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Food supplementation increases
reproductive performance of
ospreys in the lower
Chesapeake Bay

Michael H. Academia* and Bryan D. Watts

Center for Conservation Biology, College of William & Mary, Williamsburg, VA, United States
The Atlantic States Marine Fisheries Commission (ASMFC), the governing body

responsible for managing fisheries on the U.S. East Coast, formally adopted the use

of Ecological Reference Points (ERPs) for Atlantic menhaden, Brevoortia tyrannus.

Scientists and stakeholders have long recognized the importance of menhaden and

predators such as ospreys, Pandion haliaetus, that support the valuable ecotourism

industry and hold cultural significance. Landings in the reduction fishery are at their

lowest levels and menhaden is facing potential localized depletion. Mobjack Bay,

located within the lower Chesapeake Bay, has been a focus of osprey research since

1970 and represents a barometer for the relationship between osprey breeding

performance and the availability of their main prey, menhaden. Since local levels of

menhaden abundancewere not available, we conducted a supplementalmenhaden

feeding experiment on osprey pairs during the 2021 breeding season. Our main

objectivewas to determine if the delivery rate ofmenhaden had an influence on nest

success andproductivity.Nest success (c2=5.5, df = 1, P=0.02) andproductivity (b=
0.88, SE = 0.45, CI = 0.049, 1.825, P = 0.048) were significantly higher within the

treatment group. Reproductive rates within the control group were low and

unsustainable suggesting that current menhaden availability is too low to support a

demographically stable osprey population. Menhaden populations should be

maintained at levels that will sustain a stable osprey population in which they are

able to produce 1.15 young/active nest to offset mortality.

KEYWORDS

osprey, Pandion haliaetus, menhaden, Brevoortia tyrannus, localized depletion,
ecological reference points, food supplementation
1 Introduction

World fisheries landings since the late 1980s have been steadily declining (Pauly and

Zeller, 2016, FAO, 2020). With mounting concern over the state of our fisheries,

management strategies have shifted focus from single-species to ecosystem-based

objectives (Pauly et al., 2008). This style of management attempts to integrate ecological,
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economic, and social factors to secure and protect the sustainability

of our fisheries and the ecosystems within which they reside

(Einoder, 2009). Thus, United States federal policy firmly

reinforces the implementation of Ecosystem-Based Fisheries

Management (EBFM) which is an approach that considers

trophic interactions and aims to promote the health and

resilience of the ecosystem (McLeod and Leslie, 2009; Link, 2010,

NMFS (National Marine Fisheries Service), 2016). Apex predators

are essential indicators within this management approach and may

provide more sensitive measures of changing fish populations

because of their dietary dependencies (Furness, 1982; Diamond

and Devlin, 2003). Monitoring fish-eating bird populations may be

both more cost effective and better suited to the problem of

understanding fish populations within an ecosystem (Cairns,

1988). Bird metrics may play an increasing role in the assessment

of prey availability, especially in areas where conventional fisheries

data are insufficient (Cairns, 1988). Bird populations may serve as

an early warning system for changes in fish populations that have

ecosystem implications (Kabuta and Laane, 2003; Cury et al., 2005).

The Atlantic States Marine Fisheries Commission (ASMFC),

the governing body responsible for managing fisheries on the U.S.

East Coast, formally adopted the use of Ecological Reference Points

(ERPs) for Atlantic menhaden, Brevoortia tyrannus. Historical

estimates of menhaden were limited and the harvest effects did

not produce sufficient information on important predator species.

Therefore, the ASMFC developed an interest in establishing ERPs to

set quotas and evaluate menhaden’s status and role as a forage

species (Drew et al., 2021). Scientists and stakeholders have long

recognized the importance of predators, such as bottlenose

dolphins, Tursiops truncates, and humpback whales, Megaptera

novaeanglia, that support a valuable ecotourism industry and

hold cultural significance (Gannon and Waples, 2004; Glass and

Watts, 2009; Butler et al., 2010; Smith et al., 2015; Drew et al., 2021).

Atlantic menhaden are a schooling fish that can be found along

nearshore coasts along the Atlantic Ocean from Nova Scotia, CAN,

to Florida, USA and go through large age- and size-dependent

seasonal migrations (Dryfoos et al., 1973; Nicholson, 1978;

Liljestrand et al., 2019). As indeterminate spawners, adults are

capable of spawning multiple times in a season and inhabit

estuarine and coastal areas such as Chesapeake Bay (Ahrenholz,

1991, Southeast Data Assessment and Review [SEDAR], 2020). As

juveniles, they spend their first spring and summer in estuaries and

by late fall, they join with other subadults and adults and migrate to

nearshore coastal waters (Southeast Data Assessment and Review

[SEDAR], 2020; Anstead et al., 2021).

Menhaden support the largest fishery in the U.S. East Coast by

volume and is used for bait and reduced to fish oil and meal which

are used for animal feed, fertilizer, and human health supplements

(Anstead et al., 2021). The reduction fishery began in the mid-1800s

with the use of purse seine gear and peaked in 1956 with over 20

menhaden reduction factories along the Atlantic Coast (Southeast

Data Assessment and Review [SEDAR], 2020). Currently, landings

in the reduction fishery are at their lowest levels (Southeast Data

Assessment and Review [SEDAR], 2020) and at Chesapeake Bay,

populations of menhaden are facing potential localized depletion.

ASMFC defined localized depletion in Chesapeake Bay “as a
Frontiers in Marine Science 02
reduction in menhaden population density below the level of

abundance that is sufficient to maintain its basic ecological,

economic, and social/cultural functions” (Annis et al., 2009).

Localized depletion has not been officially defined or evaluated by

managers because estimates of the standing stock within

Chesapeake Bay have been unavailable and thresholds for

exploitation cannot be resolved.

Known as the fish hawk, we selected the osprey as an

appropriate non-finfish ERP to evaluate localized depletion of

menhaden and food limitation within Chesapeake Bay. The ERP

Work Group emphasized the research need for diet data collection

and demographic responses of non-finfish predators (Atlantic

States Marine Fisheries Commission [ASMFC], 2017). According

to Buccheister et al. (2017), the nearshore piscivorous birds such as

ospreys are sensitive to the overfishing of menhaden. Ecologically,

ospreys are generalized specialists (Beirregaard et al., 2014).

Specialized in that they are obligate piscivores and generalized in

that they predate upon many species of fish. Ospreys surface plunge

at a maximum depth of one meter and are more susceptible to a

decrease in fish density than other birds such as pursuit divers that

search for prey while swimming on the water surface and dive to

deeper depths (Ashmole, 1971; Cramp and Simmons, 1979).

Piscivory and plunge diving influences an ecological indicator’s

response to fish supply perturbations (Einoder, 2009). Reduced prey

availability and fluctuations in environmental conditions are more

evident in the foraging behavior and breeding success of a specialist

(Furness and Ainley, 1984; Montevecchi, 1993). Moreover, shallow

divers and surface feeders are more vulnerable, are considered more

sensitive indicators than pursuit divers, and show greater variation

in breeding performance (Montevecchi, 1993, Monaghan et al.,

1994; Scott et al., 2006). As one of the more recognized raptors,

ospreys have been used as an ecotoxicological sentinel species of

environmental health due to their reproductive responses to natural

and anthropogenic pressures and life history traits (Henny et al.,

2008; Johnson et al., 2008; Grove et al., 2009). Ospreys exhibit

strong nest fidelity and their reproductive status is observable by

ground, boat, or aerial surveys which makes them a valuable and

efficient sentinel of the ecosystem (Ogden et al., 2014) and an

appropriate ERP for menhaden (Buccheister et al., 2017).

The Chesapeake Bay supports one of the largest osprey breeding

populations in the world (Henny, 1983; Watts and Paxton, 2007).

As with many similar populations, ospreys in the Chesapeake Bay

experienced dramatic declines in the post-World War II era due to

reproductive suppression (Truitt, 1969; Kennedy, 1971; Wiemeyer,

1971; Reese, 1977) induced by environmental contaminants (Via,

1975; Wiemeyer et al., 1975). The population sustained a low point

by 1973 when Henny et al. (1974) estimated its size to be 1,450

breeding pairs. From 1973 to 1995, the population more than

doubled in size to nearly 3,500 pairs (Watts et al., 2004) and

believed to be between 8,000-10,000 pairs in 2020. However, the

population has experienced spatial variation in recovery (Watts

et al., 2004; Watts and Paxton, 2007). For example, average

doubling time for the population on low-salinity, upper reaches

of tributaries, was less than four years while doubling time on

higher-salinity reaches of the lower Chesapeake Bay exceeded 40

years (Watts et al., 2004). This variation reflects the extent of the
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earlier decline, immigration from other regions of the Chesapeake

Bay, and the local demography of pairs that may have been

influenced by prey availability.

Mobjack Bay has been a focus of osprey research since 1970 and

represents a barometer for the relationship between osprey breeding

performance and menhaden availability (Glass, 2008). During the

mid-1970s, there was little evidence of food limitation reflected in

osprey reproductive performance and brood sizes within the higher

salinity zones of the lower Chesapeake Bay (Stinson, 1976).

However by the early 2000s, the proportion of menhaden in the

diet had dropped by 40% and reproductive rates had dropped to

precarious levels (Glass, 2008). We conducted a supplemental

feeding experiment for osprey pairs nesting in Mobjack Bay

during the 2021 breeding season. A clear barrier in resolving the

relationship between osprey productivity and menhaden

consumption is the lack of menhaden abundance data that can be

scaled down to the local level. If such data were available, we could

monitor osprey foraging, provisioning, and productivity, and assess

the functional response to available menhaden. Since such data are

not available, a food manipulative experiment in the wild was

performed (Piatt et al., 2007). Our secondary objective was to

determine prey composition and the dietary importance

of menhaden.
2 Methods

2.1 Study species

Ospreys are large, long-winged raptors with a nearly global

distribution that feed exclusively on fish (Poole, 2019). Most

osprey populations across North America are migratory, spend

the winter months in Central or South America and begin

breeding at the age of three (Henny & Wight, 1969) Age-at-

first-reproduction in Chesapeake Bay ospreys was recorded from

4 years (Kinkead, 1985) to 5.7 years (Poole, 1989; Poole et al.,

2002). As the population reaches carrying capacity, age-at-first-

reproduction increases (Spitzer, 1980; Poole, 1989). Poole (1989)

estimated that pairs within the Chesapeake Bay must produce

1.15 young per year in order to offset adult mortality. On average,

if the population consistently meets or exceeds this rate

(demographic source) then the population would be expected

to be stable to increasing (Pulliam, 1988). If the reproductive rate

consistently falls below this threshold (demographic sink) the

population would be expected to decline in the absence of

compensatory immigration.
2.2 Food addition experiment

We established treatment (fish addition) and control (no fish

addition) nests to assess the effect of increased provisioning on

demography. We added 472 g ± 7.9 (SE) of menhaden every 3.5d ±

0.2 to treatment nests from the time of hatching to six weeks of age.

We delivered menhaden to nests using a telescopic pole with a

mounted delivery device. We sourced fresh or previously frozen
Frontiers in Marine Science 03
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counted, weighed, coded, and separated into packages for easy

deployment. We selected study nests based on accessibility and

randomly assigned accessible nests to treatments. We conducted an

initial survey (late March to mid-April) of the study area for osprey

nests (N = 114) and recorded location (latitude, longitude),

accessibility by boat, nesting stage, nest substrate, height over

water, and water depth. We screened nests for initial inclusion in

the study based on accessibility, height over water (to allow for

ready access to the nest) and water depth (to allow for boat access

and maneuverability). We only included nests within the study that

survived to hatching stage. We monitored all nests included within

the initial draw until clutches hatched. Nests that hatched eggs were

randomly assigned to two treatment groups (Figure 1) including a

control group (N = 15) and a food addition group (N = 16). The

nests in the East River were limited in boat accessibility and

therefore assigned to the control group.
2.3 Demography

We monitored nests twice per week from clutch completion

to fledging to quantify demographic parameters including clutch

size, brood size, and the number of young fledged. From

observations, we determined brood reduction (number of

young lost between hatching and fledging). We noted the age

that nestlings died and the stage when nests failed. We consider a

nest to be successful if the pair produced at least one young to

fledging age. We consider productivity to be the number of young

that reached fledging age (7 wks) per active nest (Steenhof and

Newton, 2007). We used a telescopic mirror pole to facilitate the

examination of nest contents for nests that were >2 m above the

water line.
FIGURE 1

Map of the experimental area of Mobjack Bay on the lower eastern
region of Chesapeake Bay, VA, USA. The locations of the control
group (N = 15) represented by black triangles and the food addition
group (N = 16) represented by black circles.
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2.4 Provisioning

We used trail cams (Browning Strike Force HD Pro X - BTC-

5HDPX) to quantify nest provisioning rates including the average

number of fish (n/day), biomass (g/day) and energy (kcal/day) for a

subsample of treatment (N = 7) and control (N = 4) nests. We

deployed cameras on nest structures that would accommodate

them. We fastened trail cams to 1.91 cm (3/4 inch) diameter

conduit and mounted conduit to the nesting structure such that

cameras were positioned approximately 1 m above the nest.

Cameras were programmed to record an image every 5 min

during daylight hours (05:00 to 22:00). We extracted images from

the photo set that depicted fish delivered to nests and identified all

fish to the lowest taxonomic level possible. Most fish were identified

to the species level but others could only be identified to the genus

or family level. We estimated fish length from photos within an

image processing program, ImageJ with Java (https://

imagej.nih.gov/ij/index.html) and compared to known lengths

from reference structures (Poole et al., 2002) including adult bill

(male =32.5, female = 34.6 mm) and talon (male = 28.9, female =

30.0 mm). We estimated the biomass (g) of each fish using species-

specific length-mass equations from published literature and

FishBase (https://fishbase.in/, Appendix 2). We converted biomass

to energy (kcal) using published species-specific energy density

values (Appendix 3). For species that could not be identified to

species, we used length-mass equations and energy density from a

representative species of the taxonomic group. We consider the

provisioning of control nests to include fish provided by adults and

for treatment nests to include fish provided by adults and

menhaden that we added to nests. It is important to note that

treatment nests that did not have trail cameras were observed by

boat and consumption of supplemented fish by the adults and

young were verified.
2.5 Statistical analysis

Data were not independent, not normally distributed, and non-

homogenous therefore, we used appropriate tests. We investigated

the influence of treatment (control vs food addition) on

demographic parameters including nest success, clutch size, the

number of young hatched, brood reduction, and productivity. We

constructed a two-by-two contingency table and used Pearson’s

Chi-squared analysis to compare the relationship between

treatment type and nest success. We used Generalized Linear
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Models (GLMs) to determine if there were the average differences

in clutch size, the number of young hatched, brood reduction, and

productivity between the treatment types. For provisioning (fish/d,

biomass/d, energy content/d), we analyzed data from trail cameras

to evaluate the relationship between provisioning and demographic

parameters. It is important to note that our models were based on

totals and/or average provisioning rates including naturally

provisioned and supplemental fish.

We used Generalized Linear Mixed Models (GLMMs) with a

negative binomial distribution and log link, nest and treatment

type as the random effects, and food addition and total

provisioning (natural and supplemented) as the fixed effects. For

the influence of provisioning on demographics, we used GLMs

with a negative binomial distribution and log link and compared

the effects of the mean fish/d, biomass/d, and energy content/d

(natural and supplemented) on productivity (both treatment

groups combined, N = 11). We calculated the supplemented

average biomass/d/nest and energy content/d/nest threshold

needed for the production of 1.15 fledglings per nest-season

(estimated break-even rate). All analyses were performed in

RStudio 4.02 and we used the MASS and glmmTMB packages

for model development and validated by the DHARMa package

for residual diagnostics on hierarchical regression models

(Venables and Ripley, 2002; Brooks et al., 2017; R Core Team,

2020; Hartig, 2021).
3 Results

3.1 Food addition and demography

For the food addition group, 13 of the 16 nests (81%) succeeded

with an average productivity rate of 1.13 + 0.18 (SE) young/active

nest. The three nests that failed in this group failed on average

during the first 1.38 + 0.5 wks. or when young were 10 d old. For the

control group, five of the 15 nests (33%) succeeded with an average

productivity rate of 0.47 young/active nest. The ten nests that failed

in this group failed on average during the first 2.2 + 0.5 wks. The age

at failure (d) between the food addition and control groups was not

statistically significantly different (b = -0.47, SE = 0.41, P = 0.25).

The age at failure for the control group ranged from 3 - 42 d with

the highest mortality experienced during the first 15.5 d + 3.4 of the

nestling period. Nest success and productivity were significantly

different between the control and food addition groups (Table 1,

Figure 2). Clutch size, the number of young hatched, and brood
TABLE 1 Two-way contingency table used for the Pearson’s Chi-squared analysis that summarizes the relationship between treatment types and nest
success during the 2021 osprey breeding season in the lower Chesapeake Bay, VA, USA (c2 = 5.5, df = 1, P = 0.02).

NEST SUCCESS (NESTS)

TREATMENT SUCCESSFUL FAILED TOTAL

FISH ADDITION 13 3 16

CONTROL 5 10 15

TOTAL 18 13 31
fron
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reduction were not significantly different between the control and

food addition groups (Table 2).
3.2 Provisioning and productivity

Food supplementation had a significant influence on the

number of fish and amount of energy available to osprey broods

(Table 3). A total of 241 Atlantic menhaden was supplemented to

the food addition group and contributed 32,384 g that represented

an estimated 61,206 kcal. This increased the average total prey

biomass and energy content within the food addition group to 226.5

g/d/nest and 396.2 kcal/d/nest. The average biomass that was

delivered to the control group was 166.8 g/d/nest and the average

energy content was 242.2 kcal/d/nest (Appendix 1). For the control

group, adult osprey delivered an average of 1.2 fish/d/nest

compared to 1.1 fish/d/nest for the supplemented group.
Frontiers in Marine Science 05
Food supplementation had a significant influence on the

likelihood that pairs reached the threshold reproductive rate of

1.15 young/nest (Figure 3). The estimated average fish biomass

and energetic content needed for a pair to produce the

threshold reproductive rate was 202.7 g/d and 338.6 kcal/d

respec t ive ly . Wi th in the s tudy area , pa i r s requ i red

supplementation of 63.4 g/d of menhaden or 121 kcal/d in

order to reach the productivity threshold.

Diet composition included a diverse list of fish species

(Appendix 1). A total of 600 fish were documented as prey

by ospreys in which 81% of taxa were identified to 21 species

or to at least family. Atlantic menhaden (39%) dominated

prey composition. Other known species included Atlantic

herr ing (Clupea harengus ) (10 .3%), At lant ic croaker

(Mi c r o p o g o n i a s u n d u l a t u s ) ( 5 . 8% ) , g i z z a r d s h a d

(Dorosoma cepedianum) (5.7%), and spot (Leiostomus

xanthurus) (5%).
TABLE 2 Results for GLMs used to compare demographic parameters between treatment types during the 2021 osprey breeding season in the lower
Chesapeake Bay, VA, USA.

DEMOGRAPHIC PARAMETERS b SE PSEUDO r2 CI P

CLUTCH SIZE 0.07 0.21 0.75 -0.34, 0.48 0.75

No. of YOUNG HATCHED 0.12 0.24 0.04 -0.33, 0.62 0.57

BROOD REDUCTION 0.20 0.31 0.02 -0.81, 0.40 0.50
frontiers
TABLE 3 Results of GLMMs with treatment effects on provisioning rates per d of nests under trail camera surveillance (N = 11) during the 2021 osprey
breeding season in the lower Chesapeake Bay, VA, USA.

TREATMENT EFFECTS b SE z VALUE CI P

FISH (number of fish/d) 0.25 0.02 13.4 0.21, 0.29 < 0.001

BIOMASS (g of fish/d) 0.002 0.0004 4.65 0.001, 0.003 < 0.001

ENERGY CONTENT (kcal of fish/d) 0.001 0.0002 5.22 0.008,0.002 < 0.001
FIGURE 2

Productivity between the control group (N = 15) and the treatment group (N = 16) of ospreys during the 2021 breeding season in the lower
Chesapeake Bay, VA, USA (b = 0.88, SE = 0.45, pseudo R2 = 0.14, CI =0.049, 1.825, P= 0.048). Violin shapes represent the density of data distribution
and the middle horizonal line of the box plots represent the median values.
in.org
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4 Discussion

Supplementation of osprey nests with menhaden had a

significant influence on the ability of nesting pairs to reach

reproductive rates required for population maintenance. Our study

shows that productivity was food limited as previous studies have

substantiated (Simons and Martin, 1990; Richner, 1992; Wiehn and

Korpimaki, 1997; Ferrer et al., 2018). Osprey pairs that did not receive

supplementation had reproductive rates (0.47 young/nest) that were

less than half of threshold levels. Within Mobjack Bay, productivity

rates have shifted from reproductive surplus to reproductive deficit

since the 1980s. For example, populations at various locations along

the main stem of Chesapeake Bay were considered strongholds

(McLean, 1986; Byrd, 1988). During 1983 and 1984, the average

reproductive rate was 1.39 young/pair (Byrd, 1987). By 1988 and

1990, average productivity had dropped to 0.91 young/pair (Byrd,

1988, Byrd, 1990) and by 2005 and 2006 productivity had dropped

further to 0.75 young/pair (Glass, 2008). If fishing pressure on

menhaden within Chesapeake Bay persists, osprey productivity

rates could decline precipitously, threaten population stability, and

eventually lead to widespread population collapse. Menhaden

populations should be maintained at levels that will sustain a stable

osprey population in which they are able to produce 1.15 young/

active nest to offset mortality.

Our research suggests that food addition significantly influenced

osprey provisioning rates and these rates impacted reproductive

performance. Specifically, daily average biomass and energy content

of the prey composition significantly influenced productivity. Lind

(1976) used a model developed by Wiens and Innis (1974) and

calculated that each adult osprey required 286 kcal/d and each

nestling at 11-16 d old needed at least 113 – 170 kcal/d. Based on

calculations in which fish with an energy content of 1 kcal/g, a nest

with two young plus the female would require 794 g offish/d in order
Frontiers in Marine Science 06
to successfully fledge and a nest with three young would require

1048 g offish/d (Winberg, 1960). Along the U.S. Eastern Coast, Poole

(1982) determined that male ospreys delivered 816 – 1426 g/d to

nests that had young and nests that produced three – four young. In

our study, menhaden consisted of 39% of the total diet composition

and these fish have a high energy content of 1.89 kcal/g (June and

Nicholson, 1964). Based on the calculations of Winberg (1960), if a

nest fledged two young that was supplied with 39% or 309.7 g/d or

585.3 kcal/d of menhaden, the estimated additional biomass and

energy content required would be 648.2 g/d or 1,225.1 kcal/d.

Similarly if a nest fledged three young and was supplied with 39%

or 408.7 g/d or 772.4 kcal/d of menhaden, the estimated additional

biomass and energy content required would be 855.5 g/d or 1,616.9

kcal/d. For the nests in our study, the added average biomass and

energetic threshold needed for a nest to reach the reproductive break-

even point are 63.4 g/d and 121 kcal/d which would be a total average

of 208.1 g/d and 347.6 kcal/d (Figure 3).

When we directly compared the provisioning rates in this study

to historical studies in Mobjack Bay and the higher salinity areas of

Chesapeake Bay, declines in daily fish deliveries were made evident.

In 1975 and 1985, the fish delivery rate was 0.53 fish/hr/nest and 0.35

fish/hr/nest (McLean and Byrd, 1991). In 2006 and 2007, ospreys in

the higher salinity areas delivered an average of 0.26 fish/h/nest

(Glass, 2008). Our study revealed that in 2021, the fish delivery rate

diminished to a mean of 0.11 fish/hr/nest. The average daily biomass

delivered per nest fell from 237.1g and 172.3g in 1975 and 2007 to

144.7g in 2021 (Appendix 1, McLean and Byrd, 1991; Glass, 2008).

Brood reduction has been an effective parameter linking

reproductive performance to food limitation in osprey (Glass,

2008). In a 5-yr study, Reese (1977) determined nestling loss rates

in the upper Chesapeake Bay ranged from 8-23%. Nestling

mortality rates were 47% and 78% for the supplementation and

control groups respectively in this study. Poole (1984) conducted a
A B

FIGURE 3

GLM’s of the influence of the added (A) avg. biomass/d/nest (b = 0.03, SE = 0.01, Pseudo R2 = 0.60, CI = 0.01, 0.05, P = 0.02) and (B) avg. energy
content/d/nest (kcal) (b = 0.02, SE = 0.005, Pseudo R2 = 0.64, CI = 0.006, 0.03, P = 0.02) for osprey pairs under trail camera surveillance after seven
weeks post hatch of the first egg in 2021 breeding season in the lower Chesapeake Bay, VA, USA. The data points represented by white circles have
been “jittered” along with random points represented in black circles for improved visibility of model fit. The dotted lines indicate the supplemented
average biomass (63.4 g) and energy content (121 kcal) thresholds needed per d to produce 1.15 young per nest-season.
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4-yr study in New England and determined that 75% of nestling

mortality was caused by starvation. Glass and Watts (2009)

determined that brood reduction was highly significant between

nests in the lower estuarine sites compared to the higher estuarine

sites and these data suggested that ospreys in the higher salinity

areas were experiencing more food limitation than the lower salinity

areas. Brood reduction has generally been linked with the lack of

food availability in other study areas (Poole, 1982; Jamieson et al.,

1983; Eriksson, 1986; Hagan, 1986; Forbes, 1991; Glass and Watts,

2009). Although brood reduction was higher in the control group,

differences were not found to be significant in our study. This

discrepancy could have been attributed to treatment effects in which

the timing and intensity of the protocol was not strong enough to

detect a significant signal. Perhaps if we supplemented more fish in

greater frequency, we would have observed significant differences in

the average brood reduction between the experimental groups.

The most compelling explanation for lower provisioning and

productivity rates is localized depletion of the primary prey base.

Although proximate causes of lower productivity may include

storms, inter- and intraspecies competition, predation, as well as

age-related care by parents, the ultimate cause of lower productivity

may often be food shortage (Steenhof and Newton, 2007). Atlantic

menhaden has a higher lipid content compared to other species with

a nearly a 2:1 energy content/biomass ratio (June and Nicholson,

1964). Ospreys depend on menhaden and their reproductive

performance is inextricably linked to the availability and

abundance of this fish. In fact, previous studies have substantiated

that menhaden are a vital prey item for ospreys during the breeding

season particularly in the mid-Atlantic and northeastern United

States (Spitzer and Poole, 1980; Poole, 1989; McLean and Byrd,

1991, Steidl et al., 1991, Glass and Watts, 2009). In 1985, this fish

species consisted of 75% of the prey composition of ospreys in the

lower Chesapeake Bay (McLean and Byrd, 1991). Then in 2006 and

2007, menhaden declined to 32% of the prey composition (Glass,

2008). In our study menhaden comprised of 39% of the total prey

composition (Appendix 1). Assuming that the prey composition of

ospreys reflects prey availability on a local level (Greene et al., 1983;

Edwards, 1988; Glass, 2008), the current percentage of menhaden

could indicate that this species has diminished in availability

compared to the later portion of the 20th century.

Potential localized depletion of menhaden populations is one of

the major sources of concern and conflict within Chesapeake Bay.

According to the ASMFC, the coastwide stock assessment has

determined that menhaden is not overfished and that no overfishing

is occurring (Southeast Data Assessment and Review [SEDAR], 2020).

However, a coastwide assessment does not capture spatial variation in

menhaden availability for locations with persistent depletion such as

Chesapeake Bay. Seine surveys of juvenile menhaden in Maryland and

Virginia indicate that low levels of abundance and recruitment have

been happening since the early 1990’s and 2000’s (Atlantic States

Marine Fisheries Commission [ASMFC], 2004, Southeast Data

Assessment and Review [SEDAR], 2020). Our data suggests that the

reliable metric that links osprey population decline and food limitation

is the osprey productivity rate. During the population decline in

northern Florida, Bowman et al. (1989) determined that the

productivity rate was 0.56 young/nest and this was due to
Frontiers in Marine Science 07
insufficient food availability. When the Florida Bay population was

healthy and food was abundant (Henny and Ogden, 1970), the

productivity rate was 1.22 young/nest which is similar to the rate

acquired by the food addition group of our study at 1.13 young/nest.
5 Conclusion

EBFM evolves when ERPs are consistently monitored (Pikitch

et al., 2004). According to Amendment 3 of the Interstate Fishery

Management Plan (FMP) for Atlantic menhaden (Southeast Data

Assessment and Review [SEDAR], 2020; Anstead et al., 2021), ERPs

are described as “a method to assess the status of menhaden not

only with regard to the sustainability of human harvest, but also

with the regard to their interaction with predators and the status of

other prey species.” The ERP working group is tasked with

developing ERPs that are menhaden-specific that can account for

the abundance of menhaden and their species role as a forage fish

(Amendment 3 to the FMP, Anstead et al., 2021). Ospreys are non-

finfish predators and can serve the ERP role which can allow

management to practice informed decisions to develop harvest

targets, assess menhaden’s role as prey for upper trophic levels,

and advance an ecosystem approach to fisheries management

(EAFM) which considers multiple components of the ecosystem

than just the target species (Patrick and Link, 2015). The menhaden

population within Mobjack Bay is not currently adequate to sustain

the osprey breeding population and we recommend that industrial

purse seine fishing occur outside Chesapeake Bay.
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