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Introduction: Suicide is a leading cause of death around the world, interpolating

a huge su�ering to the families and communities of the individuals. Such pain and

su�ering are preventable with early screening and monitoring. However, current

suicide risk identification relies on self-disclosure and/or the clinician’s judgment.

Research question/statment: Therefore, we investigate acoustic and nonverbal

behavioral markers that are associated with di�erent levels of suicide risks through

a multimodal approach for suicide risk detection.Given the di�erences in the

behavioral dynamics between subregions of facial expressions and body gestures

in terms of timespans, we propose a novel region-based multimodal fusion.

Methods: We used a newly collected video interview dataset of young Japanese

who are at risk of suicide to extract engineered features and deep representations

from the speech, regions of the face (i.e., eyes, nose, mouth), regions of the body

(i.e., shoulders, arms, legs), as well as the overall combined regions of face and

body.

Results: The results confirmed that behavioral dynamics di�ers between regions,

where some regions benefit from a shorter timespans, while other regions

benefit from longer ones. Therefore, a region-based multimodal approach is

more informative in terms of behavioral markers and accounts for both subtle

and strong behaviors. Our region-based multimodal results outperformed the

single modality, reaching a sample-level accuracy of 96% compared with the

highest single modality that reached sample-level accuracy of 80%. Interpretation

of the behavioral markers, showed the higher the suicide risk levels, the lower

the expressivity, movement and energy observed from the subject. Moreover, the

high-risk suicide group express more disgust and contact avoidance, while the

low-risk suicide group express self-soothing and anxiety behaviors.

Discussion: Even though multimodal analysis is a powerful tool to enhance

the model performance and its reliability, it is important to ensure through a

careful selection that a strong behavioral modality (e.g., body movement) does

not dominate another subtle modality (e.g., eye blink). Despite the small sample

size, our unique dataset and the current results adds a new cultural dimension to

the research on nonverbal markers of suicidal risks. Given a larger dataset, future

work on this method can be useful in helping psychiatrists with the assessment of

suicide risk and could have several applications to identify those at risk.

KEYWORDS

suicide risk screening, nonverbal behavior, speech prosody, region-based behavior

analysis, multimodal fusion, deep learning automatic suicide risk screening
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1. Introduction

Depression and suicide are major public health concerns

recognized as causes of disability and burden that impact the

quality of life not only for individuals but also for relatives and

communities worldwide (Knox, 2014). Key symptoms tend not

to be physical in nature and range in a variety of complex

characterizations, causing difficulties in objectively assessing risk

for either condition (Cummins et al., 2015). The pandemic

heightened the triggers for depression and suicide, with suicide

now being the second leading cause of death among people 15–29

years old (WHO-Suicide, 2019). Moreover, WHO statistics show

that 800,000 people die from suicide every year, with attempted

suicides estimated to be 20 times higher (WHO-Suicide, 2019). The

vast majority of suicides occur in the presence of mental illness

(i.e., 95%), such as mood disorders, major depressive disorder, and

bipolar disorder (Van Orden et al., 2010).

However, suicide is preventable, and early identification,

management, and follow-up with people at risk of suicide are a few

preventable measures (Shin et al., 2022). For suicide preventative

interventions, WHO suggests equipping non-specialized health

workers with training in assessing suicide behaviors (WHO-

Suicide, 2019). Such a level of assessment is difficult for non-

specialized personnel to accomplish without objective measures.

Establishing objective and observable behaviors can help not only

health workers, but also parents and family members to identify

signs of suicide risk. For other mental illnesses, such as depression,

several studies have investigated objective measures for diagnosing

depression from different modalities such as speech acoustic,

speech style, eye activity, and head movements, as reviewed in

Pampouchidou et al. (2017). Due to the lack of video datasets for

suicide risk interactions, objective measures and observations of

suicide behavior have not received the same attention as other

mental health disorders. To the best of our knowledge, only a

handful of studies have investigated nonverbal behavioral markers

associated with suicide risk (Laksana et al., 2017; Eigbe et al., 2018;

Shah et al., 2019; Galatzer-Levy et al., 2021), and only one of them

utilized a multimodal approach.

Multimodal approaches investigating the behavioral markers

for diagnoses or assessment of general mental illness are limited,

even though they outperform those relying solely on single

modalities (Pampouchidou et al., 2017). In our previous work on

multimodal analysis of depression behaviors (Alghowinem et al.,

2020), we found that some modalities could dominate the feature

space, which might introduce bias toward these modalities, and a

better performance was provided by separating the feature spaces.

We argue that to fully embrace the benefits of the multimodal

approach in suicide screening, we need to preserve the integrity of

subtle behaviors in single modalities.

In this work, we propose a novel multimodal region-based

approach, that accounts for both subtle and strong behavioral

markers associated with different levels of suicide risk. We

hypothesize that even within a single modality, the dynamics of

behaviors of subregions differ. For example, eye activity dynamics

significantly differ from headmovements in terms of the strength of

movement and the timespan that captures them. Therefore, strong

movements like head nods could overpower eye blinks. Similarly,

when using a short time window size, not enough eye blinks would

be captured compared to head nods. Therefore, fusing these regions

in the same timespan might neglect the subtle behavior of the eyes.

To achieve this goal, we divide the face and body into small regions

(e.g., eyes, nose, hands, legs) and also analyze them as a whole

in different window timespans to capture both subtle behaviors

within the region and interacting behaviors between these regions.

Then, we investigate different multimodal methods in early, late,

and hybrid fusions and compare them with single modality results.

To the best of our knowledge, this paper is the first to extensively

analyze multimodal behaviors for suicide risk detection using

speech acoustic, facial expression, and body gestures. The novelty

of this paper is as follows:

• To address the lack of cultural diversity in video data of

suicidal adults in the field, we collected video recordings of

interviews conducted with young Japanese adults who have

been identified with different levels of suicide risk (i.e., low,

medium, and high).

• We investigate a broad array of region-based (e.g., eyes,

legs) behaviors using both handcrafted features and deep

representations to provide further insights into suicide risk-

related behaviors.

• We investigate these region-based behaviors in different

window size to capture subtle behaviors for interpretability.

• We perform a set of comprehensive multimodal fusion

approaches of the automatically extracted behaviors in terms

of interpretation and classification.

• The results confirm that region-based multimodal behavior

is more informative in terms of behavioral markers, their

timespan, and accounts for both subtle and strong behaviors.

The ultimate goal is twofold: 1) to provide clinicians with

additional tools to more accurately assess the suicide risk of their

patients using objective measures (e.g., video recording), and 2)

to provide interpretable insights that non-specialists can use to

assess behaviors associated with different levels of suicide risk.

Additionally, the developed modeling could be incorporated into

digital agents to provide personalized and informed therapy or

mental health interventions.

2. Background

Due to high levels of psychiatric comorbidity, mental disorders

are among the strongest predictors of suicidal risk. While there

is not solid research on which mental disorders are uniquely

associated with suicidal behavior, past research has concluded

that major depressive disorder (MDD) best predicts the onset

of suicidal ideation, while disorders characterized by anxiety and

poor impulse control are the strongest predictors for ideators

progressing to suicide attempts (Nock et al., 2010). Moreover, there

is great diversity in mental disorder symptoms, and formal ways

of suicide risk assessment are found to be helpful only in acute

cases (Waern et al., 2016). Key symptoms for suicidal ideation tend

not to be physical in nature and range in a variety of complex

characterizations, and also depend on coexisting mental disorders

(Ng et al., 2017). This has led to difficulties in objectively assessing

suicidal risk. Several screening and assessment tools for suicide
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have been developed for emergency departments (Shin et al.,

2022) and school settings (Erbacher and Singer, 2018) for early

detection andmonitoring of such risks. However, these instruments

rely on the sufferer’s willingness to disclose (McGillivray et al.,

2022), where building rapport and perceived care based on verbal

and nonverbal cues from practitioners could be key for patient’s

disclosure (Boudreaux et al., 2016). These problems hinder early

detection and prevent those suffering from receiving appropriate

help.

As the clinical interviews for this study were collected in

Japan, it is important for us to contextualize suicide with cultural

sensitivity. Even though Japan’s and the United States’ patterns

of suicide are becoming similar, studies show that suicide rates

and characteristics differ between cultures (Snowdon, 2018). The

sociocultural environment in Japan has slowly been shifting due

to globalization, particularly in the corporate world, which poses

new challenges to Japanese people (Kato and Kanba, 2017).

That is, there has been increasing exposure in Japan of an

individualistic performance-based system fromWestern countries,

while traditionally being a collectivistic society (Kato and Kanba,

2017). This shift introduced a new type of depression, in addition

to melancholic depression, referred to as modern-type depression

(MTD) (Sakamoto et al., 2016). Diagnostic criteria and evidence-

based treatment guidelines do not yet exist for MTD, which is

often misdiagnosed with adjustment disorder and is not formally

recognized by the DSM. However, MTD is suspected as one of the

causes of the increase in suicide rates in Japan (Kato and Kanba,

2017).

In order to reduce the gap and provide an objective measure

of screening for suicide risk, this paper aims to explore nonverbal

behavioral markers associated with different levels of suicidal risk.

We do this by identifying behaviors typically associated with suicide

risk or ideation. Studies have shown that suicidal patients have

lower acoustic energy, breathy voice quality, and variance in pitch

compared to control patients (Dhelim et al., 2022), which overlap

with some of the voice characteristics of depression (Alghowinem

et al., 2016a). Most studies on nonverbal behaviors have focused on

facial expressions (including smiles, eye activities, and eyebrows),

head and shoulder movements to identify suicide behaviors. Since

our recording includes the full body posture, we extend the

analysis to include body gestures (e.g., hand and foot behaviors),

as described later.

3. Related work

Efforts have been made to use machine learning to

automatically assess and screen for suicide risk, as surveyed

in Castillo-Sánchez et al. (2020) and Heckler et al. (2022). These

approaches often focused on social media using text modality,

but the anonymity of these platforms may hinder efforts to

provide help to sufferers. Other studies have used patient records,

blood markers, and brain signals such as electroencephalogram

(EEG) and functional magnetic resonance imaging (fMRI) to

assess suicide risk, as surveyed in Mansourian et al. (2021) and

Lejeune et al. (2022). However, such data is often inaccessible

to non-specialist healthcare providers during a patient’s initial

consultation, or to the general public that an at-risk individual may

encounter in their everyday life.

Using noninvasive and accessible markers such as behavioral

cues from verbal and nonverbal actions might have a greater

impact in identifying a person at risk of suicide. Acoustic behaviors

from speech acoustic associated with suicide were investigated

and surveyed by Cummins et al. (2015), and have received wider

attention compared to nonverbal behaviors. Recently, Dhelim et al.

(2022) reviewed research on automatic suicide assessment using

audio and video signals. Given the scarcity of audiovisual datasets

on suicide, only a few studies are related to this area of research.

One of the early works on nonverbal behavior for suicide

detection was published by Laksana et al. (2017). Using 333 short

video interviews, preliminary analysis of facial expressions was

promising and had discriminative power in identifying patients

without any mental illness, patients suffering from depression, and

patients who had suicide ideation. They used a widely utilized

tool called OpenFace (Baltrušaitis et al., 2015) to extract facial

Action Units and face landmarks to analyze facial expression.

More specifically, from the explored behaviors of smiling, frowning,

eyebrow raising, and head motion as indicators of mental illness

and suicide, smiling-related behavioral cues held the highest

performance in identifying suicide ideation.

Similarly, Eigbe et al. (2018) used 74 video interviews to analyze

nonverbal behaviors to identify patients in three categories: control,

depressed, and suicidal ideation. Behavior markers extracted from

OpenFace showed a strong correlation in distinguishing between

these three conditions, both for smiling and eye gaze behaviors.

Shah et al. (2019) collected 90 social media videos, which

were then categorized as suicide and distressed. They explored a

multimodal approach using verbal cues from transcripts, acoustic

cues from OpenSmile (Eyben et al., 2010), and visual behavioral

cues from OpenFace to detect suicide risk. Certain behaviors were

found to be indicative of suicidal intent, such as silences, slouched

shoulders, and rapid hand movements.

A recent study (Galatzer-Levy et al., 2021) collected six short

1-minute video interviews of 20 patients admitted following a

suicide attempt in Sweden. Facial expressions through facial actions

and head movement, extracted from OpenFace, as well as speech

prevalence, were extracted from the interviews and then statistically

analyzed in correlation to suicide severity. The automatically

extracted features demonstrated strong linear associations with the

severity of suicidal ideation.

In our preliminary research, we analyzed eye activities and head

pose, extracted from deep learning models, in relation to suicide

risk assessment (Liu et al., 2022).We found that suicidal individuals

who are at high risk show behaviors related to psycho-motor

retardation and symptoms of anxiety and depression, characterized

by eye contact avoidance, slower blinks, and a downward eye gaze.

This basic analysis showed the potential for a systematic evaluation

of suicide risk that could be adopted by both healthcare providers

and naive observers.

As can be noticed from the above studies, the analysis of

nonverbal behaviors was limited to facial actions from facial

expression, and had limited behaviors from body gestures and

acoustic features. Moreover, only Shah et al. (2019) investigated

a multimodal approach by combining verbal, acoustic, and visual

modalities. In this work, we aim not only to extend the array of
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TABLE 1 Details of the sub-dataset used in this work for each suicide risk level (including number of subjects, total and average interview duration, and

segments from di�erent window sizes) are as follows).

Gender Interview
duration (min)

# 2s Segments # 5s Segments # 10s Segments

Risk level # Subj Female/
Male

Total Avg.
per
subj

Total Avg.
per
subj

Total Avg.
per
subj

Total Avg.
per
subj

Low 4 2/2 60.8 15.2 1317 263.4 664 132.8 341 68.2

Medium 4 3/1 88.0 22.0 1303 325.8 652 163.0 327 81.8

High 2 2/0 31.2 15.6 658 329.0 330 165.0 166 83.0

Total 10 7/3 180.0 17.6 3278 306.1 1646 153.6 834 77.7

behaviors extracted from each modality, but also to extensively

investigate different methods of multimodal fusion.

4. Method of analysis

4.1. Suicide risk dataset collection

As described in Liu et al. (2022), interviews were video recorded

with participants at risk of suicide. As part of the suicide awareness

campaign, people are invited to share stories of their (or their

loved ones’) suffering from suicide ideation. People who were

willing to be further interviewed were recruited for the project. All

participants provided consent via email communication.

A pre-interview was completed with each participant by two

project directors for screening and suicide risk assessment using

the "Suicidal Risk" subsection of the M.I.N.I. (Mini-International

Neuropsychiatric Interview) (Lecrubier et al., 1997), which consists

of six questions about their negative thoughts (e.g., suicidal ideation

and intensity). An additional five questions were asked during

the pre-interview, upon consultation with psychiatrists, about the

participant’s history of self-harm and clinical visits, environment

(e.g., age, family, socioeconomic status), and positive thoughts (e.g.,

trusted persons, hobbies, coping mechanisms).

Based on the pre-interview, the two directors individually

rated each participant as low, medium, or high risk for suicide.

These assessments and potential conflicts were subsequently

cross-validated and resolved through discussion with psychiatric

consultation.

For this study, a special set of interviews were recorded for the

purpose of analyzing and modeling nonverbal behavior, for which

written consent was acquired from each participant. A total of 14

participants were recorded during an interview, aged between 15

and 25. Four participants requested to be anonymized (i.e., have

their faces blurred), and were subsequently excluded from this

study to allow for full analysis of facial expression.

The distribution of suicide risk among the 10 participants used

in this study was two at high risk, four at medium risk, and

four at low risk, with seven of them being women (see Section

4.1 for gender distribution per risk group). The interviews were

conducted in different locations with varying room layouts (e.g.,

window and door location, furniture), but the relative position

of the interviewer-interviewee was consistent - both sat in chairs

facing each other. The frame rate of the video recording was 30 fps,

and the audio was 44 kHz. The average duration of the interview

per participant was 18 min.

To mitigate the small size of the dataset, we segmented the

interviews into 2, 5, and 10-s non-overlapping windows, which also

served for region-based behavioral dynamic investigation. Details

about the dataset and sample-level counts are presented in Table 1.

4.2. Raw data preprocessing

In order to extract acoustic and nonverbal behaviors from the

videos, we followed several preprocessing steps for each signal

(audio and video channels). For the audio channel, speakers

(i.e., participants and research assistant - RA) are identified to

segment each speaker’s voice to analyze the participant’s acoustic.

Even though state-of-the-art speaker diarization approaches have

reached good performance in both supervised and unsupervised

manners (i.e., with and without speakers’ identification models)

(Park et al., 2021), we manually segmented the speakers to

ensure accuracy and to further annotate overlapped speech and

acknowledgments, etc.

For the visual channel, in order to analyze nonverbal behaviors

in relation to the participant’s suicide risk, raw-level features

(e.g., landmarks locations) are extracted as a preprocessing step

for low-level and high-level feature extraction. This method has

been widely utilized and validated across interaction contexts and

population groups (Alghowinem et al., 2021a,b; Chen et al., 2022).

The following pre-processing steps are conducted:

(1) Detecting human body using common object detection

model YOLO v3 (You Only Look Once) (Redmon and Farhadi,

2018).

(2) Extracting body joints to calculate and analyze geometrical

and temporal movement features from individual bodies and in

relation to each other. For this purpose, we used AlphaPose (Fang

et al., 2017) to extract 17 body joints in the 2D space. AlphaPose has

higher accuracy compared to its counterparts (e.g., OpenPose Cao

et al., 2021).

(3) Estimating the 3D triangulation and body pose from the

2D points using a state-of-the-art model that utilizes the temporal

aspects of the 2D joints to predict the joints in the 3D space (Pavllo

et al., 2019). It is worth noting that the 3D triangulation only

estimates body pose given the 2D points without depth estimation.

Body orientation (yaw, pitch, and roll) is calculated by solving the
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Direct Linear Transform (DLT) followed by Levenberg-Marquardt

optimization.

(4) Extracting the 3D facial landmarks and head pose: This

was performed after detecting the face region (Zhang S. et al., 2017),

then the best alignment of the facial landmarks was applied using

the Face Alignment Network (FAN) that extracts these landmarks

in an estimated 3D space (Bulat and Tzimiropoulos, 2017). Head

orientation (yaw, pitch, and roll) is calculated in a similar manner

to body orientation. It is worth noting that we attempted to use the

state-of-the-art head pose deep learning model proposed in Ruiz

et al. (2018), but the DLT estimation outperformed the model. We

believe that the accuracy of the 3D facial landmarks estimation is

sufficient for head pose detection.

(5) Eye gaze estimation: This was extracted using the state-of-

the-art model in Zhang X. et al. (2017), which estimates the yaw and

pitch of the gaze, similar to our effort in Liu et al. (2022).

4.3. Behavior feature extraction

Using the pre-processing steps, we extracted handcrafted and

deep representation of behavioral cues from speech acoustic, facial

expression, and body gestures as illustrated in Figure 1.

4.3.1. Handcrafted features: Audio and video
Traditional nonverbal cues analysis relied on engineered

features, which are derived from social and psychological behaviors.

Through surveying the literature in Sections 2, 3, we handcrafted

nonverbal cues from speech acoustic, facial expression, head

movement, body gestures, and touching behaviors from each

participant.

For each participant’s audio segment, we extracted high-level

functional (statistical) acoustic features using OpenSmile (Eyben

et al., 2010), from different window sizes (i.e., 2, 5, 10 s) without

overlap to match the deep audio feature representation. In a recent

comparison, Eyben et al. (2015) showed a high performance using

a minimalistic feature set of carefully selected acoustic features

for Affect investigations. As widely used for acoustic behavior, we

utilized eGeMAPS (the extended Geneva Minimalistic Acoustic

Parameter Set), which contains 88 acoustic features, such as Energy

(loudness, Shimmer), Frequency (Pitch, Jitter, Formants), and

Spectral (including Mel-Frequency Cepstral Coefficients(MFCC).

The purpose of extracting these acoustic features is to capture

acoustic behaviors, such as monotone (identifying boredom,

tiredness, and depression), and intensity (identifying stress), to

name a few examples.

For both facial expression and body gestures behaviors, low-

level (per-frame) geometrical features are extracted for each region

first, then we calculate high-level temporal features over a timespan.

Before the low-level features are extracted, we normalize the

face and body sizes using the body joints and facial landmarks

(explained in Section 4.2). This normalization accounts for

within-participant variations (e.g., distance from the camera) and

between-participant variations (e.g., differences in body size).

Normalization assures reliable measures of the extracted features

and comparability of the analysis. In this work, we use the distance

between the sternum point location and the collarbone (clavicle)

points to normalize the distance between other points (i.e., their

distance is divided by the distance between these two points).

We selected these two points for normalization because they are

rigid, making them robust even through continuous, sudden, and

skewed movements. Then, we use Grubbs’ test to detect outliers

(Grubbs, 1969) and remove any frames with skewed measures

(e.g., erroneous joint or landmark location). Once the joints are

processed, the low-level feature extraction for each region begins,

as detailed below:

Eyes and Eyebrows: To extract behaviors related to blinks, eye

gaze, eye activities, as well as eyebrows expression, we extracted

several features:

• Gaze pitch and yaw for both eyes as described in Liu et al.

(2022), to capture eye contact (or lack thereof),

• The area of each eye using the eye’s landmarks normalized over

the overall eye square area, to capture eye openness behavior,

• The openness of each eye calculated from the vertical distance

between eyelids normalized over the horizontal distance

between the eye corners,

• The area of each eyebrow normalized over the overall eye

square area, to capture eyebrows expressions such as raising

eyebrows (e.g., expressing surprise), and

• The horizontal distance between inner eyebrows points

normalized over the horizontal distance between the outer

eyebrows points, to capture pinched eyebrows (e.g., disgust or

anger).

Nose and Cheeks: The nose region has been shown to be

associated with disgust (Ekman and Friesen, 1978), which is also

associated with depression, anxiety, and suicide behaviors (Brake

et al., 2017). Therefore, we extract a few features that can capture

such behaviors. We also extract features from the cheeks to capture

expressions. The features are as follows:

• The large nose area, which includes the tip of the nose, nose

corners, and center of the eyebrows. This captures raised nose

wrinkles and also (inevitably) inherits head pose.

• The small nose area, which includes the tip of the nose,

nose corners, and the bottom of the nose. This captures nose

wrinkles.

• Each cheek area, which extends from under the eye to the edge

of the face. This captures behaviors of the cheeks, including

talking, smiling, and pinching (e.g., in disgust). All features are

normalized over the overall face square area.

Mouth and Jaw: Behaviors from the mouth and jaw hold a

lot of information about the interaction, including involvement

and engagement in the conversation. Therefore, we extracted

behaviors related to talking, smiling, lip stretching, and lip

movement to infer from these behaviors some interaction

differences between the suicide risk levels. The features we

investigated are:

• The mouth openness calculated by the vertical distance

between the outer lip points, to capture talking dynamics,
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FIGURE 1

Behavior feature extraction from speech acoustic, facial expression, and body gestures. [Showing (1) the pre-processing steps of: speaker diarization,

3D facial landmarks, and 3D body joints, (2) handcrafted acoustic and region-based nonverbal behavior extraction forming low-level and high-level

feature vectors, and (3) deep representation extraction of region-based RGB, Flow, and Two-streams, as well as audio VGGish].

• each lip corner distance from the jaw, to capture expressions

such as smiling, sadness, disgust, etc. from lip corners raising

or pulling down, all normalized over the vertical distance

between the nose tip and the center of the eyebrows,

• themouth width calculated by the horizontal distance between

the corners of the mouth normalized over the horizontal

distance between the face edges, to capture variations of

talking dynamics and smiling behavior, and

• area of the inner lip points, and area of outer lip points

normalized over the overall face square area, to capture both

talking dynamics and lip stretching.

Full Face: To include head motion behaviors, the full face

region includes the head pose (pitch, yaw, and roll) in addition to

the eye, nose, andmouth features explained above, which concludes

the facial expression behavioral extraction.

Left and Right Arms: One advantage of our dataset is

the inclusion of the full body, which allows us to extract

arm movement behaviors and self-soothing behaviors

represented by touching behaviors (e.g., touching the face,

other hand, or upper body) (Ekman and Friesen, 1969a).

The extracted features from both hands and arms are

as follows:
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• For each hand, the triangle area between the shoulder, elbow,

and wrist, normalized over the overall body square area

(excluding the face area), to capture arm movement dynamics

during the conversation.

• Face touching, calculated by the distance between the wrist

and the nose.

• Body touching, calculated by the distance between the wrist

and the center of the body.

• Touching the other hand, calculated by the distance between

the wrist of one hand and the other, to capture self-touching

behaviors.

Left and Right Legs: Behaviors of manipulators are

unintentional behaviors that can be viewed as indicators of

an individual’s involvement in an interaction (Ekman, 2004). For

example, crossed legs can indicate a closed-off or protective posture

in an interaction (Ekman and Friesen, 1969b), while repetitive

movements may suggest anxiety (Nock et al., 2010). To capture

these posture behaviors, we extracted the following features from

the leg movements:

• For each leg, the triangle area between the ankle, the

knee, and the hip, to capture leg movement dynamics,

normalized over the overall body square area (excluding the

face area)

• The distance between the ankles, to capture crossed leg

posture

• The distance between the ankle and the hip, to capture the

relationship between the feet and the body (e.g., tensed and

close to the body vs. relaxed and far from the body)

Full Body: In addition to the features extracted from individual

regions of the face and body, we also extracted features from

the full body. These features are intended to capture postural

changes, such as changes in the sitting position or shifts in

the upper torso, which are often associated with restlessness or

anxiety (Ekman and Friesen, 1969b). To extract these features,

we included the body pose (pitch, yaw and roll) in addition

to the features extracted from the arms and legs as explained

above. This concludes the extraction of behavioral cues from

body gestures.

All regions: It is worth noting that all of the handcrafted

features mentioned above, refer to the early fusion of both the facial

expression and body gesture features. These combined features are

used for modeling.

Finally, we summarized the region-based low-level signals by

extracting functional features over a timespan for each video. We

applied these functional features to the low-level features, as well as

their derivatives (velocity and acceleration), to capture the duration

of nonverbal behaviors. We extracted 10 functional features from

each of the low-level features and their derivatives, which included

minimum (min), maximum (max), range, average, standard

deviations (std), variance (var), skewness, kurtosis, total number

of peaks, and total number of valleys in the invistigated window.

Once the high-level feature vectors are calculated for all windows

for the subject’s recording, they are further normalized using

min-max normalization.

4.3.2. Deep representations: Audio and video
To experiment with deep learning representations of the

signals, we used several pre-trained network architectures as feature

extractors. For the segmented audio signal of the participants’

speech (from the pre-processing step), we extract VGGish

embeddings implemented from the model of Hershey et al. (2017).

The VGGish feature extractor model is trained on a large audio

dataset, built for acoustic event detection. VGGish takes the Mel-

Spectrum from a 16 Hzmono audio as an input, which is calculated

from a ∼1-s window. The VGGish model treats the Mel-Spectrum

as a 2D image, similar to a VGG network architecture, to extract a

128-dimensional feature vector. For our audio samples, we extract

the VGGish features using the pre-trained model for every ∼1 s

without overlap. Since the visual features (explained hereafter) span

2, 5, and 10 s, we stack several of the ∼1-s feature vectors to match

the visual features timespan and prepare for multi-modal fusion.

For the video signal, we utilized pre-trained models from

human action recognition and video understanding research. These

models focus on detecting activities from videos, such as holding

an object, walking, reading, etc. Even though these actions are

not necessarily nonverbal behaviors, using models that are trained

on temporal actions from videos is the closest task to ours. We

utilized the state-of-the-art model Inflated 3D (i3D) (Carreira and

Zisserman, 2017), which is trained on RGB and optical Flow frames,

to extract the deep representation of the video segment. Themodel’s

input is either RGB or Flow images with 64 temporal frames, to

capture the dynamics of the action. The i3Dmodel output is a 1024-

dimensional feature vector for each of the RGB and Flow models,

and 2,048 for the two-streams when concatenated. In this research,

we used 64 consecutive frames to capture 2 s of each video segment.

For the 5 and 10 s windows, we stacked the output of the 2 s window

to form a longer timespan, as explained later.

In order to support our region-based experiments, we cropped

the regions from each frame based on the extracted landmarks.

That is, for facial expression deep representation, we used the facial

landmarks to extract the eyes and brows region, nose and cheek

region, and mouth and jaw region, besides the full face frames.

For the body gestures, we used the body joints to extract the right

and left arms regions, right and left legs regions, and neck and

shoulders region as well as the full body. These region-based frames

are stacked for processing as RGB input frames for the i3, or to

calculate the Optical Flow.

In this work, we calculate the Optical Flow using the Farneback

algorithm (Farnebäck, 2003) due to its low computational demands

and compatibility with GPU, compared to its counterpart, the

TVL1 algorithm (Pérez et al., 2013). Even though the TVL1

algorithm is commonly used for calculating Optical Flow due to

its superior ability to model motion, it requires five times the

calculation time ( 11 fps) compared to the Farneback algorithm ( 52

fps) on the same GPU. We calculate the Flow for each consecutive

frame from the entire RGB frames, resulting in the same number

of frames as with the RGB frames. It is worth noting that the

Flow is calculated for each region individually to allow for subtle

movements (e.g., eye blinks) to be visible and not dominated by

larger movements (e.g., hand movements).

For both the handcrafted and deep features, we experimented

with different window size segments, as we argue that some regions
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TABLE 2 Length of feature vectors for both handcrafted and deep

representation in di�erent timespans and feature combination over the

timespans.

Feature
type

Handcrafted Deep representations∗

Combine
features
over
window
size

Functional Avg Concatenate

Window
size

2, 5, 10s 2, 5, 10s 2s 5s 10s

Speech 88 128 256 640 1,280

Eyes 330

1,024 1,024 20,48 4,096

Nose 120

Mouth 180

Full face 720

Left/right

hand

120

Left/right leg 90

Neck and

shoulders

-

Body only 510 - - - -

All regions 1,230 1,024 1,024 2,048 4,096

∗The feature vector for deep representation listed here is for both RGB and Flow frames.

While two-streams is the concatenation of these feature vectors, producing a double feature

vector length.

might benefit from shorter or longer timespans depending on

the nature of their movement and behavior. For the handcrafted

high-level features, this is performed by calculating the functional

(statistical) features over 2, 5, and 10-s time window. On the other

hand, for the deep features, as mentioned above, the extracted

embeddings from the predefined frames (0.96 s for audio and 64

frames for RGB and Flow) are combined to form the 2, 5, and 10-

s windows. The combinations of these windows are either simple

concatenation, which doubles, quadruples, etc. the feature vector

length, or averaging the feature vectors, which results in keeping the

feature vector length the same. The different lengths for the region-

based feature vectors between handcrafted and deep representation

and timespans are listed in Table 2.

4.4. Modeling and configuration space

To further assess the suitability of the extracted behavioral

features in screening for suicide risk, we run several experiments.

One main experiment involves comparing the performance of deep

representation features (i.e., from the VGGish, RGB, and Flow deep

features) with the performance of engineered features. Moreover,

we experiment with different window sizes in each modality, as

mentioned earlier.

Leave-One-Subject-Out (LOSO): To mitigate the small size of

our dataset, we performed LOSO as a cross-validation approach.

In this approach, all samples (window segments) of a subject

are left out of the training and validation process to avoid

model contamination. That is, removing one subject’s samples

for testing ensures that the model will not have seen their

unique characteristics such as speech signal, facial features, or

even appearance such as clothing, which results in reducing

the model’s bias. Our validation dataset comprises 25% of the

samples of the training set, which is randomly split in a stratified

manner to ensure a balanced sample for each class. Given that

we have 10 subjects in this dataset, we run 10 rounds of LOSO

cross-validation.

Data Augmentation and Resampling: To reduce potential

bias caused by overrepresented classes (especially when a

participant from the high-class is in the LOSO), we tested different

oversampling methods: random oversampling and variants

of SMOTE (Synthetic Minority Over-sampling Technique)

(Chawla et al., 2002). For random oversampling, we randomly

duplicated samples from underpopulated classes, while for

SMOTE, the algorithm utilizes techniques (e.g., clustering and

calculated feature vector distances) to synthesize data points

that are not exact duplicates of the data points. Although

re-sampling techniques are interesting to ensure balanced

samples and reduce bias, it also duplicates the penalties of

misclassifying the minority classes. Since SMOTE works best

on statistical features (Chawla et al., 2002), we applied it to the

handcrafted features, while we used random sampling for the

deep representations.

Evaluation Metric: Besides using accuracy as a metric to

measure the model’s performance, we also calculated a Matthews

Correlation Coefficient (MCC) score, which accounts for the

number of samples in each class. Accounting for the differences

between class sample sizes, MCC is considered one of the best

evaluators of classification quality in comparison with other

measures such as F1 score, since it is only high when good results

are achieved from all classes (Chicco and Jurman, 2020). MCC

values range from –1 to 1, where 1 is perfect classification, -1 is

reversed classification, and around 0 is random-level performance.

This means that a high classification in the majority class with poor

classification in the minority class will only yield random chance

level MCC. We used a generalized multiclass version of MCC as

described by Gorodkin (2004). Using MCC helps in evaluating the

models while accounting for the imbalanced samples in the classes.

Network Architectures and Hyperparameters Tuning: Given

the differences between the deep features and the handcrafted

features not only in vector length but also in sample rate, we

believe that the configuration space and network architectures

should also be adjusted to suit the input signal. Therefore, we

use Bayesian Optimization (Falkner et al., 2018) to search for the

optimal network architectures and hyperparameters, where the

configuration space search is based on the following:

• Hidden Layers: Since we are performing classification over

already extracted features, we only need a few dense, non-

linear layers. The configuration space search includes a single

layer, as well as 2 and 3 dense layers architectures for

comparisons. All dense layers used ReLU activation function.

Finally, we added a classification dense layer with a Softmax

activation function with three classes.
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• Dropouts: We added at most a couple of dropout layers

between the hidden layers to avoid overfitting.

• Layer Size: For each hidden layer, we fine-tuned using several

values of the number of nodes.

• Optimizer and learning rate:We compared the performance

of SGD and ADAM optimizer with a range of learning rates

(and momentum for SGD).

From the above approach, for each modality and the fused

ones, we selected the best performing model based on the balanced

accuracy and MCC of the training and validation sets, which we

then reported on the results on the testing set. Since the testing

set is from one subject samples (LOSO), all the samples are from

one class, and therefore, we only reported on the accuracy. The

accuracy of the sample-level is the average number of samples that

were correctly classified in all LOSO rounds, while the accuracy

of the subject-level is the percentage of the subjects who were

correctly classified. A subject is considered correctly classified if

more than 50% of their samples are correctly classified in the

LOSO round. We performed this extra metric to evaluate our

models because we noticed that for some of the experiments, all

subjects’ samples will be correctly classified, and for other subjects

all samples will be misclassified, which skews the overall results.

We performed an additional experiment to compare randomized

features with the handcrafted and deep features. To do this, we

generated a random feature vector for each of the original labels.

By comparing our classification results to the results obtained by

chance, we ensure that our results are robust and our feature vectors

are meaningful.

4.5. Multimodal fusion approaches

Fusing modalities for behavioral analysis is generally

challenging given the differences in the combined modalities,

and when it comes to automated assessment of psychopathology,

it becomes even more challenging given the sensitivity of the

application. In our previous work, the results showed differences

in modeling confidence levels from different multimodal fusion

approaches in diagnosing depression (Alghowinem et al., 2016b).

In this work, we follow a similar general pattern using early, late,

and hybrid fusion as illustrated in Figure 2. The specifics and

details of each approach are as follows:

Early Fusion (feature fusion): In this method, the features

from different modalities are fused (e.g., concatenated) before

the modeling. Even though feature fusion might enrich the

model with diverse features from different modalities, it has its

own complications and restrictions. For instance, samples where

different modality features are extracted have to be aligned, and the

features have to be compatible. That is, for our experiments with

different window sizes, we cannot perform an early fusion of a 2-s

window of facial expression with a 10-s window of body gesture, for

example, due to different time scales. In this work, we performed

early fusion on single modalities to fuse the region-based features,

as well as in a multimodal setting to compare the results from

different combinations.

Late Fusion: In this method, the results from the classification

of the single modalities are fused. Even though the late fusionmight

reduce some of the restrictions that early fusion has, unifying the

output of the classifiers could pose a new challenge, especially when

using different classifier types. Even though we are using the same

type of classifier (deep neural network with 3-class output), fusing

different sample sizes produced by the different window span added

another level of fusion in order to align the samples before the final

fusion. For example, for our late fusion, when fusing a 2-s window

of facial expression with a 10-s window of the body gesture, the

2-s window would have higher number of data points compared

to the 10-s window. To unify the number of data points each 5 of

the 2-s window samples are fused first to match each one sample

of the 10-s window. This is done as a preparation step before

the two are fused for the final decision. However, when fusing

modalities of the same window size, only one level of late fusion

is performed.

Since the output of each model is a probability vector, we

believe that using the belief theory for the late fusion is suitable

in this context. Using a mathematical belief function, available

evidences from all different sources can be combined to reach

a degree of belief. In this work, we use DempsterShafer theory,

which is a generalization of the Bayesian theory of probability

(Beynon et al., 2000), to perform the late fusion of the model

probability outputs.

Hierarchical (hybrid) Fusion: This method utilizes the

benefits of both early and late fusions. In this method, the model

from the early-fused features is treated as another single modality,

and its model results are also fused at another (late) level with

the single modality model results. For the hierarchical fusion, we

combine both methods explained above in different combinations,

as illustrated in Figure 2.

It is worth noting that in hybrid fusion, both small regions and

combined regions are modeled separately as well as when fused

for comparison. Features are extracted for each region individually

and then modeled individually, with minimal overlap between the

regions. By design, to capture both subtle and strong behaviors,

we investigate modeling from both small and large (i.e., combined)

regions. Therefore, when fusing, the integrity of individual regions

and the combined ones is maintained.

4.6. Statistical analysis of the features

In order to understand the differences among the three groups

(suicide risks at low, medium and high), we focused our statistical

analysis on all region features as well as the mouth region from

both 5s and 10s windows, since their modeling performance were

superior to the other regions. We first applied a normality test

for each of the feature metrics to examine the assumption for the

subsequent analyses. Unsurprisingly, most of the feature metrics

data failed the normality assumption. Thus, we performed a non-

parametric method, Kruskal-Wallis test, to determine whether

statistical differences (p < 0.05) existed among the groups for

feature metrics that failed the normality assumption (for those

that met the normality assumption, we applied one-way ANOVA

for the same null hypothesis). All of the Kruskal-Wallis analyses
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FIGURE 2

Single modeling (and configuration space) and multimodal fusion approaches used in this work (early, late, and hierarchical fusion levels).

were corrected with Bonferroni correction to avoid the multiple

comparison problem.

Then, we performed post-hoc tests to identify the differences

and the features among the three suicide risk groups. Here, the

Mann-Whitney U Test was applied for pairwise group comparison

for all of the feature metrics that showed statistical differences

(p < 0.05) in the Kruskal-Wallis Test. In this analysis, we

first hypothesized the pairwise statistical differences (p < 0.05)

between two groups, and focused on the feature metrics that exhibit

statistical differences for all the group-pairs (Low and Medium,

Low and High, Medium and High). In addition, we applied the

Mann-Whitney test with an alternative hypothesis to test whether

one group is statistically more likely to be larger than the other.

The full region features include all 41 features captured in our

handcrafted features, including the head, eyes, mouth, nose, and

body, with 30 metrics, including 10 statistical measurements and

two derivative values. This results in a total of 1,230 feature metrics.

The test results show that between-group differences exist for 911 of

these metrics. Ad-hoc analysis shows that only 374 of these feature

metrics have statistically significant differences between groups.

For the mouth region specifically, there are 6 features with 30

metrics, resulting in 180 feature metrics. However, only 26 of these

features show statistical differences across all pairs. The summary

of significant different features and the data trends among the three

groups are listed in Table 5, and the interpretations of these results

are described in the following section.

5. Results

In order to provide insight on behavioral markers associated

with suicide risk levels, we analyzed speech acoustic, facial

expression, and body gestures from video interviews of participants

at risk of suicide. We extracted both handcrafted and deep

representation features from these modalities and explored the

modeling results from region-based single and multimodal fusion.

5.1. Region-based single modalities results

To capture subtle behaviors from each region in the face and

the body, we divided the face area into three sub-areas and the

body area into five sub-areas, which were modeled individually

for comparison (see Section 4.3 for detailed segmentation and

feature extraction). This region-based modeling is performed to

avoid model bias toward dominant features (Alghowinem et al.,

2020) and to provide insights into the most contributing regions

in distinguishing suicide risk levels. Moreover, the modeling results

from the single modalities of facial expression, body gesture, as

well as speech acoustic are presented in Table 3. In these tables,

the best-performing model based on the balanced accuracy and

MCC of the training and validation sets is selected, on which we

report the testing results. For each region and feature type, the best-

performing model also showed the best window size (in seconds)

and method of combining the feature vectors over the window size

(as detailed in Section 4.3).

In general, comparing the modeling performance from

handcrafted and deep representation features, handcrafted

features outperformed its counterpart, where both outperformed

random features. Even though training and validation performance

for the deep representation modeling were close to those of

handcrafted features, the models on the deep representation were

not able to generalize to unseen data. This might be due to the small

sample size of the dataset, where deep transfer learning benefits

from large datasets to reach a reliable convergence. However, the

fact that the deep representation outperformed the random feature
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TABLE 3 Single modality modeling results-Showing (1) Facial Expression: the superiority of the mouth region in distinguishing suicide risk level, (2) Body

Gesture: fusing all body regions with body orientation in handcrafted features provides informative behavior for better model performance, (3) Speech

Acoustic: handcrafted features continuously outperforming deep representation features, and (4) all modalities outperformed the random features.

Region Feature type
Combine
features over
window size

Window size
Training set Validation set Testing set Acc.

Acc. MCC Acc. MCC Sample-

level

Subject-

level

Random features modeling results

- Random - - 0.39 0.12 0.32 –0.01 0.083 0.0

Region-based facial expression modeling results

Eyes
Handcrafted Functional 10 0.81 0.70 0.80 0.68 0.636 0.7

i3d - Flow Avg 10 0.59 0.40 0.59 0.41 0.327 0.4

Nose
Handcrafted Functional 10 0.59 0.35 0.57 0.32 0.638 0.7

i3d- RGB Avg 5 0.59 0.40 0.58 0.38 0.427 0.4

Mouth
Handcrafted Functional 5 0.69 0.50 0.68 0.49 0.802 0.8

i3d - Two-streams Avg 10 0.70 0.57 0.71 0.58 0.374 0.4

Full face
Handcrafted Functional 2 0.59 0.32 0.59 0.32 0.595 0.6

i3d - Flow As is 2 0.54 0.32 0.54 0.32 0.487 0.5

Region-based body gestures modeling results

Left Arm
Handcrafted Functional 10 0.61 0.39 0.61 0.38 0.604 0.6

i3d- RGB Avg 10 0.60 0.46 0.61 0.45 0.478 0.6

Right Arm
Handcrafted Functional 5 0.61 0.37 0.60 0.36 0.514 0.5

i3d - Flow Avg 10 0.57 0.35 0.58 0.36 0.451 0.5

Left Leg
Handcrafted Functional 10 0.60 0.37 0.59 0.35 0.563 0.5

i3d - Flow Concatenate 5 0.64 0.49 0.63 0.47 0.296 0.2

Right Leg
Handcrafted Functional 10 0.58 0.32 0.56 0.30 0.607 0.7

i3d- RGB Concatenate 10 0.42 0.13 0.42 0.14 0.243 0.2

Neck and

shoulders

i3d - Two-streams Avg 5 0.55 0.34 0.55 0.35 0.301 0.2

Body only Handcrafted Functional 5 0.62 0.42 0.61 0.41 0.623 0.7

All regions (Face &

Body)

Handcrafted Functional 10 0.69 0.51 0.68 0.49 0.641 0.8

i3d- RGB As is 2 0.73 0.59 0.72 0.59 0.417 0.4

Speech prosody modeling results

Handcrafted Functional 2 0.69 0.55 0.68 0.53 0.540 0.5

VGGish Avg 5 0.56 0.33 0.55 0.34 0.537 0.5

Bold value indicates the highest results.

levels in training, validation, and testing performances (except for

the right leg) indicates potentials that deep embeddings hold some

discriminative power in screening suicide risk levels.

When focusing on facial expression modeling presented in

Table 3, it can be noticed that modeling from sliced regions

outperformed the whole region for the handcrafted features.

However, the same is not true for the deep representation, where

modeling using the full face generalized better on the testing set

compared to the cropped regions. For the handcrafted features,

this finding confirms our finding on depression, where subtle

behaviors could be overpowered or blended by other behaviors

(Alghowinem et al., 2020). On the other hand, the use of the

full face in the deep representation may have provided a holistic

view that is closer to the pre-trained i3D model, which allowed

the classifier to generalize better to the testing set. The best

performing region in facial expression is the mouth region

from the handcrafted features. The eye and nose regions of the

handcrafted features, nonetheless, hold discriminative power for

suicide risk level screening, particularly given that the sample-

level accuracy results are a 3-class problem. Facial action units

related to the mouth and smiling in particular have been found

to be correlated to suicide behaviors (Laksana et al., 2017; Eigbe

et al., 2018). Even though we do not directly extract smiling

behavior, but rather extract overall mouth movement dynamics,
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the performance of the mouth region confirms these findings and

shows the potential of mouth dynamics for suicide detection in

the Japanese population. It is worth noting that in some cases,

such as the handcrafted eye region and deep mouth region, the

training and validation results outperformed the other regions, yet

their generalization to the test set did not hold, which indicates

overfitting models.

We investigated the window size for each region, as we

hypothesized that some behaviors might benefit from a longer or

shorter time span based on the nature of their movement dynamics.

For example, a longer window for the eye region could capture

eye blinks and eye movement dynamics, and a shorter window

for the mouth could capture talking movement dynamics. These

assumptions held true for the handcrafted features, where the best-

performingmodels listed in Table 3 were within these window sizes.

For the full face, the best model was with a window size of 2 s. This

might indicate that abrupt head movements are distinguishable

characteristics of suicidal behavior, in line with Shah et al. (2019).

Body gestures have received very limited attention in analyzing

mental disorders in general, and to the best of our knowledge, none

of the suicide behavioral analysis research has analyzed it. Similarly

to the facial expression modality, we explored region-based, feature

type, and window size for the body gesture modality, where the

modeling results are listed in Table 3. Contrary to facial expression,

slicing the regions of body gestures did not benefit the modeling

in the handcrafted features, but it did benefit the modeling for the

deep embeddings. For the handcrafted features, this finding might

be due to the fact that behaviors from individual body regions

are not subtle enough to be overpowered by other behaviors and

that their interactions are more informative to the suicide level

screening. On the other hand, for the deep embeddings, the left

and right arms regions performed significantly better than other

regions and slightly better than the full body region. This might be

due to the fact that the i3d pre-trained model is trained on action

recognition with a lot of hand actions (e.g., ’rock scissors paper’,

’shaking hand’, ’dribbling basketball’). Interestingly, the left arm and

right leg from the region-based behaviors showed promising results

from the handcrafted features.

For the window size experiments, a window of 10s is mostly

the best performing window size. The only exception is with the

handcrafted features with body only (not counting when the model

performance at the subject-level is 0.5 or below). Body only features

are when behaviors of both arms and legs are combined with body

orientation. Similar to handcrafted full face features, body only

handcrafted features benefited from a shorter window size. This

finding might indicate differences in body movement dynamics

between the three suicide risk levels.

For the handcrafted features, when combining behaviors of the

body regions with behaviors of face regions, the model outperforms

all regions except for the mouth region. This finding confirms our

argument, where a multimodal approach is only powerful when

the strength of its individual modalities and their sub-modalities

(regions) are preserved. Further fusion approaches are explored in

the following section, where this early fusion result is revisited.

Previous work on suicide speech acoustic used recorded audio

interviews, lifeline phone recordings, etc. to analyze the patterns

of speech in the English language, as reviewed in Cummins et al.

(2015) and Dhelim et al. (2022). Speech acoustic includes energy,

source, formant, and spectral features which have shown promising

results in identifying suicidal speech patterns. Speech analysis in

different languages is very limited, especially for suicidal behavioral

speech. Comparing handcrafted speech features with deep VGGish

features, the test results from modeling of the handcrafted features

were slightly better than the deep features, even though the

training and the validation results were significantly higher in

the handcrafted ones. However, speech acoustic had a lower

performance compared to the nonverbal modalities. This might be

due to the differences in Japanese language in terms of phonetics

and speech patterns compared to English language, where a more

customized list of handcrafted features should be investigated

instead of the currently generalized emotional feature used in this

work.

5.2. Multimodal fusion results

One of the main goal of this research is to investigate

multimodal fusion approaches that preserve the discriminative

power of subtle behaviors while fully embracing the benefits of

behavioral interactions from other modalities. We achieved this by

dividing each single modality into smaller regions and modeling

each region with different window sizes to accommodate for its

behavioral dynamics. As described in Section 4.5, we explored

early (feature) fusion, late fusion, and hierarchical (hybrid) fusion,

where the results are presented in Table 4. For the simplicity of

comparisons, we combined the facial expression and body gestures

modalities as one and named it nonverbal, but divided it by the

feature type of handcrafted and deep i3d, while keeping the speech

acoustic modality as one without dividing it into feature types.

Since each modality was divided into region-based modeling,

we explored fusing these regions in a multi-region manner in early

and late fusions. In the top part of Table 4, we reported the top-

performing fusions. For the early fusion, the results were already

discussed in the above section and repeated here for reference.

Fusing both facial expression and body gesture modalities in early

fusion outperformed region-based results, except for the mouth

region.

On the other hand, for late fusion using Dempster-Shafer

belief theory, combining the modeling results from the handcrafted

features of the nose and mouth regions significantly improved

modeling results from individual regions and the combined regions

of the same feature type. Slight improvements were also observed

in deep features of nonverbal modalities (facial expression and body

gestures) and speech acoustic in the late fusion, which indicates that

our late fusing method using the Dempster-Shafer theory was able

to preserve the strength of the fused regions/features.

When applying hierarchical (hybrid) fusion on both the

results from the early fusion and the late fusion, the results

are further boosted to reach their ultimate maximum for our

experiments. Even though we tried every other combination of late

and hybrid fusion, the best combination was produced by the nose,

mouth and all regions of the handcrafted features. Suggesting

that behaviors within and between these regions have a strong

discriminative power in identifying different levels of suicide risk.

Given the baseline results of each of the multi-region and

feature type fusions presented above, we explored different

combinations of these aspects. The bottom part of Table 4
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TABLE 4 Results of di�erent multimodal fusion approaches—showing the strongest results from the hierarchical (hybrid) fusion, and confirming the

strength of our region-based analysis.

Fusion method
Nonverbal Speech prosody Testing Set Acc.

Handcrafted Deep i3d Sample-level Subject-level

Multi-region

fusion

Early fusion

Face expression 0.595 0.6

Body gestures 0.623 0.7

All regions (Fusing Face

Expression and Body

Gestures)

0.641 0.8

Full Face 0.487 0.5

Full body 0.417 0.4

Late fusion

Nose, Mouth 0.928 1.0

Face, Right Arm 0.511 0.6

Handcrafted, VGGish 0.593 0.5

Hierarchical fusion Nose, Mouth, All regions 0.962 1.0

Multimodal

Fusion
Late fusion

- Left Arm, Right Arm Handcrafted, VGGish 0.706 0.6

Nose, Mouth, All regions - VGGish 0.942 1.0

Nose, Mouth, Left Arm, All

regions

Face - 0.907 0.9

Nose, Mouth, All regions Left Arm VGGish 0.955 1.0

Bold value indicates the highest results.

shows the best results from each of these combinations.

Even though all multimodal fusion results have improved

the suicide risk level screening compared to the individual

modalities and region-based modeling, it can be noticed the

level of contribution of each region and feature type to

the overall classification results. For example, the absence

of the handcrafted features drops the classification results

compared to when including them. When including all modalities’

regions and feature types, the hybrid fusion of the nose,

mouth and all regions from the handcrafted features is fused

with the deep features of the left arm and VGGish, which

performed the best results in the multimodal approach, which

is slightly less than when using the hybrid fusion of the

single modality. This is reassuring, since even when the results

are not significantly improved after fusion of all modalities,

it increases the confidence level of the final decision. It is

interesting that the left arm behavior had some meaningful

contribution to some of the combinations in the multimodal

fusion compared to the single fusion and the region-based

modeling.

It is worth noting that some late fusion experiments resulted

in a significant decrease in classification results compared to

their individual results. For example, fusing left and right arms

resulted in a sample-level accuracy of 0.492 and 0.418 from the

handcrafted and deep features, respectively. Moreover, as a sanity

check, we tested fusing the probabilities of the random features

with the highest performing modalities (hybrid fusion), and the

results showed a significant drop in performance. This finding

confirms that the fused behaviors are actually compatible with each

other and contributing to the final decision on the suicide risk

level.

6. Data summarization and
interpretation through statistical
analysis

The feature functionals that showed significant differences

among the three suicidal risk groups are summarized in Table 5,

along with the post-hoc pairwise comparison results. As stated

earlier, to capture the rich information from the subject’s non-

verbal behaviors, we handcrafted features from different body

regions. We derived both the first-order derivative and the second-

order derivative of the original signals to capture a deeper context

of the subject’s behaviors, such as the speed and acceleration of their

movements, which can also capture the duration and dynamics

of their behavior. The original/raw features, the speed (short-

handed as d1 features in the table) and the acceleration (short-

handed as d2 features in the table) of the movement constructs

the low-level descriptors (LLD). Then, we calculated 10 statistical

functionals within different window sizes from the LLD. These

statistical functionals are used as input features in the fusionmodel.

We categorized the features with significant differences among all

pairs of the three target groups by the statistical trend they exhibit,

and listed the high-level functionals (calculated from the original,

d1, and d2 signals) with which the features have a significant effect.

We merged features that are impossible to discuss separately (i.e.,

the orientation of the left eye and right eye), and if the trends of

their significant features do not agree, we still listed them in the

table with the label "N/A" for the trend.

First, our results show that all regions, from head orientation

to foot movement, exhibit statistically different feature functionals.

There is no one feature region that shows an overwhelming amount

of statistically different functionals compared to the others. This
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might help explain why the fusion model with all body parts

information achieved the best performance.

Secondly, unlike most suicidal models where only the original

signals are used for modeling, we used both the speed and

acceleration information (represented by the first and second

order derivatives of the original signals) from movements in our

model. The statistical results show that many significant feature

functionals are from the speed and acceleration. The information

from the speed and acceleration of the movement might exhibit

the same or completely opposite trends as the results from the

original signal.

Specifically, we delve into the feature functionals that follow

two types of data trends (L > M > H and H > M >

L) for the interpretability, and the identification of the potential

behavioral cues behind them for psychological insights in this

dataset. In the head region, several feature functionals that are

related to typical head movements and facial expressions show a

uniform descending trend from the low-risk group to the high-risk

group. For example, the value of the large nose area is affected by

head movements in the pitch and yaw direction and expressions

such as disgust and discomfort, where a wrinkled nose is typically

expressed. The data trend with nose area shows that the high-

risk group exhibits more behaviors such as wrinkled nose, looking

up and down, and head shaking. Head movement, especially yaw

orientation, shows a strong statistical difference with an interesting

trend. The data shows that the low-risk group shakes their head

less when compared with the high-risk group, however, at a faster

speed. This suggests that subjects in the high-risk group exhibit

more and slower head motions, which might be behaviors of

avoidance of eye contact or discomfort in the situation, while the

low-risk group might have mainly engaged in head movements

as gestures (shaking the head when signaling "No"). The eyebrow

distance is affected by behaviors such as frowning and surprised

eyebrow raises. Our results show that subjects in the high-risk

group display a wider range of eyebrow movement and smaller

eyebrow distance when compared with the low-risk group. This

indicates that the high-risk group is prone to displaying behaviors

such as frowning and disgust. Several feature functionals from the

mouth area indicate a similar descending trend from the low-risk

group to the high-risk group, and all indicate forms of suppression

in mouth behaviors among the high-risk group. For instance, the

horizontal lip distance is affected by smiling, open-mouth surprise,

yawning, and speaking. A low value in mouth openness in the high-

risk group suggests suppression in speech and smiles. The speed-

level functionals also show that the low-risk group might be talking

at a faster speed or exhibit exaggerated lip movements. Further

functionals from the small mouth area, the area of the opened inner

lips, confirm that the low-risk group opens their mouth more while

the subjects from the high-risk group might have a more closed-up

mouth movement during the interview.

The feature functionals of body movements from the three

risk groups also show interesting differences. Hand gesture-related

features show that the low-risk group has wider and more frequent

hand movement while the high-risk group has abrupt but less hand

movement. For example, when measuring the distance between

the right hand and the left hand, the low-risk group has a wider

range of hand gestures. Their hand movements were more speedy,

indicating a usage of hand gestures when illustrating and talking.

While the high-risk group often has abrupt and short-duration

hand gestures, and their hand movement is less continuous

compared to the low-risk group. This phenomenon is confirmed

through video observation, where we observed that subjects in

the high-risk group hold their hands together most of the time

with occasional abrupt yet small hand movements when they are

speaking, compared to low and medium-risk groups. Then, their

hands often quickly go back to their original hand-hold position

close to their knees. On the other hand, subjects in the low-risk

group oftenmove their hands freely and use gestures for illustration

along with their speech. Similarly, the low-suicidal risk group has

more hand movements toward the center of the body, and their

arm movements are active and acute (measured by arm area)

during the interview, suggesting that they are relaxed, open to

interaction during the interview, and more expressive with hand-

arm movements. In addition, we identify that subjects in the low-

risk group touch their face more frequently compared to the high-

risk group. Footmovement functionals suggest that subjects in the

low-risk group move their feet away from their body center further

compared to the high-risk group; however, the high-risk group

has a higher speed in their foot movements. Combining those two

observations, the subjects in the high-risk group move their feet

in fast, repetitive, and small motions and the low-risk group move

their feet and stretch their legs with a larger variance with more

distributed speed.

Several themes can be inferred from the above results, regarding

specific emotions expressed in different levels of suicide risks, as

well as expressivity, movement, and energy levels with the severity

of the suicide levels. Several emotions were expressed more often

in participants with high suicide risk, such as disgust (measured

by nose wrinkles, eyebrows’ area, and distance), and eye contact

avoidance (measured by head movement). Expressing disgust

has been linked to depression, anxiety, and suicide behaviors

(Brake et al., 2017). Similarly, eye contact avoidance is correlated

with depression, and anxiety (Waxer, 1977; Horley et al., 2003;

Moukheiber et al., 2010; Alghowinem et al., 2013a,b; Jun et al.,

2013). On the other hand, the low-risk suicide group showed

higher self-soothing behavior (measured by face, hand, and upper

body touching), and anxiety behavior (measured by the repetitive

movements) (Kapur et al., 2006). Ekman and Friesen (1969a) also

showed that self-soothing body movement (such as touching one’s

neck, face or body, and holding/crossing one’s arms) could indicate

anxiety.

Expressivity levels (Bolinger, 1983) reduced significantly with

an increased level of suicide risk, where speaking, smiling, eyebrow

movements, etc. were observed more often in the low-risk suicidal

group during the interview. This could be explained by the fatigue

and social withdrawal that is observed among suicidal individuals

in line with Waern et al. (2016). The same observation is made

with movement frequency and energy levels, where participants

with low-risk of suicide showed higher energy and more frequent

movement from their hands, head, body, and feet during the

conversation. Such diminished movement in the high-risk group

can be explained by depression-induced psycho-motor retardation

(Waxer, 1977; Fossi et al., 1984; Alghowinem et al., 2013a,b) and

social disengagement (Waern et al., 2016).
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TABLE 5 Summary of significantly di�erent feature functionals among three groups.

Feature region Feature name Feature functionals Trend

Nose region

Large Nose Area Original L > M > H

Large Nose Area Original, d1, d2 L > H > M

Large Nose Area d2 M > H > L

Large Nose Area Original, d1

H > L > MSmall Nose Area Original, d1

Left Cheeck Area Original

Large Nose Area Original, d1

M > L > HSmall Nose Area Original, d1

Left Cheeck Area d1

Head orientation

Head Yaw d1 L > M > H

Head Pitch Original

H > M > LHead Yaw Original

Head Roll Original

Head Pitch Original

M > L > HHead Yaw d2

Head Roll d1

Head Pitch d1
H > L > M

Head Yaw d1, d2

Hand movement

Left Arm Area d1, d2

L > M > H

Left Hand To Face Original

Left Hand To Body Original

Left Hand Right Hand Original, d1, d2

Right Hand To Face Original

Right Hand To Body Original

Left hand Right Hand d1, d2
H > M > L

Right Hand to Body Center d1, d2

Left Arm Area Original

M > L > H

Left Hand To Face Original, d1, d2

Right Hand To Face Original, d1, d2

Left Hand Right Hand Original

Right Hand To Body Original, d1, d2

Left Hand Right Hand Original M > H > L

Left Hand To Face d1, d2

H > L > MLeft Hand To Body d1, d2

Right Hand To Face d1, d2

Foot movement

Left Foot To Body Center Original, d1, d2
L > M > H

Right Foot To Body Center Original, d1, d2

Left Foot To Body Center d1
H > M > L

Right Foot To Body Center d1, d2

Left Foot To Right Foot Original, d1, d2
M > L > H

Right Foot To Body Center Original

Left Foot To Right Foot d2
H > L > M

Left Foot To Body Center d1, d2

(Continued)
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TABLE 5 (Continued)

Feature region Feature name Feature functionals Trend

Body orientation

Body Pitch Original, d1, d2

L > M > HBody Yaw d2

Body Roll Original

Body Pitch d2
H > M > L

Body Yaw d1, d2

Body Pitch Original, d1, d2

M > L > HBody Yaw d1, d2

Body Roll Original, d1, d2

Body Pitch Original, d1, d2

H > L > MBody Yaw Original

Body Roll d1, d2

Hip movement

Left Hip Area d1, d2
M > L > H

Right Hip Area Original, d1, d2

Left Hip Area Original, d1, d2
H > L > M

Right Hip Area Original, d1, d2

Eye movements

Eye Pitch Original, d1 N/A

Eye Yaw Original N/A

Eyelids Distance Original, d1, d2 N/A

Right Eyebrow Area d1, d2
L > M > H

Eyebrows Distance Original

Right Eyebrow Area Original
H > M > L

Eyebrows Distance Original

Left Eyebrow Area Original L > H > M

Left Eyebrow Area d1

M > L > HRight Eyebrow Area Original, d1

Eye Area d1

Right Eyebrow Area Original

H > L > MEyelids Distance Original

Eye Area Original, d1, d2

Mouth region (5s & 10s)

Horizontal Lips Distance d1, d2

L > M > HLeft Corner Distance d1, d2

Small Mouth Area Original

Vertical Lips Distance Original, d1 L > H > M

Mouth region (10s) Small Mouth Area Original L > M > H

Mouth region (5s)

Vertical Lips Distance Original, d1, d2

L > H > MLarge Mouth Area Original

Small Mouth Area Original, d1

Vertical Lips Distance d2 M > H > L

∗In the column “Trend”, L, M, H stands for the three suicide risks group, Low risk, Medium risk and High risk.
∗All the features listed used 10s as window size (except for mouth region).
∗Mouth region data includes two window sizes, 5s and 10s, and are both included for different significant feature functionals.
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7. Discussion and conclusion

Given the prevalence of suicide rates, especially that the

COVID-19 pandemic has heightened its causes, suicide has become

the second leading cause of death in youth worldwide (Tanaka

and Okamoto, 2021). With early identification, management, and

follow-up of people at risk, suicide is preventable (Shin et al., 2022).

To this end, we attempt to identify behavioral markers that are

associated with different levels of suicide risks, which in turn could

help reduce the gap and provide an objective measure for screening

suicide risk.

In our multimodal fusion, we hypothesized that even though

combining information from different modalities enriches the

model with behavioral interactions, it could also suppress subtle

behaviors. Furthermore, we also hypothesized that some behaviors

might benefit from shorter or longer timespans based on their

nature and dynamics.

To assess our hypotheses, we ran two main experiments. One

where we divided each modality into region-based areas, and

another where we explored the best timespan for each of the

regions.

Our hypotheses held true for both region-based and timespan,

especially for the small facial regions such as the mouth. All region-

based facial expressions outperformed when all facial regions

are combined, indicating that some behaviors overpower or

dilute other behaviors when combined.For timespan investigation,

we observed that regions with more frequent and dynamic

movements benefit from a shorter window size, such as the

mouth, face (including headmovement), and body (including body

orientation).

The purpose of the multi-region and multimodal fusions is

to inspect the contribution of each region to the overall decision

on the suicide risk level, which will also provide insight into the

behavioral markers associated with these risk levels. In line with

literature, the mouth region held the most discriminative power

in identifying suicide risk levels, followed by the nose region.

The nose region is usually associated with expressing disgust

emotions, where a strong association between suicide risk and

self-disgust was found (Brake et al., 2017). Moreover, all feature

types and modalities have contributed in a meaningful way, adding

confidence to the final decision, even if it did not improve the

overall results. This finding was tested by fusing the results with the

results of the random features modeling, where the final decision

dropped.

Even though the study is based on a small sample size, the

results indicate that the power of a multimodal fusion should

be approached with care, in order to avoid introducing bias

toward dominant modalities. When it comes to mental disorder

applications, such as suicide screening, where behavioral cues could

co-occur or overlap with other disorders, further caution should be

considered before fusing regions and modalities.

The statistical analysis and the interpretation of the handcrafted

features provided further insights into the differences in behaviors

based on suicide risk levels. Mainly, the higher the suicide risk

levels, the lower the expressivity, movement frequency, and energy

levels observed from the subject. Moreover, high-risk suicide group

expresses more disgust and contact avoidance, while low-risk

suicide group expresses self-soothing and anxiety behaviors. We

believe these cues are informative as preliminary results to identify

the risk level a subject is at and to assess their improvement. Further

studies are needed to confirm and validate these behavioral cues

with larger samples in a cross-cultural context.

8. Limitation and future work

Even though our dataset adds to the cultural diversity

by analyzing the Japanese young population, one of its main

limitations is the small number of participants. Such a small sample

size limits the generalizability of this study’s analysis of behaviors of

individuals at risk of suicide, especially for a three-level imbalanced

participants. Nonetheless, given the lack of video datasets of

suicidal individuals, we believe that this analysis is exploratory

rather than confirmatory, and that the presented preliminary

analysis serves as the first step toward validating and assessing the

cross-cultural behaviors of individuals at risk of suicide. However,

we tried to mitigate this shortcoming by dividing the dataset into

small window segments of 2, 5, and 10 s and using LOSO cross-

validation to avoid model contamination (as described in Table 1).

Moreover, our dataset also suffers by the problem of self-selection

bias and self-reported risk. For future work, it would be worthwhile

to explore collaborating with medical institutions and/or mental

health professionals to recruit participants who have either survived

suicide attempts or have not self-reported risk (e.g., through a

third-party referral from a friend or family member). Finally,

error analysis could inform further insight of behavioral modeling,

similar to Alghowinem et al. (2018), which was not included in

this study. This could be performed by analyzing subject-level

performance to identify video segments where misclassification

occur for within and between subjects. Furthermore, analyzing

the errors from the different experiments could inform model

improvement and feature interpretation.

The second main limitation of this study is the lack of a

control group for comparison. We attempted to collect a few video

samples from Japanese social media, but the context, recording

environment, nature of the conversation, and dynamics of the

interactions were vastly different. This would have led the model

to learn all these differences rather than the behavioral differences

associated with suicide risk. Future work could investigate and

compare with interviews collected from people who are not at risk

of suicide to serve as a control group. Furthermore, with a larger

multi-session data collection, future work could also investigate

subject-dependent modeling, where the changes in suicide risk

over time could be correlated with other changes in mental health.

Although this work analyzed the general trend in behavioral change

from the different suicide risk groups, subject-dependent modeling

could provide further insights in such behavioral analysis.

Additionally, as discussed in the related work section, to the

best of our knowledge, only four studies have used video recordings

to analyze nonverbal behaviors of suicidal individuals. One study

collected publicly available videos from social media, which were

then rated by two observers for distress or suicide. While their

dataset can be shared, the suicide labels are not clinically validated.

On the other hand, the other three studies used clinically validated

datasets that contained suicidal patients, however, their datasets

are not sharable and duplicating or extending the work on
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these datasets is not feasible. Finding a mechanism for sharing

unidentifiable raw-level processed data, such as 3D facial landmarks

and 3D body joints for the visual part, and low-level descriptors

for audio, or even deep representations of the audio/video data,

could help the research community scale up the suicide screening

modeling.

Furthermore, only one study has utilized non-English speaking

suicidal patients, where six short video segments of a 1-

minute interview are collected from 20 Swedish patients.

Our dataset, even though small, is the only available dataset

on the Asian culture for suicidal individuals. Validating and

generalizing the previous findings on the Eastern culture

to this dataset enables cross-cultural comparison, and could

provide further insights on how to tackle such a global

pandemic.
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