.5〉-B1-total vertex regular CFGS. Also, we have

P G( ) � 〈 Pα G( ),Pβ G( )[ ],Pγ G( )〉 � 〈 2.2, 2.8[ ], 3.2〉,
QBi G( ) � 〈 Qαi G( ),Qβi G( )[ ],Qγi G( )〉 � 〈 0.9, 1.2[ ], 1.4〉.

Therefore,

2Qαi G( ) +Pα G( ) � na′02 0.9( ) + 2.2 � 4 1( ),
2Qβi G( ) +Pβ G( ) � nb′02 1.2( ) + 2.8 � 4 1.3( ),
2Qγi G( ) +Pγ G( ) � nc′02 1.4( ) + 3.2 � 4 1.5( ).

Corollary 3.24. Let G � (A,B1,B2, . . . ,Bk) be a Bi-connected
CFGS. If G is a 〈[a, b], c〉-Bi-vertex regular and a 〈[a′, b′], c′〉-
Bi-total vertex regular CFGS, then

Pα G( ) � n a′ − a( ),
Pβ G( ) � n b′ − b( ),
Pγ G( ) � n c′ − c( ).

Proof. The result is obtained from the above theorems.

4 Application

In today’s world, consumers demand instant access to services and
money transfers, which provides opportunities for criminals. For
example, payment service programs try to deliver money to users
as quickly as possible while ensuring that money is not sent for illegal
purposes. This requires real-time fraud detection.

Fraud detection is a process that identifies fraudsters and prevents
their fraudulent activities. The implementation of this process is very
important in banking, insurance, medicine and also government
organizations.

Money laundering, cyber attacks, fake bank transactions and
checks, identity theft and many other illegal activities are called
fraudulent activities. As a result, organizations are implementing
modern fraud detection and prevention technologies and risk
management strategies to combat this growing fraudulent activity
across multiple platforms.

These techniques employ adaptive and predictive analytics
(machine learning) to detect fraud. This enables continuous
monitoring of transactions and crimes in real-time condition and
can also help decipher new and complex preventive measures through
automation.

Graphs are the most widely used tools for visualization and
analysis of complex communication data. This wide range of
functions has made graphs one of the most useful tools in
detecting financial corruption and fraud today. In large economic
networks, in order to gain an intuition of the totality of relationships
between entities and simultaneously access details, only a graph with
the correct settings and readability can be useful. When looking at
trades with graph technology, it is not just trades that can be modeled
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on graphs. Graphs are very flexible, denoting the fact that surrounding
heterogeneous information can also be modeled. For example,
customers’ IP addresses, ATM geographic locations, card numbers,
and account IDs can all become nodes, and each type of connection
can be an edge.

A CFGS can be used for fraud detection, especially in on line
banking and ATM location analysis, because users can design fraud
detection rules based on data sets. The following relationships are
taken into account in the review of banking transactions of a bank’s
customers:

B1 � people who have entered the system with the IP of several
cards registered in different places.

B2 � people who have transacted by card in different places with
long distances.

B3 � people who received transactions simultaneously from other
accounts located in different locations.

Today, by monitoring information and data, it is easy to obtain the
statistics of banks and interbanks payments. One of these statistics is
the number and amount of bank transactions in the payment network
and the share of each account in these transactions. Table 2 shows
some suspicious accounts found in the investigation of a bank, as well
as the percentage share of each account in the total number and
amount of related transactions.

The cubic fuzzy values of each account are given in Table 3. To
fuzzify the numbers, dividing each number by the maximum number
is used. As in the connection between the accounts, the strongest
connections were intended, therefore, all the edges are considered

TABLE 2 Each account’s share of total transactions.

Accounts Transaction amount Number of transactions

z1 1.42 1.41

z2 1.75 1.65

z3 4.89 2.94

z4 5.34 6.45

z5 3.77 3.89

z6 4 3.15

z7 10.74 9.34

z8 3.65 3.01

z9 5.96 6.99

z10 8.37 11.89

z11 7.51 5.79

z12 4.05 2.68

z13 3.06 3.28

TABLE 3 The cubic fuzzy values of each account.

Accounts Cubic fuzzy values

z1 〈[0.11, 0.13], 0.11〉

z2 〈[0.15, 0.17], 0.13〉

z3 〈[0.44, 0.46], 0.24〉

z4 〈[0.48, 0.50], 0.54〉

z5 〈[0.34, 0.36], 0.32〉

z6 〈[0.36, 0.38], 0.26〉

z7 〈[0.99, 1], 0.78〉

z8 〈[0.32, 0.34], 0.25〉

z9 〈[0.54, 0.56], 0.58〉

z10 〈[0.76, 0.78], 1〉

z11 〈[0.68, 0.70], 0.48〉

z12 〈[0.36, 0.38], 0.22〉

z13 〈[0.27, 0.29], 0.27〉

TABLE 4 The cubic fuzzy values related to relation B1.

Relationship between accounts Cubic fuzzy value

z2–z5 〈[0.11, 0.13], 0.11〉

z3–z5 〈[0.34, 0.36], 0.32〉

z4–z6 〈[0.36, 0.38], 0.26〉

z4–z7 〈[0.48, 0.50], 0.54〉

z5–z8 〈[0.32, 0.34], 0.25〉

z9–z10 〈[0.54, 0.56], 0.58〉

z9–z11 〈[0.54, 0.56], 0.48〉

z10–z13 〈[0.27, 0.29], 0.27〉

TABLE 5 The cubic fuzzy values related to relation B2.

Relationship between accounts Cubic fuzzy value

z4–z5 〈[0.34, 0.36], 0.32〉

z3–z8 〈[0.34, 0.36], 0.32〉

z5–z7 〈[0.48, 0.50], 0.54〉

z6–z9 〈[0.36, 0.38], 0.26〉

z8–z10 〈[0.32, 0.34], 0.25〉

z6–z11 〈[0.32, 0.34], 0.25〉

z9–z12 〈[0.36, 0.38], 0.22〉

TABLE 6 The cubic fuzzy values related to relation B3.

Relationship between accounts Cubic fuzzy value

z1–z2 〈[0.11, 0.13], 0.11〉

z1–z4 〈[0.11, 0.13], 0.11〉

z7–z9 〈[0.54, 0.56], 0.58〉

z7–z10 〈[0.76, 0.78], 0.78〉

z12–z13 〈[0.27, 0.29], 0.22〉
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strong.The cubic fuzzy values related to each of the relations of B1, B2,
B3 are given in Tables 4–6.

Considering accounts as vertices and relationships of B1, B2,
and B3 as edges, the CFGS G � (A,B1,B2,B3) is obtained as
Figure 5.

By examining the degrees of vertices, it is determined that:
The maximum B1-degree of vertices belongs to vertex z9 with a

value of DB1(z9) � 〈[0.27, 0.29], 0.22〉. Therefore, the z9 account
holder has entered the system with the IP of several cards
registered in different places.

The maximum B2-degree of vertices belongs to vertex z5 with
a value of DB1(z5) � 〈[0.82, 0.86], 0.86〉. So, z5 is an account that
has transacted with the card at various locations over a long
distance.

The maximum B3-degree of vertices belongs to vertex z7 with a
value of DB1(z7) � 〈[1.30, 1.34], 1.36〉. Therefore, z7 is an account
that has received transactions simultaneously from other accounts
located in different locations.

5 Conclusion

Cubic fuzzy graph structure (CFGS) as a combination of fuzzy
graph structure and cubic fuzzy graph, has a better flexibility in
modeling and solving problems in ambiguous and uncertain fields.
In this article, we introduced vertex regularity in CFGS and

examined their characteristics. Also, the total vertex regularity
in CFGS is discussed and its results are studied. In this regard, a
comparative study has been conducted between vertex regular and
total vertex regular CFGSs and some necessary and sufficient
conditions have been provided. These degrees are expressed as a
cubic number so that they can be easily compared. It has been
found that the membership function conditions in CFGS are
effective in the degree calculation quality. The results show
that some properties of vertex regular CFGSs are not true for
the total vertex regular CFGSs. In our future work, we intend to
express the properties of product operations on CFGSs.
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