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Abstract. The introduction of electric vehicles impose large disturbance to
the grid-level power signal due to the charging and discharging mechanism.
Power signal monitoring in the electrical grid can provide several insights such
as power quality disturbance detection, major power consumption area, peak
power usage period, and their potential catastrophic failure conditions. As
for preventive maintenance purpose, automatic classification of power quality
disturbance using a hybrid method incorporating wavelet transform and deep
LSTM network is proposed in this paper. Multi-level signal decomposition is
applied to input signal to increase the resolution of input decomposing into
multiple frequency bands. Subsequently, these multi-level frequency compo-
nents are fed into deep LSTM layer to further extract useful higher order latent
feature. Classification performance of the proposed wavelet-based LSTM (WT-
LSTM) network is bench-marked with deep LSTM method. Additive white
Gaussian noise (AWGN) with signal-to-noise (SNR) levels between 20-50dB
are inserted during the training process to increase the generalization of sig-
nal learning with the realistic scenarios. The classification performance of
both WT-LSTM and Deep LSTM networks are tested with 20,30,40,50dB SNR
AWGN and noiseless conditions. As a result, the WT-LSTM network obtains an
overall classification performance of 89.77% on 20dB and 99.21% on noiseless
condition as compared to Deep LSTM, with 88.48% and 98.54% respectively.

1 Introduction

Electric vehicle (EV) has gradually replaced the internal combustion engine vehicles due to its
higher efficiency and lower emission of greenhouse gases [1]. The increase in number of EVs
connected to the power grid could bring impacts to the power grids on its performance, such
as reduced efficiency, overloading and other power quality issues [2]. The use of fast charging
stations also causes power quality issues to the grid [3]. These power quality issues may
lead to reliability of power delivery, devices malfunctioning, and reduced lifespan of electric
components [4]. Hence, power quality monitoring is of paramount importance with addition
to future development of smart grids [5, 6]. Classification of power quality disturbance is
the main feature required in a power monitoring systems. Power quality disturbance (PQD)
defines as the fluctuation occurred on the standard rating of voltage, current, or frequency.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 377, 01021 (2023)	 https://doi.org/10.1051/matecconf/202337701021
CGCHDRC 2022



PQDs includes fast disturbance such as transient and notch, and slow disturbances such as
voltage sag and voltage swell.

Generally, there are three steps involved in the classification of PQDs, signal processing,
feature extraction, and classification processes. Signal transformation tools are used to trans-
form the signal into different types of domain. These signal transformation are used for bet-
ter extraction of discriminant features. The signal transformation tools used includes Fourier
transform, short-time Fourier transform, wavelet transform, Stockwell transform, and empir-
ical mode decomposition. Statistical features are normally extracted and used as the input
for the classifier. The frequently used statistical parameters includes, mean, RMS, standard
deviation, and entropy. Extracted features are passed into different type of classifier for the
classification process. Some commonly used classification techniques includes threshold-
based method [7], decision tree [8], k-nearest neighbor [9], support vector machine [10], and
neural network [11]. Recently, deep neural network (DNN) has been introduced for PQD
classification [12–15]. A closed-loop feedback system introduced in the system remove the
need of manual selection of statistical feature extracted [15]. In this paper, a hybrid method is
proposed for classification of PQDs. The proposed method uses multi-level signal decompo-
sition to transform signal into wavelet domain with multiple frequency resolutions, and using
Long Short-term Memory network (LSTM) as classifier. The aim of this research is to explore
the use of hybrid method and to improve the classification performance of DNN methods. In
this paper, Deep LSTM [16] has been used for benchmarking and analysis purposes.

2 Wavelet-based LSTM network

A hybrid model composing of multi-level signal decomposition (MSD) and LSTM layers is
proposed as shown in Fig. 1. MSD is used to transform the signal into wavelet domains.
The unequal length of the coefficients outputs are aligned using temporal align layer. The
aligned embedded features are then being passed into LSTM for sequential feature extraction,
followed by fully connected layers for classification. The detail components of the proposed
architecture are explained in the following subsections.

2.1 Multi-level signal decomposition

MSD allows the yield of multiple coefficients, each representing different frequency com-
ponents of the original signal input. Varying window sizes of wavelet transform allows de-
tection of non-stationary signals and proved efficient in identifying discontinuity in signals
[17]. MSD allows multiple bands signal filtering by performing DWT in a hierarchical lev-
els. The decomposed signals consists of detail coefficients and an approximate coefficient.
Approximate coefficient, cAi(k) represents lower frequency component, while detailed coeffi-
cients, cDi(k) contains higher frequency components. This expands the input resolution into

Figure 1: Proposed wavelet based Long short term memory (WT-LSTM) model.

2

MATEC Web of Conferences 377, 01021 (2023)	 https://doi.org/10.1051/matecconf/202337701021
CGCHDRC 2022



multiple bands, which allows better extraction of PQD signals at different frequency levels.
The input signal x(n) is pass through low pass filter h(n) and high pass filter g(n) at each
level decomposition. The two digital filters, low pass filter h(n), n ∈ Z, and high pass filter
g(n), n ∈ Z, which defined by scaling function ϕ(x), and ψ(x) respectively.

ψ(x) =
√

2


n

h(n)ψ(2x − n), (1)

ϕ(x) =
√

2


n

g(n)ϕ(2x − n), (2)

where


n h(n)2 = 1,


n g(n)2 = 1, and


n h(n) =
√

2,


n g(n) = 0. Down-sampling is then
being performed to remove samples from every two samples. Wavelet coefficients of Ith level
is express as follows [18]:

cDi(k) =


n

g(2k − n)cDi−1(n), (3)

cAi(k) =


n

h(2k − n)cAi−1(n). (4)

The MSD output is noted asM and the Ith level can then be mapped as:

M = [cAI , cDI , cDI−1, ..., cD1] (5)

whereM ∈ RZ , Z = [zk]K
k=0, zk is the dimension of individual vector inM and K = I + 1

2.2 Temporal align layer

In this experiment I = 4-level MSD is used, where the total number of output coefficients is K.
Temporal align layer is a collection of single perceptron layers noted as [ fk]K

k=0 : RZ → RK×d,
where the single perceptron layer is a mapping function fk : Rzk → Rd. Subsequently, the
temporal aligned MSD output, M̂ is obtained as follows,

M̂ = [ fk(Mk)]K
k=0 (6)

where M̂ ∈ RK×d and fixed embedding output d = 256 is used.

2.3 LSTM

LSTM architecture has been introduced to efficiently learns the temporal information from
the input sequence [19]. LSTM can be achieved via three gates, forget gate, ft, input gate, it,
and output gate. While forget gate removes unwanted information, input gate retains useful
information. A tanh activation function is applied over the output of input gate, producing
new candidate, c̃ for the cell state. The operations can be summarise in Eq. (7) with trainable
weights, W and bias, b.



ft
it
ot

c̃t


=



σ
σ
σ

tanh


W · [ht−1, xt] + b. (7)

At each time step, a new cell state, ct is produced as,

ct = ft ⊙ ct−1 + it ⊙ c̃t, (8)
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where ct−1 denotes as previous cell state, and c̃t denotes as candidate cell state. The hidden
state output of LSTM, ht is based on cell state and output gate as follows,

ht = ot ⊙ tanh(ct), (9)

ot = σ(Woxt + Uoht−1 + bo). (10)

The extraction of temporal features output from temporal align layer are performed in
LSTM layers. These temporal features are encoded into higher dimension latent feature,
representing different classes of PQDs. The latent feature are then being classified using a
fully connected dense layer with softmax activation function.

3 Experiment setup

The experiments are carried out using Pytorch framework, with AMD Ryzen 7 3800X 8-
Core Processor and Nvidia P6000 graphic processing unit. In this experiment, 16 classes of
PQD including normal class are generated as shown in Table 1. A total of 76800 samples
of 10-period 3200Hz sampled power waveform is used. A total of three layers LSTM with
32 units of hidden units, and 2 layers of fully connected dense layers are used [16] for both
Deep LSTM and WT-LSTM model. Daubechies 4 (db4) wavelet with four level of decompo-
sition is used via MSD. The use of four levels is suggested by literature as it provides better
classification performance [20, 21]. Besides, four levels of MSD allows decomposition into
five frequency ranges, 1600-3200Hz, 800-1599Hz, 400-799Hz, 200-399Hz, and 0-199Hz.
This separation is sufficient to differentiate between high frequency disturbance and low fre-
quency disturbances. The fixed embedding output d = 256 is used in the proposed temporal
align layer. The PQD used in this experiment are simulated using mathematical models [22].
AWGN with SNR of 20-50dB has been used for the training process. Testing analysis are car-
ried out with 20dB, 30dB, 40dB, 50dB SNR AWGN, and noiseless conditions. Classification
accuracy has been used for the performance comparison.

4 Results and discussion

The classification performance of the proposed WT-LSTM has been compared to Deep
LSTM [16] as shown in Table 2. From Table 2a, it can be noticed that the the classifi-
cation accuracy of Deep LSTM network is poor on class P10-Sag+Harmonics on all noise
level. Confusion matrix shows that P10 is confused with P0. The harmonics presence in class

Table 1: 16 classes of PQDs.

Label Class Description Label Class Description
P0 Normal P8 Notch
P1 Sag P9 Flicker
P2 Swell P10 Sag+Harmonics
P3 Interrupt P11 Swell+Harmonics
P4 Impulse Transient P12 Interrupt+Harmonics
P5 Spike P13 Flicker+Harmonics
P6 Harmonics P14 Flicker+Sag
P7 Oscillatory Transient P15 Flicker+Swell
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Table 2: Classification performance tested with 20-50dB AWGN and noiseless conditions.

(a) Deep LSTM [16]

Class
SNR

20dB 30dB 40dB 50dB noiseless

P0 85.40 99.80 99.60 99.70 99.63
P1 93.30 97.00 96.60 96.80 96.80
P2 97.20 97.10 98.40 98.60 97.90
P3 98.20 99.70 99.90 99.90 100.0
P4 99.90 100.0 100.0 100.0 100.0
P5 98.90 99.50 99.30 99.30 99.90
P6 98.60 99.60 99.30 99.70 99.50
P7 97.80 99.80 99.10 99.50 99.80
P8 66.70 95.90 100.0 100.0 100.0
P9 94.50 99.20 99.90 99.90 99.70
P10 56.50 74.80 85.80 88.40 90.53
P11 83.30 96.30 98.00 97.00 99.49
P12 74.00 93.00 95.80 96.50 98.87
P13 89.50 100.0 100.0 100.0 100.0
P14 94.10 97.50 96.60 97.00 96.20
P15 87.80 97.00 96.90 98.20 98.10
Acc 88.48 96.64 97.83 98.16 98.54

(b) WT-LSTM

Class
SNR

20dB 30dB 40dB 50dB noiseless

P0 72.40 86.00 91.80 97.90 98.97
P1 93.30 97.30 97.70 96.60 97.70
P2 95.90 97.40 98.40 98.80 98.60
P3 98.60 99.70 99.60 99.50 99.20
P4 99.90 100.0 100.0 100.0 100.0
P5 98.00 98.80 98.30 98.50 98.80
P6 99.60 100.0 99.80 99.90 99.90
P7 98.50 99.60 99.60 99.60 99.30
P8 56.60 97.50 100.0 100.0 100.0
P9 87.20 98.60 99.80 99.90 100.0
P10 81.50 91.70 96.10 98.10 99.49
P11 90.10 97.60 98.20 97.20 100.0
P12 91.20 97.00 96.80 97.40 100.0
P13 93.60 100.0 100.0 100.0 100.0
P14 92.00 99.20 98.90 98.70 97.70
P15 87.90 98.00 98.10 98.50 97.70
Acc 89.77 97.40 98.32 98.79 99.21

P10 and P11 might have contributed to the magnitude changes of the signal, where P10 and
P11 magnitude levels are distorted seriously from the harmonics components. Besides, the
classification accuracy on fast disturbance class, P8-Notch on high noise 20dB SNR AWGN
is notably low. This weakness in class P8 shows that Deep LSTM model is facing difficulty in
classifying high noise fast disturbance. Confusion matrix shows confusion between class P8
with class P14-Flicker+Sag. The additive effect of AWGN noise might have neutralised the
characteristics of notching with smaller magnitude difference. In addition, it can also be no-
ticed that most of the classification performance of combined-disturbance classes (P10-P15)
are having classification performance lower than 90%. This shows that Deep LSTM model
is having less noise immunity, especially on classifying combined-disturbance classes.

On the other hand, the proposed WT-LSTM model shows better overall classification
performance with slightly higher classification accuracy on all SNR tests. From Table 2b,
most of the combined-disturbance classes are having > 90% classification accuracy. This
shows that WT-LSTM is having better noise immunity on classifying combined-disturbance
classes. From the confusion matrix, class P0-Normal is having mutual confusion with class
P10-Sag+Harmonics. The poor performance of class P0 under high noise condition might be
refers as harmonics. This confusion is less of concern as a knowledge-based method can be
applied to differentiate between normal signal and signals with disturbances. The ability to
identify PQD other than class P0 under high noise condition is more important because real
world disturbance signals are varying in different scenarios. The introduction of high noise
allows generalization of the specific disturbance class. It can be noticed that P10 accuracy
improved significantly. This shows that the proposed temporal aligned MSD increases the
sensitivity in identifying slight differences between small average magnitude changes. Class
P8 on the other hand is having weaker performance, the confusion mainly occurred with class
P14 and P15. Different level of notches with high level of noises cause big fluctuations on
the average magnitude of the signal, which causes the confusion. It can be see that although
temporal aligned MSD improved the average magnitude sensitivity, the mechanism does not
help in identifying fast disturbance on high noise condition.

5

MATEC Web of Conferences 377, 01021 (2023)	 https://doi.org/10.1051/matecconf/202337701021
CGCHDRC 2022



5 Conclusion
A hybrid model comprising of signal processing using MSD and LSTM algorithm, namely
WT-LSTM is proposed for automatic PQD classification. WT-LSTM increases the resolution
of the input signals using MSD. Five frequency bands of signal components are extracted as
wavelet coefficients. Temporal align layer is introduced to replace the need of signal recon-
struction while embedding various output dimension from multi-level signal decomposition
into temporal aligned embedding features. The introduction of temporal align layer helps in
improving in classifying combined-disturbance PQD by providing higher sensitivity on dif-
ference in average magnitude of the signal. As a result, the proposed WT-LSTM network
obtains an overall classification performance of 89.77% on 20dB and 99.21% on noiseless
condition as compared to Deep LSTM, with 88.48% and 98.54% respectively. As for future
work, attention mechanism can be added into the model to detect salient features from multi-
resolution data to improve the performance on short-period transient disturbance classes that
are observed to be similar to the high frequency noises.
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