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Atypical chemokine receptors (ACKRs) form a small subfamily of receptors

(ACKR1–4) unable to trigger G protein-dependent signaling in response to

their ligands. They do, however, play a crucial regulatory role in chemokine

biology by capturing, scavenging or transporting chemokines, thereby regulating

their availability and signaling through classical chemokine receptors. ACKRs add

thus another layer of complexity to the intricate chemokine–receptor interaction

network. Recently, targeted approaches and screening programs aiming at

reassessing chemokine activity towards ACKRs identified several new pairings

such as the dimeric CXCL12 with ACKR1, CXCL2, CXCL10 and CCL26 with

ACKR2, the viral broad-spectrum chemokine vCCL2/vMIP-II, a range of opioid

peptides and PAMP-12 with ACKR3 as well as CCL20 and CCL22 with ACKR4.

Moreover, GPR182 (ACKR5) has been lately proposed as a new promiscuous

atypical chemokine receptor with scavenging activity notably towards CXCL9,

CXCL10, CXCL12 and CXCL13. Altogether, these findings reveal new degrees of

complexity of the chemokine network and expand the panel of ACKR ligands and

regulatory functions. In this minireview, we present and discuss these new

pairings, their physiological and clinical relevance as well as the opportunities

they open for targeting ACKRs in innovative therapeutic strategies.
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1 Introduction

Chemokines (or chemotactic cytokines) are small soluble

proteins (8–14 kDa) that guide cell migration and orchestrate

several vital processes, including leukocyte recruitment during

immunosurveillance. They are also involved in numerous

inflammatory diseases and the development and spread of many

cancers (1). They act through classical chemokine receptors (CKRs)

that belong to the seven-transmembrane domain G protein-coupled

receptor (GPCR) superfamily. Functionally, chemokines can be

categorized as homeostatic or inflammatory according to their

properties. Structurally, based on specific cysteine motifs in their

N termini they are classified as CC, CXC, XC and CX3C chemokines

and their receptors are consequently named CCR, CXCR, XCR and

CX3CR (2).

Over the past years, an important subfamily of chemokine

receptors has emerged as key regulators of chemokine functions.

Formerly named chemokine-binding proteins, decoys, scavengers or

interceptors, the standard nomenclature for this membrane protein

family is now atypical chemokine receptors (ACKRs) (3, 4) (Figure 1).

ACKRs are generally expressed on lymphatic and vascular

endothelium, the epithelium of barrier organs and to a lesser extent

on circulating leukocytes, in contrast to the classical chemokine

receptors that are mainly found on hematopoietic and immune cells

(5, 6). Although ACKRs form a rather diverse group and do not cluster

phylogenetically, they do share several characteristics. Among their

main common features is the inability to trigger the canonical G

protein-mediated signaling or to directly induce cell migration in

response to chemokines. Despite this atypicality, ACKRs fulfill

essential regulatory functions in the chemokine–receptor network.

Their well-established role is the tight regulation of chemokine

concentration, for instance in inflammatory processes, and the
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formation of chemokine gradients for the signaling chemokine

receptors, which is accomplished by the capture, transport or

internalization of chemokines into degradative compartments or

their presentation on cells (4, 7, 8). Other distinctive properties of

ACKRs are their unconventional cellular localization, trafficking and

expression profile. Indeed, most ACKRs are predominantly found in

endosomal vesicles and several can cycle constitutively between the

plasma membrane and the intracellular compartments, efficiently

scavenging the bound chemokines (3, 7, 9–11). Although these

functions were previously considered to mainly rely on b-arrestins,
recent reports showed that they are not indispensable (12–17).

Dimerization with canonical receptors and consequent alteration of

expression and signaling properties is another characteristic of ACKRs

that allows modulation of the chemokine network (8, 18, 19).

To date, out of the 23 chemokine receptors recognized by the

International Union of Basic and Clinical Pharmacology (IUPHAR),

four are members of the ACKR family (ACKR1–4) (20). This group of

atypical receptors will presumably increase in the near future, both in

terms of number and relevance. Indeed, for each of the ACKRs, recent

pairings with chemokines or, as in the case of ACKR3 non-chemokine

ligands, have been reported, and it is expected that new members, such

as the recently deorphanized promiscuous chemokine scavenger

GPR182 (ACKR5), will further enlarge this family.

In this minireview, we present and discuss these new pairings, their

physiological and clinical relevance but also the growing number of

properties that unify this somewhat heterogeneous receptor subfamily.

2 Pairing of dimeric CXCL12
with ACKR1

ACKR1 (formerly DARC for Duffy Antigen Receptor for

Chemokines) is the oldest known chemokine receptor. It is barely
FIGURE 1

ACKR expression, ligand selectivity and crosstalk with classical chemokine receptors. Atypical chemokine receptors are expressed on different types
of endothelial or immune cells. ACKR1 and ACKR2 bind a broad spectrum of inflammatory chemokines that they share with CXCR1–3 and CCR1–5.
ACKR3 binds the homeostatic chemokine CXCL12, which it shares with CXCR4, and the inflammatory CXCL11, shared with CXCR3. ACKR3 also binds
MIF and small non-chemokine peptides such as the proadrenomedullin-derived peptides, ADM and PAMP, as well as several opioid peptides. ACKR4
interacts with a limited number of mainly homeostatic chemokines that it shares with CCR4, CCR7 and CCR9. ACKR5 binds a wide range of both CC
and CXC chemokines shared with CCR1, CCR3, CCR5–7 and CXCR3–5 and is still awaiting official IUPHAR recognition as an atypical chemokine
receptor (dashed rectangle). Newly identified pairings are indicated in bold. CXCL12–LD: CXCL12 locked dimer.
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recognizable as one from its primary amino acid sequence and its

phylogenetic association (21, 22) and was initially described as

blood group antigen and as a receptor for the Duffy Binding

Proteins (DBP) from Plasmodium knowlesi and Plasmodium

vivax malaria parasites (23–25). ACKR1 is prominently expressed

on erythrocytes and venular endothelial cells, but not on capillaries

or arteries (26–28). ACKR1 owes its distinctive regulatory function

to its ability to internalize chemokines in polarized cells, mediating

their transcytosis and increasing their bioavailability by presenting

bound chemokines to other chemokine receptors in a

spatiotemporally well-defined manner (29). Although ACKR1 is

unable to promote the degradation of its ligands, it can compete

with classical receptors for chemokine binding or reduce their

availability in defined regions via internalization. By this

mechanism, ACKR1 was proposed to play a role in impairing

chemokine-induced angiogenesis (30, 31). On erythrocytes,

ACKR1 binds circulating inflammatory chemokines with high

affinity and can act as a “sink” or as a “buffer”. Indeed, a number

of studies showed that ACKR1 modulates inflammatory responses

by depleting its ligands (32, 33).

ACKR1 is the most promiscuous chemokine receptor with over

ten chemokine ligands from the CC and CXC chemokine families

(34–36). Studies carried out in the 1990s identified several

chemokine ligands for ACKR1, which included CXCL1, CXCL4,

CXCL7, CXCL8, CCL5, and CCL2 (34, 37). Since then, many more

have been discovered with a broad range of affinities. Among the

additional chemokines, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7,

CXCL11, CCL7, CCL11, CCL13, CCL14 and CCL17 exhibit strong

binding to ACKR1 (36). Most of ACKR1 ligands are classified as

inflammatory chemokines, with the receptor exhibiting no

preference for either CC or CXC chemokines (36). In contrast,

the majority of homeostatic and angiostatic ELR-chemokines show

weak or no binding (36, 38, 39).

Recently, using biophysical analysis and immunofluorescence

microscopy, ACKR1 was shown to bind with the dimeric form of

CXCL12 (40). CXCL12 plays an important part in tissue

development, vascular integrity, hematopoiesis, and immunity. Its

effects through the interaction with the classical receptor CXCR4

and the atypical receptor ACKR3 have been studied extensively

(41–43). It has now been suggested that ACKR1 promotes CXCL12

dimerization, which could potentially interfere with its monomeric

signaling (44). The interaction between the CXCL12 dimer and

ACKR1 suggests a potential new function for ACKR1 to modify the

chemokine’s monomer–dimer equilibrium, further deepening the

complexity of the functional regulation of CXCL12 (40).
3 Pairing of CXC and CC chemokines
with the promiscuous CC chemokine
scavenger ACKR2

ACKR2 (formerly D6 or CCBP2), identified in 1997, was until

recently reported to exclusively bind inflammatory CC chemokines

(45). The main ACKR2 ligands include CCL2–8, CCL11–14, CCL17
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and CCL22, which are shared with the classical inflammatory

receptors CCR1–5 (46–49). By scavenging these chemokines,

ACKR2 is proposed to drive the resolution phase of inflammation

and prevent exacerbated immune responses (50–55).

The pairing of ACKR2 with CC chemokines dates from when

many chemokines, especially from the CXC class, were not yet

known or readily available (45, 46, 49). A recent effort to

systematically evaluate the activity of a full array of human and

viral chemokines on ACKR2, by examining their ability to induce

b-arrestin recruitment, revealed at least one more CC, CCL26,

and two CXC chemokines, namely CXCL2 and CXCL10 as

ligands of ACKR2 (56) with different potencies and efficacies

(Supplementary Figure 1).

CCL26 was identified as a low-potency partial agonist of

ACKR2, able to compete with other partial agonists for the

binding and uptake by the receptor. CCL26 was previously

demonstrated to bind and activate CCR3, although it has also

been proposed as a ligand of CX3CR1 (57, 58). Though the

functional relevance of the interaction between ACKR2 and

CCL26 remains largely unknown, this chemokine–receptor pair

may play a major role in a range of immune-mediated diseases. For

instance, in persistent asthma, CCL26 was shown as the most

effective inducer of eosinophil migration (59), while ACKR2,

which is constitutively expressed in the lung, was shown to

reduce airway reactivity by scavenging chemokines (60).

Furthermore, considering ACKR2 was described to prevent

spread of psoriasiform inflammation (61) and high serum levels

of CCL26 were correlated with atopic dermatitis severity (62), it is

possible that this new pairing will shed light on mechanisms of

autoimmune inflammation. CXCL10, previously known to bind

exclusively to CXCR3, is the strongest CXC chemokine identified

activating ACKR2. CXCL10 was shown to act as a partial agonist of

ACKR2 with potency in the low nanomolar range, inducing

approximately half of the maximal response measured with its

known full agonist CCL5. This partial agonist behavior was

reminiscent of the activity towards its long-established signaling

receptor CXCR3 relative to the full agonist CXCL11 (63, 64).

Moreover, the potency of CXCL10 towards ACKR2 was

approximately three times stronger than towards CXCR3. The

rapid mobilization of ACKR2 to the plasma membrane induced

by CXCL10 was similar to that observed in the presence of CC

chemokines (65, 66), while imaging flow cytometry revealed specific

and efficient uptake of labelled CXCL10 by ACKR2-expressing cells.

Importantly, the ACKR2-driven intracellular accumulation of

CXCL10 was also associated with a reduction of its availability in

the extracellular space, pointing towards a regulatory role of

ACKR2 for this CXC chemokine. Of note, CXCL10 is a pivotal

inflammatory CXC chemokine in many physiological and

pathological processes, including angiogenesis, chronic

inflammation, immune dysfunction, tumor development and

dissemination (67, 68), in which ACKR2 was also shown to be

involved (6).

Noteworthy, CXCL2 also showed activity towards ACKR2,

although it was weak in comparison to CXCL10 or to the activity

it displays towards its classical receptor, CXCR2 (69–72). CXCL2
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has no scavenger reported and is an important inflammatory

chemokine and a powerful neutrophil chemoattractant.

Interestingly, it has recently been reported that ACKR2-deficient

mice show increased neutrophil infiltration in different tissues (73)

and a higher anti-metastatic activity of neutrophils than normal

mice (74). It remains to be investigated whether the enhancement of

these neutrophil-related processes results from the suppression of

CXCL2 regulation by ACKR2.
4 Pairing of a CC chemokine and
non-chemokine endogenous peptides
with ACKR3

ACKR3 (CXCR7 or RDC-1) is the second to last deorphanized

chemokine receptor. It was initially shown to bind and be activated

only by CXC chemokines, namely CXCL12 and CXCL11, which are

also ligands for CXCR4 and CXCR3, respectively (41, 75). ACKR3 is

expressed by endothelial cells, mesenchymal cells, B cells (76–78), in

diverse regions of the central nervous system and in the adrenal

glands (79–81). ACKR3-deficient mice die perinatally due to

semilunar heart valve malformation and ventricular septal defects

and show disrupted lymphangiogenesis and cardiomyocyte

hyperplasia, despite no alterations in hematopoiesis (82, 83).

Similarly to other scavenging receptors, ACKR3 is generally

present intracellularly, and cycles continuously between the

plasma membrane and the endosomal compartments (84–86).

The scavenging function of ACKR3 was convincingly illustrated

in studies using zebrafish embryos, where it shapes CXCL12

gradient during development (42, 87).

In 2018, a study demonstrated that the broad-spectrum

antagonist CC chemokine vMIP-II/vCCL2 encoded by the

sarcoma-associated herpesvirus (HHV-8) can bind and activate

ACKR3 with potency somewhat lower than the endogenous CXC

chemokines (88). ACKR3 scavenging of vCCL2 was proposed to

impact the life cycle and immune escape of HHV-8 by controlling

the availability of this important chemokine and its activity on both

viral and host receptors. The identification of vCCL2 as a third

chemokine ligand for ACKR3 and the first CC chemokine was also

particularly valuable in the understanding of the activation

mechanism and function of this atypical receptor (70).

ACKR3 was also shown to be the receptor for the pseudo-

chemokine macrophage migration-inhibitory factor (MIF) (89).

MIF is an inflammatory cytokine that functions as a

chemoattractant and participates in innate and adaptive immune

responses by promoting macrophage activation and B-cell survival

(90–92). MIF is also a mediator in numerous inflammatory

conditions and cancers (91, 93). MIF binding to ACKR3 was

shown to promote receptor internalization and to contribute to

cell signaling and B-cell chemotaxis (89). Moreover, MIF-induced

ACKR3 signaling in platelets was described to modulate cell

survival and thrombus formation (94).
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Besides chemokines and pseudo-chemokines, ACKR3 was shown

to bind several small peptide ligands. ACKR3 was proposed as a

scavenger receptor for the two pro-angiogenic peptides

adrenomedullin (ADM) and proadrenomedullin N-terminal 20

peptide (PAMP) (95) both encoded by the Adm gene, regulating

their activity for the cognate receptors CLR/RAMPs and MgRX2,

respectively (96, 97). These findings were in line with the observation

that Ackr3 knockout recapitulates the Adm overexpression phenotype

and that silencing Adm expression counterweighs lymphatic and

cardiac aberrations observed in Ackr3 knockout mice (96).

Nevertheless, the respective contribution of the two Adm-encoded

peptides in the phenotype observed requires further investigation as

ADM binds to ACKR3 at high micromolar concentrations, whereas

processed forms of PAMP have potencies in the nanomolar range (95).

ACKR3 was also shown to be a high-affinity scavenger for a broad

spectrum of opioid peptides, especially enkephalins and dynorphins,

binding and internalizing them. ACKR3 was thus proposed to reduce

the availability of these peptides in important opioid centers in the

central nervous system, where it is co-expressed with the classical

opioid receptors. Modulation of the negative regulatory function of

ACKR3 by molecules such as LIH383 or conolidine, an analgesic

alkaloid used in traditional Chinese medicine, was shown to potentiate

the activity of endogenous opioid peptides towards classical receptors,

possibly opening alternative therapeutic avenues for opioid-related

disorders (13, 98–101).
5 Pairing of the CC chemokines
CCL20 and CCL22 with ACKR4

ACKR4 was deorphanized in 2000 (102). It was proposed to

bind CCL19, CCL21, CCL25 and CXCL13, which are the ligands for

CCR7, CCR9 and CXCR5, respectively (12, 102, 103). By

scavenging these chemokines, ACKR4 was shown to regulate the

trafficking and positioning of T cells and dendritic cells (104, 105).

ACKR4 is best known for its role in shaping the gradient of CCL19

and CCL21 for CCR7-expressing dendritic cells in the subcapsular

sinuses of the lymph nodes in the initial phase of the adaptive

immune response (106, 107).

In a recent study, CCL20, previously known to bind exclusively

CCR6, was identified as a novel ligand for ACKR4 (108). The

authors predicted this chemokine–receptor pairing based on CCL20

sequence and expression similarities with CCL19 and CCL21. They

demonstrated that CCL20 triggers b-arrestin recruitment to

ACKR4, and is efficiently scavenged by ACKR4-expressing cells,

both in vitro and in vivo. They proposed that by scavenging CCL20,

ACKR4 regulates its availability for the classical receptor CCR6 and

thereby plays a role in the positioning of CCR6-positive leukocytes

within secondary lymphoid tissues for effective humoral and

memory immune responses (108).

A parallel systematic pairing analysis using b-arrestin
recruitment as readout confirmed CCL20 as a new full agonist
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ligand for ACKR4 with nanomolar potency (109). This study also

found that CCL22 acts as a potent partial agonist of ACKR4.

CCL22, which is a key player in both homeostasis and resolution

of inflammatory responses was until then known for its ability to

interact with CCR4 and ACKR2. Interestingly, in line with a

previous report (110) this study also disproved the agonist

activity of CXCL13 towards ACKR4 (109).
6 Deorphanization of GPR182/ACKR5
as a promiscuous scavenger receptor
for both CC and CXC chemokines

Until very recently the G protein-coupled receptor 182

(GPR182, formerly known as ADMR) was classified as a class A

orphan GPCR. Phylogenetically, it clusters within the chemokine

receptor family owing to its 40% sequence similarity to ACKR3

(111). GPR182 was previously suggested as a receptor for

adrenomedullin (112), which was later not confirmed (113). It

was initially described to be present in several organs (80, 111),

further studies identified its prevalent expression in endothelial cells

in mouse and zebrafish (114), where it was proposed as a regulator

of hematopoiesis.

In 2021, GPR182 was deorphanized and proposed as a new

atypical chemokine receptor for CXCL10, CXCL12 and CXCL13

(115). The study confirmed the GPR182 expression in the endothelial

compartment by using a transgenic mouse model expressing

mCherry fluorescent protein under the control of mouse Gpr182

promoter. GPR182 was detected in vascular endothelium of lungs,

bone marrow, lymph nodes, Peyer’s Patches, liver and spleen but not

in the vascular endothelium of conductive arterial vessel. It was also

detected in lymphatic vessels from skin, intestine and lymph nodes.

As its closest paralogue ACKR3, GPR182 was shown to bind CXCL12

with nanomolar affinity. CXCL10 was also a strong ligand for

GPR182 and several other binders could be identified from a large

set of human chemokines screened in binding competition studies

with fluorescently labelled CXCL10, including CXCL13, CCL19

and CCL16.

More recently, a study highlighted GPR182 expression in

lymphatic endothelial cells in human melanoma (116). In

accordance with the first report, GPR182 was suggested as a novel

atypical chemokine receptor for an extended spectrum of

chemokines of different families and was tentatively named

ACKR5. The authors primarily identified the CXCR3 ligand

CXCL9 as able to bind GPR182. Competition binding studies

with a set of 35 chemokines revealed the ability of GPR182 to

interact also with the other CXCR3 ligands, CXCL10 and CXCL11

as well as promiscuous binding for chemokines belonging to the

four different classes (CCL, CXCL, CX3CL and XCL). The authors

suggested that GPR182 might be able to recognize GAG-binding

motif, which is critical region for chemokines to adhere to the
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endothelium. Different GAG-biding peptides were able to disrupt

CXCL9–GPR182 interaction, which led the authors to consider the

GAG-binding motif as determinant for chemokine interaction.

Interestingly, both studies demonstrated the absence of

Gprotein signaling in response to chemokine binding to

GPR182 (115, 116), which is a common feature in the atypical

chemokine receptor family (3, 4). Of note, a strong constitutive

interaction with b-arrestin-2 was observed but no ligand-

induced b-arrestin recruitment could be detected (115, 116).

However, b-arrestins were suggested to be responsible for the

rapid and spontaneous receptor internalization (115). An

important scavenging ability was highlighted by rapid uptake

of labelled chemokine in GPR182-expressing cells and the

increased plasma levels of CXCL10, CXCL12 and CXCL13 in

both full- and endothelial compartment GPR182 knockout mice

(115). These mice also showed alteration in hematopoiesis,

which is consistent with GPR182 scavenging of CXCL12 (115),

a chemokine notably involved in this process (115, 117). Absence

o f GPR182 a l so de te rmined increased in t ra tumora l

concentration of different chemokines (CCL2, CCL22, CXCL1,

CXCL9 and CXCL10) (116), which was suggested to contribute

to an increased recruitment of tumor infiltrating lymphocytes

and, therefore, hypothesized as potential target for improved

immunotherapy (116).

Further studies are needed to validate GPR182 ligand

specificity, as this aspect is not entirely consistent between the

two studies. Both studies do however propose GPR182 as a

broad-spectrum atypical chemokine receptor . This is

particularly interesting as it would represent the only

scavenger receptors identified so far for chemokines like

CXCL9, CXCL13, CCL16 and CCL28. In the absence of

detectable ligand-induced GPR182 signaling, it is challenging

to determine precisely the receptor selectivity as well as its

molecular characterization. It renders the official inclusion of

GPR182 in the atypical chemokine receptor family by the

IUPHAR particularly complex.
7 Discussion

Significant progress has been made over the last decade towards

a better comprehension of the functional and molecular aspects

underlying the activity of ACKRs in health and disease. They have

been gaining continuous consideration and are presently regarded

as one of the most important receptor family standing at the

forefront of the chemokine research and holding great therapeutic

potential (6, 118–120).

The unifying characteristic of ACKRs and unique integration

criteria is so far their inability to trigger G protein signaling in

response to chemokine binding. However, ACKRs often share other

properties, such as the predominant intracellular localization or the
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ability to constitutively cycle between the plasma membrane and the

intracellular compartments. Furthermore, early and more recent

pairings suggest that ACKRs are commonly responsive to

chemokines from different families. Indeed, the ability to bind

and respond to both CC and CXC chemokines was historically

described for ACKR1 (121) and — although it was subsequently

challenged (109, 110) — for ACKR4 (102). This cross-family

selectivity has now been extended to ACKR2 (56), ACKR3 (88)

and ACKR5 (115, 116) and therefore appears to represent an

additional functional characteristic of ACKRs (3) that is not

observed among the classical chemokine receptors.

Despite the many similarities, each ACKR presents its own

distinct particularities in terms of expression pattern, ligand

selectivity, function and mode of action. For instance, while

most ACKRs interact with b-arrestins, ACKR1 seems to be an

exception. ACKR3 also stands out in its atypicality as it is highly

prone to activation (70) and can act as a receptor also for non-

chemokine small peptide ligands (13, 95, 98). Whether these two

properties are linked and exclusive to ACKR3 or shared with other

ACKRs remains to be investigated. Finally, GPR182 (ACKR5)

seems to be a highly promiscuous receptor continuously

scavenging chemokines with high basal b-arrestin association

(115, 116).

While it may seem surprising that several chemokine–ACKR

pairings have been identified only recently, it was made possible

thanks to different technological and scientific advances. For the

long-established ACKRs, the better understanding of their function,

mode of action and the commercial availability of chemokines as

recombinant proteins have facilitated the recent pairings. Most

importantly, the development of various sensitive assays allowing to

accurately detect the activity of chemokines on the receptors

independently of G protein signaling, e.g. via the induction of b-
arrestin recruitment or the modification of the receptor trafficking

or localization, have been instrumental to identifying new ligand–

receptor interactions (122). In case of GPR182, which shows high

level of basal cycling activity and b-arrestin interactions, a

combination of experimental approaches allowed for its

deorphanization. Receptor sequence comparison, precise

determination of the expression profile and the use of binding

competition studies confirmed by increased chemokine plasma

concentration in knockout mice, were required to circumvent the

problems related to the absence of direct chemokines-induced

effects on the receptor (115, 116). For this receptor, additional

independent investigations are now needed to precisely define the

panel of chemokines it can scavenge and obtain an official inclusion

by the IUPHAR in the ACKR family as ACKR5.

The chemokine–receptor network is well recognized for its

highly intricate interactions where a chemokine may interact with

several receptors, while a chemokine receptor has usually multiple

ligands (Figure 2). On the other hand, some chemokines may be

exclusive of a single classical receptor. However, the recent pairings

described above identified at least one ACKR for a number of these

chemokines, such as CCL20 (CCR6), CCL25 (CCR9), CXCL2
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(CXCR2), CXCL9 and CXCL10 (CXCR3), CXCL13 (CXCR5)

expanding the panel of ACKR ligands and functions. To date, out

of the 45 human chemokines, several of them binding to XCR1

(XCL1 and XCL2), CCR8 (CCL1 and CCL18), CCR10 (CCL27 and

CCL28), CCR3 (CCL15 and CCL24), CCR1 (CCL23), CXCR1

(CXCL6), CXCR6 (CXCL16), CX3CR1 (CX3CR1) and the orphan

chemokine CXCL17 have not been paired with an ACKR (Figure 2).

The recent new pairings suggest that a systematic reassessment

of chemokine–receptor interactions for ACKRs but also long-

established classical chemokine receptors may still be necessary.

Indeed, owing to the functional selectivity and biased signaling

reported for some chemokines and receptors, the attempts to

uncover new pairings should not be limited to monitoring G

protein signaling or b-arrestin recruitment. Other approaches

such as measuring fluorescent ligand uptake, receptor trafficking

or chemokine degradation in both agonist and antagonist modes

should also be considered, as important crosstalks may

remain unexplored.

The novel pairings among ACKRs add an unforeseen level of

complexity to their functions and regulatory roles for chemokines

and non-chemokine ligands, while they also open interesting

therapeutic opportunities, notably for cancer and chronic pain.

For instance, the identification of ACKR2 and GPR182 as

scavenger receptors for CXCL10 and/or CXCL9, in addition to

their well-established inflammatory CC chemokine ligands such

as CCL2, CCL4 and CCL5, may be exploited in approaches

seeking to turn cold tumors to hot tumors to improve the

effectiveness of immunotherapies. Indeed, these newly

identified chemokines for ACKR2 and GPR182 are key players

in driving NK cells and CD8+ T cells into the tumor bed (123–

126). Therefore targeting their receptors may consequently

increase the chemokine levels in the tumor microenvironment

and subsequently sensitize them to immunotherapy (56, 118). On

the other hand, targeting ACKR3 and blocking its proposed

opioid peptide scavenging function was proposed as a new

avenue to develop safer drugs with less side effects, which is

critically needed to treat chronic pain (100, 101).

However, considering the importance and multiplicity of their

functions, the constantly growing number of ligands identified, the

complexity of their biology and the interconnectivity with multiple

systems, the targeting of ACKRs remains a great challenge. So far,

only small molecules, peptides, modified chemokines and antibody

fragments targeting ACKR3 have been reported, partly owing to the

long-established importance of the CXCR4–CXCL12 axis in cancer,

autoimmune and cardiovascular diseases (13, 70, 119, 120, 127–

131). Nevertheless, the increasing number of studies showing

implication of other ACKRs, including ACKR5, in cancer

development, progression but also protection together with the

increasing availability of screening assays specific for each ACKR

will likely favor in the new future the development of modulators

for other members of the family (100, 122).

In the coming years, the ACKR family may be further enlarged

(132). Indeed, CXCR3B, the extended isoform of CXCR3, was
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recently proposed to display attributes of ACKRs (133), while

CCRL2 and PITPNM3 await validation with regard to chemokine

binding and direct regulatory functions (134–136). Additional

studies will reveal whether the latter two share common

functional properties with the established and newly

deorphanized atypical chemokine receptors.
Frontiers in Immunology 07
In summary, investigations on ACKR are still in a highly

dynamic phase and the recent identification of new pairings for

established members of the family and of GPR182 as new member

will certainly reinforce the interest of the community for this

fascinating class of receptors. A better understanding of their

functional complexity and heterogeneity is still needed in light of
FIGURE 2

Overview of the chemokine interaction network with classical and atypical receptors. The interactions between different chemokines and their
signaling and regulatory receptors are highly promiscuous. Most chemokines can bind several receptors and the majority of the receptors have
multiple ligands. Receptors and chemokines are represented as spheres, while non-chemokine ligands are represented as rounded rectangles. There
are 45 chemokines, 19 classical chemokine receptors (light grey) and 5 atypical chemokine receptors: ACKR1 (light blue), ACKR2 (dark blue), ACKR3
(yellow), ACKR4 (red) and the newly proposed ACKR5/GPR182 (light grey). Colored chemokines and non-chemokine ligands represent recently
identified pairings, dashed lines indicate proposed ligands and double lines designate the binding of the dimeric ligand to the receptor. Created with
BioRender.com.
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the extended panel of ligands they regulate and the therapeutic

potential they seem to hold.
Author contributions

MS and AC designed the manuscript. MS, GD’U, RL, AAB, and

AC wrote the manuscript. MS, GD’U, RL, MT, DL, and AC revised

the manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This study was supported by the Luxembourg Institute of

Health (LIH), Luxembourg National Research Fund (INTER/

FNRS grants 20/15084569 and AFR HOPE-IOID), F.R.S.-FNRS-
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