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Control systems are widely used in modern industry and find wide applications in

power systems, nuclear and chemical plants, the aerospace industry, robotics, communi-

cation devices, and embedded systems. All these systems typically rely on an underlying

computing and networking infrastructure which has considerable security vulnerabilities.

The biggest threat, in this age and time, to modern systems are cyber attacks from ad-

versaries. Recent cyber attacks have practically shut down government websites affecting

government operation, undermined financial institutions, and have even infringed on pub-

lic privacy. Thus it is extremely important to conduct studies on the design and analysis

of secure systems. This work is an effort in this research direction and is mainly focused

on incorporating security in the design of modern control systems.

In the first part of this dissertation, we present a linear quadratic optimal control

problem subjected to security constraints. We consider an adversary which can make



partial noisy measurements of the state. The task of the controller is to generate control

sequences such that the adversary is unable to estimate the terminal state. This is done

by minimizing a quadratic cost while satisfying security constraints. The resulting opti-

mization problems are shown to be convex and the optimal solution is computed using

Lagrangian based techniques. For the case when the terminal state has a discrete distribu-

tion the optimal solution is shown to be nonlinear in the terminal state. This is followed

by considering the case when the terminal state has a continuous distribution. The result-

ing infinite dimensional optimization problems are shown to be convex and the optimal

solution is proven to be affine in the terminal state.

In the next part of this dissertation, we analyze several team decision problems

subjected to security constraints. Specifically, we consider problem formulations where

there are two decision makers each controlling a different dynamical system. Each deci-

sion maker receives information regarding the respective terminal states that it is required

to reach and applies a control sequence accordingly. An adversary makes partial noisy

measurements of the states and tries to estimate the respective terminal states. It is shown

that the optimal solution is affine in the terminal state when it is identical for both systems.

We also consider the general case where the terminal states are correlated. The resulting

infinite dimensional optimization problems are shown to convex programs and we prove

that the optimal solution is affine in the information available to the decision makers.

Next, a stochastic receding horizon control problem is considered and analyzed.

Specifically, we consider a system with bounded disturbances and hard bounds on the

control inputs. Utilizing a suboptimal disturbance feedback scheme, the optimization

problem is shown to be convex. The problem of minimizing the empirical mean of the



cost function is analyzed. We provide bounds on the disturbance sample size to compute

the empirical minimum of the problem. Further, we consider the problem where there are

hard computational constraints and complex on-line optimization is not feasible. This is

addressed by randomly generating both the control inputs and the additive disturbances.

Bounds on sample sizes are provided which guarantee a notion of a probable near min-

imum. Model uncertainty is also incorporated into the framework and relevant bounds

are provided which guarantee a probable near minimax value. This work finds many

applications in miniature devices and miniature robotics.

In the final part of this dissertation, we consider a centralized intrusion detection

problem with jointly optimal sensor placement. A team of sensors make measurements

regarding the presence of an intruder and report their observations to a decision maker.

The decision maker solves a jointly optimal detection and sensor placement problem. For

the case when the number of sensors is equal to the number of placement points, we

prove that uniform placement of sensors is not strictly optimal. We introduce and utilize

a majorization based partial order for the placement of sensors. For the case when the

number of sensors is less than or equal to six, we show that for a fixed local probability of

detection (probability of false alarm) increasing the probability of false alarm (probability

of detection) results in optimal placements that are higher on a majorization based partial

order.
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Chapter 1: Introduction

In the past two decades, the advent of advanced data sharing technologies has not

only revolutionized modern systems but also how we socially interact with one another.

People from all parts of the globe have connected like never before to form one global

village. In the past, innovation and technology used to be restricted to a few societies

and it took decades for new inventions to reach all parts of the globe. However, this

is no longer the case due to modern data sharing capabilities. Even if a device cannot

practically be available in some parts of the world it’s methodology, functionality, and

usage can widely be known and is readily accessible. The Internet and social media

have enabled users to instantly share information and have completely changed the face

of modern technology. However, the ease with which crucial information regarding any

system can be accessed has also created security vulnerabilities which adversaries can

exploit to undermine and potentially damage a system.

The biggest threats to modern technology in this age and time are cyber attacks from

adversaries. Recent cyber attacks have practically shut down government websites affect-

ing government operation, undermined financial institutions, and have even infringed on

public privacy. These threats effect both on a macro level in terms of affecting big cor-

porations, governments, and public institutions and on a micro level in terms of affecting

1



people through identity thefts and privacy violations.

Past research in the field of system security was mainly focused on designing robust

algorithms and to prevent hacking of computers. While pursuit of such research is worth-

while in its own right an emerging trend is to design security protocols for systems which

have control, networking, and communication capabilities. These problems are multi-

disciplinary and offer the aspiring researcher with many paradigms of exploration. The

recent focus, in academia as well as the industry, towards this field of research is mainly

due to new and emerging threats to industrial systems. It should be noted that control

systems are widely used in modern industry and find wide applications in power systems,

nuclear and chemical plants, the aerospace industry, robotics, communication devices,

and embedded systems. All these systems typically rely on an underlying computing and

networking infrastructure which has considerable security vulnerabilities.

Last year alone, according to the Department of Homeland Security, industrial sys-

tems faced nearly 200 attacks where many of these were of a serious nature (See [1]

and [2] for more details). A majority of these attacks targeted sensitive installations, like

energy and water plants, and the attackers even employed a sophisticated search engine

to find thousands of exposed systems. As mentioned in the Los Angeles Times, cyber

espionage and cyber attacks pose a greater threat to national security than terrorism [3].

According to Forbes [4], “For the first time, the growing risk of computer-launched for-

eign assaults on U.S. infrastructure, including the power grid, transportation hubs and

financial networks, was ranked higher in the U.S. intelligence communitys annual review

of worldwide threats than worries about terrorism”. In light of these discussions, it is

essential to conduct studies on the design and analysis of secure systems. This thesis is
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an effort in this research direction mainly focused on the incorporation of security in the

design of modern control systems.

There are two main types of problems that can be addressed within the framework

of incorporating security in modern control system design. One line of problems involve

securing the system from an adversary which can make measurements regarding system

operation. The other type of problems focus on the issue of detecting the presence of ad-

versaries, within the environment of a system, and then taking actions to eliminate future

threats from such adversaries. The first approach can be considered to be shoring up one’s

defenses against an attack and the second involves detecting and eliminating an adversary

before an attack can take place. Problem formulations and affiliated solution method-

ologies exploring both these areas of research will be considered in detail in subsequent

chapters.

We first consider the type of problems where we design a controller which is secure

enough to withstand potential attacks from an adversary. This is done by incorporat-

ing security constraints in the design of a linear quadratic control problem. It should

be noted that classical control systems were designed without considering such security

constraints, network attacks, and other system failures. Therefore, one cannot rely on

classical control techniques when designing controllers for any application employing

cyber-physical systems.

The term cyber-physical systems is generically used to describe all such physical

systems which rely on a communication network and have computational capabilities.

Research in cyber physical systems is a growing field which offers lots of opportuni-

ties and challenges for both academia as well as the industry. Cyber physical systems
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are expected to play a major role in the design of next generation engineering systems

which will posses a higher level of functionality, security, and reliability than the systems

which are currently in operation today [5]. Research problems within this area are highly

multi-disciplinary and offer many opportunities for research and development in control

systems, network communications, computer security, biomedical engineering, the health

care industry, smart grid research, renewable energy sources, transportation systems, and

many other application areas.

Using the aforementioned system framework we solve linear quadratic control prob-

lems subjected to security constraints and team decision problems subjected to security

constraints. Such a linear quadratic framework which incorporates security constraints is

very general and can be applied to any physical system with linear dynamics, a quadratic

cost, and which wants to secure itself from potential attacks from an adversary. Therefore,

our results have practical significance for any physical system where the controller would

like to hide its terminal operation from an adversary which could leverage information

regarding the terminal state to undermine system operation.

In Team Decision Problems, there are two or more decision makers where each is

tasked with making its own decision utilizing the information made available to it. It

should be noted that the information available to the respective decision makers may or

may not depend on the decisions made by other decision makers. We address team deci-

sion problems from a security perspective by incorporating security constraints and design

optimal controllers subjected to such constraints. Our problem formulation and constraint

structure has not previously been considered in problems of team decision theory and pro-

vides an important extension to this field of research. These decision making problems
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have important practical applications in financial markets, corporate organizations, and

military strategy.

For many control problems of interest, off-line computation is not available and

problem need to be solved on-line. In addition, it is not possible to incorporate hard

constraints in the optimization framework of these problems. Such problems are typically

solved using a Receding Horizon Control (RHC) approach. Another advantage of RHC

is the fact that it is able to anticipate future system behavior and apply appropriate control

inputs accordingly. It should be noted that PID and LQR control techniques do not possess

this ability to predict future system behavior. In RHC, at every time step a suitable control

sequence is generated to solve a finite horizon optimal control problem by utilizing current

and past measurements. The first element of this control sequence is applied to the plant

and the procedure is repeated at the following time step.

Security constraints are generally hard constraints and for implementation purposes

such problems typically require a suitable RHC approach. Therefore, a stochastic reced-

ing horizon control problem is presented and analyzed in subsequent chapters. We con-

sider this problem under assumptions of limited computational capabilities which gen-

erally inhibit the controller’s capability to perform complex on-line optimization. This

inability to use any complex on-line optimization techniques is tackled by adopting an

efficient randomized algorithm based scheme to randomly generate the required control

inputs. The framework considered is general enough to be applied to any control problem

which has hard constraints on the control inputs. This work finds significant applications

in small devices and miniature robotics which is an area of high interest for both the gov-

ernment as well as the industry. The developed techniques provide bounds on sample
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sizes, which guarantee several notions of probable near minimum to an optimal control

problem. It should be noted that efficient and rapid sample generation can be done on any

miniature device by utilizing analog electronics.

We also consider the aforementioned second line of security problems in the design

of control systems. In these problems, the system is tasked to make measurements in

order to detect the presence of an adversary in its environment which could potentially

attack or undermine normal system operation. Due to the recent nature of cyber attacks on

industrial and energy systems it is extremely important to determine potential attackers

before they could launch a cyber attack. The problem formulations that we adopt to

address these problems are quite general and can easily be utilized to design efficient

algorithms and security protocols. Such problems find wide applications in the fields of

optimal sampling, sensor networks, optimal agent placement, cyber espionage, optimal

estimation, intruder detection, biological surveillance, electronic warfare, and military

surveillance.

In the sequel, a security problem is considered where the system is tasked to detect

the presence of an adversary which occurs on a specified set of points with a known

distribution. The system has access to a team of identical sensors which can be deployed

to make measurements regarding the presence of the adversary. The measurements made

by the sensors are assumed to be noisy with well known probabilities of detection and

false alarm which are provided by the manufacturer of these sensors. This problem can

be classified as a centralized detection along with optimal sensor placement. The goal

of this research is to come up with some general sensor placement principles which also

provide jointly optimal intruder detection policies.
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1.1 Main Contributions

The main research contributions and summaries of the upcoming chapters are pro-

vided below:

1. In Chapter 2, we consider a linear quadratic optimal control problem subject to se-

curity constraints. We consider the presence of an adversary which can make noisy

partial measurements of the state and wants to estimate the terminal state of the

system. The task is to generate control sequences such that the adversary is unable

to estimate the terminal state of the system. This is done by minimizing a quadratic

cost function while satisfying security constraints. Security metrics which provide

different formulations for the security constraints are considered and analyzed. The

optimization problems are shown to be convex and the optimal solution is com-

puted by using Lagrangian based optimization techniques specifically duality. For

the case when the terminal state has a discrete distribution the optimal solution is

shown to be nonlinear in the terminal state.

This is followed by considering the case when the terminal state has a continu-

ous distribution. The security constraints are introduced by using a security metric

based on the difference of conditional means. The resulting infinite dimensional

optimization problems are shown to be convex. The generalized Kuhn Tucker The-

orem is utilized to prove that the optimal solution is affine in the terminal state.

2. In Chapter 3, several team decision problems under security constraints are ana-

lyzed. Specifically, we consider problem formulations where there are two deci-
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sion makers each possessing a different dynamical system. Each decision maker

receives information regarding the respective terminal states that it is required to

reach and applies a control sequence accordingly. An adversary makes partial noisy

measurements of the states of both systems and tries to estimate their respective ter-

minal states. The controllers of both systems minimize a common quadratic cost

criterion. In addition, the terminal states of both systems are assumed to be either

identical or correlated.

We first consider the case where the respective terminal states of both systems are

assumed to be identical. This problem can be solved by utilizing the generalized

Kuhn Tucker theorem along with some regularity conditions. The structure of this

problem is similar to the security problems considered in Chapter 2 and the same

proof techniques are utilized to obtain optimal solutions. We assume that the ter-

minal state is reached by the controller with a continuous distribution. It is shown

that the optimal solution is affine in the terminal state which is identical for both

systems.

Next, we consider the general case where the terminal states of the decision mak-

ers are correlated in the sense that they are both reached with distributions which

have the same mean but different variances. The information available to the deci-

sion makers is the respective terminal states of both systems and the problem has

a partially nested information structure. We use a generalized security metric to

introduce the security constraints. The resulting infinite dimensional optimization

problems are convex. Utilizing the Kuhn Tucker Theorem in conjunction with some

assumptions and regularity conditions we prove that the optimal solution is affine
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in the information available to the respective decision makers.

3. In Chapter 4, a stochastic receding horizon control problem is presented and an-

alyzed. We consider a linear, discrete, and time invariant system with bounded

disturbance noise and hard bounds on the control input. We consider the case when

the distribution of the noise is either unknown or is well known with a distribution

function whose variance is difficult to compute. Utilizing a suboptimal disturbance

feedback scheme, the optimization problem is shown to be convex. The problem

of minimizing the empirical mean of the cost function instead of the expectation

of the cost function is analyzed. Utilizing Pollard dimension theory we provide

bounds on the disturbance sample size to compute the empirical minimum of the

problem. This is done by first computing the Pollard dimension of the family of

cost functions.

Next, we consider the problem formulation where there are hard computational

constraints and the controller is not capable to perform any complex on-line op-

timization. This problem is addressed by randomly generating both the control

inputs and the disturbances from the space of admissible control inputs and the

space of admissible disturbances respectively. Bounds on sample sizes are pro-

vided which guarantee several notions of probable near minimum to the problem.

Finally, model uncertainty is incorporated into the problem framework and relevant

bounds on sample sizes are provided which guarantee the existence of a probable

near minimax value.

4. In Chapter 5, a centralized intruder detection problem with jointly optimal sensor
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placement is considered. Specifically, we consider a team of sensors which is ca-

pable of making noisy measurements regarding the presence of an intruder at a

particular point on which the sensor is placed. It is assumed that the intruder occurs

on a specified set of placement points with a uniform distribution. Sensors make

measurements regarding the presence of the intruder and report their observations

to a centralized decision making authority. The decision maker solves a jointly

optimal detection and sensor placement problem. It is assumed that the number

of placement points is greater or equal to the number of sensors. This is a diffi-

cult optimization problem where the number of ways to place sensors on respective

placement points increases exponentially with the number of sensors. We assume

that the sensors are identical and make conditionally independent observations.

For the case when the number of sensors is equal to the number of placement points,

we prove that uniform placement of sensors is not strictly optimal. This result holds

regardless of the sensor local probability of detection and probability of false alarm.

We introduce a majorization based partial order for the placement of sensors. For

the case when the number of sensors is less than or equal to six, we show that for a

fixed local probability of detection (probability of false alarm) increasing the proba-

bility of false alarm (probability of detection) results in optimal placements that are

placed higher on a majorization based partial order. This result has many practical

applications and can be used in the design of several sub-optimal schemes.

5. We provide conclusions and future research directions in Chapter 6.
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Chapter 2: Linear Quadratic Control Under Security Constraints

In this chapter, we consider the problem of designing an optimal control system

subjected to system security constraints. We consider a deterministic, linear, and time-

invariant system for which the terminal state can either take a finite or an infinite number

of values. It is assumed that the controller knows the value of the terminal state to reach

and applies a control sequence accordingly. An adversary makes partial noisy measure-

ments of the state trajectory and wants to estimate the terminal state of the system. It is

assumed that the adversary has knowledge of the set of values taken by the terminal state.

The task of the controller is to develop a strategy to reach the terminal state while

providing minimum information to the adversary thereby hindering its ability to estimate

the terminal state. Different security metrics like the probability of error of the adversary,

in estimating the terminal state, and some conditional mean based security metrics are

considered and analyzed. In the sequel, these security metrics are used to introduce se-

curity constraints. We compute control sequences which minimize a given quadratic cost

function while satisfying these security constraints. The resulting optimization problems

are shown to be convex and techniques from Lagrangian duality and the generalized Kuhn

Tucker theorem are employed to compute the optimal solutions. The cases of a Gaussian

distribution and a more general finite mean distribution for the noise in the measurements
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made by the adversary are considered and analyzed. This problem has important civilian

and military applications. In addition, the problem formulation and the security con-

straints are general enough to be applied to most physical systems where security is a

concern.

Control under cyber-physical security constraints (see [6], [7], [8], [9], [10], [11],

[12], and [13]) is a very active area of research. Many interesting formulations and results

have recently been presented in the literature. In [9], a security problem is considered

where a jammer can block the communication link between the controller and the plant.

The problem is formulated as a dynamic zero sum game and a saddle-point equilibrium

between the controller and the jammer is shown to exist. The optimal jammer policy is

proven to be of a threshold type. The effects of false data injection attacks in control

systems are analyzed in [10]. Necessary and sufficient conditions are provided under

which the attacker can destabilize the system through false data injections while evading

detection. In [11], system stability and resilience under feedback schemes is characterized

in the presence of attacks on sensors and actuators. A game theoretic analysis is provided

in [12] where an attacker can physically capture sensor nodes in a wireless network,

replicate the captured nodes, and eventually take over the network. Nash equilibrium

solutions are provided for both the cases when the node capture rate is time invariant and

when it is time varying. In [13], the problem of cyber-physical security is addressed by

incorporating a geometric control approach. A mathematical framework for attacks and

monitors is presented and fundamental monitoring limitations are characterized from both

a system theoretic and a graph theoretic perspective.

We motivate the main research framework in this chapter by presenting some inter-
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esting real life applications of such problems:

1. Police Drug Bust: Consider the situation where a convoy of police vehicles is

assigned to inspect suspicious neighborhoods in a city. Once the police convoy

reaches a neighborhood they completely seal all escape routes and do a complete

house to house search for drugs, weapons, and other criminal activity. Also as

soon as a neighborhood is sealed the criminals in other neighborhoods get tipped

off and escape. The police convoy has several routes to reach each neighborhood

respectively. The criminals have spies posted near the police station and can make

some initial measurements regarding the route taken by the convoy. The task of

the convoy is to optimize the route in such a way that the criminals get minimum

information regarding the neighborhood that will actually be inspected by the police

on any given day.

2. Soccer Penalty kick: Consider the situation where a striker in soccer takes a

penalty kick. Now the striker has three options and can either hit the ball straight,

left, or to the right side of the net. The goalkeeper can dive on either side of the net

or stand in the middle in order to stop the penalty. The goalkeeper can make some

measurements by observing how the striker runs in to strike the ball. The task of

the striker is to choose an option and execute the kick such that the goalkeeper can-

not predict the actual location of the ball and score a goal. If the striker adopts the

perfect secrecy policy then the goal keeper will have no choice but to guess where

the striker will strike the ball and make his dive accordingly. In that case the prob-

ability that the goal keeper dives in the right direction is 1
3 . However, there is also
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a cost affiliated with using a high secrecy policy and the striker might not be able

to strike the ball effectively, based on his limited striking capabilities, if he chooses

a highly secure policy. Therefore, the striker faces a trade off between secrecy and

performance and our mathematical framework in the sections to follow addresses

this trade off.

3. Bat Swarm Predation: Consider a swarm of bats that is flying over to a specific

part of a forest to eat fruits. The swarm is composed of both experienced adult

bats and some juvenile bats. Using its experience an adult bat selects a certain tree

to fly over to and eat some fruits. Now this bat knows that other young bats will

follow it to the selected tree to steal some fruit from it. Therefore, its wants to

hide its terminal tree location as much as possible from other bats until it is time

to make a dive towards the selected tree. The more security it incorporates in its

trajectory until the time to dive the more time it will have to eat fruit before other

bats reach that tree. However, more secrecy which means hiding its strategy till the

last moment before the dive also results in a higher cost as the bat has to put in a lot

of effort to make a really good dive. Therefore, a similar trade off between security

and performance is observed in this natural phenomenon as well.

4. Cruise Missile Control: Consider a cruise missile launching system that is tasked

to strike a set of land based targets from a sea based location. It is assumed that the

intended targets do not have the capabilities to bring down the missiles but given ad-

vance knowledge of the strikes will remove the high value targets from the targeted

locations making the strikes useless. The adversaries have some allies located near
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the missile launching site which can make some partial noisy measurements of the

trajectories of the missiles. These allies have the ability to then inform the intended

targets of the location of the strikes. The task of the missile launching system is

to design the missile trajectories in such a way that the measurements made by the

adversary cannot determine the intended location of the strikes.

The following notation is adopted:

• Random variables are represented using bold face capital letters, for example XT

is used to represent the terminal state. Realizations of these random variables are

represented using small letters, like xT .

• The probability of error is denoted by Pe, the prior probability distribution by π , the

probability density of a random variable X if it exists by p(x), the joint probability

density of X and Y by p(x,y), and the conditional probability density of X given Y

by p(x|y).

• Capital letter H denotes a hypothesis and M is used to denote the number of hy-

potheses.

• Im×m represents the m×m identity matrix and 0m×n is used to represent the m×n

matrix of zeros. Logarithm to the base 2 and natural logarithm are denoted by log

and ln respectively.

• The standard `p norm is denoted by ‖.‖p.

• The set of real numbers is denoted by ℜ, the n-dimensional space of real numbers

by ℜn, and the empty set is denoted by φ .
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This chapter is organized into five main sections. In Section 1, we present a precise

mathematical formulation of the problem. Section 2 is focused on designing secure con-

trol laws for the case when the terminal state can take two different values with specified

probabilities. Under the assumption of a Gaussian distribution for measurement noise,

we utilize the probability of error as a security constraint. The optimization problem is

shown to be convex. We follow this by considering the case of a more general finite mean

noise distribution. A security constraint based on the conditional mean is analyzed. In

Section 3, we consider the case when the terminal state can take M different values where

M is a natural number. A generalization of the conditional mean based security constraint

is analyzed and the resulting optimization problem is shown to be convex. Section 4 con-

siders the case where the terminal state takes values with a continuous distribution. A

conditional mean based security constraint is analyzed and the optimal solution is shown

to be affine in the terminal state. Simulation based results and related discussions are

provided in detail in Section 5.

2.1 Problem Formulation

Consider the following linear and discrete time-invariant system given by:

xk+1 = Axk +Buk, k = 0, ...,T −1 (2.1)

where xk ∈ℜn is the state of the system, uk ∈ℜm is the control input, A is an n×n

matrix, and B is an n×m matrix. Without loss of generality, the initial state x0 is assumed

to be zero. The cases of both finite and continuous distributions of the terminal state will
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be analyzed. In Section 2, we assume that xT ∈ {x0,x1} and in Section 3 it is assumed that

xT ∈ {x0, ...,xM−1}. The framework for the terminal state with the continuous distribution

case will be presented in Section 4. In the finite distribution case, the desired terminal state

is drawn from {x0, ...,xM−1} with prior distribution π0, ...,πM−1. The controller knows

the value of the terminal state and accordingly applies the appropriate control sequence,

{u0, ...,uT−1}, to reach it.

The adversary does not know the actual value of the terminal state, which is ran-

dom, but knows its distribution. The adversary is restricted to make only the first (k+1)

measurements of the state with k < T . These measurements are noisy and are given as

follows:

Yi =Cxi +Vi, i = 0, ...,k (2.2)

where C is a p× n matrix and V0, ...,Vk are p× 1 independent and identically

distributed random vectors. Using (2.1) we can write the measurement model in compact

form as follows:

Y0,k = C̄U0,k−1 +V0,k (2.3)

where Y0,k, C̄, U0,k−1 and V0,k are given as follows:

Y0,k =


Y0

...

Yk

 , V0,k =


V0

...

Vk

 , U0,k−1 =


u0

...

uk−1

 , C̄ =



0p×m 0p×m . . . 0p×m

CB 0p×m . . . 0p×m

...
... . . . ...

CAk−1B CAk−2B . . . CB


(2.4)
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We first consider the case when the noise vectors V0, ...,Vk have a Gaussian distri-

bution and then we consider the case when these noise vectors have a general finite mean

distribution. We assume that πi > 0, where i = 0, ...,M−1.

Main Assumption: The dynamical system is assumed to be controllable in the sense

that starting from the origin any value of the terminal state can be reached at time T , by

applying an appropriate control sequence. Therefore, we are assuming that the matrix:

[
AT−1B AT−2B . . . B

]

is of full rank.

The aforementioned controllability assumption implies that there are many control

sequences which drive the state trajectory to the specified terminal state. We denote any

control sequence which drives the system to the terminal state xi by U i
0,T−1. Using the

measurement model, the adversary solves a hypothesis testing problem. Under hypothesis

Hi, when the terminal state is xi, the information available to the adversary is as follows:

Y0,k = C̄U i
0,k−1 +V0,k (2.5)

It should be noted that the security constraints are dependent on the information,

C̄U i
0,k−1, which is provided by the controller to the adversary. The quadratic cost to be

minimized is provided below:

U′QU=
M−1

∑
i=0

πiU i
0,T−1

′Q̃U i
0,T−1 (2.6)
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where Q̃ is a T m×T m symmetric positive definite matrix. The symmetric positive definite

matrix Q and the control vector U are given as follows:

U=


U0

0,T−1

...

UM−1
0,T−1

 , Q =



π0Q̃ 0T m×T m . . . 0T m×T m

0T m×T m π1Q̃ . . . 0T m×T m

...
... . . . ...

0T m×T m 0T m×T m . . . πM−1Q̃


(2.7)

Since the control sequences U0
0,T−1, ...,U

M−1
0,T−1 must drive the system to the terminal states

x0, ...,xM−1 we need to introduce the following equality constraints:

BTU i
0,T−1 = xi, i = 0, ...,M−1 (2.8)

which can be written in compact form as follows:

FU= b (2.9)

where F,b, and BT are given as follows:

F =



BT 0n×T m . . . 0n×T m

0n×T m BT . . . 0n×T m

...
... . . . ...

0n×T m 0n×T m . . . BT


,b =


x0

...

xM−1

 , BT =

[
AT−1B, AT−2B, . . . ,B

]

(2.10)

The optimization problem that we will solve will involve minimization of the cost
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function (2.6), subject to the equality constraint (2.9), and the security constraints that we

will provide in the next two sections. The optimization will be performed with respect

to the control variable U. By utilizing an appropriate re-parametrization the equality

constraints can be removed from this optimization problem . Let Ub be a suitable control

vector which is provided to us and satisfies FUb = b. Note that there always exists such

a control vector because of the controllability assumptions. Let F̃ be the matrix whose

columns form a basis for the Null space of F . Then we can write:

U=Ub + F̃η , η ∈ℜ
dim(Null(F)) (2.11)

It should be noted from the definition of F̃ that for any η , F(F̃η) = 0. Now η

becomes our new optimization variable and we do not need to incorporate the equality

constraint (2.9). The cost function can now be re-written as follows:

U′QU=U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η (2.12)

2.2 Secure Control: A Binary Framework

In this section, we consider the framework where the terminal state can take two

different values x0 and x1 with probabilities π0 and π1 respectively. We consider two

different cases of measurement noise distribution.
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2.2.1 Gaussian Noise Distribution:

Consider the case when V0, ...,Vk are iid and have a Gaussian N (0, Σ̃) distribution.

Then V0,k is a N (0,Σ) random vector where the covariance matrix Σ is block diagonal

and has matrices Σ̃ on its diagonal. The minimum probability of error, in the adversary’s

estimate of the terminal state, is introduced as a security constraint. Under hypotheses H0

and H1 the measurements have the following distributions:

H0 : Y0,k = C̄U0
0,k−1 +V0,k ∼ N (C̄U0

0,k−1,Σ) (2.13)

H1 : Y0,k = C̄U1
0,k−1 +V0,k ∼ N (C̄U1

0,k−1,Σ) (2.14)

We use a Bayesian formulation with a uniform cost and knowledge of the priors to

compute the minimum probability of error. The optimal Bayes test is a likelihood ratio

test [14]. The likelihood ratio is given as follows:

L(y0,k) =
p(y0,k|H1)

p(y0,k|H0)

= exp
{
(U1

0,k−1−U0
0,k−1)

′C̄′Σ−1y0,k−
1
2
(U1

0,k−1−U0
0,k−1)

′C̄′Σ−1C̄(U1
0,k−1 +U0

0,k−1)

}
(2.15)

The optimal Bayes test γB is given as follows:

γB(y0,k) =


H1 if L(y0,k)≥ π0

π1

H0 if L(y0,k)<
π0
π1

 (2.16)
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By taking ln on both sides we can write the inequality L(y0,k)≥ π0
π1

as:

(U1
0,k−1−U0

0,k−1)
′C̄′Σ−1y0,k ≥ τ

τ =
1
2
(U1

0,k−1−U0
0,k−1)

′C̄′Σ−1C̄(U1
0,k−1 +U0

0,k−1)+ ln(
π0

π1
)

Now Y0,k is a Gaussian random vector whose linear transformation by definition

also has a Gaussian distribution. By computing the mean and variance of (U1
0,k−1 −

U0
0,k−1)

′C̄′Σ−1Y0,k under H0 and H1 we get:

H0 : (U1
0,k−1−U0

0,k−1)
′C̄′Σ−1Y0,k ∼N

(
(U1

0,k−1−U0
0,k−1)

′C̄′Σ−1C̄U0
0,k−1,d

2) (2.17)

H1 : (U1
0,k−1−U0

0,k−1)
′C̄′Σ−1Y0,k ∼N

(
(U1

0,k−1−U0
0,k−1)

′C̄′Σ−1C̄U1
0,k−1,d

2) (2.18)

d2 = (U1
0,k−1−U0

0,k−1)
′C̄′Σ−1C̄(U1

0,k−1−U0
0,k−1)

The probability of error in estimating the true value of the terminal state is given by:

Pe = π0P
(

L
(
Y0,k ≥

π0

π1

)∣∣∣∣H0

)
+π1P

(
L
(
Y0,k <

π0

π1

)∣∣∣∣H1

)

= π0−π0Φ

(
1
d

ln
π0

π1
+

d
2

)
+π1Φ

(
1
d

ln
π0

π1
− d

2

)
(2.19)

where Φ is the pdf of a standard normal N (0,1) distribution. For the special case

of equi-probable priors, π0 = π1 =
1
2 , the above expression simplifies to give:

Pe = ρ

(
d
2

)
(2.20)
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Here ρ denotes the Q-function, the tail probability of the standard normal distribu-

tion. Consider the following optimization problem which introduces the probability of

error as a security constraint:

Problem 2.2.1:

Minimize the cost function

U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η

subject to the constraint:

Pe ≥ α

where α ≥ 0 is a constraint parameter that we choose. This constraint basically

tells how inaccurate the estimate of the adversary is in determining the actual value of

the terminal state. The value of α provides a measure on the security level of the control

sequences. The following result shows that this security constraint is convex in the opti-

mization variable η .

Proposition 2.2.1.1:

The probability of error constraint is convex in η and Problem 2.2.1 is a convex

program.

Proof:

From (2.19), we note that Pe is decreasing in d which is nonnegative. Therefore:

Pe ≥ α ⇔ d2 ≤ α1
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where α1 can be determined from the values of α , π0, and π1. For the special case where

π0 = π1 we have α1 = 4(ρ−1(α))2. Consider the following notation which enables us to

write d2 in terms of η .

U i
0,k−1 = GSi(Ub + F̃η), G = [Ikm×km 0km×(T−k)m]

S0 = [IT m×T m 0T m×T m], S1 = [0T m×T m IT m×T m] (2.21)

d2 = (Ub + F̃η)′(S1−S0)
′G′C̄′Σ−1C̄G(S1−S0)(Ub + F̃η)

Clearly d2 is convex in η , d2 ≤ α1 forms a convex set, and the cost is strictly convex in

η . Therefore, Problem 2.2.1 is a convex program.

Using Proposition 2.2.1.1 and (2.21) we solve the following convex program:

min
η

U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η

subject to the constraint:

(Ub + F̃η)′(S1−S0)
′G′C̄′Σ−1C̄G(S1−S0)(Ub + F̃η)≤ α1 (2.22)

We can practically solve this convex program by using standard convex optimiza-

tion software like cvx [15]. By making some constraint qualification assumptions we

characterize the optimal solution using Lagrangian duality.
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Assumption 2.1: We assume that α is selected such that:
{

η ∈ℜdim(Null(F)) | (Ub+

F̃η)′(S1−S0)
′G′C̄′Σ−1C̄G(S1−S0)(Ub + F̃η)< α1

}
6= φ .

This assumption ensures that there exists a η such that the constraints in (2.22) are

satisfied with strict inequality. This is precisely Slater’s condition (see [16] for details)

for this problem. Therefore, Assumption 2.1 implies that the duality gap is zero.

Proposition 2.2.1.2

The optimal solution to Problem 2.2.1, under Assumption 2.1, is non-linear in b and

is given by:

η
∗ =−

(
F̃ ′QF̃ +λ

∗F̃ ′L ′L F̃
)−1(

F̃ ′Q+λ
∗F̃ ′L ′L

)
Ub

where λ ∗ ≥ 0 is the solution to the following equation:

∥∥∥∥LUb−L F̃
(

F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1(

F̃ ′Q+λ F̃ ′L ′L

)
Ub

∥∥∥∥
2
=
√

α1

where L =W ′C̄G(S1−S0), Σ−1 =WW ′, and b is the vector of terminal states.

Proof:

Let Σ−1 = WW ′ be the Cholesky decomposition of the inverse of the covariance

matrix. The Lagrangian can be written as follows:

L(η ,λ ) =U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η +λ

(
U ′bL

′LUb +2η
′F̃ ′L ′LUb
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+η
′F̃ ′L ′L F̃η−α1

)
(2.23)

It should be noted that the Lagrangian, L(η ,λ ), is strictly convex in η . This is

due to the columns of F̃ being linearly independent. Strong duality holds from Slater’s

conditions and we can solve the dual problem to get the optimal cost. Strict convexity,

strong duality, and the fact that the optimal cost is finite ensure that we can obtain the

solution of the primal problem through the dual problem [16] (See Ch. 5). The Lagrange

dual function is given by:

g(λ ) = min
η

{
U ′bQUb +2U ′bQF̃η +η

′F̃ ′QF̃η +λ

(
U ′bL

′LUb +2η
′F̃ ′L ′LUb

+η
′F̃ ′L ′L F̃η−α1

)}
(2.24)

Computing the gradient of the Lagrangian with respect to η and setting it equal to zero

we get:

η =−
(

F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1(

F̃ ′Q+λ F̃ ′L ′L

)
Ub (2.25)

Plugging (2.25) into (2.24) we get:

g(λ ) =U ′bQUb−2U ′bQF̃
(

F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1(

F̃ ′Q+λ F̃ ′L ′L

)
Ub+

U ′b
(
F̃ ′Q+λ F̃ ′L ′L

)′(F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1(F̃ ′Q+λ F̃ ′L ′L

)
Ub +λU ′bL

′LUb

−2λU ′b
(
F̃ ′Q+λ F̃ ′L ′L

)′(F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1F̃ ′L ′LUb−λα

The optimal cost can be obtained by maximizing the Lagrange dual function with
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respect to λ , which is assumed to be non-negative. Differentiating g with respect to λ and

setting the derivative equal to zero we get:

(
U ′b
(
F̃ ′Q+λ F̃ ′L ′L

)′(F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1F̃ ′L ′L F̃

(
F̃ ′QF̃ +λ F̃ ′L ′L F̃

)−1×

(
F̃ ′Q+λ F̃ ′L ′L

)
Ub

)
+U ′bL

′LUb−
(

2U ′b
(
F̃ ′Q+λ F̃ ′L ′L

)′(F̃ ′QF̃+λ F̃ ′L ′L F̃
)−1

×F̃ ′L ′LUb

)
= α

Simplifying this equation we get:

∥∥∥∥LUb−L F̃
(

F̃ ′QF̃ +λ F̃ ′L ′L F̃
)−1(

F̃ ′Q+λ F̃ ′L ′L

)
Ub

∥∥∥∥
2
=
√

α1 (2.26)

Plugging the optimal value of λ ≥ 0, denoted by λ ∗, which solves the above equa-

tion into (2.25) provides an optimal solution to the problem, proving the claim of the

proposition. It should be noted from (2.26) that λ ∗ is non-linear in Ub, which is linear in

b. Therefore, the optimal solution of the problem is non-linear in b.

Proposition 2.2.1.2 gives us a form of the optimal control sequences which will

satisfy the probability of error security constraint. The convexity of this problem makes it

very easy to practically implement these results using commercial optimization solvers.

2.2.2 Finite Mean Noise Distribution

In this section, we consider the case where the noise vectors V0, ...,Vk are iid and

have a general distribution with a finite mean. Computing a closed form expression for the

27



probability of error is a very difficult problem with this framework even for the specific

case of the exponential family of distributions [17].

We consider a new security framework based on the conditional mean which leads

to a constraint very similar in structure to (2.22). Let µ be the mean of the noise vector

V0,k, defined in (2.3). Under the hypotheses H0 and H1 the measurement model is given

by:

H0 : Y0,k = C̄GS0(Ub + F̃η)+V0,k

H1 : Y0,k = C̄GS1(Ub + F̃η)+V0,k (2.27)

Problem 2.2.2:

Minimize the cost function:

U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η

subject to the constraint:

(
E(Y0,k

∣∣H1)−E(Y0,k
∣∣H0)

)′(
E(Y0,k

∣∣H1)−E(Y0,k
∣∣H0)

)
≤ α2 , α2 ≥ 0 (2.28)

The security constraint in (2.28) has a nice operational interpretation. It basically

measures how far apart the means of the observations are under the two hypotheses. The

further apart the means the easier it will be for the adversary to estimate the terminal state.

It has the same intuitive interpretation as the probability of error constraint utilized in the
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previous section. It should be noted that when α2 is equal to zero the adversary does not

get any useful information from the partial noisy state measurements.

Proposition 2.2.2.1:

The security metric in Problem 2.2.2 is convex in η and Problem 2.2.2 is a convex

program.

Proof:

Now the difference between the conditional means can be computed to get:

E(Y0,k
∣∣H1)−E(Y0,k

∣∣H0) = C̄G(S1−S0)(Ub + F̃η) (2.29)

Using (2.29) the constraint in (2.28) can be written as:

U ′bZ
′Z Ub +2η

′F̃ ′Z ′Z Ub +η
′F̃ ′Z ′Z F̃η ≤ α2 (2.30)

where Z = C̄G(S1−S0). Clearly this security constraint is convex and Problem 2.2.2 is

a convex program.

The security constraint (2.30) is very similar to (2.22), as L ′L = Z ′Σ−1Z , and hence

this section generalizes the work in section 2.2.1. In order to be able to use Lagrangian

duality techniques we make the following assumption.

Assumption 2.2: We assume that α2 is selected such that:
{

η ∈ℜdim(Null(F)) |U ′bZ ′Z Ub+

2η ′F̃ ′Z ′Z Ub +η ′F̃ ′Z ′Z F̃η < α2

}
6= φ .

This assumption ensures that Slater’s conditions are satisfied for this problem.
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Proposition 2.2.2.2:

The optimal solution of Problem 2.2.2, under Assumption 2.2, is non-linear in b

and is given by:

η
∗ =−

(
F̃ ′QF̃ +λ

∗F̃ ′Z ′Z F̃
)−1(

F̃ ′Q+λ
∗F̃ ′Z ′Z

)
Ub

where λ ∗ ≥ 0 is the solution to the following equation:

∥∥∥∥Z Ub−Z F̃
(

F̃ ′QF̃ +λ F̃ ′Z ′Z F̃
)−1(

F̃ ′Q+λ F̃ ′Z ′Z

)
Ub

∥∥∥∥
2
=
√

α2

Proof:

The proof follows exactly along the same lines as the proof of Proposition 2.2.1.2 to

which the reader is referred.

Using these results we can design a secure controller for any system for which the

adversary makes observations where the additive noise is drawn from a general finite

mean distribution. The aforementioned security constraint can also be extended to the

M-ary framework. We explore and develop one such extension in the following section.

2.3 Secure Control: A M-ary Framework

In this section, we consider the framework where the terminal state can take M

different values x0, ...,xM−1 with probabilities π0, ...,πM−1, respectively. It is assumed

that the measurement noise vector V0,k has a general distribution with a finite mean.

We now present a new security metric which is also defined using the concept of
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the difference of conditional means. Under the hypothesis Hi, i = 0, ...,M− 1, the mea-

surement model is given by:

Hi : Y0,k = C̄GSi(Ub + F̃η)+V0,k, i = 0, ...,M−1 (2.31)

Consider the following security metric:

M−1

∑
i=0

πi

(
E
(
Y0,k

∣∣Hi
)
−

M−1

∑
j=0

π jE
(
Y0,k

∣∣H j
))′(

E
(
Y0,k

∣∣Hi
)
−

M−1

∑
j=0

π jE
(
Y0,k

∣∣H j
))

(2.32)

This security metric can be considered to be a generalization to the concept of the

difference of conditional means which was employed in the binary framework. The dis-

tribution πi is used to assign weights to each quadratic quantity in (2.32), which provides

a difference of the conditional mean given one hypothesis with the weighted sum of the

conditional means given other hypotheses. A smaller value of this metric makes it more

difficult for the adversary to predict the terminal state and indicates a higher level of se-

curity of the control sequences. Using this security metric, we can state the following

optimization problem:

Problem 2.3: Minimize the cost function

U ′bQUb +2U ′bQF̃η +η
′F̃ ′QF̃η
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subject to the security constraint:

M−1

∑
i=0

πi

(
E
(
Y0,k

∣∣Hi
)
−

M−1

∑
j=0

π jE
(
Y0,k

∣∣H j
))′(

E
(
Y0,k

∣∣Hi
)
−

M−1

∑
j=0

π jE
(
Y0,k

∣∣H j
))
≤ α3

(2.33)

The parameter α3 is selected to be non-negative. A small α3 indicates that a lower

level of useful information can be transmitted to the adversary. For the case of α3 equal to

zero, the controller will be restricted to those control sequences which generate the same

state trajectory for the first k+1 time steps. Using the measurement model we get:

E
(
Y0,k

∣∣Hi
)
−

M−1

∑
j=0

π jE
(
Y0,k

∣∣H j
)
= C̄G

(
Si−

M−1

∑
j=0

π jS j
)(

Ub + F̃η
)

(2.34)

Using (2.34), and Zi = C̄G
(
Si−

M−1

∑
j=0

π jS j
)
, we can write (2.33) as:

M−1

∑
i=0

πi

(
U ′bZ

′
i ZiUb +2η

′F̃ ′Z ′
i ZiUb +η

′F̃ ′Z ′
i ZiF̃η

)
≤ α3 (2.35)

Clearly (2.35) is convex in η and hence we conclude that Problem 2.3 is a convex

program. By making similar assumptions we can extend the results stated in section 2.2.2

to the M-ary framework.

Assumption 2.3: We assume that α3 is selected such that:
{

η ∈ℜ
dim(Null(F)) |

M−1

∑
i=0

πi

(
U ′bZ

′
i ZiUb +2η

′F̃ ′Z ′
i ZiUb +η

′F̃ ′Z ′
i ZiF̃η

)
< α3

}
6= φ .

This assumption ensures that Slater’s conditions are satisfied for this problem and hence

the duality gap is zero.

32



Proposition 2.3.1: The optimal solution of Problem 2.3, under Assumption 2.3, is non-

linear in b and is given by:

η
∗ =−

(
F̃ ′QF̃ +λ

∗
M−1

∑
i=0

πiF̃ ′Z ′
i ZiF̃

)−1(
F̃ ′Q+λ

∗
M−1

∑
i=0

πiF̃ ′Z ′
i Zi

)
Ub

where λ ∗ ≥ 0 is the solution to the following equation:

M−1

∑
k=0

πk

∥∥∥∥ZkUb−ZkF̃
(

F̃ ′QF̃+λ

M−1

∑
i=0

πiF̃ ′Z ′
i ZiF̃

)−1(
F̃ ′Q+λ

M−1

∑
i=0

πiF̃ ′Z ′
i ZiF̃

)
Ub

∥∥∥∥
2
=
√

α3

Proof:

The proof follows exactly like the proof of Proposition 2.2.2.2 to which the reader

is referred.

The results stated in Proposition 2.3.1 are very similar to the results presented in

Propositions 2.2.1.2 and 2.2.2.2. These results imply that the optimal solution is non-

linear in the vector of terminal states. In order to find the optimal solution in these prob-

lems we need to solve for the equality of a norm to a design parameter. In Proposition

2.3.1, we have the weighted sum of such norms equaling
√

α3.

2.4 Secure Control: Terminal State with a Continuous Distribution

In this section, we consider the situation where the terminal state has a continuous

finite mean distribution with given density function p(xT ). In addition, the components

of the terminal state are assumed to have a finite variance. It is assumed that the adversary

knows the distribution of the terminal state. We first provide a definition of the Gateaux
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differential which will be used repeatedly in this section and also in Chapter 3.

Definition 2.4: (Gateaux Differential [18])

Let X be a vector space and let T be a transformation defined on a domain D ⊂ X . Let

x ∈ D, γ ∈ℜ, and let h be arbitrary in X . If the limit

δT (x;h) = lim
γ→0

1
γ
[T (x+ γh)−T (x)]

exists, it is called the Gateaux differential of T at x with increment h. If the limit exists

for each h ∈ X , then T is said to be Gateaux differentiable at x.

Let U(xT ) be the control sequence which drives the system to the terminal state

xT , which mathematically implies that BTU(xT ) = xT . It should be noted that such a

control sequence exists because of the main controllability assumption. Also in this case

the control input vector, U(.), is a function of the terminal state. Consider the following

cost functional:

J
(
U(.)

)
=
∫

ℜn
U(xT )

′Q̃U(xT )p(xT ) dxT (2.36)

The functions U(.) are L2 integrable and belong to the space L2(ℜn,B(ℜn),µp).

Note that B(ℜn) is the Borel σ -algebra on ℜn and µp is the probability measure cor-

responding to the probability distribution of the terminal state. We use the same tech-

nique which we employed in the previous sections to remove the equality constraint,

BTU(xT ) = xT . Let Ũ(xT ) be a given control function such that BTŨ(xT ) = xT ,∀xT ∈ℜn.

We assume that Ũ(xT ) is linear in xT . This is possible due to the controllability assump-

tion and one possible choice for this control function is Ũ(xT ) = B†
T xT , where B†

T is the
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Moore-Penrose pseudoinverse of BT . Let B̃ be a basis for the null space of BT . Then we

can write:

U(xT ) = Ũ(xT )+ B̃η(xT ), η(xT ) ∈ℜ
q, q = dim(Null(BT )) (2.37)

Using (2.37), η(.) becomes our new optimization variable and the cost functional can be

re-written as follows:

J
(
η(.)

)
=
∫

ℜn

(
Ũ(xT )+ B̃η(xT )

)′
Q̃
(

Ũ(xT )+ B̃η(xT )

)
p(xT ) dxT (2.38)

We assume that the observation noise has a general distribution with a finite mean. Under

the hypothesis HxT , the measurements made by the adversary are given by:

HxT : Y0,k = ḠU(xT )+V0,k, Ḡ = C̄G (2.39)

where C̄ is given by (2.4) and G = [Ikm×km 0km×(T−k)m]. We now introduce the following

general security metric based on the difference of conditional means:

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
E
(
Y0,k
∣∣HxT

)
−E

(
Y0,k
∣∣HyT

))′
×
(

E
(
Y0,k
∣∣HxT

)
−E

(
Y0,k
∣∣HyT

))
dyT dxT (2.40)

where yT is another realization of the terminal state. This security metric basically pro-

vides a measure on the difference of the conditional means. The higher the value of this

metric the easier it will be for the adversary to estimate the terminal state. Using the
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measurement model this metric can be simplified as follows:

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
U(xT )−U(yT )

)′
Ḡ′Ḡ

(
U(xT )−U(yT )

)
dyT dxT (2.41)

Using the cost functional (2.38), and the security constraint (2.41), we can state the fol-

lowing optimization problem:

Problem 2.4:

min
η(.)

∫
ℜn

(
Ũ(xT )+ B̃η(xT )

)′
Q̃
(

Ũ(xT )+ B̃η(xT )

)
p(xT ) dxT

subject to the security constraint:

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )−Ũ(yT )+ B̃

(
η(xT )−η(yT )

))′
Ḡ′Ḡ

×
(

Ũ(xT )−Ũ(yT )+ B̃
(
η(xT )−η(yT )

))
dyT dxT ≤ α4

where α4 is assumed to be nonnegative. A small value of α4 indicates that a lower

level of useful information is provided to the adversary. If α4 is equal to zero, then the

first k control inputs of all admissible control sequences will be the same. It should be

noted that if α4 is very small and if k is very large then there can be instances when the

problem might be infeasible. However, this can be overcome by assuming much stronger

controllability assumptions. One such assumption could be to require B to be of full

rank to ensure that the problem is feasible for some extreme cases. It should be noted

that Problem 2.4 is an infinite dimensional convex optimization problem. We provide a
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solution to this problem by utilizing the Generalized Kuhn Tucker Theorem [18] (See

Ch. 9).

Assumption 2.4: Consider only those values of α4 for which the appropriate Lagrange

multiplier to the problem, λ ∗, is such that
[

Iq×q−2λ
∗B̃′Ḡ′ḠB̃

(
B̃′
(
Q̃+2λ

∗Ḡ′Ḡ
)
B̃
)−1]

is nonsingular.

Assumption 2.5: We assume that the constraint parameter, α4, and the system dynamics

are selected such that the optimal solution η∗(.) to Problem 2.4 satisfies the security

constraint and that there exists a h(.) ∈ L2(ℜn,B(ℜn),µp) such that:

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )−Ũ(yT )+ B̃

(
η
∗(xT )−η

∗(yT )
))′

Ḡ′Ḡ
(

Ũ(xT )−Ũ(yT )+

B̃
(
η
∗(xT )−η

∗(yT )
))

dyT dxT +4
∫

ℜn

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′ḠB̃h(xT )p(xT )dxT

−4
∫

ℜn

∫
ℜn

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′ḠB̃h(yT )p(yT )p(xT )dyT dxT < α4

It should be noted that Assumption 2.5 is the standard regularity assumption re-

quired to apply the Generalized Kuhn Tucker Theorem. This regularity condition is a

natural analog to the interior point condition employed for inequality constraints in the

global theory of convex optimization (see [18]). Note that this condition excludes the

possibility of incorporating an equality constraint by reducing the cone to a point or by

including a constraint and its negative counterpart. Using the concept of Gateaux differ-

entials, Assumption 2.4, Assumption 2.5, and the generalized Kuhn Tucker Theorem we

obtain the following result.
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Proposition 2.4.1: The optimal solution to Problem 2.4, under Assumption 2.4 and As-

sumption 2.5, is affine in xT and is given by:

η
∗(xT ) =−

(
B̃′Q̃B̃+2λ

∗B̃′Ḡ′ḠB̃
)−1(

B̃′Q̃+2λ
∗B̃′Ḡ′Ḡ

)
Ũ(xT ) +

2λ
∗
(

B̃′Q̃B̃+2λ
∗B̃′Ḡ′ḠB̃

)−1(
B̃′Ḡ′Ḡ−

(
Iq×q−2λ

∗
Γλ ∗
)−1

Γλ ∗B̃
′Q̃
)∫

p(yT )Ũ(yT )dyT

where Γλ ∗ = B̃′Ḡ′ḠB̃
(

B̃′
(
Q̃+2λ ∗Ḡ′Ḡ

)
B̃
)−1

and λ ∗ ≥ 0 is the solution to the following

equation:

λ
∗
[
−2

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(yT )+ B̃η

∗(yT )

)
dyT dxT+

2
∫

ℜn
p(xT )

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(xT )+ B̃η

∗(xT )

)
dxT −α4

]
= 0

Proof:

We will first compute the Gateaux differential of the Lagrangian and then use the

generalized Kuhn Tucker theorem conditions to compute the optimal solution. Now the

Lagrangian can be written as follows:

Jλ (η(.)) =
∫

ℜn
p(xT )

(
Ũ(xT )+ B̃η(xT )

)′(
Q̃+2λ Ḡ′Ḡ

)(
Ũ(xT )+ B̃η(xT )

)
dxT

−2λ

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )+ B̃η(xT )

)′
Ḡ′Ḡ

(
Ũ(yT )+ B̃η(yT )

)
dyT dxT (2.42)

For any admissible variation h(.) ∈ L2(ℜn,F ,µp) the Gateaux differential of the La-
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grangian is given by:

δJλ (η(.),h(.)) = 2
∫

ℜn
p(xT )Ũ(xT )

′
(

Q̃+2λ Ḡ′Ḡ
)

B̃h(xT )dxT +2
∫

ℜn
p(xT )×

η(xT )
′B̃′
(

Q̃+2λ Ḡ′Ḡ
)

B̃h(xT )dxT −4λ

∫
ℜn

∫
ℜn

p(xT )p(yT )Ũ(xT )
′Ḡ′ḠB̃h(yT )dyT dxT

−4λ

∫
ℜn

∫
ℜn

p(xT )p(yT )η(xT )
′B̃′Ḡ′Ḡh(yT ) dyT dxT (2.43)

Using the Kuhn Tucker conditions and setting the Gateaux differential equal to zero we

get:

∫
ℜn

p(xT )h(xT )
′
(

B̃′Q̃Ũ(xT )+2λ B̃′Ḡ′ḠŨ(xT )+ B̃′Q̃B̃η(xT )+2λ B̃′Ḡ′ḠB̃η(xT )

−2λ

∫
ℜn

p(yT )B̃′Ḡ′ḠŨ(yT )dyT −2λ

∫
ℜn

p(yT )B̃′Ḡ′ḠB̃η(yT )dyT

)
dxT = 0, ∀ h(.)

(2.44)

Now (2.44) holds if and only if:

B̃′
(

Q̃+2λ Ḡ′Ḡ
)

Ũ(xT )+ B̃′
(

Q̃+2λ Ḡ′Ḡ
)

B̃η(xT )−2λ

∫
ℜn

p(yT )B̃′Ḡ′ḠŨ(yT )dyT

−2λ

∫
ℜn

p(yT )B̃′Ḡ′ḠB̃η(yT )dyT = 0, ∀xT ∈ℜ
n (2.45)

Now multiplying (2.45) throughout by p(xT )Γλ and integrating over xT we get:

(
Iq×q−2λΓλ

)∫
ℜn

p(xT )B̃′Ḡ′ḠB̃η(xT )dxT =−
∫

ℜn
p(xT )Γλ B̃′Q̃Ũ(xT )dxT
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Using Assumption 2.4 we get:

∫
ℜn

p(xT )B̃′Ḡ′ḠB̃η(xT )dxT =−
(

Iq×q−2λΓλ

)−1 ∫
ℜn

p(xT )Γλ B̃′Q̃Ũ(xT )dxT (2.46)

Now plugging (2.46) into (2.45) we get:

η
∗(xT ) =−

(
B̃′Q̃B̃+2λ

∗B̃′Ḡ′ḠB̃
)−1(

B̃′Q̃+2λ
∗B̃′Ḡ′Ḡ

)
Ũ(xT ) +

2λ
∗
(

B̃′Q̃B̃+2λ
∗B̃′Ḡ′ḠB̃

)−1(
B̃′Ḡ′Ḡ−

(
Iq×q−2λ

∗
Γλ ∗
)−1

Γλ ∗B̃
′Q̃
)∫

ℜn
p(yT )Ũ(yT )dyT

(2.47)

which from the Kuhn Tucker conditions is the optimal solution. Also from the Kuhn

Tucker conditions λ ∗ is given by the solution of the following equation:

λ
∗
[
−2

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(yT )+ B̃η

∗(yT )

)
dyT dxT+

2
∫

ℜn
p(xT )

(
Ũ(xT )+ B̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(xT )+ B̃η

∗(xT )

)
dxT −α4

]
= 0 (2.48)

It should be noted that λ ∗ depends upon Ũ(.), p(.), and α4 but not on the terminal state,

xT . Also Ũ(xT ) is selected to be linear in xT . Therefore, we conclude from (2.47) that the

optimal solution to Problem 2.4 is affine in xT .

Proposition 2.4.1 is an interesting result as it shows that the optimal solution is

affine in the terminal state. Contrary to the results in the previous sections we obtain an

affine solution for the case when the terminal state has a continuous distribution. Since

the cost function is strictly convex so the optimal solution is unique. Assumption 2.4 and
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Assumption 2.5 can be checked by first solving the problem and then using the optimal

solution to check if the assumptions are satisfied. It should be noted that Assumption 2.4

allows us to operate only over particular regimes of the parameter, α4. However, it is

not very restrictive and we can still work with a wide range of parameter values as the

assumption fails for only a finite number of values. Such an assumption can be removed

if we consider the following simpler security constraint which also results in a solution

which is affine in the terminal state.

∫
ℜn

p(xT )U(xT )
′Ḡ′ḠU(xT ) dxT ≤ α5, α5 ≥ 0 (2.49)

The main difference between these constraints is that in (2.49) we compare the first

k components of a control sequence, which drive the system to a particular terminal state,

with the zero control sequence. For the security constraint employed in Problem 2.4,

we compare the first k components of two control sequences which drive the system to

different terminal state values. Both constraints are then constructed by multiplying with

relevant probability densities, integrating over ℜn, and using some appropriate security

parameters.
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2.5 Simulations

In this section, we provide an analysis of the behavior of the cost function as the

security constraint parameter is varied. In addition, we utilize simulations to analyze the

behavior of the optimal solution. We consider the framework of Problem 2.2.1 and further

make the assumption that the priors are equi-probable. Consider the system dynamics:

A =


1 23 4

5 7 12

1 23 16

 , B =


1 4 4.3

6 2.3 8

12 7 1.8

 ,b1 =



53

75

100

32

37

−8



Let Σ = 2× I12×12, Q = 5× I30×30, and α = 0.45. We assume that T = 5 and k = 2.

Using these values α1 is calculated to be 4
(
ρ−1(0.45)

)2. We use the standard optimiza-

tion software cvx to compute the optimal control sequences. The optimal solution, U, is
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given in (2.50).

U(1 : 15) =



−0.0118

0.0128

0.0076

−0.0048

−0.0023

0.0099

−−−−−−

0.0032

0.0052

−0.0221

0.5366

0.0016

−0.3726

0.1369

0.0453

−0.1924



, U(16 : 30) =



−0.0118

0.0127

0.0076

−0.0051

−0.0020

0.0093

−−−−−−

−0.0063

−0.0058

0.0251

−0.5374

−0.0018

0.3736

−0.1371

−0.0454

0.1927



(2.50)

It should be noted that U(1 : 15) correspond to the first 15 elements of the con-

trol vector U which drive the system to the terminal state
[

53 75 100

]′
. Similarly

U(16 : 30) correspond to the control inputs which drive the system to the terminal state[
32 37 −8

]′
, respectively. It should be noted that k = 2, m = 3, and hence the ad-
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Figure 2.1: Optimal Cost vs α for the system with terminal state vector b1

versary can only make noisy measurements of the first 2 control inputs, which are colored

red, of these control vectors. Note that the control inputs which the adversary measures in

both cases are very similar to one another thereby providing minimum useful information

to the adversary. This is what we expected and this further signifies the importance of

incorporating security constraints in control problems.

The simulation in Fig. 2.1 utilizes the system described above. We plot the optimal

cost against the constraint parameter α , where Pe ≥ α . As discussed in Section 2.2 if

α > 0.5 then the security constraint becomes infeasible. Clearly as α is increased the

problem becomes more constrained and cost increases respectively. An exponential in-

crease in the cost is observed by an increase in the value of α , for α ≥ 0.14. In Fig. 2.1,[
53 75 100 32 37 −8

]′
was utilized as the vector of terminal states. In order

to avoid any confusion we clarify that the value of the optimal cost, for 0≤ α ≤ 0.15, is

approximately 0.01 and not zero.

We now consider a different dynamical system and a different vector of terminal
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Figure 2.2: Optimal Cost vs α for the system with terminal state vector b2

states to analyze the increase in the optimal cost with the value of α . Let:

A =


1 3 4

3.1 7 2

5 3 6

 , B =


1 4 0.3

6 3 2

2 7 9

 ,b2 =



10

12

−8

4

7

5


We take Σ = 0.5× I12×12, Q = 10× I30×30, T = 5 and k = 3. Fig. 2.2 shows the

increase in the optimal cost with the value of α for this system. Clearly in this case the

optimal cost increases less rapidly than in the case of Fig. 2.1. Unlike the previous system,

the optimal cost does not stay constant over a large range of values of α . Therefore,

we can conclude that for this system the probability of error constraint is more tightly

enforced as compared to the previous system. Also the rate of change in the optimal
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cost is approximately constant. These simulations further show the importance of the

constraint parameters in the optimal solution. Similar results can be obtained when we

employ constraints based on the conditional mean.
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Chapter 3: Team Decision Theory under Security Constraints

In this chapter, we extend the research ideas presented in Chapter 2 to problems in

Team Decision Theory. We incorporate various security constraints which lead to differ-

ent formulations under the framework of team decision theory. In a team decision prob-

lem, there are two or more decision makers each responsible for making a local decision

by utilizing the information made available to it. The decisions made by the individual

decision makers generally optimize a common cost or payoff criterion. The motivation

for team decision problems initially came from decision making within organizations

( [19], [20], [21]).

The first team decision problem was formulated by Marshak [19], in 1956. The

adopted approach came from game theory and decision theory. The fundamental result

for verifying the global optimality of a team decision rule was first provided by Radner

in [20]. In the literature, this result is commonly referred to as Radner’s Theorem. Un-

der some assumptions it provides sufficient conditions under which a person by person

optimal decision rule is globally optimal and is proved using a Hilbert space approach.

However, this result is difficult to verify due to the requirement of a local finiteness con-

dition. Using this result Radner showed that for the case of a quadratic cost and jointly

Gaussian information variables the optimal solution is affine in the information available
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to the decision makers. The difficulty in verifying the local finiteness condition is over-

come in [22], which provides a generalized version of Radner’s Theorem. This is done by

requiring the existence of certain integrals. This generalized result is then used to estab-

lish the optimality of affine control laws for the exponential of a quadratic performance

index with jointly Gaussian state and observations.

The results presented in ( [19], [20], [21], [22]) deal with the static version of team

decision problems. In static team problems, the information available to any decision

maker is independent of the actions of other decision makers. In contrast, in dynamic

team problems the information available to any decision maker varies with the actions of

other decision makers. In dynamic team problems the dependence of a decision maker’s

rule on the policy of another decision maker converts the problem, with a cost originally

quadratic in the decision rules, into a non convex optimization problem. Similarly this

interdependence converts a Gaussian information structure to be non-Gaussian at the in-

dividual decision maker. The non-convex nature of the cost and the non-Gaussian form of

the information variables make problems in dynamic team decision theory very difficult

to solve.

Under the assumptions of a specialized information structure it is possible to convert

a dynamic team problem into a static team problem. This information structure is called

the “Partially Nested Information Structure” and was first introduced in [23]. In this case

the information of a decision maker, whose decision rule depends on the decisions made

by other decision makers, also contains the information available to those decision makers

and hence can infer their decisions from the available information. It should be noted

that team decision problems with quadratic constraints have been previously considered
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in [24]. However, we consider a different problem formulation and incorporate a new

security constraint framework.

The team decision problems considered in the sequel are subjected to security con-

straints. We consider a team of decision makers each possessing a different dynamical

system and tasked with computing control sequences which generate a specified terminal

state. The initial state of each dynamical system is assumed to be zero. An adversary

makes partial measurements of the state trajectory of each decision maker and tries to

estimate the terminal state. The terminal states are assumed to be either identical or cor-

related. The task of the controllers is to design control sequences such that the respective

state trajectories reach the specified terminal state while minimizing a quadratic cost cri-

terion and satisfying security constraints. The cost function, to be defined in the next

section, is quadratic in the control sequences of the decision makers. Note that the cost is

coupled among the decision makers and is obtained by integrating over the terminal states

with respect to their probability density function.

Utilizing the aforementioned framework our aim is to prove that the optimal control

policies of the decision makers, which provide the globally optimal solution, are affine

in the terminal state. The optimal solution can be obtained from the Generalized Kuhn

Tucker Theorem, which was also utilized in Section 2.4. This requires certain standard

regularity conditions along with assumptions similar in structure to Assumption 2.4.
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3.1 Problem Formulation

In order to simplify the presentation we consider the case when we have two de-

cision makers. This formulation and the corresponding results can easily be extended to

the case when we have more decision makers. Consider the following linear and time

invariant dynamical systems each assigned to a specific decision maker:

(I) :

x1
j+1 = A1x1

j +B1u1
j , j = 0, ...,T −1

Y1
j =C1x1

j +V1
j , j = 0, ...,k

 (3.1)

(II) :

x2
j+1 = A2x2

j +B2u2
j , j = 0, ...,T −1

Y2
j =C2x2

j +V2
j , j = 0, ...,k

 (3.2)

where xi
j ∈ℜn, i = 1,2, are the states of system (I) and system (II) respectively,

ui
j ∈ℜm, i = 1,2, are the control inputs, Ai, i = 1,2, are n×n matrices and Bi, i = 1,2, are

the n×m matrices respectively. Y1
0, ...,Y

1
k are the measurements corresponding to sys-

tem (I) that are available to the adversary and similarly Y2
0, ...,Y

2
k are the measurements

of system (II) that are available to the adversary. C1 and C2 are p× n matrices, respec-

tively. V1
0, ...,V

1
k are p× 1 independent and identically distributed random vectors and

the same assumption holds for V2
0, ...,V

2
k. We assume that both system (I) and system (II)

are completely controllable. We assume that the noise vectors have a general distribution

with a finite mean. Now we can write the observation and noise vectors in compact form
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as follows:

V1
0,k =


V1

0

...

V1
k

 , V2
0,k =


V2

0

...

V2
k

 , Y1
0,k =


Y1

0

...

Y1
k

 , Y2
0,k =


Y2

0

...

Y2
k

 (3.3)

We present two different cases in this chapter. First, we consider the case when

both systems are tasked to drive their state trajectories to an identical terminal state. This

is followed by considering the case when both systems drive their state trajectories to

correlated terminal states.

3.2 Team Decision Theory: Identical Terminal State

In this section, we consider the team problem where the controllers of both systems

are tasked to drive their trajectories to the same terminal state, xT . We assume that the

terminal state, xT , is reached with a continuous distribution. In addition, it is assumed that

this distribution has a finite mean and a finite covariance. We assume that we are given

the probability density function, p(.), of this distribution.

Let U1(xT ) be the sequence of control inputs that drive the state trajectory of system

(I) to the terminal state xT and similarly let U2(xT ) be the sequence of control inputs which

drives the state trajectory of system (II) to the terminal state xT .

U1(.) =


u1

0

...

u1
T−1

 ,U2(.) =


u2

0

...

u2
T−1

 (3.4)
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The measurements made by the adversary are assumed to have a general noise

distribution with a finite mean. Under the hypothesis HxT , for which the terminal state is

xT , the measurements made by the adversary from each system can be written in compact

form as follows:

HxT : Y1
0,k = Ḡ1U1(xT )+V1

0,k, Y2
0,k = Ḡ2U2(xT )+V2

0,k (3.5)

where Ḡ1 and Ḡ2 are given by:

Ḡi = C̄iGi, GiUi(.) =


ui

0

...

ui
k−1

 , C̄i =



0p×m 0p×m · · · 0p×m

CiBi 0p×m · · · 0p×m

...
... . . . ...

CiAk−1
i Bi CiAk−2

i Bi · · · CiBi


, i = 1,2 (3.6)

Since the control sequence Ui(xT ), i = 1,2, drives the state trajectories of the re-

spective dynamical systems to the terminal state, xT , the following equality constraints

are required:

FiUi(xT ) = xT , i = 1,2

Fi =

[
AT−1

i Bi AT−2
i Bi · · · Bi

]
, i = 1,2 (3.7)

Now utilizing the structure of the security metric presented in Section 2.4, we intro-

duce the following security metric which can be used to introduce the security constraints
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for this problem:

∫
xT

∫
yT

p(xT )p(yT )

(
E
(
Y1

0,k|xT
)
−E

(
Y1

0,k|yT
))′(

E
(
Y1

0,k|xT
)
−E

(
Y1

0,k|yT
))

dyT dxT

+
∫

xT

∫
yT

p(xT )p(yT )

(
E
(
Y2

0,k|xT
)
−E

(
Y2

0,k|yT
))′(

E
(
Y2

0,k|xT
)
−E

(
Y2

0,k|yT
))

dyT dxT

(3.8)

where yT is another realization for the terminal state. This security metric mea-

sures the difference of the conditional means for the two systems for different terminal

state values and then adds their sum. Using equation (3.5) we get that the difference of

conditional means is given by:

E
(
Yi

0,k|xT
)
−E

(
Yi

0,k|yT
)
= ḠiUi(xT )− ḠiUi(yT ), i = 1,2 (3.9)

Using (3.9), the security metric can be simplified to get:

∫
xT

∫
yT

p(xT )p(yT )

(
U1(xT )−U1(xT )

)′
Ḡ′1Ḡ1

(
U1(xT )−U1(xT

)
dyT dxT

+
∫

xT

∫
yT

p(xT )p(yT )

(
U2(xT )−U2(xT )

)′
Ḡ′2Ḡ2

(
U2(xT )−U2(xT

)
dyT dxT

From the above expression we note that this security metric provides a measure

on the difference of the state trajectories whose noisy counterpart is accessible to the

adversary. A lower value of this metric indicates a more secure policy for both systems.

In this metric the integral of the differences of state trajectories for different terminal states

of both systems are weighted equally. We can also assign other weights without changing
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the problem structure significantly and the solution methodology outlined below will also

be applicable to that case. Consider the following optimization problem:

Problem 3.1:

min
U1(.),U2(.)

∫
xT

U1(xT )
′Q1U1(xT )+U2(xT )

′Q2U2(xT ) dxT

subject to the constraints:

∫
xT

∫
yT

p(xT )p(yT )

(
U1(xT )−U1(xT )

)′
Ḡ′1Ḡ1

(
U1(xT )−U1(xT )

)
dyT dxT

+
∫

xT

∫
yT

p(xT )p(yT )

(
U2(xT )−U2(xT )

)′
Ḡ′2Ḡ2

(
U2(xT )−U2(xT )

)
dyT dxT ≤ γ1

F1U1(xT ) = xT , F2U2(xT ) = xT

where Q1 and Q1 are symmetric positive definite matrices of appropriate dimen-

sions. It should be noted that the security parameter γ1 is taken to be nonnegative. The

security constraint provides a level of security offered by the respective controllers. The

functions U1(.) and U2 are L2 integrable and belong to the space L2(ℜn,B(ℜn),µp).

Note that B(ℜn) is the Borel σ -algebra on ℜn and µp is the probability measure corre-

sponding to the distribution of the terminal state.

It should be noted that in Problem 3.1 both the cost and security constraints of both

systems are coupled. Therefore, the optimal solution of a decision maker will depend on

the optimal policy employed by the other decision maker. Also the same information,

which is the terminal state, is available to both decision makers and hence the problem

has a partially nested information structure.
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Now using the same technique that was utilized in Chapter 2 we can remove the

equality constraints in (3.7) and also write the aforementioned problem in a more compact

form. Let U(.), F, and Ḡ be defined such that:

U(.) =

U1(.)

U2(.)

 , F =

F1 0

0 F2

 , Ḡ =

Ḡ1 0

0 Ḡ2

 , Q =

Q1 0

0 Q2

 (3.10)

Using equation (3.10) we can write the equality constraints as follows:

FU(xT ) =

 xT

xT

 , xT ∈ℜ
n (3.11)

Let F̃ be a basis for the Null space of F and Ũ(xT ) be a given control function such that:

FŨ(xT ) =

 xT

xT

 , FF̃η(xT ) = 0, xT ∈ℜ
n

where η(.) is a q× 1 dimensional function which will serve as our new optimization

parameter. Note that q is the dimension of the Null space of F . Also Ũ(.) is selected to

be linear in the terminal state. This is possible due to the controllability assumption of

the dynamical systems. Using this notation the control input function can be expressed as

follows:

U(xT ) = Ũ(xT )+ F̃η(xT )
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Similarly we can write:

2

∑
i=1

(
Ui(xT )−Ui(yT )

)′
Ḡ′iḠi

(
Ui(xT )−Ui(yT )

)
=(

Ũ(xT )−Ũ(yT )+ F̃η(xT )− F̃η(yT )

)′
Ḡ′Ḡ

(
Ũ(xT )−Ũ(yT )+ F̃η(xT )− F̃η(yT )

)

Using the aforementioned notation we can re-write Problem 3.1 as follows:

min
η(.)

∫
ℜn

(
Ũ(xT )+ F̃η(xT )

)′
Q
(

Ũ(xT )+ F̃η(xT )

)
dxt

subject to the constraint:

∫
xT

∫
yT

(
Ũ(xT )−Ũ(yT )+ F̃

(
η(xT )−η(yT )

))
Ḡ′Ḡ

(
Ũ(xT )−Ũ(yT )+

F̃
(
η(xT )−η(yT )

))
p(xT )p(yT )dxT dyT ≤ γ1

We will solve Problem 3.1 by utilizing the Generalized Kuhn Tucker Theorem. In order

to do that we make the following assumptions.

Assumption 3.1: It is assumed that we consider only those values of γ1 for which the

appropriate Lagrange multiplier to the problem, λ ∗, is such that the matrix
[

Iq×q −

2λ
∗F̃ ′Ḡ′ḠF̃

(
F̃ ′
(
Q̃+2λ

∗Ḡ′Ḡ
)
F̃
)−1]

is nonsingular.

Assumption 3.2: We assume that the constraint parameter, γ1, and the system dynamics

are selected such that the optimal solution η∗(.) to Problem 3.1 satisfies the aforemen-
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tioned security constraint and that there exists a h(.) ∈ L2(ℜn,B(ℜn),µp) such that:

∫
ℜn

∫
ℜn

p(xT )p(yT )

(
Ũ(xT )−Ũ(yT )+ F̃

(
η
∗(xT )−η

∗(yT )
))′

Ḡ′Ḡ
(

Ũ(xT )−Ũ(yT )+

F̃
(
η
∗(xT )−η

∗(yT )
))

dyT dxT + 4
∫

ℜn

(
Ũ(xT )+ F̃η

∗(xT )

)′
Ḡ′ḠF̃h(xT )p(xT )dxT

− 4
∫

ℜn

∫
ℜn

(
Ũ(xT )+ F̃η

∗(xT )

)′
Ḡ′ḠF̃h(yT )p(yT )p(xT )dyT dxT < γ1

It should be noted that Assumption 3.2 is the standard regularity assumption required to

apply the Generalized Kuhn Tucker Theorem. Note that this assumption excludes the

possibility of incorporating an equality constraint. Using the concept of Gateaux differ-

entials, Assumption 3.1, Assumption 3.2, and the generalized Kuhn Tucker Theorem we

obtain the following result.

Proposition 3.1: The optimal solution of Problem 3.1 under Assumption 3.1 and As-

sumption 3.2 is affine in the terminal state, xT , and is given as follows:

η
∗(xT ) =−

(
F̃ ′QF̃ +2λ

∗F̃ ′Ḡ′ḠF̃
)−1(

F̃ ′Q+2λ
∗F̃ ′Ḡ′Ḡ

)
Ũ(xT )+2λ

∗
(

F̃ ′QF̃+

2λ
∗F̃ ′Ḡ′ḠF̃

)−1(
F̃ ′Ḡ′Ḡ−

(
I−2λ

∗
Γλ ∗
)−1

Γλ ∗F̃
′Q
)∫

p(yT )Ũ(yT )dyT

where Γλ ∗ = F̃ ′Ḡ′ḠF̃
(

F̃ ′
(
Q+2λ ∗Ḡ′Ḡ

)
F̃
)−1

and λ ∗≥ 0 is the solution to the following

equation:

λ
∗
[
−2

∫
xT

∫
yT

p(xT )p(yT )

(
Ũ(xT )+ F̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(yT )+ F̃η

∗(yT )

)
dyT dxT

+ 2
∫

xT

p(xT )

(
Ũ(xT )+ F̃η

∗(xT )

)′
Ḡ′Ḡ

(
Ũ(xT )+ F̃η

∗(xT )

)
− γ1

]
= 0
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Proof. The proof of Proposition 3.1 follows along the same lines as the proof of Proposi-

tion 2.4.1 to which the reader is reffered.

Since the cost function is strictly convex so it should be noted that the optimal

solution is unique. Assumption 3.1 and Assumption 3.2 can be checked by first solving

the problem and then using the optimal solution to check if the assumptions are satisfied.

It should be noted that Assumption 3.1 allows us to operate only over particular regimes

of the parameter, γ1. However, it is not very restrictive and we can still work with a wide

range of parameter values as the assumption fails for only a finite number of values.

3.3 Team Decision Theory: Correlated Terminal State

The problem formulation presented in Section 3.1 is for the case when the terminal

state is identical for both decision makers. A more general problem formulation is when

the terminal states are not identical but correlated in the sense that they both have the

same mean but different variance. Consider the same system dynamics for both decision

makers which was provided in Section 3.1. We assume that both systems are completely

controllable. Consider the following terminal states corresponding to system (I) and sys-

tem (II):

x1
T = w1 +w3, x2

T = w2 +w3 (3.12)

where w1, w2, and w3 are independent Gaussian random vectors. Furthermore, it is as-

sumed that the mean vector of both w1 and w2 is zero and w3 is not zero. Therefore,

the terminal states have the same mean but different variance. The information variable

which contains information regarding both terminal states is available to both decision
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makers and is given by:

z =

x1
T

x2
T

 (3.13)

This assumption ensures that this team decision problem has a partially nested informa-

tion structure. It should be noted that the information variable z has a Gaussian distribu-

tion with density function q(.). Using a similar notation to the problem formulation in

Section 3.2, let U1(z) be the control sequence that drives system (I) to the terminal state

x1
T and let U2(z) be the control sequence that drives system (II) to the terminal state x2

T .

U1(.) =


u1

0

...

u1
T−1

 , U2(.) =


u2

0

...

u2
T−1


We require the following equality constraints:

F1U1(z) = x1
T , F2U2(z) = x2

T (3.14)

where F1 and F2 are given as follows:

Fi =

[
AT−1

i Bi AT−2
i Bi · · · Bi

]
, i = 1,2

We assume that the adversary makes partial noisy measurements of both systems and

wants to estimate their respective terminal states. Under Hypothesis Hz the following
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measurement model is available to the adversary:

Hz : Y1
0,k = Ḡ1U1(z)+V1

0,k, Y2
0,k = Ḡ2U2(z)+V2

0,k (3.15)

where Ḡ1 and Ḡ2 are given by:

Ḡi = C̄iGi, GiUi(.) =


ui

0

...

ui
k−1

 , C̄i =



0p×m 0p×m · · · 0p×m

CiBi 0p×m · · · 0p×m

...
... . . . ...

CiAk−1
i Bi CiAk−2

i Bi · · · CiBi


, i = 1,2

As mentioned in Section 3.1, the noise vectors V1
0,k and V2

0,k are assumed to have a

general distribution with a finite mean. Now we introduce a more general security metric

which will be utilized in the sequel to introduce the security constraints:

∫
z1

∫
z2

q(z1)q(z2)

(
E(Y1

0,k|z1)−E(Y1
0,k|z2)

)′(
E(Y1

0,k|z1)−E(Y1
0,k|z2)

)
dz1dz2 +∫

z1

∫
z2

q(z1)q(z2)

(
E(Y2

0,k|z1)−E(Y2
0,k|z2)

)′(
E(Y2

0,k|z1)−E(Y2
0,k|z2)

)
dz1dz2 +∫

z
q(z)

(
E(Y1

0,k|z)−E(Y2
0,k|z)

)′(
E(Y1

0,k|z)−E(Y2
0,k|z)

)
dz (3.16)

where z1 and z2 are realizations of the information variable which is available to the

decision makers. It should be noted that this security metric measures the difference

of the conditional means of each system with respect to different hypotheses and also

provides a measure on the difference of conditional means of both systems with respect

to one another. The last term of this security metric enables us to secure the system
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from an adversary which would like to take advantage due to the correlated nature of the

terminal states of both systems. Now using the measurement model this security metric

can be simplified to get:

∫
z1

∫
z2

q(z1)q(z2)

(
U1(z1)−U1(z2)

)′
Ḡ′1Ḡ1

(
U1(z1)−U1(z2)

)
dz1dz2 +∫

z1

∫
z2

q(z1)q(z2)

(
U2(z1)−U2(z2)

)′
Ḡ′2Ḡ2

(
U2(z1)−U2(z2)

)
dz1dz2 +∫

z
q(z)

(
Ḡ1U1(z)− Ḡ2U2(z)

)′(
Ḡ1U1(z)− Ḡ2U2(z)

)
dz (3.17)

We are familiar with the first two terms of the security metric as they were introduced

in the previous section. The last term measures the difference, for a given information

variable, between the first (k+1) values of the state trajectories of system (I) and system

(II) respectively. A small value of this last term ensures that the adversary cannot exploit

information regarding the terminal states, due to their correlation, by separately observing

the trajectories of both systems. Utilizing this security metric we can state the following

team decision problem:

Problem 3.2:

min
U1(.),U2(.)

∫
ℜ2n

q(z)
(

U1(z)′Q1U1(z)+U2(z)′Q2U2(z)
)

dz

subject to the constraints:

F1U1(z) = x1
T , F2U2(z) = x2

T
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∫
z1

∫
z2

q(z1)q(z2)

(
U1(z1)−U1(z2

)′
Ḡ′1Ḡ1

(
U1(z1)−U1(z2

)
dz1dz2 +

∫
z1

∫
z2

q(z1)q(z2)

×
(

U2(z1)−U2(z2

)′
Ḡ′2Ḡ2

(
U2(z1)−U2(z2

)
dz1dz2 +

∫
z
q(z)

(
Ḡ1U1(z)− Ḡ2(z)

)′
×(

Ḡ1U1(z)− Ḡ2U2(z)
)
≤ γ2

where γ ≥ 0 is the constraint parameter. The functions U1(.) and U2 are L2 in-

tegrable and belong to the space L2(ℜ2n,B(ℜ2n),µq). Note that B(ℜ2n) is the Borel

σ -algebra on ℜ2n and µq is the probability measure corresponding to the distribution of

the information variable, z.

It should be noted that Problem 3.3 is an infinite dimensional convex optimization

problem. Also note that each decision maker has access to the information variable,

z. Therefore, this problem has a partially nested information structure. Our framework

and constraints are unique and offer an important extension to the field of team decision

theory. Now we can write the input dynamics in compact form as follows:

U(z) =

U1(z)

U2(z)

 , F =

 F1 0

0 F2



Using this notation the equality constraints can be re-written as: FU(z) = z, z ∈ℜ2n

Similarly, let Ḡ, H, and Q be defined as follows:

Q =

Q1 0

0 Q2

 , Ḡ =

Ḡ1 0

0 Ḡ2

 , H =

 Ḡ′1

−Ḡ′2

[Ḡ1 −Ḡ2

]
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Using this notation we can simplify the security metric as follows:

∫
z1

∫
z2

q(z1)q(z2)

(
U1(z1)−U1(z2)

)′
Ḡ′1Ḡ1

(
U1(z1)−U1(z2)

)
dz1dz2 +

∫
z1

∫
z2

q(z1)q(z2)(
U2(z1)−U2(z2)

)′
Ḡ′2Ḡ2

(
U2(z1)−U2(z2)

)
dz1dz2 +

∫
z
q(z)

(
Ḡ1U1(z)− Ḡ2U2(z)

)′
(

Ḡ1U1(z)− Ḡ2U2(z)
)

dz =
∫

z1

∫
z2

q(z1)q(z2)

(
U(z1−U(z2)

)′
Ḡ′Ḡ

(
U(z1−U(z2)

)
dz1dz2

+
∫

z
q(z)U(z)′HU(z)dz

Similarly the cost function can be simplified to get:

∫
z
q(z)

(
U1(z)′Q1U1(z)+U2(z)′Q2U2(z)

)
dz =

∫
z
q(z)U(z)′QU(z)dz

Now we will use the same technique that has been utilized previously to remove the

equality constraints. Let Ũ(z) be a given control function such that:

FŨ(z) = z, z ∈ℜ
2n

Let F̃ be a basis for the Null space of F such that:

FF̃η(z) = 0, η(z) ∈ℜ
q, q = dim(Null(F))

Using this we can re-write the control function U(z) as follows:

U(z) = Ũ(z)+ F̃η(z)
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Using the aforementioned notation we can simplify Problem 3.2 as follows:

min
η(.)

∫
z
q(z)

(
Ũ(z)+ F̃η(z)

)′
Q
(

Ũ(z)+ F̃η(z)
)

dz

subject to the constraints:

∫
z1

∫
z2

q(z1)q(z2)

(
Ũ(z1)−Ũ(z2)+ F̃η(z1)− F̃η(z2)

)′
Ḡ′Ḡ

(
Ũ(z1)−Ũ(z2)+

F̃η(z1)− F̃η(z2)

)
dz1dz2 +

∫
z
q(z)

(
Ũ(z)+ F̃η(z)

)′
H
(

Ũ(z)+ F̃η(z)
)

dz ≤ γ2

We will solve Problem 3.2 by utilizing the generalized Kuhn Tucker Theorem. In order

to do that we need to make the following assumptions:

Assumption 3.3: We consider only those values of γ2 for which the appropriate Lagrange

multiplier, λ ∗, to the problem is small enough such that the matrix
[

Iq×q−2λ
∗F̃ ′Ḡ′ḠF̃×

×
(

F̃ ′
(
Q̃+2λ ∗Ḡ′Ḡ+λ ∗H

)
F̃
)−1]

is nonsingular.

Assumption 3.4: We assume that the constraint parameter, γ2, and the system dynamics

are selected such that the optimal solution η∗(.) to Problem 3.2 satisfies the aforemen-

tioned security constraint and that there exists a h(.) ∈ L2(ℜ2n,B(ℜ2n),µq) such that:

∫
z1

∫
z2

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)− F̃η
∗(z2)

)′
Ḡ′Ḡ

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)

− F̃η
∗(z2)

)
q(z1)q(z2)dz1dz2 +

∫
z

(
Ũ(z)+ F̃η

∗(z)
)′

H
(

Ũ(z)+ F̃η
∗(z)
)

dz

+ 4
∫

z

(
Ũ(z)+ F̃η

∗(z)
)′

Ḡ′ḠF̃h(z)dz+2
∫

z

(
Ũ(z)+ F̃η

∗(z)
)′

HF̃h(z)dz

− 4
∫

z1

∫
z2

η
∗(z1)

′F̃ ′Ḡ′ḠF̃h(z2)q(z1)q(z2)dz1dz2 < γ2
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It should be noted that Assumption 3.4 is a standard regularity condition that is required

in order to apply the generalized Kuhn Tucker Theorem. Using Assumption 3.3 and As-

sumption 3.4 we can state the following result:

Proposition 3.2: The optimal solution to Problem 3.2 under Assumption 3.3 and Assump-

tion 3.4 is affine in the information variable, z, and is given as follows:

η
∗(z) =−

(
F̃ ′
(
Q+2λ

∗Ḡ′Ḡ+λ
∗H
)
F̃
)−1

F̃ ′
(

Q+2λ
∗Ḡ′Ḡ+λ

∗H
)

Ũ(z)+2λ
∗
(

F̃ ′
(
Q

+2λ
∗Ḡ′Ḡ+λ

∗H
)
F̃
)−1(

F̃ ′Ḡ′Ḡ−
(
I−2λ

∗
Γ(λ ∗)

)−1
Γ(λ ∗)F̃ ′

(
Q+λ

∗H
))∫

z
q(z)Ũ(z)dz

where Γ(λ ∗) = F̃ ′Ḡ′ḠF̃
(

F̃ ′
(
Q+ 2λ ∗Ḡ′Ḡ+ λ ∗H

)
F̃
)−1

and the appropriate Lagrange

multiplier, λ ∗ ≥ 0, is the solution to the following equation:

λ
∗
[∫

z1

∫
z2

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)− F̃η
∗(z2)

)′
Ḡ′Ḡ

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)−

F̃η
∗(z2)

)
q(z1)q(z2)dz1dz2+

∫
z
q(z)

(
Ũ(z)+F̃η

∗(z)
)′

H
(

Ũ(z)+F̃η
∗(z)
)

dz−γ2

]
= 0

Proof. Now using the cost function, the security constraint, and a Lagrange multiplier, λ ,

we can write the augmented Lagrangian as follows:

J(η(.)) =
∫

z

(
Ũ(z)+ F̃η(z)

)′(
Q+2λ Ḡ′Ḡ+λH

)(
Ũ(z)+ F̃η(z)

)
q(z)dz

−2λ

∫
z1

∫
z2

q(z1)q(z2)

(
Ũ(z1)+ F̃η(z1)

)′
Ḡ′Ḡ

(
Ũ(z2)+ F̃η(z2)

)
dz1dz2 (3.18)

Now for any admissible variation, h(.)∈L2(ℜ2n,B(ℜ2n),µq), we can compute the Gateaux
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differential as follows:

δJ(η(.),h(.)) = 2
∫

z
Ũ(z)′

(
Q+2λ Ḡ′Ḡ+λH

)
F̃h(z)dz+2

∫
z
h(z)′F̃ ′

(
Q+2λ Ḡ′Ḡ+λH

)
× F̃η(z)dz−4λ

∫
z1

∫
z2

Ũ(z1)
′Ḡ′ḠF̃h(z2)q(z1)q(z2)dz1dz2−4λ

∫
z1

∫
z2

η(z1)
′F̃ ′Ḡ′Ḡ

×h(z2)q(z1)q(z2)dz1dz2 (3.19)

Now setting the Gateaux differential equal to zero for arbitrary admissible h(.) we get

that:

F̃ ′
(

Q+2λ Ḡ′Ḡ+λH
)(

Ũ(z)+ F̃η(z)
)
−2λ

∫
z
F̃ ′Ḡ′Ḡ

(
Ũ(z)+ F̃η(z)

)
q(z)dz = 0

(3.20)

Using Assumption 3.3 we multiply throughout by q(z)Γ(λ ) =

q(z)F̃ ′Ḡ′ḠF̃
(

F̃ ′
(
Q+ 2λ Ḡ′Ḡ+λH

)
F̃
)−1

followed by integrating the resulting expres-

sion over z to get:

∫
z
F̃ ′Ḡ′ḠF̃q(z)η(z)dz =−

(
I−2λΓ(λ )

)−1 ∫
z
q(z)Γ(λ )F̃ ′

(
Q+λH

)
Ũ(z)dz (3.21)

It should be noted
(
I−2λΓ(λ )

)
is invertible due to Assumption 3.3. Now plugging (3.21)

into (3.20) we get that:

F̃ ′
(
Q+2λ Ḡ′Ḡ+λH

)
F̃η(z)=−F̃ ′

(
Q+2λ Ḡ′Ḡ+λH

)
Ũ(z)+2λ

∫
z
F̃ ′Ḡ′ḠŨ(z)q(z)dz

Using this expression and the generalized Kuhn Tucker Theorem the optimal solution is
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given by:

η
∗(z) =−

(
F̃ ′
(
Q+2λ

∗Ḡ′Ḡ+λ
∗H
)
F̃
)−1

F̃ ′
(

Q+2λ
∗Ḡ′Ḡ+λ

∗H
)

Ũ(z)+2λ
∗
(

F̃ ′
(
Q

+2λ
∗Ḡ′Ḡ+λ

∗H
)
F̃
)−1(

F̃ ′Ḡ′Ḡ−
(
I−2λ

∗
Γ(λ ∗)

)−1
Γ(λ ∗)F̃ ′

(
Q+λ

∗H
))∫

z
q(z)Ũ(z)dz

(3.22)

Since Ũ(z) is selected to be linear in z so the optimal solution is affine in z. Also from the

generalized Kuhn Tucker Theorem the appropriate Lagrange multiplier λ ∗ is given by the

following equation:

λ
∗
[∫

z1

∫
z2

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)− F̃η
∗(z2)

)′
Ḡ′Ḡ

(
Ũ(z1)−Ũ(z2)+ F̃η

∗(z1)−

F̃η
∗(z2)

)
q(z1)q(z2)dz1dz2+

∫
z
q(z)

(
Ũ(z)+F̃η

∗(z)
)′

H
(

Ũ(z)+F̃η
∗(z)
)

dz−γ2

]
= 0

(3.23)

This completes the proof.

It should be noted that the Lagrange multiplier is a function of Ũ(.), the probability

density q(.), and the system dynamics but does not depend on the information variable

z. The controller of each system uses the terminal state information of the other system

to derive its inputs. This is due to the structure of our security metric which aims to

minimize the benefit that an adversary can gain by utilizing the correlative nature of the

terminal states. Therefore, we can claim that not only are the individual control systems

secure from an adversary but the overall team decision system is secure from an adversary

which aims to make measurements regarding system operation to potentially undermine
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system operation.

Since the cost function is strictly convex so it should be noted that the optimal

solution is unique. Assumption 3.3 and Assumption 3.4 can be checked by first solving

the problem and then using the optimal solution to check if the assumptions are satisfied.

It should be noted that these assumptions are not really restrictive and are valid for a large

set of problems. Our results are along the same lines as that of Radner [20] which state

that the optimal solution of the team decision problem under some assumptions is affine in

the information variables. The important difference is that we have incorporated security

constraints in this problem formulation and have utilized the Kuhn Tucker Theorem to

prove our results.
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Chapter 4: Stochastic Receding Horizon Control using Randomized Al-

gorithms

Receding horizon control (RHC) or Model predictive control (MPC) is a pervasive

control technique, typically employed to solve constrained problems where off-line com-

putation is impractical and the problem needs to be solved on-line. In the deterministic

setting, a suitable finite horizon control sequence is generated at each time step by using

current and past measurements. The first element of this control sequence is applied to

the plant and the procedure is repeated at the following time step. Most formulations of

robust RHC minimize a cost evaluated at the maximizing disturbance. It is well known

that such min-max formulations may lead to conservative designs. Using appropriate

noise assumptions, recent results focus on either extending the deterministic framework

or optimization in the feedback policy space.

In stochastic receding horizon control (SRHC) the disturbances are modeled as

stochastic processes, whose statistical descriptions are known, and the expectation of the

cost function is minimized. Such an alternative framework leads to results that may be

less conservative than min-max formulations. In order to account for the presence of dis-

turbances the optimization is performed with respect to control policies rather than control

sequences. This is an active area of research and some exciting related work has appeared

69



in ( [27], [28], [29], and [30]). A SRHC problem with multiplicative noise is given in [27],

where hard state and control constraints are converted to soft probabilistic ones and the

resulting optimization problem is formulated as a semi-definite program. In [28], a SRHC

problem formulation is provided by employing a stochastic programming approach and

efficient solution techniques are presented. In [29], the case of unbounded noise is consid-

ered along with hard bounds on the control inputs. A sub-optimal feedback scheme utiliz-

ing the available noise measurements is used to convert the optimization problem into a

convex program. Constraints and noise assumptions similar to [29] are used in [30], along

with selecting the controller on some suitable function spaces. The resulting optimization

problems in [30], are shown to be convex.

An interesting research area where SRHC can have important applications is small

scale devices like miniature robotics, small sensors, and other small platforms which re-

quire on-line computation. Such devices have low power and limited payload capabilities

and cannot accommodate the infrastructure required to perform complex on-line compu-

tation. The main contribution of this chapter is to provide a finite horizon optimal control

problem, inspired by SRHC, and to present bounds on disturbance and control sample

sizes using results from randomized algorithms. Such randomization based techniques

require limited computations and can be implemented on many small devices. It should

be noted that randomized algorithms (see [31]) have previously been implemented in ro-

bust control (see [32], [33]) and utilized in [34] and [35] in the context of RHC. In [34],

a random convex programming technique is used to solve a min-max formulation of the

robust RHC problem while [35] uses a dynamic programming (DP) technique to mini-

mize the empirical mean of the cost function in a SRHC setting. Such DP based schemes
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are computationally complex, suffer from the curse of dimensionality, and are generally

inapplicable towards small devices.

We consider a finite horizon optimal control problem with hard bounds on the con-

trol inputs and bounded noise. The bounded noise assumption enables us to incorporate

statistical learning techniques. In addition to considering the case when the system is

affected by additive disturbances we also present an analysis for the case when the sys-

tem is affected by both additive disturbances and model uncertainty. The computational

complexity is reduced by seeking sub-optimal solutions. This is done by using a spe-

cialized disturbance feedback scheme when only additive disturbances are present and

a specialized state feedback scheme when both additive disturbances and model uncer-

tainty are present. These sub-optimal feedback schemes allow us to significantly reduce

the computational complexity of these problems.

The following notation is adopted:

• Let ℜ denote the set of real numbers and let Z+ denote the set of nonnegative

integers.

• The probability measure associated with a random variable X is denoted by PX . If

X1, ...,Xk are independent and identically distributed (iid) samples of X then the

product probability measure PX1 × ....×PXk is denoted by Pk
X . If Ω is the sample

space of X then the product sample space for the iid samples is denoted by Ωk.

• Im×m represents the m×m identity matrix and 0m×n represents the m×n matrix of

zeros. For a n×1 vector x, xi denotes the ith element where i = 1, ...,n.

• Exi[.] denotes the conditional expectation of [.] given xi.
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• Logarithm to the base 2 and natural logarithm are denoted by log and ln respec-

tively.

• d.e denotes the ceiling function and ‖.‖p denotes the standard `p norm.

This chapter is organized in five main sections. In Section 1, we provide the prob-

lem formulation for the case where noise enters the system in the form of additive distur-

bances. Randomized algorithms for minimizing the empirical mean of the cost function

using Pollard dimension theory are provided in Section 2. In Section 3, both the additive

disturbances and the control parameters are randomly generated, according to specific

probability measures. Bounds on control and disturbance sample sizes, which guarantee

certain performance specifications, are provided. The case incorporating model uncer-

tainty along with additive disturbances is considered in Section 4. Finally, simulations

and a performance based analysis is presented in Section 5.

4.1 Problem Formulation

Consider the following linear time-invariant system in discrete time:

xi+1 = Axi +Bui +Dwi , i ∈ Z+ (4.1)

where xi ∈ ℜn is the state, ui ∈ ℜm is the control input, and wi ∈ ℜn is the additive

disturbance. A is an n×n matrix, B is an n×m matrix, and we assume that D is an n×n
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non-singular matrix. The disturbances form an iid process and are bounded as follows:

wi ∈W = {w ∈ℜ
n | ‖w‖∞ ≤Wmax}, i ∈ Z+ (4.2)

We assume hard bounds on the control inputs which are given by:

ui ∈U = {u ∈ℜ
m | ‖u‖∞ ≤Umax}, i ∈ Z+ (4.3)

The input bound Umax and the disturbance bound Wmax are assumed to be known. The

following cost function is to be minimized at each time step k:

Exk

[
k+N−1

∑
i=k

x′iQixi +u′iRiui + x′k+NQk+Nxk+N

]
(4.4)

subject to the aforementioned dynamics and constraints. We assume knowledge of the

initial state xk. Qk, ...,Qk+N and Rk, ...,Rk+N are n× n and m×m matrices which are

assumed symmetric and positive definite. Given the initial state xk, we want to minimize

the cost over causal state feedback policies of the following form:



uk

uk+1

...

uk+N−1


=



πk(xk)

πk+1(xk,xk+1)

...

πk+N−1(xk,xk+1, . . . ,xk+N−1)


(4.5)

where πk, ...,πk+N−1 are control policies that satisfy (4.3). It should be noted that
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only the initial state xk is known to us. The states xk+1, ...,xk+N−1 are random and de-

pendent upon the additive disturbances wk, ...,wk+N−2 and the stochastic control inputs.

Control policies are designed to account for the presence of disturbances in the system. If

control sequences were used instead of control policies, as is done in the case of the clas-

sical RHC problem, then the effect of disturbances would be unaccounted for and would

lead to stability issues and poor performance. The SRHC approach can be described as

follows:

1. Given the initial state xk, determine an optimal control policy sequence {π∗k , ....,π∗k+N−1}

that minimizes the cost function subject to the constraints.

2. Apply the first element of the control vector (resulting from the optimal policy), u∗k ,

to the dynamical system.

3. update k to k+1 and repeat step 1.

It should be noted that the system dynamics and the cost are time invariant. Therefore, it

suffices to only consider the case k = 0. Consider the following problem:

Problem 4.1: Minimize the cost function

Ex0

[
N−1

∑
i=0

x′iQixi +u′iRiui + x′NQNxN

]
(4.6)

over causal state feedback policies, subject to the system dynamics (4.1), (4.2), and con-

trol constraints (4.3).

In order to obtain an optimal solution to the aforementioned problem we need to

solve the associated dynamic programming equations. Instead, in this work we focus on
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the following sub-optimal disturbance feedback scheme, previously employed by ( [29],

[30], [37], [38], [39], [40], and [41]), which leads to a tractable convex approach:

ui =
i−1

∑
j=0

Mi, jw j + vi, i ∈ {0, ...,N−1} (4.7)

where Mi, j is an m×n matrix and vi is an n×1 vector. Given x0, ...,xN the disturbances

w0, ...,wN−1 can be calculated from the equation:

wi = D−1{xi+1−Axi−Bui}, i ∈ {0, ...,N−1} (4.8)

The disturbance feedback scheme (4.7) can be shown to be equivalent (see [36]) to the

following standard sub-optimal state feedback scheme:

ui =
i

∑
j=0

Ki, jx j + ṽi, i ∈ {0, ...,N−1} (4.9)

The feedback gain matrices K̄, M̄ and the vectors V , Ṽ are given by:

M̄ =



0m×n 0m×n 0m×n . . . 0m×n

M1,0 0m×n 0m×n . . . 0m×n

M2,0 M2,1 0m×n . . . 0m×n

...
...

... . . . ...

MN−1,0 . . . . . . MN−1,N−2 0m×n


,V =



v0

v1

...

vN−1


,Ṽ =



ṽ0

ṽ1

...

ṽN−1
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K̄ =



K0,0 0m×n 0m×n . . . 0m×n

K1,0 K1,1 0m×n . . . 0m×n

...
...

... . . . ...

KN−1,0 . . . . . . KN−1,N−1 0m×n


,U =



u0

u1

...

uN−1


,W =



w0

w1

...

wN−1


Now we can write the cost in compact notation as follows:

N−1

∑
i=0

x′iQixi +u′iRiui + x′NQNxN = X ′Q̄X +U ′R̄U (4.10)

where Ā, B̄, D̄, Q̄, R̄, and X are given as follows:

U = M̄W +V, X = Āx0 + B̄U + D̄W (4.11)

Q̄=



Q0 0n×n . . . 0n×n

0n×n Q1 . . . 0n×n

...
... . . . ...

0n×n . . . . . . QN


, R̄=



R0 0m×m . . . 0m×m

0m×m R1 . . . 0m×m

...
... . . . ...

0m×m . . . . . . RN


, Ā=



In×n

A

...

AN


,X =


x0

...

xN



B̄ =



0n×m 0n×m 0n×m . . . 0n×m

B 0n×m 0n×m . . . 0n×m

AB B 0n×m . . . 0n×m

...
...

... . . . ...

AN−1B AN−2B . . . . . . B


, D̄ =



0n×n 0n×n 0n×n . . . 0n×n

D 0n×n 0n×n . . . 0n×n

AD D 0n×n . . . 0n×n

...
...

... . . . ...

AN−1D AN−2D . . . . . . D


The equivalence of (4.7) and (4.9) is in the sense that for any admissible (K̄,Ṽ ) an ad-
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missible (M̄,V ) can be found that yields the same state and input for all disturbances.

Utilizing the disturbance feedback scheme we show that the minimization of the expecta-

tion of (4.10), subject to (4.1), (4.2), and (4.3) is convex.

Proposition 4.1: Consider the dynamical system (4.1) affected by the additive distur-

bances (4.2) and subject to the control constraints (4.3). Then Problem 4.1 under the

disturbance feedback scheme (4.7) is a convex program with respect to the decision vari-

ables (M̄,V ) and can be written as follows:

min
M̄,V

Ex0

[
x′0Ā′Q̄Āx0 +2x′0Ā′Q̄B̄(M̄W +V )+2x′0Ā′Q̄D̄W +2W ′D̄′Q̄B̄(M̄W +V )+

W ′D̄′Q̄D̄W +(M̄W +V )′(B̄′Q̄B̄+ R̄)(M̄W +V )

]

subject to:

‖M̄W +V‖∞ ≤Umax, W ∈W N (4.12)

Proof. Now X and U are affine functions of the decision variables (M̄,V ), the cost X ′Q̄X+

U ′R̄U is quadratic, and Q̄ and R̄ are positive definite. Therefore X ′Q̄X +U ′R̄U is convex

in the decision variables (M̄,V ). Now taking expectation retains convexity (see [16], sec-

tion 3.2) so we can conclude that the cost function is convex. Also M̄W +V is convex in

the decision variables and the infinity norm is component wise nondecreasing hence the

constraints form a convex set (see [16] pp. 87-88) in the decision variables. Therefore,

we conclude that the optimization problem is a convex program.
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Now plugging (4.11) into (4.10) we get:

X ′Q̄X +U ′R̄U = x′0Ā′Q̄Āx0 +2x′0Ā′Q̄B̄(M̄W +V )+2x′0Ā′Q̄D̄W +2W ′D̄′Q̄B̄(M̄W +V )

+(M̄W +V )′B̄′Q̄B̄(M̄W +V )+W ′D̄′Q̄D̄W +W ′M̄′R̄M̄W +2V ′R̄M̄W +V ′R̄V

By taking the expectation and further simplifying the above expression we get the cost

function:

Ex0

[
x′0Ā′Q̄Āx0 +2x′0Ā′Q̄B̄(M̄W +V )+2W ′D̄′Q̄B̄(M̄W +V )+2x′0Ā′Q̄D̄W +W ′D̄′Q̄D̄W

+ (M̄W +V )′(B̄′Q̄B̄+ R̄)(M̄W +V )

]

This completes the proof.

Remark 4.1: Using Hölder’s inequality [42], the constraints in Proposition 4.1 can

be simplified as:

max
i=1,...,Nm

{|Vi|+‖M̄i‖1Wmax} ≤Umax

where M̄i corresponds to the ith row of the matrix M̄ and Vi is the ith element of the vector

V .

4.2 Randomized Algorithms: Utilizing the Pollard Dimension

It is assumed that either the distribution of the disturbance is unknown or is known

with a probability density function whose variance is difficult to compute. Therefore,
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instead of minimizing the expectation of the cost function in Problem 4.1, we will refor-

mulate the problem by minimizing the empirical mean of the cost function. It should be

noted that we need the iid samples of the disturbances to compute the empirical mean of

the cost function. We utilize some results from statistical learning theory to compute the

required disturbance sample size. To simplify our notation we define:

C(M̄,V,W ) = x′0Ā′Q̄Āx0 +2x′0Ā′Q̄B̄(M̄W +V )+2x′0Ā′Q̄D̄W +2W ′D̄′Q̄B̄(M̄W +V )

+W ′D̄′Q̄D̄W +(M̄W +V )′(B̄′Q̄B̄+ R̄)(M̄W +V ) (4.13)

Using Hölder’s inequality we get:

C(M̄,V,W )≤ ‖x0‖∞‖Ā′Q̄Āx0‖1 +2‖B̄′Q̄Āx0‖1Umax +2‖D̄′Q̄Āx0‖1Wmax+

2‖B̄′Q̄D̄W‖1Umax +‖(B̄′Q̄B̄+ R̄)(M̄W +V )‖1Umax +‖D̄′Q̄D̄W‖1Wmax ≤Cmax (4.14)

where Cmax is a finite upper bound to the cost function and holds for all (M̄,V,W ) satis-

fying:

max
i=1,...,Nm

{|Vi|+‖M̄i‖1Wmax} ≤Umax , ‖W‖∞ ≤Wmax

Next, we define the normalized cost function C(M̄,V,W ) as follows:

C(M̄,V,W ) =
C(M̄,V,W )

Cmax
(4.15)

So the normalized cost takes values in the bounded interval [0,1]. Next, we generate iid

samples (W 1, ...,W γ) of the disturbance vector W according to the probability measure
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PW and define the empirical mean of the normalized cost as follows:

Ĉ(M̄,V,W 1, ...,W γ) =
1
γ

γ

∑
i=1

C(M̄,V,W i)

Cmax
(4.16)

Problem 4.2: Consider the following optimization problem:

min
M̄,V

Ĉ(M̄,V,W 1, ...,W γ)

subject to the constraint:

max
i=1,...,Nm

|Vi|+‖M̄i‖1Wmax ≤Umax

Problem 4.2 is a relaxation of Problem 4.1 that retains convexity and is computa-

tionally more tractable because it does not require any integration. The sample size in

(4.16) must be selected so that the solution of Problem 4.2 is guaranteed to perform well

when compared to the solution in Problem 4.1. A useful sample selection policy is given

by the Chernoff bound combined with Hoeffding’s inequality [43]:

Pγ

W

{
(W 1, ...,W γ) ∈W γ :

∣∣∣∣Ĉ(M̄,V,W 1, ...,W γ)−Ex0{C(M̄,V,W )}
∣∣∣∣≥ ε

}
≤ 2e−2γε2

(4.17)

We can use the Chernoff bound to find the appropriate disturbance sample size.

However, this has a limitation in the sense that (4.17) is for a given (M̄,V ) and does not

provide a criterion for comparing the optimal solutions of both problems. Using bounds
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from statistical learning theory (see [33], [44]) and Pollard dimension theory (see [43],

[45]) we can compare the performance of empirical minima of the cost function, provided

by the solution of Problem 4.2, to the optimal minima that is provided by the solution of

Problem 4.1. The upcoming results and the affiliated discussions in the sequel will further

clarify this comparison criterion.

Definition 4.2: (Pollard Dimension [43]) Consider a measurable space (Ω,F ) and a

family of real valued, bounded, non-negative, measurable functions G on this space with

an upper bound κ . A set S = {x1, ...,xn} ⊆ Ω is said to be P-shattered by G if there

exists a real vector c ∈ [0,κ]n such that for every binary vector e ∈ {0,1}n, there exists a

corresponding function ge ∈ G such that:


ge(xi)≥ ci i f ei = 1

ge(xi)< ci i f ei = 0


The Pollard dimension, denoted P-dimension, is the largest integer n such that there

exists a set of cardinality n that is P-shattered by G .

Define the decision variable y = (M̄,V ) and the admissible control space Y as

follows:

Y = {y ∈ℜ
Nm×Nn×ℜ

Nm : max
i=1,...,Nm

|Vi|+‖M̄i‖1Wmax ≤Umax}

Denote C(y, .) as Cy where Cy : W → [0,1]. We will compute the P-dimension of
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the function family Ψ. The family of functions Ψ is defined by:

Ψ = {Cy : y ∈ Y }

Lemma 4.2: The P-dimension of Ψ is upper bounded by 2(Nn+1)(Nm) log(8e).

Proof. We will use a result from [46] to compute the P-dimension, which is also stated

according to our settings in [43]. However, in order to use this result we have to refor-

mulate the admissible control space Y as a vector space. In its current form, Y is a

product of a matrix space with a vector space. This is done by vectorizing the matrix M̄

and forming a new vector Z which contains M̄ and V . It should be noted that this change

of variables does not change the structure of the optimization problem.

Let M̄(:,1),M̄(:,2), ...,M̄(:,Nn) denote the columns of the matrix M̄. Next, we define

the (N2nm+Nm)×1 dimensional vector Z as follows:

Z =



M̄(:,1)

...

M̄(:,Nn)

V


(4.18)

Define the matrices H j, j = 1, ...,Nn+1 as follows:

H1 = [INm×Nm, 0Nm×NnNm] , HNn+1 = [0Nm×NnNm, INm×Nm]

Hi = [0Nm×(i−1)Nm, INm×Nm, 0Nm×(Nn−i+1)Nm], i = 2, ...,Nn (4.19)
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Using (4.18) and (4.19) we can write M̄W +V as follows:

M̄W +V =
Nn

∑
i=1

WiHiZ +HNn+1Z (4.20)

By plugging (4.20) into (4.13) we can write C(y,W ) < c as the following polynomial

inequality in Z,W, and c:

x′0Ā′Q̄Āx0 +2x′0Ā′Q̄B̄
( Nn

∑
i=1

WiHiZ +HNn+1Z
)
+2x′0Ā′Q̄D̄W +W ′D̄′Q̄D̄W+

2W ′D̄′Q̄B̄
( Nn

∑
i=1

WiHiZ +HNn+1Z
)
+

{( Nn

∑
i=1

WiHiZ +HNn+1Z
)′(

B̄′Q̄B̄+ R̄
)

×
( Nn

∑
i=1

WiHiZ +HNn+1Z
)}

(4.21)

The degree of this polynomial inequality with respect to the vector Z is 2. There-

fore, by utilizing Theorem 11.1 of [43] we conclude that the P-dimension of Ψ is upper

bounded by, Ψ≤ 2(Nn+1)(Nm) log(8e).

Next, we state Pollard’s Theorem, see [33] for more details, which will be used to

prove a result in this chapter:

Theorem 4.2.1: (Pollard) Let J be a family of measurable functions mapping a set

B⊆ℜNm into [0,1]. Assume that the Pollard dimension of this function family is d < ∞.

Then for any ε > 0:
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Pγ

W

{
(W 1, ...,W γ) ∈W Nγ : sup

J∈J

∣∣∣∣E(J(W ))− 1
γ

γ

∑
j=1

J(W j)

∣∣∣∣> ε

}

≤ 8
(

16e
ε

log(
16e
ε

)

)d

e−γε2/32

Note that Pollard’s Theorem is a result on the Uniform Convergence of Empirical

Means (UCEM). It is now applied in conjunction with Lemma 4.2, to outline a perfor-

mance criterion for the efficiency of the solution of Problem 4.2. This is done by providing

an appropriate lower bound on the disturbance sample size.

Theorem 4.2.2: Let W 1, ...,W γ be iid samples of the disturbance vector W generated

according to the probability measure PW and let ŷ∗ = argmin
y∈Y

Ĉ(y,W 1, ...,W γ). Given

ε,δ > 0, If:

γ ≥ 128
ε2

[
log(

8
δ
)+2(Nn+1)(Nm) log(8e)

(
log(

32e
ε

)+ log log(
32e
ε

)

)]

then:

Pγ

W

{
(W 1, ...,W γ) ∈W Nγ : EC(ŷ∗,W )−min

y∈Y
EC(y,W )≤ ε

}
≥ 1−δ

Proof. By applying Pollard’s theorem and Lemma 3.1 we get that:

Pγ

W

{
(W 1, ...,W γ) ∈W Nγ : sup

Cy∈Ψ

∣∣∣∣EC(y,W )− 1
γ

γ

∑
i=1

C(y,W i)

∣∣∣∣≤ ε

2

}

≥ 1−8
(

32e
ε

log(
32e
ε

)

)2(Nn+1)(Nm) log(8e)

e−γε2/128 (4.22)
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Let y∗ = argmin
y∈Y

EC(y,W ). Then by using (4.22) we can write:

Pγ

W

{
(W 1, ...,W γ) ∈W Nγ :

∣∣∣∣EC(y∗,W )− 1
γ

γ

∑
i=1

C(y∗,W i)

∣∣∣∣≤ ε

2
,

∣∣∣∣EC(ŷ∗,W )−

1
γ

γ

∑
i=1

C(ŷ∗,W i)

∣∣∣∣≤ ε

2

}
≥ 1−8

(
32e
ε

log(
32e
ε

)

)2(Nn+1)(Nm) log(8e)

e−γε2/128 (4.23)

So we have that:

1
γ

γ

∑
i=1

C(ŷ∗,W i)− ε

2
≤ EC(ŷ∗,W ) ≤ 1

γ

γ

∑
i=1

C(ŷ∗,W i)+
ε

2

1
γ

γ

∑
i=1

C(y∗,W i)− ε

2
≤ EC(y∗,W ) ≤ 1

γ

γ

∑
i=1

C(y∗,W i)+
ε

2

⇒ EC(y∗,W ) ≥ − ε

2
+

1
γ

γ

∑
i=1

C(y∗,W i) ≥ − ε

2
+

1
γ

γ

∑
i=1

C(ŷ∗,W i)

≥ − ε

2
− ε

2
+EC(ŷ∗,W ) ≥ − ε +EC(ŷ∗,W ) (4.24)

Now using (4.23), (4.24), and the value of γ we get:

Pγ

W

{
(W 1, ...,W γ) ∈W Nγ : EC(ŷ∗,W )−EC(y∗,W )≤ ε

}
≥

1−8
(

32e
ε

log(
32e
ε

)

)2(Nn+1)(Nm) log(8e)

e−γε2/128 ≥ 1−δ

This completes the proof of the theorem.

It should be noted that the results outlined in Theorem 4.2.2 require us to solve

a convex program. This might not be practically possible for some important resource-
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constrained applications. The results developed in the next section address such situations

where we have severe computational constraints.

4.3 Randomized Algorithms: Randomly Generated Control Inputs

In many control problems, that involve constrained large scale dynamical systems,

the minimization of the empirical cost could be computationally intensive. We mitigate

this problem by randomly generating both the control parameters and the additive distur-

bances and solve for a probable near minimum to Problem 4.1. First, we define several

notions of probable near minimum to a cost function.

Definition 4.3.1: (Probably Approximate Near Minimum to Level α [43]) Let (X ,F ,PX)

be a probability space, f : X→ℜ be a measurable function, and α > 0 be some given real

number. A number f0 ∈ℜ is said to be a probably approximate near minimum of f (.) to

level α , also called Type II near minimum, provided that:

f0 ≥min
x∈X

f (x), PX{x ∈ X : f (x)< f0} ≤ α

Definition 4.3.2: (Probably Approximate Near Minimum to Accuracy ε and Level α

[43]) Let (X ,F ,PX) be a probability space, f : X → ℜ be a measurable function, and

ε,α > 0 be some given real numbers. Then f̂0 is said to be a probably approximate near

minimum of f (.) to accuracy ε and level α , also called Type III near minimum, if:

f̂0 ≥min
x∈X

f (x)− ε, PX{x ∈ X : f (x)< f̂0− ε} ≤ α (4.25)
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Next, we present a result that provides a probably approximate near minimum of Problem

4.1 to accuracy ε and level α . Appropriate lower bounds on control and disturbance sam-

ple sizes are provided which enable us to compute the aforementioned notion of probable

near minimum.

Theorem 4.3: Given ε,α,δ > 0, generate iid disturbance samples W 1, ...,W γ from W N

according to the probability measure PW and iid control samples y1, ...,yq from Y accord-

ing to the probability measure Py where:

q≥

⌈
log( 2

δ
)

log( 1
1−α

)

⌉
, γ ≥

⌈
1

2ε2 ln
4q
δ

⌉

Define Ĉ0 = min
i=1,...,q

Ĉ(yi,W 1, ...,W γ). Then:

P(q,γ)
(y,W )

{
(y1, ...,yq) ∈ Y q,(W 1, ...,W γ) ∈W γ : Ĉ0 ≥ min

y∈Y
E{C(y,W )}− ε,

Pq
y (y ∈ Y : E{C(y,W )}< Ĉ0− ε)≤ α

}
≥ 1−δ

where P(q,γ)
(y,W )

is the product probability measure on the space (Y q×W γ). In other words

with confidence 1− δ , we can say that Ĉ0 is a probably approximate near minimum of

Problem 4.1 to accuracy ε and level α .

Proof. The proof follows directly from Lemma 11.1, Algorithm 11.5, and Section 11.3.5

in [43]. We also provide the full proof for the sake of completeness.

First we generate y1, . . . ,yq iid samples from Y where q≥
log( 2

δ
)

log( 1
1−α

)
. Define

C̃ = mini=1,...,q E{C(M̄i,V i,W )}. We will prove that C̃ is a probably approximate near

minimum of Problem 4.1 to level α . Let us define C∗ to be the optimal minimum to
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Problem 4.1. Clearly we observe that C̃ ≥C∗. We need to show that:

Pq
Y

{
(y1, ...,yq) : PY

{
y ∈ Y : E{C(y,W )}< C̃

}
≤ α

}
≥ 1− δ

2

Let g(y) = −E{C(y,W )},y ∈ Y . Then g(y) is a random variable if y is generated ran-

domly from Y . Let the distribution function of this random variable be given by:

F(b) = PY{y ∈ Y : g(y)≤ b}

Also it should be noted that we can write:

−C̃ =− min
i=1,...,q

E{C(yi,W )}= max
i=1,...,q

−E{C(yi,W )}

By definition a distribution function is right continuous. We define bα = inf{b : F(b) ≥

1−α}. By right continuity we get that F(bα)≥ 1−α . From the definition of bα we have

that if b < bα then F(b)< 1−α . Suppose that −C̃ ≥ bα . This implies that:

PY{y ∈ Y : g(y)>−C̃} = 1−F(−C̃) ≤ α

Taking the contrapositive of the above statement we get that:

PY{y ∈ Y : g(y)>−C̃}> α ⇒ −C̃ < bα

Now −C̃ < bα if and only if −E{C(yi,W )}< bα , i = 1, ...,q. Now these are independent
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events each with probability no larger than 1−α .

⇒ Pq
Y

{
(y1, ...,yq) ∈ Y q : PY{y ∈ Y : g(y)>−C̃}> α

}
≤ (1−α)q

⇒ Pq
Y

{
(y1, ...,yq) ∈ Y q : PY{y ∈ Y : E{C(y,W )}< C̃}> α

}
≤ (1−α)q

By utilizing the sample selection criterion q≥
log( 2

δ
)

log( 1
1−α

)
we get that:

Pq
Y

{
(y1, ...,yq) ∈ Y q : PY{y ∈ Y : E{C(y,W )}< C̃} ≤ α

}
≥ 1− δ

2

From this we conclude that C̃ is a probably approximate (Type II) near minimum of Prob-

lem 4.1 to level α . Next we generate W 1, ...,W γ iid noise samples where γ ≥ 1
2ε2 ln(

4q
δ
).

From the Chernoff bound combined with Hoeffding’s inequality we get that:

Pγ

W

{
(W 1, ...,W γ) ∈W γ :

∣∣∣∣1γ γ

∑
j=1

C(y,W j)−E{C(y,W )}
∣∣∣∣> ε

}
≤ 2e−2γε2

Consider C(yi,W ) and define S(γ,ε), Si(γ,ε), i = 1, ...,q as follows:

Si(γ,ε) =

{
(W 1, ...,W γ) ∈W γ :

∣∣∣∣1γ γ

∑
j=1

C(yi,W j)−E{C(yi,W )}
∣∣∣∣> ε

}

⇒ (Si(γ,ε))
c =

{
(W 1, ...,W γ) ∈W γ :

∣∣∣∣1γ γ

∑
j=1

C(yi,W j)−E{C(yi,W )}
∣∣∣∣≤ ε

}

(S(γ,ε))c =

{
(W 1, ...,W γ) ∈W γ : max

i=1,...,q

∣∣∣∣1γ γ

∑
j=1

C(yi,W j)−E{C(yi,W )}
∣∣∣∣≤ ε

}
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Clearly (S(γ,ε))c =
q⋂

i=1

(Si(γ,ε))
c ⇒ S(γ,ε) =

q⋃
i=1

Si(γ,ε). By sub-additivity we get that:

Pγ

W (S(γ,ε)) ≤
q

∑
i=1

Pγ

W (Si(γ,ε)) ≤ 2qe−2γε2
≤ δ

2

Pγ

W

{
(W 1, ...,W γ) ∈W γ : max

i=1,...,q

∣∣∣∣1γ γ

∑
j=1

C(yi,W j)−E{C(yi,W )}
∣∣∣∣≤ ε

}
≥ 1− δ

2

So we have with confidence 1− δ

2 that:

∣∣∣∣1γ γ

∑
j=1

C(yi,W j)−E{C(yi,W )}
∣∣∣∣ ≤ ε, i = 1, ...,q (4.26)

Using (4.26) we will show that:

∣∣∣∣ min
i=1,...,q

1
γ

γ

∑
j=1

C(yi,W j)− min
i=1,...,q

E{C(yi,W )}
∣∣∣∣ ≤ ε

or in other words using the aforementioned notation we will show with confidence 1− δ

2

that | Ĉ0−C̃ | ≤ ε . Let i∗ = argmini=1,...,q
1
γ ∑

γ

j=1C(yi,W j). Using (4.26) we get that:

∣∣∣∣E{C(yi∗,W )}− 1
γ

γ

∑
j=1

C(yi∗ ,W j)

∣∣∣∣ ≤ ε ⇒
∣∣E{C(yi∗,W )}−Ĉ0

∣∣≤ ε

So we have −ε +E{C(yi∗,W )} ≤ Ĉ0. Since C̃ ≤ E{C(yi∗,W )} this implies that:

−ε ≤ Ĉ0−C̃
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Let i∗∗ = arg min
i=1,...,q

E{C(yi,W )}. From (4.26) we get that:

∣∣∣∣1γ γ

∑
j=1

C(yi∗∗,W j)−C̃
∣∣∣∣ ≤ ε

Ĉ0 ≤
1
γ

γ

∑
j=1

C(yi∗∗,W j) ≤ C̃+ ε ⇒ Ĉ0−C̃ ≤ ε

Combining these two results we get that with confidence 1− δ

2 we have that:

∣∣∣∣ min
i=1,...,q

1
γ

γ

∑
j=1

C(yi,W j)− min
i=1,...,q

E{C(yi,W )}
∣∣∣∣ ≤ ε

So far we have proved two statements:

Pq
Y

{
(y1, ...,yq) ∈ Y q : P

{
y ∈ Y : E{C(y,W )}< C̃

}
≤ α

}
≥ 1− δ

2

Pγ

W

{
(W 1, ...,W γ) ∈W γ :

∣∣Ĉ0−C̃
∣∣ ≤ ε

}
≥ 1− δ

2

Now we combine both these statements to prove the claim of the Theorem. Since the

samples (y1, ...,yq) and (W 1, ...,W γ) are independent of one another:

P(q,γ)
y,W

{
(W 1, ...,W γ)∈W γ ,(y1, ...,yq)∈Y q : PY (y∈Y : E{C(y,W )}≤ C̃)≤α,

∣∣C̃−Ĉ0
∣∣≤α

}
≥ (1− δ

2
)2 > 1−δ

Now
∣∣C̃−Ĉ0

∣∣ ≤ ε implies that C̃ ≥ Ĉ0− ε and Ĉ ≥ C∗− ε . Also we have that:

PY
(
y ∈ Y : E{C(y,W )}< Ĉ0− ε

)
≤ PY

(
y ∈ Y : E{C(y,W )}< C̃0

)
≤ α
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P(q,γ)
y,W

{
(W 1, ...,W γ) ∈W γ ,(y1, ...,yq) ∈ Y q : PY

(
y ∈ Y : E{C(y,W )}< Ĉ0− ε

)
≤ α,

Ĉ0 ≥C∗− ε

}
≥ 1−δ

which proves that Ĉ0 is a Type III near minimum of Problem 4.1 to accuracy ε and level

α .

Theorem 4.3 provides an appropriate criterion for sample size selection thereby

enabling us to compute, with a certain confidence level, a probable near minimum of

Problem 4.1. In contrast to the aforementioned results in Section 4.1 and Section 4.2,

computation of a probable near minimum does not require us to solve a convex program.

Therefore, if random samples could be rapidly generated, from the disturbance and ad-

missible control spaces, then we can practically implement these results to solve SRHC

problems on many small devices.

It is also possible to prove a result analogous to Theorem 4.3 by utilizing Pollard

dimension theory instead of the Chernoff bound. However, this leads to very large sample

sizes for the disturbances which makes this methodology impractical (see section 11.3.5

in [43] for more details and examples).

4.4 Incorporating Model Uncertainty

In this section, we incorporate model uncertainty into the problem formulation and

extend the results presented in Section 4.3. Consider the following linear time-invariant
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system in discrete time:

xi+1 = A∆xi +B∆ui +D∆wi, i ∈ Z+ (4.27)

where ∆ ∈ O which is assumed to be a compact and a convex set. The resulting matrices

A∆, B∆, and D∆ are assumed to have finite components for every ∆ in O . Due to the

presence of model uncertainty in the system dynamics, we cannot use equation (4.8) to

backtrack the disturbances from the states. Therefore, we will utilize the sub-optimal state

feedback scheme specified in equation (4.9). Using a compact notation we obtain:

X = Ā∆x0 + B̄∆U + D̄∆W (4.28)

where Ā∆, B̄∆, D̄∆ are the same as in Section 4.1 except for the presence of model uncer-

tainty in the system dynamics. Plugging the feedback scheme:

U = K̄X +Ṽ (4.29)

into equation (4.28) we get:

X = (I(Nn+n)×(Nn+n)− B̄∆K̄)−1
(

Ā∆x0 + B̄∆Ṽ + D̄∆W
)

(4.30)

Note that B̄∆K̄ is a strictly lower triangular matrix, therefore (I(Nn+n)×(Nn+n)− B̄∆K̄) is

non-singular. Let L = (I(Nn+n)×(Nn+n)− B̄∆K̄)−1. Using this notation the cost function
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can be written as follows:

C(K̄,Ṽ ,W,∆) = X ′Q̄X +U ′R̄U = 2x′0Ā′∆L ′
(

Q̄L B̄∆ + K̄′R̄+ K̄′R̄K̄L B̄∆

)
Ṽ+

x′0Ā′∆L ′
(

Q̄+ K̄′R̄K̄
)

L Ā∆x0 +2W ′D̄′∆L ′
(

Q̄L B̄∆ + K̄′R̄K̄L B̄∆ + K̄′R̄
)

Ṽ+

2x′0Ā′∆L ′
(

K̄′R̄K̄ + Q̄
)

L D̄∆W +W ′D̄′∆L ′
(

K̄′R̄K̄ + Q̄
)

L D̄∆W+

Ṽ ′
(

B̄′∆L ′Q̄L B̄∆ +2R̄K̄L B̄∆ + R̄
)

Ṽ (4.31)

Let Cmmax be an upper bound to the cost C(K̄,Ṽ ,W,∆). Define the normalized cost

C(K̄,Ṽ ,W,∆) which takes values in [0,1] as follows:

C(K̄,Ṽ ,W,∆) =
C(K̄,Ṽ ,W,∆)

Cmmax

Problem 4.4.1: Consider the following problem:

min
K̄,Ṽ

Ex0{C(K̄,Ṽ ,W,∆)}

subject to the constraint:

‖K̄L (Ā∆x0 + B̄∆Ṽ + D̄∆W )+Ṽ‖∞ ≤Umax, W ∈W N ,∆ ∈ O

where the expectation is with respect to W and ∆.

Remark 4.4: Using Hölder’s inequality the constraints in Problem 4.4.1 can be simplified
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as follows:

max
i=1,...,Nm

{|(K̄L Ā∆x0 + K̄L B̄∆Ṽ +Ṽ )i|+‖(K̄L D̄∆)i‖1Wmax} ≤Umax, ∆ ∈ O

It should be noted that Problem 4.4.1 is in general a non-convex optimization prob-

lem. We employ the randomized algorithm techniques outlined in Section 4.3, to avoid

the computational complexity resulting from this non-convexity. Generate iid samples

((W 1,∆1), ...,(W γ ,∆γ)) of the noise, according to the product measure PW×∆, from the

space W N×O . First, we define the empirical mean of the cost function as follows:

Ĉ(K̄,Ṽ ,(W 1,∆1), ...,(W γ ,∆γ)) =
1
γ

γ

∑
i=1

C(K̄,Ṽ ,W i,∆i) (4.32)

We randomly generate the control parameters (K̄,Ṽ ) from the space Z , which is

specified below, and compute a probable near minimum to Problem 4.4.1.

Let z = (K̄,Ṽ ) and the admissible space Z be given by:

Z =

{
z ∈ℜ

Nm×(Nn+n)×ℜ
Nm : max

i=1,...,Nm
{ |(K̄L Ā∆x0 + K̄L B̄∆Ṽ +Ṽ )i|

+ ‖(K̄L D̄∆)i‖1Wmax } ≤Umax, ∆ ∈ O

}

Next, we state a result which is a generalization of Theorem 4.3 to the model uncertainty

case.

Theorem 4.4.1: Given iid noise samples (W 1,∆1), ....,(W γ ,∆γ) generated from W N ×

O according to the measure PW×∆ and iid control samples z1, ...,zr generated from Z
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according to the measure Pz. ε,α,δ > 0 are provided and integers r,γ are given by:

r ≥

⌈
log( 2

δ
)

log( 1
1−α

)

⌉
, γ ≥

⌈
1

2ε2 ln
4q
δ

⌉

Define Ĉm0 = min
i=1,...,r

C(zi,(W 1,∆1), ...,(W γ ,∆γ)). Then with confidence 1−δ we can say

that Ĉm0 is a probably approximate near minimum of Problem 4.4.1 to accuracy ε and

level α .

Proof. The proof follows along the same lines as the proof of Theorem 4.3.

It should be noted that the techniques outlined in this theorem do not specifically

require us to solve a non-convex optimization problem. Therefore, this result can be ap-

plied to efficiently compute a probable near minimum to Problem 4.4.1. Ultrafast random

sample generation can be done on many small devices, utilizing analog circuits, making

such results practically applicable.

Next, we present an alternative problem formulation addressing the model uncer-

tainty case. We consider a problem formulation where the cost is maximized with respect

to both the additive disturbance as well as the model uncertainty and minimized with re-

spect to the control parameters. Such a formulation provides the control system designer

more flexibility and allows us to introduce alternative randomization based techniques.

Problem 4.4.2: Consider the following optimization problem:

min
K̄,Ṽ

max
∆,W

C(K̄,Ṽ ,W,∆)
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subject to:

‖K̄L (Ā∆x0 + B̄∆Ṽ + D̄∆W )+Ṽ‖∞ ≤Umax, ∀W ∈W N ,∀∆ ∈ O

We now present a notion of a probable near minimax value which was first devel-

oped in [47] (which also provides a detailed interpretation) and which will be used to state

a result.

Definition 4.4: (Probable Near Minimax Value to Minimum level α and Maximum

level β ) Let (X ,F ,PX) and (Y,G ,PY ) be given probability spaces, and α,β > 0 be given

real numbers, f : X ×Y → ℜ be a measurable function, and f ∗ = inf
y∈Y

sup
x∈X

f (x,y) be the

exact minimax value. A number f0 ∈ ℜ is said to be a probable near minimax value

of f (.) to minimum level α and maximum level β if there exists a measurable function

fL : Y →ℜ and a number fU ∈ℜ such that:

inf
y∈Y

fL(y)≤ f0 ≤ fU , inf
y∈Y

fL(y)≤ f ∗ ≤ fU

PX{x ∈ X : f (x,y)> fL(y)} ≤ β ,∀y ∈ Y

PY{y ∈ Y : sup
x∈X

f (x,y)< fU} ≤ α

Next, we randomly generate the controller parameters z = (K̄,Ṽ ), the disturbance

samples, and provide required bounds on respective sample sizes in order to compute a

probable near minimax value of Problem 4.4.2, with minimum level α and maximum

level β .
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Theorem 4.4.2: Generate iid model uncertainty samples (W 1,∆1), ...,(W ρ ,∆ρ) from the

sample space W ×O according to the probability measure PW×∆ and iid control samples

z1, ...,zs from the sample space Z according to the probability measure Pz where:

ρ ≥


ln( N

δβ

)

ln( 1
1−β

)

 , s≥

⌈
ln( 1

δα
)

ln( 1
1−α

)

⌉

where the level parameters α,β > 0 and the confidence parameters δα ,δβ > 0 are given.

Define:

Chyb = min
i=1,...,s

max
j=1,...,ρ

C(zi,W j,∆ j)

Then we can say with confidence 1− (δα + δβ ) that Chyb is a probable near minimax

value of Problem 4.4.2 to minimum level α and maximum level β .

Proof. The proof follows directly from Theorem 1 in [47] which relies on Lemma 11.1

in [43].

Theorem 4.4.2 provides a criterion for constructing a probable near minimax value

of Problem 4.4.2. A different version of Theorem 4.4.2 can also be provided for the case

when the exact minimax value forms a saddle point.
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4.5 Simulations

Consider the following Schur stable A matrix and other system dynamics:

A =


0.19 0.33 0.24

0.39 0.28 0.30

0.25 0.37 0.50

 , B =


1 0.5

0.33 2

1.8 1.4

 , D = I3×3 (4.33)

We take Umax = 6, Wmax = 2, and horizon size N = 10. The symmetric positive

definite matrices Qi,Ri in the cost are selected as Qi = 5I3×3 and Ri = 3I2×2.Therefore,

Q̄ = 5I33×33 and R̄ = 3I20×20. Let the ith additive disturbance wi be given by:

wi =


wi,1

wi,2

wi,3

 , i ∈ Z+

We assume that the components wi,1,wi,2,wi,3 of the additive disturbance wi, are indepen-

dent and uniformly distributed on the interval [−2,2]. Therefore:

E(wi) =


0

0

0

 , Var(wi) =


4
3 0 0

0 4
3 0

0 0 4
3


We consider the formulation of Problem 4.1. The resulting optimization problem is

convex and we use the optimization software cvx [15] to compute the optimal solution.

The accuracy, confidence, and level parameters are taken as ε = 0.1,δ = 0.01,α = 0.05.
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Figure 4.1: Randomized Algorithm Generated State vs Optimal State of Problem 2.1
using initial state [8,12,10]′

Using the sample size bounds specified by Theorem 4.3, greater than 530 iid control

samples and 614 iid disturbance samples are respectively generated to compute a probable

near minimum of Problem 4.1. We generate the control parameters by restricting the

components of the gain matrix M̄ to be less than |0.17| and the components of the vector

V to be less than |3.82|, while satisfying the control constraints. This assumption enables

us to generate high quality iid control samples rapidly from the admissible control space.

The initial state is assumed to be [8,12,10]′ and [9,−18,25]′ for the results pre-

sented in Fig. 4.1 and Fig. 4.2, respectively. Only the first element of the control sample

which provides the probable near minimum value is selected and applied to the actual

dynamical system, as is typically done in RHC. Using this randomized scheme, the actual

state of the system is generated and compared to the actual state generated by the optimal

solution to Problem 4.1.

In Fig. 4.1 and Fig. 4.2, the Euclidean norm of the state is used to compare the
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Figure 4.2: Randomized Algorithm Generated State vs Optimal State of Problem 2.1
using initial state [9,−18,25]′

performance of the optimal and probable near minimum solutions of Problem 4.1, the

later of which is computed by the randomized scheme specified in Theorem 4.3. Simula-

tion results show that the randomized scheme performs pretty well though at the expense

of incurring some extra cost, which is as expected. From the simulations, we conclude

that such relaxed reformulations of the SRHC problem utilizing randomized algorithms

are computationally efficient, provide good performance, and can have important impli-

cations for any device which is unable to perform complex on-line optimization.
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Chapter 5: Optimal Sensor Placement for Intruder Detection

The fields of detection, resource allocation, and security have seen a lot of research

activity in the past few decades. Different frameworks have been designed to tackle vari-

ous problems using a host of techniques from statistics, engineering, and economics. The

fields of centralized and decentralized detection, see [48] for a review, have been a major

research focus in the communications, controls, and statistics communities and are now

considered mature. Our main focus in this chapter is to develop and pursue research ideas

in the intersection of these fields. In this chapter, we operate within the centralized detec-

tion framework under which complete observations are available to the decision makers.

This preference for a relatively simple and more developed framework enables us to fully

extract the benefits offered by the multi-disciplinary nature of these research ideas. In

contrast to the work in Chapter 2, where we designed control policies which revealed

partial state information to an adversary which was trying to estimate the terminal state

of the system, in this chapter we consider the problem of detecting an intruder present in

the environment of a system using a team of sensors.

Centralized detection of an intruder is considered, whose location is modeled as

uniform across a specified set of points. A team of sensors is tasked to make observations

which are then completely reported to a centralized decision making authority. The chal-
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lenge is to optimally place the sensors, before measurements are made, and to compute

an optimal decision rule for detecting the location of the intruder. Simplifying assump-

tions like a uniform prior distribution and conditional independence of observations are

assumed. It should be noted that sensor observations are noisy as a result of their inability

to make perfect observations. This limited capability of the sensors makes the conditional

independence assumption practically reasonable [49].

We exploit majorization theory, see [50] and [51] for a review, within the framework

of this chapter to establish general laws governing the jointly optimal detection and place-

ment policies. Majorization is an important mathematical technique for partial ordering

of vectors of real numbers. It is widely used in mathematical statistics and has recently

been applied to solve challenging problems in controls [52] and communications [53].

The following notation is adopted:

• Capital letters N and M are used to denote the number of sensors and the number

of placement points respectively.

• Vectors are represented as x̄ = (x1, ...,xk), where the vector length would be obvious

from the context.

• The observation vector received by the fusion center is denoted by ȳ = (y1, ...,yN ),

the position vector of the sensors is denoted by ū = (u1, ...,uN ), and the placement

vector for the sensors is denoted by v̄ = (v1, ...,vM).

• Random variables are represented by bold face capital letters, such as X is used

to represent the position of the intruder. Realizations are represented using small

letters.
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• The probability of error is denoted by Pe, the prior distribution by π , the probability

density of a random variable A if it exists by p(a), the joint probability density of

A and B by p(a,b), and the conditional probability density of A given B by p(a|b).

Here a and b are the realizations of the random variables A and B.

• The observation space is denoted by Ω.

This chapter is organized in four main sections. In Section 5.1 we provide the

problem formulation. The main results of this chapter are presented in Section 5.2 and

Section 5.3, respectively. In Section 5.2, we use mathematical induction to establish

general principles under which uniform placement of sensors is never strictly optimal.

In Section 5.3, majorization theory is exploited to formalize important properties of the

optimal placement. Simulation based results are discussed in Section 5.4.

5.1 Problem Formulation

In this section, we present a precise statement and a mathematical formulation for

this problem. We first present a main assumption that will be utilized throughout this

chapter.

Assumption 5.1: We assume that the observations of the sensors are conditionally in-

dependent given the actual location of the intruder. In other words if ȳ = (y1, ...,yN)

are the observations reported by the sensors and if the actual location of the intruder is

j, j = 1, ...,M, then:

p(ȳ |X = j) =
N

∏
i=1

p(yi |X = j)
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5.1.1 Sensor Placement, Data Collection, and Performance Criterion

Consider a team of N identical sensors tasked with detecting the location of an

intruder X which can occur on a specified set of points {1, ....,M}, with a uniform distri-

bution. It is assumed that N ≤M. The sensors are placed using a specific sensor position

vector (or sensor placement vector), sensors make observations, and report them directly

to a fusion center. The observations made by the sensors are assumed to be conditionally

independent, given the true position of the intruder. The fusion center collects these ob-

servations and computes an estimate of the position of the intruder. It should be noted that

the sensors report complete observations to the fusion center. The performance criterion

minimized at the fusion center is the probability of error in detecting the actual location of

the intruder. The main problem is to design jointly optimal location detection and sensor

placement policies.

5.1.2 Observation Model

The sensor position vector ū, of length N, indicates the points at which each sensor

is placed whereas the sensor placement vector v̄, of length M, indicates how many sensors

are placed at each point. It should be noted that:

1≤ u j ≤M, j = 1, ...,N

0≤ vk ≤ N, k = 1, ...,M

Let Yk be the measurement obtained by sensor k, k = 1, ...,N. The random variable
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Yk either takes the value 1 (Intruder present at the position of sensor k) or the value 0

(Intruder not present at the position of sensor k). The observation model is presented

below:

Pr(Yk = 1|X = uk) = PD

Pr(Yk = 1|X 6= uk) = PF

where PD and PF are the local probability of detection and the local probability of

false alarm of the sensors respectively. We assume that these values are well known to us

and have been provided by the manufacturer of these sensors. It should be noted that the

sensors can only make measurements at the points on which they are placed and cannot

infer any information regarding the presence of the intruder at other points.

5.1.3 M-ary Hypothesis Testing

The problem is modeled as an M-ary hypothesis testing problem [7, pp. 46-52] un-

der the Bayesian formulation. Under a uniform prior distribution, πi =
1
M , the probability

of error at the fusion center for a specific sensor position vector (u1, ...,uN ) is given by [8,

pp. 7-9]:

Pe(ū,PF ,PD) = min
δ

1
M

M

∑
i=1

∑
ȳ∈Γi

M

∑
j=1, j 6=i

pū(ȳ |X = j)

where Γi, i = 1, ...,M, defines a partition of the observation space Ω such that Ω =
M⋃

i=1

Γi

and Γi = {ȳ ∈ Ω | δ (ȳ) = Hi}. Here pū(ȳ |X = j) is the conditional joint probability

mass function (pmf) for the random variables (Y1,...,YN) given that X= j and when the

sensor position vector, ū, is utilized for sensor placement. It should be noted that the
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joint pmf depends on the sensor position vector (or sensor placement vector). Since we

consider identical sensors using the same observation model it is sufficient to consider

the number of sensors which are placed at each point. In the calculation of the joint pmf,

the sensor placement vector is more convenient to use than the sensor position vector.

In the sequel, we will utilize the sensor placement vector v̄ = (v1, ...,vM) instead of the

sensor position vector ū = (u1, ...,uN ) to calculate the probabilities of error. It should be

noted that we use the notation pv̄(ȳ |X = j) for the conditional joint pmf for the random

variables (Y1,...,YN), given that X= j, and when v̄ is utilized as the sensor placement

vector.

5.1.4 Calculation of Conditional Probabilities

Since the observations are conditionally independent:

pv̄(ȳ |X = j) =
N

∏
i=1

pv̄(yi |X = j), j = 1, ...,M

It should be noted that the probability of error is invariant to permutations of the

sensor placement vector, hence without loss of generality, we will only consider place-

ments of the form v1 ≥ v2 ≥ ....≥ vM . For notational convenience we assume that during

deployment the sensors are placed in an ascending order, i-e first v1 sensors are deployed

on point 1 followed by v2 sensors on point 2 and, so on. We hasten to add that this deploy-

ment policy is really not restrictive; it merely amounts to a relabeling of the observation

areas or locations: location 1 is the one with the most number of sensors, and so on. Thus

location j need not be ‘adjacent’ to location j− 1 or j+ 1. This deployment policy en-
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sures that observations (y1, ...,yv1
) are made by sensors operating at point 1 and similarly

we can interpret the observations (yv1+1, ...,yN ). With N ≤M and the aforementioned as-

sumptions in place, it is clear that (vN+1, ...,vM) = (0, ...,0). Note that depending on the

values of the vi’s it is possible that vk = 0, for k = k0, ...,N where 2 ≤ k0 ≤ N, as well.

The conditional probability is calculated as follows:

pv̄(ȳ |X= j)=
{
(PF )

z(1,N)(1−PF )
N−z(1,N)

χ(v j=0)
}
+
{
(PD)

a j (1−PD)
v j−a j (PF )

z(1,N)−a j ×

(1−PF )
N−z(1,N)−(v j−a j )χ(v j 6=0)

}
(5.1)

where a j is the number of accurate ‘alarmed’ sensors at location j and is given by:

a j = y1 + ...+ yv j
, j = 1

a j = y
(v1+...+v j−1 )+1 + ...+ y

(v1+...+v j−1 )+v j
, j = 2, ...,M

and z(1,N) for any integer N is given by:

z(1,N) = y1 + ...+ yN

5.1.5 Problem Statement

Given N sensors and M placement points we want to solve the following optimiza-

tion problem:

P∗e (PF ,PD) = min
δ ,v̄

1
M

M

∑
i=1

∑
ȳ∈Γi

M

∑
j=1, j 6=i

pv̄(ȳ |X = j)
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subject to the constraints:

(v1, ...,vN ) ∈ Λ
N

where the set ΛN is given by the integer partition of N. For example Λ4 = {(4,0,0,0),

(3,1,0,0), (2,2,0,0), (2,1,1,0), (1,1,1,1)}

Definition 5.1: (Partition Function) The partition function f (N) of a positive integer N

is defined as the number of ways in which N can be written as a sum of positive integers.

For example, the integer 4 can be written as 4, 3+1, 2+2, 2+1+1, and 1+1+1+1

giving the partition function value, f (4) = 5.

Using this definition, the size of the constraint set ΛN is given by:

|ΛN |= f (N)

The partition function f (N) of an integer N can be expressed asymptotically as [55]:

f (N)≈ 1
4N
√

3
× eπ

√
2N
3 as N→ ∞

This expression was first proved by S. Ramanujan and G. Hardy in 1918. The form of

the cost function and the exponential complexity of the constraint set make this problem

difficult to solve for a general (N,M). We prove important solution properties for this

problem in Section 4.2 and Section 4.3.

For any placement v̄ the probability of error is given by:

Pe(v̄,PF ,PD) = min
δ

1
M

M

∑
i=1

∑
ȳ∈Γi

M

∑
j=1, j 6=i

pv̄(ȳ |X = j)
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Minimization is carried out by optimally selecting Γi, where i = 1, ...,M:

Γ
∗
i =

{
ȳ ∈Ω

∣∣∣∣ M

∑
j=1, j 6=i

pv̄(ȳ |X = j)≤
M

∑
j=1, j 6=k

pv̄(ȳ |X = j), i 6= k
}

which can be simplified to give:

Γ
∗
i =

{
ȳ ∈Ω

∣∣∣∣ pv̄(ȳ |X = i) = max
k=1,...,M

pv̄(ȳ |X = k)
}

(5.2)

Using (5.2) and the uniform distribution of the priors the optimal decision rule is given

by:

δ
∗(ȳ) =

{
Hi

∣∣∣∣ π(Hi|ȳ) = max
k=1,..,M

π(Hk|ȳ)
}
, ȳ ∈Ω (5.3)

where π(H|ȳ) is the posterior distribution given the observation vector ȳ. Note that the

optimal decision rule in (5.3) is the Maximum A Posteriori Probability (MAP) rule. It

should be noted that the δ ∗ presented above is optimal for any arbitrary placement v̄ and

therefore the optimization problem can be rewritten as follows:

P∗e (PF ,PD) = min
v̄

1
M

M

∑
i=1

∑
ȳ∈Γ∗i

M

∑
j=1, j 6=i

pv̄(ȳ |X = j) (5.4)

subject to the constraint:

(v1, ...,vN ) ∈ Λ
N
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For notational convenience we will use the following form of Pe(v̄,PF ,PD) in the sequel:

Pe(v̄,PF ,PD) =
1
M ∑

ȳ∈{0,1}N

min
i=1,..,M

{
M

∑
j=1, j 6=i

pv̄(ȳ |X = j) (5.5)

where {0,1}N is used to denote the observation space Ω and Pe(v̄,PF ,PD) is a function of

(v̄,PF ,PD).

5.2 Characterization of the Optimal Solution

We first provide a definition of the strict optimality of a sensor placement and then

present the main results of this section.

Definition 5.2: (Strict Optimality of Placement) We call a placement v̄
′
strictly optimal

if there exists a point (P
′

F
,P
′

D
) on the (PF ,PD) plane such that:

Pe(v̄
′
,P
′

F
,P
′

D
)< Pe(v̄,P

′

F
,P
′

D
)

for any placement v̄ 6= v̄
′
where (v1, ...,vN ) ∈ ΛN , (vN+1 , ...,vM) = (0, ...,0).

It should be noted that an optimal placement for (5.4) gives an optimal solution to

the aforementioned problem. Utilizing Definition 5.2, the main result of this section is

presented as follows:

Theorem 5.2: For the case (M = N), the uniform sensor placement (v1, ...,vN ) = (1, ...,1)

is not strictly optimal.

Proof. We will prove this result by utilizing mathematical induction. For notational con-
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venience we will use the following form of Pe(v1 , ...,vM) in the proof:

Pe(v1, ...,vM) =
1
N ∑

ȳ∈{0,1}M

min
i=1,..,N

{
N

∑
j=1, j 6=i

pv̄(ȳ |X = j)} (5.6)

For M sensors we have 2M observations so {0,1}M is used to denote the observation space

Ω.

First consider the case M=N=2. In this case (5.6) can be simplified to give:

Pe(v1 ,v2) =
1
2

[ 1

∑
i=0

1

∑
j=0

min
{

p(v1 ,v2)

(
(i, j) |X = 1

)
, p(v1 ,v2)

(
(i, j) |X = 2

)}]
(5.7)

Using equation (5.1) the conditional probabilities for the (v1 ,v2) = (1,1) and (v1,v2) =

(2,0) placements are given as follows:

p(1,1)
(
(y1,y2)| X = 1

)
= (PD)

y1 (1−PD)
1−y1 (PF )

y2 (1−PF )
1−y2

p(1,1)
(
(y1,y2)| X = 2

)
= (PD)

y2 (1−PD)
1−y2 (PF )

y1 (1−PF )
1−y1

p(2,0)
(
(y1,y2)| X = 1

)
= (PD)

y1+y2 (1−PD)
2−y1−y2

p(2,0)
(
(y1,y2)| X = 2

)
= (PF )

y1+y2 (1−PF )
2−y1−y2 (5.8)

Plugging (5.8) into (5.7) we get:

Pe
(
1,1
)
=

1
2

[
(1−PD)(1−PF )+PDPF +2min{PF −PDPF ,PD−PDPF}

]
Pe
(
2,0
)
=

1
2

[
min{(1−PD)

2,(1−PF )
2}+min{P2

D
,P2

F
}+2min{PD(1−PD),PF (1−PF )}

]
(5.9)
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First consider the case PD > PF:

For PD > PF ,PD(1−PD)> PF (1−PF ):

Pe
(
1,1
)
=

1
2
[
1+PF −PD

]
Pe
(
2,0
)
=
[1

2
+(PF −PD)+

(P2
D
−P2

F
)

2
]

where (P2
D
−P2

F
)− (PD−PF )< 0⇒ Pe(2,0)< Pe(1,1)

For PD > PF ,PD(1−PD) = PF (1−PF ):

Pe
(
1,1
)
= Pe

(
2,0
)
=

1
2
[
1+PF −PD

]

For PD > PF ,PD(1−PD)< PF (1−PF ):

Pe
(
1,1
)
=

1
2
[
1+(PF −PD)

]
,Pe
(
2,0
)
=

1
2
[
1+(P2

F
−P2

D
)
]

where (P2
F
−P2

D
)< (PF −PD)⇒ Pe(2,0)< Pe(1,1)

For the case PD = PF we have:

Pe
(
2,0
)
= Pe

(
1,1
)
=

1
2

For the purposes of this proof it is sufficient to only consider the case PD ≥ PF . Further

details regarding this sufficiency are provided at the end of the proof. This proves that

uniform placement is not strictly optimal for M=N=2.
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Assume that the result holds for M=N=k:

Pe
(

1, ...,1︸ ︷︷ ︸
k

)
≥ Pe

(
2,1, ...,1,0︸ ︷︷ ︸

k

)
(5.10)

Calculation of Pe
(

1, ...,1︸ ︷︷ ︸
k

)
:

Using equations (5.1) and (5.6) we get the following expression:

Pe
(

1, ...,1︸ ︷︷ ︸
k

)
=

1
k

[
∑

ȳ∈{0,1}k

min
i=1,..,k

{
Ai(ȳ)

}]

Ai(ȳ) =
k

∑
j=1, j 6=i

{
(PD)

y j (1−PD)
1−y j (PF )

(y1+...+yk )−y j (1−PF )
k−1−(y1+...+yk )+y j

}
(5.11)

Calculation of Pe
(

2,1, ...,1,0︸ ︷︷ ︸
k

)
:

Using equations (5.1) and (5.6) we get the following expression:

Pe
(

2,1, ...,1,0︸ ︷︷ ︸
k

)
=

1
k

[
∑

ȳ∈{0,1}k

min
i=1,..,k

{
Bi(ȳ)

}]
(5.12)

where Bi(ȳ), i = 1, ..,k is given by:

B1(ȳ) =
[ k−1

∑
j=2

(PD)
y j+1 (1−PD)

1−y j+1 (PF )
(y1+...+yk )−y j+1 (1−PF )

k−1−(y1+...+yk )+y j+1

]

+(PF )
(y1+..+yk )(1−PF )

k−(y1+..+yk )
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Bi(ȳ) =
[ k−1

∑
j=2, j 6=i

(PD)
y j+1 (1−PD)

1−y j+1 (PF )
(y1+...+yk )−y j+1 (1−PF )

k−1−(y1+...+yk )+y j+1

]

+(PF )
(y1+..+yk )(1−PF )

k−(y1+..+yk )+(PD)
y1+y2 (1−PD)

2−y1−y2 (PF )
(y3+...+yk )

× (1−PF )
k−2−(y3+...+yk ) , i = 2, ...,k−1

Bk(ȳ) =
[ k−1

∑
j=2

(PD)
y j+1 (1−PD)

1−y j+1 (PF )
(y1+...+yk )−y j+1 (1−PF )

k−1−(y1+...+yk )+y j+1

]

+(PD)
y1+y2 (1−PD)

2−y1−y2 (PF )
(y3+...+yk )(1−PF )

k−2−(y3+...+yk ) (5.13)

Using equation (5.10) we can conclude that:

[
∑

ȳ∈{0,1}k

min
i=1,..,k

{
Ai(ȳ)

}
− ∑

ȳ∈{0,1}k

min
i=1,..,k

{
Bi(ȳ)

}]
≥ 0

In order to prove the Theorem we need to show that:

Pe
(

1, ...,1︸ ︷︷ ︸
k+1

)
≥ Pe

(
2,1, ...,1,0︸ ︷︷ ︸

k+1

)

Calculation of Pe
(

1, ...,1︸ ︷︷ ︸
k+1

)
:

Using equations (5.1), (5.6) and (5.11) we get the following expression:
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Pe
(

1, ...,1︸ ︷︷ ︸
k+1

)
=

1
k+1

[
∑

ȳ∈{0,1}k

{
min

{
(1−PF )A1(ȳ)+ c(ȳ), .....,(1−PF )Ak(ȳ)+ c(ȳ),

(1−PF )Ak(ȳ)+ c∗(ȳ)
}
+ min

{
(PF )A1(ȳ)+d(ȳ), .....,

(PF )Ak(ȳ)+d(ȳ),(PF )Ak(ȳ)+d∗(ȳ)
}}]

(5.14)

where c(ȳ),c∗(ȳ),d(ȳ),d∗(ȳ) are provided below:

c(ȳ) = (1−PD)(PF )
(y1+...+yk )(1−PF )

k−(y1+...+yk )

c∗(ȳ) = (PD)
yk (1−PD)

1−yk (PF )
(y1+...+yk−1)(1−PF )

k−(y1+...+yk−1)

d(ȳ) = PD(PF )
(y1+...+yk )(1−PF )

k−(y1+...+yk )

d∗(ȳ) = (PD)
yk (1−PD)

1−yk (PF )
y1+..+yk−1+1(1−PF )

k−1−(y1+..+yk−1) (5.15)

Calculation of Pe
(

2,1, ...,1,0︸ ︷︷ ︸
k+1

)
:

Using equations (5.1), (5.6) and (5.12) we get the following expression:

Pe
(

2,1, ...,1,0︸ ︷︷ ︸
k+1

)
=

1
k+1

[
∑

ȳ∈{0,1}k

{
min

{
(1−PF )B1(ȳ)+ c(ȳ), .....,(1−PF )Bk−1(ȳ)+ c(ȳ),

(1−PF )Bk−1(ȳ)+ c∗(ȳ),(1−PF )Bk(ȳ)+ c(ȳ)
}
+min

{
(PF )B1(ȳ)+d(ȳ),

. . . ,(PF )Bk−1(ȳ)+d(ȳ),(PF )Bk−1(ȳ)+d∗(ȳ),(PF )Bk(ȳ)+d(ȳ)
}}]

(5.16)
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If PD = 1 or PF = 0 then c∗(ȳ) ≥ c(ȳ). If PD < 1 and PF > 0 then c∗(ȳ) can be expressed

in terms of c(ȳ) as follows:

c∗(ȳ) = c(ȳ)
(

PD(1−PF )

PF (1−PD)

)yk
(5.17)

First consider the case where we have good sensors i-e sensors for which PD ≥ PF . From

equation (5.17) we have that c∗(ȳ)≥ c(ȳ). Therefore, we can eliminate the terms involv-

ing c∗(ȳ) from equations (5.14) and (5.16). We will first consider the situations where we

can eliminate the terms involving d∗(ȳ) from equation (5.14) and then proceed by doing a

similar analysis for equation (5.16). If yk = 1, then d∗(ȳ) = d(ȳ). Using equations (5.11),

(5.15), and (yk−1 ,yk) = (0,0) we obtain:

(
PF Ak(ȳ)+d∗(y)

)
−
(
PF Ak−1(ȳ)−d(ȳ)

)
=

(PF )
(y1+...+yk−2)(1−PF )

k−1−(y1+...+yk−2)(PF −PD)≤ 0 (5.18)

From equations (5.11), (5.15), and (yk−1 ,yk) = (1,0) we obtain:

(PF )Ak(ȳ)+d∗(ȳ) = (PF )Ak−1(ȳ)+d(ȳ) (5.19)

Similarly it can be shown for (y j−1,yk) = (1,0):

(PF )Ak(ȳ)+d∗(ȳ) = (PF )A j−1(ȳ)+d(ȳ), j = 2, ...,k (5.20)

So for ȳ ∈ {0,1}k/(0, ...,0) we can eliminate the term (PF )Ak(ȳ) + d∗(ȳ) from equa-
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tion (5.14).

For the observation ȳ = (0, ...,0):

min
{
(PF )A1(ȳ)+d(ȳ), .....,(PF )Ak(ȳ)+d(ȳ),(PF )Ak(ȳ)+d∗(ȳ)

}
= (PF )Ak(ȳ)+d∗(ȳ)

Let a1, ...,a2k be given as follows:

2k

∑
u=1

au = ∑
ȳ∈{0,1}k

min
i=1,..,k

{PF Ai(ȳ)+d(ȳ)} (5.21)

au = min
i=1,...,k

{PF Ai(y1, ...,yk)+d(y1, ...,yk)}, u = dec(y1 ...yk)+1

Here dec(y1...yk) is the decimal value of the binary number y1 ...yk . Equations (5.18),

(5.19), and (5.20) imply that:

∑
ȳ∈{0,1}k

min{PF A1(ȳ)+d(ȳ), ...,PF Ak(ȳ)+d(ȳ),PF Ak(ȳ)+d∗(ȳ)}= (a
′

1
−a1)+

2k

∑
u=1

au

a1 = (k−1)(1−PD)(1−PF )
k−1 +PD(1−PF )

k

a
′

1
= (k−1)(1−PD)(1−PF )

k−1 +PF (1−PD)(1−PF )
k−1

Using the same notation as in (5.21), b1, ...,b2k can be given as follows:

2k

∑
u=1

bu = ∑
ȳ∈{0,1}k

min
i=1,..,k

{PF Bi(ȳ)+d(ȳ)}
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Using equation (5.13) for ȳ = (0, ...,0) we get that:

Bk(ȳ) ≤ Bi(ȳ) ≤ B1(ȳ), i = 2, ..,k−1

⇒ b1 = PF Bk(0, ...,0)+d(0, ...,0)

Let b
′

1
= PF Bk−1(0, ...,0)+d∗(0, ...,0). Using the expressions for a1,a

′

1
,b1,b

′

1
we get that:

(a
′

1
−a1)− (b

′

1
−b1) =−(PF )(PD−PF )(1−PF )

k−1 (5.22)

We have two cases here PD ≥ PF ,PD(1−PD) ≥ PF (1−PF ) and PD ≥ PF ,PD(1−PD) <

PF (1−PF ). First we consider the case:

Case A: PD ≥ PF ,PD(1−PD)< PF(1−PF)

Using equation (5.13) and PD(1−PD)< PF (1−PF ) we get:

Bk(ȳ) < B1(ȳ) ≤ Bi(ȳ), ȳ = (1,0, ...,0)

⇒ b
2k−1+1

= PF Bk(1,0, ...,0)+d(1,0, ...,0)

Let b
′

2k−1+1
= PF Bk−1(1,0, ...,0)+d∗(1,0, ...,0). Then using b

2k−1+1
,b
′

2k−1+1
we get:

b
2k−1+1

−b
′

2k−1+1
= PF (PD−PF )(1−PF )

k−1 (5.23)
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Using (5.22) and (5.23) we get:

(a
′

1
−a1)− (b

′

1
−b1)− (b

′

2k−1+1
−b

2k−1+1
) = 0

These equations imply that:

∑
ȳ∈{0,1}k

min
{

PF B1(ȳ)+d(ȳ), ...,PF Bk−1(ȳ)+d(ȳ),PF Bk−1(ȳ)+d∗(ȳ),PF Bk(ȳ)+d(ȳ)
}

≤ b′1 + b′2k−1+1 +
2k

∑
i=2,i6=2k−1+1

bi

Therefore we can conclude that:

∑
ȳ∈{0,1}k

min
{

PF A1(ȳ)+d(ȳ), ...,PF Ak(ȳ)+d(ȳ),PF Ak(ȳ)+d∗(ȳ)
}
− ∑

ȳ∈{0,1}k

min
{

PF B1(ȳ)+d(ȳ), ...,PF Bk−1(ȳ)+d(ȳ),PF Bk−1(ȳ)+d∗(ȳ),PF Bk(ȳ)+d(ȳ)
}

≥ (a′
1
−a1)− (b′

1
−b1)− (b′2k−1+1−b2k−1+1)+

2k

∑
i=1

ai−
2k

∑
i=1

bi ≥ 0

which implies that:

⇒ (k+1)
[

Pe(1, ...,1︸ ︷︷ ︸
k+1

)−Pe(2,1, ..,1,0︸ ︷︷ ︸
k+1

)

]
≥
[
(1−PF )

{
∑

ȳ∈{0,1}k

min
i=1,..,k

Ai(ȳ)−

∑
ȳ∈{0,1}k

min
i=1,..,k

Bi(ȳ)
}
+ PF

{
∑

ȳ∈{0,1}k

min
i=1,..,k

Ai(ȳ)− ∑
ȳ∈{0,1}k

min
i=1,..,k

Bi(ȳ)
}]
≥ 0

This proves the result for Case A. Next, we prove the result for Case B.
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Case B: PD ≥ PF ,PD(1−PD)≥ PF(1−PF)

For this case we will modify the induction steps slightly and use the above results and

discussions to complete the proof. We will show that:

(k+1)
[
Pe(1, ...,1︸ ︷︷ ︸

k+1

)−Pe(2,1, ...,1,0︸ ︷︷ ︸
k+1

)
]
≥ (PD−PF )(1−PD−PF )(1−PF )

k−1

From (5.9) it is clear that this results holds for M=N=2:

2
(
Pe(1,1)−Pe(2,0)

)
= (PD−PF )(1−PD−PF )

Assume that it holds for M=N=k:

(k)
[
Pe(1, ...,1︸ ︷︷ ︸

k

)−Pe(2,1, ...,1,0︸ ︷︷ ︸
k

)
]
≥ (PD−PF )(1−PD−PF )(1−PF )

k−2 (5.24)

Using equation (5.13) and PD(1−PD)≥ PF (1−PF ):

B1(ȳ)≤ Bk(ȳ)≤ Bi(ȳ), ȳ = (1,0, ...,0)

⇒ b
2k−1+1

= PF B1(1,0, ...,0)+d(1,0, ...,0)

Let b
′

2k−1+1
= PF Bk−1(1,0, ...,0)+ d∗(1,0, ...,0). Using the values of b

2k−1+1
,b
′

2k−1+1
we

get:

b
2k−1+1

−b
′

2k−1+1
= PDPF (PD−PF )(1−PF )

k−2
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⇒ (a
′

1
−a1)− (b

′

1
−b1)− (b

′

2k−1+1
−b

2k−1+1
) = PF (PD−PF )(PD +PF −1)(1−PF )

k−2

(5.25)

Consider the observation (y1, ...,yk) = (0,1,0, ..,0):

B1(ȳ)≤ Bk(ȳ)≤ Bi(ȳ), ȳ = (0,1,0, ...,0)

⇒ b
2k−2+1

= PF B1(0,1,0, ...,0)+d(0,1,0, ...,0) (5.26)

Let b
′

2k−2+1
= PF Bk−1(0,1,0, ...,0)+d∗(0,1,0, ...,0).

Using (5.25 and (5.26) we get:

(a
′

1
−a1)− (b

′

1
−b1)− (b

′

2k−1+1
−b

2k−1+1
) − (b

′

2k−2+1
−b

2k−2+1
) =

PF (PD−PF )(PD +PF −1)(1−PF )
k−2 +PDPF (PD−PF )(1−PF )

k−2

This implies that:

(k+1)
[
Pe(1, ...,1︸ ︷︷ ︸

k+1

)−Pe(2,1, ...,1,0︸ ︷︷ ︸
k+1

)
]
≥

(1−PF )

{
∑

ȳ∈{0,1}k

(
min

i=1,..,k
(Ai(ȳ)+ c(ȳ))− min

i=1,..,k
(Bi(ȳ)+ c(ȳ))

)}
+ (PF )

{
∑

ȳ∈{0,1}k(
min

i=1,..,k
(Ai(ȳ)+d(ȳ))− min

i=1,..,k
(Bi(ȳ)+d(ȳ))

)}
+ PDPF (PD−PF )(1−PF )

k−2

− PF (PD−PF )(1−PD−PF )(1−PF )
k−2 (5.27)

Using (5.24), (5.27), and the fact that PDPF (PD −PF )(1−PF )
k−2 ≥ 0, we can conclude
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that:

(k+1)
[
Pe(1, ...,1︸ ︷︷ ︸

k+1

)−Pe(2,1, ...,1,0︸ ︷︷ ︸
k+1

)
]
≥ (PD−PF )(1−PD−PF )(1−PF )

k−1 ≥ 0

This proves the claim for the case PD ≥ PF .

A proof for the aforementioned case is sufficient to conclude that the result holds

for all values of PD,PF . This is due to the fact that for the case PD < PF the detector will

simply flip the observation bits and the same optimal strategy, which was employed for

the case PD > PF , will be employed by the fusion center.

Theorem 5.2 is somewhat counterintuitive and holds regardless of the values of PD

and PF . It is quite natural to assume that uniform placement of sensors should be strictly

optimal for sensors that possess a high detection probability and a low probability of

false alarm. This results proves that this natural assumption fails for the case when the

number of sensors equal the number of placement points. A system employing a sensor

placement policy utilizing the the results of this theorem can significantly outperform any

policy which does not take these results into consideration. These observations help in

preserving computational resources for systems which have limited computational and

optimization capabilities.

Next we present some important properties of the optimal placement, on the (PF ,PD)

plane, by varying the number of placement points. We prove that the optimal placement

structure on the (PF ,PD) plane, for the specific case of N < M, is invariant to an increase

in the value of M.

123



Proposition 5.2: The sensor-placement point pairs (N,M1) and (N,M2), where N <M1 <

M2, have the same optimal placement structure on the (PF ,PD) plane.

Proof. We will use the notation Pe(v̄,PF ,PD)
∣∣
M1

and Pe(v̄,PF ,PD)
∣∣
M2

to distinguish be-

tween these two cases. It should be noted that the length of the placement vector v̄ =

(v1, ...,vMi
) is indicated by Mi, i = 1,2.

First consider the case (N,M1) where we have N agents and M1 placement points.

For a specific placement vector v̄ the probability of error, Pe(v̄,PF ,PD)
∣∣
M1

, is given by:

Pe(v̄,PF ,PD)
∣∣
M1

=
1

M1
∑

ȳ∈{0,1}N

min
i=1,..,M1

{
M1

∑
j=1, j 6=i

pv̄(ȳ |X = j)} (5.28)

where pv̄(ȳ |X = j) is given by equation (5.1). Now v j = 0 for j = (N + 1), ...,M1.

Therefore, we can take pv̄(ȳ |X = j) = p(ȳ |X = N + 1) for j = (N + 1), ...,M1. Note

that p(ȳ |X = N + 1) does not depend on the placement vector v̄. This is due to the fact

that no sensor is placed at the point N +1. An application of this fact allows (5.28) to be

updated as follows:

Pe(v̄,PF ,PD)
∣∣
M1

=
1

M1
∑

ȳ∈{0,1}N

min
i=1,..,N+1

[ N

∑
j=1, j 6=i

pv̄(ȳ |X = j)+(M1−N)p(ȳ |X = N +1)

×χ(i 6=N+1)+ (M1−N−1)p(ȳ |X = N +1)χ(i=N+1)

]
(5.29)

Consider another placement vector ˆ̄v, where (v̂1, ..., v̂N ) ∈ ΛN

Pe( ˆ̄v,PF ,PD)
∣∣
M1

=
1

M1
∑

ȳ∈{0,1}N

min
i=1,..,N+1

[ N

∑
j=1, j 6=i

p ˆ̄v(ȳ |X = j)+(M1−N)p(ȳ |X = N +1)
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×χ(i 6=N+1)+ (M1−N−1)p(ȳ |X = N +1)χ(i=N+1)

]
(5.30)

Both (N,M1) and (N,M2) have the same set of admissible placements, determined by ΛN .

Similarly, Pe(v̄)
∣∣
M2

and Pe( ˆ̄v)
∣∣
M2

can be written as follows:

Pe(v̄,PF ,PD)
∣∣
M2

=
1

M2
∑

ȳ∈{0,1}N

min
i=1,..,N+1

[ N

∑
j=1, j 6=i

pv̄(ȳ |X = j)+(M1−N)p(ȳ |X = N +1)

×χ(i 6=N+1)+(M1−N−1)p(ȳ |X=N+1)χ(i=N+1)+(M2−M1)p(ȳ |X=N+1)χ(i6=N+1)+

(M2−M1)p(ȳ |X = N +1)χ(i=N+1)

]
(5.31)

Pe( ˆ̄v,PF ,PD)
∣∣
M2

=
1

M2
∑

ȳ∈{0,1}N

min
i=1,..,N+1

[ N

∑
j=1, j 6=i

p ˆ̄v(ȳ |X = j)+(M1−N)p(ȳ |X = N +1)

×χ(i 6=N+1)+(M1−N−1)p(ȳ |X=N+1)χ(i=N+1)+(M2−M1)p(ȳ |X=N+1)χ(i6=N+1)+

(M2−M1)p(ȳ |X = N +1)χ(i=N+1)

]
(5.32)

Equations (5.29), (5.30), (5.31), and (5.32) imply that:

M2×Pe(v̄,PF ,PD)
∣∣
M2
−M2×Pe( ˆ̄v,PF ,PD)

∣∣
M2

=

M1×Pe(v̄,PF ,PD)
∣∣
M1
−M1×Pe( ˆ̄v,PF ,PD)

∣∣
M1

(5.33)

Since v̄ and ˆ̄v are two arbitrarily chosen placements whose first N elements belong to the

set ΛN , (5.33) implies that as we transition from (N,M1) to (N,M2) the comparison equa-

tions determining the optimal placements remain unchanged. Therefore, we conclude that

the sensor-placement point pairs (N,M1) and (N,M2) have the same optimal placement
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structure on the (PF ,PD) plane. This completes the proof.

Proposition 5.2 has important practical implications. It implies that if we are given

a sensor-placement pair (N,M), where N < M, we only need to analyze the sensor-

placement pair (N,N+1) and the optimal placement structure will be hold for all M > N.

This results in a significant reduction in computational complexity. Theorem 5.2 and

Proposition 5.2 can be utilized in the design of efficient algorithms for systems that have

limited computational capabilities for performing numerical optimization.

Corollary 5.2: Let V (N,M1) be the set of strictly optimal placements for the sensor-

placement pair (N,M1),M1 = N. Then V (N,M2) = V (N,M1)∪
{
(v1, ...,vN ) = (1, ...,1)

,(vN+1, ...,vM2
)= (0, ...,0)

}
is the set of strictly optimal placements for the sensor-placement

pair (N,M2), M2 > N.

Corollary 5.2 follows directly from Theorem 5.2, Proposition 5.2, and some basic

facts regarding the uniform placement of sensors. One can easily recognize the fact that

uniform placement of sensors will always belong to the set of strictly optimal placements

V (N,M), for a sensor-placement pair (N,M), N < M. This fact can be established by

considering extremely high values of PD along with extremely low values of PF .

5.3 A Majorization Approach

In this section, we will utilize some concepts from Majorization Theory to charac-

terize several important properties regarding the optimal placement of sensors. First, we

define some terms that will be used throughout the sequel.
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Definition 5.3.1: (Majorization [51], pp. 6-7) For x̄, ȳ ∈ℜn, x̄ is said to be majorized by

ȳ, ȳ� x̄, provided that:

k

∑
j=1

x
[ j] ≤

k

∑
j=1

y
[ j] ,

n

∑
j=1

x
[ j] =

n

∑
j=1

y
[ j]

where k = 1, ...,n−1 and x
[ j] represents the elements of x̄ in non-increasing order,

x
[1] ≥ ....≥ x

[n] .

Definition 5.3.2: (Majorization-Based Partial Order) Sensor placements ᾱ, β̄ , and γ̄

can be placed on a majorization-based partial order (ᾱ, β̄ , γ̄) if the following ordering

exists: ᾱ � β̄ � γ̄ . The placement ᾱ is said to be at the highest level on this partial order

followed by β̄ and then γ̄ .

Using the aforementioned definitions the main result of this section can be stated as fol-

lows:

Proposition 5.3: For N ≤ 6 and for fixed PD (or fixed PF ), increasing PF (or increasing PD)

leads to optimal placements that are higher in the majorization-based partial order.

Proof. We will only consider the sensor-placement pair (N,M) = (4,4). Other cases

where N ≤ 6 can be proved similarly.

The admissible placement set is given by ΛN = {(1,1,1,1),(2,1,1,0),(2,2,0,0),(3,1,0,0),

(4,0,0,0)}. Since N = M we do not need to consider the placement (1,1,1,1). Using

majorization theory the following majorization-based partial order can be defined:

(4,0,0,0)� (3,1,0,0)� (2,2,0,0)� (2,1,1,0) (5.34)
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Using (5.6) we obtain the following optimality regions on the (PF ,PD) plane on which

these placements are respectively optimal. Detailed derivations which provide these re-

gions can be found in [56]. It should be noted that at points on which more than one

placement is optimal we choose the placement which preserves this result. For PD > PF ,

these regions are given as follows:

(4,0,0,0) is the optimal placement if (PF ,PD) belongs to the set:

{
(PF ,PD)∈ [0,1]

2
∣∣∣∣ (PD−PF )

[
−(PD +PF )(P

2
D
+P2

F
)+(P2

D
+PDPF +P2

F
)+(1−P3

F
)
]
< 0
}

(5.35)

(3,1,0,0) is the optimal placement if (PF ,PD) belongs to the set:

{
(PF ,PD)∈ [0,1]

2
∣∣∣∣ ((PD−PF )

[
−(PD +PF )(P

2
D
+P2

F
)+(P2

D
+PDPF +P2

F
)+(1−P3

F
)
]
≥ 0
)

,

(
2(P2

D
−P2

F
)−(PD−PF )−(P

3
D
−P3

F
)−PDP2

F
(PD−PF )< 0

)
,

(
P3

D
(1−PD)<P3

F
(1−PF )

)}
⋃ {

(PF ,PD) ∈ [0,1]2
∣∣∣∣ ((PD +PF −1)2 > PDPF (1−PF )

)
,

(
P3

D
(1−PD)≥ P3

F
(1−PF )

)
,

(
P2

D
(1−PD)< P2

F
(1−PF )

)}
(5.36)

(2,2,0,0) is the optimal placement if (PF ,PD) belongs to the set:

{
(PF ,PD) ∈ [0,1]2

∣∣∣∣ ((P2
D
−P2

F
)(2−P2

D
−2P2

F
)≥ 0

)
,

(
2(P2

D
−P2

F
)− (PD−PF )−

(P3
D
−P3

F
)−PDP2

F
(PD−PF )≥ 0

)
,

(
2(PD−PF )+2P3

F
(1−PF )−PDP2

F
(1−PF )−
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PDP2
F
(1−PD)− (P2

D
−P2

F
)−PF (PD−PF )≤ 0

)
,

(
P3

D
(1−PD)< P3

F
(1−PF )

)}
⋃ {

(PF ,PD) ∈ [0,1]2
∣∣∣∣ (2(1−PF )< PD

)
,

(
(PD +PF −1)2 ≤ PDPF (1−PF )

)
,

(
P3

D
(1−PD)≥ P3

F
(1−PF )

)}
(5.37)

(2,1,1,0) is the optimal placement if (PF ,PD) belongs to the set:

{
(PF ,PD) ∈ [0,1]2

∣∣∣∣ 2(1−PF )≥ PD

}
(5.38)

For PD = PF , all the placements have the same probability of error and therefore

we choose either the highest placement in the majorization-based partial order to be the

optimal placement or select other higher placements which preserve the statement of this

proposition.

Using (5.35), (5.36), (5.37), and (5.38), for PD > PF , and the aforementioned place-

ment policy at the boundary, PD = PF , we observe that by fixing PD in the interval [0, 2
3 ]

and by increasing PF , from 0 to PD , the optimal placement will be (2,1,1,0). For PD fixed

in the interval (2
3 ,

373
539 ] and by increasing PF from 0 to PD , the optimal placement will start

as the (2,1,1,0) placement and will then switch over to the (2,2,0,0) placement. For PD

fixed in the interval (373
539 ,

947
1093 ] and by increasing PF from 0 to PD , the optimal placement

will start as the (2,1,1,0) placement, switch over to the (2,2,0,0) placement, and will

end up as the (3,1,0,0) placement. Finally for PD fixed in the interval ( 947
1093 ,1] and for

PF increased from 0 to PD , the optimal placement will start as the (2,1,1,0) placement,

then switch over to the (2,2,0,0) placement first and then to the (3,1,0,0) placement,
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and finally end up as the (4,0,0,0) placement. This implies that for the sensor-placement

point pair (N,M) = (4,4) for fixed PD , increasing PF leads to optimal placements that are

higher in the majorization-based partial order.

Similarly, from equations (5.35), (5.36), (5.37), and (5.38) it can be shown that

for fixed PF , increasing PD leads to placements that are higher in the majorization-based

partial order.

We present a plot of (5.35), (5.36), (5.37), and (5.38) on the (PF ,PD) plane in Section

5.4 which further validates the statement of this proposition for the case M =N = 4. Other

cases where N ≤ 6 can be proved similarly by using equation (5.6).

For N > 6 the aforementioned result does not necessarily hold. Consider the case

where (N,M) = (7,8). Clearly (3,2,1,1,0,0,0) � (2,2,2,1,0,0,0), so (3,2,1,1,0,0,0)

is at a higher level than (2,2,2,1,0,0,0) on the majorization-based partial order for this

problem. Using equation (5.6) we get (3,2,1,1,0,0,0) as the optimal placement for

(PF ,PD) = (0.46,0.6) whereas (2,2,2,1,0,0,0) is the optimal placement for (PF ,PD) =

(0.48,0.6). Therefore for fixed PD and N > 6, increasing PF does not necessarily result

in the optimal placement being higher on the majorization-based partial order. Also for

(PF ,PD)= (0.48,0.5) the placement (3,2,1,1,0,0,0) is strictly optimal whereas (2,2,2,1,0,0,0)

is the strictly optimal placement for (PF ,PD) = (0.48,0.6). Therefore, we can conclude

that for fixed PF and N > 6, increasing PD does not necessarily result in the optimal place-

ment being higher on the majorization-based partial order and vice versa for fixed PD and

increasing PF . This counterexample clearly shows that this result does not necessarily

hold for N > 6.
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It should be noted that we are considering a partial ordering and therefore not all

elements of ΛN can be placed on a majorization-based partial order. There can be many

sets of optimal placements dependent on what we choose as the optimal placement at

points where no placement is strictly optimal. For a given (N,M), an important question

is the existence of a set of optimal placements which can be placed on a majorization-

based partial order. The following conjecture addresses this question:

Conjecture 5.3: For any (N,M) there exists a set of optimal placements,

ON = {(v1, ....,vM)|(v1, ....,vN ) ⊆ Λ
N ,(vN+1, ...,vM) = (0, ...,0)}, on the (PF ,PD) plane

which can be placed on a majorization-based partial order.

We explain the intuition behind this conjecture by considering the sensor-placement

pair, (N,M) = (6,6), which has ΛN of size |ΛN |= 11. Note that the placements (4,1,1)

and (3,3) are not comparable with respect to a majorization ordering. Similarly (3,1,1,1)

and (2,2,2) are not comparable. The conjecture would be false if every set of optimal

placements contained both (4,1,1) and (3,3) or contained both (3,1,1,1) and (2,2,2).

{(6,0),(5,1),(4,2),(3,2,1),(2,2,1,1),(2,1,1,1,1)} is a set of optimal placements for

this case. It should be noted that for high values of PF , PD ≥ PF , the optimal placements

tend to have a large number of sensors placed at a small number of points (concentrated

placement) and for low values of PF the optimal placements tend to have a small num-

ber of sensors placed at a large number of points (spread out placement). In this case

the placements (4,2),(3,2,1), and (2,2,1,1) are optimal in the regions where one would

have naturally expected the placements (3,1,1,1),(2,2,2),(4,1,1), and (3,3) to be op-

timal. The aforementioned example indicates existence of the following properties of

non-comparable placements which form the basis of this conjecture:
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• Placements containing sensors concentrated at few points but not enough to outper-

form other placements, for higher values of PF , which are highly concentrated and

can be placed on a majorization-based partial order.

• Placements containing sensors that are relatively spread out but not enough to out-

perform other placements, for lower values of PF , which have a higher spread of

sensors and can be placed on a majorization-based partial order.

• Placements not possessing a fine balance between concentration and spread of sen-

sors to be optimal for values of PF that are neither high nor low.

5.4 Simulations

We present two examples in this section that further illustrate the statements of the

theorems and propositions of Section 5.2 and Section 5.3.

Example 5.4.1: N = 4

Let (N,M) = (4,4), PD > PF . A (PF ,PD) plane using a set of optimal placements is

given in Fig. 5.1. The arrows are used to represent the regions, on the (PF ,PD) plane, in

which a particular placement is optimal. In Fig. 5.1 we observe that uniform placement

is not strictly optimal. Fig. 5.1 clearly shows that for fixed PD , increasing PF leads to

optimal placements that are higher on the majorization-based partial order which is given

by (5.34). Similarly for fixed PF , increasing PD leads to optimal placements that are higher

on the majorization-based partial order given by (5.34).

Now consider (N,M) = (4,5), PD > PF . A (PF ,PD) plane using a set of optimal

placements is given in Fig. 5.2. In Fig. 5.2, we observe that uniform placement is strictly
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Figure 5.1: Optimal Placement Structure over (PF ,PD) for (N,M) = (4,4)
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Figure 5.2: Optimal Placement Structure over (PF ,PD) for (N,M) = (4,5)

optimal along with the set of optimal placements for the case (N,M) = (4,4). This was

previously prescribed by Corollary 5.2 and this example provide a practical validation.

Example 5.4.2: N = 5

Consider the case (N,M) = (5,6), PD > PF . A (PF ,PD) plane using a set of optimal

placements for this case is given in Fig. 5.3. It is observed that by fixing either PD or PF , in-

creasing the other parameter leads to optimal placements that are higher on the majoriza-

tion based partial order: (5,0)� (4,1)� (3,2)� (2,2,1)� (2,1,1,1)� (1,1,1,1,1). It
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Figure 5.3: Optimal Placement Structure over (PF ,PD) for (N,M) = (5,6)

should also be noted that uniform placement is strictly optimal in this case. These simula-

tions verify the statements of the results and signify their practical importance as outlined

in Section 5.2 and Section 5.3.

134



Chapter 6: Conclusions and Future Research Directions

6.1 Conclusions

In Chapter 2, several security constraints have been incorporated in the control syn-

thesis of a linear quadratic optimal control problem. The resulting optimization problems

have been shown to be convex. Lagrangian duality techniques have been used to compute

and characterize the optimal solutions and their properties. The optimal solution is shown

to be affine for the case when the terminal state has a continuous distribution. Utilizing

the standard optimization software cvx, we have computed the optimal control sequences

and have also validated the results via numerical simulations.

In Chapter 3, several team decision problems under security constraints have been

considered. We have analyzed the case where the respective terminal states of both sys-

tems are assumed to be identical. This problem is solved by utilizing the generalized

Kuhn Tucker theorem along with some regularity conditions. The structure of this prob-

lem is similar to the security problems considered in Chapter 2 and the similar techniques

are utilized to compute the optimal solutions. We have also considered the general case

where the terminal states of the decision makers are correlated. A generalized security

metric is utilized to introduce the security constraints. The resulting infinite dimensional

optimization problems have been shown to be convex. Utilizing the Kuhn Tucker Theo-
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rem in conjunction with some standard assumptions and regularity conditions the unique

optimal solution is shown to be affine in the information available to the respective deci-

sion makers.

In Chapter 4, We have introduced techniques from classical statistical learning the-

ory to develop several formulations of the SRHC problem. Pollard dimension for the

quadratic cost functions affiliated with the SRHC problem has been computed. Sample

size bounds are provided which enable us to compute several notions of near minimum

to the optimal solution. The problem framework has also been extended to incorporate

model uncertainity and related notions of near minimax values and affiliated performance

bounds have also been provided. These results have important applications due to their

efficiency and ease of implementation. Given mechanisms for random generation of con-

trol and noise samples, the randomized algorithm based solution methodology presented

in this chapter efficiently handles both convex and non-convex problems.

In Chapter 5, the problem has been formulated using a Bayesian M-ary hypothe-

sis testing framework. We have characterized several placement principles for sensors

tasked with detecting the location of a randomly placed intruder. In particular, notions

from Majorization Theory, such as majorization-based partial orders, have been used to

formalize important sensor placement properties. The uniform placement of sensors has

been thoroughly analyzed, resulting in conditions under which uniform placement is not

strictly optimal. In addition, changes in the optimal placement structure due to a variation

in the number of placement points and local sensor parameters have been analyzed and

related design principles have been presented.

136



6.2 Future Research Directions

6.2.1 Linear Quadratic Control Under Security Constraints

For optimal control problems, subjected to security constraints, one future research

direction is to incorporate additive disturbances in the problem framework. This results

in a more general formulation of these problems and is considerably harder to tackle.

It shouled be noted that when the dynamical system is subjected to additive disturbances

then convergence of the state trajectories to a particular point cannot be guaranteed. How-

ever, the problem can be reformulated by requiring convergence to a norm ball around a

particular terminal state value. The cost function can also be reformulated by penalizing

the difference between the actual terminal state that the system attains as compared to the

required terminal state. It should be noted that with the incorporation of additive distur-

bance the optimization needs to be performed over a space of control policies rather then

control sequences. If control sequences are to be used instead of control policies then the

effects of disturbances would be unaccounted for and would lead to stability issues and

poor performance. New security metrics can also be designed and a performance analysis

can be done for different metrics within this framework. Computing the optimal solutions

for this extended framework are interesting future research problems. Dynamic program-

ming, the Maximum Principle, and other optimization techniques could be utilized to

compute a solution for these problems.

Another future research direction is to consider different measurement frameworks

for the adversary. One suggestion is to consider the case when the adversary gets a fixed
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number of random measurements of the state trajectory rather than the first k measure-

ments. If the adversary is allowed to incorporate different measurement frameworks then

the problem can also be formulated by utilizing techniques from non cooperative game

theory.

6.2.2 Team Decision Theory Under Security Constraints

For team problems one interesting extension is to consider the case when both de-

cision makers only have access to their own terminal states but do not have knowledge of

the terminal state of the other decision maker. The terminal states can be assumed to be

correlated in the sense that they have the same mean but different variances. A similar

security metric to the one utilized in Chapter 3 can also be used to enforce the security

constraints in this case. However, this is a challenging problem and requires a different

problem formulation. It would be interesting to compare the solution of this problem to

the team problems solved in Chapter 3. Techniques like the generalized Kuhn Tucker

Theorem and results from team decision theory like Radner’s theorem could be utilized

to compute a solution to this problem.

6.2.3 Optimal Sensor Placement for Intruder Detection

One research direction to pursue in problems of optimal sensor placement is to

consider the dynamic version of the problem stated in Chapter 5. Instead of just placing

the sensors once we can consider the case of redeploying the sensors at each time step

and using their reported measurements to track the intruder. The sensor placements and
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reported measurements in the previous time steps can be utilized to update the optimal

sensor placements. The intruder can be assumed to be either static, as was done in Chap-

ter 5, or dynamic in the sense that it changes its position at each step. Techniques from

dynamic programming can be utilized to obtain a solution to these problems. We also

assumed a uniform prior distribution for the problem framework in Chapter 5. An inter-

esting extension is to consider other prior distributions for the location of the intruder. It

would be interesting to pursue these extensions and to develop some generalized sensor

placement and detection principles for these problems.
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