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Abstract. Soft sensors are becoming increasingly important in our world today as tools for 
inferring difficult-to-measure process variables to achieve good operational performance and 
economic benefits. Recent advancement in machine learning provides an opportunity to integrate 
machine learning models for soft sensing applications, such as Least Square Support Vector 
Regression (LSSVR) which copes well with nonlinear process data. However, the LSSVR model 
usually uses the radial basis function (RBF) kernel function for prediction, which has 
demonstrated its usefulness in numerous applications. Thus, this study extends the use of non-
conventional kernel functions in the LSSVR model with a comparative study against widely used 
partial least square (PLS) and principal component regression (PCR) models, measured with root 
mean square error (RMSE), mean absolute error (MAE) and error of approximation (Ea) as the 
performance benchmark. Based on the empirical result from the case study of the penicillin 
fermentation process, the Ea of the multiquadric kernel (MQ) is lowered by 63.44% as compared 
to the RBF kernel for the prediction of penicillin concentration. Hence, the MQ kernel LSSVR 
has outperformed the RBF kernel LSSVR. The study serves as empirical evidence of LSSVR 
performance as a machine learning model in soft sensing applications and as reference material 
for further development of non-conventional kernels in LSSVR-based models because many 
other functions can be used as well in the hope to increase the prediction accuracy.  

1.  Introduction 
Industrial processes employ various hardware sensors such as flow rate, pressure and temperature for 
data delivery to control systems. This is for process monitoring and control to guarantee consistency in 
product quality. However, some crucial process variables are not easily measurable and require 
expensive sensors or offline laboratory testing with a significant time delay to ascertain product quality 
[1]. This coupled with drawbacks of hardware sensors such as sensor faults, low sampling frequency 
and maintenance requirements [2], as a result, many researchers attempt to construct a predictive model 
based on easily measured variables to estimate the difficult-to-measure variables, such predictive models 
are termed as soft sensors [3]. The potential of automatic control using soft sensors and the economic 
advantages in doing so leads to great interest in soft sensors from both academia and industry. However, 
there are still issues unresolved in soft sensors development with measurement noises, co-linear features, 
missing values, varying sampling rates and data outliers being the common issues [4]. Another issue is 
the dynamic nature of process plants, the mixture of gradual and abrupt changes in the process poses 
difficulty for soft sensors and often results in the degradation of prediction accuracy [5]. To mitigate 
these issues, traditional sensors usually tackle these problems with the linearised model, overdesigning 
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equipment and avoiding complex operating regimes, which these methods usually result in a loss of 
economic advantages [1]. 

Vapnik's Support Vector Machine (SVM), first designed for classification [6] and subsequently 
expanded to regression, is known as Support Vector Regression (SVR), and it has demonstrated 
considerable potential in applications to high dimensional nonlinear problems. This is because of its 
excellent generalisation capabilities over PLS-based methods with great performance under limited 
training data samples [7]. SVR, however, requires complex quadratic programming optimisation, 
leading to reduced modelling efficiency. Work from [8] incorporated the least-square method with SVR, 
later termed Least Square Support Vector Regression (LSSVR) has greatly improved modelling 
efficiency as the complex optimisation is replaced by solving series of linear equations, making LSSVR 
an ideal algorithm for large scale regression problem while maintaining the great performance of SVR 
when data are limited. The core idea behind LSSVR is to translate nonlinear samples from low-
dimensional space into high-dimensional feature space by employing the kernel function, allowing the 
nonlinear samples to be partitioned linearly in this space to fulfil the fitting prediction requirement [9]. 

Due to the lower computational complexity of the optimisation process in LSSVR as compared to 
the SVR model, therefore, it has been broadly used in the prediction of quality variables in nonlinear 
processes. For instance, [9] developed an LSSVR model with a Gaussian kernel function that can 
accurately assess some anomalous observations that may take place in the estimated value and forecast 
GPS (Global Positioning System) signals with improved precision. Besides that, [10] managed to design 
a smart LSSVR model by adopting the Gaussian radial basis function (RBF) kernel function to address 
batch operations' time-varying, multiphase and nonlinear features. Nevertheless, all these studies did not 
compare the performance of different kernel functions in the LSSVR model in which kernel function is 
the premise of constructing an LSSVR model. Additionally, different kernel functions may result in 
varied accuracy levels for LSSVR models. The kernel function type must be carefully chosen in order 
to construct a highly accurate LSSVR model [11]. Despite that, the selection of kernel function was 
solely based on the researchers’ prior knowledge and experience. 

To date, extensive searches in many academic databases for comparison of LSSVR performance with 
different kernels show limited results. This work seeks to fill this research gap by expanding the use of 
kernel approaches in LSSVR for the prediction of process variables in the fermentation of penicillin. To 
evaluate the effectiveness of kernels in LSSVR, the predictive performance of the model with various 
kernels is assessed and compared with that of other well-established techniques, such as principal 
component regression (PCR) and partial least square regression (PLSR). By comparing the performance 
of different kernel functions in an LSSVR model, it is possible to identify the kernel function that yields 
the best performance for a given dataset. This can help machine learning practitioners to choose the 
most appropriate kernel function for their specific application, leading to better overall performance of 
the model. 

2.  Methodology 
In this section, the kernel functions, LSSVR, PLSR, PCR, data splitting and parameter tuning as well as 
specifications of computer configuration are described.  

2.1 Kernel functions 

In the kernel functions, the input and output variables are denoted by x and y. Additionally, b is the 
kernel parameter and 𝜎𝜎 is the standard deviation (sigma). There are 12 different kernel functions used 
in this study and the equations are given in Table 1. 

Table 1. The general form of kernel functions applied in this study [3]. 

Corresponding kernel Kernel function 
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RBF (RBF) K(𝑥𝑥, 𝑦𝑦) = exp (− 1
2𝜎𝜎2 ‖𝑥𝑥 − 𝑦𝑦‖2) 

Linear (LIN) K(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦 + 𝜎𝜎 

Polynomial (POLY) K(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 1)𝑏𝑏 

Sigmoidal (SIG) K(𝑥𝑥, 𝑦𝑦) = tanh  (𝑏𝑏𝑥𝑥𝑇𝑇𝑦𝑦 + 1) 

Laplace (LAPLACE) K(𝑥𝑥, 𝑦𝑦) = exp (−
‖𝑥𝑥 − 𝑦𝑦‖

𝜎𝜎 ) 

Rational Quadratic (RQ) K(𝑥𝑥, 𝑦𝑦) = 1 − ||𝑥𝑥−𝑦𝑦||2

||𝑥𝑥−𝑦𝑦||2+𝑏𝑏
   

Multiquadric (MQ) K(𝑥𝑥, 𝑦𝑦) = √‖𝑥𝑥 − 𝑦𝑦‖2 + 𝑏𝑏2 

Inverse Multiquadric 
(INMQ) 

K(𝑥𝑥, 𝑦𝑦) = 1
√‖𝑥𝑥 − 𝑦𝑦‖2 + 𝑏𝑏2

 

Cauchy 
(CAUCHY) 

K(𝑥𝑥, 𝑦𝑦) = 1

1 + ‖𝑥𝑥 − 𝑦𝑦‖2

𝜎𝜎2

 

Generalized T-student 
(GTS) 

K(𝑥𝑥, 𝑦𝑦) = 1
1+||𝑥𝑥−𝑦𝑦||𝑏𝑏  

Fourier (FOURIER) K(𝑥𝑥, 𝑦𝑦) = 1−𝑏𝑏2

2(1−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥−𝑦𝑦))+𝑏𝑏2  

ANOVA (ANOVA) K(𝑥𝑥, 𝑦𝑦) = ∑ exp (−𝜎𝜎(𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘)2)
𝑏𝑏

𝑛𝑛

𝑘𝑘=1
 

 
2.2 Least square support vector regression 

The LSSVR algorithm was developed following [11] and it is shown as follows: 

Step 1: Considering the SVM model of the form given in Equation (1). 
 

𝑌𝑌 = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑋𝑋) + 𝐵𝐵 (1) 

where 𝜑𝜑(𝑋𝑋) represents the high-dimensional and infinite-dimensional feature space mapping term, B 

stands for the bias term, and 𝑤𝑤 stands for the weight vector with m dimension. 

Step 2: Formulate the cost function in Equation (2), which forms the optimisation problem in primal 

space. 

{ min 𝐽𝐽 (𝑤𝑤, 𝑒𝑒) = 1
2 [𝑤𝑤𝑇𝑇𝑤𝑤 + 𝛾𝛾 ∑ 𝑒𝑒𝑘𝑘

2
𝑁𝑁

𝑘𝑘=1
]  

subjected to 𝑌𝑌𝑘𝑘 = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑋𝑋𝑘𝑘) + 𝐵𝐵 + 𝑒𝑒𝑘𝑘 (𝑘𝑘 = 1,2, … , 𝑁𝑁) 
 (2) 

where 𝑒𝑒𝑘𝑘 and 𝛾𝛾 stand for the training error for 𝑋𝑋𝑘𝑘 and the regularisation constant, respectively. 
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Step 3: The optimisation problem in Equation (2) is not solvable when 𝑤𝑤 is potentially infinite-

dimensional. To solve the problem, the Lagrangian function as expressed in Equation (3) is calculated 

in which the solutions of w and e are determined by using the Lagrange multiplier optimal programming 

method. The objective function can be attained by converting the constraint problem into a non-

constraint problem [12].  

ℒ(𝑤𝑤, 𝑏𝑏, 𝑒𝑒, 𝛼𝛼) = 𝐽𝐽(𝑤𝑤, 𝑒𝑒) −∑𝛼𝛼𝑘𝑘{𝑤𝑤𝑇𝑇𝜑𝜑(𝑋𝑋𝑘𝑘) + 𝐵𝐵 + 𝑒𝑒𝑘𝑘 − 𝑌𝑌𝑘𝑘}
𝑛𝑛

𝑘𝑘=1
 (3) 

where 𝛼𝛼𝑘𝑘 represents the Lagrange multiplier. 

Step 4: Differentiate the Lagrangian by applying the Karush-Kuhn-Tucker conditions and the optimality 

conditions are shown in Equation (4): 

{
  
  
 

  
  
 ∂ℒ

𝜕𝜕𝑤𝑤 = 0 → 𝑤𝑤 =∑𝛼𝛼𝑘𝑘𝜑𝜑(𝑋𝑋𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

∂ℒ
𝜕𝜕𝐵𝐵 = 0 → ∑𝛼𝛼𝑘𝑘 = 0

𝑁𝑁

𝑘𝑘=1
∂ℒ
𝜕𝜕𝑒𝑒𝑘𝑘

= 0 → 𝛼𝛼𝑘𝑘 = 𝛾𝛾𝑒𝑒𝑘𝑘,   𝑘𝑘 = 1,2,… ,𝑁𝑁
∂ℒ
𝜕𝜕𝛼𝛼 = 0 → 𝑤𝑤𝑇𝑇𝜑𝜑(𝑋𝑋𝑘𝑘) + 𝐵𝐵 + 𝑒𝑒𝑘𝑘 − 𝑌𝑌𝑘𝑘 = 0,   𝑘𝑘 = 1,2,… ,𝑁𝑁

 (4) 

Step 5: The following solution is obtained when 𝑤𝑤 and 𝑒𝑒 are eliminated and is given in Equation (5): 

[
0 1𝑣𝑣𝑇𝑇

1𝑣𝑣 Ω + 1𝑣𝑣𝛾𝛾
] [𝐵𝐵𝛼𝛼] = [

0
𝑌𝑌] (5) 

where 1𝑣𝑣 = [1,1, … ,1], 𝑌𝑌 = [𝑌𝑌1, 𝑌𝑌2, … , 𝑌𝑌𝑁𝑁] and 𝛼𝛼 = [𝛼𝛼1, 𝛼𝛼2,… , 𝛼𝛼𝑁𝑁]. 

Step 6: The kernel trick based on Mercer’s condition is applied to Ω as shown in Equation (6): 

Ω𝑘𝑘𝑘𝑘 = 𝜑𝜑(𝑋𝑋𝑘𝑘)𝑇𝑇𝜑𝜑(𝑋𝑋𝑘𝑘)  

Ω𝑘𝑘𝑘𝑘 = 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑋𝑋𝑘𝑘),    𝑘𝑘, 𝑙𝑙 = 1,2,… ,𝑁𝑁 (6) 

where 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑋𝑋𝑘𝑘) denotes the kernel function. 

Step 7: The LSSVR model is then presented in Equation (7): 

 
 
 
 
 
 

5 
 

𝑌𝑌 = ∑𝛼𝛼𝑘𝑘𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) + 𝐵𝐵
𝑁𝑁

𝑘𝑘=1
 (7) 

 

 
2.3 Partial least squares regression 

PLSR is a multivariate regression technique that is suitable for analysing changes in a large number of 
highly correlated input variables X and connecting them to a set of output variables Y. PLSR deals with 
the relationship between X and Y both internally and externally. X is decomposed as follows [13]: 

X = TPT + E (8) 

where the input matrix is represented by X ∈ Rm × n, the score matrix is represented by T ∈ Rn × a, the 
loading matrix is represented by P ∈ Rm × a, and the noise matrix is E ∈ Rm × n is.  X = ∑ 𝑡𝑡𝑗𝑗𝑝𝑝𝑗𝑗𝑇𝑇 + 𝐸𝐸𝑛𝑛

𝑗𝑗=1  can 
be obtained by substituting TPT with the sum of the product of the score vector tj (the jth row of T) and 
the loading vector pj (the jth row of P). Similarly, Y can be broken down into: 

Y = UQT + F (9) 

where the output matrix is denoted by Y ∈ Rn × m, U ∈ Rn × a stands for the score matrix, the loading 
matrix is Q ∈ Rm × a, and the noise matrix is F ∈ Rn × m. In the same way, Y = ∑ 𝑢𝑢𝑗𝑗𝑞𝑞𝑗𝑗𝑇𝑇 + 𝐹𝐹𝑎𝑎

𝑗𝑗=1  can be 
obtained by replacing UQT with the sum of the product of uj and qj. Assume that ũj = bjtj, where bj stands 
for the regression coefficient, U = TB, and the regression matrix is represented by B ∈ Ra × a. The equation 
Y = TBQT + F can be used to represent the relationship between X and Y. 

2.4 Principal component regression 

The goal of PCR is to identify a subset of all components in order to reduce the number of dimensions 
by decreasing the effective size of the original space. The derived model structure is [14]: 

X = TPT + E 
(10) 

Y = TCT + F 

where Xn × m = [ x1, x2, …, xn]T,  Yn × r = [ y1, y2, …, xn]T are the measuring matrices built from the input 
and output variables, respectively. The sizes of the input and output variables are represented by m and 
r, while n represents the size of the data samples. Tn × q represents the principal component matrix where 
q stands for the selected size of latent variables, Pm × q represents the loading matrix and the regression 
matrix is represented by Cr × q. 

2.5 Data splitting and parameters tuning 

From 1,500 data generated, the training and testing data are divided in a ratio of 75%:25%. [15]. Hence, 
Nt is 1,500 whereas the number of training and testing data are 1,125 and 375, respectively, which are 
represented by N1 and N2. The LSSVR model regularisation parameter, γ and kernel parameter, b are 
tuned using Leave-one-out (LOO) procedure. The appropriate values for the upper and lower boundaries 
are set to the following values in the grid region: γ ∈ {2−5, 2−3, …, 215} and b ∈ {2−15, 2−13, …, 28} [16]. 
Searching for the best combination of parameters is crucial in this stage so that the model can accurately 
make a prediction [17].  

2.6 Prediction accuracy measurement 

For the measurement of quality prediction, the RMSE and MAE error metrics are used as measurement 
metrics of error. These two metrics are found in the evaluation of performance for both the machine-
learning model [18] and the non-machine learning-based model [19]. Given that the model uses two 
error metrics, and that the metrics are often not ranked equally, the Ea helps determine the best possible 
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metrics of error. These two metrics are found in the evaluation of performance for both the machine-
learning model [18] and the non-machine learning-based model [19]. Given that the model uses two 
error metrics, and that the metrics are often not ranked equally, the Ea helps determine the best possible 
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model. A lower Ea suggests that more models would be more closely related to the dataset's real nature. 
[20]. The formula of RMSE, MAE and Ea are demonstrated in Equations (11) to (13) ([3], [18], [21]). 
 

RMSE = √∑ (ŷ𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑁𝑁𝑡𝑡
𝑖𝑖=1

𝑁𝑁𝑡𝑡
    (11) 

MAE = 
∑ |ŷ𝑖𝑖−𝑦𝑦𝑖𝑖|𝑁𝑁𝑡𝑡

𝑖𝑖=1
𝑁𝑁𝑡𝑡

 (12) 

Ea = (𝑁𝑁1
𝑁𝑁𝑡𝑡

)RMSE1 + (𝑁𝑁2
𝑁𝑁𝑡𝑡

)RMSE2 + |RMSE1 – RMSE2| (13) 
 

 

2.7 Specifications of computer configuration 

The computer setup required to execute the LSSVR, PLS and PCR models in this study is described in 
Table 2.  

Table 2. The details of the computer setup employed in this study. 

Computer setup Details 

Central processing unit (CPU) 
Intel(R) Core(TM) i5-1135G7 

(2.40GHz) 1.38 GHz 
processor 

Operating system (OS) Windows 11 (64-bit) 

Random-access memory 
(RAM) 8.00 GB 

MATLAB version R2022a 

 

3.  Results and discussions 
The industrial-scale penicillin fermentation simulation (IndPenSim), whose data are publicly accessible 
for download at www.industrialpenicillinsimulation.com and perfectly suitable for the development of 
data analytics, machine learning, or artificial intelligence algorithms, is chosen as the case study. [22]. 
A detailed description of the fermentation process for penicillin production can be found in [23]. The 
input variables and one output variable employed in this case study are shown in Table 3. The results 
of the 12 kernels investigated as well as PLSR and PCR models for this case study are tabulated in Table 
4. The errors are ranked in ascending order of Ea as it indicates the performance of the model. 

Table 3. The input variables and output variable employed in this case study. 

Input variables Output variable 

Temperature, fermentor temperature, pH, 
agitator power, aeration rate, substrate feed 
rate, carbon dioxide concentration, biomass 

concentration, substrate concentration, 
dissolved oxygen concentration and culture 

volume 

penicillin 
concentration 

 
Table 4. Predictive performance of LSSVR models using different kernel functions, PLSR and PCR. 
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Models Training data Testing data 
Ea 

 

RMSE1 MAE1 RMSE2 MAE2 

LSSVR with MQ 1.14×10-5 2.24×10-6 0.0293 0.0266 0.0366  
LSSVR with SIG 0.0661 0.0559 0.0684 0.0579 0.0690  
LSSVR with LIN 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with LAPLACE 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with RQ 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with INMQ 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with GTS 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with ANOVA 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with RBF 0.0433 0.0366 0.0887 0.0822 0.1001  
LSSVR with POLY 0.3575 0.2555 0.0863 0.0848 0.5610  
LSSVR with FOURIER 0.0011 8.21×10-4 1.1112 0.8828 1.3887  
LSSVR with CAUCHY 6.85×10-4 4.84×10-4 1.02×10-6 1.2098 1.5120  

Other regression models 
PLSR 0.2061 0.1748 0.4324 0.4268 0.4889  
PCR 0.2379 0.1973 0.4500 0.4440 0.5031  

 
Of all the kernels investigated, the MQ kernel function gives the lowest RMSE and MAE for both 

training and testing datasets as well as the lowest Ea values as bolded in Table 4 (RMSE1 = 1.14×10-5, 
RMSE2 = 0.0293, MAE1 = 2.24×10-6, MAE2 = 0.0266 and Ea = 0.0366) when the kernel parameter, b is 
tuned at 2−3. It demonstrates that MQ has the highest ability to forecast the nonlinear penicillin 
fermentation process as compared to other models. Followed by the SIG kernel with RMSE1 = 0.0661, 
RMSE2 = 0.0684, MAE1 = 0.0559, MAE2 = 0.0579 and Ea = 0.0690 with b tuned at 2−15. By comparing 
the results of MQ and SIG with RBF kernel in terms of Ea, it is revealed that MQ and SIG have improved 
the results by 63.44% and 31.07%, respectively.  

It is interesting to note that the LIN, LAPLACE, RQ, INMQ, GTS, ANOVA and RBF kernels are 
found to give similar results for all the error metrics which are RMSE1 = 0.0433, RMSE2 = 0.0887, 
MAE1 = 0.0366, MAE2 = 0.0822 and Ea = 0.1001. The reason most likely has to do with the size of the 
feature space after kernel transformation in which the transformation is virtually identical [24]. Besides, 
the similar performance of LIN and RBF kernels shows that the LIN kernel function which is also a 
popular kernel used by many researchers due to its advantage of small computational requirements 
([25],[26]) is comparable with the RBF kernel. Based on the aforementioned, it is also noted that many 
kernel functions have outperformed or shown similar performances as compared to the commonly used 
RBF kernel, which reinforces the need for research in LSSVR kernels to allow an appropriate selection 
of kernels.  

Generally, as presented in Table 4, the LSSVR models with the appropriate kernels have also 
outperformed the conventional PLSR and PCR models. However, it is not always true since it can be 
seen that the LSSVR models equipped with POLY, FOURIER and CAUCHY kernels are found to 
perform worse than PLSR and PCR with the values of Ea of 0.5610, 1.3887 and 1.5120, respectively. 
This may be due to the parameters used in this study that minimises the model error [27]. Although it 
can be utilised in the analysis of multidimensional spaces, the CAUCHY kernel is discovered to be the 
worst kernel in this application with the highest value of Ea = 1.5120 and may not be effective for the 
prediction of nonlinear processes. 

In this case study, PLSR displays a better result than PCR with a prediction accuracy of 2.82% 
improvement probably due to the adverse effect of systematic variation in the input variable matrix 
which is not related to the output variable matrix. In other words, there exists systemic variation that is 
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can be utilised in the analysis of multidimensional spaces, the CAUCHY kernel is discovered to be the 
worst kernel in this application with the highest value of Ea = 1.5120 and may not be effective for the 
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In this case study, PLSR displays a better result than PCR with a prediction accuracy of 2.82% 
improvement probably due to the adverse effect of systematic variation in the input variable matrix 
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not part of the joint correlation structure of the input and output variable matrix, and it negatively affects 
the model performance [28].  

To elucidate this matter, the plots of actual and predicted penicillin concentration (output variable) 
from the LSSVR model with selected kernel functions for both training and testing data are presented 
in Figures 1 and 2. In these two figures, only the selected kernel functions i.e., RBF, MQ, CAU, POLY, 
FOU and SIG together with PCR as well as PLSR models are plotted since some kernel functions 
exhibited the same results as each other as evident in Table 4. From the indication in Figure 1, it is 
worth noting that most LSSVR models with different kernel functions (except for the POLY kernel) can 
better predict the penicillin concentration for the training dataset as compared to PLSR and PCR models. 
This is further justified by the small values of RMSE in Table 4. However, the POLY kernel has shown 
worse performance in the prediction of output variables for both training and testing datasets as can be 
observed in Figures 1 and 2 although the Ea for the POLY kernel is not the lowest among all the kernel 
functions studied. This may be due to the POLY kernel dealing best with the normalised [24]. 

 
  

Figure 1. Graph of actual and predicted output variables of the training dataset for selected kernel 
functions. 
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Figure 2. Graph of actual and predicted output variables of the testing dataset for selected kernel 

functions. 
 
For the testing dataset in Figure 2, MQ has the closest output prediction as compared to RBF and 

this has strengthened the earlier findings from Table 4 that MQ has outperformed the conventional RBF 
kernel. POLY kernel once again has shown poor prediction with no particular trend observed and 
underpredicts the output variable. As for the FOU kernel, the prediction seems fine within the first 35 
samples but worsens thereafter. Henceforth, it indicates that these two kernels are not suitable for the 
prediction of penicillin concentration. Based on this case study, different kernel functions may perform 
better as evidenced in this penicillin fermentation process even though RBF is frequently used in SVM-
based models. This resonates with research suggesting that while RBF kernels are usually applied for 
data transformation in kernel mapping, there is a certain dataset where RBF is outperformed by other 
types of kernels [29].  

4.  Conclusion 
The research has extended the LSSVR model with non-conventional kernels beyond typical RBF, linear 
and polynomial kernels. Comparative studies of the models are tested with one industrially validated 
penicillin fermentation simulation. Comparison of the LSSVR model against the PLSR and PCR model 
is also performed as a benchmark of machine learning-based soft sensors against conventional soft 
sensor models. 

A comparison of the LSSVR model with the different kernels is performed, and it is found that whilst 
MQ and SIG kernels have the potential to outperform the conventional and popular kernels such as LIN, 
POLY and RBF kernels, but the model performance metrics used in this study which are RMSE and 
MAE generally have high variance and non-convex in nature. This suggests that while it is possible for 
MQ and SIG kernels to surpass the widely used kernels, however, it would require careful development 
of a hyperparameter optimisation algorithm as well. Since the main idea of the kernel function is to 
optimise the objective function in the LSSVR model, therefore, kernel function with small error is 
crucial in helping to minimise the cost function. However, the widely used RBF kernel still performs 
properly although other kernels such as MQ and SIG may perform even better in this case study. 
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is also performed as a benchmark of machine learning-based soft sensors against conventional soft 
sensor models. 

A comparison of the LSSVR model with the different kernels is performed, and it is found that whilst 
MQ and SIG kernels have the potential to outperform the conventional and popular kernels such as LIN, 
POLY and RBF kernels, but the model performance metrics used in this study which are RMSE and 
MAE generally have high variance and non-convex in nature. This suggests that while it is possible for 
MQ and SIG kernels to surpass the widely used kernels, however, it would require careful development 
of a hyperparameter optimisation algorithm as well. Since the main idea of the kernel function is to 
optimise the objective function in the LSSVR model, therefore, kernel function with small error is 
crucial in helping to minimise the cost function. However, the widely used RBF kernel still performs 
properly although other kernels such as MQ and SIG may perform even better in this case study. 
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In conclusion, the LSSVR model with the appropriate kernel can outperform conventional PLS and 
PCR models as well as the LSSVR model with RBF kernel function, with MQ and SIG kernel potentially 
being superior under certain circumstances based on the case study conducted. The result of LSSVR 
outperforming the PLS and PCR model may require more case studies in other industrial processes to 
validate that LSSVR performance generalises well to industrial processes. Besides, the study of the 
optimal amount of training and testing samples in ensuring the optimum prediction accuracy can also 
be investigated in choosing a suitable kernel function. 
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PCR models as well as the LSSVR model with RBF kernel function, with MQ and SIG kernel potentially 
being superior under certain circumstances based on the case study conducted. The result of LSSVR 
outperforming the PLS and PCR model may require more case studies in other industrial processes to 
validate that LSSVR performance generalises well to industrial processes. Besides, the study of the 
optimal amount of training and testing samples in ensuring the optimum prediction accuracy can also 
be investigated in choosing a suitable kernel function. 
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