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Lacustrine shale in continental rift basins is complex and features a variety of
mineralogical compositions and microstructures. The lithofacies type of shale,
mainly determined by mineralogical composition and microstructure, is the most
critical factor controlling the quality of shale oil reservoirs. Conventional
geophysical methods cannot accurately forecast lacustrine shale lithofacies
types, thus restricting the progress of shale oil exploration and development.
Considering the lacustrine shale in the upper Es4 member of the Dongying Sag in
the Jiyang Depression, Bohai Bay Basin, China, as the research object, the
lithofacies type was forecast based on two machine learning methods: support
vector machine (SVM) and extreme gradient boosting (XGBoost). To improve the
forecast accuracy, we applied the following approaches: first, using core and thin
section analyses of consecutively cored wells, the lithofacies were finely
reclassified into 22 types according to mineralogical composition and
microstructure, and the vertical change of lithofacies types was obtained.
Second, in addition to commonly used well logging data, paleoenvironment
parameter data (Rb/Sr ratio, paleoclimate parameter; Sr %, paleosalinity
parameter; Ti %, paleoprovenance parameter; Fe/Mn ratio, paleo-water depth
parameter; P/Ti ratio, paleoproductivity parameter) were applied to the forecast.
Third, two sample extraction modes, namely, curve shape-to-points and point-
to-point, were used in the machine learning process. Finally, the lithofacies type
forecast was carried out under six different conditions. In the condition of
selecting the curved shape-to-point sample extraction mode and inputting
both well logging and paleoenvironment parameter data, the SVM method
achieved the highest average forecast accuracy for all lithofacies types,
reaching 68%, as well as the highest average forecast accuracy for favorable
lithofacies types at 98%. The forecast accuracy for all lithofacies types improved by
7%–28% by using both well logging and paleoenvironment parameter data rather
than using one or the other, and was 7%–8% higher by using the curve shape-to-
point sample extraction mode compared to the point-to-point sample extraction
mode. In addition, the learning sample quantity and data value overlap of different
lithofacies types affected the forecast accuracy. The results of our study confirm
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that machine learning is an effective solution to forecast lacustrine shale lithofacies.
When adoptingmachine learningmethods, increasing the learning sample quantity
(>45 groups), selecting the curve shape-to-point sample extraction mode, and
using bothwell logging and paleoenvironment parameter data are effective ways to
improve the forecast accuracy of lacustrine shale lithofacies types. Themethod and
results of this study provide guidance to accurately forecast the lacustrine shale
lithofacies types in new shale oil wells and will promote the harvest of lacustrine
shale oil globally.

KEYWORDS

continental rift basin, lacustrine shale, lithofacies classification, machine learning,
lithofacies types forecast

1 Introduction

Shale oil has attracted increasing attention as an unconventional
resource. It can be produced from both marine and lacustrine shales.
Marine shale is generally developed in a stable and gentle tectonic
environment, has a few types of lithofacies (Loucks and Ruppel, 2007;
Abouelresh et al., 2020), and is widely distributed (Li et al., 2019). In
comparison, lacustrine shale formed in a continental rift basin has
various types of lithofacies owing to paleogeological conditions such
as a relatively small lake area, multiple material sources, and frequent
climate changes (Wang et al., 2016; Jia et al., 2018; Li et al., 2020).
Moreover, the type and thickness of lithofacies change frequently
across layers (Liang et al., 2017), which presents unprecedented
challenges to the forecasting of favorable lithofacies types and the
selection of shale oil targets (Cao et al., 2019). Conventional well
logging interpretation can forecast shale mineral components by
calibrating with X-ray mineral content analysis; however, it cannot
accurately forecast the microstructure (mineral distribution and
arrangement) of shales or find favorable lithofacies. The lithofacies
type is mainly determined by mineralogical composition and
microstructure, which not only determine shale oil reservoir
performance but also affects the fracture characteristics of shales
(Niu et al., 2023). The mineralogical composition and microstructure
affect the pore development and the brittleness of shale; therefore, the
accurate determination of lithofacies type is closely related to the
target layer selection of shale oil horizontal wells and the design of
hydraulic fracturing schemes.

Machine learning technology currently provides new ideas and
methods to solve interpretation ambiguity and uncertainty in
geological evaluations, which is a new field that urgently requires
exploration (Zhou et al., 2018; Li et al., 2021). As available geological
data grow exponentially, research on big data mining and machine
learning in oil exploration and development is gradually increasing.
Naeini and Prindle (2018) used examples to demonstrate the
application of machine learning in petroleum geology research,
such as document and image segmentation, well-logged facies
recognition, petrophysical logging prediction, and fault
interpretation. Bergen et al. (2019) systematically analyzed the
application of data-driven machine learning methods in Earth
science, and Alkinani et al. (2019) summarized the application of
artificial neural networks in the oil and gas industry. Regarding
mineral and complex lithology identification, some researchers have
achieved good results using machine learning (Carey et al., 2015;
Dev and Eden, 2019; Guo, 2021). Machine learning can also be used

to identify the diagenetic facies of tight sandstone, with good results
(Li et al., 2022; Zhang et al., 2022).

In shale research, machine learning has been used to identify
marine shale lithofacies (Bhattacharya and Carr, 2019), sweet spots
(Tahmasebi et al., 2017), reservoir potential (Ali et al., 2022), and
total organic carbon content forecasts (Shi et al., 2016), and to model
shale gas production (Kalantari-Dahaghi et al., 2015; Belyadi, 2021).
However, no effective method or machine learning-based solution
currently exists to forecast lacustrine shale lithofacies types in
continental rift basins.

The Jiyang Depression is a typical Cenozoic continental rift basin
in eastern China that is rich in shale oil, and many shale oil wells have
been drilled with cores. Conventional logging interpretation methods
to select target layers in the early stages of shale oil exploration are
poor, and alternative methods for lithofacies types forecast and
accurately identifying target layers are urgently needed. This study
on the upper Es4 member of the Dongying Sag in the Jiyang
Depression is based on core observation, thin-section
identification, and elemental and well logging analysis. This work
performed lithofacies type forecast modeling using machine learning
methods, compared the modeling results, and discussed factors
affecting the accuracy of lithofacies type forecasts. As the
exploration area has sufficient test data to establish an effective
learning sample database, this work provides guidance to forecast
the lithofacies types of shale strata with strong heterogeneity.

2 Geological background

The Bohai Bay Basin is a continental rift basin located in eastern
China and contains a series of Paleogene-rifted depressions, namely,
the Liaohe, Liaodong Bay, Bozhong, Jiyang, Huanghua, Jizhong, and
Linqing Depression (Figure 1A; Liang et al., 2016). Dongying Sag
developed during the Cenozoic rifting stage, in the southeastern of
the Jiyang depression of the Bohai Bay Basin, and covers an area of
5,700 km2. It can be subdivided into four subsags (Minfeng, Lijin,
Niuzhuang, and Boxing subsags) by several normal faults and the
central anticlinal belt (Figure 1B).

The Dongying Sag underwent rifting during the Paleogene
period and a subsidence stage during the Neogene and
Quaternary periods and was filled with a thick Cenozoic
sediment sequence such as the Paleogene Kongdian (Ek),
Shahejie (Es), and Dongying (Ed) formations (Figure 1C). The Es
Formation is the main source rock and reservoir in the basin and is
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further divided into four members, Es4, Es3, Es2, and Es1 (from base
to top). During the sedimentary period of Ek formation, the
Dongying Sag was in the initial stage of rifting (Rifting I) due to
crustal extension caused by an upwelling of the deep mantle and
volcanic eruptions. The lacustrine basin had a shallow-water
environment and a semi-arid climate, resulting in the deposition
of red mudstone that contained gypsum salt. During the
sedimentary period of Es4 (Rifting II), the climate gradually
changed to a warm–semi-arid condition and the lake level rose,
resulting in the deposition of black oil shales (Figure 1C). The upper
part of the Es4 member (Es4

u) consists of gray to black shales,
calcareous shales, and mudstones. During the Es3 period, the
lacustrine basin witnessed rift spreading (Rifting III), causing
lake area expansion and water depth increase, resulting in the
deposition of dark mudstones and calcareous shales. During the
Es2 to Ed period, the lacustrine basin witnessed the shrinking of the
rift (Rifting IV) and deposition of lacustrine delta strata.

At present, the shale oil wells drilled in the Es4
u member of the

Dongying Sag have achieved industrial oil flow. The member mainly
comprises ~300 m thick lacustrine shales and gradually becomes a
very important exploration target for shale oil (Wang et al., 2019).
During the early exploration for shale oil, a few exploratory wells
(i.e., FY1, NY1, and LY1) (Figure 1B) drilled through the Es4

u

member, and a large amount of basic data was obtained. This
study primarily focused on the Es4

u member to forecast
lacustrine shale lithofacies types based on machine learning.

3 Lithofacies classification

Lithofacies classification is the basis for building a learning sample
database for machine learning. Recent studies have shown that the shale
in the Dongying Sag can be divided into three major sedimentary
categories (Wang et al., 2016). However, a unified understanding of
the origin and sedimentary environment of each lithofacies is lacking.
Well FY1 has a continuous core in the upper Es4 unit (from 3,245 to
3,440m) of the Dongying Sag. In this study, the 195m core was carefully
observed and a total of 753 thin sections were made to identify the rock
composition and microstructure, with an average of 1 thin section per
0.25 m. Core observation and thin-section identification of the typical
components and sedimentary structures of shale can reflect the
characteristics of the sedimentary environment. Finally, according to
the characteristics of themineralogical compositions andmicrostructures,
the shale lithofacies in the upper Es4 unit of Well FY1 were divided into
six major types and 22minor types. A detailed description of this process
is as follows.

FIGURE 1
Location map (A), structural map and key well locations of the Dongying Sag, (B) and its stratigraphic column (C).

Frontiers in Earth Science frontiersin.org03

Fang et al. 10.3389/feart.2023.1047981

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1047981


The lithofacies deposited on lower coastal slopes include
massive/layered silty fine sandstone (LL1), massive/layered
cryptocrystalline granulated dolomite (LL2), and massive/layered
cryptocrystalline granulated limestone (LL3). LL1 has a massive or
layered structure and granular texture. The clastic particles are
primarily very fine sand with a small amount of silt. The clastic
components are mainly quartz and feldspar, as well as crystalline
rock fragments, mica, and calcite. The intergranular fillings are
mainly clay minerals, dolomite, and calcite. LL2 and LL3 have
massive or layered structures and granular textures dominated by
sand-sized grains and partial silt-sized grains. The grains include
cryptocrystalline dolomitic and limy silt-to-sand sized allochem,
oolites, and bioclasts with a certain amount of terrigenous clasts.

The lithofacies deposited in the upper shallow lake slope included
layered silty mudstone muddy siltstone (US1), layered muddy
cryptocrystalline dolomite bearing algal remains (US2), and layered
ostracod-bearing muddy cryptocrystalline limestone (US3). US1 has a
layered and partially laminated structure with relatively straight bedding
and lamina boundaries. The silt is mixed with mud. US2 has a layered
structure and is composed mainly of dolomite, calcite, mud, and small
amounts of terrigenous clasts. The mud is uniformly mixed with
dolomite. Deformed algal bands and algal remains filled completely
by single-crystal calcite were also observed. US3 has a layered
structure and is composed mainly of grains, calcite, mud, and silt.
The grains are mainly ostracod fragments with a small amount of
remaining microcrystalline-cryptocrystalline limy algal. The ostracod
fragments show a significant directional arrangement.

The lithofacies deposited on the middle shallow lake slopes
include layered mudstone (MS1), layered cryptocrystalline
limestone (MS2), layered ostracod- and silt-bearing mudstone
(MS3), and layered cryptocrystalline dolomite (MS4). MS1 has a
layered structure and muddy texture. It is mainly composed of mud
with a small amount of silt and occasional oriented ostracod
fragments. MS2 and MS4 have layered structures. They are
composed of cryptocrystalline lime or dolomite and a small
amount of mud. MS2 and MS4 are generally homogeneous and
not subjected to hydrodynamic action. MS3 has a layered structure
and muddy texture. It is primarily composed of mud with silts and
ostracod fragments oriented along the bedding plane.

The lithofacies deposited in the lower shallow lake slope include
lenticular laminated limestone-mudstone (LS1), lenticular laminated
dolomite-limestone (LS2), lenticular imbricate limy-silty-muddy
peperite (LS3), and lenticular Ostracoda-bearing limestone-mudstone
(LS4). LS1 exhibits a lenticular structure. Micritic or powder crystal
limes are lenticular, banded, and wrapped in mud with small amounts of
silt. LS2 also exhibits a lenticular structure. The micritic or powdered
crystal limes are lenticular, banded, and wrapped in clay and dolomite
layers. Dolomite displays a micritic texture with a uniform crystal size.
LS3 also has a lenticular structure. The micritic or powdered crystal limes
are lenticular, banded, and filled with or wrapped in mud and silt.
LS4 features lenticular lamina. Micritic or powder crystal limes are
lenticular, banded, and wrapped in mud containing a small amount
of silt. Oriented ostracod fragments are also observed in LS4.

The lithofacies deposited in the semi-deep lake include
laminated muddy cryptocrystalline limestone (SD1), laminated
muddy sparite limestone (SD2), laminated muddy
cryptocrystalline dolomite (SD3), and laminated dolomitic
muddy cryptocrystalline limestone (SD4). SD1 and SD3 have

laminated structures with fine, straight laminae. The lamination
is mainly displayed in the interbedding of organic-rich clayey lamina
and limy or dolomitic lamina. The laminae are evenly distributed
with clear boundaries. The lamina is 0.05–0.15 mm thick. The limy
and dolomitic materials have micritic or powder crystal textures.
SD2 has the same structure and composition as SD1 but includes
limy laminae with medium to fine crystal texture and a higher
content of organic matter in the interbedded clayey laminae. The
medium-to-fine crystal limy lamina was recrystallized from the
micritic limy lamina. SD4 has a laminated structure. The three
main types of laminae—limy, clayey, and dolomite mitochondrial
laminae—show uneven thicknesses and distributions.

The lithofacies deposited in the deep lake include laminated
organic-rich mudstone (D1), laminated lime-bearing mudstone
(D2), laminated mudstone containing sparry calcite (D3), and
laminated dolomitic mudstone (D4). D1 has a laminated
structure and is mainly composed of clay minerals. The
lamination is displayed in the interbedding of clayey and
organic laminae, and the bedding or lamina interface is
straight. D2 also has a laminated structure. The lamination is
displayed as the interbedding of clayey and organic lamina, with
a small amount of cryptocrystalline limy lamina unevenly
distributed between the former types of laminae. The
structure of D3 is like that of D1 but differs from that of
D1 in the local distribution of leguminous coarse and chain-
shaped fine crystal calcite along the lamina. Both leguminous
and chain-shaped calcites were formed during diagenesis. Lastly,
D4 also has a laminated structure. The bedding mainly consists
of dolomite mitochondrial laminae. The dolomite presents a fine
crystal and micritic texture and develops densely in the
mitochondrial form, including some organic matter and
clayey lamina.

The 22 lithofacies types varied in mineral compositions and
structures (Figure 2). Typical microscopic images of the various
lithofacies are shown in Figure 2. The laminated lithofacies
deposited in a semi-deep lake (SD1–SD4) are the most favorable
lithofacies to extract shale oil (Sun, 2017). Different sedimentary
environments form shales with different components and
structures, which function as the physical basis or mechanism to
predict shale lithofacies.

In this study, the vertical lithofacies from 3,245 to 3,440 m in
Well FY1 were distinguished using thin-section identification and
color and structural changes in the continuous core section images
(Figure 3A). The frequencies and thicknesses of the different
lithofacies varied (Figure 3B). In the entire core section, LS1 was
the thickest and had the second-largest frequency; MS1 was the
second thickest and had the largest frequency; D2, LL1, LL2, LL3,
LS2, LS4, MS2, MS4, and US2 had smaller thicknesses and
frequencies; and the remaining lithofacies had medium
thicknesses and frequencies.

4 Data and methods

4.1 Data acquisition

Nearly all oil and gas exploration and development wells have
acquired well logging data. Logging data lithology and lithofacies
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identification have wide applicability; therefore, samples from well
logging data were preferred in this study. A total of 1,561 logging
data sampling points exist in the upper Es4 of Well FY1, from
3,245 to 3,440 m, with a sampling interval of 0.125 m. Five
logging parameters that are sensitive to shale lithology and
lithofacies were selected as the sample sources, namely, natural
gamma ray logging (GR), resistivity, acoustic slowness, density
(DEN), and compensated neutron logging. All logging data
were normalized by Shengli Logging Company before they
were obtained. The relationship between well logging data
and lithofacies was preliminarily analyzed, as shown in
Figure 4. Different lithofacies have different ranges of GR
values; a small portion has obvious differences, and a large
portion has overlapping GR ranges (Figure 4A). Other logging
responses exhibit similar characteristics. In the cross-plot of GR
and DEN (Figure 4B), differentiation between the lithofacies
was very low. With an increase in the number of lithofacies
classifications, the difference in logging responses of various
lithofacies decreases, and the difficulty of lithofacies prediction
increases. The traditional method of attribute intersection is not
sufficient to work with high-dimensional attributes because the
attributes of various lithofacies are often intersectional or even
inclusionary.

In addition, because the components and sedimentary
structures of shale are strongly related to the paleoenvironment

(Croudace et al., 2015; Wang et al., 2021; Fu et al., 2018),
paleoenvironmental parameters can reasonably be used to
predict lithofacies. This is useful to determine differences
between shale lithofacies. By testing the strength of the output
signal, a portable X-ray fluorescence spectrum scanner (XRF) can
qualitatively and semi-quantitatively analyze the chemical
element compositions of sediments and obtain high-
resolution, continuous element records. XRF is advantageous
in that it is minimally destructive, convenient, and fast; it has
been widely used to study sedimentary paleoenvironmental
changes in sediments in lakes, oceans, rivers, and loess
sedimentation (Tian et al., 2011). The present study used a
handheld XRF (Bruker Company) on the core section of Well
FY1 from 3,245 to 3,440 m using the general mode, 10 kV
detection voltage, 0.15 mA current, 60 s detection time, and
4–15 cm sampling interval. A total of 2,334 data points were
obtained, and major (Ca, Si, Al, Mg, Fe, K, etc.) and trace (Ti,
Rb, Cr, Mn, Sr, p, Cu, Zr, etc.) elements were detected in more
than 20 species. All elemental data obtained by XRF were
normalized using Origin 9.0. Five paleoenvironmental
parameters widely used to study sedimentary environments
were obtained: the Rb/Sr ratio (paleoclimate parameter), Sr
% (paleosalinity parameter), Ti % (paleoprovenance
parameter), Fe/Mn ratio (paleo-water depth parameter), and
P/Ti ratio (paleoproductivity parameter) (Fu et al., 2018; Liu

FIGURE 2
Lithofacies types of shale in the upper member of Es4 of the Dongying Sag.
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et al., 2019; Yang et al., 2021). Lithofacies are the product of
paleoenvironmental and diagenetic evolution, and the elements
in shale are affected by both. The shale thickness in the study
area reaches hundreds of meters, and the diagenesis process is in
a closed system, hindering long-distance fluid migration and
exchange. Therefore, the sedimentary environment is the main
controlling factor for the composition and structure of shale in
the study area. In addition, considering the influence of
diagenesis, the selected paleoenvironmental parameters were
elements with relatively slow migration rates in diagenetic
evolution, which were often used as important indicators in
previous research on the paleoenvironment of shale formation.

The sample distributions of different lithofacies are shown in
Figure 5. Owing to the differences in thickness, the well logging
and paleoenvironmental data quantity varied significantly for each
lithofacies. In addition, owing to the detection limits of the XRF
instrument, five paleoenvironmental parameters were incomplete
at some depth points, resulting in slightly fewer
paleoenvironmental parameter data points than logging data
points.

4.2 Sample extraction

Lithofacies predicted by well logging or paleoenvironmental
parameter data should be matched one-to-one with the lithofacies
according to depth. Two correspondence or sample extraction modes
were used in this study: point-to-point and curve shape-to-point
(Figure 6).

The point-to-point sample extraction mode is suitable for predicting
lithofacies from either well logging or paleoenvironmental parameter
data. The well logging sampling interval was 0.125 m. Thus, the data and
corresponding lithofacies were extracted at 0.125 m intervals in the depth
domain to form a one-to-one sample database. The sampling interval of
the paleoenvironmental parameters was 0.05–0.15 m; thus, the
paleoenvironmental parameters and corresponding lithofacies were
extracted at the same intervals. The two sample databases must be
used separately owing to the different sampling intervals, which
prevented their fusion.

When predicting lithofacies using two sets of data, the curve
shape-to-point sample data extraction mode must be used to
obtain fusion information of the two types of data. We selected

FIGURE 3
Example of vertical lithofacies division (A) and frequency and thickness statistics of different lithofacies types (B).
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the 0.05 m sampling interval as the final sampling interval to
extract the depth points. For each depth point, the nearest data
points (selecting the three nearest paleoenvironmental parameter
data points and the four nearest well logging data points) were
acquired to represent the morphological characteristics of the
sample values.

4.3 Selection of machine learning methods

Considering the heterogeneous distribution and quantity
differences of the different lithofacies types, two machine
learning methods were chosen: support vector machine (SVM)
and extreme gradient boosting (XGBoost).

SVM is a representative machine learning method that has
significant advantages in solving identification problems with
small, non-linear, and highly dimensional sample sizes. Its main
function is to identify the most important learning samples (called
support vectors) that affect pattern judgment during training and
then complete the data prediction based on these samples, thereby
greatly improving fault tolerance and calculation efficiency (Suykens
and Vandewalle, 1999; Vapnik, 1999). Li et al. (2019) analyzed the
importance of machine learning methods in lithology identification
and demonstrated the effectiveness of the SVM model. The theory
and specific formula of the SVM are described in detail in Machine
Learning in Action (Harrington, 2012), and a principal map of the
SVM is shown in Figures 7A,B. An SVM is essentially a classification
method with the function:

FIGURE 4
Boxplot of gamma-ray logging values for different lithofacies types (A) and cross-plot of DEN-GR (B).
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f x( ) � wTx + b.

The learning goal of the SVM is to identify a hyperplane in the
n-dimensional data space. The equations for this hyperplane can be
expressed as wTx + b � 0, where w is a vector perpendicular to the
hyperplane, defined as the normal vector, and b is the offset. Given
the training dataset D � (x1, y1), (x2, y2), . . . , (xn, yn), let
wTxi + b≥ 1, yi � +1; wTxi + b, yi � −1. The vertical distance
from any point to the hyperplane is γ, where γi � |wTxi + b|/‖w‖.
The vertical distance from the support vector to the hyperplane is ~γ,
where ~γ � 1/‖w‖. When ~γ is at its maximum (reaching the largest
margin), the optimal hyperplane is obtained. Therefore, the

objective is to solve max
w,b

1/‖w‖ , which is equivalent to solving
min
w,b

‖w‖2/2.
Because of outliers (data points far from the normal position), the

slack variable ξi was introduced, which is the number of corresponding
data points x can deviate from the functional margin. If ξi ≥ 0, then
(wTxi + b) + ξi ≥ 1. Finally, the objective is to solve:

min
w,b,ξ

w‖ ‖2/2 + C∑n
i�1
ξi⎛⎝ ⎞⎠,

where C is a hyperparameter >0, called the penalty parameter, which
controls the weight between the two items in the objective function;

FIGURE 5
Sample quantities for different lithofacies types.

FIGURE 6
Sketch of point-to-point and curve shape-to-point sample extraction modes.
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namely, finding the hyperplane with the largest margin and ensuring
minimal deviation of data points.

Kernel functions (k(xi, x)) are required for non-linear
classification problems. In this study, the radial basis function
(RBF), k(xi, yi) � exp(−‖xi − yi‖2/2σ2), where γ � −1/2σ2, is
selected for the kernel functions. In calculating the optimal
solution, the Lagrange multiplier (α) must be introduced, and
the original classification function becomes:

f x( ) � ∑n
i�1
αiyik xi, x( ) + b.

When given values for C and γ, the optimal solution for W,b,α
can be obtained through the Lagrange function to determine the
hyperplane. C and γ are two important parameters affecting the
model accuracy.

XGBoost can solve related problems using less data. XGBoost is
a distributed general gradient-boosting library that improves the
gradient-boosting decision tree and aims for efficiency, flexibility,
and portability. The calculation efficiency of the XGBoost model
generally decreases with increasing numbers of independent
variables in the sample. When considering more independent
variables, several variables are randomly selected to reorganize
the learning samples so that the model can quickly process
smaller learning samples (Liu et al., 2021). XGBoost avoids

overfitting with high probability during the training process,
thereby ensuring its reliability. Owing to the integration of
parallel computing technology, the calculation efficiency of the
model does not decline significantly with increasing training
sample size (Zhou et al., 2020; Den et al., 2019). The theory and
specific formula of XGBoost are described in detail by Chen and
Guestrin (2016), and a principal sketch map of XGBoost is shown in
Figure 7C. The core concept of XGBoost is to constantly add trees
and split features to grow a tree. By adding a tree each time, a new
function f(x) is learned to fit the residual predicted last time; when
training is complete and K trees have been obtained, a sample will
fall in a leaf node of each tree, and each leaf node obtains a score
corresponding to the characteristics of the sample. Finally, the
predicted value of the sample is obtained by adding the
corresponding scores of each tree.

The prediction function of XGBoost model is defined as

ŷi � ∑K
k�1

fk xi( ), fk ∈ F,

where fk is the kth regression tree, F represents the set of
classification and regression trees, and ŷi is the predicted value of
the ith sample.

The loss function L is represented by the predicted value L and
true value yi:

FIGURE 7
Principle sketch map of support vector machine (SVM); two-dimensional linear classification (A); two-dimensional non-linear classification (B)
(quote from Harrington (2012) and modified locally) and extreme gradient boosting (XGBoost); the final prediction for a given example is the sum of the
predictions from each tree (C) (quote from Chen and Guestrin (2016)).
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L � ∑n
i�1
l yi, ŷi( ),

where n is the number of samples. The loss function represents
deviation in the model, and the variance is determined by the regular
term Ω that suppresses the model’s complexity. The objective
function Obj can be defined as

Obi � ∑n
i�1
l yi, ŷi( ) +∑K

k�1
Ω fk( ),Ω fk( ) � γT + λ ω‖ ‖2/2,

where T represents the number of leaf nodes, ω is the leaf weight
value, γ is the penalty factor of the leaf tree, and λ is the leaf weight
penalty factor. For each step, the loss function values must be
calculated, and the objective function to obtain f(x) must be
optimized. Finally, an optimal ensemble model is obtained based
on the additive method (Liu et al., 2021).

K-fold cross-validation was selected to optimize the model
parameters in the present study. This robust hyperparameter
optimization method identifies a hyperparameter value to
optimize the model generalization performance, effectively
utilizing limited data and making the evaluation results as close
as possible to the performance of the model in the test set. The
training set in our study was divided into five parts. In the cross-
validation process, we selected one part for training and the other
four parts for verification, cycle training, and testing to ensure that
each part was trained and tested. The average of five test results was
returned, which was used as an estimate of model accuracy. A sketch
of the K-fold cross-validation process is shown in Figure 8.

5 Modeling process

A total of six modeling processes were performed to forecast the
lithofacies types as follows: a) well logging data based on the SVM
method in the point-to-point sample extraction mode; b)
paleoenvironmental parameter data based on the SVM method in
the point-to-point sample extraction mode; c) paleoenvironmental
parameter data based on the SVM method in the curve shape-to-
point sample extraction mode; d) well logging data based on the
SVM method in the curve shape-to-point sample extraction mode;

e) well logging data and paleoenvironmental parameter data based
on the SVM method in the curve shape-to-point sample extraction
mode; f) well logging data and paleoenvironmental parameter data
based on the XGBoost method in the curve shape-to-point sample
extraction mode.

Themodeling flowchart of the lithofacies type forecasts based on
the SVM and XGBoost models is shown in Figure 9. Each modeling
process could be divided into three steps, namely, data
preprocessing, model building, and model application.

Step 1. Data preprocessing: The lithofacies were numbered from
1 to 22: D1, 1; D2, 2; D3, 3; D4, 4; LL1, 5; LL2, 6; LL3, 7; LS1, 8; LS2, 9;
LS3, 10; LS4, 11; MS1, 12; MS2, 13; MS3, 14; MS4, 15; SD1, 16; SD2,
17; SD3, 18; SD4, 19; US1, 20; US2, 21; and US3, 22. According to the
different experimental conditions, a sample extraction mode was
selected to extract samples from the raw data to build a
correspondence sample dataset. Finally, the sample was randomly
divided into training and prediction data at a ratio of 7:3, and the
training data were further divided into five parts.

Step 2.Model building: Themodel was trained using the training
data and K-fold cross-validation. The optimum model
hyperparameters were selected. The SVM model had two
important parameters, C and γ, as described in Section 4.3,
where C was the penalty coefficient representing the error
tolerance. When the C value was larger, the error is more
intolerable and overfitting was more likely. When the C value is
smaller, underfitting occurs more easily. Therefore, if the C value is
too large or small, the generalization ability is poor. γ is a parameter
of the RBF that was selected as the kernel, which implicitly
determined the distribution of the data mapped in the new
feature space. When the γ value was larger, there are fewer
support vectors; similarly, when the γ is smaller, more support
vectors are present. The number of support vectors affected the

FIGURE 8
Sketch of K-fold cross-validation process.

FIGURE 9
Modeling flowchart of lithofacies prediction based on support
vector machine (SVM) and extreme gradient boosting (XGBoost)
models.
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training and prediction speeds. The ranges of C and γ are presented,
and the K-fold cross-validation method was used to calculate the
scores of the training (Figure 10A) and testing (Figure 10B) samples.
In building the XGBoost model, two important parameters, max_
Depth and n_estimator, were selected for optimization. max_Depth
represented the maximum depth of each binary tree, the value of
which was used to avoid overfitting.When themax_Depth value was
larger, the model learns more specific and local samples, and
overfitting occurred more easily; when the max_Depth value was
smaller, underfitting occurred more easily. The n_estimator was the
total number of iterations in the decision tree. Similarly, the K-fold
cross-validation method was used to select the optimal
hyperparameter combination of max_Depth and n_estimator in
the XGBoost model (Figures 10C,D).

Step 3. Model application: The optimal model was selected, and
the lithofacies type forecasts were conducted to output the resulting
map. Figure 10 also shows the complex relationship between the
accuracy and the parameters. Overall, we observed no obvious linear
relationship between them, and the accuracy was controlled by
either the C and γ values or the max_Depth and n_estimator values.

Based on the high scores of the training and testing samples, the
optimal combination of the C and γ values or max_Depth and n_
estimator values determined the final prediction model.

6 Modeling results

The forecast accuracies of the six models were determined
according to the output results, as shown in Figure 11 and
Table 1. Model e) showed the highest average forecast accuracy
for all lithofacies types, reaching 68%, as well as the highest average
forecast accuracy for favorable lithofacies types at 98%. Model b)
showed the lowest average forecast accuracy for all and favorable
lithofacies types. Models d) and f) showed forecast accuracies similar
to those of model e). Model c) showed a forecast accuracy similar to
that of model b). Overall, model e) was the most applicable for the
forecasting of lacustrine lithofacies types.

For favorable lithofacies types, the average forecast accuracy of
models (a-f) reached 82%–98%. The accuracy fully met the
exploration requirements for accurately identifying target layers

FIGURE 10
Cross-validation and parameter optimization analysis of models (a) and (f): (A) and (C) show the scores of forecast accuracies caulated by using
training samples in model (a) and (f); (B) and (D) show the scores of forecast accuracies caulated by using testing samples in model (a) and (f).
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and confirmed the feasibility of machine learning for forecasting
lacustrine lithofacies types. In addition, based on SVM, the average
forecast accuracy of all lithofacies types was improved by 7%–28%
using both well logging data and paleoenvironmental parameter
data, rather than using just either data, and by 7%–8% by using the
curve shape-to-point sample extraction mode compared to the
point-to-point sample extraction mode. These improvements in
forecast accuracy indicated that the introduction of
paleoenvironmental parameters data was effective and that the
sample extraction mode can affect the forecasting results.
Therefore, when using machine learning to forecast lacustrine

lithofacies types, the selection of data extraction mode and the
application of data types are prerequisites for obtaining good
results.

Overall, the modeling results reveal the forecast accuracies
under different conditions (see Section 5), laying a foundation
for finding effective methods and processes to forecast
lacustrine shale lithofacies types in continental rift basins.
When using machine learning methods, selecting the curved
shape-to-point sample extraction mode and inputting both
types of data is an effective way to improve the forecast
accuracy.

FIGURE 11
Shale lithofacies type modeling results at Well FY1 based on machine learning.

TABLE 1 Comparison of machine learning results for different modeling conditions.

Model Input Forecast
label

Sample
extraction
mode

Machine
learning
method

Optimal
parameter

Training
accuracy,

%

Forecast
accuracy for
all lithofacies
types, %

Forecast
accuracy for
favorable
lithofacies
types, %

(a) Well logging data Lithofacies Point-to-point SVM C = 9;
gamma = 3

90 53 97

(b) Paleoenvironment
parameter data

Lithofacies Point-to-point SVM C = 1;
gamma = 1

58 32 82

(c) Paleoenvironment
parameters data

Lithofacies Curve shape-to-
point

SVM C = 1;
gamma = 1

83 40 85

(d) Well logging data Lithofacies Curve shape-to-
point

SVM C = 3;
gamma = 1

93 61 96

(e) Well logging data and
paleoenvironment
parameter data

Lithofacies Curve shape-to-
point

SVM C = 7;
gamma = 3

97 68 98

(f) Well logging data and
paleoenvironment
parameter data

Lithofacies Curve shape-to-
point

XGBoost max_depth = 20 93 63 97

n_estimator =
90
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7 Discussion

From a geological perspective, the relatively low average forecast
accuracy for all lithofacies types occurred because the learning
sample quantity of the different lithofacies types varied
significantly. With many learning samples, the average forecast
prediction accuracy is high, whereas the training accuracy is very
low, leading to lower forecast accuracy. Figure 12 shows the
relationship between the learning sample size and forecast

accuracy. When the number of learning samples was >45 for a
single lithofacies type, the forecast accuracy was >90%.

Paleoenvironmental parameters directly influence shale
lithofacies. Theoretically, the accuracy of lithofacies type forecasts
using paleoenvironmental parameter data should be the highest;
however, the actual forecast accuracy from the modeling results was
quite low. The most likely explanation for this is the complex
structure of lacustrine shale. For the same lithofacies tested by
XRF at different locations, the paleoenvironmental parameters

FIGURE 12
Relationship between learning sample quantity and forecast accuracy (statistics from model (a)).

FIGURE 13
Boxplot of Sr content for different lithofacies types.
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also differed due to heterogeneity within the lithofacies. In laminated
lithofacies with limy and clayey lamina, the testing focal spot of XRF
is in the lamina, producing different test results. This causes the
value range of paleoenvironmental parameters to be relatively wide,
overlapping with values in different lithofacies types, such as Sr
content (Figure 13). This reduces the effectiveness of machine
learning and the forecast accuracy, leading to a lower accuracy
using paleoenvironmental parameter data.

Machine learning is an effective method for solving complex
geological problems. However, further research is required
regarding lacustrine shale with strong heterogeneity in
continental rift basins. First, rock microstructure is the key factor
affecting shale reservoirs and is an important criterion for lithofacies
classification, leading to heterogeneity and anisotropy in
classification results. Therefore, additional physical experiments
of rock microstructure are needed to further reveal the typical
features of various lithofacies types and to enrich the learning
samples. Second, correlation studies between logging response,
element content or ratio, and shale microstructure are needed.
Third, the current study did not improve on the calculation
methods of SVM and XGBoost; thus, further optimization and
improvement of machine learning methods are the focus of
future research. We believe that the forecast accuracy of
lacustrine shale lithofacies types can be improved by machine
learning methods, which will be a positive step in the evaluation
of shale oil sweet spots in oil fields worldwide.

8 Conclusion

The shale lithofacies in the upper Es4 unit of the Dongying Sag
were distinguished using the components and structural changes
shown in the core and thin sections. Considering the sedimentary
composition and structure as the main criteria, the shale lithofacies
of the upper Es4 unit in Dongying Sag were divided into six major
and 22 minor types. Statistical analysis showed that the quantities
and thicknesses of the different lithofacies types varied
significantly.

Six machine learning-based modeling processes were conducted
using well logging and paleoenvironmental parameter data. The
forecast accuracy for all and favorable lithofacies types was highest
when using both types of data to forecast lithofacies types using the
SVM method and the curved shape-to-point sample extraction
mode, whereas the accuracy was lowest when using only
paleoenvironmental parameter data based on the SVM method
with the point-to-point sample extraction mode.

The differences in the learning sample quantities of different
lithofacies types affect the average forecast accuracy of all lithofacies
types. The heterogeneity within the lithofacies results in a value
range overlap with the paleoenvironmental parameter data, which
also affects forecast accuracy.

Taken together, our results demonstrate progress compared to
previous studies (i.e., Tahmasebi et al. (2017); Naeini and Prindle
(2018); Dev and Eden (2019); Guo (2021)). First, we used a machine

learning method to forecast the key features of the sedimentary
structure of shales and lacustrine shale lithofacies type classification,
rather than using these methods mainly to forecast mineral
components, as in previous studies. Second, this study is the first
to apply paleoenvironmental parameter data with well logging to
forecast shale lithofacies types, which achieved significant forecast
accuracy.
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