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Introduction: The effects caused by differences in data acquisition can be

substantial and may impact data interpretation in multi-site/scanner studies using

magnetic resonance spectroscopy (MRS). Given the increasing use of multi-

site studies, a better understanding of how to account for different scanners

is needed. Using data from a concussion population, we compare ComBat

harmonization with different statistical methods in controlling for site, vendor,

and scanner as covariates to determine how to best control for multi-site data.

Methods: The data for the current study included 545 MRS datasets to measure

tNAA, tCr, tCho, Glx, and mI to study the pediatric concussion acquired across five

sites, six scanners, and two different MRI vendors. For each metabolite, the site

and vendor were accounted for in seven different models of general linear models

(GLM) or mixed-effects models while testing for group differences between the

concussion and orthopedic injury. Models 1 and 2 controlled for vendor and site.

Models 3 and 4 controlled for scanner. Models 5 and 6 controlled for site applied

to data harmonized by vendor using ComBat. Model 7 controlled for scanner

applied to data harmonized by scanner using ComBat. All the models controlled

for age and sex as covariates.

Results: Models 1 and 2, controlling for site and vendor, showed no significant

group effect in any metabolites, but the vendor and site were significant factors

in the GLM. Model 3, which included a scanner, showed a significant group effect

for tNAA and tCho, and the scanner was a significant factor. Model 4, controlling

for the scanner, did not show a group effect in the mixed model. The data

harmonized by the vendor using ComBat (Models 5 and 6) had no significant

group effect in both the GLM and mixed models. Lastly, the data harmonized

by the scanner using ComBat (Model 7) showed no significant group effect. The

individual site data suggest there were no group differences.
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Conclusion: Using data from a large clinical concussion population, different

analysis techniques to control for site, vendor, and scanner in MRS data yielded

different results. The findings support the use of ComBat harmonization for

clinical MRS data, as it removes the site and vendor effects.

KEYWORDS

multi-site, multi-scanner, multi-vendor, statistical methods, concussion, ComBat
harmonization, MR spectroscopy

1. Introduction

As with many imaging modalities, multiple sites and scanners
are used to increase sample sizes and to best sample and represent
the population in magnetic resonance spectroscopy (MRS) studies.
However, scanner effects are substantial; both between and
within vendor effects can affect MRS data (Near et al., 2013;
Považan et al., 2020; Harris et al., 2022). Additionally, scanner
updates and upgrades occur on different timelines at different
sites, further increasing the variability in measures from each
scanner/vendor/site. Given the increasing number of multi-site
studies (Volkow et al., 2018, 2020), a better understanding of how
best to account for scanner differences is needed, as these effects can
subsequently influence results and their interpretation.

It is common to control for site-related variance within
statistical models. Another method is to harmonize data, for
example, using ComBat (Harris et al., 2022). ComBat is a
harmonization approach originally developed for genetic data
(Johnson et al., 2007), which has shown promise for removing site
and scanner effects in MR imaging data, having been applied to
structural imaging (Fortin et al., 2018), diffusion imaging (Fortin
et al., 2017), and functional MRI (fMRI) (Yu et al., 2018) data.
More recently, ComBat harmonization was applied to MRS data
from 20 different sites in a healthy population (Bell et al., 2022). To
our knowledge, no one has examined and compared approaches
to account for multi-scanner MRS data in a clinical pediatric
population.

To validate and compare approaches to account for multi-
site data, one approach is to collect data on the same individuals
across all scanners used in the main study (i.e., traveling subjects).
While ideal, this experimental design needs to include many
control participants scanned at each site (Maikusa et al., 2021) to
validate approaches to account for multi-site effects. Given that the
motivation for multi-site studies is generally to increase the sample
size by recruiting at multiple cities, this becomes prohibitively
expensive. Furthermore, the true amount of intra-individual
variation is unknown. A similar challenge arises in comparing
models to account for site; there is no known truth as to the level
of site/scanner variance in the results, so comparing performance
between models is challenging. Thus, the replication of findings
in different studies examining and comparing approaches to
harmonization using available multi-site data is the best alternative
in validating techniques to control for multiple sites and scanners.

Concussion is a clinical condition that is becoming increasingly
prevalent, with many studies of concussion using MRS to
determine biochemical alterations (Joyce et al., 2022). Group

differences found in the concussion literature are often subtle or
inconsistent (Sarmento et al., 2009; Henry et al., 2010; Maugans
et al., 2012; Vagnozzi et al., 2013; Chamard et al., 2014; Schranz
et al., 2018). Many of these studies cite sample size as a limitation,
and thus multi-site studies are a desirable response to increase
recruitment, as with many other conditions.

Using data from a pediatric cohort including patients with
concussion or orthopedic injury (OI) across five sites, we
compared the use of GLM models and linear mixed-effects models,
controlling for scanner, site, and vendor, to ComBat harmonization.
ComBat was first validated on MRS data by Bell et al. (2022), who
used a healthy control, adult dataset that included 20 scanners
across 20 sites with a maximum of 12 datasets from each site.
We expand on this in the current manuscript, by comparing
approaches to account for site when examining differences between
pediatric concussion and OI groups. In concussion research, OI
is used as a comparison group to determine head injury-specific
effects rather than general effects of injury (Yeates et al., 2017).
Furthermore, the data here are from five cities with six scanners,
and they therefore span few sites, each with more data, compared
to the many sites, each contributing fewer datasets, in Bell et al.
(2022). Differences in data distribution may influence the efficacy of
accounting for site using either ComBat harmonization or different
statistical approaches.

For clarity, here site refers to a research center in a single city,
vendor is the scanner manufacturer, and scanner is an individual
MRI machine (i.e., a single site may have multiple scanners).

2. Materials and methods

2.1. Participant recruitment

The data for the current study included 545 MRS datasets
(361 concussion 184 OI) acquired across the five sites and six
scanners (one site had two scanners). A total of 287 participants
were scanned with GE scanners and 258 with Siemens scanners.
The parent study was designed to better understand pediatric
concussion [Advancing Concussion Assessment in Pediatrics (A-
CAP)] and included two groups: participants with concussion
and a comparison group with OI. Recruitment occurred at five
emergency departments in Canada (Alberta Children’s Hospital,
Calgary; Stollery Children’s Hospital, Edmonton; British Columbia
Children’s Hospital, Vancouver; Children’s Hospital of Eastern
Ontario, Ottawa; and Centre Hospitalier Universitaire Sainte-
Justine, Montreal), with an overall goal of 700 concussion
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participants and 300 OI participants within 2 years. After the initial
recruitment, the eligible participants returned 1–2 weeks following
injury for an assessment that typically included an MRI scan with
an MRS acquisition.

Briefly, all the participants were from 8 to <17 years of age. The
concussion participants were defined as children who had sustained
a blunt head trauma and presented with at least one of the following
characteristics: an observed loss of consciousness, a Glasgow Coma
Scale (GCS) score of 13 or 14, or at least one acute sign or symptom
of concussion. Signs of more severe traumatic brain injury resulted
in exclusion from the sample. The OI participants were defined as
children who sustained either an upper or lower extremity fracture,
sprain, or strain due to blunt force resulting in an Abbreviated
Injury Scale (Association for the Advancement of Automotive
Medicine, 2016) score of four or less. The OI participants were
excluded if there was any head trauma, suspicion of concussion,
or an injury requiring surgical intervention or procedural sedation
at the time of recruitment. For detailed information on the parent
study protocol, inclusion/exclusion criteria, and other data not used
in this study, see Yeates et al. (2017). The study was approved by
the research ethics board at each participating site, and informed
consent and assent was obtained from the parents/guardians and
the youth participants, respectively.

2.2. Magnetic resonance imaging and
magnetic resonance spectroscopy

All imaging was performed at 3T. A T1-weighted anatomical
acquisition was acquired for voxel placement and tissue
segmentation. Sites using a Siemens scanner acquired a 3D
T1-weighted magnetization-prepared rapid acquisition gradient
echo (MPRAGE) with TR/TE/TI = 1,880/2.9/948 ms and a field
of view of 25.6 cm2. Sites using a GE scanner acquired a 3D
T1-weighted fast spoiled gradient echo brain volume (FSPGR
BRAVO) image with a TR/TE/TI = 8,250/3.16/600 ms with a field
of view of 24 cm2. Both acquisitions used 192 slices, a flip angle of
10◦, and had a voxel size of 0.8 mm × 0.8 mm × 0.8 mm.

A short echo time point-resolved spectroscopy (PRESS)
sequence was used at all sites. PRESS was chosen as it was available
at all sites; it is also consistent with recent recommendations
from the ENIGMA MRS working group in traumatic brain injury
(Bartnik-Olson et al., 2021). The following parameters were used
in the PRESS acquisition: TE/TR = 30 ms/2,000 ms, 96 water
suppressed averages, eight unsuppressed water averages, spectral
width of 5,000 Hz (GE) or 2,000 Hz (Siemens), and number
of points = 4,096 (GE) or 2,048 (Siemens). This study placed a
2 cm × 2 cm × 2 cm voxel in the left dorsal lateral prefrontal
cortex (L-DLPFC). Each site was provided with reference images
for a standardized voxel placement. Example voxel placement
is shown in Supplementary Figure 1. The minimum reporting
standards for in vivo MRS studies is included in Supplementary
Table 1.

2.3. MRS data analysis

As the GE data had individual averages available, the pre-
processing pipeline included the following: combination of receiver

channels, removal of bad averages, retrospective shot-by-shot
frequency and phase correction, left shifting, and zero-order phase
correction, following the consensus of best practices (Near et al.,
2020). These pre-processing steps were automated and completed
using FID-A (Simpson et al., 2017). The Siemens data only had the
fully averaged scan; therefore, the only pre-processing performed
was by the vendor software prior to export of the data.

The data were then quantified relative to water with LCModel
version 6.3-1J (Provencher, 2001), which includes eddy-current
correction and water scaling. Customized basis sets for each
vendor were generated in FID-A using specific pulse shapes
and relevant parameters (e.g., spectral width and number of
points), and they included the following metabolites: alanine,
aspartate, β -hydroxybutyrate, choline, citrate, creatine (Cr),
ethanol, gamma-aminobutyric acid (GABA), glucose, glutamine,
glutamate, glycine, glycerophosphocholine, glutathione, myo-
inositol, lactate, N-acetyl-aspartate (NAA), N-acetyl-aspartyl-
glutamate (NAAG), phosphocholine, phosphocreatine (PCr),
phosphoenolamine, scyllo-inositol, and taurine. The default
macromolecular and lipid basis sets were also included in the
LCModel analysis.

Finally, outputs from LCModel were corrected for
tissue-specific relaxation and water visibility according to
recommendations and guidelines (Near et al., 2020). For each MRS
voxel, coregistration to the individual’s corresponding anatomical
T1-weighted image and segmentation into white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF) were performed
using the function “CoRegStandAlone” in Gannet (Version 3.1)
(Edden et al., 2014). Metabolite quantification accounting for
tissue-specific T1- and T2-relaxation and water density was
determined using the equations specified in Gasparovic et al.
(2006), with values for 3T taken from Gasparovic et al. (2018), as
recommended by the expert consensus (Near et al., 2020). Example
spectra from each scanner are included in Supplementary
Figure 1.

2.4. Quality control

Spectral quality was first assessed with visual inspection by one
analyzer (PLL), and a second analyzer (ADH) assisted in borderline
decisions for quality. Quantitative measures of quality included
the linewidth (the full-width half-maximum, FWHM) of the water
peak and the signal-to-noise ratio (SNR) of the NAA peak, both
determined from FID-A. Spectral fitting quality was assessed using
Cramer-Rao lower bounds generated in LCModel. The thresholds
for quality were an SNR of at least 45 and a Cramer-Rao lower
bound of less than 20% for each metabolite.

2.5. Single-site effects

There is no gold standard available to evaluate the performance
of each approach to account for site/scanner effects. However, the
performance can be partially evaluated by the consistency between
the results of the full dataset (after accounting for site/scanner)
and the results of each site independently. The effect size (Cohen’s
d) of the group (i.e., the effect size of concussion vs. OI) was

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1130188
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-14-1130188 April 19, 2023 Time: 7:24 # 4

La et al. 10.3389/fpsyg.2023.1130188

calculated for four of the sites to serve as a reference for expected
group differences in the entire sample when accounting for site.
Additionally, the effects of age and sex were explored at the
four sites to serve as a reference for their effects on metabolites
at each site. The Montreal site was excluded from single-site
analyses due to the small sample size, which was also split between
the two scanners used at this site (GE/Siemens n = 29/19),
and the disproportionate sample size between the two groups
(concussion/OI n = 37/11).

2.6. Multi-site metabolite level
comparisons

In testing for group differences, seven approaches to control
for site and vendor effects were compared for the five metabolites
of interest: tNAA, tCr, tCho, Glx, and mI (here, we describe non-
harmonized data using ComBat as metabolite concentrations). Age
and sex were controlled for in all analyses either as covariates
in the general linear model (GLM) or as fixed effects (Linear
Mixed Models). Between model fits were compared by using
the Akaike information criterion (AIC) for the GLM’s and
the mixed models.

Model 1: GLM model including covariates for vendor
(GE or Siemens) and site (five sites) applied to the
metabolite concentrations.

Metabolite concentration ∼ (Group) + (Age) + (Sex) + (Site)
+ (Vendor).

Model 2: Linear mixed-effects model including group as a
fixed effect, while site and vendor are included as random
effects on metabolite concentrations.

Quantified Metabolite concentration ∼ (Group) + (Age) +
(Sex) + Random(Site) + Random(Vendor).

Model 3: GLM model including a covariate for scanner (six in
total) applied to the metabolite concentrations.

Metabolite concentration ∼ (Group) + (Age) + (Sex) +
(Scanner).

Model 4: Linear mixed-effects model including group as a
fixed effect, while scanner is included as a random effect on
metabolite concentrations.

Metabolite concentration ∼ (Group) + (Age) + (Sex) +
Random(Scanner).

Model 5: GLM model including a covariate for site applied
to harmonized metabolite concentrations by vendor using
ComBat.

Metabolite Concentrations Harmonized by Vendor ∼ (Group)
+ (Age) + (Sex) + (Site).

Model 6: Linear mixed-effects model including group as
a fixed effect, while site is included as a random effect on
harmonized metabolite concentrations by vendor using
ComBat.

Harmonized Metabolite Concentrations by Vendor ∼ (Group)
+ (Age) + (Sex) + Random(Site).

Model 7: GLM model applied to harmonized metabolite
concentrations by scanner using ComBat.

Harmonized Metabolite Concentrations by
Scanner ∼ (Group) + (Age) + (Sex).

ComBat harmonization was performed on MRS data using the
neuroComBat function (version 1.0.5 available at https://github.
com/Jfortin1/ComBatHarmonization/tree/master/R) in R (version
4.0.4), as performed by Bell et al. (2022). ComBat operates by
estimating an empirical statistical distribution for each parameter
to correct for a chosen covariate while maintaining the variance
from other covariates. It does this by applying a linear mixed-effects
regression with terms for variables of non-biological effect (Fortin
et al., 2017). For MRS data, the individual quantified metabolite
concentrations (tNAA, tCr, tCho, Glx, and mI) are harmonized
separately according to the vendor/scanner.

Two follow-up analyses to test the effectiveness of ComBat
harmonization to remove the vendor and scanner effects were
completed for Models 5 and 7, with vendor and scanner included
as covariates in the respective GLMs. A follow-up analysis to test
the effectiveness of ComBat harmonization on removing scanner-
related effects in the linear mixed-effects models was completed. All
statistical analyses were completed using IBM SPSS 26 (IBM Corp
Released, 2019; IBM SPSS Statistics for MacOS, Version 26.0. IBM
Corp., Armonk, NY, USA).

3. Results

3.1. Demographics

The concussion group was composed of 62% male participants,
and the average age was 12.31 ± 2.46 years. The OI group was 55%
male and had an average age of 12.57 ± 2.19 years. The groups did
not significantly differ in age and sex.

3.2. MRS data characteristics

The SNR (measured using the NAA peak) had a similar range
across the injury groups, but it was significantly higher in the
concussion group compared to the OI group (p = 0.009). The
mean SNR of GE/Siemens data was 82.8/185, and the FWHM was
10.6/8.34 Hz. A full breakdown of the FWHM and SNR of each site
is displayed in Supplementary Table 2. Additionally, the mean and
standard deviations of all metabolites between the different sites is
presented in Supplementary Table 3.
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TABLE 1 Effect size estimates (Cohen’s d) of the comparison between
concussion and orthopedic injury (OI) groups for each metabolite at the
four largest sites (Calgary, Edmonton, Ottawa, Vancouver).

tNAA tCr tCho Glx mI

Site
(vendor)

N d d d d d

Calgary (GE) 138 0.103 0.133 −0.105 −0.019 −0.247

Edmonton
(Siemens)

125 −0.072 0.189 −0.069 −0.053 0.179

Ottawa
(Siemens)

114 −0.417 −0.482 −0.125 0.167 −0.147

Vancouver (GE) 120 −0.182 −0.011 −0.172 −0.016 −0.065

Note that Montreal was excluded from these estimates due to different vendors
within the same site.

When examining individual sites, no significant group
differences were found for any metabolite, as previously reported
(La et al., 2023). Given that the group comparison (concussion
vs. OI) was not significant at the four sites with the largest
recruitment, and these group comparisons had small effect sizes, we

assume there are no significant group differences in all metabolites
(Table 1).

When examining the age effects, we found that age was a
significant covariate in tNAA analyses for two sites (p < 0.05),
and one site had a trend level significance (p = 0.053). Age was
also significant in the Glx analyses for one site (p = 0.013), with
trend level significance in one other site (p = 0.058). Sex was
not a significant factor in any metabolite at any of the four sites
(p > 0.05).

3.3. Model results

Model 1: The univariate GLM applied to the metabolite
concentrations and including covariates for site and vendor showed
no significant effect of group (concussion vs. OI) in any metabolite.
The vendor was a significant factor for each metabolite, and the
site was significant for tNAA, tCho, and Glx. Age was significant
for tNAA and Glx. Sex was not significant in any metabolite
models. Additional model details are shown below inTable 2. These
results were previously reported in La et al. (2023). Each metabolite

TABLE 2 Summary of the independent univariate general linear model (GLM) models for each metabolite (tNAA, tCr, tCho, Glx, and mI) to investigate
group differences (concussion vs. OI) in the metabolite concentrations (Model 1).

tNAA tCr tCho Glx mI

AIC = −210.71 AIC = −507.86 AIC = −1,595 AIC = 721.4 AIC = −308.5

Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.007 (0.075) −0.09, 0.928 0.027 (0.057) 0.48, 0.635 −0.026 (0.021) −1.22, 0.223 0.096 (0.176) 0.545, 0.586 0.012 (0.069) 0.173, 0.863

Age 0.069 (0.015) 4.6, 0.0001 0.006 (0.011) 0.497, 0.619 −0.004 (0.004) −0.95, 0.345 −0.117 (0.035) −3.34, 0.001 0.0001 (0.014) −0.03, 0.978

Sex −0.009 (0.072) −0.13, 0.896 −0.059 (0.055) −1.08, 0.281 −0.003 (0.02) −0.15, 0.882 0.325 (0.169) 1.93, 0.054 −0.008 (0.066) −0.123, 0.902

Site −0.065 (0.023) −2.8, 0.005 0.03 (0.018) 1.73, 0.085 −0.025 (0.007) −3.77, 0.0001 −0.128 (0.055) −2.35, 0.019 0.016 (0.021) 0.753, 0.452

Vendor −2.826 (0.071) −39.9, 0.0001 −0.673 (0.054) −12.5, 0.0001 −0.383 (0.02) −19.3, 0.0001 −3.927 (0.167) −23.6, 0.0001 −1.446 (0.065) −22.3, 0.0001

The general linear model (GLM) includes covariates for age, sex, site (five sites), and vendor (two vendors). The p-values in bold were considered statistically significant at p < 0.05.

TABLE 3 Details of the linear mixed-effects model with metabolites of interest (tNAA, tCr, tCho, Glx, and mI) as the dependent variable.

tNAA tCr tCho Glx mI

AIC = 1,345 AIC = 1,043 AIC = −24.47 AIC = 2,233 AIC = 1,250

Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p

Fixed effects

Group −0.02 (0.08) −0.282, 0.778 0.01 (0.06) 0.239, 0.812 −0.03 (0.02) −1.49, 0.138 0.05 (0.17) 0.274, 0.784 0.004 (0.07) 0.05, 0.957

Age 0.07 (0.01) 4.87, 0.0001 0.01 (0.01) 0.642, 0.521 −0.002 (0.004) −0.685, 0.493 −0.11 (0.03) −3.24, 0.001 −0.0003 (0.01) −0.03, 0.980

Sex 0.003 (0.07) 0.036, 0.97 0.05 (0.05) 0.966, 0.335 −0.00009 (0.02) −0.01, 0.996 −0.35 (0.16) −2.19, 0.029 0.006 (0.07) 0.09, 0.930

Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P

Random effects

Site 0.03 (0.03) 0.280 0.02 (0.02) 0.254 0.003 (0.002) 0.262 0.62 (0.48) 0.197 0.003 (0.006) 0.649

Vendor 4.08 (5.79) 0.481 0.22 (0.32) 0.494 0.06 (0.09) 0.486 8.11 (11.6) 0.485 1.03 (1.46) 0.481

The fixed effects were group (concussion vs. OI), age, and sex. Site and vendor were included as random effects in this model (Model 2). The p-values in bold were considered statistically
significant at p < 0.05.
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TABLE 4 Summary of the independent univariate general linear model (GLM) models for each metabolite to investigate group differences (concussion
vs. OI) in tNAA, tCr, tCho, Glx, and mI (Model 3).

tNAA tCr tCho Glx mI

AIC = 534.7 AIC = −372 AIC = −1,312 AIC = 1,105 AIC = 45.96

Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.372 (0.15) −2.52, 0.012 −0.06 (0.064) −0.93, 0.635 −0.075 (0.027) −2.75, 0.006 −0.408 (0.25) −1.64, 0.102 −0.176 (0.1) −1.86, 0.063

Age 0.078 (0.03) 2.64, 0.008 0.008 (0.013) 0.63, 0.528 −0.003 (0.005) −0.49, 0.624 −0.103 (0.05) −2.08, 0.038 0.004 (0.019) 0.23,0.818

Sex 0.18 (0.14) 1.27, 0.206 −0.013 (0.062) −0.20, 0.840 0.022 (0.026) 0.855, 0.393 0.588 (0.24) 2.46, 0.014 0.09 (0.09) 0.993, 0.321

Scanner −0.08 (0.035) −2.26, 0.024 0.019 (0.015) 1.25, 0.212 −0.022 (0.006) −3.38, 0.001 −0.127 (0.06) −2.13, 0.033 −0.002 (0.023) −0.101, 0.920

The model includes covariates for age, sex, and scanner (six scanners). The p-values in bold were considered statistically significant at p < 0.05.

TABLE 5 Details of the linear mixed-effects model with metabolites of interest (tNAA, tCr, tCho, Glx, and mI) as the dependent variable.

tNAA tCr tCho Glx mI

AIC = 1,365 AIC = 1,051 AIC = −14.78 AIC = 2,246 AIC = 1,269

Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p

Fixed effects

Group −0.03 (0.08) 0.132, 0.717 −0.36 (0.06) 0.21, 0.833 −0.03 (0.02) −1.53, 0.127 0.04 (0.17) 0.242, 0.809 −0.003 (0.07) −0.04, 0.968

Age 0.07 (0.01) 23.5, 0.0001 4.84 (0.01) 0.67, 0.501 −0.003 (0.004) 0.46, 0.463 −0.11 (0.03) −3.23, 0.001 0.001 (0.01) 0.105, 0.917

Sex 0.003 (0.07) 0.002, 0.966 0.04 (0.05) 0.93, 0.353 −0.001 (0.02) −0.07, 0.944 −0.35 (0.16) −2.19, 0.03 −0.001 (0.07) −0.02, 0.985

Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P

Random effects

Scanner 2.47 (1.57) 0.116 0.15 (0.1) 0.133 0.04 (0.03) 0.121 5.4 (3.5) 0.119 0.6 (0.38) 0.12

The fixed effects were group (concussion vs. OI), age, and sex. Scanner was included as a random effect in this model (Model 4). The p-values in bold were considered statistically significant at
p < 0.05.

TABLE 6 Summary of the independent univariate general linear model (GLM) models for each metabolite to investigate group differences (concussion
vs. OI) in tNAA, tCr, tCho, Glx, and mI.

tNAA tCr tCho Glx mI

AIC = −213.3 AIC = −512 AIC = −1,597 AIC = 715.4 AIC = −328.8

Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.01 (0.07) −0.15, 0.881 0.03 (0.06) 0.442, 0.659 −0.02 (0.02) −1.16, 0.248 0.091 (0.17) 0.523, 0.602 −0.01 (0.07) −0.07, 0.942

Age 0.07 (0.02) 4.66, 0.0001 0.01 (0.01) 0.474, 0.635 −0.004 (0.004) −0.92, 0.357 −0.1 (0.04) −3.41, 0.001 0.0001 (0.01) 0.01, 0.993

Sex −0.01 (0.07) −0.097, 0.923 −0.06 (0.05) −1.07, 0.284 −0.003 (0.02) −0.17, 0.867 0.33 (0.17) 1.96, 0.051 −0.02 (0.06) −0.27, 0.788

Site −0.06 (0.02) −2.55, 0.011 0.03 (0.02) 1.79, 0.074 −0.02 (0.01) −3.48, 0.001 −0.15 (0.05) −2.7, 0.007 0.01 (0.02) 0.69, 0.49

The data were harmonized by vendor using ComBat (two vendors) (Model 5). This model has covariates for age, sex, and site. The p-values in bold were considered statistically significant at
p < 0.05.

models’ fit was measured via the AIC value, as demonstrated in
Table 2.

Model 2: The linear mixed-effects model showed that group was
not significant for any metabolite and that age had significant effects
on tNAA levels, while age and sex had significant effects for Glx
levels (p < 0.05). The random effects of the site and vendor did not
significantly impact the models (p > 0.05). The full model results
are shown in Table 3. Each metabolite models’ fit was measured via
the AIC value, as demonstrated in Table 3.

Model 3: The univariate GLM applied to the metabolite
concentrations and including the scanner as a covariate showed
significant group differences in tNAA and tCho levels. tCr
and Glx did not demonstrate significant group differences, and
while not significant, the group difference in mI approached
significance (Table 4). The scanner was a significant factor
for tNAA, tCho, and Glx. Age was significantly associated
with tNAA and Glx, and sex had significant effects for Glx.
The model details are shown in Table 4. Each metabolite
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FIGURE 1

Violin plots showing metabolite concentrations pre- and
post-ComBat harmonization by vendor (GE and Siemens) for tNAA,
tCr, tCho, Glx, and mI. The data are separated by the two clinical
groups: concussion and orthopedic injury.

models’ fit was measured via the AIC value, as demonstrated
in Table 4.

Model 4: The linear mixed-effects model showed that the group
was not significant for any metabolite, and tNAA had significant
age effects, while Glx had significant age and sex effects (p < 0.05).
The random effect of the scanner did not significantly impact any
metabolites (p > 0.05). The full model results are shown in Table 5.
Each metabolite models’ fit was measured via the AIC value, as
demonstrated in Table 5.

Model 5: The univariate GLM applied to metabolite
concentrations harmonized by the vendor showed no significant

group differences in any metabolite. Site was a significant factor
for tNAA, tCho, and Glx. Age was significant for the tNAA and
Glx models. Sex did not significantly impact any metabolites
in this model. Further model details are shown in Table 6.
Each metabolite models’ fit was measured via the AIC value, as
demonstrated in Table 6. Data pre- and post-harmonization by the
vendor are presented in Figure 1. The follow-up GLM testing for
vendor effects in the data harmonized by the vendor showed no
significant effect of the vendor in any metabolite model, though
the site was significant for tNAA and Glx (Table 7, Figure 1, and
Supplementary Figure 2).

Model 6: The linear mixed-effects model showed that the group
was not significant for any metabolite, and tNAA had significant
age effects, while Glx had significant age and sex effects (p < 0.05).
The random effect of the site did not significantly impact any
harmonized metabolite data (p > 0.05). The full model results are
shown in Table 8. Each metabolite models’ fit was measured via the
AIC value, as demonstrated in Table 8.

Model 7: The data harmonized by the scanner are shown in
Figure 2. The univariate GLM applied to the data harmonized
by the scanner showed no significant group differences for any
metabolites. Age was significantly associated with tNAA and Glx
levels. Sex was significantly related to Glx levels. Further model
details are shown in Table 9. Each metabolite models’ fit was
measured via the AIC value, as demonstrated in Table 9. The data
both pre- and post-harmonization by the scanner are shown in
Figure 2 and Supplementary Figure 2. In the follow-up analysis,
data harmonized by the scanner had no scanner effects, as shown
in Table 10, Figure 2.

The follow-up analysis of a linear mixed-effects model of
ComBat-harmonized data by the scanner, including scanner as a
covariate, showed no significant effect of the scanner (p < 0.05),
and the group also did not have a significant effect.

4. Discussion

In a large pediatric concussion and OI control dataset, we
have demonstrated that different approaches to accounting for
sites/scanners/vendors can affect MRS results and interpretation.
Specifically, the GLM model testing for metabolite differences
between groups (concussion vs. OI) that included scanner as a
covariate (Model 3) showed a significant group effect for tNAA and
tCho. tNAA and tCho were significantly lower in the concussion
group compared to the OI group. Given the absence of a group
effect in all other models and the analyses at each individual site, we
conclude that group does not have a significant effect in this dataset
and that the significant group effect seen when including scanner as
a covariate (Model 3) was spurious. Additionally, the GLM Model
3 had the highest AIC for each metabolite in comparison to GLM
models 1, 5, and 7, indicating a worse model fit. The linear mixed-
effects models all performed similarly, although models 2 and 6 had
similar AIC values, and model 4 had the largest AIC value. The best
model determined from AIC appears to be GLM model 7 or the
mixed-effects model 6, though similar results were also achieved in
other models (Model 1 and Model 2). This work demonstrates that
caution is needed when controlling for scanner/site/vendor, as this
can have substantial implications on the results.
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TABLE 7 Summary of the independent univariate general linear model (GLM) models for each metabolite (tNAA, tCr, tCho, Glx, and mI) harmonized by
vendor to investigate group differences (concussion vs. OI).

tNAA tCr tCho Glx mI

Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.01 (0.08) −0.17, 0.862 0.03 (0.06) 0.457, 0.648 −0.03 (0.02) −1.17, 0.242 0.1 (0.18) 0.51, 0.608 −0.01 (0.07) −0.07, 0.946

Age 0.07 (0.02) 4.66, 0.0001 0.01 (0.01) 0.471, 0.638 −0.004 (0.004) −0.92, 0.359 −0.12 (0.04) −3.41, 0.001 0.0001 (0.01) 0.008, 0.994

Sex −0.01 (0.07) −0.08, 0.934 −0.06 (0.05) −1.08, 0.281 −0.003 (0.02) −0.15, 0.878 0.33 (0.17) 1.95, 0.051 −0.02 (0.07) −0.27, 0.788

Site −0.06 (0.02) −2.55, 0.011 0.03 (0.02) 1.79, 0.074 −0.02 (0.01) −3.48, 0.001 −0.15 (0.05) −2.69, 0.007 0.01 (0.02) 0.69, 0.490

Vendor 0.01 (0.07) 0.203, 0.839 −0.01 (0.05) −0.154, 0.878 0.004 (0.02) 0.2, 0.842 0.01 (0.17) 0.04, 0.967 −0.002 (0.06) −0.03, 0.979

The model includes covariates for age, sex, site (five sites), and vendor (two vendors). This model shows that the effect of vendor is entirely removed with the inclusion of ComBat-
harmonized data by vendor. The p-values in bold were considered statistically significant at p < 0.05.

TABLE 8 Details of the linear mixed-effects model with metabolites of interest (tNAA, tCr, tCho, Glx, and mI) harmonized by vendor using ComBat as
the dependent variable.

tNAA tCr tCho Glx mI

AIC = 1,342 AIC = 1,037 AIC = −28.69 AIC = 2,230 AIC = 1,228

Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p Estimate
(SE)

t, p

Fixed effects

Group −0.03 (0.07) −0.35, 0.725 0.011 (0.06) 0.2, 0.841 −0.03 (0.02) −1.4, 0.164 0.05 (0.17) 0.27, 0.788 −0.008 (0.07) −0.12, 0.901

Age 0.07 (0.01) 4.89, 0.0001 0.007 (0.01) 0.63, 0.53 −0.003 (0.004) −0.64, 0.521 −0.11 (0.03) −3.3, 0.001 −0.0008 (0.01) −0.06, 0.954

Sex −0.0009 (0.07) −0.01, 0.99 0.05 (0.05) 0.97, 0.331 0.001 (0.02) 0.05, 0.957 −0.36 (0.16) −2.2, 0.027 0.02 (0.06) 0.27, 0.787

Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P Estimate
(SE)

P

Random effects

Site 0.02 (0.02) 0.281 0.02 (0.02) 0.247 0.002 (0.002) 0.252 0.57 (0.43) 0.192 0.0004 (0.004) 0.915

The fixed effects were group (concussion vs. OI), age, and sex. Site was included as a random effect in this model (Model 6). The p-values in bold were considered statistically significant at
p < 0.05.

Despite the increasing standardization of imaging and MRS
protocols, acquisition schemes can differ by vendor, for example,
the pulse shapes and minimum achievable echo time (Harris et al.,
2017, 2022). Furthermore, differences exist between scanners of
the same vendor, for example, eddy currents and their impact on
MRS data (Harris et al., 2022). These differences introduce the need
to control for site, vendor, and/or scanner. For multi-site (multi-
scanner) studies, controlling for site, vendor, and/or scanner as
covariates is a common approach. While statistical theory suggests
these methods should be effective to account for the variance
associated with multiple scanners, our results suggest they can lead
to erroneous results and interpretations. In this study, we found
that controlling for scanner (i.e., the individual machine) within an
GLM model produced different results than when controlling for
site and vendor.

ComBat is a technique that harmonizes data for a chosen
parameter (e.g., scanner) by estimating an empirical statistical
distribution of multiple defined parameters (e.g., scanner, age, sex).
It has the advantages of maintaining measures with meaningful
values (quantified metabolite levels) and maintaining biological
variability. Previous work in a healthy adult population of MRS
data from 20 different sites and three different MRI vendors
found that site and vendor effects were removed following ComBat

harmonization (Bell et al., 2022). The current study also supports
the use of ComBat for MRS data and extends these findings in a
clinical pediatric population involving two different injury groups
(concussion and OI). When harmonizing by vendor, a significant
effect of site remained, though the effect of vendor was removed.
This is perhaps not surprising given the known differences between
MRS data collected on different scanners (Harris et al., 2022), and
it supports the use of ComBat harmonization at the scanner level,
unless the site effect is meaningful for a particular study. Replicating
the results of Bell et al. (2022) in a different pediatric clinical dataset
is important, as it confirms the utility of ComBat harmonization
for MRS data, which is in line with recent commentaries on
the importance of reproducibility in science (Stoddart, 2016;
Kozlov, 2022).

In addition to removing site/scanner effects, it is important
to maintain biological effects when harmonizing data. For that
purpose, age and sex effects were examined in all the analyses.
Some metabolites are known to be affected by development
and are thus related to age (Cichocka and Bereś, 2018). tNAA
increases with age in children and youth (Blüml and Panigrahy,
2013; Holmes et al., 2017; La et al., 2023), while Glx decreases
with age in children and youth (Blüml and Panigrahy, 2013;
Holmes et al., 2017; La et al., 2023). Overall, these expected age
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FIGURE 2

Violin plots showin gmetabolite concentrations and data harmonized by the six different scanners for tNAA, tCr, tCho, Glx, and mI. The data are
separated by the two clinical outcome groups: concussion and orthopedic injury.

effects were seen in the individual site data. These age effects
on tNAA and Glx were preserved in all seven models, including
the ComBat-harmonized data. Other metabolites that were not

related to age (tCr, tCho, and mI) retained non-significance
in all the models. Glx was higher in male participants in
Models 2, 3, 4, 6, and 7. Previous studies have reported sex
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TABLE 9 Summary of the independent univariate general linear model (GLM) models for each metabolite to investigate group differences (concussion
vs. OI) in tNAA, tCr, tCho, Glx, and mI.

tNAA tCr tCho Glx mI

AIC = −235.6 AIC = −538.3 AIC = −1,614 AIC = 711.7 AIC = −338.1

Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.03 (0.07) −0.43, 0.669 0.02 (0.1) 0.34, 0.737 −0.03 (0.02) −1.36, 0.174 0.03 (0.17) 0.18, 0.855 −0.03 (0.07) −0.398, 0.691

Age 0.08 (0.01) 5.2, 0.0001 0.01 (0.01) 0.65, 0.514 −0.002 (0.004) −0.53, 0.594 −0.11 (0.03) −3.3, 0.001 0.002 (0.01) 0.126, 0.900

Sex −0.01 (0.1) −0.09, 0.926 −0.06 (0.05) −1.1, 0.267 0.003 (0.02) 0.132, 0.895 0.34 (0.16) 2.1, 0.036 −0.01 (0.06) −0.1, 0.920

Metabolites were harmonized by scanner (six scanners) using ComBat (Model 7). This model has covariates for age and sex. The p-values in bold were considered statistically significant at
p < 0.05.

TABLE 10 Summary of the independent univariate general linear model (GLM) models for each metabolite (tNAA, tCr, tCho, Glx, and mI) harmonized by
scanner to investigate group differences (concussion vs. OI).

tNAA tCr tCho Glx mI

Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p = Estimate
(SE)

t, p =

Covariates

Group −0.03 (0.07) −0.396, 0.692 0.02 (0.06) 0.34, 0.735 −0.03 (0.02) −1.36, 0.173 0.03 (0.17) 0.165, 0.869 −0.03 (0.07) −0.397, 0.691

Age 0.08 (0.02) 5.2, 0.0001 0.01 (0.01) 0.656, 0.512 −0.002 (0.004) −0.54, 0.586 −0.11 (0.03) −3.3, 0.001 0.002 (0.01) 0.12, 0.901

Sex −0.01 (0.07) −0.1, 0.936 −0.06 (0.05) −1.1, 0.268 0.003 (0.02) 0.129, 0.897 0.33 (0.16) 2.1, 0.037 −0.01 (0.1) −0.1, 0.920

Scanner 0.011 (0.02) 0.61, 0.545 0.001 (0.01) 0.07, 0.943 −0.001 (0.01) −0.125, 0.901 −0.01 (0.04) −0.34, 0.731 0.0001 (0.02) −0.01, 0.995

The model includes covariates for age, sex, and scanner (six scanners). This model shows that the effect of scanner is entirely removed with the inclusion of ComBat-harmonized data by scanner.
The p-values in bold were considered statistically significant at p < 0.05.

effects in Glx (O’Gorman et al., 2011; Hädel et al., 2013),
but these differences are not yet fully understood, and further
studies are needed to confirm this relationship in pediatrics. In
the single-site effect analyses, there were no sex-related effects
observed.

4.1. Limitations and future directions

The current work has limitations. The first is that ComBat
only allows for the harmonization of one factor at a time. In
some cases, it is desirable to harmonize by more than one
factor. For example, in our data, the site and vendor are two
factors that were considered. To simultaneously address both,
we used a combination variable, “scanner,” and controlled for
it in the statistical analyses (GLM and mixed-effect models)
and harmonized for it with ComBat. Secondly, ComBat uses
the full dataset in the harmonization process, and new data
cannot be added without performing harmonization on the
new full dataset. This is because ComBat takes the empirical
distribution of the full dataset and applies this to each sample.
It is therefore not possible to add single datasets or to directly
compare the numerical results of ComBat-harmonized data
with other studies or datasets. Beyond these general limitations
of ComBat, in this study, there were no group differences.
While these results broadly suggest that caution is warranted
in accounting for site/scanner effects, we cannot definitively
conclude from this data that when true group differences exist,
different approaches to account for multi-site/scanner effects could

mask these effects. Regardless, the importance of thoroughly
investigating the approach to account for multi-site/scanner effects
remains an important finding, as erroneous interpretations may
result. One recommendation for future studies is to investigate
the consistency of the results when different approaches to
account for site are used and also the consistency with the
individual site data. In the future, machine learning may provide
an alternative approach to harmonize or control for multi-
site/scanner effects in MRS studies (Harris et al., 2022). Lastly,
this work is limited to a single clinical research study; it contrasts
two groups with data from a single region, the L-DLPFC.
Further research implementing approaches to account for multi-
site/scanner studies, including statistical approaches and ComBat
harmonization, that consider MRS data in different groups,
brain regions, and acquisition protocols will provide important
opportunities to replicate these results and explore the flexibility of
these tools.

5. Conclusion

In a large clinical population, we found that different analysis
techniques used to control for the site and scanner in MRS
data could yield different results. Therefore, we recommend
ensuring that there is consistency between single scanner data
and different approaches to account for the scanner in multi-
scanner studies. We have also demonstrated that ComBat
harmonization can control for site (or vendor or scanner) effects
in clinical MRS data.
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