
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiaodong Wang,
Minzu University of China, China

REVIEWED BY

Liangyu Liu,
Capital Normal University, China
Yanping Jing,
Beijing Forestry University, China

*CORRESPONDENCE

Peisheng Mao

maops@cau.edu.cn

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 07 March 2023
ACCEPTED 03 April 2023

PUBLISHED 20 April 2023

CITATION

Jia Z, Ou C, Sun S, Wang J, Liu J, Sun M,
Ma W, Li M, Jia S and Mao P (2023)
Integrating optical imaging techniques
for a novel approach to evaluate
Siberian wild rye seed maturity.
Front. Plant Sci. 14:1170947.
doi: 10.3389/fpls.2023.1170947

COPYRIGHT

© 2023 Jia, Ou, Sun, Wang, Liu, Sun, Ma, Li,
Jia and Mao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 April 2023

DOI 10.3389/fpls.2023.1170947
Integrating optical imaging
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seed maturity
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Jingyu Liu, Ming Sun, Wen Ma, Manli Li ,
Shangang Jia and Peisheng Mao*

College of Grassland Science and Technology, China Agricultural University, Beijing, China
Advances in optical imaging technology using rapid and non-destructive

methods have led to improvements in the efficiency of seed quality detection.

Accurately timing the harvest is crucial for maximizing the yield of higher-quality

Siberian wild rye seeds by minimizing excessive shattering during harvesting. This

research applied integrated optical imaging techniques and machine learning

algorithms to develop different models for classifying Siberian wild rye seeds

based on different maturity stages and grain positions. Themulti-source fusion of

morphological, multispectral, and autofluorescence data provided more

comprehensive information but also increases the performance requirements

of the equipment. Therefore, we employed three filtering algorithms, namely

minimal joint mutual information maximization (JMIM), information gain, and

Gini impurity, and set up two control methods (feature union and no-filtering) to

assess the impact of retaining only 20% of the features on the model

performance. Both JMIM and information gain revealed autofluorescence and

morphological features (CIELab A, CIELab B, hue and saturation), with these two

filtering algorithms showing shorter run times. Furthermore, a strong correlation

was observed between shoot length and morphological and autofluorescence

spectral features. Machine learning models based on linear discriminant analysis

(LDA), random forests (RF) and support vector machines (SVM) showed high

performance (>0.78 accuracies) in classifying seeds at different maturity stages.

Furthermore, it was found that there was considerable variation in the different

grain positions at the maturity stage, and the K-means approach was used to

improve the model performance by 5.8%-9.24%. In conclusion, our study

demonstrated that feature filtering algorithms combined with machine

learning algorithms offer high performance and low cost in identifying seed

maturity stages and that the application of k-means techniques for inconsistent

maturity improves classification accuracy. Therefore, this technique could be

employed classification of seed maturity and superior physiological quality for

Siberian wild rye seeds.

KEYWORDS

Siberian wild rye seed, feature filtering, machine learning, integrating optical imaging,
multispectral imaging, autofluorescence imaging, model updating
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1 Introduction

The genus Elymus (L.), a member of the grass family (Poaceae),

is the most widespread genus in the northern hemisphere, with

approximately 150 species. Some species of Elymus exhibit

remarkable resilience to biotic and abiotic stresses, including

drought, cold, and disease. Siberian wild rye (E. sibiricus L.) is a

notable representative with a wide distribution in the northern

regions of Eurasia. Due to its broad adaptability, high cold

tolerance, high nutritional value, palatability, and ease of

cultivation, Siberian Wild rye has been widely used for grassland

restoration and fodder production (Klebesadel, 1969; You et al.,

2011; Xie et al., 2020). However, its seed yield remains relatively

low, with only about 20% of its potential production being

harvested. Research suggests that excessive shattering is a major

factor contributing to this low seed yield, which has been confirmed

by various studies (Yu et al., 2011; Zhao et al., 2012; Han et al., 2013;

Zhao et al., 2015).

The traditional method of determining the optimum time to

harvest Siberian wild rye seed relied on the subjective judgment of

experienced farmers, which lacked objectivity and often resulted in

sub-optimal yields. Meanwhile, to assess the physiological potential

of Siberian wild rye seed at different maturity stages, conventional

methods such as germination tests and physiological experiments

were employed, which were both laborious and destructive

(Rahman and Cho, 2016). With the rise of the modern seed

industry and the growing demand for smart agriculture, these

conventional methods have become increasingly inadequate to

meet the needs of the industry. There is therefore an urgent need

to develop a rapid, non-destructive, high-throughput method for

identifying and classifying the maturity of Siberian wild rye seeds.

Such a method would enable the modern seed industry to maximize

yield and quality and meet the growing demand for high-quality

seeds (Feng et al., 2019).

Biological imaging techniques, including X-ray, hyperspectral,

multispectral, and autofluorescence optical technologies, have

brought about significant changes in agricultural production and

food quality. The multispectral imaging technology was a non-

destructive technique that combined computer vision and

spectroscopy to provide information on physical attributes such

as texture, color, shape, size, and chemical composition (ElMasry

et al., 2019; França-Silva et al., 2020). The main principle of the

technique was based on the detection of different specific

wavelengths produced by the varying physical structures and

chemical compositions of objects. For example, multispectral

imaging has been successfully used to identify variety genuineness

and seeds quality, such as alfalfa (Medicago sativa L.) seeds (Yang

et al., 2020; Jia et al., 2022), manioca (Jatropha curcas L.) seeds

(Pinheiro et al., 2020), and spinach (Spinacia oleracea L.) seeds

(Deleuran et al., 2013). The imaging technology allowed a better

understanding of the seed maturation process and provided a

research basis for the development of rapid, non-destructive, and

high-throughput detection methods. The autofluorescence spectral

imaging technique was based on the detection offluorescence group

signals in seeds that changed during maturation (Teixeira et al.,

2016; Lima et al., 2017). With the advancement of optical imaging
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devices, integrated optical imaging devices had started to be applied

in various fields such as food, medicine, and agriculture (Galletti

et al., 2020; Wang et al., 2021).

In recent years, advanced imaging devices that integrate multi-

optical components (multispectral, autofluorescence, hyperspectral,

and RGB) can provide more comprehensive information and thus

improve detection accuracy, but increase the dimensionality of the

data and place higher demands on the computing equipment. The

successive projection algorithm (SPA), a linear algorithm, is widely

used to select important spectral bands in hyperspectral images (Tu

et al., 2022). However, there are challenges with multi-source fused

non-linear datasets, and to overcome this challenge, it was

imperative to explore alternative feature selection methods that

could reduce the dimensionality of the data, as high-dimensional

data could lead to computational inefficiencies and prolong the

training time of machine learning (ML) algorithms. For example,

feature filtering algorithms such as minimal joint mutual

information maximization (JMIM) (Kursa, 2018), information

gain (Zawadzki and Kosinski, 2019), and Gini impurity

(Bommert et al., 2020) have been shown to effectively reduce the

dimensionality of high-dimensional data. However, current

researches were mainly on individual datasets (França-Silva et al.,

2020; Fu et al., 2023), while little research has been reported on the

use of feature filtering algorithms on multi-source fused data.
2 Materials and methods

2.1 Sample materials

Samples were collected from Yuershan Ranch in Chengde City,

Hebei Province, China. 100 spikelets were randomly selected from

the field and stored in liquid nitrogen, and then transported to the

laboratory for further analysis. These samples were stored in a

refrigerator at minus 20 degrees Celsius for the determination of

physiological indices. Additionally, 200 spikelets were air-dried and

stored for germination testing and multispectral image acquiring.

To ensure consistency among the samples, 4 - 6 spikelets were

selected from the middle of the spike, and the 1st and 2nd seeds at

the base of the spikelets were separated from the rest of the seeds

and labeled as superior grain (SG) and inferior grain (IG)

respectively. Samples were collected at the milk-ripe stage (MRS)

(July 27), dough stage (DS) (August 7), and full-ripe stage (FRS)

(August 13), and the dry weight, fresh weight, and moisture content

are shown in Table 1.
2.2 Germination test

A germination experiment was carried out with Siberian wild

rye seeds of uniform size. The experiment was repeated four times

with 8 hours of light and 16 hours of darkness, with a light intensity

of 66% and a fluctuating temperature of 15/25°C. Initial and final

germination counts were made after 5 and 12 days respectively, and

shoot and root length measurements were taken at the final

germination count. The number of seeds with radicles greater
frontiersin.org
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than 2 mm was recorded every 24 hours during the germination

period. Finally, the germination percentage and the germination

speed index were calculated.

Germination percentage  =  (G10=N)� 100% (1)

Germination speed index  =  o(n=t) (2)

Where G10 was the number of normal seedlings at the last

count, N was the total number of experimental seeds, n was the

number of seed germination per day, and t was the number of days

per germination.
2.3 Autofluorescence and
multispectral imaging

Multispectral images were acquired from seeds using a

VideometerLab4™ device (Videometer A/S, Herlev, Denmark).

The system incorporates a CCD chip with 19 wavelengths of

high-powered light-emitting diodes (LEDs) arranged around the

edge of the sphere at 365, 405, 430, 450, 470, 490, 515, 540, 570, 590,

630, 645, 660, 690, 780, 850, 880, 940, and 970 nm, ranging from

ultraviolet (UV) to near-infrared (NIR), the led flashes continuously

in a few seconds of scan time, producing monochrome images at 19

different wavelengths (2192 × 2192 pixels; 40 µm/pixel; 32 bits/

pixel). And autofluorescence images were acquired by a mounted

long-pass (LP) filter combined with different excitation

wavelengths, which offers the following excitation-emission

combinations: 365/400 nm, 365/500 nm, 405/500 nm, 430/500

nm, 450/500 nm, 630/700 nm, 645/700 nm, 660/700 nm.
2.4 Autofluorescence and multispectral
image analysis

After acquiring the images, each seed was segmented from the

background into a region of interest (ROI) using VideometerLab

3.14 software. All seeds were collected and added to a blob database,

from which we extracted morphological features, multispectral

features, and autofluorescence features of the seeds. A detailed

description of the morphological features used in this study can

be found in Table S1, while the multispectral features and

autofluorescence features are described in section 2.3. The
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extracted multispectral and fluorescence features of individual

ROI seeds represent the average reflected light intensity at each

single wavelength calculated from all pixels in a single ROI image.

In total, 42 features (cols) and 600 samples (rows) of data were used

in this study. All three types of features for seeds were then collected

in a matrix (X), associated with their corresponding stages and grain

positions data (Y).
2.5 Data analysis

In this study, we conducted a comprehensive analysis of the

morphological features, multispectral, and autofluorescence

properties of Siberian wild rye seeds. To statistically evaluate

differences among seed maturity stages and grain positions, we

employed both Duncan’s test and Student’s t-test (P< 0.05). To

reduce the number of features, we utilized three feature filtering

methods: JMIM, information gain, and Gini impurity. We

calculated the feature importance scores for all 42 features (Table

S2), and based on these scores, we selected 20% as the threshold.

This means that only 20% of the features were retained for further

analysis. Furthermore, we included a features union approach

(where filtering features of the three algorithms were fused using

the union method) and a no-filtering group as control groups.

Therefore, a total of five feature filtering methods were employed to

analyze the data.

Principal component analysis (PCA), linear discriminant

analysis (LDA), support vector machine (SVM), and random

forest (RF) were applied in this study. PCA generally is used to

reduce the dimensionality of the data as a mathematical technique

by an orthogonal transformation of the initial data set into a new set

of uncorrelated variables, the so-called principal components (PCs),

where the first PC has the highest variance, the second PC has the

second-highest variance, and so on. Thus, key information and

potential data structure of high-dimensional data can be provided

by PCs. LDA, a classical ML algorithm, calculates the optimal

transformation (projection) by simultaneously minimizing the

within-class distance and maximizing the between-class distance,

resulting in maximum discrimination. SVM, a well-known kernel

method, has been effectively used for multivariate function

estimation or nonlinear classification by finding the optimal

hyperplane to achieve segmentation of high-dimensional data

(Cristianini and Shawe-Taylor, 2000).
TABLE 1 The information of seed dry weight, fresh weight and water content at MRS, DS, and FRS.

Stages Grain position Fresh weight (mg/grain) Dry weight (mg/grain) Water content (%)

MRS SG 8.06 ± 0.07a 3.85 ± 0.04b 52.20 ± 0.26b

MRS IG 6.79 ± 0.02b 3.06 ± 0.04c 54.91 ± 0.55a

DS SG 6.63 ± 0.06b 4.38 ± 0.04a 33.95 ± 0.83c

DS IG 6.27 ± 0.02c 4.33 ± 0.06a 30.89 ± 0.95d

FRS SG 5.29 ± 0.06d 4.38 ± 0.06a 17.32 ± 0.77e

FRS IG 5.27 ± 0.08d 4.33 ± 0.04a 17.77 ± 0.45e
(± SD). Different lowercase letters indicated significant differences in Siberian wild rye seeds at different stages and grain positions at the P<0.05 level.
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In this study, we evaluated model performance for multiclass

classification tasks using accuracy, area under curve (AUC), and

Brier score (Brier, 1950). We implemented the LDA, RF, and SVM

algorithms using the ‘mlr3verse’ R package (Lang and Schratz,

2021) in R 4.1 software. The PCA and K-means were implemented

by ‘FactoMineR’ and ‘cluster’ R packages, respectively (Lê et al.,

2008; Maechler et al., 2012). Additionally, we optimized the

hyperparameters of the SVM and RF models using 5-fold cross-

validation and the random search method. The optimized

parameters were listed in Table S3, while the other parameters

were set to their default values. The technology route for this study

was illustrated in Figure 1.
3 Result

3.1 Effect of maturity and grain position of
spikes on seed germination

The results indicate that there were differences in the quality of

Siberian wild rye seeds at different maturity stages and grain

positions. The analysis revealed that seeds from the MRS

exhibited a greener color compared to those from the DS and

FRS. However, there was no observable difference in the appearance

of seeds from the DS and FRS. Moreover, there was no discernible

distinction between seeds from different grain positions within the

same maturity stage in terms of appearance (Figure 2A). Shoot

length initially increased and then decreased as maturity increased,

with the highest values observed in the DS-SG seeds, which were

significantly higher than those of the other maturity stage seeds

(P<0.05) (Figure 2B). Meanwhile, a gradual increase in root length

was observed for both SG and IG samples as the maturity stage

progressed (Figure 2C). Furthermore, the germination speed index

of the SG was significantly higher than that of the IG seeds during

the MRS and FRS (P<0.05) (Figure 2D). However, there were no
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significant differences in germination percentage among different

maturity stages and grain positions, with germination percentages

of all seeds consistently close to 100% (Figure 2E).
3.2 Morphological, multispectral, and
autofluorescence data analysis

Fourteen morphological features were extracted from RGB

images of seeds from three developmental stages and two grain

positions. The probability density distribution trends of MRS seeds

in saturation, CIELab A, and CIELab B were significantly different

from those of seeds in the other two maturity stages (Figure 3). Our

statistical analysis of the morphological features showed that the

values of these three features were significantly lower than those of

the other seeds, with the lowest value observed in IG seeds (P<0.05)

(Table S4). On the other hand, the probability density distributions

of seeds in the three maturity stages were not clearly differentiated

for other morphological features.

Overall, the mean multispectral reflectance of seeds from

different maturity stages and grain positions exhibited similar

trends. We observed that the average reflectance increased as the

wavelength increased (Figure 4A). Specifically, in the spectral range

of 365 to 570 nm, seeds from the MRS-IG exhibited the highest

reflectance, while seeds from the FRS-SG exhibited the lowest

reflectance. In the NIR range (780 - 970 nm), we found that the

multispectral reflectance of seeds from the MRS-SG was

significantly higher compared to the other seed classes (P<0.05)

(Table S5).

We further extracted eight autofluorescence spectra

wavelengths, and the results showed that the autofluorescence

spectra decreased progressively as the maturity of Siberian wild

rye seeds increased. In particular, the average autofluorescence of

SG was lower (or similar) than that of IG in the same maturity stage.

Furthermore, the autofluorescence of MRS seeds was the highest in
FIGURE 1

Technical route. RF, random forest; SVM, support vector machine; LDA, linear discriminant analysis. We obtained RGB images, multispectral images,
and autofluorescence images of Siberian wild rye seeds at different maturity stages and grain positions using Vidoemeter equipment. Then, we
segmented individual seeds from the background and extracted their morphological, multispectral, and autofluorescence features. Furthermore, we
performed PCA and LDA exploratory analysis on the three types of features and their multi-source fusion data. We also selected three filtering
algorithms, JMIM, information gain, and Gini impurity, and set two controls (feature fusion and non-filtered features) to filter the multi-source fusion
data. Based on the filtered features, we built SVM, RF, and LDA models to differentiate different seed maturity stages. Additionally, we applied k-
means clustering to reclassify seeds based on their maturity stages and grain positions, and updated the model to further improve its classification
performance.
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all eight autofluorescence bands. The MRS seeds were effectively

detected at 365/400 nm, 365/500 nm, 405/500 nm, 430/500 nm,

450/500 nm, 630/700 nm, 645/700 nm, and 660/700 nm excitation-

emission combinations, where 365/400 nm, 405/500nm, 430/500

nm, 450/500 nm, and 660/700 nm provided finer classifications for

three maturity stage seeds (Figure 4B). For the SG and IG

classifications at different maturity stages, the SG and IG seeds of

DS could be distinguished by all autofluorescence bands. However,

only 660/700 nm provided a stronger separation of IG and SG in

MRS, and 365/400 nm in FRS allowed a clear classification of IG

and SG seeds.

The results of the PCA analysis showed that the first two PCs for

morphological features accounted for 50.5% of the total variation

among developmental stages, with 28.4% for PC1 and 22.1% for

PC2 (Figure 5A). In addition, for multispectral features, the first two

PCs explained 72.6% and 23.8% of the variation, respectively

(Figure 5B). The autofluorescence spectral features also showed a

similar trend, with the first two PCs explaining 87.6% and 9.8% of
Frontiers in Plant Science 05
the variance, respectively (Figure 5C). Furthermore, when all three

features were considered, the first two PCs (46.4% for PC1 and

12.7% for PC2) accounted for a total of 59.1% of the original

variance (Figure 5D). Despite the high variation explained by the

first two PCs based on autofluorescence spectral features, no

significant differences were observed between Siberian wild rye

seeds at the three maturity stages.

We performed PCA on seed morphological, multispectral, and

autofluorescence features for different grain positions at the same

maturity stage. The results showed that the first two PCs for

morphological features at the three developmental stages

accounted for 49.33-51.2% of the total variation between grain

positions, with 31.62-31.97% for PC1 and 17.47-19.58% for PC2,

respectively (Figures 6A–C). For multispectral features, the first two

PCs explained approximately 73% and 23% of the variance,

respectively (Figures 6D–F). For autofluorescence spectral

features, PC1 explained 92.4% of the variation during MRS, while

PC1 explained 73.31-75.03% of the variation at different grain
D

A

B

E

C

FIGURE 2

Germination and vigor tests, sorting of Siberian wild rye seeds at different developmental stages, and grain positions. (A) Seed images. (B) Shoot
length. (C) Root length. (D) Germination speed index. (E) Germination percentage (%). Different lowercase letters indicate significant differences at
different stages and grain positions at the P<0.05 level.
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positions for DS and FRS (Figures 6G–I). Furthermore, based on the

combination of the three characters, the first two PCs (46.4% for

PC1 and 12.7% for PC2) together explained about 48% of the

original variation (Figures 6J–L). In summary, the different grain

position seeds in the four datasets could not be completely

distinguished; however, the different grain position seeds in MRS

and DS did not completely overlap with each other compared

to FRS.

The LDA results indicated that the first two LDs explained

92.96% and 7.04% of the variance in morphological traits,

respectively. However, the limited variation between seeds of

different developmental stages made it impossible to distinguish

the three periods of Siberian wild rye based on LD1 and LD2

(Figure 7A). For multispectral features, the first two LDs accounted

for 100% of the variance, and MRS seeds could be effectively

separated in LD1 (Figure 7B). Similarly, for autofluorescence

spectral features, the first two LDs explained 96.88% and 3.12% of
Frontiers in Plant Science 06
the variance, respectively, but LD1 and LD2 were unable to separate

seeds of the three periods of Siberian wild rye (Figure 7C). For

multi-source fusion features, the first two LDs explained all of the

variances, with LD1 and LD2 accounting for 92.16% and 7.84% of

the variance, respectively. LD1 could completely distinguish MRS

seeds, while LD2 could not separate DS and FRS seeds (Figure 7D).

However, multi-source fused features could reveal more variation in

seeds of Siberian wild rye at different maturity stages and could be

employed as input features for the model.
3.3 Development of seed maturity models
using multi-source fusion data and feature
selection techniques

We applied three feature filtering methods (JMIM, information

gain, and Gini impurity) to calculate feature importance scores for
FIGURE 3

The probability density distributions of morphological features of Siberian wild rye seeds for different stages and grain positions.
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A B

FIGURE 4

Spectral information of Siberian wild rye seeds. (A) Average multispectral reflectance of 19 wavelengths. (B) 8 autofluorescence wavelengths. The
use of different colours was used to indicate differences in grain position at different maturity stages. The Duncan test was used to determine the
significance of differences among maturity stages of Siberian wild rye seeds at the P<0.05 level, as indicated by the use of lowercase letters. In
addition, Student’s t-test was used to determine the significance of differences between grain positions within the same maturity period, as indicated
by the use of symbols ‘*’, ‘**’, ‘***’ or the absence of such symbols, respectively, denoting significance at P<0.05, P<0.01, P<0.001, and non-
significance at P>0.05.
D

A B

C

FIGURE 5

PCA score plot of seeds of different maturity stages and grain positions based morphological data (A), multispectral data (B), autofluorescence data
(C), and multi-source fusion data (D).
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all features. The top 20% of features were found to have higher

scores, with the first 9 features for JMIM and Gini impurity and the

first 8 features for Information Gain exceeding the respective scores

(Table S2). Further analysis of the top 20% of features showed that

the retained 8 features for Information Gain were primarily

morphological and autofluorescence spectral features, with

CIELab A, hue, 660/700 nm, saturation, and CIELab B being the

top 5 features. The results from the JMIM method also showed that

the first two most important features were morphological, with

CIELab A being prominent among them. In addition, the

multispectral feature 660 nm was also an important feature

filtered by JMIM. In contrast, the top-scoring features of the Gini

impurity method consisted mainly of multispectral features and

autofluorescence features, and the CIELab A feature was not among

the important features identified (Figure 8). Furthermore, the JMIM

and information gain methods shared 5 common features, while the

Gini impurity method had 6 exclusive features. In addition, the
Frontiers in Plant Science 08
three methods shared 2 features, namely saturation and 430/500 nm

(Figure S1).

We also evaluated their computational efficiency by measuring

their running times. The results showed that the JMIM and

information gain methods had shorter running times of 0.01 and

0.03 s, respectively. On the other hand, the Gini impurity method

had the longest running time of 12.64 s (Figure S2). These results

provide insight into the computational efficiency of the three feature

filtering methods, which could help in selecting the appropriate

method for a particular application.

Further, we evaluated the performance of five datasets (three

filtering algorithms, Union, and no-filtering) on LDA, RF, and SVM

models (Figure 9). The results indicated that for the LDAmodel, the

highest scores for accuracy, AUC, and Brier were achieved when the

features were not filtered, with values of 0.94, 0.97, and 0.11,

respectively. The feature fusion method was found to be the next

best-performing method, while the remaining three methods
D

A B

E F

G IH

J K L

C

FIGURE 6

PCA score plot of grain position of seed based on the morphological data, the autofluorescence data, the multispectral data and multi-source fusion
data. Figure (A–C) was morphological data, Figures (D–F) was autofluorescence data, (G–I) was multispectral data, and (J–L) was multi-source
fusion data. Figures (A, D, G, J) were MRS; Figures (B, E, H, K) were DS; Figures (C, F, I, L) were FRS.
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demonstrated similar results. In the confusion matrix, MRS had the

highest accuracy for seed identification, with an accuracy of

approximately 1.00 under all five feature filtering strategies, while

the DS had the lowest accuracy for seed detection (Table S6).

In the RF model, the feature fusion method had the best

performance in terms of accuracy and AUC with values of 0.78

and 0.88, respectively, while the Gini impurity method had the

lowest performance. However, the Brier scores were found to be

similar across all five methods. The seed detection accuracy of MS

was the highest, being greater than 0.96 in both the training and test

sets, where the feature fusion-based method had the highest seed

detection accuracy, followed by the JMIM method for the three

stages (Table S7).

Lastly, for the SVM model, the AUC and Brier values were

similar for both the feature fusion method and the no-filtering

method, with the latter having the highest accuracy, while the Gini

impurity method had the lowest value. The confusion matrix had

the highest accuracy of seed detection without feature filtering,

followed by the feature fusion method, while the JMIM and

information gain methods had similar accuracies, both of which

had about a 30% probability of identifying the DS seeds as FRS seeds

(Table S8).

In summary, the results show that LDA consistently

outperforms RF and SVM across all feature filtering methods, and

we observe similar model performance using the feature fusion and

JMIM methods, but JMIM has the shortest computation time.
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An analysis of Pearson’s correlations between 15 features,

obtained by the fusion methods, and germination characteristics

was performed (Figure 10). The results showed significant

correlations (P<0.05) between the features, except 405 nm and

vertical orientation. Notably, CIELab A and CIELab B exhibited a

significant negative correlation with the remaining features, with

the exception of saturation. Additionally, there was a significant

positive correlation among the other features. Furthermore, it was

found that shoot length was the only characteristic that was

significantly correlated with the 15 features. Specifically, shoot

length demonstrated a significant positive correlation with

CIELab A, CIELab B, and saturation, and a significant negative

correlation with 430/500 nm and 490 nm.
3.4 Validation and update of seed quality
detection model based on multi-source
fusion data

Due to the differences in SG and IG seeds at the same maturity

stage, we applied k-means clustering techniques to improve model

performance by reclassifying seeds at different stages and grain

positions. The analysis showed that seeds of different maturity

stages and grain positions were not grouped into one category

based on maturity stage alone (Figure 11). Specifically, for the

morphological data, seeds at different grain positions in the MRS
D

A B

C

FIGURE 7

Two-dimensional biplot of LDA scores distinguishing seeds of three stage Siberian wildrye seeds based on morphological data (A), multispectral data
(B), autofluorescence data (C), and multi-source fusion data (D).
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FIGURE 8

Feature importance scores of three feature filtering methods for information gain, JMIM, and Gini impurity.
FIGURE 9

Model performance evaluation based on different feature filtering methods. From left to right are LDA, RF and SVM. Benchmark model performance
with different filtering methods based on test set data using 5-fold cross-validation.
Frontiers in Plant Science frontiersin.org10

https://doi.org/10.3389/fpls.2023.1170947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1170947
were grouped into one class, while the IG seeds on the DS and FRS

were grouped into another class, and the SG seeds on the FRS and

DS were grouped into a third class. For the multispectral data, the

IG seeds from the MRS were grouped in a separate class, the SG

seeds from the MRS and the IG from the DS were grouped in

another class, and the SG seeds from the DS and the SG and IG

from the FRS were grouped in a third class. Similarly, for the

autofluorescence data, the SG and IG seeds on the MRS group were

grouped in one class, the IG seeds on the DS group in another class,

and the SG seeds on the DS group and the SG and IG seeds on the

FRS group in a third class. The results were consistent with the

multispectral data when multi-source fusion data were used. These

results suggest that describing the quality of Siberian wild rye seed

on the basis of maturity stage alone may not be sufficient and that

intra-stage variation needs to be considered.

We employed K-means clustering based on feature fusion data,

retaining only 20% of the original features, to improve the

performance of the models. The results based on the test set

showed a significant improvement in performance after

reclassification (Figure 12). Specifically, the accuracy of the LDA

model improved from 0.85 to 0.90, and the AUC improved from

0.95 to 0.97. In addition, the Brier score decreased from 0.20 to 0.14.

Similarly, the accuracy of the RF model improved by 9.24% over the

previous model to 0.87, and the AUC improved by 4.11%. The Brier

score decreased from 0.27 to 0.20. The performance of the SVM

model also improved, with the accuracy increasing from 0.83 to

0.89, and the AUC increasing by 2.63%. The Brier score decreased

from 0.20 to 0.06.

In the confusion matrix, clust1 had the highest seed detection

accuracy, followed by the detection accuracy of clust2, which was

greater than 0.93 for all three models. Clust3 had the lowest

detection accuracy, with the RF model having the lowest accuracy

of 0.45 for its detection among the three models (Table S9).
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Overall, these results suggest that label reclassification based on

K-means clustering could substantially improve model

performance for classifying seed maturity at different maturity

stages and grain positions.
4 Discussion

Seed maturity is a crucial factor in improving the yield of

Siberian wild rye, which is important for the sustainable

development of animal husbandry and the improvement of

degraded grasslands (Xie et al., 2015; Zhao et al., 2017). Delayed

harvesting results in an 80% reduction in yield due to seed

shattering (You et al., 2011), and traditionally, seed lots were

sorted into different maturity fractions based on color, moisture

content, and analysis of chlorophyll fluorescence signals (Jalink

et al., 1998b; Ellis, 2019; Zhao et al., 2022). However, with advances

in spectroscopy and computational technologies, non-destructive

identification of seed characteristics is now possible through X-ray

analysis (de Medeiros et al., 2020b), multispectral and hyperspectral

image analysis (Xia et al., 2019), microtomography (Gomes-Junior

et al., 2019), magnetic resonance (Melchinger et al., 2017), and

other techniques. Recently, seed maturity analysis using

multispectral imaging technology and ML methods has been

applied to soybean (Glycine max L.) seed harvesting (Batista

et al., 2022).
4.1 Seed maturity variation

Multispectral imaging has been demonstrated to be effective in

differentiating seeds based on their morphological and spectral

features (Hu et al., 2020). This study confirmed the morphological
FIGURE 10

Pearson correlation coefficient of features based on the fusion of the three feature selection methods and Pearson correlation of germination
indicators. The symbols '*', '**' and '***', indicate statistically significant correlation at P<0.05, P<0.01 and P<0.001 respectively, and ns indicates no
correlation at P>0.05.
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FIGURE 12

Accuracy of Siberian wild rye seed identification in three stages was improved by model update. Multi-source fusion data recognition models based
on LDA, RF and SVM.
D

A B

C

FIGURE 11

Two-dimensional biplot of seeds of different maturity stages and grain positions based on K-means clustering. (A) Morphological data, (B)
multispectral data, (C) autofluorescence data, and (D) multi-source fusion data.
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differences observed in previous reports during the maturation

process of seeds (Zhang et al., 2022), where the projected area,

length, and width of seeds increased with increasing maturity

(Harada, 1997). However, these morphological traits were not

sufficient to accurately determine seed maturity due to the

differences between seeds with similar morphological features. The

study showed that using saturation, CIELab A, and CIELab B

probability density distribution trends, a combination of indicators

that could considerably differentiate the maturity levels of Siberian

wild rye seeds were identified. In addition, the study found that shoot

length was positively correlated with CIELab A, CIELab B, and

saturation, indicating its potential as an indicator to evaluate seed

quality (Li and Chen, 2015).

Spectral information varies among species and varieties, as

previous studies have shown (Zhang et al., 2012; Bao et al., 2019).

In this study, we found that reflectance values were not uniform

across seeds, although the spectral curves showed a similar trend.

Immature seeds generally showed higher reflectance in the visible

region of the spectrum due to changes in seed color and chlorophyll

content (Boelt et al., 2018; ElMasry et al., 2019). The use of

autofluorescence imaging was also found to be an effective tool

for detecting fluorescent chemical compounds such as chlorophyll

and lignin (Goggin and Steadman, 2012; Donaldson, 2020).

Moreover, we found that excitation-emission combinations of

365/400 nm, 405/500 nm, 430/500 nm, 450/500 nm, and 660/700

nm provided clearer identification for three maturity stages seeds.

This was consistent with previous researches (Jalink et al., 1998a;

Kenanoglu et al., 2013; Donaldson and Williams, 2018).

Furthermore, the use of supervised methods (LDA) was found to

provide better results than unsupervised methods (PCA) in

distinguishing seed maturity (Shrestha et al., 2016).
4.2 The feature filtering method could
reduce the computational cost and time

In recent years, multispectral imaging designs have become

more prevalent due to the shorter acquisition times required for

image processing programs. This technology supports different

LEDs light sources and allows for the precise stroboscopic timing

needed to optimize and save images of each seed (ElMasry et al.,

2019). Adjusting the light of each band individually can improve

detection performance, making it crucial to select suitable features

to improve training speed and reduce the operation cost of the

model. While the SPA can reduce data dimension well in the

hyperspectral spectrum, it may sacrifice accuracy as it relies on

many linear relationships between the hyperspectral bands.

Nonlinear relationships between self-fluorescence and

morphological multivariate datasets require other methods to

handle them. In this study, we used three filtering algorithms, we

found that the feature filtering results of JMIM and information

gain were similar in the first 20%, but different from Gini impurity

as the latter relies on random forest models (Kursa, 2018; Zawadzki

and Kosinski, 2019). Additionally, the running times of JMIM and

information gain were substantially shorter than the Gini impurity,

consistent with previous research (Bommert et al., 2020).
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Feature filtering algorithms are increasingly used to improve ML

models in the context of big data (Bommert et al., 2020). In this study,

we applied three filtering algorithms to filter features, with no filtering

and feature fusion as two comparison methods. Model performance

was evaluated using these filtered features in LDA, RF, and SVM to

automatically classify seed maturity. All models achieved accuracies

greater than 0.78 and AUCs greater than 0.87, indicating that the

classification process of Siberian wild rye seed maturity could be

automated and provide reliable information on different maturity

stages in a robust manner, similar to other studies (de Medeiros et al.,

2020a; Barboza da Silva et al., 2021). Notably, feature filtering reduced

the performance of the LDA model, while the unfiltered feature

approach did not differ significantly from the other methods in RF

and SVM. In addition, retaining the top 20% of features using filtering

methods was found to be effective, but may result in a slight loss of

accuracy. The feature fusion method outperformed other filtering

methods such as information gain and Gini impurity, while the

performance of JMIM was similar. The results obtained by

combining different filtering methods could be used for key feature

selection, and the optimal performance of the data training model was

obtained under the JMIM filtering algorithm, which is consistent with

previous research (Bommert et al., 2020).
4.3 The method based on K-means could
improve the seed quality
classification performance

The IG and SG seeds at the same maturity stage were varied

reflecting on physiological, morphological, multispectral, and

autofluorescence characteristics resulting in low model

performance, this could be related to the low degree of

domestication of Siberian wild rye. We re-classified 6 class seeds

(3 stages×2 positions) into three clusters based on K-means.

Interestingly, seeds at different grain positions varied in the same

harvest time. IG matured later than SG about one week at the DS.

Therefore, it may be inadequate to sort seed quality based on

harvest time. Further, we found that the performance of the three

models were improved by the model updating based on K-means

clustering in Siberian wild rye seed quality classification. Moreover,

this strategy could be employed to improve the performance of

model recognition by applying it to other unknown maturity seeds

not involved in model training. For instance, model performance

was improved to identify other untested varieties by adding several

untested corn varieties to the training data (Tu et al., 2022).

We have developed a fast, non-destructive, and high-

throughput method to classify the maturity of Siberian wild rye

seeds. This method could assist in determining the optimal harvest

time in the field and is based on a feature filtering algorithm that can

screen critical features, reducing equipment costs and training time.

We could also develop low-cost instruments specifically for Siberian

wild rye based on key features in the future. Compared to

hyperspectral devices, our method was more cost-effective and

flexible enough to train specific models for seed selection with

unique features in different environments. Moreover, our feature

filtering combined with machine learning algorithm could achieve
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1170947
optimal performance with smaller samples and shorter training

time, unlike deep learning algorithms that require extensive data,

parameter tuning, and training time.

While temperature, precipitation, and light affect seed maturity

and phenotypic traits, our study showed the significant potential of

the seed maturity classification model within a growth

environment. We could use k-means clustering with standard

samples to assign specific maturity labels for seeds in different

environments to improve the model’s generalizability. In addition,

future research could also enhance the accuracy and generalizability

of this method by collecting seed samples from various

growth environments.
5 Conclusion

In conclusion, our results demonstrated that integrated optical

imaging technology has great potential for seed maturity

identification in Siberian wild rye. The models based on multi-

source fusion data showed wide applicability (>0.78 accuracies) and

reduced the computing time and the cost of high-performance

computing equipment. In addition, model updating based on K-

means clustering could significantly improve model performance

for seed maturity classification of plants with inconsistent maturity

(low domestication).
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