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Fire is one of the most important hazards that must be considered in advanced
nuclear power plant safety assessments. The Nuclear Regulatory Commission
(NRC) has developed a large collection of experimental data and associated
analyses related to the study of fire safety. In fact, computational fire models
are based on quantitative comparisons to those experimental data. During the
modeling process, it is important to develop diagnostic health management
systems to check the equipment status in fire processes. For example, a fire
sensor does not directly provide accurate and complex information that nuclear
power plants (NPPs) require. With the assistance of the machine learning method,
NPP operators can directly get information on local, ignition, fire material of an
NPP fire, instead of temperature, smoke obscuration, gas concentration, and
alarm signals. In order to improve the predictive capabilities, this work
demonstrates how the deep learning classification method can be used as a
diagnostic tool in a specific set of fire experiments. Through a single input from a
sensor, the deep learning tool can predict the location and type of fire. This tool
also has the capability to provide automatic signals to potential passive fire safety
systems. In this work, test data are taken from a specific set of theNational Institute
of Standards and Technology (NIST) fire experiments in a residential home and
analyzed by using the machine learning classification models. The networks
chosen for comparison and evaluation are the dense neural networks,
convolutional neural networks, long short-term memory networks, and
decision trees. The dense neural network and long short-term memory
network produce similar levels of accuracy, but the convolutional neural
network produces the highest accuracy.
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1 Introduction and background

1.1 Fire history of nuclear power plant

The United States (U.S.) National Fire Protection Association (NFPA) publishes a “Fire
Protection Standard for the LWR reactors” every year. The first edition was released in 2001.
The U.S. Nuclear Regulatory Commission (NRC) changes some of the NFPA fire protection
rules to let reactor operators take different fire protection measures. Meanwhile, the NRC
treats the NFPA rule as an alternative rule. A key part of the approach to adopt these new
requirements is an estimation of fire hazards using mathematical models that estimate the
potential fire risk. The whole process includes experimental research, measurement
uncertainty analyses, fire modeling developments, and the probabilistic risk assessment
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(PRA) of fire hazards. This reported work mainly summarizes the
development of a diagnostic health management classification
model that can decide the type and location of a fire. The details
include the deep learning classification model sensitivity analysis
and data source sensitivity analysis. The work in this research is
expected to help advance reactors’ fire safety.

1.2 Fire experimental data for nuclear power
plant fire risk analyses

The U.S. Electric Power Research Institute (EPRI) worked with the
NRC to develop a database for real fire cases in U.S. nuclear power plants.
It is one of the most important databases for fire risk analysis. At the same
time, a global fire cases database was developed by the Organization for
Economic Co-operation and Development (OECD) Nuclear Energy
Agency (NEA) (Beilmann et al., 2019). The NRC’s report NUREG-
2169 provides the assumption of ignition frequency and non-
suppression probability by using the EPRI’s database (Power Research
Institute, 2015). In a separate report, the EPRI updated its Fire Events
Database (FEDB) for the period of 1990–2014 (Baranowsky and Facemire,
2013; Lindeman, 2016). Researchers have used these data to validate fire
models to help improve their accuracy and effectiveness. A separate
database from the Central Research Institute of Electric Power Industry
(CRIEPI) was used to find the fire ignition frequency distribution in fire
risk analyses for Japanese NPPs (Nagata et al., 2020). This database was
used in conjunction with NUREG-2169 to determine whether more than
70% of fire events was related to electrical cabinets, pumps, and transients.

It is important to understand better the ignition mechanism for
most common fire events in an NPP. To facilitate this, many
researchers have assessed historical fire records. Keski-Rahkonen
and Mangs (2002) established the most common electrical ignition
mechanism by studying several different databases. They found that
the most common cause of electrical ignition was short circuits,
ground shorts, and loose connections that led to overheating from
the affected cables. They also studied the databases from 1965 to
1989 to catalog the failed components in these fires. Their work
found that wiring, cables, or bus connections contribute to 21% of
the overall failed components (Keski-Rahkonen et al., 1999). The
OECD corroborates this in their findings that electrical equipment
causes most of the in-building fires and the most popular fire load is
the cable (Angner et al., 2007). Cables increasingly wear off with
time, and the fire risk also increases along with this process.
However, U.S. and South Korean tests have shown inconsistent
cable wearing off patterns and, consequently, inconsistent fire risks
(Lee et al., 2017).

Since most of the data are old and some pieces may be missing,
new technologies are required to understand and check these data
for quality. To facilitate this, we are developing uncertainty
quantification, diagnostics, and classification methods.

1.3 Fire experimental description

The National Institute of Standards and Technology (NIST) had
conducted a set of experiments to measure the response times of
photoelectric and ionization smoke alarms. These tests were located
in a home setting (Bukowski, 2007). The NIST smoke alarm

experimental data in this work is selected by the U.S. Nuclear
Regulatory Commission, in the report NUREG-1824 supplement
1 and EPRI 3002002182 as the “Verification and Validation of
Selected Fire Models for Nuclear Power Plant Applications”
(Salley and Lindeman, 2016).

The experiments were conducted in real homes using actual
furniture and household items as fire sources. The tests were
conducted in two different homes. One was a one-story house,
and the other a two-story house. Twenty-seven experiments were
carried out in the one-story house and eight experiments were
carried out in the two-story house, totaling to thirty-six
experiments in all. Five different types of fires were considered,
namely, smoldering and ignition of chairs in the living room,
smoldering mattresses, ignition of beds in the bedroom, and
burning cooking oil in the kitchen.

The drawing of the house is shown in Figures 1, 2. Its maximum
height is 2.4 m (7.9 ft). The outer walls are 2.1 m (6.9 ft) tall. The
ceiling is sloped to 8.4°. The doors of the bathroom and Bedroom
3 are closed during every experiment.

The main focus of the experiments was on the smoke alarms.
However, other types of alarms were also included. Smoke alarms
were placed in the middle of at least one bedroom, in the same room
where the fire was started, and located on the ceiling. Along with
these, there were temperature sensors, smoke obscuration sensors,
and gas concentration sensors.

1.4 Structure of article

The main steps of this work are summarized in Figure 3.

2 Research methodology

This study provides a technology to accurately predict the
categories (location, ignition, and fire material) of NPP fires
depending on the sensor data from temperature sensors, smoke
obscuration sensors, gas concentration sensors, and alarms. With
the assistance of this technology, operators of nuclear power plants
can get more accurate information about NPP fires and take the
required actions.

2.1 Classification (output) of this research

In this experiment, we separate the fire location and fire type
into five categories, as shown in Table 1.

The locations in the experiment include the living room,
bedroom, and kitchen (Figures 1, 2). The fire types include
smoldering, ignition, and burning. With deep learning modeling,
we can decide the location and type of fire.

2.2 Fire sensor data (input) types and their
data preprocessing technology

Four types of inputs from different sensors were used, which
included temperature sensors, smoke obscuration sensors, gas
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FIGURE 1
Geometry of the experimental facility (Bukowski, 2007).

FIGURE 2
Sectional view of the experimental facility (Bukowski, 2007).

FIGURE 3
Main steps of this work.
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concentration sensors, and alarms (Table 2). The details of each are
summarized as follows:

(a) Temperature sensors: in separate rooms, there are seven
temperature sensors placed at differing heights from the
ceiling. The heights are 20, 300, 610, 900, 1,220, 1,520, and
1,820 mm from the ceiling. These sensors measure the
temperature with a thermocouple.

(b) Smoke obscuration sensors: in each room, there are three smoke
obscuration sensors placed at varying heights from the ceiling of
the rooms. These heights are 20, 610, and 900 mm from the
ceiling. These sensors measure the optical density in the room
caused by smoke. The data are measured in absorbance units
per meter.

(c) Gas concentration sensors: in each room, there are three gas
concentration sensors. These sensors measure the
concentrations of carbon monoxide, oxygen, and carbon
dioxide. They measure the volume of each gas in the air as a
percentage of the total volume of the room.

(d) Alarms: inside the alarm sensors, there are two parallel plates
that record the voltage between them. The data from the alarms
are the voltages from ionization, photoelectric smoke alarms,
and CO alarms.When the gasses from the fire come between the
plates, they act as a resistor and thus the voltage drops. When
this voltage drops low enough, the alarm is set off.

There are seven temperature sensors, three smoke obscuration
sensors, three gas concentration sensors, and eight types of alarm
sensors per room. Since there are six rooms in which there are

temperature and smoke obscuration sensors, there are totally
42 temperature sensors and 18 smoke obscuration sensors.
Furthermore, there are four rooms that contain gas concentration
sensors, that is, there are totally 12 of these sensors. Lastly, there are
five rooms that contain alarm sensors, so there are totally 40 alarm
sensors. Twenty-five experiments were performed using these same
sensors, that is, over the course of the whole database, there are
1,050 temperature time history measurements, 450 smoke
obscuration measurements, 300 gas concentration measurements,
and 1,000 alarm sensor measurements. All these data are collected in
a CSV file, making it very easy to separate the data into its own
python arrays to be further utilized.

2.3 Machine learning diagnosis technology,
advantages of ML, and models

Different patterns of behavior can be observed for different
locations/types of fire accidents. As a result, with a priori knowledge
about the specific accident class associated with the measured signal,
fire accidents can be identified by the patterns of classification. In
this work, four machine learning models, namely, dense neural
networks, convolutional neural networks, long short-term memory
networks, and decision trees are selected to learn this prior
knowledge from the selected database.

Dense neural networks (DNNs) (Figure 4) are a kind of neural
network with multiple hidden layers. In theory, the DNN has a
stronger data handling capacity with a larger number of hidden
layers (Bhardwaj et al., 2018; Bouwmans et al., 2019).

Convolutional neural networks (CNNs) (Figure 5) are deep
learning networks that are used to solve many types of complex
problems, while also overcoming the limitations of traditional
machine learning methods. CNNs can efficiently learn the
relevant characteristics from many samples and avoid the long
and complete process of learning characteristics of the
conventional methods (Indolia et al., 2018). The CNN solves
problems by imitating how the brain’s visual cortex processes
images (Kim, 2017). CNNs are a class of feedforward neural
networks that include convolutional computation and have a
deep structure and are one of the representative algorithms of
deep learning. A typical CNN usually includes four types of

TABLE 1 Category matrix (Bukowski et al., 2003).

No. Category

0 Smoldering of a chair in the living room

1 Ignition of a chair in the living room

2 Smoldering of a mattress in the bedroom

3 Ignition of a bed in the bedroom

4 Burning of cooking oil in the kitchen

TABLE 2 Number of each sensor type in each location (Bukowski et al., 2003).

Location Temperature
measurements

Smoke obscuration
measurements

Gas concentration
measurements

Smoke and CO
alarms

Bedroom 1 7 3 1 3

Bedroom 2 (remote) 7 3 1 3

Bedroom 3 (closed) 1 1 0 0

Hallway 1 (outside bedroom 2) 7 3 1 3

Hallway 2 (outside bedrooms
1 and 3)

7 3 0 3

Hallway 2 (front door) 7 3 1 3

Living area 7 3 1 3

Total 43 19 5 18
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layers. These layers are convolution layers, pooling,
flattening, and dense layers (Albawi et al., 2017; Bouwmans
et al., 2019).

Long short-term memory (LSTM) (Figure 6) networks are a
kind of optimized recurrent neural network (RNN). The LSTM
considers both short-term and long-term dependent
relationships (Sherstinsky, 2020; van Houdt et al., 2020). It
has a response connection, and can therefore not only model
a single data point but also model data sequences. Usually, the
LSTM network is made of a cell, an input, an output, and a forget
gate. It can deal with the grant extinction problem and is not
sensitive to the length of the time gap. Thereby, LSTM networks

work well with both short-term and long-term dependent
relationships. When constructed, the LSTM model also
follows a similar pattern as the CNN model. Instead of
repeating convolutional and max-pooling layers, there are
repeating LSTM layers followed by flattening and dense layers
(Hua et al., 2019).

Decision trees (DTs) (Figure 7) are a popular data-mining
method used to develop the classification system based on
multiple variables. This method separates the group into
branches like an upside-down tree. These branches include boot
notes, internal notes, and leaf notes. This method can deal with
large-scale, complete databases without being parameterized (Song
and Ying, 2015).

2.4 Accuracy, confusion matrix, precision,
recall, and F1 score

There are a few important terms that have to be known to better
understand the performance indicators. These terms are true
positive, true negative, false positive, and false negative. A true-
positive result happens when the true output is correctly predicted as
being true.

Accuracy is commonly assessed by the comparison of the
prediction and validation results. When simplified, accuracy is
basically the ratio of correctly predicted observations to total
observations. The classification problem decides the sample
classification due to some existing features.

FIGURE 5
Convolutional neural network (Bhardwaj et al., 2018).

FIGURE 4
Deep learning neural network (Bhardwaj et al., 2018).

FIGURE 6
Long short-term memory model (Bhardwaj et al., 2018).
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Confusion matrix is a summary of the prediction results in a
classification problem (v Stehman, 1997). It summarizes the correct
and incorrect results and shows them in a matrix. This is the key to
the confusion matrix. The data are arranged into a matrix of outputs.
In the example here (Table 1), this is a five-by-five matrix. This
indicates that there are five output classes in the model. The data in
the columns are the classes predicted by the model. The data in the
rows are the actual class of the data (Table 7).

Precision is the ratio of true positives to the total number of true
and false positives (Melamed et al., 2003); in other words, the ratio of
predicted positives to the total amount of actual positives. Precision
is the fraction of how many selected items are relevant. High rates of
precision relate to low false-positive rates.

Recall is the ratio of true positives to the total number of true
positives and false negatives (Melamed et al., 2003); in other words,
the ratio of predicted trues to actual trues. Recall is the percentage of
finding relevant cases. Thereby, accuracy and recall are all based on
the relevant cases. High rates of recall relate to low rates of false
negatives (Figure 8).

The F score or F measure is a measure of a test’s accuracy. It is
based on the calculation’s accuracy or recall. The F score could also
be called the harmonic mean (Sasaki, 2007), calculated as follows:

F1 score � 2p Pr ecisionpRecall( )
Precision + Recall

. (1)

2.5 How to deal with database to make it
available for ML model

(a) Select specific data from the database, such as only the
temperatures from columns 2–37.

The original databases from the 25 experiments are
separated into 25 different CSV files. In each of these files,
the data from each type of sensor are ordered sequentially in
columns. The temperature sensors are placed first, followed by
smoke obscuration, gas concentration, and alarm sensors, in that
order. Within these columns, the data are further subdivided
into data specifically from sensors in each room. The data from
these groups start with data from the remote bedroom, followed
by the main bedroom, hallway outside the remote bedroom,
hallway outside the main bedroom, living room, and front
hallway, in that order.

(b) Gather all the temperature data into a CSV file, then get
columns for the 1,050 measurements and rows for the
various tables.

Once all the data are in the 25 different CSV files, the required
data must be compiled into one singular database. The Pandas and
NumPy libraries of python are used to extract the requested data
from the CSV files and place them into a list.

(c) Expand and modify the various rows for uniformity.

FIGURE 8
Precision and recall (Powers, 2020).

FIGURE 7
Decision tree model (Suthaharan, 2016).
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The machine learning models included in TensorFlow require
that all the training data used must be of the same shape and size,
that is, every sample must include the same number of data points.
Since the data from the original databases are not of the same shape
and size throughout all the experiments, some modifications are
required. This allows the databases to be effectively reshaped into the
required sizes.

y � y1 + x − x1( ) y2 − y1( )

x2 − x1( ). (2)

3 Case study

Section 3 summarizes the cases that have been studied. The
DNN has four layers, the CNN has nine layers, the LSTM
network has ten layers, and DTs auto-create the layers. The
hyper-parameters of the DNN, CNN, and LSTM network are
decided by experience, and a DT is automatically created by
itself. There are three groups of data in this work: training,
validation, and testing. The validation group is used to avoid
over-fitting. We do not set the number of branches in the DT,
and it is determined by the machine learning package. For
activation, in neural network models (DNN and CNN), this
work uses ReLU, and in the LSTM network, tanh is used. The
cost function uses cross-entropy for all neural network models
(DNN, CNN, and LSTM).

3.1 Sensitivity analysis of machine learning
models

This work performed several machine learning model
sensitivity analyses and selected the largest sample that we can
get from the database and then tested the four selected models.
This work reads different data sources, such as temperature data,
and then uses the deep learning methods to decide the type and
location of the fire. This work compares the experimental results of
the categories in Table 1 and summarizes the accuracy results in
Table 3.

To make the results easy to compare, we use Figure 9. The y-axis
is the percentage of prediction accuracy. As we can see, the
convolutional neural network provides the best prediction results.
Meanwhile, the predictions based on temperature sensors and
alarms are much better, using the advantage of higher sample
numbers.

3.2 Sample number sensitivity analysis

In this section, the research team selects the sample from
different numbers of rooms to test the effects of the sample
number. First, we assign a letter to each of the rooms. Room A,
remote bedroom; room B, main bedroom; room C, hallway outside
the remote bedroom; room D, hallway outside the main bedroom;
room E, living room; and room F, front door hallway. We list the
rooms in each case in Tables 4–6.

To make the results clearer, we also made a figure to show the
comparison; the y-axis is the prediction accuracy given in
percentage. Figure 10 uses data from Tables 4, 5. As we can see
from this figure, evidently, the higher sample number leads to higher
prediction accuracy. Meanwhile, the transfer point of the sample

TABLE 3 Prediction accuracy results of the machine leaning model sensitivity analysis.

Data source (sample numbers) DNN % CNN % LSTM % DT %

Temperature (1,050) 83.7 96.3 89.0 82.5

Alarm (1,000) 66.4 95.9 93.9 79.0

Smoke (300) 70.5 76.3 64.2 57.0

Gas (300) 37.5 51.0 71.5 61.3

FIGURE 9
Machine leaning model sensitivity analysis.

TABLE 4 Rooms included in each case.

Number of rooms Included rooms

Six rooms A, B, C, D, E, F

Five rooms A, B, C, D, E

Four rooms A, B, C, D

Three rooms A, B, C

Two rooms A, B

One room A
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number is 500. The temperature data usually provide the best
prediction result.

3.3 Other results besides the accuracy

The confusion matrix in Table 7 comes from the result of
1,000 temperature sample predictions measured by the
conventional neural network. The columns (from left to right)
and rows (from top to bottom) are classes 0–4, as described in
Table 1. The first column shows that 200 samples belong to class 0 as
the experimental data. Meanwhile, the prediction makes some
mistakes and some of them are predicted to the other class. This
confusion matrix is to explain the mistakes from the deep learning
prediction. For example, in the first column, class 0 was predicted
correctly as class 0, 195 times. Class 1 was incorrectly predicted as
class 0, three times, and class 4 was incorrectly predicted as class 0,
two times.

As we mentioned in the previous sections, we can predict the
results of the confusion matrix, accuracy, recall, and F1 score. Due to
most of these values being quite similar to the accuracy, we only
select the results of the temperature sensor and the 1,050 sample
number case as the example to discuss the results. As shown in
Table 8, they are quite similar to each other. Thereby, it is reasonable
to only use accuracy as the evaluation critical to check the sensitivity
analysis result.

4 Results and discussion

Four different machine learning models were used on the data to
see which model produced the best results. The models used were
DNNs, CNNs, LSTM networks, and DTs. These four models were
then ranked based on the resultant performance indicators. These
indicators were accuracy, confusion matrix, precision, and recall.
Accuracy was used as the main indicator. For all four models, the
data from the temperature sensors and alarm sensors generally
produced the best and most accurate models. There could be a few

TABLE 5 Sample numbers of each calculation.

Six rooms Five rooms Four rooms Three rooms Two rooms One room

Temperature 1,050 875 700 525 350 175

Alarm 1,000 800 600 400 200

Smoke 300 250 200 150 100 50

Gas 300 225 150 75

TABLE 6 Predicted accuracy of each calculation (%).

Six rooms Five rooms Four rooms Three rooms Two rooms One room

Temperature 96.3 96.3 95.8 94.3 76.6 62.5

Alarm 95.9 93.0 91.2 80.2 80.9

Smoke 79.1 75.1 73.2 70.7 63.8 55.6

Gas 58.2 65.9 62.5 56.7

FIGURE 10
Accuracy results of the sensitivity analysis.

TABLE 7 Confusion matrix.

195 11 0 0 0

3 228 1 6 0

0 1 191 3 0

0 0 8 271 2

2 0 0 0 78

TABLE 8 Precision, recall, and F1-score results.

Accuracy Precision Recall F1 score

Percentage (%) 96.3 96.2 96.4 96.4
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reasons for this. One reason is that the values for smoke obscuration
and gas concentration do not change significantly enough throughout
the experiment to accurately predict the type and location of the fire. This
may especially be affected by the sensors that are behind closed doors, so
smoke and gas exchange between rooms is hindered.

The CNN provided the best overall results. The CNN had the
highest accuracy for temperature, alarm, and smoke obscuration data.
According to Figure 9, the temperature and alarm data lie in themid-90s
and smoke obscuration in the mid-70s. Within the CNN, the
temperature produces the results with the highest accuracy. Accuracy
is a goodmetric to use here because high recall and precision scores show
low rates of false positives and false negatives. After the full data set, the
data was split into the data received from each of the separate rooms.
When the data from at least three of the rooms were taken, the model
still produced an accuracy in the mid-90s percentage. Using any fewer
rooms than that drops the accuracy to below 75%. For the alarm data, we
found the same pattern emerge. This indicates that there was just not
enough data to properly train the model when less than three rooms
were used.

The next best model was the LSTM model. This is interesting
because it is generally regarded to be better at regression than
classification. However, LSTM models also work very well with time-
based or sequence-based data. Since the data used are organized
sequentially with time, this makes it suitable for LSTM models and
can thus overcome the deficiencies created when using it for
classification. The data type that produced the highest accuracy for
this model was the alarm data. Since the model produces better results
for data with time dependence, it may be that the alarm data correlates
much more strongly with time than does the temperature data. If that is
the case, it makes a lot of sense that the alarm data would produce the
most accurate results. The LSTM network also follows the same trend as
the CNN in the sense that smoke obscuration and gas concentration are
still not reliable data types and do not produce good accuracy.

The two data types that produce the lowest accuracy are the
DNN and decision tree. Even though they could be strong tools,
their capabilities are limited due to the specific conditions in this
work. They are ranked equally because overall they produce about
the same results. Each model may be better at different data types,
but overall they are roughly the same. A DNN is the simplest form of
a neural network and the decision tree is one of the simplest forms of
tree-based models. Given all this, it is not a surprise that these are the
models that produced the lowest accuracies. While each model may
produce results that are better than the other, it is mostly
meaningless in the sense that neither model produces accuracies
high enough to be practically usable (Chen et al., 2018; Chen et al.,
2019; Chen et al., 2020a; Chen et al., 2020b; Li et al., 2022).

In Table 8, the CNN shows that all the different classes provide
very similar results, with the differences being very minor. For
example, the difference between the highest and lowest precision
score is 0.2, between the recall scores is 0.3, and between the
F1 scores is 0.2. These results help illustrate the fact that the
CNN is easily the model that produces the best results.

Another metric that provided highly variable results was the
number of rooms the data were taken from.When the data are taken
from all the available rooms, the best results are produced, and this is
supported by Table 6; when all the rooms were used, the temperature
sensor and alarm data were at their highest, in the mid-90s. Smoke
obscuration sensors were also at their highest, in the high 70s. The

gas concentration is an outlier in this case because it is not at its
highest when all rooms are used, but rather it is at its highest when
one room is removed. For temperature, alarm, and smoke
obscuration sensors, the removal of one room’s worth of data
was not too damaging to the accuracy of the model. Temperature
and alarm sensors only dropped by about 3% and smoke
obscuration only dropped by 4%. The gas concentration was
different, as the accuracy increased from the high 50s to the
mid60s. The overall temperature sensor data requires the removal
of four rooms’ worth of data before the accuracy drops significantly.
It dropped from themid-90s to themid-70s. The alarm data requires
the removal of three rooms for the accuracy to drop from the low 90s
to the low 80s. Smoke obscuration sensor data also requires the data
of four rooms for the accuracy to drop from the low 70s to the low
60s. In general, it can be said that data from two rooms are not
enough to get the maximum accuracy out of the model. However,
the jump to three rooms worth of data results in a significant jump in
accuracy, getting much closer to the acceptable levels. The main
steps of this work have been revised due to these references
(Ranjbarzadeh et al., 2021; Anari et al., 2022; Ranjbarzadeh et al.,
2022; Saadi et al., 2022; Ranjbarzadeh et al., 2023a; Ranjbarzadeh
et al., 2023b).

5 Conclusion

In this work, the authors tried to apply machine learning
technology to research fire diagnosis of nuclear power plants.
The classification models (DNN, CNN, LSTM network, and DT)
were studied and compared to find the model that provides the
highest accuracy value. The team also checked differences in
accuracy from the models with different amounts of data points.
Finally, the team reached the following conclusions:

V.A The conventional neural network (CNN) is the best tool to
solve the selected problems.
V.B The sample number in the database can affect the prediction
results. The prediction results are better when the number is
over 500.
V.C This technology can help to automatically recognize the fire
location and type to provide an inlet signal to the potential
passive fire protection equipment.

6 Path forward

In the current stage of this work, the accuracy is limited to a
maximum of 95%, and it is very hard to improve it further. In
addition, not all the necessary data may have been included, and
thus a more complete situation is required. The multi-source sensor
data fusion provides us with an option to significantly improve the
prediction accuracy by completely considering the full inputs from
multi-source sensor data. It is not as simple as adding each of the
data from multiple sensors. It requires new technology to provide a
better analysis method. In the future, the research team will focus on
multi-source sensor data to improve the prediction accuracy to a
better value. Ultimately, the multi-source data fusion allows us to
combine the data from multiple types of sensors to get a complete
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picture of the events that are happening, rather than just relying on
one type of data.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

IH is the main contributor. IH is the assistant and JW is the mentor.

Funding

This work is supported by the Department of Energy NEUP
funding (CFA-20-19671). This work is also supported by the

team at Virginia Tech, Prof. Juliana Duarte and Prof. Brian
Lattimer.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, editors, and reviewers.
Any product that may be evaluated in this article, or claim that
may be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Albawi, S., Mohammed, T. A., and Al-Zawi, S., "Understanding of a convolutional
neural network," in 2017 Proceedings of the International Conference on Engineering
and Technology, August 21–23, 2017. (Antalya, Turkey: ICET), pp. 1–6.

Anari, S., Sarshar, N. T., Mahjoori, N., Dorosti, S., and Rezaie, A. (2022). Review of
deep learning approaches for thyroid cancer diagnosis.Math. Problems Eng. 2022, 1–8.
doi:10.1155/2022/5052435

Angner, A., Berg, H. P., Rowekamp, M., Werner, W., and Gauvain, J. (2007). The
OECD FIRE project-objectives. Toronto: Status, Applications.

Baranowsky, P., and Facemire, J. (2013). The updated fire events database: Description
of content and fire event classification guidance. Palo Alto, CA: Electric Power Research
Institute.

Beilmann, M., Bounagui, A., Cayla, J-P., Fourneau, C., Haggstrom, A., Hermann, D.,
et al. (2019). “Fire safety at nuclear sites: Challenges for the future–an international
perspective,” in FSEP 2019 and SMiRT 16th International Post-Conference Seminar on
“FIRE SAFETY IN NUCLEAR POWER PLANTS AND INSTALLATIONS, Ottawa,
ONT, Canada, October 27-30, 2019.

Bhardwaj, A., Di, W., and Wei, J. (2018). Deep Learning Essentials: Your hands-on
guide to the fundamentals of deep learning and neural network modeling. Birmingham,
United Kingdom: Packt Publishing Ltd.

Bouwmans, T., Javed, S., Sultana, M., and Jung, S. K. (2019). Deep neural network
concepts for background subtraction: A systematic review and comparative evaluation.
Neural Netw. 117, 8–66. doi:10.1016/j.neunet.2019.04.024

Bukowski, R. (2007). “Performance of home smoke alarms analysis of the response of
several available technologies in residential fire settings (NIST TN 1455-1),” in
Technical note (NIST TN) (Gaithersburg, MD: National Institute of Standards and
Technology). doi:10.6028/NIST.tn.1455-1r2007

Bukowski, R. W., Peacock, R. D., Averill, J. D., Cleary, T. G., Bryner, N. P., and
Reneke, P. A. (2003). Performance of home smoke alarms, analysis of the response of
several available technologies in residential fire settings.

Chen, R., Cai, Q., Zhang, P., Li, Y., Guo, K., Tian, W., et al. (2019). Three-
dimensional numerical simulation of the HECLA-4 transient MCCI experiment by
improved MPS method. Nucl. Eng. Des. 347, 95–107. doi:10.1016/j.nucengdes.2019.
03.024

Chen, R., Dong, C., Guo, K., Tian, W., Qiu, S., and Su, G. H. (2020). Current
achievements on bubble dynamics analysis using MPS method. Prog. Nucl. Energy 118,
103057. doi:10.1016/j.pnucene.2019.103057

Chen, R., Guo, K., Zhang, Y., Tian, W., Qiu, S., and Su, G. H. (2018). Numerical
analysis of the granular flow and heat transfer in the ADS granular spallation target.
Nucl. Eng. Des. 330, 59–71. doi:10.1016/j.nucengdes.2018.01.019

Chen, R., Zhang, P., Ma, P., Tan, B., Wang, Z., Zhang, D., et al. (2020). Experimental
investigation of steam-air condensation on containment vessel. Ann. Nucl. Energy 136,
107030. doi:10.1016/j.anucene.2019.107030

Powers, D. M. W., "Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation," arXiv preprint arXiv:2010.16061, 2020.

Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., and Zhang, H. (2019). Deep learning with
long short-term memory for time series prediction. IEEE Commun. Mag. 57 (6),
114–119. doi:10.1109/mcom.2019.1800155

Indolia, S., Goswami, A. K., Mishra, S. P., and Asopa, P. (2018). Conceptual
understanding of convolutional neural network-a deep learning approach. Procedia
Comput. Sci. 132, 679–688. doi:10.1016/j.procs.2018.05.069

Keski-Rahkonen, O., and Mangs, J. (2002). Electrical ignition sources in nuclear
power plants: Statistical, modelling and experimental studies. Nucl. Eng. Des. 213 (2–3),
209–221. doi:10.1016/s0029-5493(01)00510-6

Keski-Rahkonen, O., Mangs, J., and Turtola, A. (1999). Ignition of and fire spread on
cables and electronic components. Tech. Res. Centre Finl. VTT Publ. 387.

Kim, P. (2017). “Convolutional neural network,” in MATLAB deep learning (Berlin,
Germany: Springer), 121–147.

Lee, S. K., Moon, Y. S., and Yoo, S. Y. (2017). A study on validation methodology of
fire retardant performance for cables in nuclear power plants. J. Korean Soc. Saf. 32 (1),
140–144.

Li, Y., Tian, W., Chen, R., Feng, T., Qiu, S., and Su, G. H. (2022). Research on the
nuclear fuel rods melting behaviors by alternative material experiments. J. Nucl. Mater.
559, 153415. doi:10.1016/j.jnucmat.2021.153415

Lindeman, A. (2016). Fire events database update for the period 2010–2014: Revision 1.
Palo Alto, Ca: EPRI.

Melamed, I. D., Green, R., and Turian, J. (2003). “Precision and recall of machine
translation,” in Companion volume of the proceedings of HLT-NAACL 2003-short
papers, 61–63.

Nagata, Y., Uchida, T., and Shirai, K. (2020). The fire event analysis for fire frequency
estimation on Japanese nuclear power plant. Int. Conf. Nucl. Eng. 83778, V002T10A004.

Power Research Institute, E. (2015). NUREG-2169 nuclear power plant fire ignition
frequency and non-suppression probability estimation using the updated fire events
database. Maryland, United States: United States Nuclear Regulatory Commission.

Ranjbarzadeh, R., Caputo, A., Tirkolaee, E. B., Ghoushchi, S. J., and Bendechache, M.
(2023). Brain tumor segmentation of mri images: A comprehensive review on the
application of artificial intelligence tools. Comput. Biol. Med. 152, 106405. doi:10.1016/j.
compbiomed.2022.106405

Ranjbarzadeh, R., Dorosti, S., Ghoushchi, S. J., Caputo, A., Tirkolaee, E. B., Ali, S. S.,
et al. (2023). Breast tumor localization and segmentation using machine learning
techniques: Overview of datasets, findings, and methods. Comput. Biol. Med. 152,
106443. doi:10.1016/j.compbiomed.2022.106443

Ranjbarzadeh, R., Ghoushchi, S. J., Anari, S., Safavi, S., Sarshar, N. T., Tirkolaee, E. B.,
et al. (2022). “A deep learning approach for robust, multi-oriented, and curved text
detection,” in Cognitive computation (Berlin, Germany: Springer).

Ranjbarzadeh, R., Kasgari, A. B., Ghoushchi, S. J., Anari, S., Naseri, M., and
Bendechache, M. (2021). Brain tumor segmentation based on deep learning and an
attention mechanism using MRI multi-modalities brain images. Sci. Rep. 11, 10930.
doi:10.1038/s41598-021-90428-8

Frontiers in Energy Research frontiersin.org10

Hoppman et al. 10.3389/fenrg.2023.1175102

https://doi.org/10.1155/2022/5052435
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.6028/NIST.tn.1455-1r2007
https://doi.org/10.1016/j.nucengdes.2019.03.024
https://doi.org/10.1016/j.nucengdes.2019.03.024
https://doi.org/10.1016/j.pnucene.2019.103057
https://doi.org/10.1016/j.nucengdes.2018.01.019
https://doi.org/10.1016/j.anucene.2019.107030
https://doi.org/10.1109/mcom.2019.1800155
https://doi.org/10.1016/j.procs.2018.05.069
https://doi.org/10.1016/s0029-5493(01)00510-6
https://doi.org/10.1016/j.jnucmat.2021.153415
https://doi.org/10.1016/j.compbiomed.2022.106405
https://doi.org/10.1016/j.compbiomed.2022.106405
https://doi.org/10.1016/j.compbiomed.2022.106443
https://doi.org/10.1038/s41598-021-90428-8
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1175102


Saadi, S. B., Sarshar, N. T., Sadeghi, S., Ranjbarzadeh, R., Forooshani, M. K., and
Bendechache, M. (2022). Investigation of effectiveness of shuffled frog-leaping
optimizer in training a convolution neural network. J. Healthc. Eng. 2022, 2022.

Salley, M. H., and Lindeman, A. (2016). Nuclear regulatory commission. United States:
D.C.Verification and validation of selected fire models for nuclear power plant applications

Sasaki, Y. (2007). The truth of the f-measure. 2007. Available at: https://www.cs.odu.
edu/~mukka/cs795sum11dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
(Accessed 05 26, 2021).

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. Phys. D. Nonlinear Phenom. 404, 132306. doi:10.
1016/j.physd.2019.132306

Song, Y.-Y., and Ying, L. U. (2015). Decision tree methods: Applications for
classification and prediction. Shanghai archives psychiatry 27 (2), 130–135. doi:10.
11919/j.issn.1002-0829.215044

Suthaharan, S. (2016). “Decision tree learning,” in Machine learning models and
algorithms for big data classification (Berlin, Germany: Springer), 237–269.

v Stehman, S. (1997). Selecting and interpreting measures of thematic
classification accuracy. Remote Sens. Environ. 62 (1), 77–89. doi:10.1016/s0034-
4257(97)00083-7

van Houdt, G., Mosquera, C., and Nápoles, G. (2020). A review on the long short-
term memory model. Artif. Intell. Rev. 53 (8), 5929–5955. doi:10.1007/s10462-020-
09838-1

Frontiers in Energy Research frontiersin.org11

Hoppman et al. 10.3389/fenrg.2023.1175102

https://www.cs.odu.edu/%7Emukka/cs795sum11dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
https://www.cs.odu.edu/%7Emukka/cs795sum11dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1016/s0034-4257(97)00083-7
https://doi.org/10.1016/s0034-4257(97)00083-7
https://doi.org/10.1007/s10462-020-09838-1
https://doi.org/10.1007/s10462-020-09838-1
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1175102

	Deep learning health management diagnostics applied to the NIST smoke experiments
	1 Introduction and background
	1.1 Fire history of nuclear power plant
	1.2 Fire experimental data for nuclear power plant fire risk analyses
	1.3 Fire experimental description
	1.4 Structure of article

	2 Research methodology
	2.1 Classification (output) of this research
	2.2 Fire sensor data (input) types and their data preprocessing technology
	2.3 Machine learning diagnosis technology, advantages of ML, and models
	2.4 Accuracy, confusion matrix, precision, recall, and F1 score
	2.5 How to deal with database to make it available for ML model

	3 Case study
	3.1 Sensitivity analysis of machine learning models
	3.2 Sample number sensitivity analysis
	3.3 Other results besides the accuracy

	4 Results and discussion
	5 Conclusion
	6 Path forward
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


