
ABSTRACT

Title of dissertation: PRODUCTIVE VISION:
METHODS FOR AUTOMATED
IMAGE COMPREHENSION

Douglas Summers Stay,
Doctor of Philosophy, 2013

Dissertation directed by: Professor Yiannis Aloimonos
Department of Computer Science

Image comprehension is the ability to summarize, translate, and answer basic

questions about images. Using original techniques for scene object parsing, material

labeling, and activity recognition, a system can gather information about the objects

and actions in a scene. When this information is integrated into a deep knowledge

base capable of inference, the system becomes capable of performing tasks that,

when performed by students, are considered by educators to demonstrate compre-

hension.

The vision components of the system consist of the following: object scene

parsing by means of visual filters, material scene parsing by superpixel segmenta-

tion and kernel descriptors, and activity recognition by action grammars. These

techniques are characterized and compared with the state-of-the-art in their respec-

tive fields.

The output of the vision components is a list of assertions in a Cyc microtheory.

By reasoning on these assertions and the rest of the Cyc knowledge base, the system

is able to perform a variety of tasks, including the following:

• Recognize essential parts of objects are likely present in the scene despite not

having an explicit detector for them.

• Recognize the likely presence of objects due to the presence of their essential

parts.

• Improve estimates of both object and material labels by incorporating knowl-

edge about the typical pairings.

• Label ambiguous objects with a more general label that encompasses both

possible labelings.

• Answer questions about the scene that require inference and give justifications

for the answers in natural language.

• Create a visual representation of the scene in a new medium.

• Recognize scene similarity even when there is little visual similarity.

PRODUCTIVE VISION:
METHODS FOR AUTOMATED IMAGE COMPREHENSION

by

Douglas Summers-Stay

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Yiannis Aloimonos, Chair/Advisor
Professor Cornelia Fermuller, Co-Advisor
Professor David W. Jacobs
Professor James A. Reggia
Dean’s representative?

c© Copyright by
Douglas Summers-Stay

2013

Table of Contents

List of Figures v

1 Introduction 1
1.1 Organization of This Work . 1

1 The Skills of Comprehension 3
1.1 Introduction . 3
1.2 Teaching Reading Comprehension . 5
1.3 Teaching Image Comprehension . 7
1.4 Automated Image Comprehension . 11

3 Visual Filters for Scene Understanding 14
3.1 Background of Object Recognition and Scene Parsing 14
3.2 System Architecture . 15
3.3 Visual Attention . 18
3.4 A Biologically Plausible Version . 20
3.5 Experiments . 22

3.5.1 Penn Fudan Pedestrian Database 22
3.5.2 Number of Training Samples 22
3.5.3 Patch Size . 25
3.5.4 Number of Layers . 27
3.5.5 Weizmann Horse Dataset . 27
3.5.6 Poser . 31
3.5.7 Limb Detection . 32
3.5.8 Semantic Edge Detection . 34
3.5.9 Experiments with Different Features and Classifiers 36

3.6 Future Directions: Non-parametric Classifiers 39
3.7 Conclusion . 40

4 Material Scene Parsing 41
4.1 Background . 41
4.2 Algorithm Outline . 44

ii

4.3 Image Search . 45
4.4 Kernel Descriptors . 45
4.5 3-D Color Histograms . 47
4.6 Superpixel Segmentation . 48
4.7 Experiments . 48

4.7.1 Experiment 1: Flickr Material Database 48
4.7.2 Experiment 2: Hand-Labeled Imagery 49

4.8 Discussion . 51

5 Action Grammars 52
5.1 Introduction . 52
5.2 Recent Works . 55
5.3 Approach . 57

5.3.1 Kinect+SR4000 Complex Activity Dataset 59
5.3.2 The Action Grammar . 60
5.3.3 Extracting Hand Locations from 3D Pointclouds 64
5.3.4 Object Recognition . 67
5.3.5 Building the Activity Tree . 69

5.4 Tree Edit Distance . 72
5.4.1 Separating Interleaved Activities 73

5.5 Experiments . 74
5.5.1 Experimental Procedure . 74
5.5.2 Results over Artificial Noisy Data 75
5.5.3 Results over Complex Activity Dataset 77
5.5.4 Results on Assembly/Disassembly Task 80

5.6 Conclusion and Future Work . 81

6 The Cyc Knowledge Base 83
6.1 History of the Cyc Project . 83
6.2 About Cyc . 84
6.3 How Cyc is used in this project . 86

6.3.1 Improving Material Labeling Using Object Labeling (and vice
versa) . 87

6.3.2 Ambiguous Labels . 88
6.3.3 Answering Queries . 89
6.3.4 Image Translation . 89

6.4 Conclusion and Future Work . 90

7 Answering Queries 92

8 Translation of Images from One Style to Another 104
8.1 Introduction . 104
8.2 Automatic Generation of Child-like Visual Representation 107
8.3 Conclusion and Future Work . 108

iii

Bibliography 112

iv

List of Figures

3.1 Effect of number of samples on performance on the most challenging
image in the Penn Fudan test set. Top row: 100, 1000, and 10000
samples. Bottom row: 1E5, 1E6, and 1E7 samples. Only at the
highest number of samples was the system able to learn a model that
could pull out the two figures from the background. 23

3.2 ROC curves for models trained on different numbers of samples.
Numbers listed are samples per layer. Each model had four layers,
and the features were a patch size of 5 x 5 with a 4-level pyramid,
compressed to 50 dimensions using PCA. The model for 1E7 samples
had 3 layers and a patch size of 9x9. These settings were chosen to
attempt to build the best possible model on this dataset. 24

3.3 ROC curves for models trained on different patch sizes. Performance
increases up to a patch size of 9 x 9. Patch size is for a 4-level pyramid. 26

3.4 Effect of patch size on performance. Patch sizes are 1x1,3x3,5x5
[top] 7x7,9x9,11x11 [bottom]. Patch size 1x1 uses very little context
information, so is mainly determined by the color of the pixel. Patch
size 9x9 is optimal on this dataset; 11x11 is similar but begins to
ignore local details. 26

3.5 Output from applying successive layers to test image [left] from Penn
Fudan pedestrian dataset. The first layer is confused by bicycles
which share the color of clothing and a white shirt that may be con-
fused with white buildings or the sky. But context cues (the presence
of the legs and head) allow later levels to erase the noise and fill in
uncertain areas. 27

3.6 ROC curves for models trained with different numbers of layers. The
first layer, lacking context, is much lower, but 2 through 7 layers show
near identical performance on this dataset. 28

3.7 ROC curve for Weizmann horse dataset. 30
3.8 Output of three successive layers on a sample test image [left] from

the Weizmann horse dataset. Each layer removes clutter and shores
up confidence of labels based on context from the previous layer. . . . 30

v

3.9 Selected images of limb detection on Action Recognition dataset. All
training and test images were resized to fit in 300x300 square. 33

3.10 Example of the low-quality training labels generated for this dataset. 33
3.11 A sample of results from a salient contour detection filter trained on

the BSDS300 training set and run on the validation set. 35
3.12 Examples of how a learned outline class (white) can separate occlud-

ing figures (black). This is only possible with visual filters, not any
other scene parsing technique. (Note the incorrect labeling of the
gaps between the columns in the left image as legs of a human figure.) 37

3.13 anisotropic gaussian kernels [left] and isotropic gaussian kernels [right]
on the same ten data points. 39

4.1 Example images from Flickr Material Database. 49
4.2 Images from test set. 50

5.1 Overview of the approach: (1) Pointcloud data and RGB-Depth data
are extracted and processed from the SR4000 and Kinect cameras
respectively. (2) Hands and objects are detected from pointclouds and
the human pose is extracted from Kinect. (3) The detected objects
are then combined using an action grammar treebank to produce an
activity tree. 58

5.2 Data collection setup. The Kinect is mounted on an Erratic mobile
robot base, the SR4000 is mounted on the side nearer to the table
where the actions are performed. 61

5.3 Detecting hand locations from SR4000 pointclouds. (1) Outliers are
first removed, (2) Table surface is then estimated, (3) Objects and
hands are extruded and clustered from reprojected convex hull, and
(4) Predicted hand pointcloud locations. 65

5.4 [left] Kinect RGB image. [center] Kinect depth image. [right] Dense
optical flow computed between this previous frame and this frame. . . 67

5.5 Merging occupied hand pointclouds with intensity image for object
recognition. 68

5.6 Creating an Activity Tree: (Left) Events and objects detected from
SR4000 intensity images. (Right) Formation of an activity tree that
parallels the events and objects occurrence, based on the defined ac-
tion grammar. 70

5.7 A complex interleaved sequence Making Card + Assemble a Machine
can be cleanly separated into its component activity trees using the
action grammar. 73

5.8 Accuracy scores with varying degrees of terminal corruption: 1) Ran-
domly replaced object labels (red solid line) and 2) Replaced object
labels consistently from another (incorrect) tree (blue dotted line). . . 76

vi

5.9 (Above) Confusion matrix of normalized tree edit distances for each
of the 12 test sequences. Lower values along the diagonals are better.
Boxes indicate the diagonal blocks of interest for each set. (Below)
Amount of corrupted terminals [0, 1] per testing sequence. A value
closer to 1 means more corruption. 78

5.10 Confusion matrix of normalized tree edit distances when terminals
are used alone. Lower values along the diagonals are better. Boxes
indicate the diagonal blocks of interest for each set. 79

5.11 Pointcloud from Kinect sensor. This was converted to a 3-D cell
occupancy map, cleaned up using 3D morphology techniques, and
regions extracted. These regions were then tracked using a Kalman
filter capable of handling splits and merges of tracks. 81

6.1 [left]original image. [center left] object class labeling(lawn, road,
trees, car, sky). [center right] material labeling (rubber, metal, grass,
gravel, foliage, sky, glass). The regions labeled in black are incom-
patible between the material and object labelings. At least one of
the labelings must be incorrect in these areas. Note that this cannot
catch errors such as the rear tire being labeled as metal rather than
rubber, because some parts of a car are metal. 88

7.1 A frame from the ‘changing a car tire’ video. 95
7.2 The activity tree for changing a car tire. Assembly nodes are col-

ored green, and disassembly nodes are colored yellow. Recognizable
actions (such as the wrenching action in C) can be used as further
labels to make tree recognition more robust. Nodes involving the
hands have been left out of the diagrams for clarity. 96

8.1 Drawings by 21 children of a street scene. Childrens’ names and ages
are shown. Some names have been changed to protect privacy. 110

8.2 [right] Image generated from pre-drawn templates and certain facts
about what objects are present in the image and their spatial rela-
tionships stored as assertions in Cyc. [left] Observed image. [center]
Parsed image. 111

vii

Chapter 1: Introduction

1.1 Organization of This Work

This work explores the concrete steps needed to move towards this goal of a

productive vision system. It includes novel algorithms to do scene parsing, activity

parsing, and material parsing, compares these to existing techniques, and shows ways

that they can be used to complement one another. It shows how the representation

obtained from this can be used for description, comparison, and translation of scenes

at a semantic level—the exact skills which, in a human student, would be said to

show comprehension.

Chapter 2 is a look at how the field of teacher education has come up with tests

for comprehension, especially comprehension of images. By grounding the problem

in this way, I hope to forestall criticism that the computer vision and knowledge

base system doesn’t ‘really’ comprehend anything. This is probably a valid criticism,

especially when it comes to qualia (my system’s ‘understanding’ of ‘the color red’

does not include anything about what it is like to experience that color directly, nor

is it clear whether giving a machine such an understanding is even possible.) The

point of this section is to show that there is a well established practical definition

of comprehension, and settled techniques for deciding whether such comprehension

has occurred. In that sense, and perhaps that sense only, we can talk about image

comprehension and expect to be able to make progress towards that goal.

The next three chapters cover the computer vision components necessary to

1

take input from a visual representation. They represent three categories of detection:

detection of objects, detection of attributes, and detection of activities. Roughly

speaking, these can be said to correspond to the concrete nouns, adjectives, and

verbs respectively that would make up a scene description. The next chapters dis-

cusses the semantic network that ties these together, implemented within the Cyc

knowledge base, and show how the system as a whole can be used for a variety of

tasks demonstrating comprehension skills.

Supplement 1 is the book Machinamenta: the thousand-year quest to build a

creative machine, published in December 2011. Machinamenta is only tangentially

related to the rest of this work. It examines the history of the idea of a creative

machine (considering both practical devices and fiction), and how our ideas about

what ‘creativity’ and ‘machines’ are has changed over the centuries. Ultimately,

the conclusion of the book is that without some ability to observe its own produc-

tions, comprehend their meaning and evaluate their impact, such machines will be

fundamentally limited to being essentially kaleidoscopes. They would lack essential

aspects of what we call creativity in other people. With that in mind, computer

vision can be understood as important for creating computer artwork as image gener-

ation itself. Chapter 12 of Machinamenta is very different in character from the rest

of the book. It contains some informed speculation about features a more advanced

‘creative’ machine might include. The ‘image translation’ in chapter 8 of this disser-

tation illustrates only one aspect of this: that human artists begin by understanding

each of the objects they observe. It does not include the creation/observation feed-

back loop that is a critical part of creative work. For an example of what this would

look like on the simplest level, see the Pareidoloop software by Phil McCarthy. [1]

2

Chapter 1: The Skills of Comprehension

1.1 Introduction

One of the key goals of computer vision research is known as “image under-

standing.” This chapter lays out how teachers test for image “understanding” or

“comprehension” by their students. While most of my effort in building the system

has gone into creating new ways to parse objects, materials, and activities in scenes,

a key component of the system is making use of a semantic knowledge base to tie

observations to world knowledge.

The question of whether a computer program can “comprehend” anything

at all is, perhaps, a philosophical one. Searle’s famous Chinese Room argument

is largely about understanding. Searle wrote “I have not tried to prove that ‘a

computer cannot think.’ Since anything that can be simulated computationally can

be described as a computer, and since our brains can at some level be simulated,

it follows trivially that our brains are computers and they can certainly think.” [2]

So on Searle’s view, thinking and understanding are possible for a computer, given

the right architecture. Yet he feels that certain architectures are insufficient for

comprehension, namely those without a semantic framework. “Having the symbols

by themselves—just having the syntax—is not sufficient for having the semantics”

and “lingusitic understanding requires at least a semantic framework.” However,

he gives no guidelines for recognizing when such a semantic network is present in a

system.

3

Comprehension can mean many different things. Consider the famous hypo-

thetical of Mary the color scientist [3]. Mary is colorblind but has learned everything

there is to know about colors from textbooks. Can Mary be said to comprehend the

meaning of the word red? If I comprehend “method acting,” do I have the ability

to do it? Since we have little idea how concepts are stored in the memory, it is

at present impossible to know directly whether someone else has comprehended an

instruction. To discover whether another person has comprehended something, we

need to test whether they can perform tasks that would be difficult or impossible

without comprehension. Fortunately, coming up with precise and accurate tests of

whether comprehension has occurred has been an explicit goal of the educational

establishment for years. This means that if we want to build a system for image

comprehension, we have a well-defined target to aim at. If our system uses the

same internal representation to pass several different already established tests of

comprehension, then it can be said to have a practical understanding of the image.

In 1976, John McCarthy discussed the problem of a program being able to

comprehend the following story from the New York Times. “A 61-year old furniture

salesman, John J. Hug, was pushed down the shaft of a freight elevator yesterday in

his downtown Brooklyn store by two robbers while a third attempted to crush him

with the elevator car because they were dissatisfied with the $1,200 they had forced

him to give them.” He suggested that it should be able to answer questions like the

following:

• Who was in the store when the events began?

• Who had the money at the end?

• Did Mr. Hug know he was going to be robbed?

• Does he know now that he was robbed?

Such a system would be useful in many ways, and would provide the kind

of foundation needed for higher levels of visual reasoning: application, analysis,

4

synthesis and evaluation. Supplement 1, the book Machinamenta [9], discusses

what is lacking in current efforts to build a creative machine. Comprehension,

in this sense, is a necessary step before the synthesis and evaluation loop that is

necessary for systems that can creatively extend their own domains.

There is also a kind of feedback effect between knowledge and comprehension.

Without comprehension, it is impossible to organize knowledge. Every fact has to

stand separately. As we try to build more and more extensive systems for vision,

this will become a real problem. We would need to train a detector for every possible

object and action. Using language, we are able to represent everything that exists

or can be imagined using a limited set of symbols that can be recombined. The hope

is that we can use a similar organization to perform the same trick with vision: to

create a limited set of detectors that can, used in combination, describe the world

as whole. I call this “productive vision,” for two reasons. First, as in the phrase

‘productive language,’ the system is able to create novel structures by combination of

predefined ones. The second meaning is a play off the mathematical term ‘product’:

One can multiply, for example, the number of object detectors by the number of

material descriptors to determine how many unique classes of objects the system is

able to describe using just these components. Most current scene parsing systems,

which treat both materials and objects as the same kind of label, would only be able

to detect as many labels as the sum, rather than the product. Without some means

of creating this combinatorial explosion in the number of potential scene descriptions

a system can generate, any vision system will be fundamentally limited.

1.2 Teaching Reading Comprehension

The following is a sample reading comprehension test for the 3rd Grade Mary-
land School Assessment. [5]

5

“Being A Fish” by Russell E. Erickson

Would it be fun to be a fish? They are, after all, quite different from us.
Fish have no ears as we do. Their bodies are covered with thin, flat plates

called scales. The only sounds they know are what they feel using certain scales
along their sides. These are special scales called lateral lines.

We get oxygen from the air by using our lungs. Fish get oxygen from the
water by using the gills on the sides of their heads. We can play in water and
on land, but fish must stay in the water all the time.

Fish never get hot or cold. They are called cold-blooded because they are
always the same temperature as the water around them. That means they have
no need for hot soup, or cold lemonade, or cozy blankets, or cool sandals.

All in all, it’s probably more fun being us.

Read the story “Being a Fish” and answer the following questions.
This story mainly tells .

1. how fish are different from people
2. how many kinds of fish there are
3. where fish can be found
4. how fish swim

You would most likely find an article like this in a book about .
1. farm animals
2. water fun
3. sea life
4. fishing

How do fish hear?
1. With ears
2. By feeling
3. By tasting
4. By smelling

These questions are designed to test for reading comprehension. They are

written in such a way that simple syntactic strategies will fail. For example, a

beginning English speaker might be able to answer the simpler question “Do fish

have ears as we do?” by recognizing the sentence “Fish have no ears as we do”

contains the same phrase with the addition of the word “no” and correctly answer

“Fish have no ears as we do” without understanding the meaning of the words

6

“fish” or “ears.” Searle supposed that more elaborate versions of such strategies

(too elaborate for a human learner, perhaps, but not for a computer or a human

with extensive role books to follow) might be able to give the false appearance of

comprehension.

In both artificial intelligence and elementary school teaching, the problem of

comprehension has been primarily associated with understanding text. Turing’s

“Imitation Game,” for example, assumes a machine whose only input source is

a stream of natural language text. The reasons for this are somewhat different

between the two fields, however. Image understanding is largely not taught to

students because it is too easy—by the time students are in school, most have

acquired the ability to look at a scene, recognize the objects and activities in the

scene, and make inferences regarding it without any formal training. In the field of

AI, however, image comprehension has been considered too difficult. We are only in

the past decade getting to the point with our image recognition and scene parsing

programs that a few objects can be reliably recognized in arbitrary natural images.

1.3 Teaching Image Comprehension

The educational theory and practice involving image interpretation is mainly

concentrated on those students who are poor readers. For those learning to read for

the first time or learning a second language, the task of reading a paragraph and

then reading questions about the paragraph requires decoding two separate texts

(the passage to be read and the questions.) Interpreting images is a relatively easier

7

task for humans and is learned at an earlier stage of development. For example, [6],

suggests that strategies for reading comprehension can be taught to students by first

presenting them with the easier task of interpreting images. The answers to some

questions are “right there” in the image. Others questions require bringing other

knowledge about the world to answer them. A third set of questions about images

requires inference combining information from various parts of the image.

In [7], children’s ability to comprehend narrative of wordless picture books

was tested. Questions were divided into the categories “explicit” and “implicit.”

Explicit questions included “Who are the people in this story?” “Where does this

story happen?” “What happened here? Why did this happen?” Implicit questions,

on the other hand, could not be answered with the information in the picture alone,

but required additional information the student was expected to already have. These

questions include “Tell me what the people are feeling in this picture” and “what

do you think happens next.” Similarly, in [8] assessment included questions such as

“names objects and characters,” “describes actions,” “labels emotions” and more

advanced inference such as “identifies motive,” “predicts what will occur next” and

“provides summary to story.”

All these tests are predicated on the idea that “comprehension” can be tested

by asking the subject to perform certain tasks. If the subject performs those tasks

successfully, comprehension is said to have taken place. To this way of thinking,

comprehension is a set of testable skills.

One of the most popular and long-lasting educational theories is known as

“Bloom’s Taxonomy.” [10] The taxonomy was first published in 1956 in A Tax-

8

onomy of Educational Objectives—The Classification of Educational Goals, edited

by Benjamin Bloom. The taxonomy was an attempt by college examiners and ed-

ucation professionals to categorize skills that could be taught in schools and to

clarify more precisely what was meant by terms like “really understand,” “internal-

ize knowledge,” “grasp the core or essence,” or “comprehend.” [11]. At the lowest

level of this heirarchy was placed knowledge, because it was a necessary precursor

to any other kind of cognition.

Revised Bloom’s Taxonomy from [10]

• Knowledge: Retrieving, recognizing, and recalling relevant knowledge from

longterm memory. Comprehension: Constructing meaning from oral, writ-

ten, and graphic messages through interpreting, exemplifying, classifying,

summarizing, inferring, comparing, and explaining.

• Application: Carrying out or using a procedure through executing, or

implementing.

• Analysis: Breaking material into constituent parts, determining how the

parts relate to one another and to an overall structure or purpose through

differentiating, organizing, and attributing.

• Evaluation: Making judgments based on criteria and standards through

checking and critiquing.

• Synthesis: Putting elements together to form a coherent or functional

whole; reorganizing elements into a new pattern or structure through gen-

erating, planning, or producing.

9

Some skills that demonstrate knowledge are

• define

• identify

• know

• label

• list

• match

• name

This taxonomy was developed in part as a way of helping teachers to approach

the problem of education on a deeper level than “rote” learning. For the purposes

of the taxonomy, knowledge was defined as ‘little more than the remembering of

the idea or phenomenon in a form very close to that in which it was originally

encountered.” [11] This is illustrated by the story of John Dewey, who asked another

teacher’s class, “what would you find if you dug a deep hole in the earth?” When

none of the children were able to answer after repeated questioning, the students’

teacher explained to Dewey, “you’re asking the wrong question.” She asked the class,

“What is the state of the center of the earth?” to which the class replied unanimously

“Igneous fusion.” [11] Most of what is being done in the field of computer vision

today is at this level. Vision systems can successfully recognize objects in the scene

because they (implicitly or explicitly) recall similar objects that they have seen

before. At the next level up in Bloom’s hierarchy is comprehension. To comprehend

something takes more than knowledge. These skills include the ability to

• interpret

10

• extrapolate

• summarize

• compare

• describe

• translate

The handbook explains “Although the term ‘comprehension’ has been frequently

associated with reading, e.g., reading comprehension, the use to which it is being

put here is a somewhat broader one in that it is related to a greater variety of com-

munications than that encompassed by written verbal materials. In another sense,

the use of the term here is somewhat more limited than usual, since comprehen-

sion is not made synonymous with complete understanding or even with the fullest

grasp of a message. Here we are using the term ”comprehension” to include those

objectives, behaviors, or responses which represent an understanding of the literal

message contained in a communication.” [11] In other words, ‘comprehension’ (as

the term is defined for the purposes of the taxonomy) includes not just reading

comprehension, but also comprehension of images; and it is not the fullest level of

understanding that can be achieved.

1.4 Automated Image Comprehension

With this precise definition of ‘comprehension’ in hand, and with well-accepted

examples of what kinds of tasks need to be performed in order to demonstrate that

this level of understanding has been met, we can approach the problem of automated

11

comprehension in a way that hopefully won’t dissolve into arguing semantics. In

order to say that our system comprehends an image or video, it should be able to

perform those kinds of tasks successfully.

There has already been quite a bit of work in solving these problems in the

area of natural language understanding. The problems and solutions that have been

found in attempts to comprehend text can inform similar efforts with images. For

example, attempts at recognizing textual entailment eventually came to the con-

clusion that some form of world knowledge couldn’t be avoided—even the simplest

inferences required a body of information about things we consider perfectly obvi-

ous. The vision community has the advantage of coming late to the party. We don’t

need to develop an analogous knowledge base for understanding images but simply

make use of the knowledge base already being developed for understanding text.

Similarly, attempts to translate images from one modality to another using “image

analogies” [12] use a shallow statistical correspondence between a photograph and

an oil painting. Though the results look impressive, there is a ceiling above which

such techniques can’t go. Purely statistical language translation similarly is only

capable of performing well in situations where large bodies of translated text already

exist.

When a sentence is understood at the simplest level, one has recognized all

the words of the sentence and the role they play. This process is called ‘parsing’ the

sentence. (The terminology was only later adopted into computer languages.) In

computer vision papers, the phrase “scene parsing” means labeling all of the pixels

in an image. One can imagine a more comprehensive parsing, however, that includes

12

not just the nouns recognized in scene parsing, but also parsing out adjectives de-

scribing those nouns and verbs describing the action in the scene. A full parse of a

video sequence would identify the subjects, actions, objects of the actions, and the

adjectives and adverbs describing these.

The representation obtained by such a parsing should be useful for the com-

prehension skills listed above: A description or summary of the video might be a

straightforward English sentence using these parsed terms. A comparison could find

other videos which were similar not just in surface appearance (as image matching

techniques do) but similar in what they are showing, similar in meaning. Translation

could mean representing the image in a new medium— representing a photograph

as a children’s drawing, for example.

These are the tasks that are attempted in chapters 6 through 8. Chapters 3

through 5 discuss various tools developed to take images or video as input and return

simple labels defining what the regions of the image contain. Speaking very loosely,

they are tools to detect and mark out some of the concrete nouns, adjectives, and

verbs in the scene. These will make it possible to make “sentences” in a predicate

logic language that describe the scene in a way that makes possible the completion

of these tasks.

13

Chapter 3: Visual Filters for Scene Understanding

3.1 Background of Object Recognition and Scene Parsing

Object recognition in the early years of computer vision (from about 1965-

1990) mainly concentrated on matching a known arrangement of object contours,

matching a shape from a particular perspective. Beginning in the 1990s, researchers

[13] saw some success with appearance-based models, using empirical collections of

examples of a class to define a manifold in some image space, and testing whether

points (representing object appearance) lay on that manifold. It was immediately

recognized that such techniques could be applied in a sliding window, sometimes at

various scales, in order to locate the detected objects within the image.

Around 2002, material and object detection methods were first employed to

create a labeled bitmap corresponding to the pixels of the input image. (See [14]

and [15].) This went beyond the appearance-based object recognition techniques,

which typically returned a rectangular box around the detected objects and elevated

recognition of background classes to to the importance of recognition of the fore-

ground. The term “Scene Parsing” was introduced by [16] in 2007. These techniques

all required some form of graphical models which used belief propagation or other

graphical models to decide where to put the boundary between image labels.

14

In 2009, a member of our research group, Justin Domke, wanted to demon-

strate the effectiveness of the expectation maximization techniques1 he was experi-

menting with. For purposes of comparison, he came up with a graphical combination

of classifiers that didn’t use these techniques at all, focusing on simplicity and per-

formance. To his surprise, this method performed at nearly the level of the more

sophisticated techniques. “Visual filters” are what we call the various extensions of

this basic method, for reasons that will be explained below.

3.2 System Architecture

A very simple way to classify all the pixels in an image would be something

like the following:

1. Collect statistics on the frequency that RGB values of each pixel of images in

the training set correspond to particular labels.

2. Assign those label probabilities to each pixel of images in the test set inde-

pendently, based on its color.

This approach would unfortunately be very inaccurate. It would be impossible to

tell, for example, whether a brown pixel was dirt, fur, or a reddish surface in greenish

light. A better approach might consider a larger patch of pixels surrounding the

pixel we wish to label. (This describes a nonlinear convolutional filter that considers

a window surrounding a pixel in order to assign it a value.) This would do a

better job of labeling, because similar patches are more likely to come from similar

contexts than individual pixels. As the support of the filter grows, the number of

1a way of solving such graphical models.

15

pixels involved quickly becomes unreasonable; a square RGB support width of just

ten pixels creates a 300-dimensional feature. It would also be difficult to find a

distance measure that worked well at finding similar raw image patches at large

scales. Instead of patches, any kind of local feature could be used to try to match

similar regions from the training set: color histograms or gradient histograms, a bank

of oriented Gabor features, etc... In [17] for instance, this method is used directly as

a scene parsing technique, using dense SIFT features from globally similar images.

One problem with this approach is that local windows, even with fairly wide

support, don’t provide enough context to differentiate between similar areas from

differently labeled regions no matter what features are used. In order to solve this,

we need to take advantage of the fact that the label image is highly regular. The

labels of pixels surrounding a particular pixel are very good at predicting what

label that pixel should have. (The simplest way this manifests is the fact that a

pixel surrounded by pixels with a particular label is almost certain to share that

label.) There should be some way to share information from pixels to their neighbors

about what class they believe they belong to. [18], for example, solves this problem

by using features from throughout a superpixel region to classify the region as a

whole, and learns to consider the labels of groups of superpixels to modify the labels

on individual superpixels. Semantic Texton Forests use a purely appearance based

model, but pooling is done in large squares, effectively reducing the resolution of the

output but increasing the accuracy within each larger pixel. Other approaches use

Markov Random Field approaches to associate data from neighboring appearance

model results.

16

Visual filters, on the other hand, don’t separate out the appearance model

from the context model. Instead, both are learned together, in an approach most

similar to the efficient auto-context used in [19]. A first filter is trained directly

on samples from the training data, and then run to create label maps for all the

training data. Then a second filter (called a second layer) is trained using features

that sample not only from the training set, but also from the corresponding label

maps created in the first step. This is used to create its own label map, which is used

to train a third filter, and so on. At each step in this process, the label maps improve

in accuracy, until after a very few steps the improvement levels off. This could also

be described as a variation on the idea of LeCun’s convolutional net, in the way it

uses shared weights. (Two differences from the convolutional net architecture are

that the higher layers don’t reduce in size and there is no backpropagation—instead,

each layer gets feedback from the training labels directly, as in auto-context.)

The overall algorithm is as follows:

Training

1. A set of training images are collected.

2. Corresponding label maps are created.

3. For each layer,

4. Features are collected at many random locations within these training pairs.

5. A single-layer (linear) perceptron classifier is trained on these features.

6. For each training image,

7. A feature is collected centered at each pixel in the image.

8. The perceptron is used to label the feature.

17

9. An estimated label map is created from these labels.

Testing

1. For each test image

2. For each layer,

3. Follow steps 6-9 above

This can be seen as a method for estimating the probability map Y given

an image X. The individual pixels of the probability map, yi, are given by an

integration over the joint probabilities of all the other pixels in the map given X:

p(yi|X) =

∫
p(yi, yj 6=i|X)dyj 6=i (3.1)

At each layer, the classifier for a particular pixel can focus more or less heavily

on the probability it was passed from its own location in the previous layer. This

means that we can be sure the classifier will converge for the training samples,

because it can do no worse than on the previous layer by simply giving that sample

full weight and all the other samples zero weight.

3.3 Visual Attention

Visual filters are typically only slightly less accurate than carefully designed,

state-of-the-art image parsing techniques. They have certain other advantages, how-

ever. Because only a single layer is trained at a time, they are very fast to train

compared to other methods (a model with 100,000 training samples and three lay-

ers trained on 150 images takes about ten minutes to train using my laptop.) Each

18

pixel in a layer can be classified in parallel, so on a multi-core system they are fast

to parse images (less than a second on a 256 x 256 image.) These factors, and

especially their mathematical simplicity, seem in some ways similar to properties of

the human visual system.

When we look at the world, we are able to classify many things within the field

of view quickly, simultaneously, and effortlessly. Most models of attention assume

that when we first look at a scene, the brain pulls out only simple features such

as contrast, information density, saturation, creating what is known as a ‘saliency

map.’ These features are thought to provide cues for where to fixate in an image,

and that objects are only recognized when they are the center of attention indicated

by the direction of gaze.

A few recent works have shown a situation more complicated and interesting.

[20] The earlier experiments in this area simply asked participants to look at a scene

and describe what they saw. In this case, the location of fixations was predicted

pretty well by the low-level features described above. When participants are asked

instead to look for a particular item in a natural image, however, the first few

fixations were better predicted by the location of the object to be found. This

seems to indicate that from the first glance at a scene, before the brain would have

time to do anything that requires anything as slow as conscious reasoning or fitting

of a complex model, it is already able to classify many objects in a scene correctly

and in parallel. Only after this process is completed do we fixate on the object of

interest in order to begin these slower and more accurate processes which require a

focused attention.

19

Visual filters provide one explanation about how this nearly instantaneous

recognition may be possible. The probability maps generated for particular labels

can be considered as saliency maps for particular objects of interest. Because visual

filters are able to operate on the features centered at each pixel separately, the

process is purely feed-forward and embarrassingly parallel. An estimate based on

the time it takes to generate a label for each pixel shows that the speed of a parallel

implementation would be heavily dominated by the time it took to load the image

to be processed into memory.

3.4 A Biologically Plausible Version

Visual filters are not directly biologically inspired, but the process maps well

onto the model of the vision system in the brain as currently understood. The first

stages of the visual system can be seen as a way of creating robust features from

raw intensity values. We can run the filters using a biologically plausible version

of these features as the inputs. The following is a sketch of the current consensus

about the process of object recognition in primates.

The data from the eyes is streamed along the ventral visual pathway beginning

in the primary visual cortex (V1) and ending in the inferotemporal cortex (IT). This

in turn informs the prefrontal cortex, where the information can be used for taking

action. The entire process from V1 to IT only takes about 30 ms in humans. [21]

(Information about location in the image also begins in V1 but follows a different

path. We do not attempt to imitate this behavior in our model.)

20

The first cells along the pathway, the simple (S1) cells, are similar to local

Gabor filters at a particular orientation and scale. Complex (C1) cells integrate the

information from a small number of these S1 cells, responding to oriented edges over

a wider range of locations and scales. The input of multiple C1 cells, in turn, are used

to create more and more complex filters that respond to particular arrangements

of multiple edges over larger and larger areas of the image (S2 and C2 cells.) [22]

Cells at the end of this process act like radial basis functions, responding strongly to

image regions that contain the pattern of interest, and falling off in Gaussian fashion

as the similarity between the input patch and the prototype decreases. [23] Up to

this point the process is largely feed forward. But within the inferotemporal cortex,

these prototypes receive feedback from the prefrontal cortex [24], influencing the

interpretation of inputs so that ambiguous areas are resolved into familiar objects

through association with the immediate context. For example, a distant brown blob

might be interpreted as a shoe if it is found at the bottom of a leg, or as hair if

found at the top of a head.

For some cells in the IT cortex, the visual similarity between inputs is less

important than semantic similarity. Cells that respond strongly to frontal views of

faces, for example, respond partially to profiles of faces, even though their appear-

ance is not similar. [6]

The biologically-inspired version of visual filters follows this natural model

closely for the first stages of processing, approximating the action of S1, C1, S2, and

C2 cells. (This part of the system uses a variation on the HMAX features described

in [25].) Randomly selected 64 x 64 patches of the training images are fed into

21

this software, and the results are 256 dimensional vectors which encode much of the

shape information in the patches in a compact way.

3.5 Experiments

3.5.1 Penn Fudan Pedestrian Database

The Penn-Fudan Database for Pedestrian Detection and Segmentation con-

tains 170 images with pedestrians (mostly college students) on the campuses of the

University of Pennsylvania and Fudan University [29]. The official label set contains

labels for 345 pedestrians, but many pedestrians, especially those far away or par-

tially occluded, are unlabeled. I supplemented the labels with my own for all the

remaining pedestrians, and used labels from this revised set. For this reason, results

may not be directly comparable to other scene parsing techniques on this dataset.

The revised labels will be made available to other researchers in the future, however.

This dataset was a good test of the abilities of the visual filters. There was enough

variation to pose a challenge but not too much to be unlearnable. For this reason

I decided to use this dataset for an in depth analysis of how various parameters

affected learning. I used 150 images for training and 20 for testing.

3.5.2 Number of Training Samples

After reduction using PCA, the vector space of training samples is 50 dimen-

sional. This is much too large a space to map directly. If one were to partition

this space like a Rubik’s cube, with just three divisions per dimension, and sam-

22

ple each of those divisions, it would require 350 samples (7 × 1023) to characterize

the space. The regularities in image and label data greatly reduce the number of

samples needed to characterize the variation, however.

Five models were trained, holding all other parameters constant, but varying

the number of training samples with 100, 1000, 10,000, 100,000, and 1,000,000

samples respectively. ROC curves are shown in figure 3.2. It is clear that the

number of samples is an important parameter, and that more samples increases

accuracy. The total number of training samples it would be possible to take from

this set of images is around 150,000,000, though approaching that number would

likely cause overfitting. Training time increases with the number of samples.

Figure 3.1: Effect of number of samples on performance on the most challenging
image in the Penn Fudan test set. Top row: 100, 1000, and 10000 samples. Bottom
row: 1E5, 1E6, and 1E7 samples. Only at the highest number of samples was the
system able to learn a model that could pull out the two figures from the background.

23

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

100 samples
1000 samples
1E4 samples
1E5 samples
1E6 samples
1E7 samples*

Figure 3.2: ROC curves for models trained on different numbers of samples. Num-
bers listed are samples per layer. Each model had four layers, and the features were
a patch size of 5 x 5 with a 4-level pyramid, compressed to 50 dimensions using PCA.
The model for 1E7 samples had 3 layers and a patch size of 9x9. These settings
were chosen to attempt to build the best possible model on this dataset.

24

3.5.3 Patch Size

The features used for these tests are a 4-level pyramid of RGB patches. The

size of the patches affects how much context is considered within each sample.

Because the features should be centered on the pixel of interest, only odd-size patches

are possible. Using 100,000 samples, I investigated patch sizes of 1, 3, 5, 7, 9, and

11. The feature with patch size 11 has 11 x 11 x 4 pyramid levels x 3 colors = 1452

dimensions, but all experiments used PCA to change the number of dimensions of

the features to 50 regardless of patch size. The results are in figure 4.1. This shows

that increasing patch size increases classification accuracy, but this effect peaks at

a patch size of 9 x 9. The largest size patches, at the widest pyramid level have a

support of 88 pixels by 88 pixels. Since the images used in this test are typically

about 350 pixels high, this includes a sizable fraction of all the context of the image

within each patch. When four layers are used, influence can propagate over 352

pixels within the training, which is wide enough that most pixels in the images can

potentially influence the label of every other pixel.

At large patch sizes, pedestrians have a kind of probability halo surrounding

them. This is because pixels near a pedestrian that look like background are more

likely to be false negatives (misclassified as background.) The smaller patch sizes,

though, are unable to “see” that they are nearby a pedestrian.

25

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

1x1
3x3
5x5
7x7
9x9
11x11

Figure 3.3: ROC curves for models trained on different patch sizes. Performance
increases up to a patch size of 9 x 9. Patch size is for a 4-level pyramid.

Figure 3.4: Effect of patch size on performance. Patch sizes are 1x1,3x3,5x5 [top]
7x7,9x9,11x11 [bottom]. Patch size 1x1 uses very little context information, so is
mainly determined by the color of the pixel. Patch size 9x9 is optimal on this
dataset; 11x11 is similar but begins to ignore local details.

26

3.5.4 Number of Layers

Each layer allows the filter to take advantage of the more refined probability

map created by applying the previous layer to all the training images. This effect

quickly stops providing a benefit, however. As seen in figure 3.6, the second layer

provides a huge advantage over the first layer, since it is able to take context into

account at all. But subsequent layers have little to gain from working with more

accurate maps. However, each layer also provides the chance to gather more training

samples, and at small numbers of samples this can have a large effect, meaning that

using more layers shows improvement beyond the second layer.

Figure 3.5: Output from applying successive layers to test image [left] from Penn
Fudan pedestrian dataset. The first layer is confused by bicycles which share the
color of clothing and a white shirt that may be confused with white buildings or the
sky. But context cues (the presence of the legs and head) allow later levels to erase
the noise and fill in uncertain areas.

The results of these experiments showed that the best parameter settings were

to use as many samples as is practical, a patch size of 9 x 9, and 3 layers.

3.5.5 Weizmann Horse Dataset

We performed two tests on the Weizmann horse database. [26] This database

has large variations in the appearance, lighting, and pose of the horses and variations

in background appearance. However, the horses are all seen from roughly the same

27

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

1 layer
2 layers
5 layers
7 layers

Figure 3.6: ROC curves for models trained with different numbers of layers. The
first layer, lacking context, is much lower, but 2 through 7 layers show near identical
performance on this dataset.

28

angle. This means fewer samples are needed to learn the class than would otherwise

be the case. Detection is made a little easier by the fact that each image contains

only one horse, nearly centered, and there are no partial occlusions. However, due to

the windowed nature of the detection algorithm, these factors would not be expected

to be very problematic for this system.

For the first test, we used the nonparametric classifier and the biologically

inspired features. 500,000 samples were collected at random from the training images

for each of the five layers. The system used 64 x 64 patches, and created 256

dimensional samples. In the first case the system was trained on 300 of the images

and tested on the remaining 27. The system was able to not only detect the presence

of horses, but correctly segment many of the limbs in 24 of the 27 images. For the

second test, we used the perceptron classifier and patch pyramid features as above.

We used 10,000,000 training samples, a patch size of 9 x 9, and 3 layers. results

are shown in figure ??. Three filters were trained on 218 images and tested on the

remaining 109 (as in the other methods compared). The best previously published

results are in table 3.5.5; the performance is statistically identical to the state-of-

the-art.

Kuettel et. al. [27] 94.7

Bertelli et. al. [28] 94.6

this method 94.5

29

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Weizmann horses

Figure 3.7: ROC curve for Weizmann horse dataset.

Figure 3.8: Output of three successive layers on a sample test image [left] from the
Weizmann horse dataset. Each layer removes clutter and shores up confidence of
labels based on context from the previous layer.

30

3.5.6 Poser

In order to create training sets, images must be carefully segmented by hand.

The laboriousness of this process limited the size of the training sets available to

a few hundred images of a class. Natural images of the class of pedestrians, for

example, show variations in lighting, pose, camera angle shape and size, clothing

appearance and color, background appearance, and so forth. A much larger training

set would seem to be necessary to give examples covering a reasonable amount

of the possible variations. In order to create such a training set automatically,

we used the commercial Poser software. Poser is a tool for creating high-quality

renderings of computer generated humans. Poser has an API for python scripts,

which allowed us to create a parameterized library of figures in a variety of poses,

lighting situations, camera angles, and clothing styles, in front of a bitmap backdrop

showing typical background scenes for pedestrians. At the same time, the label map

could be automatically generated. The results were mixed. Using a test set with

the same figures used in the training set in different poses, camera angles, lighting

situations and backgrounds, the system had 91% pixel labeling accuracy. However,

the filters performed poorly on photographs of real pedestrians, with little better

than chance levels of accuracy. Apparently the features used were too sensitive to the

differences between rendered Poser models and real pedestrians in terms of clothing

styles, body shape, and interaction with the background for the filter to be effective.

This is a common problem among many machine learning applications: the training

set and test set must be drawn from the same distribution, or performance will

31

be unpredictable. [30] hints at a possibility that using locally adaptive regression

kernels as features may be more successful at generalizing from CG puppets to real

human figures, given the good generalization between modalities in that paper. This

is an area for future exploration.

3.5.7 Limb Detection

The LabelMe dataset provides examples of figures whose limbs are labelled in-

dividually. Using this as a training set, we built a limb detector. Selected successful

results are shown in figure 3.9. We divided this into a training set of 300 images and

a test set of 100 images. Results showed an average of 56% per-class pixel labeling

accuracy for non-background classes. The Action Recognition of Static Images [31]

dataset does not contain any segmentations. However, it does have the labeled

location of limbs as rectangles. Using these as very noisy labels, the system was

still able to learn to recognize limbs in a variety of action poses. Results are shown

in figure 3.9. In general, those sports whose background was relatively consistent

between examples were able to be learned successfully, while other sports had in-

adequate training data to be learned well by the system. This highlights one real

difficulty in using what is essentially a scene classification system for object detec-

tion: because the background class is treated equally with the object of interest, the

system depends on learning a model of the background as well as of the foreground.

If the backgrounds in training are insufficiently similar to those in testing, object

recognition will suffer even on identical objects in the two images.

32

Figure 3.9: Selected images of limb detection on Action Recognition dataset. All
training and test images were resized to fit in 300x300 square.

Figure 3.10: Example of the low-quality training labels generated for this dataset.

33

3.5.8 Semantic Edge Detection

Many features of interest in an image are contour-like rather than area-like.

Could visual filters be used to identify these kinds of features? We trained and tested

a model on the Berkeley Segmentation Data Set and Benchmarks 500 [32]. This

datset contains 300 training images and 200 testing images. In order to make sure

that the edges were well-sampled in the training, we thickened them before training

to 6 pixels in width. The results on test images can be seen in figure 3.11. A similar

experiment was done to test whether the system could learn to recognize the edges

between individuals in a crowd. One of the drawbacks of scene classification is that

unlike other recognition systems, it cannot differentiate between one large object of

a given class and two smaller objects of the same class that happen to be partially

occluding one another. The successful detection of semantic edges suggested that it

might be possible to learn the edges between occluding objects of the same class as

a kind of “outline” class.

We trained a visual filter classifier on a modified labeling of the Penn-Fudan

dataset. Three labels were used: pedestrian, background, and pedestrian outline.

The outline pixels were the outermost six pixel shell within the original pedestrian

label. Sample results are shown in figure 3.12. The system was able to learn to

recognize edges that separated the pedestrian class from the background and one

pedestrian from another within a large region of occluding pedestrians. Notice,

however, that the horizontal portions of the outline (separating the top of the head

and bottom of the feet from the background) were not learned. This is likely due

34

Figure 3.11: A sample of results from a salient contour detection filter trained on
the BSDS300 training set and run on the validation set.

35

to the fact that the total area belonging to these regions was so small (0.16% of

the image) that the class was not well sampled, with an average of only 1.3 samples

being randomly selected from within a horizontal outline per image. This illustrates

another problem with scene classification techniques: classes with small area are

easy to lose as the system weights false negatives of a foreground class the same as

true positives of the background class, so that it is often less costly to simply take

the loss and mislabel the foreground object as background if the foreground object

is too small.

3.5.9 Experiments with Different Features and Classifiers

A learned statistical classifier is any function that, based on training pairs,

outputs a hypothesized label for any given input. Originally, visual filters used

a series of single-layer perceptrons, one for each iteration of the algorithm. We

experimented with replacing this with a sophisticated non-parametric classifier that

makes use of anisotropic Gaussian kernels. Details of these experiments can be

found in [35]

Visual filters can work with any dense features as input. For most tests we

used pyramid RGB patch features, which are very fast to calculate. To create a

more biologically plausible system, we tried HMAX features [33]. We also exper-

imented with dense SIFT features and dense kernel descriptors. Dense SIFT and

HMAX ignore color, which is a strong cue for object class. All three (HMAX, SIFT,

and kernel descriptors) lose information at the finest scales due to the size of their

36

Figure 3.12: Examples of how a learned outline class (white) can separate occluding
figures (black). This is only possible with visual filters, not any other scene parsing
technique. (Note the incorrect labeling of the gaps between the columns in the left
image as legs of a human figure.)

37

associated kernels. The features used in visual filters are too high dimensional for

approximate nearest neighbor algorithms to work well. The 100 nearest neighbors

will contain some correct matches but also many incorrect matches. The usual way

to weight the neighbors is with a Gaussian function on the distance from the point

to be estimated. Unfortunately, in high dimensional spaces, all points are approxi-

mately the same distance apart. This is one aspect of the ‘curse of dimensionality.’

However, the relevant data lies on a lower dimensional manifold embedded in this

256 dimensional space. Because of this, using adaptive anisotropic kernels gives a

substantial improvement over the standard isotropic Gaussians. [34]

The advantage can be seen in figure 3.13. Ten points forming an expanding

spiral. The points represent features. The spiral is 2-dimensional for illustrative

purposes—the actual features are points in a space with fifty or more dimensions.

In the first illustration, the weights of each feature are given by an isotropic Gaussian

function. When the features are very similar, the points are close together, and the

interpolation between them is reasonably accurate. However, when they are widely

spaced, each feature lies in its own island. Test features which are very similar to

one particular feature will be classified correctly, but ones that lie halfway between

two training features will not be.

In the second illustration, anisotropic kernels are used. These are elongated

in the direction of neighboring features of the same class. In this case, the features

form a nearly connected spiral, correctly estimating the shape of the underlying

manifold.

38

Figure 3.13: anisotropic gaussian kernels [left] and isotropic gaussian kernels [right]
on the same ten data points.

3.6 Future Directions: Non-parametric Classifiers

There are some advantages to using a non-parametric classifier over using a

trained neural network. First, training time when using large numbers of training

samples is much less. What corresponds to training time for non-parametric classi-

fiers is building the tree of nearest neighbors, which only takes a few minutes even

on large training sets. This means that adding in new data doesn’t require expensive

retraining.

Second, because these training features form a set of points, set-theoretic op-

erations such as intersection, union, and difference are easy to accomplish. Given

a class (such as ‘mammals’) and all its specializations (‘dogs’, ‘cats’, ‘bears’ etc...)

the classifier is the union of the classifiers for all its specializations. The intersection

of two classifiers is a more specific classifier. Taking the intersection of a material

classifier for ‘metal’ and an object classifier for ‘toys’ yields a classifier for ‘metal

toys.’ Since this classifier has fewer samples than either the material or the ob-

ject classifier, it is more efficient to run than either of the original classifiers alone.

39

(Running both classifiers and taking the intersection of the results would take more

computation.) Negation and intersection operations would yield detectors for ‘non-

metal toys,’ and ‘metal non-toys.’ The set of samples for the physical parts of an

object divide up the set of samples for the object as a whole. Interaction with a

source of world knowledge (such as the Cyc knowledge base) could be used to create

new detectors on-the-fly for specific applications.

3.7 Conclusion

Visual filters are a flexible, fast, and simple way to parse images. Their ability

to handle contours as well as regions is unique among image parsing techniques.

They can be used with a wide range of features and classification methods. They

provide insight into how the human visual attention mechanism can work so quickly

and adaptably.

40

Chapter 4: Material Scene Parsing

4.1 Background

Texture classification has been explored in the computer vision community

since the 1960s [4], and texture segmentation since 1980 [36]. (For a good overview

of the current state of these problems, see [38].) Originally, texture classification was

primarily concerned with two-dimensional grayscale textures viewed directly, such

as the Brodatz texture dataset [45]. More recent datasets such as the UIUC texture

database [46] have included color and textures with some depth under a variety of

lighting conditions. In these examples, the depth dimension is very small compared

to the other two dimensions, and is directly toward the camera. As such, these

approaches are generally useful in medical imaging (with two dimensional slices),

distant sensing (where the depth dimension is generally small) and similar problems.

What could be called “material scene parsing” is a more complex challenge. It

refers to classifying the physical material composing an object in a scene, labeling

the regions as in ‘scene parsing’ but with strictly material labels. (Scene parsing

has always contained a poorly delineated mix of object and material labeling—for

example, [16] classifies outdoor scenes with the labels sky, cloud, grass, foliage,

sand, snow, water, rocks, pavement, and buildings ; most of which can be considered

41

broad classes of materials. However, some of the same regions might be labeled

as tree, road, and lawn and be considered as objects in another system.) Materials

generally can be thought of as being composed of a collection of textures: both rough

cut pine boards and polished mahogany might be labeled a ‘wood’ texture under

a particular classification scheme. The lighting conditions are more general and

include cast shadows. The texture is also no longer considered to be camera-facing,

but to form part of the surface of objects with unknown geometry.

In 2001, [39] built a system that learned to classify the BRDF (bi-directional

reflectance distribution functions) of a shape given a single image under unknown

illumination. The system depended, however, on knowing the underlying geometry

of the shape, limiting its usefulness. While BRDF is an important quality in how

we recognize materials, many materials have a BRDF that varies spatially across a

surface—the grain of wood or the dye in a floral print, for example. In 2010, [40]

attempted to classify images containing objects of a single material under unknown

illumination. This system used a diverse set of features:

• Color: 3x3 RGB pixel patches

• Texture: oriented multi-scale Gabor features and SIFT features

• Microtexture: texture features (as above) on the difference between the origi-

nal image and a bilateral filtered version, to capture surface details

• Shape: curvature of Canny edges at multiple scales

• Reflectance: HOG features tangent to and normal to curves in the image

These features were quantized into visual words and LDA was used to separate

the classes. The system had an overall recognition accuracy of 44.6% on the Flickr

42

Material Database [47].

In response to this, [41] showed improved performance of 54% accuracy on the

same dataset in 2011. The features used in this classification were Kernel Descriptors

(described in detail below.)

These two papers addressed material classification, but did not attempt to

apply their techniques to the related problem of material scene parsing. All of

the images used to test these techniques consisted of a single material, or a single

material against a masked off background. To create a system that could label

materials in a diverse scene, I re-implemented and extended the more accurate

of these two methods by segmenting the scene into superpixels and applying the

classification technique they described to each superpixel separately.

There is currently no publicly available dataset of images labeled by their

component materials. I hand-labeled seventeen images for testing purposes, and

evaluated these using leave-one-out training. To increase the breadth of coverage of

the dataset, I also wrote a program to automatically download up to one hundred

texture images of any label from Google Images, and apply perspective and intensity

transformations to these to simulate the effects of viewing them from a different

point of view. This makes the assumption that the textures are essentially flat and

diffuse, an assumption that is only warranted for some classes of textures but is a

reasonable assumption for certain viewing angles for isotropic materials.

In principle visual filters could also be used for materials, but this has two

difficulties. First, it would require creating a large training set from real images.

Second, the filter necessarily takes into account shape information, so a wooden

43

horse or plastic horse would be more likely to be labeled as being covered in the

material ‘hide’ than it should due to this bias. For these reasons, I decided to take

another approach that is not influenced by shape, and can be trained using textures

downloaded from image searches.

4.2 Algorithm Outline

1. The user enters a list of terms to train on.

2. The system collects examples of labeled textures by doing an internet im-

age search for the terms listed, rejecting images which are not textures but

some other kind of image. (These training images may be supplemented with

training images from other sources as well.)

3. These texture images are warped to allow for more robustness to perspective

transformations.

4. The saturation and intensity of samples are varied to increase robustness to

lighting changes and camera differences.

5. The system gathers kernel descriptors and color histograms from these tex-

tures.

6. The dimensionality of these descriptors is reduced using the Large Margin

Nearest Neighbor technique. (This avoids the issue of PCA throwing away

information that may be useful for classification.)

7. A nearest neighbor, SVM, or multi-layer perceptron classifier is trained on

these features.

44

8. Test images are segmented using entropy rate superpixel segmentation.

9. Features are gathered from each superpixel and classified using the classifier

from step 7.

10. A map is generated for the entire image for each label, showing the energy of

that label (a stand-in for probability) for each superpixel.

4.3 Image Search

The exact algorithm behind Google Image Search is a trade secret, but it

appears to use explicit or implicit textual metadata to make its selections rather

than image features. A search that includes the word “texture” will mainly return

results that have been created for visual artists making textured 3-D models.

The color histograms and kernel descriptors from a texture image will tend to

be fairly similar to other features from the same image. Other types of image that

show up in the search will have very different features from one part of the image to

another. This was used to eliminate non-texture images from the training samples.

4.4 Kernel Descriptors

Orientation histograms, such as SIFT and HoG, have proven to be very useful

features for many computer vision algorithms, due to their robustness in the face of

moderate levels of 3-D rotation, lighting, or geometry change. While they are un-

doubtedly useful, their design seems to be somewhat arbitrary. Why the particular

binning used in SIFT, rather than some alternative arrangement? While similarity

45

of SIFT features captures something about similarity of shape, gradient magnitude,

and gradient orientation, it is difficult to say precisely what. Kernel descriptors [42]

are an attempt to capture what is useful about SIFT and HoG but to do so in a

disciplined way. The gradient match kernel, Kgrad, is defined as follows:

Kgrad(P, Q) =
∑
z∈P

∑
z′∈Q

m(z)m(z′)kθ(θ(z), θ(z′))kp(z, z
′)

where P and Q are patches from two different images, m is the normalized gradi-

ent magnitude, kp is a Gaussian position kernel, and kθ is a Gaussian kernel over

orientations (using θ(z) = [sin(θ(z)) cos(θ(z))] to maintain rotational symmetry in

the distance function). Thus, the kernel is composed of three parts. The first part

captures the normalized gradient magnitudes at each point in the patch. The second

computes gradient orientation such that similar kernels will have similar orientations

in a rotationally anisotropic way. The third part takes into account the position of

each point within the patch.

Using this simple way of looking at orientation histograms as kernels, we can

extend the principle to include other image attributes. A color match kernel

Kco1(P, Q) =
∑
z∈P

∑
z∈Q

kc(c(z), c(z′))kp(z, z
′)

combines a position kernel and a color-distance kernel in the RGB color space. A

shape descriptor matches local variations in intensity in a similar way, matching

features like LBPs (Local Binary Patterns from [37]).

46

The main drawback to using kernel descriptors directly is their high dimension-

ality. In the material classification paper, they suggest using Large Margin Nearest

Neighbor on the kernel descriptors for supervised dimensionality reduction. They

treat each image as the single feature vector formed by taking the arithmetic mean

of the features from all of its patches. These reduced dimensionality vectors can

then be classified using any machine learning method.

4.5 3-D Color Histograms

Because color plays such an important role in discriminating materials, it

makes sense to treat distance between color features in a precise way. The 3D color

histogram in Lab color space can capture the color distribution accurately, if there

are enough bins. The distance between two histograms is properly measured using

the Earth Mover’s distance metric [48], so-called because each pixel can be thought

of as a bit of earth in one bin of the Lab color cube, and the similarity between

two histograms is the amount of work it would take to move dirt from bins to other

bins to match the histogram in a second image. EMD tends to be expensive to

compute, but if there is a threshold beyond which all distances are the same, the

calculation time becomes small [49]. In addition, comparing the same histogram to

many different histograms also speeds up the algorithm. I used the FastEMD code

from [50].

47

4.6 Superpixel Segmentation

Superpixels [43] group together pixels which are local and coherent. A seg-

mentation of an image should ideally be possible by selecting a set of superpixels

for each segment; the breaks between superpixels should correspond to the breaks

between segments. Each superpixel should contain only a single material, so assign-

ing a single label to the entire superpixel is appropriate. One of the nice features

of superpixels is that one can gather multiple color or texture features from within

a superpixel without worrying that more than one texture is being sampled. With

entropy rate superpixels [44], University of Maryland researchers introduced a novel

objective function for superpixel segmentation, combining the entropy rate of a ran-

dom walk on a graph and a balancing term to encourage size consistency between

superpixels. Using an efficient greedy algorithm for graph decomposition, entropy

rate superpixel segmentation outperforms other superpixel algorithms on the stan-

dard Berkeley segmentation benchmarks quickly and effectively.

4.7 Experiments

4.7.1 Experiment 1: Flickr Material Database

The first experiment was conducted on the Flickr Material Database [47].

Although segmentation is useless on this dataset (since each image contains only

one material) this was the only direct comparison possible with other techniques.

The results are shown in 4.1. The inclusion of color histogram features allows it to

48

show slightly higher performance on the dataset than the kernel descriptors method

it was based on. This was mainly included as a sanity check to make sure I had

implemented the kernel descriptor method correctly.

Table 4.1: Comparison with other material classification techniques.
Kernel descriptors + color histograms 56%
Kernel descriptors 54%
MIT material classification 45%

Figure 4.1: Example images from Flickr Material Database.

4.7.2 Experiment 2: Hand-Labeled Imagery

I labeled 17 images with the following labels: Grass, Wood, Metal, Sand,

Plastic, Stone, Foliage, Sky and Unknown. These images were chosen to have large

49

contiguous regions of the same material, so performance on these images may not

reflect real-world performance on arbitrary images.

Table 4.2: material labeling accuracy
per-pixel accuracy 65%
per-superpixel accuracy 68%

Figure 4.2: Images from test set.

These are somewhat higher than the results on the Flickr material dataset,

mainly because it avoids troublesome classes like glass.

50

4.8 Discussion

Material is just one of many attributes that could be looked for in images.

Others often found include shape, color, and size. In more limited contexts we

could look for other attributes (expressions of people, for example, or detecting the

age of a book from its typeface.) Each of these attributes requires a separate set

of features. Objects are recognized by recognizing several attributes that typically

belong to the object. If we were to try to recognize a jaguar, for instance, we would

look for a large, fur-covered, black-spotted orange cat-shape.

The Cyc knowledge base contains information on several of these attributes

for some objects, though it is far from complete in this regard. By making use of

knowledge about what materials objects are primarily composed of, we can improve

our estimate of object segmentation by using material segmentation, and vice-versa.

(This is explored in chapter 6.) Including more attributes could further improve

detection results.

In a way, material and other descriptive attributes can be thought of as a

feature, like SIFT, HoG, or kernel descriptors but at an object level.

The accuracy of material classifiers is low, but little effort has been put into

creating adequate training samples or finding what features work the best yet. As

machine learning methods improve, the accuracy will likely improve significantly.

51

Chapter 5: Action Grammars

5.1 Introduction

How do humans come to understand, recognize, and replicate actions? Even

if we have witnessed several occurrences of the same activity, each will be unique in

terms of the order actions are performed, the explicit motion of the limbs involved,

and the appearance of the objects involved. Somehow, the sensory data must be

stored in a greatly compressed representation that captures relevant information

while discarding what is irrelevant. This representation must be capable of handling

actions of any complexity, where activities are composed of previously known actions

and sub-actions.1

This suggests that the brain uses a similar method for understanding both lan-

guage and actions. This idea has support on neuroscientific, anthropological, and

behavioral grounds. In the early 1950’s, psychologist Karl Lashey suggested that

syntax may apply to goal-directed actions as well as to language [87]. Archaeologist

Leroi-Gourhan argued that tool making and use reflects a capability for compo-

1Much of the text in this chapter is adapted from the paper ‘Using a Minimal Action Grammar
for Activity Understanding in the Real World’ published in IROS 2012. This paper had the follow-
ing co-authors: myself, Ching L. Teo, Yezhou Yang, Cornelia Fermüller and Yiannis Aloimonos.
My contributions include the design and implementation of the two practical action grammars
described below.

52

sitionality of structures, linking language and action. Two-year old children have

been shown to have the ability to recognize and reproduce hierarchically organized

actions [63, 96]. Additionally, the same parts of the brain that have long been un-

derstood to be used in language production (such as Broca’s Area) have been found

to be crucial to the process of action planning [68,69].

If such a representation is taken to be an innate, central aspect of both lan-

guage and activity understanding, it must be simpler and more fundamental than

the grammars we learn for each individual language. It also must be a generative

grammar (rather than one used purely for recognition) in order to allow an indi-

vidual to learn to perform actions by example. Chomsky’s minimalist program is

an attempt to discover such a universal generative grammar for language, with the

expectation that it plays a more general cognitive role. A generative grammar con-

sists of a set of elements and a set of production rules that allow the formation

of grammatical sentences. Context-free grammars are generative grammars which

have recursive rules which allow nesting of elements in the same type of elements.

Although context-free grammars are sufficiently expressive to handle the complexity

of language, they cannot account for what we actually see in natural languages, such

as agreement (in case, number, or gender) and reference (such as relative clauses.)

These long-distance dependencies cannot be captured by context-free grammars.

The Chomskyan Minimalist Program deals with this through a number of transfor-

mations on the output of context-free grammars [66].

In [85], Pastra and Aloimonos introduce a minimalist grammar of action which

defines the set of terminals, features, non-terminals and production rules for such

53

a grammar in the sensorimotor domain. However, this was a purely theoretical

description. The action grammars used in our experiments are an implementation

of such a grammar in a system that is capable of sensing and interpreting real-

world situations under a wide range of natural conditions. Such a representation is

a natural summary of the important aspects of an activity, which abstracts away

such details as who is performing the action, where it is being performed, how the

objects involved are spatially located, and the appearance of the objects and body

parts. What is left is a tree structure that captures the order in which tools, objects

and hands are brought together and separated, a structure which is easy to store,

search, and compare to other such trees.

In order to make the use of the grammar practical for real robots and surveil-

lance, we have not merely created a demonstration, but designed the system so that

it will be able to handle and abstract away a wide range of realistic conditions, such

as varying viewpoint, lighting, surrounding environment, object and actor appear-

ance.

The activities we are attempting to recognize and understand are complex,

concrete human activities. Actions like “stirring” or “tightening a bolt,” the tradi-

tional purview of action recognition techniques, are represented by a single node in

the action tree. (For this reason, we refer to what we are doing as “activity recog-

nition” rather than “action recognition.”) Abstract actions, like “doing research,”

or “playing soccer” contain important steps which take place in terms of mental or

data structures, which we have no way to detect or estimate with the current setup.

Instead we are looking at multi-step activities which involve the manipulation of

54

physical objects towards some goal state. This is basically any form of manual la-

bor: the physical work of craftsmen, home builders, factory workers, chefs, janitors,

and so forth. These are also largely the kinds of activities which we would hope for

a general purpose robot to be able to perform.

“Action recognition” interacts with activity recognition in two important ways,

both assisting with and being assisted by activity recognition. First, activity recog-

nition provides important context for action recognition. One of the main difficulties

in action recognition is finding when the action begins and ends. Forming an action

tree provides natural endpoints for individual actions: these actions occur between

the time a tool (including the hands) comes into contact with an object and the

time when it breaks such contact. Knowing what the tool and object are pro-

vides significant constraints on what the action might be, reducing it to a handful

of possibilities with any significant probability of occurring. Second, when action

recognition is performed, the action can be used as a label on part of the activity

tree, which improves our ability to match with similar activities.

5.2 Recent Works

The problem of action recognition and human activity has been an active

research area in Computer Vision, motivated by several promising applications, such

as human-computer interface, video indexing and retrieval and video surveillance,

etc. Several excellent surveys on the topic of visual recognition are available [82,

93]. But non-visual descriptions, using motion capture systems, have also been of

55

interest in Computer Vision and Graphics. Many of those studies are concerned

with dimensionality reduction techniques, that provide a good characterization for

classification [64,80,95]. Most of the focus in visual action analysis was on the study

of human actions that were characterized by movement and change of posture, such

as walking, running, jumping etc. The dominant approaches to the recognition

of single actions compute statistics of spatio-temporal interest points [67, 78, 97]

and flow in video volumes as descriptors, or represent short actions by stacks of

silhouettes [71,98]. Approaches to more complex, longer actions employ parametric

approaches, such as Hidden Markov Models [75], Linear Dynamical Systems [89] or

Non-linear Dynamical Systems [65], which are defined on tracked features or optic

flow presentations.

To capture the semantics of complex activities, higher level reasoning methods

are required. A number of approaches use stochastic context free grammars with

the primitives beings body parts [88] or trajectories [74], and some also include the

interaction with objects [83]. To model the temporal constraints, several approaches

have used Hidden Markov Models, which exploit the relation between specific objects

and actions [73, 84]. A related class of approaches use dynamic Bayesian networks

to divide the temporal sequence into sub-sequence and define relative temporal

relations [70,79,86].

Most closely related to our work are a few recent studies on hand manipula-

tion actions. In [94] manipulation actions are represented as a sequences of motion

primitives. The process is modeled using a combination of discriminative support

vector machines and generative hidden Markov models. In [76] hands and objects

56

segmented from the video and shape-based hand/object features and manipulation

features are defined to provide a sequence of interrelated manipulations and object

features. Semantic manipulation object dependencies are extracted using condi-

tional random fields. In [92] manipulations in a breakfast scenario are analyzed.

The image sequence is represented by an activity graph that codes spatiotemporal

object interactions. Event classes are extracted from the activity graphs, where each

event class encodes a similar pattern of spatiotemporal relations between correspond-

ing objects, but the objects are known beforehand. While all these approaches use

task-dependent primitives, our approach is general; its basics are simply the merging

and parting of objects. A similar idea was pursued by [62] for the analysis of short

stereo video sequences of of hand motions manipulating a number of objects. Rela-

tions between object at decisive time points during manipulation, such as when two

objects touch or overlap, are stored in a transition matrix. Using simple sub-string

search algorithms different matrices are compared for recognition. The objects in

these sequences are however easily visually recognized, and the approach was only

applied to short activities, such as putting two objects on a plate.

5.3 Approach

We describe the overall approach of using the action grammar for activity un-

derstanding (see Fig. 5.1) by first introducing the experimental dataset in sec. 5.3.1.

Next, we define the action grammar and how it is created in sec. 5.3.2. We then

detail how the important subcomponents: hand state determination and object

57

Figure 5.1: Overview of the approach: (1) Pointcloud data and RGB-Depth data
are extracted and processed from the SR4000 and Kinect cameras respectively. (2)
Hands and objects are detected from pointclouds and the human pose is extracted
from Kinect. (3) The detected objects are then combined using an action grammar
treebank to produce an activity tree.

58

recognition are achieved in secs. 5.3.3 and 5.3.4 respectively. With these detections,

we illustrate how an activity tree can be built (sec. 5.3.5) and be used for comparing

the similarity between different trees (sec. ??) and how the action grammar is useful

for separating complex interleaved activities in sec. 5.4.1.

5.3.1 Kinect+SR4000 Complex Activity Dataset

We introduce a novel dataset that contains 5 complex hand manipulation

activities performed by 4 different human actors. Each activity is defined by the

completion of a complex object or entity: for example, making a sandwich. The

task of creating this entity is further comprised of 9 specific actions which may

involve the use of different kinds of hand-tools and objects. Different actions could

be concatenated to form novel activities: Cooking vegetables + making a sandwich.

Other well known datasets such as the KTH, Weizmann or Human-EVA

datasets [71,90,91] do not involve hand-tools. The human-object interaction dataset

by Gupta et al. [72] has only 4 objects with extremely simple actions. The dataset

by Messing et al. [81] has only 4 simple actions with tool use. The CMU Kitchen

Dataset [77] has several actions performed by 18 subjects for 5 recipes, but many of

the actions are blocked from view due to the placements of the 4 static cameras.

The Complex Activity Dataset extends beyond these datasets by consider-

ing the compositional aspect of the activity in terms of the entities created by the

actions involved in each step. The activities are classified into two general cate-

gories: Kitchen and Crafts, each with 8 separate video sequences captured from

59

two externally synced and calibrated active sensors: 1) the Kinect which provides

RGB-Depth and 2) a Swissranger SR4000 Time of Flight camera which provides

Intensity(Grayscale)-Depth. The Kinect camera is positioned frontal-parallel at a

distance of ≈ 6m from the actor so that we can track the entire body motion, while

the SR4000 is positioned ≈ 1.5m from the actor on the side so that hand-actions

and objects can be clearly seen (see Fig. 5.2). In total, there are 16 video sequences

made from different combinations of activities and objects. The sequences are fully

annotated with of the names of relevant objects and manipulative actions for eval-

uation and training purposes. The list of activities, actions and objects considered

are summarized in Table 5.1. Sample sequences from the dataset are available in

the supplementary material2.

Activity Class Name Actions Objects/tools

Kitchen
Cooking Veg-
etables

{slice, cut} {cucumbers, carrots,
tomatoes, apple, chop-
per}

Making Sand-
wich

{spread, slice} {bagel, ham, cheese,
knife}

Crafts

Sewing a Toy {cut, pin, thread,
sew}

{cloth, paper, needle,
thread, scissors}

Card Making {cut, paste, write,
fold}

{paper, glue, scissors,
marker}

Assemble a
Machine

{screw, push, twist} {wrench, nut, bolt,
frames}

Table 5.1: List of manipulation activities considered.

5.3.2 The Action Grammar

The first grammar has one simple rule, which is applied repeatedly:

2More information on the dataset and how the data is collected can be found at: http://www.
umiacs.umd.edu/research/POETICON/umd complex activities/

60

http://www.umiacs.umd.edu/research/POETICON/umd_complex_activities/
http://www.umiacs.umd.edu/research/POETICON/umd_complex_activities/

Figure 5.2: Data collection setup. The Kinect is mounted on an Erratic mobile
robot base, the SR4000 is mounted on the side nearer to the table where the actions
are performed.

61

An activity consists of

1. Using a tool to bring two objects together, resulting in a new object or a tool

or

2. Using a tool together with a single object, resulting in a transformed object

or tool

This grammar is only appropriate for assembly-type activities where all objects

persist throughout the scene. If objects can be created or destroyed (including

when they enter or leave the scene) and if objects are also disassembled, this can be

handled with a slightly more complex grammar: An activity consists of

1. Using a tool to bring two objects together, resulting in a new object or a tool

2. Using a tool together with a single object, resulting in a transformed object

or tool

3. Using a tool to separate two objects. The activity of separating the objects

becomes a parent to the activity of handling each of the objects.

4. When an object is used in activity A and reused in activity B, a new activity

is formed with A and B as sub-activities.

These tools or objects can themselves be the result of an activity, which gives

rise to the tree structure of activities. Hands can be thought of as tools which are

not made of other objects or tools. The new ”object” can be something like ”a

piece of bread on a plate” formed by bringing together a slice of bread and a plate.

The point is that after they have been brought together, they are treated as one

combined object, temporarily, as the bread moves together with the plate.

Realistically, there are certain ‘activities’ under this definition which are best

62

ignored. When an object is handled, it may be passed from hand to hand, set down

on the table to get a better grip, accidentally dropped, and so forth. These each

technically result in a split and merge activity with the hand, but such actions hap-

pen at frequent, unpredictable times, and give little insight into the structure of the

activity. For this reason, we only keep track of merges between objects and tools,

and group together into a terminal (leaf) node ‘handling an object’ any number

of grasping, shoving, dropping, and regrasping actions. Merges with the table sur-

face and floor are ignored. Under some circumstances this would be inappropriate

(bouncing a ball or setting a table, for example) but for most of the activities we

are interested in it reduces noise and captures the relevant activities.

There are two ways to use the grammar. In this paper we parse the actions

that take place, starting with recognizing simple actions (of type 1 or 2, above)

and building them up into an activity tree, an example is shown in Fig. 5.6 (right).

Every non-terminal node of this tree is an action. The other way to use the grammar

would be in a generative way: starting with an activity one wanted to perform, and

working out how to do it. One would simply look for an activity one has observed

resulting in the final object one wanted to have, find out what the input objects and

actions to attain that are needed, and what activities result in those objects, and

so on, breaking it down to the point that the objects and tools needed are the ones

available.

63

5.3.3 Extracting Hand Locations from 3D Pointclouds

Since we are concerned with manipulative actions, the terminals in the action

grammar trees are the objects/tools that are currently manipulated by the hands.

An approach that passively searches for objects and tools in the video will not be

sufficient as many objects are visible on the table but are not participating in the

activity. Instead, we actively search for hands in each frame, and determine if the

hand is currently occupied with an object or free directly from 3D pointclouds—a

binary hand state Hs = {occ, free}. Once we know the approximate location of

each hand and its state, a trained object classifier can then be used only on these

regions, which reduces processing time and false positives. Note that we process

pointclouds from the SR4000 since it is nearer to the actor than the Kinect and

provides a clearer view for object recognition.

The procedure is summarized on Fig. 5.3. The inputs are the pointclouds

obtained from the SR4000 and the tracked skeleton from the Kinect3. Since both

cameras are calibrated, the approximate 3D locations of the tracked hands are known

in the SR4000 camera coordinates. However, relying solely on the Kinect for hand

tracking is unreliable since it may fail, especially when half the body is blocked by a

table (see Fig. 5.2). Our proposed approach is to 1) robustly extract potential hand

regions from SR4000 pointclouds, and 2) combine it with the predicted locations

from Kinect, so as to determine the final locations of the hands in SR4000 and its

hand state: occupied or free. We use PCL 1.44 as the main pointcloud processing li-

3PrimeSense OpenNI implementation was used to obtain the skeleton.
4http://www.pointclouds.org

64

http://www.pointclouds.org

Figure 5.3: Detecting hand locations from SR4000 pointclouds. (1) Outliers are first
removed, (2) Table surface is then estimated, (3) Objects and hands are extruded
and clustered from reprojected convex hull, and (4) Predicted hand pointcloud lo-
cations.

65

brary to first remove obvious outliers by filtering out points that have low confidence

values or those does not belong to any obvious cluster. A plane estimation proce-

dure using RANSAC is then applied to estimate a planar model that represents the

table surface. The estimated coefficients are then used to reproject the remaining

points so that a convex hull is created from which points in the original cloud that

are within the convex hull (table points) are removed. A 3D Euclidean clustering is

then applied to obtain reasonable pointcloud clusters. The predicted hand locations

from Kinect are then used to extract the hand pointclouds if the location is within a

fixed distance threshold of the cluster’s centroid. Finally, the extrema of each hand

pointcloud is computed from which we use a region growing segmentation algorithm

using nearest neighbors to extract the hand and any associated objects/tools that

are in contact with the hand (Fig. 5.3(d)). The current hand state Hs is obtained

from the difference in the pointcloud sizes against a running average of previous

pointcloud sizes. A significant deviation beyond a ratio threshold will indicate that

the hand is occupied (ratio > 1) or empty (ratio < 1). In addition, if only a single

hand pointcloud is detected, and its current size is approximately equal to the com-

bine sizes of the the left and right hand in previous frames, a merge event is raised.

This will be important for building the activity tree (sec. 5.3.5).

We later developed a method that used the Kinect data exclusively. The

centroids of each 3D cluster are tracked using a Kalman filter. Estimated 2-D

location for each object in each frame is computed using dense optical flow from the

previous frame, and the 3D cluster at that 2D location is presumed to correspond.

This is supplemented by object detection on the RGB image. The tracking algorithm

66

provides for the possibility that tracks may merge or split, so these events are parsed

using the grammar described above. (See figure 5.4.)

Figure 5.4: [left] Kinect RGB image. [center] Kinect depth image. [right] Dense
optical flow computed between this previous frame and this frame.

5.3.4 Object Recognition

The activity tree is built when there are changes Hs for each hand (left and

right), and the terminals are the objects (if any) on each hand when Hs changes.

Using the results of the predicted hand locations and states described in the previous

section, we crop out a rectangular region slightly larger than the hand point cloud

size to obtain an intensity image of the potential objects/tools should Hs = occ

(Fig. 5.5). We also extract the cropped region whenever a merge event starts or

ends.

We extract Histogram of Gradient (HoG) features from the cropped image

from which an object classifier is then used to predict the object label. Classifiers

67

Figure 5.5: Merging occupied hand pointclouds with intensity image for object
recognition.

68

for each object/tool class are trained over a separate training set of labeled data

using a degree three polynomial SVM. We select the object labels from the classifier

that gives the highest response for the case when Hs = occ. Due to the large

amounts of occlusions when a merge event occurs, we select from the top N = 4

detection responses the most consistent object label from the previous frames (since

it is unlikely that an object label changes when a merge occurs).

Visual filters can also be used to predict object labels, but one difficulty in

using any scene classification technique for this kind of task is the small size of the

objects of interest in proportion to the background. Such labels can be difficult to

learn.

5.3.5 Building the Activity Tree

The previous steps tell us what objects or tools are grasped by each hand at

each frame of the recording, and when objects are brought together and begin to

be treated as a single object (a merge event). This provides enough information to

build the activity tree, as shown in Fig. 5.6. The parser creates a new leaf node

whenever one of the actor’s hands (or tools held in the hands) come into contact

with a new object. These nodes keep track of the time the object was first and

last seen, and what the object was recognized as (using the HoG object recognition

described in sec. 5.3.4.) If these objects are brought together, a new node is created

with each of the original object nodes as children. This process gradually builds up

tree structures.

69

Figure 5.6: Creating an Activity Tree: (Left) Events and objects detected from
SR4000 intensity images. (Right) Formation of an activity tree that parallels the
events and objects occurrence, based on the defined action grammar.

70

Detecting when objects are brought together is not a foolproof method of

recognizing when the objects begin to be treated as one combined object. One may,

for instance, pick up two unrelated objects in one hand just to clear away a working

space. In videos where this kind of event happens frequently, a better means of

recognizing a significant, meaningful contact would be needed, or a better way of

tracking where the objects ended up during a merge event.

To build a robust system, it would be useful to have several examples of each

activity one wanted to recognize, and measure whether the activity tree from an

unknown activity fell into this cluster.

There are many ways to perform any object manipulation activity. Certain

aspects proved to be highly variable. Objects were frequently handled, set down,

and picked up again, or passed from one hand to another, in an irregular way. A

cutting action might be followed by a second cutting action if the results of the first

cut were deemed unacceptable. The order of some of the actions differed from one

trial to another.

Certain aspects of the activities however, were much more consistent. In order

to correctly perform the tasks, certain objects needed to come together and not

be separated again before the end of the activity. In the Sewing a Toy activity, for

example, the pieces of felt needed to be joined together with the thread. Recognizing

these critical merge events is crucial for understanding the activities.

71

5.4 Tree Edit Distance

An action grammar produces a grammatical tree structure representing the

activity. Subtrees of this tree can be considered as subactions of the activity as a

whole. The leaves of the tree are primitive actions. These activity trees will typi-

cally be noisy: missing subactions, including spurious ones, or mislabeling objects

involved in the activity. Because of this noise and natural variability in the way

activities are performed, comparing trees must be done in such a way that trees

that are merely similar (not necessarily identical) can be matched. This is done

with the Tree Edit Distance.

The Tree Edit Distance was introduced in [58]. The tree edit distance be-

tween two ordered, labeled trees is the minimal-cost sequence of edit operations

that transforms one tree into the other. These operations are: 1. deleting a node

and connecting its children to its parent, 2. inserting a node between a parent and

a subsequence of its children, and 3. renaming the label of a node.

There have been several improvements in the time and space complexity of the

algorithm in [59] [60] [61], so that the current best algorithm takes between Ω(m2n)

and Ω(m2n2) operations where m and n are the number of nodes in the trees being

compared. For the small sizes of tree that are generated by action grammars, this

comparison can be done very quickly.

Using the tree edit distance is critical for discriminating situations where the

same objects are used in different ways. For example, if one were to put drafting

instruments into a case to bring to school, the tree would consist of each instrument

72

Figure 5.7: A complex interleaved sequence Making Card + Assemble a Machine
can be cleanly separated into its component activity trees using the action grammar.

being merged with the case one by one. However, if one were to use the instruments

for drafting, a more complex tree would be created, where the triangle is used with

the pencil and paper, then moved out of the way, and so forth. Forming activity

trees allows us to capture the structure of this interaction.

5.4.1 Separating Interleaved Activities

In many cases, an activity is an uninterrupted sequence of related events. In

this case, segmenting the activity in a recording means simply finding the begin-

ning and end point of the activity. However, there may be interruptions, in which

the actor is trying to deal with more than one goal simultaneously. This results

in actions that are mixed together. By parsing these actions, we are able to get

a fine grained segmentation of the recording, identifying which actions belong to

each activity, even when they are thoroughly mixed. To demonstrate this, several

activities in the Complex Activity Dataset contain interleaved actions of different

activities combined together. For example, the actor was asked to perform a cutting

and pasting task (Making Card) and the Assemble a Machine task, interleaving the

73

actions for each activity. Because the activities involved separate objects, we were

able to use the grammar to successfully separate out the actions for each task. This

is shown in Fig. 5.7. As we will see in the experiments (sec. 5.5.3), the strength of

this approach is highlighted when we are able to recognize such complex interleaved

activities much better than a simpler approach when no action grammar is imposed.

5.5 Experiments

We report the results of two experiments that evaluate the performance of

the action grammar in recognizing complex manipulation activities. We first derive

theoretical bounds of the expected performance by inducing artificial noise in the

terminals (sec. 5.5.2) and then evaluate the performance of recognizing activity trees

over real data from the Kinect+SR4000 Complex Activity Dataset (sec. 5.5.3).

5.5.1 Experimental Procedure

For the experiment that explores the theoretical performance of the action

grammar, we manually induced corruption in the input terminals of each activity

tree from the Complex Activity Dataset in 2 ways: 1) by sampling from a uniform

distribution of all possible object labels considered (except the ground truth) and 2)

by consistently selecting the object labels from only one but a different activity tree

for each associated object: e.g, if the activity was Card Marking, we will replace

object labels consistently from another activity such as Cooking Vegetables. We

considered corruption of the input ranging from 10% (almost correct) to 90% (almost

74

all wrong) and report the accuracy scores in interpreting the activity using the

corrupted activity tree using the following procedure: for each level of corruption,

we compute the edit distances for each tree, and take the ground truth identity of

the smallest edit distance. We then count how many trees are correctly matched

and report the accuracy score per level.

The next experiment evaluates the action grammar over 12 activities from the

Complex Activity Dataset. In this part, we used a leave-one-out training procedure

to train the object classifiers—for each test sequence, the remaining 11 sequences

were used for training. Note that 4 sequences involving Sewing and Assembling a

Machine are left out of the evaluation due to the fact that the object recognition

simply failed as the objects of interests: pins, bolts, etc. are too small5. We then

report the normalized tree edit distances of the resulting activity trees when they are

compared with the ground truth, together with the amount of terminal corruption

per sequence. As a comparison to highlight the contribution of the action grammar

in building the activity tree, we also report the activity recognition performance

when only the terminals are used to build a degenerate tree of depth 1 only (a

flattened tree).

5.5.2 Results over Artificial Noisy Data

The accuracy scores over increasing degree of terminal corruption are summa-

rized in Fig. 5.8.

5the specific sequences used and left out can be found at http://www.umiacs.umd.edu/research/
POETICON/umd complex activities/

75

http://www.umiacs.umd.edu/research/POETICON/umd_complex_activities/
http://www.umiacs.umd.edu/research/POETICON/umd_complex_activities/

Figure 5.8: Accuracy scores with varying degrees of terminal corruption: 1) Ran-
domly replaced object labels (red solid line) and 2) Replaced object labels consis-
tently from another (incorrect) tree (blue dotted line).

The activity trees are robust enough to handle the fact that no object detection

method is completely accurate. In an attempt to characterize the behavior of tree

matching in the presence of noise, we considered two possible causes of terminal

corruption as described in the previous section. In the first case where the missed

detections are completely random (the red solid line), the trees perform fairly well,

accurately matching the true tree to the partially mislabeled tree in all cases until

40% of the labels have been replaced. In the second case (the blue dotted line),

all the incorrect labels come from a single incorrect tree and so are consistent with

each other. In this worst case scenario, the performance does worse, and errors in

recognition show up when 20% of the labels are incorrect.

76

5.5.3 Results over Complex Activity Dataset

We summarize the matching performance for the 12 test activity trees in

Fig. 5.9 and compare it against the baseline method of using terminals alone (Fig. 5.10).

In order to measure how well the activity trees could be used for activity

recognition in real data, we computed the tree edit distance between each test

tree and the ground truth for each of the activities. Each activity comes as a

set containing at least 2 similar sequences. For example, Card Making has two

sequences: Card(1) and Card(2), performed by 2 different actors which introduces

a small amount of variation within each activity set itself. In the confusion matrix

above, the blocks of low edit distances along the diagonal for each activity set and

higher distances elsewhere indicate that the activity trees are finding fairly good

matches among the correct set of activities (Fig. 5.9 (above)). This performance is

achieved in spite of the high levels of corruption in the terminals (Fig. 5.9 (below))

of between 36% to 62% that are sufficient to degrade performance (shown in the

first experiments), which is indicative of the robustness of the approach in noisy real

data.

By way of comparison, we flattened the trees so that all the nodes were at the

same level (depth 1) and repeated the same experiment (Fig. 5.10). This effectively

eliminates the effect of using the action grammar. In this case, the diagonal struc-

ture is much less evident, highlighting that the absence of the tree structure derived

from the action grammar greatly reduces the ability of the system to find the right

matches. This is especially true for activity sets that contains complex interleaved

77

Activity Label Corruption Label Corruption
Card Making Card(1) 0.48 Card(2) 0.49
Card Making + As-
semble Machine

Card + Assbly(1) 0.55 Card + Assbly(2) 0.48

Making Sandwich SandW(1) 0.55 SandW(2) 0.36

Cooking Vegetables
Veg(1) 0.42 Veg(2) 0.62
Veg(3) 0.54 Veg(4) 0.47

Cutting Applesa Apple(1) 0.55 Apple(2) 0.42

aA subset of the Cooking Vegetables activities

Figure 5.9: (Above) Confusion matrix of normalized tree edit distances for each of
the 12 test sequences. Lower values along the diagonals are better. Boxes indicate
the diagonal blocks of interest for each set. (Below) Amount of corrupted terminals
[0, 1] per testing sequence. A value closer to 1 means more corruption.

78

Figure 5.10: Confusion matrix of normalized tree edit distances when terminals are
used alone. Lower values along the diagonals are better. Boxes indicate the diagonal
blocks of interest for each set.

79

activities such as Card Making + Assemble a Machine and Cooking Vegetables. As

was explained in sec. 5.4.1 and illustrated in Fig. 5.7, the ability of the action gram-

mar in disambiguating complex interleaved activities is shown by the fact that the

block diagonals for such activities display lowered performance when flattened trees

are used (the tree edit distances are much higher within each block) compared to

the ones when the full action grammar is used in the previous experiment (Fig. 5.9).

5.5.4 Results on Assembly/Disassembly Task

In order to test the more advanced action grammar, we created a new dataset

consisting of the assembly and disassembly of a toy truck. We chose this subject

because it included the use of a variety of tools, all the components were large

enough to see (normal screws and nails are too small to be detected by the Kinect

sensor), and the assembly could take place entirely on a table surface, in view of the

sensor. Future depth sensors with higher resolution over a wider area will hopefully

remove some of these restrictions for more practical tasks.

A rectified pointcloud image from this dataset can be seen in figure 5.11. The

system was able to distinguish which steps were “assembly” type actions, where

objects were merging together, and “disassembly” actions, where objects were split-

ting apart, with 82% accuracy. Most errors were due to treating a region of nearly

touching screws as a single object, which then split into a pile and a single screw.

It is not at all clear that this should even be treated as an error.

80

0

50

100

150

200

250

300

350

400

450

500

550

0

50

100

150

200

250

300

350

400

0

50

 0

 25.5

 51

 76.5

 102

 128

 153

 179

 204

 230

 255

Figure 5.11: Pointcloud from Kinect sensor. This was converted to a 3-D cell
occupancy map, cleaned up using 3D morphology techniques, and regions extracted.
These regions were then tracked using a Kalman filter capable of handling splits and
merges of tracks.

5.6 Conclusion and Future Work

Using a grammar of action to build activity trees appears to be a practical way

to begin to parse complex activities. We are considering many possibilities for how

to build on the current work. The grammar described here could easily be extended

to include more specific patterns to be matched, creating a richer grammar that

provides immediate information about actions and subactions. More traditional

action recognition techniques could also be incorporated. For example, when a

tool touches an object, we could determine whether the tool is actually performing

its function on the object and transforming it, or just coming into contact with it.

Object recognition could be improved by feedback from the tree structure, increasing

the probability of detection for an object consistent with the rest of the tree. The

81

activity trees could also be used by a robot to emulate activities it has seen performed

previously by humans, or even generated based on goals the robot is trying to attain.

82

Chapter 6: The Cyc Knowledge Base

6.1 History of the Cyc Project

Cyc (pronounced ‘sike,’ from ‘Encyclopedia’) is a project designed to provide

common-sense knowledge to computer applications. It was begun in 1984 by AI

researcher Douglas Lenat. His intention was to create an enormous knowledge base

containing “the millions of everyday terms, concepts, facts, and rules of thumb

that comprise human consensus reality.” [103] Over 1000 person-years have gone

into creating the software and entering the assertions that make up Cyc. [104] The

current release includes 239,000 terms and over two million sentences relating these

terms.

The original Cyc system is proprietary. In 2002, an open version of Cyc

containing (at present) the inference engine, the concepts, and generalization links

between them was released. However, without the assertions relating these concepts

to one another in other ways, this skeletal version of Cyc is of limited usefulness. In

2006, ReasearchCyc, containing the full Cyc system (except for some of the natural

language understanding components) was made available to universities wishing to

explore the potential uses of the project. ResearchCyc is the version used for this

work.

83

6.2 About Cyc

Cyc constants (including relations or predicates, attribute values, and in-

stances and collections) are created in a representation language called CycL. Sen-

tences in CycL relate these constants to one another, and can include any number

of variables. (A query attempts to find bindings to the variables which make the

sentence true.) CycL’s grammar is Lisp-like, generally with a (predicate subject ob-

ject) format, though there are also other arity predicates. Interaction with Cyc (for

example commands like ASK and ASSERT) is handled through SubL, a subset of

Lisp that is easy to implement in languages like C. There is also a Java API which

maps closely onto parts of SubL, and a browser interface that allows easy access to

these tools.

The Cyc inference engine handles modus ponens and modus tollens inferencing.

It has some limited mathematical inferencing capability. Universal and existential

quantification are handled through a strict separation between collections and in-

stances, handled by the genls (generalization) and isa predicates. Special-purpose

inference modules handle some of the most common situations, such as transitivity

or reflexivity, in order to speed up performance. Various heuristics are used to guide

the search to come up with answers to queries quickly.

Assertions in Cyc may be monotonically or default true (or monotonically or

default false). Monotonically true statements that contradict other monotonically

true statements generate an error when they are asserted, preventing the asser-

tion. Default true statements, on the other hand, may contradict one another, and

84

various heuristics are used to determine how to resolve the truth value. Every as-

sertion records its support, either a particular user who entered the assertion or the

automatic extraction (for example, from Wikipedia) that created it.

Context is handled mainly through the use of microtheories. Each assertion

is contained within one or more microtheories. By limiting a query to a particular

microtheory, assertions in other microtheories are ignored. For example, each time

my system observes a new image, facts about that image are asserted in their own

microtheory. This prevents facts from one image from polluting the reasoning about

another image. Microtheories are arranged in a directed acyclic graph, so that one

microtheory can include a set of microtheories that fall under it.

The Cyc system has failed to find wide acceptance to date for a variety of

reasons. Some of the design decisions, such as building the system in a variant of

Lisp, awkward handling of context, and little support for probabilistic reasoning,

are quite different from how a similar system might be built if it were started today

(compare to ConceptNet). For years the memory, processing speed, and disk space

of personal computers was too small to be able to make use of Cyc, though this is

no longer really much of an issue for many applications on 64-bit machines. (Most

queries that I have tried come up with a list of answers in less than one minute.)

The idea of deliberately crafting such a large edifice by hand by trained employees

is very different from the automatic learning approaches currently in favor. The

coverage of facts is uneven and eclectic. While a complete system would be very

useful, a system with gaps is simply frustrating. Because there are multiple ways

to encode knowledge, finding the right way to ask the question requires some explo-

85

ration. Because any rule can potentially interact with any other rule, adding to the

knowledge base safely can be tricky.

6.3 How Cyc is used in this project

When the system is supplied with a video, it runs scene parsing, material

parsing, and activity recognition on the frames of the video. The results of the scene

and material parsing are divided into contiguous regions using image morphology

techniques. This generates a list of objects in the scene (each region is assumed to

contain one or more objects from the detected class) a list of materials, and a list

of detected activities (along with their subtrees). These descriptive labels for the

scene allow the software to make certain assertions in a Cyc microtheory created

especially for the dataset currently being analyzed. It can assert that an object

from each of the detected classes is present in the scene, and some rudimentary

spatial relationships between objects, such as that one object is above another or

that from the perspective of the camera an object is to the left or right of another

object. Assertions are made regarding the material of parts of objects, and about

the presence of a camera at the scene to capture the image and the existence and

properties of the digital image.

Additional assertions are made relating how classes tend to interact in image

space. For example, if a physical object of some kind is mostly above and adjacent to

a horizontal planar object (the ground, a floor, any type of terrain), we can assume

that the object is resting on the surface (unless the object is currently airborne).

86

When a class is defined as ‘automobile,’ for example, Cyc knows that an automobile

is a physical object, and so is able to infer, using this rule, that the automobile is

resting on the object classified as ‘road’. Assertions are made about the relative

position of the sky, a class that is nearly universally present in outdoor scenes.

These assertions exist within the context of hundreds of thousands of related

assertions. The ability to make inferences using this information allows the system

to answer a wide variety of queries about the image. For example, for many classes,

the physical parts of the object are defined. So queries relating to these parts can

be answered, even though these parts have no detectors defined for them. The user

can also ask for the names of potential objects whose parts are in the scene, or for

all objects typically made of some material in the scene.

Cyc has large gaps in its knowledge, but from our understanding of meta-

information about the dataset and the types of scenes it represents, we can define

assertions filling in some of these gaps at the time the labelled training images are

created. Because these statements are defined in terms of the world as a whole, they

extend the abilities of Cyc and improve results on future queries.

6.3.1 Improving Material Labeling Using Object Labeling (and vice

versa)

When the object and material detectors are run on evaluation images, statistics

are collected on how often each pair of object/material labelings occurred and what

the true label was in each instance. Using these statistics, given an object labeling

87

and a material labeling for a scene, the system builds a map that has defined for

each region the probability of each object/material pairing. However, certain object

material pairings may never come up in the training samples. In this case, we rely

on prior knowledge about what materials objects are made of stored within Cyc to

fill in those probabilities. If we assume the information in Cyc is 100% true, this

drives the probability in odd cases such as the same region being labelled ‘metal’

and ‘tree’ to the two possibilities that either the object is made of metal, or it is a

tree, but not both.

Figure 6.1: [left]original image. [center left] object class labeling(lawn, road, trees,
car, sky). [center right] material labeling (rubber, metal, grass, gravel, foliage, sky,
glass). The regions labeled in black are incompatible between the material and
object labelings. At least one of the labelings must be incorrect in these areas. Note
that this cannot catch errors such as the rear tire being labeled as metal rather than
rubber, because some parts of a car are metal.

6.3.2 Ambiguous Labels

The material and object parsing step returns probability maps for each class

for the image. Most of the time, these maps are close to 100% or 0%. When

two classes both have substantial probability (both are between 25% and 75%) the

system cannot confidently assign any of the labels. In this case, one possibility would

be to assign no label to this region, reflecting our uncertainty. Another possibility is

to assign a label which would be correct if either label happens to be correct. This

88

can be done by finding a class which includes both of those labels as subclasses. Of

course, assigning the label ‘thing’ to everything in the scene would be technically

correct1 but unhelpful. Instead, the system assigns the nearest superclass—a class

which is a superclass of both labels but has no subclasses which fit that definition.

For example, a slightly unfocused green region which is ambiguously labeled ‘foliage’

and ‘grass’ would be re-labelled ‘plant matter.’ This allows us to conclude certain

facts about the region (that it contains living things, that it is not manmade, etc...)

despite our uncertainty about the label.

6.3.3 Answering Queries

Based on the information in these assertions and the rest of the Cyc database,

the system can answer queries regarding the scene. These queries must be asked

in CycL, a formal Lisp-like language.2 However, the results can be automatically

translated into (somewhat stilted) English using templates that are defined for most

Cyc terms. In addition, the steps of justification are also given in English. In

Chapter 7, English queries, their CycL equivalent, the automatic translation of the

CycL query, the answers, and some justification are listed for example queries.

6.3.4 Image Translation

Using the knowledge about the scene stored as Cyc assertions, we can try to

reconstruct a simplified representation of the original image. This is discussed in

1The best kind of correct.
2Internal research at Cycorp has been done on automatically translating between English and

CycL, but this is not yet possible for general queries.

89

chapter 8.

6.4 Conclusion and Future Work

One interesting area not explored in this work is supplementing the world

knowledge in Cyc with information observed about the world (rather than just

adding knowledge about a particular scene.) If we trust our detector more than we

trust the information currently in Cyc, this could be used to modify or supplement

the Cyc statements in the overall model of the world, which is reused in analyzing fu-

ture scenes. (Currently, all assertions made about a scene are made in a microtheory

which is unable to effect anything outside the microtheory.) Tentative statements

about the relationship of objects and materials not yet in Cyc could also be derived

from the label or even the test images, and be used to help in future problems.

Modifying general statements about the world in Cyc based on the limited parts of

the world seen in particular datasets is problematic, however—it may be that all of

our data comes from a the United States, and doesn’t apply to other countries, or

any number of other differences in context. Finding ways to do this safely (i.e. not

introducing false statements which could pollute the truth of any future conclusion)

and effectively is an interesting area to explore. Ultimately, one would like to be

able to use machine learning techniques to build up a world model similar to that

contained in Cyc from scratch.

90

lawn road tree car sky

rubber .024 .720 .024 .016 .016
metal .018
grass .027
gravel .002 .072 .002 .001 .001
foliage .027
sky .018
glass .009

lawn road tree car sky
rubber X

metal X
grass X
gravel X
foliage X
sky X
glass X

lawn road tree car sky
rubber .176

metal .004
grass .010
gravel .791
foliage .010
sky .002
glass .002

Table 6.1: Using information from Cyc about what materials objects are made of,
the number of possible pairings of object and material are limited. Of the possible
pairings, we can act as if the material and object probabilities are independent and
choose the label with the highest calculated probability. The calculation shown is
for a pixel in the shadow of the front tire in the image above. Originally [top],
it is misclassified as ‘rubber road.’ When impossible pairings are eliminated using
the information from Cyc [center] the correct label [bottom] ‘gravel road’ is found.
(Values smaller than .001 are omitted for clarity.)

91

Chapter 7: Answering Queries

The following are examples of CycL assertions automatically made by the

system when presented with images, and the replies to selected queries about the

observed scene. The overall process of labeling videos with visual filters, material

segmentation, and action grammars and making assertions in Cyc based on these

observations is explained in the previous chapter.

The system as a whole was applied to a short instructional video (found online)

of how to replace a tire. The video was chosen because it was in high definition,

from a single camera, and showed an activity that included both assembly and

disassembly subtasks. Training labels were made on five frames of the video and

applied to each frame of the video. Because the camera never changes direction and

the scene is a simple one, this allowed very high pixel labeling accuracy over the full

video. Lacking depth data, we had no way of reliably detecting object “merge” and

“split” events, so this information was supplied by hand.

Cyc already contained a detailed breakdown of the steps of changing a tire.

By matching objects involved in the steps of the script to subtrees of the activity

tree, the system was able to associate the two representations and recognize that

the video as a whole contained a tire-changing activity.1

1It should be noted, however, that this coincidentally happened to be a well-developed area

92

This only touches on the possibilities of such a system. I carefully refrained

from adding new information about the world specific to the dataset on which I

performed the queries, only making assertions that can be made for any image. I did

this to keep from answering the very questions I wanted to ask, which would make the

test less meaningful. Realistically, however, at the same time one created training

labels for a particular dataset, one could also assert a great deal of information

about that dataset, putting it into context. These assertions would also be able to

interact with the specific assertions about detected classes, enabling response to a

wider range of queries. Cyc at present has little notion of relative positions. It is

impossible to assert in Cyc that “the man is in front of the car from the viewpoint of

the camera.” One future task I would like to work on is to create a program to take

a map and automatically generate Cyc assertions that capture this information.

X and Y stand for each pair of detected objects in the scene. They have been

arranged as tables presented horizontally to make them easier to read and interpret.

When Cyc performs an inference, it can tell the steps of reasoning by which it

came to a conclusion. These statements in CycL are automatically translated into

English. The assertions and queries, also written in CycL, are also automatically

translated into English.

The following was the description of events in changing a tire I was attempting

to match. Detecting action motions such as wrenching, pushing and pulling were

not attempted.

of Cyc’s knowledge, and that few activities are represented within Cyc to this level of detail at
present.

93

• A. hand touches wrench
• B. wrench touches (lugnut + wheel + car)
• C. (wrenching action occurs)
• D. wrench is removed from (lugnut + wheel + car)
• E. hand separates from wrench
• F. hand touches (lugnut + wheel + car)
• G. lugnut separates from (wheel + car)
• H. hand separates from lugnut
• I. hand touches (wheel + car)
• J. (pulling action occurs)
• K. wheel is removed from car
• L. hand separates from wheel
• M. hand touches sparewheel
• N. (pushing action occurs)
• O. sparewheel is attached to car
• P. hand separates from sparewheel
• Q. hand touches lugnut
• R. (screwing action occurs)
• S. lugnut is attached to (sparewheel + car)
• T. hand separates from lugnut
• U. hand touches wrench
• V. wrench touches (lugnut + sparewheel + car)
• W. (wrenching action occurs)
• X. wrench separates from (lugnut + sparewheel + car)
• Y. wrench separates from hand

The rules refer to the following description of the action grammar:
1. When an object is touched (either directly by a hand or by a tool being
used by the hand), a new node is created.
2. When an object transforms from A to B, a new node labeled B is created
and attached as a subtree to node A.
3. When multiple objects (A,B) combine into one object A+B, a new node
labeled A+B is created the subtrees associated with A and B are attached
(as subtrees) to A+B.
4. When one object A+B separates into multiple objects (A,B), new nodes
A and B are created and attached as subtrees to the node A+B.
5. In addition to the above, a new node can be created for an object
already used in the activity, if it is being used as part of a new assembly
or disassembly.

Figure 7.1: A frame from the ‘changing a car tire’ video.

wrench lug_nut + wheel + car

wrench + lug_nut + wheel + car

wrench lug_nut + wheel + car

lug_nut wheel + car

wrench + lug_nut + wheel + car

wrench lug_nut + wheel + car

lug_nut wheel + car

wheel car

wrench

wrench + lug_nut + wheel + car

Figure 7.2: The activity tree for changing a car tire. Assembly nodes are colored
green, and disassembly nodes are colored yellow. Recognizable actions (such as the
wrenching action in C) can be used as further labels to make tree recognition more
robust. Nodes involving the hands have been left out of the diagrams for clarity.

In
te

n
d
ed

E
n
gl

is
h

m
ea

n
in

g
C

y
cL

A
u
to

.
tr

an
sl

at
io

n
fr

om
C

y
cL

T
h
er

e
is

a
sc

en
e

ca
ll
ed

S
ce

n
e0

01
.

(i
sa

S
ce

n
e0

01
E

n
v
ir

on
m

en
t-

G
en

er
ic

)
S
ce

n
e0

01
is

an
en

v
ir

on
m

en
t.

X
is

in
sc

en
e0

01
.

(o
b

je
ct

F
ou

n
d
In

L
o
ca

ti
on

X
S
ce

n
e0

01
)

X
is

lo
ca

te
d

in
S
ce

n
e0

01
.

X
is

n
ea

r
Y

.
(n

ea
r

X
Y

)
X

is
n
ea

r
Y

.

X
is

n
ex

t
to

Y
.

(a
d
ja

ce
n
tT

o
X

Y
)

X
is

ad
ja

ce
n
t

to
Y

.

If
X

is
a

so
li
d

p
h
y
si

ca
l

ob
je

ct
,

th
en

u
n
le

ss
th

e
ob

je
ct

is
fl
oa

ti
n
g

in
th

e
ai

r,
th

e
fo

ll
ow

in
g

ca
n

b
e

d
et

er
m

in
ed

b
y

th
e

re
la

ti
ve

lo
ca

ti
on

s
of

th
e

b
as

es
of

ob
je

ct
s.

T
h
e

as
su

m
p
ti

on
is

m
ad

e
th

at
th

e
ca

m
er

a
is

le
ve

l
w

it
h

th
e

gr
ou

n
d

an
d

n
ot

re
st

in
g

on
th

e
gr

ou
n
d
.

If
X

is
a

so
li
d

p
h
y
si

ca
l

ob
je

ct
,

X
is

(a
b

ov
e

or
b

eh
in

d
)

Y
.

(i
m

p
li
es

(i
sa

X
L

an
d
m

ar
k
-U

n
d
er

sp
ec

ifi
ed

)
(o

r
(a

b
ov

e-
G

en
er

al
ly

X
Y

)
(b

eh
in

d
-

G
en

er
al

ly
X

Y
))

))

If
X

is
la

n
d
m

ar
k

u
n
d
er

sp
ec

ifi
ed

,
th

en
it

is
ei

th
er

ab
ov

e
Y

or
it

is
b

eh
in

d
Y

.

If
X

is
a

so
li
d

p
h
y
si

ca
l

ob
je

ct
,

X
is

(b
el

ow
or

in
fr

on
t)

of
Y

.
(i

m
p
li
es

(i
sa

X
L

an
d
m

ar
k
-U

n
d
er

sp
ec

ifi
ed

)
(o

r
(b

el
ow

-G
en

er
al

ly
X

Y
)

(i
n
F

ro
n
tO

f-
G

en
er

al
ly

X
Y

))
))

If
X

is
la

n
d
m

ar
k

u
n
d
er

sp
ec

ifi
ed

,
th

en
it

is
ei

th
er

b
el

ow
Y

or
it

is
in

fr
on

t
of

Y
.

T
h
er

e
is

a
ca

m
er

a
ca

ll
ed

C
am

er
a0

01
.

(i
sa

C
am

er
a0

01
D

ig
it

al
C

am
er

a)
C

am
er

a0
01

is
a

d
ig

it
al

ca
m

er
a.

C
am

er
a0

01
is

at
th

e
sc

en
e.

(o
b

je
ct

F
ou

n
d
In

L
o
ca

ti
on

C
am

er
a0

01
S
ce

n
e0

01
)

C
am

er
a0

01
is

lo
ca

te
d

in
S
ce

n
e0

01
.

X
is

in
fr

on
t

of
C

am
er

a0
01

.
(i

n
F

ro
n
tO

f-
G

en
er

al
ly

X
C

am
er

a0
01

)
X

is
in

fr
on

t
of

C
am

er
a0

01
.

T
h
er

e
is

a
d
ig

it
al

im
ag

e
fi
le

ca
ll
ed

P
h
ot

o0
01

.
(i

sa
P

h
ot

o0
01

D
ig

it
al

P
h
ot

og
ra

p
h
-F

il
e)

P
h
ot

o0
01

is
a

d
ig

it
al

p
h
ot

og
ra

p
h
.

P
h
ot

o0
01

is
a

re
co

rd
ed

d
ig

it
al

im
ag

e.
(i

sa
P

h
ot

o0
01

R
ec

or
d
ed

V
is

u
al

Im
ag

e)
P

h
ot

o0
01

is
a

re
co

rd
ed

d
ig

it
al

im
ag

e.

T
h
e

sc
en

e
is

in
P

h
ot

o0
01

.
(v

is
u
al

ly
D

ep
ic

ts
P

h
ot

o0
01

S
ce

n
e0

01
)

P
h
ot

o0
01

v
is

u
al

ly
d
ep

ic
ts

S
ce

n
e0

01
.

C
ol

or
00

1
is

a
co

lo
r.

(i
sa

C
ol

or
00

1
C

ol
or

)
C

ol
or

00
1

is
a

co
lo

r.

C
ol

or
00

1
h
as

re
d

va
lu

e
Z

1.
(c

ol
or

H
as

R
G

B
R

ed
V

al
u
e

C
ol

or
00

1
Z

1)
co

lo
rH

as
R

G
B

R
ed

V
al

u
e

h
ol

d
s

of
C

ol
or

00
1

an
d

Z
.

co
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e

C
on

ti
n
u
ed

fr
om

p
re
v
io
u
s
p
ag

e

In
te

n
d
ed

E
n
gl

is
h

m
ea

n
in

g
C

y
cL

A
u
to

.
tr

an
sl

at
io

n
fr

om
C

y
cL

C
ol

or
00

1
h
as

gr
ee

n
va

lu
e

Z
2.

(c
ol

or
H

as
R

G
B

G
re

en
V

al
u
e

C
ol

or
00

1
Z

2)
co

lo
rH

as
R

G
B

G
re

en
V

al
u
e

h
ol

d
s

of
C

ol
or

00
1

an
d

Z
.

C
ol

or
00

1
h
as

b
lu

e
va

lu
e

Z
3.

(c
ol

or
H

as
R

G
B

B
lu

eV
al

u
e

C
ol

or
00

1
Z

3)
co

lo
rH

as
R

G
B

B
lu

eV
al

u
e

h
ol

d
s

of
C

ol
or

00
1

an
d

Z
.

A
co

lo
r

of
X

ap
p

ea
rs

to
b

e
C

ol
or

00
1.

(s
ig

n
ifi

ca
n
tC

ol
or

O
fO

b
je

ct
X

C
ol

or
00

1)
X

h
as

C
ol

or
00

1
as

a
si

gn
ifi

ca
n
t

co
lo

r.

X
h
as

a
p
h
y
si

ca
l

p
ar

t
m

ad
e

of
m

at
er

ia
l

W
.

W
h
at

to
ol

s
w

er
e

u
se

d
in

th
e

m
ov

ie
an

d
w

h
at

w
er

e
th

ey
u
se

d
fo

r?

Q
u
e
st

io
n

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(s
it

T
y
p

eR
eq

u
ir

es
R

ol
eP

la
ye

rO
fT

y
p

eI
n
S
u
b
S
it

T
y
p

e
C

h
an

gi
n
gA

-
n
A

u
to

m
ob

il
eT

ir
eS

cr
ip

t
?Y

?X
?Z

)
W

h
at

va
lu

es
of

Y
,

X
,

an
d

Z
ar

e
th

er
e

su
ch

th
at

ev
er

y
ch

an
gi

n
g

an
au

to
m

ob
il
e

ti
re

sc
ri

p
t

h
as

an
in

st
an

ce
of

Z
as

a
su

b
-e

ve
n
t

in
w

h
ic

h
so

m
e

Y
p
la

y
s

th
e

ro
le

X
?

A
n
sw

e
rs

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

d
ev

ic
eU

se
d

T
ir

eI
ro

n
(R

em
ov

al
F

n
L

u
gN

u
t)

E
ve

ry
ch

an
gi

n
g

an
au

to
m

ob
il
e

ti
re

sc
ri

p
t

h
as

a
lu

g
n
u
t

re
-

m
ov

al
as

a
su

b
-e

ve
n
t

in
w

h
ic

h
so

m
e

ti
re

ir
on

p
la

y
s

th
e

ro
le

d
ev

ic
e

u
se

d
.

su
p
p

or
ti

n
gO

b
je

ct
(S

u
p
p

or
ti

n
gF

n
A

u
to

m
ob

il
e)

J
ac

k
-

L
if

ti
n
gD

ev
ic

e
E

ve
ry

ch
an

gi
n
g

an
au

to
m

ob
il
e

ti
re

sc
ri

p
t

h
as

su
p
p

or
ti

n
g

an
au

to
m

ob
il
e

as
a

su
b
-e

ve
n
t

in
w

h
ic

h
so

m
e

ja
ck

p
la

y
s

th
e

ro
le

d
ev

ic
e

u
se

d
.

p
ro

v
id

er
O

fM
ot

iv
eF

or
ce

(S
u
b

co
ll
ec

ti
on

O
fW

it
h
R

el
at

io
n
T

o-
T

y
p

eF
n

L
ow

er
in

gA
n
O

b
je

ct
ob

je
ct

L
ow

er
ed

A
u
to

m
ob

il
e)

J
ac

k
-

L
if

ti
n
gD

ev
ic

e

E
ve

ry
ch

an
gi

n
g

an
au

to
m

ob
il
e

ti
re

sc
ri

p
t

h
as

lo
w

er
in

g
an

au
to

-
m

ob
il
e

as
a

su
b
-e

ve
n
t

in
w

h
ic

h
so

m
e

ja
ck

p
la

y
s

th
e

ro
le

d
ev

ic
e

u
se

d
.

p
ro

v
id

er
O

fM
ot

iv
eF

or
ce

(S
u
b

co
ll
ec

ti
on

O
fW

it
h
R

el
at

io
n
T

o-
T

y
p

eF
n

L
if

ti
n
gA

n
O

b
je

ct
ob

je
ct

R
ai

se
d

A
u
to

m
ob

il
e)

J
ac

k
-

L
if

ti
n
gD

ev
ic

e

E
ve

ry
ch

an
gi

n
g

an
au

to
m

ob
il
e

ti
re

sc
ri

p
t

h
as

ra
is

in
g

an
au

to
-

m
ob

il
e

as
a

su
b
-e

ve
n
t

in
w

h
ic

h
so

m
e

ja
ck

p
la

y
s

th
e

ro
le

d
ev

ic
e

u
se

d
.

W
h
at

ar
e

th
e

st
ep

s
in

vo
lv

ed
in

ch
an

gi
n
g

a
ti

re
?

Q
u
e
st

io
n

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(c
h
ar

ac
te

ri
st

ic
P

ro
p

er
S
u
b
E

ve
n
tT

y
p

es
C

h
an

gi
n
gA

n
A

u
to

m
ob

il
e-

T
ir

eS
cr

ip
t

?X
)

W
h
at

va
lu

es
of

X
ar

e
th

er
e

su
ch

th
at

al
l

ch
an

gi
n
g

an
au

to
m

o-
b
il
e

ti
re

sc
ri

p
t

h
as

X
as

a
ch

ar
ac

te
ri

st
ic

su
b
-e

ve
n
t?

A
n
sw

e
rs

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(T
ot

al
it

y
O

fS
u
b
E

ve
n
ts

O
fT

y
p

eF
n

C
h
an

gi
n
gA

n
A

u
to

m
ob

il
eT

ir
e-

S
cr

ip
t(

R
em

ov
al

F
n

L
u
gN

u
t)

)
re

m
ov

in
g

al
l

of
th

e
lu

g
n
u
ts

fr
om

th
e

ti
re

C
h
an

gi
n
gA

n
A

u
to

m
ob

il
eT

ir
e

ch
an

gi
n
g

an
au

to
m

ob
il
e

ti
re

(S
u
b

co
ll
ec

ti
on

O
fW

it
h
R

el
at

io
n
T

oT
y
p

eF
n

L
ow

er
in

gA
n
O

b
je

ct
ob

je
ct

L
ow

er
ed

A
u
to

m
ob

il
e)

lo
w

er
in

g
an

au
to

m
ob

il
e

(S
u
b

co
ll
ec

ti
on

O
fW

it
h
R

el
at

io
n
T

oT
y
p

eF
n

L
if

ti
n
gA

n
O

b
je

ct
ob

je
ct

R
ai

se
d

A
u
to

m
ob

il
e)

ra
is

in
g

an
au

to
m

ob
il
e

W
h
at

ot
h
er

p
ar

ts
of

th
e

ca
r

m
ig

h
t

n
ee

d
to

b
e

re
p
ai

re
d
?

Q
u
e
st

io
n

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(a
n
d

(p
ro

p
er

P
h
y
si

ca
lP

ar
tT

y
p

es
A

u
to

m
ob

il
e

?P
A

R
T

)(
ar

g1
G

en
l

R
ep

ai
ri

n
gF

n
?X

)(
ge

n
ls

?P
A

R
T

?X
))

W
h
at

va
lu

es
of

X
an

d
P

A
R

T
ar

e
th

er
e

su
ch

th
at

th
e

fi
rs

t
ar

-
gu

m
en

t
to

R
ep

ai
ri

n
gF

n
m

u
st

b
e

a
su

b
ty

p
e

of
X

,
P

A
R

T
is

a
su

b
ty

p
e

of
X

,
an

d
ev

er
y

ca
r

h
as

so
m

e
in

st
an

ce
of

P
A

R
T

as
a

p
ro

p
er

p
h
y
si

ca
l

p
ar

t?

A
n
sw

e
rs

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

A
u
to

m
ob

il
eH

ea
d
L

ig
h
t

au
to

m
ob

il
e

h
ea

d
li
gh

t

(5
1

ot
h
er

ac
tu

al
au

to
m

ob
il
e

p
ar

ts
,

an
d

9
st

ra
n
ge

r
an

sw
er

s
li
ke

T
op

O
fC

ar
,

L
ef

tS
id

eO
fC

ar
an

d
In

te
ri

or
O

fC
ar

)
S
a
m

p
le

J
u
st

ifi
ca

ti
o
n

(g
en

ls
A

u
to

m
ob

il
e

W
h
ee

le
d
T

ra
n
sp

or
ta

ti
on

D
ev

ic
e)

A
ca

r
is

a
ty

p
e

of
w

h
ee

le
d

ve
h
ic

le
.

(p
ro

p
er

P
h
y
si

ca
lP

ar
tT

y
p

es
W

h
ee

lA
n
d
A

x
le

A
x
le

)
E

ve
ry

w
h
ee

l
an

d
ax

le
h
as

so
m

e
ax

le
as

a
p
ro

p
er

p
h
y
si

ca
l

p
ar

t.

(p
ro

p
er

P
h
y
si

ca
lP

ar
tT

y
p

es
W

h
ee

le
d
T

ra
n
sp

or
ta

ti
on

D
ev

ic
e

W
h
ee

lA
n
d
A

x
le

)
E

ve
ry

w
h
ee

le
d

ve
h
ic

le
h
as

so
m

e
w

h
ee

l
an

d
ax

le
as

a
p
ro

p
er

p
h
y
si

ca
l

p
ar

t.

W
h
at

is
an

au
to

m
ob

il
e

u
se

d
fo

r?

Q
u
e
st

io
n

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(a
rt

if
ac

tT
y
p

eC
om

m
on

ly
U

se
d
W

it
h
S
it

T
y
p

e
A

u
to

m
ob

il
e

?X
)

W
h
at

va
lu

es
of

X
ar

e
th

er
e

su
ch

th
at

ca
rs

of
te

n
p
la

y
a

ro
le

in
X

?

A
n
sw

e
rs

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(T
ra

n
sp

or
tV

ia
F

n
A

u
to

m
ob

il
e)

tr
an

sp
or

ta
ti

on
b
y

m
ea

n
s

of
ca

rs

C
ar

B
om

b
in

g
ca

r
b

om
b
in

g

(S
u
b

co
ll
ec

ti
on

O
fW

it
h
R

el
at

io
n
T

oF
n

S
te

al
in

g
d
ev

ic
eT

y
p

eU
se

d
A

u
to

m
ob

il
e

st
ea

li
n
g

w
it

h
a

ca
r

W
h
y

is
th

e
ca

r
on

th
e

ro
ad

,
ra

th
er

th
an

th
e

gr
as

s?

Q
u
e
st

io
n

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

(c
on

ce
p
tu

al
ly

R
el

at
ed

A
u
to

m
ob

il
e

R
oa

d
w

ay
)

Is
it

tr
u
e

th
at

th
e

co
n
ce

p
t

”c
ar

”
is

co
n
ce

p
tu

al
ly

re
la

te
d

to
th

e
co

n
ce

p
t

”r
oa

d
w

ay
”?

A
n
sw

e
rs

in
C

y
cL

a
u
to

m
a
ti

ca
ll

y
tr

a
n

sl
a
te

d
fr

o
m

C
y
cL

T
ru

e
Y

es

S
a
m

p
le

J
u
st

ifi
ca

ti
o
n

(c
on

ce
p
tu

al
ly

R
el

at
ed

A
u
to

m
ob

il
e

R
oa

d
w

ay
)

T
h
e

co
n
ce

p
t

”c
ar

”
is

co
n
ce

p
tu

al
ly

re
la

te
d

to
th

e
co

n
ce

p
t

”r
oa

d
w

ay
”.

(p
ro

to
ty

p
ic

al
P

at
h
M

ed
iu

m
T

y
p

eF
or

T
ra

n
sp

or
ta

ti
on

D
ev

ic
eT

y
p

e
R

oa
d
w

ay
R

oa
d
V

eh
ic

le
)

T
h
e

ty
p
ic

al
m

ed
iu

m
fo

r
m

ov
em

en
t

b
y

m
ot

or
ve

h
ic

le
s

is
v
ia

ro
ad

w
ay

s.

(g
en

lI
n
ve

rs
e

p
ro

to
ty

p
ic

al
P

at
h
M

ed
iu

m
T

y
p

eF
or

T
ra

n
sp

or
ta

ti
on

-
D

ev
ic

eT
y
p

e
co

n
ce

p
tu

al
ly

R
el

at
ed

)
If

th
e

ty
p
ic

al
m

ed
iu

m
fo

r
m

ov
em

en
t

b
y

so
m

e
ty

p
e

of
tr

an
s-

p
or

ta
ti

on
d
ev

ic
e

is
v
ia

so
m

e
p
at

h
ty

p
e,

th
en

th
e

co
n
ce

p
t

”t
h
at

ty
p

e
of

tr
an

sp
or

ta
ti

on
d
ev

ic
e”

is
co

n
ce

p
tu

al
ly

re
la

te
d

to
th

e
co

n
ce

p
t

”t
h
at

p
at

h
ty

p
e”

.

(g
en

ls
A

u
to

m
ob

il
e

R
oa

d
V

eh
ic

le
)

A
ca

r
is

a
ty

p
e

of
m

ot
or

ve
h
ic

le
.

Chapter 8: Translation of Images from One Style to Another

8.1 Introduction

One of the tasks Bloom’s Taxonomy lists under comprehension is translation. This is

illustrated by particular educational objectives, including “translation from one level

of abstraction to another” and “translation from one symbolic form to another.” [11]

For writing, translation means representing the text in another language. It is not

clear, however, exactly what translation should mean when referring to visual media.

Is Baz Luhrmann’s film Romeo + Juliet, set in California in the 1990s, a “transla-

tion” of the original play into the new setting? Bloom gives example of translating

from a written description to an image or vice versa, but does not explicitly provide

any examples of translation from one visual medium to another. One possible an-

swer is that a translation is a rendering of the scene in a new artistic style. There

are many approaches in the computer graphics literature for ‘non-photorealistic ren-

dering’ (NPR) which take a photographic digital image and transform it into a new

painterly style, such as pen and ink, watercolor, or even stained glass. (For a good,

if slightly dated, survey of these techniques, see [99].)

All of these techniques, however, leave the proportions and projection of the repre-

sentation essentially unchanged. Evidence from studies of children’s drawings and

nave adults (untrained in making art) shows that the human process of making

images works very differently than any of these techniques. As Martin Gardner

writes, “[A] child wants...and is perhaps driven to invent, graphic equivalents for

104

those categories that occupy her thought processes; and so it becomes natural for

her to develop a formula, or prototypical schema, which can represent or stand for

the full range of instances of this category.” [100] It is only with artistic training—

education about the effects of perspective, tricks for seeing the scene as blobs of color

rather than individual objects, measuring and copying proportions—that artists are

able to reproduce images in true proportion, the way that is most easily realized by

automatic computer techniques.

Figure 8.1 shows 21 images of a particular street scene drawn by children rang-

ing from age 3 to age 13. The oldest children (one of the eight-year-olds, one of

the 10-year-olds, and both children 11 and older) attempted to capture the strong

perspective on the street by drawing converging rather than parallel edges. The

younger children’s drawings all draw the street as seen from directly above. Yet

none of them have ever seen this particular street from that perspective. Instead,

it seems like the drawing process the children are engaged in is something like the

following:

1. Look at the picture.

2. Notice and recognize the most salient objects. (This may be very different for

different observers. Johnny (age 4) apparently noticed the vehicle, the fence,

and the sidewalk, while Maggie (also age 4) noticed the two figures, the tree,

two buildings, and the sidewalk and road.)

3. Use pre-learned techniques for representing these objects, introducing only

small variations to match what is present in the scene. (For example, Elena

(age 6) draws conventional stick figures, but extends the arm of one around

the shoulder of the other to match what she believed she saw in the image.)

The younger children have learned such a technique for drawing a house but

not for a building, but use this representation because it is conceptually the

closest they have. All but one of the children age 5 or older also copied the

road markings, perhaps because they had the ability to represent them more

or less accurately.

Even in the drawings of the older children, traces of this method are still present.

In the 11 and 13-year-old drawings, attempts are made to capture the perspective

on the buildings. Yet certain angles that ought to be acute in the perspective

projection are instead drawn as right angles. It seems likely that this is due to the

fact that the artists knew these angles must be 90 degree angles because of experience

with buildings in the past, and that this knowledge informed their drawing, forcing

accuracy in other areas to be compromised as the artist tried to reconcile the two

implicit perspectives. Daniel (age 11) spontaneously commented as he was doing

the drawing that he “didn’t know how” to draw the cars from an angle.

In 1997, J. Willats performed similar experiments in which young children depicted

a scene of a die. They often did this by including all sides of the die they could

see within a single containing rectangle. He wrote, “it suggests that analogies be-

tween picture production by either photography or computer graphics and human

picture production... are grossly oversimplified.... pictures can be derived from ei-

ther object-centered descriptions or viewer-centered descriptions... the presence of

characteristic anomalies...may provide the only available evidence about the nature

of the production process.” [101]

Discussing these experiments, Fredo Durand wrote, “This might seem like a very

odd example due to the lack of skill. In fact, this is a caricatural but paradigmatic

demonstration of a very fundamental principle of depiction: Depiction is not about

projecting a scene onto a picture, it is about mapping properties in the scene to

properties in the picture. Projection happens to be a very powerful means to obtain

relevant mappings, but it is not the only one, and it is not necessarily the best

one.” [102]

8.2 Automatic Generation of Child-like Visual Representation

A simplified model of the production processes that children employ in making

drawings of a scene was easily implemented within the automated image compre-

hension framework. Using the scene parsing software, a description of the objects in

the scene and some information about their spatial relationships is stored in a mi-

crotheory in the Cyc ontology. A pre-stored schema for generating images in each of

those categories is associated with it. (In this case, it is simply a stored bitmap, but

a more realistic model would store it as a series of hand motions to create particular

shapes with strokes of the pen and the spatial relationships of those shapes.) Using

these schemas and the information about how the objects are distributed around

the image relative to each other, a child-like representation is then generated. An

example generated image and its associated input is shown in Figure 8.2.

Although it doesn’t model everything a child is doing as she creates a depiction of

a scene, it does capture one important aspect of that process. The point here is not

to create a new way of generating cute images, but to suggest a new approach to

NPR rendering that makes use of this important feature of human art. Consider

the following goals of various artists:

• A cartoonist may want to reduce the number of individuals in a crowd to

simplify the depiction.

• A painter may concentrate fine brushstrokes on the face of the focal character,

while leaving the background depicted with broad strokes.

• A painter who wants his charming landscapes to be hung above the couches

in people’s homes may leave out garbage blowing down the street and modern

automobiles present in the scene.

• A fantasy artist may wish to depict horses with wings.

Any NPR system that only considers the input image in terms of simple primitives

such as contours and regions of color would be incapable of being directly extended

to handle these kinds of problems. A system including image comprehension with

a semantic knowledge base, however, could be extended to deal with any of these

problems in a fairly straightforward way.

8.3 Conclusion and Future Work

While this system has some interesting and unique capabilities, there is still an

enormous amount of work to be done before image parsing and the knowledge base

are usable in more than a few hand-tailored situations. Scene and material parsing

have low accuracy rates on general images; they only work well when trained on one

part of a limited dataset and tested on another part of the same dataset. The action

grammar system relies on being able to accurately track the 3D position of every

object in the scene, being trained to recognize the particular objects involved in the

activity, and having seen other examples of the activity before. Cyc is missing huge

areas of knowledge about the world, is incapable of most spatial or probabilistic

reasoning, and requires learning a new language in order to query it. The image

generation technique is little more than a parody of an artist’s method.

Nevertheless, I feel this represents an architecture on which a truly useful system can

be built. The parts complement each other, and enable new ways of thinking about

what problems are even in principle solvable with existing technology. With work

on improving the scope and robustness of the components, it should be possible

to build a system along these lines that can continuously observe the world and

use those observations to build its semantic model more and more completely over

a long period of time. We will be able to interact with such a system in ways

more like we would another person rather than a tool, expecting it to be able to

act in ways consistent with an understanding of what is being asked of it. As new

methods are developed for learning the 3D structure of the world, recognizing the

function of unknown objects, for guessing the motivations of actors in the scene,

for understanding language, all of these can be added as extensions of an already

existing architecture, feeding their insights into a common pool of knowledge where

they can be combined and reused for many other purposes.

F
ig

u
re

8.
1:

D
ra

w
in

gs
b
y

21
ch

il
d
re

n
of

a
st

re
et

sc
en

e.
C

h
il
d
re

n
s’

n
am

es
an

d
ag

es
ar

e
sh

ow
n
.

S
om

e
n
am

es
h
av

e
b

ee
n

ch
an

ge
d

to
p
ro

te
ct

p
ri

va
cy

.

Figure 8.2: [right] Image generated from pre-drawn templates and certain facts
about what objects are present in the image and their spatial relationships stored
as assertions in Cyc. [left] Observed image. [center] Parsed image.

Bibliography

[1] http://machinamenta.blogspot.com/2012/08/pareidoloop.html

[2] Searle, John R. “Minds, brains, and programs.” Behavioral and brain sciences
3.3 (1980): 417-457.

[3] Jackson, Frank. ”Epiphenomenal qualia.” The Philosophical Quarterly 32.127
(1982): 127-136.

[4] Robinson, Robert B. “Classification of reservoir rocks by surface texture.”
AAPG Bulletin 50.3 (1966): 547-559.

[5] Maryland School Assessment Example. http://www.mdk12.org/assessments/k
8/items/sample grade3 reading.html

[6] Cortese, Emma E. “The application of question-answer relationship strategies
to pictures.” The Reading Teacher 57.4 (2003): 374-380.

[7] Paris, Alison H., and Scott G. Paris. “Children’s Comprehension of Narrative
Picture Books. CIERA Report.” (2001).

[8] van Kraayenoord, Christina E., and Scott G. Paris. “Story construction from
a picture book: An assessment activity for young learners.” Early Childhood
Research Quarterly 11.1 (1996): 41-61.

[9] Summers-Stay, Douglas. Machinamenta. Machinamenta Press, 2011.

[10] Krathwohl, David R. ”A revision of Bloom’s taxonomy: An overview.” Theory
into practice 41.4 (2002): 212-218.

[11] Krathwohl, David R. Taxonomy of Educational Objectives: Cognitive domain.
Vol. 1. Longmans, Green, 1956.

[12] Hertzmann, Aaron, et al. ”Image analogies.” Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM, 2001.

112

http://machinamenta.blogspot.com/2012/08/pareidoloop.html
http://www.mdk12.org/assessments/k_8/items/sample_grade3_reading.html
http://www.mdk12.org/assessments/k_8/items/sample_grade3_reading.html

[13] Turk, Matthew, and Alex Pentland. ”Eigenfaces for recognition.” Journal of
cognitive neuroscience 3.1 (1991): 71-86.

[14] Carson, Chad, et al. ”Blobworld: Image segmentation using expectation-
maximization and its application to image querying.” Pattern Analysis and
Machine Intelligence, IEEE Transactions on 24.8 (2002): 1026-1038.

[15] Fan, Jianping, Hangzai Luo, and Yuli Gao. ”Learning the semantics of images
by using unlabeled samples.” Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on. Vol. 2. IEEE, 2005.

[16] Boutell, Matthew R., Jiebo Luo, and Christopher M. Brown. ”Scene parsing
using region-based generative models.” Multimedia, IEEE Transactions on 9.1
(2007): 136-146.

[17] Liu, Ce, Jenny Yuen, and Antonio Torralba. ”Nonparametric scene parsing: La-
bel transfer via dense scene alignment.” Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.

[18] Munoz, Daniel, J. Andrew Bagnell, and Martial Hebert. ”Stacked hierarchical
labeling.” Computer VisionECCV 2010. Springer Berlin Heidelberg, 2010. 57-
70.

[19] Jiang, Jiayan, and Zhuowen Tu. ”Efficient scale space auto-context for image
segmentation and labeling.” Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009.

[20] W. Einhuser, M. Spain, and P. Perona, Objects predict fixations better than
early saliency. Journal of Vision, 8(14):18, 126, 2008

[21] Foxe, JJ and GV Simpson. Flow of Activation from V1 to frontal cortex in
humans. Experimental Brain Research, 2002.

[22] Mutch, J and DG Lowe. Multiclass object recognition with sparse, localized
features. CVPR 2006

[23] Serre, T, L. Wolf and T. Poggio. Object recognition with features inspired by
visual cortex. CVPR 2005.

[24] Miller, EK, CA Erickson and R Desimone. Neural mechanisms of visual working
memory in prefrontal cortex of the macaque. Journal of Neuroscience, 1996.

[25] Desimone, R, TD Albright and CG Gross. Stimulus s selective properties of
inferior temporal neurons in the macaque. Journal of Neuroscience, Vol 4, 1984.

[26] Weizmann Horse Database. http://www.msri.org/people/members/eranb/

http://www.msri.org/people/members/eranb/

[27] Kuettel, Daniel, and Vittorio Ferrari. ”Figure-ground segmentation by trans-
ferring window masks.” Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012.

[28] L. Bertelli, T. Yu, D. Vu, and S. Gokturk. Kernelized structural svm learning
for supervised object segmentation. In CVPR, 2011

[29] Penn-Fudan Database for Pedestrian Detection and Segmentation. http://www.
cis.upenn.edu/∼jshi/ped html/

[30] Seo, Hae Jong, and Peyman Milanfar. “Training-free, generic object detection
using locally adaptive regression kernels.” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on 32.9 (2010): 1688-1704.

[31] Action Recognition of Static Images. http://www.cs.cmu.edu/∼abhinavg/
downloads.html

[32] Berkeley Segmentation Data Set and Benchmarks 500 http://www.eecs.berkeley.
edu/Research/Projects/CS/vision/grouping/resources.html

[33] M Reisenhuber, T Poggio. “Heirarchial models of object recognition in cortex.”
Nature Neuroscience 2, 1999

[34] Brox, Thomas, et al. “Nonparametric density estimation with adaptive,
anisotropic kernels for human motion tracking.” Human MotionUnderstanding,
Modeling, Capture and Animation. Springer Berlin Heidelberg, 2007. 152-165.

[35] Summers-Stay, Douglas, and Yiannis Aloimonos. “Learning to recognize objects
in images using anisotropic nonparametric kernels.” Proc. 1st Annu. Meet. Bi-
ologically Inspired Cognitive Architectures (BICA) Society (eds Samsonovich
AV, Jhannsdttir KR, Chella A., Goertzel B., editors.) (2010): 163-168.

[36] Laws, Kenneth Ivan. Textured Image Segmentation. No. USCIPI-940. UCLA
Image Processing Inst., 1980.

[37] T. Ojala, M. Pietikinen, and D. Harwood (1994), “Performance evaluation of
texture measures with classification based on Kullback discrimination of distri-
butions”, Proceedings of the 12th IAPR International Conference on Pattern
Recognition (ICPR 1994), vol. 1, pp. 582 - 585

[38] Pietikinen, Matti. Computer vision using local binary patterns. Vol. 40.
Springer, 2011.

[39] Dror, Ron O., Edward H. Adelson, and Alan S. Willsky. “Recognition of surface
reflectance properties from a single image under unknown real-world illumina-
tion.” (2001).

http://www.cis.upenn.edu/~jshi/ped_html/
http://www.cis.upenn.edu/~jshi/ped_html/
http://www.cs.cmu.edu/~abhinavg/downloads.html
http://www.cs.cmu.edu/~abhinavg/downloads.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

[40] Liu, Ce, et al. “Exploring features in a bayesian framework for material recog-
nition.” Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on. IEEE, 2010.

[41] Hu, Diane, Liefeng Bo, and Xiaofeng Ren. “Toward robust material recognition
for everyday objects.” Proc. BMVC. 2011.

[42] Bo, Liefeng, Xiaofeng Ren, and Dieter Fox. “Kernel descriptors for visual recog-
nition.” Advances in Neural Information Processing Systems 7 (2010).

[43] X. Ren and J. Malik. “Learning a classification model for segmentation.” Proc.
9th Int. Conf. Computer Vision, volume 1, pages 10-17, 2003.

[44] Liu, Ming-Yu, et al. “Entropy rate superpixel segmentation.” Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

[45] Brodatz texture dataset. http://www.ux.uis.no/∼tranden/brodatz.html

[46] UIUC texture database. http://www-cvr.ai.uiuc.edu/ponce grp/data/

[47] Flickr material database. http://people.csail.mit.edu/celiu/CVPR2010/FMD/

[48] Y. Rubner, C. Tomasi, and L. J. Guibas. “The Earth Movers distance as a
metric for image retrieval.” Technical Report STAN-CS-TN-98-86, Department
of Computer Science, Stanford University, Sept. 1998.

[49] Pele, Ofir, and Michael Werman. “Fast and robust earth mover’s distances.”
Computer vision, 2009 IEEE 12th international conference on. IEEE, 2009.

[50] Fast Earth Mover’s Distance code. http://www.cs.huji.ac.il/∼ofirpele/FastEMD/
code/

[51] Rosenbaum, David A., et al. “The problem of serial order in behavior: Lashleys
legacy.” Human movement science 26.4 (2007): 525-554.

[52] Bauer, Patricia J. “Recalling past events: From infancy to early childhood.”
Annals of Child Development 11 (1995): 25-71.

[53] Whiten, Andrew, et al. “Imitation of hierarchical action structure by young
children.” Developmental science 9.6 (2006): 574-582.

[54] Fadiga, Luciano, et al. ”Visuomotor neurons: Ambiguity of the discharge or
motorperception?.” International journal of psychophysiology 35.2 (2000): 165-
177.

[55] Fogassi, Leonardo, et al. ”Parietal lobe: from action organization to intention
understanding.” Science 308.5722 (2005): 662-667.

http://www.ux.uis.no/~tranden/brodatz.html
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
http://people.csail.mit.edu/celiu/CVPR2010/FMD/
http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/
http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/

[56] Chomsky, Noam. Lectures on government and binding: The Pisa lectures. Vol.
9. Walter de Gruyter, 1993.

[57] Pastra, Katerina, and Yiannis Aloimonos. ”The minimalist grammar of action.”
Philosophical Transactions of the Royal Society B: Biological Sciences 367.1585
(2012): 103-117.

[58] K.-C. Tai. The tree-to-tree correction problem. J. ACM. 1979

[59] K.Zhang and D.Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 1989.

[60] P.N. Klein. Computing the edit-distance between unrooted ordered trees. In
European Symposium on Algorithms (ESA). 1998.

[61] M.Pawlik and N.Augsten. RTED: A Robust Algorithm for the Tree Edit Dis-
tance. PVLDB. 2011

[62] Eren Erdal Aksoy, Alexey Abramov, Johannes Dörr, Kejun Ning, Babette
Dellen, and Florentin Wörgötter. Learning the semantics of object-action rela-
tions by observation. International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[63] P. Bauer. Recalling past events: from infancy to early childhood. Annals of
Child Development, 11:25–71, 1995.

[64] R. Chalodhorn, D. Grimes, Rao R. Gabriel, and M. Asada. Learning hu-
manoid motion dynamics through sensory-motor mapping in reduced dimen-
sional spaces. In ICRA, 2006.

[65] Rizwan Chaudhry, Avinash Ravichandran, Gregory Hager, and René Vidal.
Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dy-
namical systems for the recognition of human actions. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2009.

[66] Noam Chomsky. Lectures on Government and Binding: The Pisa Lectures.
Mouton de Gruyter, 1993.

[67] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via
sparse spatio-temporal features. In VS-PETS, October 2005.

[68] L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti. Visuomotor neurons:
ambiguity of the discharge or motor perception? International Journal of
Psychophysiology, 35:165–177, 2000.

[69] Leonardo Fogassi, Pier Francesco Ferrari, Benno Gesierich, Stefano Rozzi,
Fabian Chersi, and Giacomo Rizzolatti. Parietal lobe: From action organi-

zation to intention understanding. Science, 308:662 – 667, 2005.

[70] S. Gong and T. Xiang. Recognition of group activities using dynamic proba-
bilistic networks. In Proc. International Conference on Computer Vision, 2003.

[71] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri.
Actions as space-time shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(12):2247–2253, 2007.

[72] Abhinav Gupta and Larry S. Davis. Objects in action: An approach for com-
bining action understanding and object perception. In CVPR. IEEE Computer
Society, 2007.

[73] S. Hongeng and R. Nevatia. Large-scale event detection using semi-hidden
markov models. In Proc. International Conference on Computer Vision, 2003.

[74] Y. Ivanov and A. Bobick. Recognition of visual activities and interactions
by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2000.

[75] A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-
Chowdhury, V. Kruger, and R. Chellappa. Identification of humans using gait.
IEEE Transactions on Image Processing, 13(9):1163–1173, 2004.

[76] H. Kjellstrom, J. Romero, and D. Kragic. Simultaneous visual recognition of
manipulation actions and manipulated objects. In Proc. European Conference
on Computer Vision, 2008.

[77] F. De la Torre, J. Hodgins, J. Montano, S. Valcarcel, R. Forcada, and J. Macey.
Guide to the carnegie mellon university multimodal activity (cmu-mmac)
database. Technical report, CMU-RI-TR-08-22, Robotics Institute, Carnegie
Mellon University, July 2009.

[78] Ivan Laptev. On space-time interest points. International Journal of Computer
Vision, 64(2–3):107–123, 2005.

[79] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and
ordering constraints for recognizing complex activities in video. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2007.

[80] Y. Li, C. Fermuller, Y. Aloimonos, and H. Ji. Learning shift-invariant sparse
representation of actions. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

[81] Ross Messing, Chris Pal, and Henry Kautz. Activity recognition using the
velocity histories of tracked keypoints. In ICCV ’09: Proceedings of the Twelfth
IEEE International Conference on Computer Vision, Washington, DC, USA,

2009. IEEE Computer Society.

[82] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances
in vision-based human motion capture and analysis. Computer Vision and
Image Understanding, 104:90–126, 2006.

[83] D. Moore and I. Essa. Recognizing multitasked activities using stochastic
context-free grammar from video. In Proceedings of AAAI Conference,, 2002.

[84] N. Oliver, E. Horvitz, and A. Garg. Layered representations for human activity
recognition. In ICMI, 2003.

[85] K Pastra and Y Aloimonos. The minimalist grammar of action. Phil. Trans.
R Soc. B, 367(1585):103–117, 2012.

[86] C. Pinhanez and A. Bobick. Human action detection using pnf propagation
of temporal constraints. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 1998.

[87] David A Rosenbaum, Rajal G Cohen, Steven A Jax, Daniel J Weiss, and Ro-
brecht Van Der Wel. The problem of serial order in behavior: Lashleys legacy.
Human Movement Science, 26(4):525–554, 2007.

[88] M.S. Ryoo and J.K. Aggarwal. Recognition of composite human activities
through context-free grammar based representation. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2006.

[89] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic texture recognition.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2001.

[90] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human ac-
tions: A local svm approach. In ICPR, 2004.

[91] Leonid Sigal, Alexandru O. Balan, and Michael J. Black. Humaneva: Synchro-
nized video and motion capture dataset and baseline algorithm for evaluation
of articulated human motion. International Journal of Computer Vision, 87(1-
2):4–27, 2010.

[92] M. Sridhar, Anthony G. Cohn, and David C. Hogg. Learning functional object-
categories from a relational spatio-temporal representation. In Proc. 18th Eu-
ropean Conference on Artificial Intelligence,, pages 606–610, 2008.

[93] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea. Machine recogni-
tion of human activities: A survey. IEEE Transactions on Circuits and Systems
for Video Technology, 18(11):1473–1488, 2008.

[94] I. Vicente, V. Kyrki, and D. Kragic. Action recognition and understanding

through motor primitives. Advanced Robotics, 21:1687–1707, 2007.

[95] J.M. Wang, D.J. Fleet, and A. Hertzmann. Gaussian process dynamical mod-
els for human motion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2008.

[96] A. Whiten, E. Flynn, K. Brown, and T. Lee. Imitation of hierarchical action
structure by young children. Developmental Science, 9:574–582, 2006.

[97] Geert Willems, Tinne Tuytelaars, and Luc J. Van Gool. An efficient dense
and scaleinvariantspatio-temporal interest point detector. In Proc. European
Conference on Computer Vision, 2008.

[98] Alper Yilmaz and Mubarak Shah. Actions sketch: A novel action representa-
tion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 984–989, 2005.

[99] Gooch, Bruce and Amy. Non-Photorealistic Rendering. A.K. Peters Ltd. 2001.

[100] Gardner, Howard. Artful scribbles: The significance of children’s drawings.
Basic Books (AZ), 1980.

[101] J. Willats. Art and Representation. Princeton U. Pr., 1997 page 199

[102] Durand, Frdo. “An invitation to discuss computer depiction.” Proceedings of
the 2nd international symposium on Non-photorealistic animation and render-
ing. ACM, 2002.

[103] D. B. Lenat and R. V. Guha, Building large knowledge-based systems; repre-
sentation and inference in the Cyc project. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1989

[104] Sarjant, Samuel, et al. ”All you can eat ontology-building: Feeding wikipedia
to Cyc.” Proceedings of the 2009 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology-Volume 01. IEEE
Computer Society, 2009.

	List of Figures
	Introduction
	Organization of This Work

	The Skills of Comprehension
	Introduction
	Teaching Reading Comprehension
	Teaching Image Comprehension
	Automated Image Comprehension

	Visual Filters for Scene Understanding
	Background of Object Recognition and Scene Parsing
	System Architecture
	Visual Attention
	A Biologically Plausible Version
	Experiments
	Penn Fudan Pedestrian Database
	Number of Training Samples
	Patch Size
	Number of Layers
	Weizmann Horse Dataset
	Poser
	Limb Detection
	Semantic Edge Detection
	Experiments with Different Features and Classifiers

	Future Directions: Non-parametric Classifiers
	Conclusion

	Material Scene Parsing
	Background
	Algorithm Outline
	Image Search
	Kernel Descriptors
	3-D Color Histograms
	Superpixel Segmentation
	Experiments
	Experiment 1: Flickr Material Database
	Experiment 2: Hand-Labeled Imagery

	Discussion

	Action Grammars
	Introduction
	Recent Works
	Approach
	Kinect+SR4000 Complex Activity Dataset
	The Action Grammar
	Extracting Hand Locations from 3D Pointclouds
	Object Recognition
	Building the Activity Tree

	Tree Edit Distance
	Separating Interleaved Activities

	Experiments
	Experimental Procedure
	Results over Artificial Noisy Data
	Results over Complex Activity Dataset
	Results on Assembly/Disassembly Task

	Conclusion and Future Work

	The Cyc Knowledge Base
	History of the Cyc Project
	About Cyc
	How Cyc is used in this project
	Improving Material Labeling Using Object Labeling (and vice versa)
	Ambiguous Labels
	Answering Queries
	Image Translation

	Conclusion and Future Work

	Answering Queries
	Translation of Images from One Style to Another
	Introduction
	Automatic Generation of Child-like Visual Representation
	Conclusion and Future Work

	Bibliography

