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This dissertation presents three novel optimization models for sustainable 

wastewater management. The Blue Plains Advance Wastewater treatment plant (AWTP) 

operated by the District of Columbia Water and Sewer Authority (DC Water) is used as a 

case study. The application to the Blue Plains AWTP is presented to illustrate the 

usefulness of the model and how wastewater treatment plants (WWTPs), solid waste 

disposal plants, community management groups can actively and positively participate in 

energy and agricultural markets. Besides the conversion of the solid end products into 

biogas and electricity via digesters, WWTP can also produce Class B biosolids for land 

application or Class A biosolids for use as fertilizer.  Chapter 1 introduces the Blue Plains 

case study and other important aspects of wastewater management. 

The first problem, discussed in Chapter 2, is a multi-objective, mixed-integer 

optimization model with an application to wastewater-derived energy. The decisions 

involve converting the amount of solid end products into biogas, and/or electricity for 

internal or external purposes. Three objectives; maximizing total value, minimizing 

energy purchased from external sources and minimizing carbon dioxide equivalent 

(CDE) emissions were presented via an approximation to the Pareto optimal set of 



 

 

solutions. The second type of problem is a stochastic multi-objective, mixed-integer 

optimization model with an application to wastewater-derived energy and is presented in 

Chapter 3. This model considers operational and investment decisions under uncertainty. 

We also consider investments in solar power and processing waste from outside sources 

for revenue and other benefits. The tradeoff decision between operational and investment 

costs and CDE emissions are presented. The third type of optimization model is a 

stochastic mathematical program with equilibrium constraints (MPEC) for sustainable 

wastewater management and is presented in Chapter 4. This two-level optimization 

problem is a stochastic model with a strategic WWTP as the upper-level player. The 

lower-level players represent the fertilizer, natural gas, compressed natural gas (CNG) 

and electricity markets. All the lower-level players are price-takers. Chapter 5 considers a 

comparison of the three optimization models discussed above and highlights differences.  

Chapter 6 provides conclusions, contributions, and potential future directions. 
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Chapter 1: Introduction and Motivation 

 

1.1 Introduction 

Many of the global issues facing us today such as air pollution, clean water, loss 

of biodiversity and sustainable energy (Filar and Haurie 2010) will have to be dealt with 

in a manner that addresses efficiency. Decision-makers facing these issues can use 

optimization for sustainable development planning. Optimization or more generally 

operations research (OR) has been applied to many fields of environmental management 

such as green supply chains (Bloemhof-Ruwaard et al. 1995), visualizing and solving 

environmental problems (van Beek et al. 1992), optimizing the cost for a Europe-wide 

reduction of the emissions of SO2 (Amann et al. 1991), responding to strategies to 

counter climate change (Janssen 1993) and examining waste management. F. Talcott 

(1992) said “Environmental problems are substantial; the costs of dealing with them are 

imposing. Because our resources--natural and financial are limited, it is critical that we 

think smart and plan smart in dealing with environmental issues. Good analysis can pay 

off.” 

An important example of the use of OR to design sustainable development is the 

utilization of waste to supply energy. An ever-increasing volume of waste (solid waste 

and wastewater) is the trend for every country around the world making it a global issue. 

One important cause for this trend is the rise in world population. The last nine years 

(2003-2011) of data from the World Bank show explicitly that the world population 

increased from 6.35 billion in 2003 to 6.97 billion in 2011, or roughly a 10% increase. In 
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the United States, the population
1
 increased from 180.67 million in 1960 to 311.59 

million in 2011. The solid waste generation rate also increased from 2.68 to 4.43 pounds 

per person per day 
2
 from 1960 to 2011 (EPA 2011). Because of the solid waste 

generation rate and rising population, the total amount of municipal solid waste in the 

U.S. increased from 88.4 million tons in 1960 to 251.9 million tons in 2011. Many 

researchers analyzed waste management problems including collection and disposal 

systems based on statistical and historical data and conducted their studies by using 

mathematical models (e.g., Chang and Wang 1996; Chang and Davila 2007; Filipiak et 

al. 2009; He et al. 2011b; Tan et al. 2012). Moreover, probabilistic optimization models 

were used to design waste management systems (Maqsood and Huang 2003; Li et al. 

2008; Li and Huang 2011). Additionally, there is a close association between 

environmental issues (amount of waste and waste disposal) and economic factors (energy 

supply-demand and operational costs). 

The projection of world energy consumption in the industrial, transportation, and 

electric power sectors respectively is about 2,760, 4,716, and 7,712 million tons of oil 

equivalent 
3
 in 2030, which is an increase from the current consumption level by about 

31%, 25%, and 49%. Waste management systems also increase the total energy 

consumption. For example, fossil fuel is the primary raw material in the agricultural and 

industrial sectors. About 80 gallons of gasoline are used to produce one acre of corn in 

the U.S. (Pimentel et al. 1973) and waste management systems consume even more fossil 

fuel. Collection systems and the typical waste disposal processes such as incineration and 

                                                 
1
 http://www.multpl.com/united-states-population/table. 

2
 English and SI units were used in this dissertation. English units were used in Chapters 1 to 6 because the 

case study WWTP uses English units. However, SI units were indicated in the Appendices for comparison 

purposes with outside sources. 
3
 http://www.bp.com/energyoutlook2013. 
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landfill also consume high amounts of supplemental fuel and fuel for transportation. This 

also takes place in the power and transportation sectors. Therefore, processing energy 

from waste may be a sustainable way to reduce waste and fossil fuel consumption. 

Because of increasing U.S. population, the total amount of wastewater and solid 

end products from wastewater treatment plant (WWTP) operational processes is also 

increasing. For example, the average U.S population uses about 80-100 gallons of water 

per person per day 
4
 of which 60-90% becomes wastewater (Vasilind 2003); we use 75% 

in the following calculation.  In the U.S. there are about 3,171 WWTPs operated with 

flow rates 
5
 that vary from 5 mega gallons per day (MGD) up to 200 MGD to handle a 

total of approximately 21,000
 
MGD (311.59 million people multiplied by 90 gallons of 

water/person multiplied by 75%). This abundance of wastewater provides an excellent 

input to produce methane and/or electricity. Indeed, the potential to produce energy from 

digested biogas from solid end products of the wastewater treatment process was about 

189.8 MW in 2011 and the cost of generated electricity ranged from 1.1 to 8.3 cents per 

kilowatt-hour (cent/kWh) (EPA 2011). Moreover, solid end products from wastewater 

treatment process could be produced either Class A or Class B biosolids (see more detail 

in the next section) and reused it to improve the quality of soil as nutrient-rich material. 
6
  

The U.S. Energy Information Administration (EIA 2009) indicated that in 2009 

only  8% of  U.S. energy production came from renewable energy sources and 50% of 

that came from biomass, which consists of bio-fuel, wood, and waste derived from 

biological materials. Producing energy from waste including solid waste and wastewater 

                                                 
4
 http://ga.water.usgs.gov/edu/qa-home-percapita.html. 

5
 The 2008 CWNS is available through EPA’s Office of Wastewater Management and can be accessed at: 

http://water.epa.gov/scitech/datait/databases/cwns/index.cfm. 
6
 http://water.epa.gov/polwaste/wastewater/treatment/biosolids/index.cfm. 
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can increase renewable energy production. There are some existing mathematical models 

studied about biogas production from solid wastes. For example, ADM1 was 

mathematical model simulated anaerobic digestion process (IWA 2002). Biochemical and 

physico-chemical processes were applied to approximate the amount of biogas 

production. Using anaerobic digestion process to produce renewable energy from solid 

waste could become one from many ways of solid waste management system. 

Many researchers used mathematical models to optimize decisions about solid 

waste management and waste-derived energy production for residential and industrial 

sectors, but few of them have focused on solid end products from wastewater and its 

derived energy. There are some mathematical models used in the analysis of wastewater 

treatment plant design and the quality of treated water (Ellis and Tang 1991; Draper et al. 

2003; Cunha et al. 2009; Alvarez-Vázquez et al. 2010). Still others have considered 

optimization modeling of energy consumption in wastewater treatment plants and 

renewable energy harvests from water distribution (Ye and Soga 2012; Hu et al. 2013). 

However, few of those addressed high production volumes from WWTPs and the 

potential of the associated waste as a significant source of biomass for energy production 

(Ward et al. 2008). 

The study of management wastewater-derived energy by applying OR to WWTPs 

is the main purpose of this dissertation. Renewable energy from solid end products from 

wastewater treatment plant is a small but sustainable part of energy production that can 

help to some extent to meet world energy demand and reduce fossil fuel consumption. 

Management of wastewater-derived energy requires understanding the systems 

and an accurate modeling tool. This dissertation combines OR models and methods for 
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sustainability decision-making related to WWTPs which ultimately helps these 

organizations towards a goal of being carbon neutral. In this context, the decision-makers 

can be one person or a group of people who make a decision for their organizations 

(DeCarolis et al. 2012; Schwarz 2005).  As mentioned in the previous paragraphs, no 

prior research focused on studying sustainable management of solid end products from 

WWTP by using deterministic and stochastic optimization approaches. Both novel 

deterministic and stochastic optimization models for management of wastewater-derived 

energy are used in this dissertation and provide different vantage points.  In addition, 

multiple objectives are considered to add realism to the problem area being studied.  

Examples of competing, multiple objectives in the context of WWTPs includes: 

minimizing the odor of the biosolids products sent to reuse sites (e.g., farms) while at the 

same time trying to minimize the plant operating and distribution costs (Gabriel et al. 

2006a). The optimal solution is often a tradeoff among all objectives. The theory of 

multi-objective optimization is also included in this research to examine efficient 

solutions that can’t be improved for one objective without worsening one or more of the 

other objectives. This dissertation is focused on the tradeoff between maximizing the 

benefits (also discussed as “value”) from the operational and investment decisions and 

minimizing the net carbon dioxide equivalent emissions when purchased energy is 

considered at an average amount. Thirdly, the objective of just minimizing purchased 

energy is also considered. 

These three objectives compete with each other and this is typified as follows.  

The small digester is chosen when maximizing expected benefits since it allows for lower 

costs than the big one but permits the WWTP to be active in the fertilizer, electric power, 
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and CNG transportation markets.  In fact, the highest level of Class A biosolids are 

produced (either from the digester or by composting) under this objective.  By contrast, 

when minimizing expected carbon dioxide equivalent emissions, it is more effective to 

use a big digester.  This choice of first-stage variables allows for selling the biogas-based 

electricity to the spot market and there is no activity in the CNG market.  Lastly, when 

minimizing expecting purchased energy a big digester is also chosen.  However, the uses 

are different for the output.  In particular, the biogas-based electricity is used on-site and 

nothing is sold to the spot market.  Moreover, there is also no CNG produced under this 

objective. For example, once maximum benefits (value) are considered, a small digester 

(lower costs than big digester) should be selected to product biogas and Class A 

biosolids. Biogas-based electricity, thus, these three objectives produce different first- 

and second-stage decisions for the WWTP. 

The constraint method is operated by optimizing one objective while other 

objectives are constraints (Cohon 2003). The approximated Pareto optimal frontier is 

created with about 50 Pareto solutions from the stochastic optimization model.   

Another approach included in the last section of this research is the study of 

mathematical programs with equilibrium constraints (MPEC) with an application to 

wastewater-derived energy. Such a framework (von Stackelberg 1934) can arise in many 

instances. Recently, MPECs have been used in energy applications to model the behavior 

of strategic players in the electric power sector (Hobbs et al. 2000; Lavigne et al. 2000, 

Gabriel and Leuthold 2010; Kazempour et al. 2010; Ruiz et al. 2012), in natural gas 

markets (Siddiqui 2011; Siddiqui and Gabriel 2012), in petroleum markets (Groot et al. 

1992; Huppmann and Holz 2012) as well as in energy-efficiency studies (He et al. 2011a; 
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Lasaulce et al. 2009).  There is no study on stochastic MPECs for sustainable wastewater 

management especially when a WWTP is considered to be the strategic player. In this 

part of the dissertation, the WWTP is modeled as the top-level player for methane, 

electricity, and biosolids production. As such, the WWTP’s decisions can affect the 

bottom-level players in the agricultural market, transportation (compressed natural gas 

vehicles) sector, residential natural gas and electric power sectors.  The collection of all 

the optimization problems for these players along with market-clearing conditions at the 

bottom level constitutes an MPEC with the top level a stochastic optimization model for 

the WWTP as Stackelberg leader. As such, the idea of prosumer (producer/consumer) is 

addressed from the integration between energy and transportation, electricity generation, 

agriculture and residential usage. The overall system is thus helpful for sustainable 

development. 

 

1.2 Objectives of Dissertation 

The objective of this dissertation is to develop and apply mathematical models to 

environmental management problems and provide results that can assist typical 

wastewater treatment plants to find optimal wastewater treatment management policies 

with respect to treatment processes, energy usage and carbon dioxide emissions and 

sustainability goals.   The models are deterministic and stochastic optimization problems 

and a stochastic MPEC. Additionally, the results from the case study WWTP located in 

Washington, DC will provide estimates of the optimal total operational value (profit), net 

carbon dioxide equivalent emissions, energy purchased at the facility and tradeoffs 

between the various competing objectives. This case study appears in each of the main 
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modeling sections as a further evidence of the applicability of the models. 

 

1.3 Case Study 

The Blue Plains Advanced Wastewater Treatment Plant (AWTP) is a wastewater 

and sewage treatment plant operated by the District of Columbia Water and Sewer 

Authority (DC Water). Blue Plains treats wastewater and sewage from jurisdictions in the 

District of Columbia, Maryland (Montgomery and Price George’s counties) and Virginia 

(Fairfax and Loudoun counties) and serves approximately 1.6 million people. It has a 

capacity of 370 million gallons per day and a peak capacity of more than 1,000 million 

gallons per day 
7
 (Gabriel et al. 2006b). Blue Plains is one of the ten biggest WWTPs in 

the world. 
8
 Moreover, it is the largest advanced wastewater plant in the world 

9
, that is, 

the largest which operates nitrification and denitrification systems for removing nitrogen. 

Because of its size and prominence as an industry leader, Blue Plains is an ideal case 

study subject for this dissertation.  To better acquaint the reader with the various 

processes going on at this advanced WWTP, the next few pages provide a briefly 

overview of the operations there. 

The primary treatment process at this AWTP begins with physical procedures to 

separate insoluble solids (unsuspended solids) from wastewater. The debris is removed 

and trucked to a landfill. The remaining sewage flows into primary sedimentation tanks. 

More than half of the suspended solids are separated from the liquid. 
10

 

Wastewater with soluble solids flows to a secondary treatment process which uses 

                                                 
7
 http://www.dcwater.com/about/gen_information.cfm. 

8
 http://enr.construction.com/infrastructure/water_dams/2012/extras/0328/slideshow.asp?slide=11. 

(Illustration: Justin Reynolds for Engineering News-Record (ENR.com)). 
9
 http://www.dcwater.com/about/gen_information.cfm. 

10
 http://www.dcwater.com/wastewater/process.cfm. 

http://enr.construction.com/infrastructure/water_dams/2012/extras/0328/slideshow.asp?slide=11
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an activated sludge process to break down organic matter. The microorganisms working 

in this process consume organic matter as their food using a large amount of oxygen. 

Ammonia is converted by nitrification and denitrification into nitrogen gas. Solid end 

products are settled out and water is percolated down through a sand filter to remove the 

remaining suspended solids. However, before discharging water into the Potomac River, 

water is disinfected by dechlorination. 

The solid end product from the primary treatment, called sludge, settles to the 

bottom and thickens by gravity and biological solids from the secondary and nitrification 

reactors are thickened by using flotation thickeners. The primary and secondary solids are 

combined and dewatered. The Blue Plains AWTP operational processes are shown in 

Figure 1.1. 
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Figure 1.1 The Blue Plains AWTP operational processes. 

 

Each day the Blue Plains facility produces approximately 1,200 wet metric tons of 

collected solids. Lime is added to remove pathogens by a process called lime 

stabilization. The treated sludge is distributed for use by several land application 

contractors and to several utilization facilities. About 90% is given to farmers for crop 

fertilization and 50 tons per day go to a compost production facility in Virginia. 
11

 The 

treated sludge is given away without obtaining revenues. Moreover, DC Water bares the 

costs associated with transportation and management. Waste-to-energy management 

models, which will be described in Chapters 2, 3 and 4 of this dissertation, will determine 

                                                 
11

 http://www.dcwater.com/education/biosolids_recycling.cfm. 
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the value (monetary or otherwise) of the treated sludge and thus, improve the long-term 

sustainability of operations at the Blue Plains facility. 

The two valuable end products that result from the Blue plains AWTP facility are 

clean water and biosolids. The effluent clean water is discharged to the Potomac River 

and biosolids, generally called Class B biosolids, are lime-stabilized. Biosolids are 

transported to land application sites for several purposes such as agriculture, tree farming, 

and mine reclamation. 
12

  

The Environmental Protection Agency (EPA) classifies biosolids as either Class 

A or Class B. Class A biosolids require the total amount of pathogens to be below 

detectable levels and must meet the limitations of metal contaminants related to 

regulation 503 (the EPA part the 503 biosolids rule), which is the standard for the use or 

disposal of sewage sludge (EPA 1994). Class B biosolids are subject to less stringent 

requirements with respect to pathogens, but still require specific farm management 

practices and area restrictions before and after application (EPA 1994 and 2006).  DC 

Water biosolids consistently meet Class A standards for coliform and are of significantly 

higher quality than Class B in general. However, Class B biosolids can be applied for 

slow release nitrogen fertilizer with low concentrations of other plant nutrients such as 

phosphorus, potassium, and essential micronutrients such as zinc and iron (approximately 

4.4% Nitrogen, 1.36% Phosphorus and 0.16% Potassium of each metric ton of biosolids). 

13
 Moreover, organic matter can improve soil quality by controlling air and water content 

in soil structure while decreasing topsoil erosion (Wang et al. 2008). In addition to 

economic benefits from using biosolids as fertilizer, methane and heat are sources of 

                                                 
12

 Biosolids management program manual, issue date 10/21/2009. 
13

 Biosolids statistic data from 2002-2010.  
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energy recovered from biosolids. Anaerobic digestion processing reduces the amount and 

volume of biosolids, and produces biogas, about 60% of which is methane gas CH4 

(Oleszkiewicz 2002). Pathogens are destroyed during the digestion process due to high 

temperatures. This digestion process also reduces problems associated with biosolids 

odor and result in Class A biosolids. 

Incineration is another process to destroy solids end products from WWTP. The 

dewatered solids are fuel that reacts with oxygen (WEF 2012) through combustion. 

Therefore, incineration can be added to the solids treatment process if land application is 

not feasible (Brown 2007). 

 

1.4 Organization of This Dissertation 

Figure 1.2 displays the organization of this dissertation: Chapter 2 presents a 

deterministic, multi-objective, mixed-integer optimization model for wastewater-derived 

energy and also introduces details of the parameters used in this model. Chapter 3 

presents a stochastic, multi-objective, mixed integer optimization version of the model 

with some of the data uncertain and therefore described by appropriate probability 

distributions. Chapter 4 presents a stochastic MPEC for sustainable wastewater 

management. Chapter 5 provides a comparison of the three optimization models (single-

level problem for both the deterministic and stochastic models as well as the stochastic 

bilevel problem (MPEC)) and sensitivity analysis. Finally, Chapter 6 provides 

conclusions and directions for future research. 

Three novel models were created with three specific types of problems associated 

with the management of wastewater-derived energy. Single-level problems, the 
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deterministic optimization model in Chapter 2 and the stochastic optimization model in 

Chapter 3, are used to analyzed the optimal decision under not only the operational and 

investment aspects but also the end-use revenues, energy purchasing from external 

sources and carbon dioxide emissions. The two-level problem presented in Chapter 4 

considered the WWTP as a strategic player at the upper level. The strategic player’s 

decisions involve converting uncertain amounts of solid end products into biogas and/or 

electricity for internal or external purposes with first-stage decisions on the size of 

digester to build or other processing options. The lower-level players represent the retail 

fertilizer, wholesale electricity, residential natural gas and CNG markets. 
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Figure 1.2 Organization of dissertation. 
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Chapter 2: A Multi-objectives, Mixed-integer Optimization Model for 

Management of Wastewater-derived Energy 

 

Major cities in the world are facing environmental management problems from 

rapid population growth and excessive consumption of natural resources. Therefore, a 

critical goal for society is to find energy and natural resources that can be carefully 

managed in a way that sustainably mitigates water and air pollution. 

Typically wastewater treatment plants produce clean water and biosolids (for land 

application) as end products from processing the wastewater. Wastewater solids offer an 

opportunity to produce renewable energy from digesting their carbon component 

(producing biogas and subsequently electricity) and at the same time recover costs by 

marketing the recovered nutrients to fertilize agricultural land in an environmentally 

friendly manner.  This energy can be used directly at the plant to power mechanical 

systems such as aeration blowers, solids dewatering equipment as well as automated 

electronic process control.  The treatment plant will not only benefit from a new low cost 

energy source but the revenue of using renewable energy generated from wastewater 

solids may reduce operational process costs as well. 

The U.S. Energy Information Administration (EIA 2009) indicates that only 8% 

of the U.S. energy production came from renewable energy sources, and 50% of that 8% 

came from biomass, which consists of bio-fuel, wood and derived wood’s residual, and 

waste derived from biological materials. The electric power sector accounts for 40% of 

this total energy (EIA 2009) and has an environmental incentive to use renewable energy. 

Furthermore, due to technological advances and cost competitiveness renewable energy’s 
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market share has increased in the past decades (Arent et al. 2011). Many previous studies 

have described the value and attributes of renewable energy investment (Bergman et al. 

2006) and the benefits for investment in renewable energy for the power sector. 

Examples of recent works include: Traber and Kemfert (2011) and Genc and Thille 

(2011) respectively, for wind and hydropower. However, to our knowledge there has not 

been as much focus on biomass and in particular that derived from wastewater, which is 

the subject of this study. 

Using solid end product from wastewater as a renewable energy source either in 

the form of biogas or as electricity derived from biogas will increase renewable energy 

production as well.   Therefore, the production of wastewater-based biogas is an 

important consideration for wastewater treatment plants with competing goals such as 

reducing energy purchases, maximizing the value of the wastewater products, and 

minimizing the carbon dioxide emissions.  Given the emphasis on producing energy from 

renewable sources (e.g., wind, solar, biomass), wastewater treatment plants can therefore 

be active participants in energy markets according to the huge amount of renewable 

energy sources from wastewater plants. 

In the next section we discuss Advanced Wastewater Treatment Plant (AWTP), 

which is the subject of this study. This AWTP is considering converting wastewater to 

biosolids, methane and electricity via anaerobic digestion and in Section 3 we discuss an 

optimization model to assist AWTP management with this conversion process. The 

AWTP facility is one of the largest in the U.S. and this conversion to produce methane 

and electricity represents an environmentally friendly and possibly cost effective way to 

produce energy. AWTP is not alone in its intent to produce renewable energy from 
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wastewater. Indeed, the U.S. Environmental Protection Agency (EPA) has estimated that 

there are roughly 3,500 facilities with wastewater flow greater than three million gallons 

per day (EPA 2007).  As of EPA 2007 about 544 wastewater facilities were already using 

anaerobic digestion. These facilities may have the potential to produce biogas to generate 

electricity, which can be used by wastewater treatment plants (big consumers of energy) 

or sold to the power market. For example, West Point Wastewater Treatment Plant in 

New York serves a population of 670,000 and generates about 1.5-2 MW of electricity 

that it sells to local utilities. The Point Loma Plant, California, generates about 4.5 MW 

and as a result the City of San Diego saved more than $3 million in operational energy 

costs in 2000 (DOE 2004). 

Optimization modeling has been extensively used in energy and environmental 

planning in the context of policy as well as operational considerations (DeCarolis 2011), 

taking into account the impact on the environment. For example, data analysis and 

optimization theory were applied (Tan et al. 2012). Li and Huang (2011) considered 

integrated modeling for solid waste management and showed trade-offs between system 

cost and feasibility in the presence of uncertainty. Other relevant environmental 

applications for water management have included: optimal flood control (Lee et al. 

2009), optimization of large-scale water-distribution systems (Pezeshk 1994), 

groundwater supply management and conjunctive management of a large municipal and 

industrial water system (Parelta and Kalwij 2004). Moreover, optimization modeling has 

also been applied to study biological activity and chemical reactions for waste-treatment 

facilities (Alhumaizi and Ajbar 2006). 
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Renewable sources of energy figure prominently in this planning, especially in the 

U.S. and European markets e.g., renewable portfolio standards (Wiser and Barbose 

2008), “20-20-20” policies (EU 2008) and wastewater-derived energy while currently 

small, could provide an efficient means to sustainability goals and lowering emissions 

from energy production (Elliot et al. 2010). Research on the more general category of 

biomass has concentrated on ethanol and biodiesel since they directly affect fossil fuel 

prices, e.g., ethanol from is used as an additive in gasoline in the U.S. (Rask 1998). 

Indeed, local state and federal entities in the U.S. have even stimulated local ethanol and 

biodiesel producers’ interest by increasing support for new production technologies 

(Kenkel and Holcomb 2006). Nevertheless, the economic effects from increasing prices 

of crops --European agricultural prices increased by 7% (Kretschmer et al. 2009)--may be 

a significant point for future study especially from a cost and environmental perspective 

vis-à-vis all forms of biomass including from wastewater. Despite this focus on 

renewable energy, there has not been a lot of research recently on wastewater-derived 

biogas for energy. 

The objective of this study is to present a new multi-objective optimization model 

that provides guidance for wastewater treatment plants for processing wastewater solids 

taking into account sustainability, energy production and biosolids for land application. 

As such the model presented can assist wastewater treatment management in these areas.  

This model is tested using data from AWTP, which is located in the East coast of the U.S. 

The rest of this multi-objective optimization model is organized as follows: Section 2.1 

presents operational processes at AWTP; Section 2.2 describes the multi-objective 

optimization model; Section 2.3 discusses the results of using the model and Section 2.4 
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provides concluding remarks. Lastly, there is an Appendix A showing supporting 

calculations. 

 

2.1 Wastewater Treatment Plant Operational Processes 

This section describes a wastewater treatment plant (WWTP) operational process.  

While a specific AWTP is the basis for the model, the processes and related decisions are 

generic enough to apply to a large number of other WWTPs.  At the AWTP facility in 

question, approximately 1,406 million liters per day (370 million gallons per day) of 

wastewater and storm water flow into the AWTP via sewers. These flows come from 

municipal (domestic) wastewater in the Washington, D.C. metropolitan area, including 

parts of Maryland and Virginia (Gabriel et al. 2006).  The AWTP operations are shown in 

Figure 1.1 and can be separated into two significant parts: the liquid and solid processes. 

Over 1,000 wet tons per day (wt/d 
14

) of biosolids is the treated output of the influent that 

comes from the sewage. Biosolids from the AWTP facility are normally used as fertilizer 

by farms in Virginia and Maryland. 

Biosolids, are the solid nutrient end product of the wastewater treatment process, 

and can be classified as either Class A or Class B biosolids by the Environmental 

Protection Agency (EPA). Class A biosolids require a total amount of pathogens to be 

lower than a detectable level and must meet the limitations of metal contaminants related 

to regulation 503, which is standard for the use or disposal of sewage sludge, (EPA 

1994). Class B biosolids are less stringent relative to pathogens, but still require farm 

management practices and area restrictions before application (EPA 1994 and 2006). For 

example, the AWTP currently uses lime stabilization to improve the quality (i.e., reduce 

                                                 
14

 Weight in metric ton. 
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the amount of pathogen) of biosolids for land application resulting in Class B biosolids.  

Consequently, this material can be delivered to farms in nearby counties as fertilizer 

without cost. The solids stabilizing process by heat or chemical means can change 

wastewater solids from Class B to Class A biosolids by reducing the amount of 

pathogens. Being more stringent, Class A biosolids may therefore be used for field crops 

or marketed and sold for use by the general public with less risk than Class B biosolids 

(Kemp and Lynch 2009). Biosolids that meet pathogen-free Class A levels can provide 

wastewater treatment plants with many more options to utilize the market and collect 

revenues from the sale of biosolids. 

This study focuses on management of the solid phase removed from wastewater.  

Solids from the primary and secondary treatment processes can be lime stabilized or can 

be processed through a “digester” to generate biogas. Stabilization of solids by digestion 

can be achieved by using a thermal hydrolysis, which prepares biosolids for anaerobic 

biodegradation, through digestion, (see Figure 2.1). 

Thermal energy or chemical mechanisms can be used to pre-process sludge from 

operational processes, but at the AWTP, thermal energy will be used to stabilize soluble 

organic matter in wastewater and sewage.  Consequently, this pre-treatment procedure is 

called thermal hydrolysis (Bonmat et al. 2001).  Additionally, this procedure also 

improves accessibility of anaerobic bacteria by breaking down non-dissolved and 

dissolved compounds in wastewater to facilitate the digestion process (Kepp et al. 2000). 

Stabilized organic matter will pass to a digester under mesophilic anaerobic digestion, 

which operates at a temperature 33-37 degree C to destroy organic matter and produce 

several types of gas such as carbon dioxide and methane. 



 

21 

 

 

 
 

Figure 2.1 Solid phase management flow diagram. 

 

2.1.1 Amount of Solids Produced 
15

 

One of the key inputs to the multi-objective optimization model to be presented 

below is the amount of solids contained in the influent to the AWTP.  For this study the 

annual average amount of solids is estimated from historical data at AWTP for 2007-

2009.  Solids are separated from wastewater when they pass through the primary 

treatment process called gravity thickeners (GT) and secondary treatment process called 

dissolved air flotation thickener water activated sludge (DAF TWAS). 

However, many new facilities and operational techniques have been installed at 

AWTP in order to upgrade water and sewer treatment, which affects the solids 

production. For example, the biological treatment techniques and facilities used for 

reducing secondary mean cell residence time (MCRT), use thermal hydrolysis and 

anaerobic digester and also using enhanced nitrogen removal facilities (ENRF) and use 

enhanced clarification facility (ECF) will directly impact solids product. Another 

                                                 
15

 Data in this model were collected, analyzed and used as the daily variables; all units are calculated for an 
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important parameter that impacts the solids amount would be population growth around 

the service area. The size of the population obtained from the Metropolitan Washington 

Council of Governments (MWCOG) is 2,227,446 in 2009 will be used as a baseline and 

2,386,665 in 2015, 2,505340 in 2020, 2,596,791 in 2025 and 2,651,750 in 2030 will be 

calculated from 2009 and projected to 2030, respectively. 
16

  

From the estimates stated above, the average daily maximum solids influent 

(based on the year 2030) can be calculated as 428 dry tons (dt).  Additionally, the 

minimum solids influent is computed as 383 dt, according to thermal hydrolysis and 

anaerobic digestions starting in 2014.  These two values will be respectively, upper and 

lower bounds on the total solids amount to be described in the model formulation below.  

 

2.1.2 Energy Consumption for Operations at AWTP 

Normally, wastewater treatment operational processes use electricity to run their 

facilities, natural gas for space heating, and fuel for biosolids transportation and service 

vehicles similar to AWTP. This plant does not generate electricity, but purchases it from 

external sources. Historically, the energy used at this facility fluctuates each day and 

month depending on influent amounts. For this study, 634,000 kWh is used 
17

, 

representing the average amount of electricity used for all the operational processes from 

2005-2009.  The average amount of natural gas consumed for space heating from 2007-

2009 was 
18

 172,240 cubic feet (cf). Also, transporting biosolids to the land application 

sites is another area of big energy consumption. The fuel for biosolids transportation in 

gallon (gal) was calculated relative to the amount of biosolids produced in dt. For the 

                                                 
16

 Brown and Caldwell, Technical memorandum number 1 to DC Water, March 2010. 
17

 Blue Plains AWTP energy consumption historical data from 2007-2010.  
18

 Energy saving report for DC Water, MWH Americas, December 2010. 
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purpose of the model below, the natural gas for heat and fuel for transportation is 

expressed in kWh. The natural gas in cf is changed to kWh to describe the energy 

recovered from bio-methane. The fuel for transportation in gallon is calculated assuming 

a round-trip delivery distance. 

 

2.1.3 Biogas Production by Anaerobic Digestion Processes 

Biosolids are the nutrient resource end products of the wastewater treatment 

process and are used on farms as fertilizer. However, this material can also be highly 

odorous and may contain pathogens therefore utilization sites may need to be highly 

regulated.  Many wastewater treatment plants such as the one in case study spends large 

parts of their budget to properly utilize Class B biosolids.  One approach to improve the 

quality of biosolids is to digest the solids and produce biogas for generation of electric 

power (and other uses).  The digestion process may reduce problems associated with 

biosolids odors and improves Class B Class A biosolids.  For these reasons, the AWTP 

facility is considering using thermal hydrolysis and anaerobic digestion to improve the 

quality of biosolids and to promote recycling instead of only using lime stabilization.  

Such an approach could also be appealing to other WWTP. 

Solids will be digested in an anaerobic environment and produce biogas and 

stabilized biomass (Class A biosolids) using the following chemical reaction (Rosso and 

Stenstrom 2008):   

 

Solids + Carbon substances             CH4 + CO2 + H2O+ trace gases+ Class A biosolids 
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The biogas (CH4 + CO2 + H2O + trace gases) can be broken down into the following 

component shares: 55-65% methane gas (CH4), 30-40% carbon dioxide gas (CO2), and 0-

5% water vapor, traces of hydrogen sulfide H2S and hydrogen H2 (Appels et al. 2008).  

Consequently, in the model presented below, an average 60% of methane composition in 

biogas will be used, and called bio-methane. However, total amount of biogas production 

from thermal hydrolysis and anaerobic digesters will be calculated relative to design 

criteria. The thermal hydrolysis process will first stabilize solids and the anaerobic 

process will digest organic substance in the form of volatile solids. Only 15 cf of biogas 

are contained in a pound of volatile solids, so the approximated amount of biogas is 4.4 

million cf per day calculated from a digester maximum of 370 dt (Metcalf & Eddy and 

AECOM 2008). 

 

2.1.4 Energy Recovered from Methane Gas 

AWTP buys electricity for its operational processes from an external contractor 

averaging 634,000 kWh at $0.086 per kWh and uses it to operate all facilities, including 

treating wastewater and biosolids. Generating electricity from biogas, which is produced 

by anaerobic digestion of biosolids, may be a better economic choice for the AWTP 

facility and other wastewater treatment plants to reduce external electricity costs. The 

approximate amount of electricity generated from biogas can be estimated and converted 

to kilowatt-hours by using the heat value of biogas. 

Biogas produced from the digestion process still needs a further step of separating 

sulfurs and siloxanes to clean the biogas to eventually get bio-methane. The amount of 

bio-methane (Ryckebosch et al. 2011) remaining after the cleaning process is about 55-
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65% or on average 60% (Appels et al. 2008) of the original biogas produced. AWTP may 

use this bio-methane on-site for heat or power generation, or take it off-site by injecting it 

into natural gas pipelines, gas storage facilities, or for use in fleet vehicles as compressed 

natural gas (bio-CNG (Ryan and Caulfield 2010)) 
19

. After the high pressure compressing 

and cleaning process, the amount of CNG amount will be about 96.5% of the original 

bio-methane. 
20

  

 

2.1.5 Carbon Dioxide Equivalent (CDE) Emissions 

WWTPs are huge sources of greenhouse gas (GHG) emissions including carbon 

dioxide (CO2), methane (CH4), nitrous oxide (N2O) and hydro fluorocarbon (HFC-134a).  

Indeed, WWTP operations in 2005 generated over 2% of total U.S. greenhouse gas 

emissions from solids processing and disposal activities, which include landfill and 

wastewater processing (CH2MHILL 2007). WWTPs that use aerobic and/or anaerobic 

biodegradation emit CO2, CH4 and N2O from degrading soluble organic matters in 

wastewater as well as via the land application biosolids to agricultural fields. 

The large WWTPs may find it’s advantageous to generate energy from 

wastewater and obtain benefits from renewable energy credits (RECs) or carbon dioxide 

credits related to CO2 allowances. In this study, the carbon dioxide equivalents 
21

 (CDE) 

offset relating to the anaerobic digestion process and the biosolids land application 

                                                 
19

 The Washington Metropolitan Area Transit Authority (WMATA) as the fourth largest transit system in 

U.S. for combined rail and bus transit having 1,500 square mile service area includes 3.5 million people 

within Washington, DC, and parts of Maryland and Virginia, do support using CNG for transit bus, 

according to result of studied show reducing carbon dioxide emission (NREL 2006) and saving some of 

fuel cost (detail will be in NREL 2006).    
20

 http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510. 
21

 The international standard practice expresses GHG in the term of carbon dioxide equivalent (CDE). 

Other GHGs than carbon dioxide emission will be converted to CDE by using global warming potential 

(GWP), which express 1 for CO2, 21 for CH4, 310 for N20 and 1300 for HFC-134a (EPA 2004).   

http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510
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process are deducted from carbon dioxide emissions from operational processes. For 

instance, the model described below estimates CDE emissions from electricity 

consumption at AWTP by multiplying electricity used by 0.00055 tons CDE per kWh 

(The climate registry 2008). The electricity if generated from end product of wastewater 

can create CDE reduction (get credits) for AWTP since it was renewably generated 

instead of purchased from the outside with fossil fuel such as coal and petroleum larger 

amounts of CDE. AWTP would get renewable energy credit or CO2 credits. 

An additional benefit for AWTP is that the CO2 credits from the land application 

process will decrease 0.1 tons of CDE per dry ton of biosolids when using biosolids as 

fertilizer (Brown and Leonard 2004). Other advantages from CO2 credits include using 

natural gas for a variety of sectors including compressed natural gas (CNG) for the 

transportation sector. For example using one cubic meter of natural gas, WWTP will 

offset 0.00197 tons CDE for producing electricity and selling CNG to the transportation 

sector will offset 0.001908 tons CDE. (The climate registry 2008). 

 

2.2 A Multi-objective, Mixed-integer Optimization Model 

Given the above discussion about wastewater-derived energy and carbon dioxide 

emissions, the model we propose will: maximize the total value of wastewater treatment 

plant operational processes, minimize the amount of energy to be purchased, and 

minimize the net carbon dioxide equivalent emissions. As such, it will be a multi-

objective, mixed-integer optimization model. Figure 2.2 describes the overall set-up to be 

modeled with the first step being wastewater flow to the various operational process and 

passed to the liquid and solids phases normally. As discussed above, between 383-428 dt 
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of biosolids can be produced based on historical data. The amount of biosolids influent 

denoted    is thus bounded between these two values. The model will select which value 

in the range [383, 428] is best given the competing three objectives and other constraints. 

In the next step of the flowchart in Figure 2.2, sludge influent can go three 

directions: digestion (  ,“G” for gas), land application as Class B biosolids (  , “B” for 

Class B), or directly as Class A material (  , “A” for Class A).  In the first case, biosolids 

sent to the digester will produce biogas and generate electricity as well as some Class A 

material.  In the second case, the biosolids will be processed for land application as 

fertilizer. In the third case, biosolids will be stabilized by heat to reduce the amount of 

pathogens before going to other processes. The model will decide optimal values for   , 

   and    given other constraints with respect to the three objectives.  

The next decision that the model makes is to divide up the digested product 

between production of the Class A biosolids, natural gas for sale on the spot market 

(   ), compressed natural gas for transportation usage (    
 ) and electricity from biogas 

(GE).  For the quantity of Class A biosolids destined for land application, the model will 

select if it should be given to farms to use as plant nutrients (  
 , “L” for land application) 

or sold on the fertilizer market (  
  , “AM” for agricultural market). 

 Lastly, the model will make all decisions for sales to end-use spot markets, for 

natural gas non-transportation, CNG, electricity, fertilizer, or use the power at AWTP 

along with the renewable energy credits and carbon allowance market considerations.   In 

the next sections, we describe the variables and constraints that make up the model, 
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which will be solved as a mixed-integer, linear program, using the General Algebraic 

Modeling System (GAMS). 
22

  

 

2.2.1 Decision Variables 

The following is a description of the variables used in the model with the main 

ones also shown in Figure 2.2.  Note that the model is solved for a typical day. Hence, the 

values for all the variables are in units per day. 
23

 

 

   = total solids produced (dt) 

   = solids used to produce biogas (dt) 

   = solids used to produce Class B biosolids from lime stabilization to be land applied 

(dt) 

   = solids used to produce Class A biosolids without digestion (dt) 

    = biogas from solids for generating electricity (cf) 

    = biogas from solids sold to the natural gas spot market (cf) 

     = biogas from solids sold to transportation sector as CNG (cf) 

  
  = biosolids Class A produced for land application (dt) 

  
   = biosolids Class A sold in the agricultural market (dt)  

  = electricity bought from external sources and used at AWTP (kWh) 

  
     = electricity generated from biogas and used at AWTP (kWh) 

  
   = electricity generated from biogas and sold to the spot market (kWh) 

                                                 
22

 http://www.gams.com 
23

 Variables bearing the superscript “DC” refers to quantities produced and consumed at AWTP as opposed 

to buying from the outside. 
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  = natural gas purchased from external sources (cf) 

24
  

    = revenue from carbon dioxide credits or renewable energy credits ($) 

   = digester processing costs ($) 

    = amount of solids processed by digester i and segment j (dt) 

    = binary variables equal to 1 if digester i and segment j used 0 otherwise (dt) 

 

2.2.2 Parameters 

       minimum solid end product from operational process (dt) 

        maximum solid end product from operational process (dt) 

    maximum amount of Class B production (dt) 

   biogas production factor (cf) 

     methane production factor (unitless) 
25

  

     CNG production factor (unitless) 
26

  

fB  dry tons of Class A biosolids per dry ton of solids influent (dt/dt) 

      average electricity consumption at AWTP (kWh) 

   factor used to calculate generated electricity from biogas (kwh/cf) 

      average daily natural gas consumption at AWTP (cf) 

  
   factor used to calculate carbon dioxide emissions from electricity (t/kWh) 

  
   factor used to calculate carbon dioxide emissions from used natural gas for heat 

(t/cf) 

                                                 
24

 This variable is fixed at 172,240 cf/d but is presented here as a variable for generality. 
25

 The biogas (CH4 + CO2 + H2O + trace gases) can be broken down into the following component shares: 

55-65% methane gas (CH4), 30-40% carbon dioxide gas (CO2), and 0-5% water vapor, traces of hydrogen 

sulfide H2S and hydrogen H2 (Appels et al. 2008).  Consequently, in the model presented below, an average 

60% of methane composition in biogas is used. 
26

 The reduction from 100% is due to further processing for gas quality outside of WWTP 

(http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510). 

http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510
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    factor used to calculate carbon dioxide offset from sold CNG for transportation 

sector (t/cf) 

  
 
  factor used to calculate carbon dioxide offset from biosolids used as fertilizer 

(t/dt) 

  
   factor used to calculate carbon dioxide emissions from transportation of 

biosolids to land application field (t/dt) 

  
   factor used to calculate fossil fuel consumption to transport Class A and/or B 

biosolids to land application fields (kWh/dt) 

  
  electricity purchasing prices ($/kWh) 

   
   natural gas selling prices ($/cf) 

  
     electricity generation costs ($/kWh) 

    
     CNG compression costs ($/cf) 

  
  factor used to calculate biosolids transportation cost to land application field 

($/dt) 

  
       

Class A biosolids composted costs ($/dt) 

  
 
 fertilizer prices ($/t) 

  
   electricity selling prices ($/kWh) 

    
   CNG prices ($/cf) 

      
      CDE allowance (t) 

  
  carbon credits ($/t CDE) 

    
  renewable energy credits ($/t) 

  is equal to 0 or 1 

    digester fixed cost 
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     digester variable cost 

 

 
 

 

Figure 2.2 Process diagram of the multi-objective optimization model for the biosolids 

management program at the AWTP. 

 

2.2.3 Constraints 

All constraints are linear and represent conservation some quality.  

2.2.3.1 First-stage Constraints  
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The cost of the digester VD is calculated for four different combinations of thermal 

hydrolysis/digestion (TH&digester) and lime stabilization (LS) (Metcalf & Eddy and 

AECOM 2008): 

 Digester type 1: one large digester (four trains of thermal hydrolysis 
27

 and 

anaerobic digester 
28

) plus lime stabilization, called “4 TH&digester + LS”, 

 Digester type 2: one small digester (two trains of thermal hydrolysis and 

anaerobic digester) plus lime stabilization, called “2 TH&digester + LS”, 

 Digester type 3: one large digester and one small digester, called “4 TH&digester 

+ 2 TH&digester”, or 

 Digester type 4: only lime stabilization. 

For each of these four types of digesters (i=1,2,3,4) the cost function is split into 

two segments (j=1,2) reflecting the cost of lime stabilization for inflow exceeding a 

certain threshold unique to each type. For example, for digester type 2, lime stabilization 

begins at 250 dt of inflow. Figure 2.3 shows the costs of the four possible digester cases; 

From the details mentioned above, each digester cost will have a fixed cost 
29

, 

denoted by hij and a variable cost (operation and maintenance costs) related to the solids 

influent amount, denoted by aij. Only one digester will be picked according to the binary 

variable wij. 
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 Thermal hydrolysis is a solid conditioning process including thickened, steam, pressure and cooled down 

solids before anaerobic digestion (Metcalf & Eddy and AECOM 2008). The end-products are solids that 

are ready to be processed by anaerobic digestion (mesophilic or thermophilic). 
28

 Mesophilic anaerobic digestion is a process that is operated from 91 to 99 degrees Fahrenheit to reduce 

the quantity of solids, pathogens and odor (Metcalf & Eddy and AECOM 2008). Anaerobic biodegradation 

breaks down organic substances into the following component shares: 55-65% methane gas (CH4), 30-40% 

carbon dioxide gas (CO2), 0-5% water vapor, traces of hydrogen sulfide H2S and hydrogen H2 and class 

biosolids (Appels et al. 2008). 
29

 Fixed costs included construction, thermal hydrolysis facility, boiler, digested gas, CO2 scrubber, 

overhead of construction processes, and insurance. 
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Figure 2.3 Cost of four possible cases of digester. 

(a 50-year digester lifetime is assumed). 

 

2.2.3.2 Second-stage Constraints  

                   dt (2.1a) 

                       dt (2.1b) 

   ∑ ∑                dt   (2.1c) 
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 Constraint (2.1a) defines the conservation of produced solids expressed in dt. 

Constraint (2.1b) defines the amount of solids produced from wastewater in dt. 

The maximum 428 dt is based on the design for the digester. The minimum 383 dt is 

historically based. 

 Constraints (2.1c) and (2.1d) define the amount of solids in dt that will go to the 

digester to produce biogas .The maximum 370 dt is based on a design for the digester 

(Metcalf & Eddy and AECOM 2008). Note that,           = 1 means only lime 

stabilization is used, hence no digestion. Also at most one of           = 1 

 Constraint (2.1e) defines the amount of solids in dt that will use the lime 

stabilization process to produce Class B biosolids. The maximum amount of Class B 
30

 

production 719 dt will be delivered to the land application site in case the operational 

process faces the maximum peak flow. Constraint (2.1f) is similarly defined, but for 

maximum amount of Class A. 

Constraint (2.1g) defines at most one of the wij variables is equal to 1 

The binary constraint is (2.1h) and constraints (2.1i) and (2.1j) refer to upper 

bounds on the biosolids amount, constrained respectively by the maximum solids 

capacity and the minimum solids used to produce biogas.      indicates solids used to 

produce biogas in dt. 

 

                       cf      (2.2a) 

                   cf (2.2b) 

    
                  cf (2.2c) 

                                                 
30

 719 dt is the maximum peak flow based on historical data from the AWTP operational process and 

digester design. 
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Constraint (2.2a) defines the total amount of biogas in cf produced from the solids 

influent. The maximum biogas of about 4.4x10
6 

cf comes from the digester design, which 

is also equal to the product of factor    and the dry ton of solids influent. See Appendix 

A. 

 Constraint (2.2b) defines the amount of bio-methane in cf produced from the 

solids influent. The amount of bio-methane is 60% of total biogas produced. The 

reduction from 100% is due to further processing needed for methane quality outside of 

AWTP. Constraint (2c) is similarly defined, but for CNG. 

 

          
    

         dt (2.3) 

 

The left-hand side of constraint (2.3) defines the total amount of Class A biosolids 

from the digester or composting processes in dt. The right-hand side represents the 

destination of the Class A biosolids, either land application or sold to the agricultural 

market. The factor of    is the amount of dry tons of Class A biosolids per unit of solids 

influent. See Appendix A. 

 

           
    

       kWh (2.4a) 

  
       

              kWh  (2.4b) 

 

 Constraint (2.4a) defines the average daily amount of electricity used at AWTP 

for operations, which is 634,000 kWh from historical data. This electricity may be bought 

from external sources      or generated from biogas    
      and used at AWTP. 
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 Constraint (2.4b) defines the electricity in kWh generated from the biogas 

produced during the digestion process and used at AWTP. The maximum electricity 

generated from biogas is calculated from the maximum solids transferred from the 

influent multiplied by factor of    calculated from the efficiency of one type of power 

generator using biogas. See Appendix A. 

 

          
            cf (2.5)  

 

Constraint (2.5) defines the total natural gas used at AWTP for operations 

expressed in cf. The average daily amount of natural gas consumption at AWTP from 

historical data is 172,240 cf. This natural gas may be purchased from external sources 

(   
 ) or generated at AWTP as bio-methane (   ). 

 

     
       

       
      

      
       (  

    
 
)      

    
    

  
       

          t CDE (2.6) 

 

 Constraint (2.6) defines the net total carbon dioxide equivalent emissions in t 

CDE.  This constraint can be broken down as follows: 

   
       

       
      the carbon emissions less offset from electricity 

usage both generated at the AWTP and purchased ; 

   
      

       the carbon emissions from natural gas purchased from outside 

the AWTP less what is generated internally ; 
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 (  
    

 
)      

    
    the net carbon emissions resulting from transporting 

the biosolids to the reuse sites (net emissions relative to biosolids credits received) 

   
       

  the credits accrued from selling the digester-derived methane to the 

CNG transportation sector 

The carbon emissions and/or offset from various sources are listed in Appendix A. 

 

     
       

    
         

    
      kWh (2.7) 

 

Constraint (2.7) defines the total energy purchased, which includes energy for 

transportation of Class A and/or Class B biosolids to land application sites, electricity and 

natural gas consumption in kWh. The factors used to calculate fossil fuel consumption to 

handle Class A and/or B biosolids to land application fields and to the market in kWh, 

and the natural gas consumption at AWTP in kWh are given in Appendix A.  

 

   ∑ ∑            ∑ ∑                 $     (2.8a) 

      
        

              
        

                $ (2.8b) 

                  where :      $ (2.8c) 

            
 
  

       
   

         
     

         

            
         

    
      

      
       

          
        

   

   
    

              
                    

 

 Constraint (2.8a) defines the digester cost. 

 Constraint (2.8b) defines the carbon dioxide and renewable energy credits. 
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 Contraint (2.8c) defines the AWTP total value in dollar ($). It is composed of the 

following revenues: sales of Class A biosolids to the agricultural market, sales of 

electricity to the spot market, CNG from the digestion process sold to the spot market or 

transportation sector and carbon dioxide and renewable energy credits constraint (2.8b). 

In addition, the total value includes the following costs: digester cost, cost of electricity 

and natural gas bought externally from the spot market, electricity generation cost, 

production cost of CNG, cost of transporting Class A and B biosolids to land application 

fields, and composting costs. The coefficients are listed in Appendix A. 

 

2.2.4 Objective Functions 

1. Minimize Z =  CT      t CDE (2.9a) 

2. Minimize Z =  PT      kWh  (2.2.9b) 

3. Maximize Z = VT      $ (9c) 

 

 Equation (2.9a) defines the objective function of minimizing net carbon dioxide 

emissions calculated from carbon dioxide equivalent emitted by all operational processes 

and carbon dioxide offsets from digestion and land application. 

 Equation (2.9b) defines the objective function of minimizing total energy 

purchased at AWTP calculated from three sources: fossil fuel for transporting biosolids to 

land application fields, electricity for operational processes and natural gas for heat.  

 Equation (2.9c) defines the objective function of maximizing the total AWTP 

value calculated from operational costs and revenues. 
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2.3 Results and Discussion 

The summary of results of the multi-objective, optimization model taking each 

objective separately are shown in detail in Table 2.1. 

For maximizing the total value objective, the type of digester and the amount of 

biosolids influent are key variables. For example, an optimal solution uses type 2 digester 

(two trains of thermal hydrolysis & anaerobic digestion with lime stabilization), which 

has the lowest operational cost, producing biogas from solids (  ) at the level of 250 dt. 

Furthermore, Class A biosolids from composting and digestion will be sold as fertilizer. 

All of the biogas generated from digestion is used for electricity and space heat at the 

AWTP operations. 

For minimizing the carbon dioxide emissions objective, using digested biogas to 

generate electricity resulted in the greatest reduction in CDE emissions. At optimality 

428 dt of solids influent (  ) will be processed by digester type 3 (four trains Thermal 

hydrolysis & anaerobic digester and two trains Thermal hydrolysis & anaerobic digester) 

to produce biogas. Digester-based electricity is used for the AWTP operations. From used 

digester-based electricity, AWTP will receive carbon dioxide offsets and from biogas for 

heat. These results support AWTP’s goal of a low carbon dioxide equivalent emissions. 

For the objective of minimizing energy purchased, the amount of biogas-based 

electricity is an important variable. At optimality 428 dt of solids are digested to produce 

biogas and generate 293,040 kWh of electricity. The result of this is that only 340,960 

kWh out of AWTP’s total consumption of 634,000 kWh needs to be bought from the 

outside. 
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Table 2.1 Model results with three objective functions. 

Decision variables Unit 

Lower 

bound 

Upper 

bound 

Maximizing 

total value 

Minimizing 

net CDE 

emissions 

Minimizing 

energy 

purchasing 

Total solids influent  dt 383 428 428 428 428 

Solids produced biogas (IG) dt 0 428 250 428 428 

Solids for Class B (IB)  dt 0 428 0 0 0 

Solids for Class A (IA)  dt 0 428 178 0 0 

Biogas generated electricity cf 0  5,141,136  1,092,000 4,968,900 5,141,100 

Bio-methane used as NG cf 0  3,084,682  172,240 172,240 0 

CNG sold to transportation cf 0  2,976,718  1,738,700 0 0 

Class A to land application dt 0 428 0 207 207 

Class A sold spot Market dt 0 428 299 0 0 

Electricity purchasing  kWh 340955 634000 571,750 350,770 340,960 

Generated Electricity and use kWh 0 293045 62,245 283,230 293,040 

Generated Electricity and sell kWh 0 293045 0 0 0 

NG purchasing cf 0 172,240 0 0 172,240 

REC revenue $ 0 654 264 563 547 

Digester cost $ 84,540 401,551 84,540 193,240 230,520 

Optimal value 

   

-104,500 48 365,990 

Digester type 

   

2 3 3 

 

The above results indicate the benefits of generated biogas from solid end 

products of wastewater. The total value (profits) could be increased from the internal 

renewable energy production revenue (selling generated bio-CNG and biogas-based 

electricity) and Class A biosolids sold as fertilizer. However, the small digester (digester 

type 2) option was selected to produce biogas if the objective were to maximize total 

value. 

However, when either minimizing the expected purchased energy from outside 

sources or minimizing the expected net CDE emissions are used as objectives, there is a 

different digester investment option. In particular, with both these objectives, the big 

digester is preferred. 

One difference between these two objectives is the use of the output from the big 

digester. When minimizing purchased energy is chosen as the objective, the big digester 
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allows for more internally generated electricity and thus offsets the outside energy that 

needs to be bought than minimizing CDE is chosen as the objective. 

 

 
 

Figure 2.4 An approximation of the Pareto optimal points when analyze 

minimizing CDE emissions and maximizing total value objectives. 

 

The next step is to generate and then analyze an approximation of the Pareto 

optimal frontier. Figure 2.4 depicts the relationship of the maximizing total value and 

minimizing net CDE emissions objectives. The AWTP can reduce the amount of carbon 

dioxide emissions when the operational cost is increased. For example, to reduce CDE 

emissions, the AWTP can move from a small digester (three most northeastern points in 

Figure 2.4) to a big digester (remaining two points). This switching from a smaller to a 

bigger digester results in 97 fewer tons of emissions (187 to 90) but $618 per day more 

per ton of CDE emissions. However, if the same digester is used (big or small), a 

different trade-off results.  For example, staying with the big digester, the top 

southwestern-most points indicate that to reduce one ton of CDE emissions, it costs $880 

per day. Conversely, if staying with the small digester, the corresponding figure is $311 
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per day.  These figures indicate that producing more biogas with the big digester has a 

positive environmental benefit. 

 

2.4 Conclusions 

In this study, we have developed a model to analyze optimizing three different 

objectives: maximizing total value, minimizing net carbon dioxide equivalent emissions 

and minimizing energy purchasing. In addition, various solids management operational 

activities at AWTP have been modeled. The first decisions involve selecting the type of 

digester option (four in all including just lime stabilization).  Based on which of these 

four choices are selected, AWTP should then choose from producing biogas from 

digestion to generate electricity, selling the biogas directly to the spot market, composting 

to produce Class A biosolids or stabilize solids to produce Class B biosolids. 

The results indicate that AWTP is able to process the maximum amount of 428 dt 

of solids while benefitting from carbon dioxide credits. Additionally, the analysis 

indicates that there is a Pareto tradeoff between the environmental and energy market 

benefits of larger digesters vs. the greater associated investment and operational costs for 

digestion.  What is optimal depends on the objective being considered.  For example, 

when maximizing total value the smallest digester is best.  However, when minimizing 

either energy purchasing or carbon dioxide emissions, the largest digester option is 

optimal. 

This study shows that optimal investment and operational decisions for an 

advanced wastewater treatment plant taking into account energy and environmental 

considerations can be complicated.  Given the increasing environmental and renewable 
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energy concerns, this type of model is likely to assist both wastewater and energy 

managers. 
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Chapter 3: A Stochastic, Multi-objective, Mixed-integer Optimization 

Model for Wastewater-derived Energy 

 

Sustainability is a concept of increasing significance and valuable to a number of 

organizations. However, modeling investment decisions for sustainable energy 

production is challenging due to the many factors that need to be considered. Decision-

makers can use optimization models to explore sustainability infrastructure decisions 

(DeCarolis et al. 2012; Schwarz 2005). 

Mathematical programming models have been applied for waste management 

generally speaking, due in part to an increasing amount of waste over the years.  Indeed, 

from 1960 to 2010, municipal solid waste (MSW) generation in the U.S. has increased 

from 88.1 million tons to 249.9 million tons in 2010 (EPA 2011). No doubt this is due in 

part to population increases but it may also be the result of more waste per person.  From 

a modeling perspective, there is a great opportunity to guide waste managers and other 

interested parties on how best to make use of this untapped resource. To that end there 

have been many research works on this topic. Some recent works include multi-objective 

programming models of solid waste management (Perlack and Willis 1985; Chang and 

Wang 1996), optimization models for solid waste management (Filipiak et al. 2009; 

Rawal et al. 2012), a game-theoretic approach for analyzing strategies of waste 

management for old computers (Kaushal and Nema 2013) to name a few. The perspective 

of these and other works were both environmental and economic goals with sustainable 

management as an overall objective. Results of these models indicate that decision-

makers could benefit from the waste by recovering a high amount of energy, reducing 
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CO2 emissions, etc. For this research, we implemented a stochastic, multi-objective 

optimization model to manage solid end products from a wastewater treatment plant that 

considered both economic and environmental benefits. The current topic goes beyond a 

deterministic optimization version of the model (Gabriel et al. 2012) in several important 

ways.  First, it includes ten stochastic inputs (e.g., electricity consumption and prices) 

based on actual fitted probability distribution. These stochastic data elements then led to 

59,049 scenarios that became part of a two-stage, stochastic recourse model, which took 

into account hedging of decisions unlike the deterministic version of the model.  

Additionaly, a scenario-reduction approach (Dupacova et al. 2003; Heitsch and Romisch 

2003) was used to balance the tradeoff of solution quality vs. computational time.  Lastly, 

the expected value of perfect information (EVPI) and the value of the stochastic solution 

(VSS) were obtained and analyzed to provide guidance. 

For waste in the form of solid end products from wastewater treatment plants 

(WWTPs), there is also a huge potential for resource recovery.  In the U.S. there are some 

3,171 plants (http://water.epa.gov/scitech/datait/databases/cwns/index.cfm) that have up 

to 757 million liters per day of influent waste with a resulting huge amount of potential 

solid end products to be used as fertilizer on farms or to produce methane and/or 

electricity, renewably. Unlike biomass derived from crop waste, which takes up valuable 

land and therefore is in some competition with an increasing population, wastewater-

derived energy is positively correlated with population growth but with less land 

constraints as compared to traditional bio-fuels from crops.  That is, the larger the 

population, all things being equal, the greater the amount of wastewater hence more bio-

gas for use in the power, transportation, or other sectors. To get more electricity from 

http://water.epa.gov/scitech/datait/databases/cwns/index.cfm
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traditional biofuels would likely require more land. As such, in the move to a Smart Grid 

in which renewable energy will no doubt play a large role, wastewater-to-energy 

represents a sustainable part of the energy supply portfolio in the face of larger and larger 

populations. 

The focus of the research in this dissertation is the sustainable management of 

WWTPs in which the energy consumption of the plant, the carbon dioxide emissions, as 

well as the revenues and costs are examined. The wastewater treatment plant used for the 

case study is one of the largest in the world and has some ability to generate its own 

electricity.  This sustainability option is important for this WWTP. Carbon dioxide (CO2) 

emissions and fossil fuel-based energy can be reduced if anaerobic digestion is applied to 

produce solids end product. However, a small digester offers a choice with less 

operational costs. The tradeoff between operational costs and CO2 emissions provides a 

possible option to reduce operation costs per ton of CO2 emissions and vice-versa.  As 

such, the model considers many aspects of the Smart Grid such as: integration between 

energy and transportation, electricity generation by atypical prosumers 

(producer/consumer), the connection between energy and agriculture, and overall system 

planning to reduce negative environmental externalities, to name a few.  The work 

considers a set of stochastic elements (e.g., power prices, influent, energy consumption) 

and includes scenario-reduction techniques to efficiently solve the resulting mixed-

integer, linear stochastic program. The model is tested using the data from the biggest 

advanced wastewater treatment plant (AWTP) on the East Coast of the United States but 

in addition, the areas under study are also applicable to other WWTPs attesting to the 

generality of the modeling and results. 
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The main energy supplied to the wastewater treatment plant examined in this 

research is generated from coal power plants. The operational costs of the WWTP are 

subject to the price of energy purchased from an outside source and to the onsite 

investment in clean energy. The estimated levelized costs of electricity (LCOE) for 

electricity generated from a conventional coal plant is around $0.098 per kilo-watt-hour 

(kWh) (www.eia.gov), and the greenhouse gas (GHG) emissions, especially carbon 

dioxide (CO2), from coal burning can be as high as 93.44 kilograms per million BTU 

(EIA 2012). The LCOE for biomass, wind, solar PV (photovoltaic), hydropower, and 

geothermal are respectively $0.115, $0.096, $0.153, $0.089, and $0.098 per kWh (EIA 

2012), all of which emit much less CO2 to the atmosphere than conventional coal plants. 

For example, the U.S. total CO2 emissions from the electric power sector were 2,160.3 

million tons of CO2 in 2009. About 80.6% emissions were from coal-based electricity 

and only 0.6% emissions were from municipal solids waste (biomass) and geothermal-

based electricity (http://www.eia.gov). Therefore, the WWTP should produce and use 

renewable energy from locally available natural resources in light of sustainability goals. 

This research looks into the benefits derived from the use of solar energy and solid end 

products from WWTP as a biomass source. 

More than 60% of wastewater treatment plants in the United States used solid end 

products to: i) fertilize land, and/or ii) fuel boilers or generate electricity using methane 

gas from an anaerobic digestion process (www.insinkerator.com). For using as fertilizer, 

carbon, nitrogen and phosphorus (important substances for organic fertilizer) from solid 

end products compositions can increase environmental benefits of land application in 

agricultural fields (Wang et al. 2008). An additional benefit of using solid end products 
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from WWTP is the reduced amount of carbon dioxide equivalent (CDE) emissions from 

using solid end products as a renewable energy source (Peters and Rowley 2009). 

Uncertain outcomes associated with wastewater treatment operations as well as 

market conditions (prices and costs of products) are the main aspects to consider in a 

stochastic optimization for sustainability decision-making. The solid end product coming 

from the wastewater treatment processes is called “solids” and the level is uncertain due 

to many factors such as: usage patterns by day of the week, season of the year, and 

discrete weather-related events (Flores-Alsina et al. 2008) and for this study, the level of 

solids has been statistically fit to an appropriate probability distribution and input into the 

model as random parameters. Consequently, there is an uncertain amount of biogas. 

Energy consumption related to the operations also varies as solar electricity generated 

from uncertain solar radiation. The issues of electricity, fossil fuel, natural gas, 

agricultural market conditions as well as carbon dioxide credits are also fit to probability 

distributions. 

To analyze the tradeoffs for a WWTP, we present a two-stage, stochastic 

optimization model with recourse. The first-stage considers which type of digester or 

other process should be implemented. The digester converts wastewater to Class A 

biosolids (see the next section for a discussion) as well as methane as a byproduct. The 

second-stage involves operational constraints for each of the 59,049 (=3
10

) scenarios 

reflecting 10 uncertain aspects and three levels for each as an approximation of the fitted 

probability distribution. Examples of the recourse decisions are to sell or use generated 

electricity from renewable energy sources (biogas or solar), to sell biosolids end product 

to the agricultural market or land apply them as plant nutrients. In addition, multiple 
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objectives are considered to add realism to the problem area being studied.  The optimal 

solution is often a tradeoff among all objectives. The theory of multi-objective 

optimization is also included in this research to examine efficient solutions that can’t be 

improved for one objective without worsening one or more of the other objectives. This 

dissertation is focused on the tradeoff between maximum benefit from the operational 

and investment decision and minimum net CDE emissions when purchased energy is 

considered at average amount. For example, once maximum benefits are considered, 

small digester (lower costs than big digester) should be selected to product biogas and 

Class A biosolids (see the detail about each type of digester in Section 3). Biogas-based 

electricity, bio-CNG (compressed natural gas (CNG) produced from biogas) and Class A 

biosolids are produced from biogas and sold to the electric power, CNG for transport and 

fertilizer markets, respectively, to increase the revenues. On the other hand, big digester, 

which is higher costs than small digester, is preferred to produce more biogas and related 

products such as biogas-based electricity and bio-CNG. Either an option to sell to the 

relevant markets or use internal WWTP is selected due to minimizing net CDE or 

minimizing purchased energy, respectively. 

For computational purposes reduction of the 59,049 scenarios was needed. Many 

methods could be used to decrease the size of the full scenario tree (59,049 scenarios) 

such as conditional sampling, random sampling and scenario-reduction approaches. In 

this study the scenario-reduction approach was used wherein a reduced form of the 

scenario tree is generated to decrease computational time (see Section 4 for more detail). 

The scenario-reduction procedure produces a smaller tree but still contains original data 

and probabilities related to all scenarios (Morales et al. 2009; Gabriel et al. 2009). The 
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GAMS scenario reduction package  ‘‘GAMS/SCENRED2” (www.gams.com)
 
was used 

to create a reduced tree with specialized algorithms (Dupacova et al. 2003; Heitsch and 

Romisch 2003). 

The rest of this chapter is organized as follows: Section 3.1 presents the 

operational parameters of the WWTP. Section 3.2 describes the stochastic, multi-

objective optimization model and Section 3.3 explains the scenario reduction method. 

Section 3.4 discusses the results of the model while Section 3.5 provides concluding 

remarks. Lastly, the Appendixes contain additional details. 

 

3.1 Case Study of a Large Wastewater Treatment Plant 

In this study, ten groups of uncertain data were involved such as solids end 

product from wastewater treatment operational process, energy consumption (mention in 

Section 3.1.1), energy prices and costs, e.g., carbon dioxide credits. The resulting 

stochastic optimization model also considers investments in solar power (mentioned in 

Section 3.1.1) and consideration of disposal of incremental solid waste coming from 

outside organizations (mentioned in Section 3.1.3) as well as incineration as an option. 

 

3.1.1 Energy Consumption at AWTP 

A WWTP uses electricity to run its facilities, natural gas for space heating, and 

fossil fuel to transport biosolids and for service vehicles. For the case study WWTP, the 

electricity consumption during 2004-2010 varied between 564,000 and 838,000 kilowatt 

hours (kWh) per day. Purchased energy from external sources is the biggest cost item for 
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the case study WWTP. Therefore, adopting alternative energy sources is one crucial 

option by which the WWTP can reduce its energy costs. 

The Atlantic County Utilities Authority (ACUA), 
31

 Falmouth’s wastewater 

treatment plant (Town of Falmouth wind energy project, summer 2012.), San Elijo (EPA-

832-F-05-014 2005) and the Deer Island treatment Plant (DITP) (Crowe et al. 2009) are 

examples of WWTPs that produce their own renewable energy for internal use and 

supply left over energy for households. The WWTP in this study has two possible options 

of renewable energy sources: biogas and solar energy. Biogas from solid end products is 

likely to be its main source of renewable energy. Furthermore, the plant has the potential 

to generate electricity from solar energy as solar radiation varies between 0.19 and 2.65 

kWh/m
2
 for its location.  This is the solar capacity that is used in the study. 

 

3.1.2 Biogas Production from Biosolids 

In addition to the economic benefits of using biosolids as fertilizer, the recovery 

of methane from solid end products is posssible (see details in Fig. 3.1.). An anaerobic 

digestion process reduces the amount and volume of solids to produce biogas with 

methane gas as its main composition (Oleszkiewicz and Mavinic 2002). Thermal energy 

is used to stabilize organic matters in the solids influent for digestion (Bonmati et al. 

2001) and then passes them through the anaerobic digestion process to eliminate organic 

matters and then produce several types of gases, such as carbon dioxide and methane. 

This process is called thermal hydrolysis and anaerobic digestion (TH & anaerobic 

                                                 
31

http://www.acua.com/acua/uploadedFiles/Home/ACUA_Information/Files/Fact_Sheets/WWFactSheet06

09.pdf 
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digestion). The end products are principally methane (CH4), carbon dioxide (CO2), and 

stable organic residues (Wang et al. 2007; Rosso and Stenstrom 2008). 

The resulting biogas can then be converted into several forms of energy, such as 

compressed natural gas (CNG) for cars, natural gas for heating, and electricity. CNG can 

replace gasoline in motorized vehicles and fossil fuel, such as coal and crude oil, in 

electricity production. 

 
 

Figure 3.1 Wastewater treatment plant model considered. 

 

3.1.3 The Incremental Solids Disposal for Additional Environmental and 

Economic Benefits 

Long-term investments in a digester for disposal of specific types of solid waste 

requires careful consideration. Hence, purchasing the disposal service from an outside 

source may be a better alternative for some organizations (Green 2008). With the huge 

capacity of a digester (details in the next section), the case study AWTP has the potential 
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to process solids from nearby organizations and get waste management tipping fees, i.e., 

an outsourcing payment to the AWTP. 

 

3.1.4 Carbon dioxide Equivalent Emissions 

In addition to economic benefits, solid end products from wastewater operations 

are helpful in reducing greenhouse gas emissions such as carbon dioxide and methane. 

Land application biosolids for the agricultural sector reduce carbon sequestration in soil. 

For example, District of Columbia Water and Sewer Authority 
32

 reduced 1,941 metric 

tons of CDE (ton CDE) 
33

 emissions by land application of Class B biosolids. Also, the 

WWTP can receive benefits from offsetting carbon dioxide from using biogas-based 

electricity generated from digested biogas. This study considered a generator capacity of 

2.02 kWh/m
3
 to generate electricity from digested biogas. The associated electricity 

generations costs are shown in Appendix B but do not include transporting the biogas to 

the electricity generation site.  For instance, each megawatt hour (MWh) of used or sold 

biogas-based electricity can offset 0.00055 tons of CDE (EPA 2004). Using heat 

produced from biogas offsets 0.00197 tons of CDE per cubic meter (t/m
3
) or 0.000056 

tons of CDE per cubic foot (t/cf), and using CNG from biogas for transportation reduces 

0.001908 t/m
3
 or 0.000054 t /cf (The climate registry 2008).  

 

3.2 A Stochastic, Multi-objective, Optimization Model 

 

                                                 
32

 http://www.dcwater.com/news/publications/2011_08_biosolids_report.pdf 
33

 The international standard practice expresses GHG in the term of carbon dioxide equivalent (CDE). 

Other GHGs than carbon dioxide emission are converted to CDE by using a global warming potential 

(GWP), which expresses 1 for CO2, 21 for CH4, 310 for N20 and 1300 for HFC-134a (EPA 2004). 
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To model the various engineering and uncertain parameters discussed above, a 

stochastic, multi-objective optimization is developed.  Specifically, the model 

simultaneously maximizes the total value (i.e., revenues less costs) of the AWTP 

operational processes, minimizes the amount of energy to be purchased, and minimizes 

the net carbon dioxide emissions. Fig. 3.2 describes the overall model with the first step 

being the modeling of wastewater from the sewage sent to the various operational 

processes and produced liquid (clean water flowing to the river) and solids (solid end 

products) phases.  

The solid end product from the case study WWTP facility varies between 113-814 

dry tons (dt) per day. A Weibull probability distribution was the best fit for capturing the 

(residual) amount of solids and is denoted by          with “s” the index for the 59,049 

scenarios. Additionally, the total amount of solids to the digester includes possible inflow 

from outside organizations. Specifically, we consider 60 dt per day from organization 1, 

as denoted by IOR1(s) and 50 dt per day from organization 2 (IOR2(s)).   

In the next step of the process diagram in Fig. 2, solid influent can go to one of 

three directions: digester (IG(s)), incineration (II(s)), land application as Class B biosolids 

(IB(s)), or directly as Class A material (IA(s)).  In the first case, solids sent to the digester 

will result in biogas, electricity, and some Class A material, or being disposed of by 

incineration.  In the second case, the solids will be processed for land application as 

fertilizer. In the third case, solids will be stabilized by a composting process to reduce the 

amount of pathogens before going to other processes. The model will decide optimal 

values for IOR1(s), IOR2(s), IG(s), II(s), IB(s), and IA(s), given the constraints and the three 

objectives to be optimized.  
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The next set of decisions to be made by the model is to divide the digested 

product into Class A product, biogas from biosolids (      ), compressed natural gas for 

transportation (       ), and electricity from the biogas (GE(s)).  For the quantity of 

Class A biosolids destined for land application, the model will select whether the 

biosolids should be land applied on farms (  
    ) or sold in the agricultural market 

(  
     ). 

Due to the potential to generate electricity from solar energy, investments in solar 

power are described in another set of decisions.           and              respectively, 

representing the set of generated electricity from solar radiation and solar electricity 

generation costs.  

 Lastly, the model selects sales to end-use, spot markets: natural gas non-

transportation, CNG, electricity, fertilizer, or using the wastewater-derived the power at 

the WWTP along with the renewable energy credits and carbon allowance market 

considerations. In the next sections, we describe the objective functions, variables, and 

constraints of the model, which is a mixed-integer linear program, solved using the 

General Algebraic Modeling System (GAMS). 
34

  

 

3.2.1 Decision Variables 

The following is the description of the sets and variables used in the model with 

the main variables shown in Fig. 3.2.  Note that the model solves for values of only one 

typical day; hence, all the variable values are in units per day. 

 

                                                 
34

 www.gams.com. 
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Figure 3.2 Process diagram of the stochastic, multi-objective optimization model for the 

biosolids management program at the AWTP. 
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First-stage decision variables (all variables are assumed to be nonnegative unless 

specified otherwise.) 

      amount of solids processed by digester i and segment j (dt) 

     {
                                                                  

           
  

 

Intermediate first-stage decision variable 

   cost of digester ($) 

 

Second-stage decision variables 

       solids used to produce biogas (dt) 

       solids used to produce Class B biosolids from lime stabilization for land 

application (dt) 

       solids used to produce Class A biosolids not from the digester (dt) 

       solids incinerated (dt)  

          solids brought in from organization 1 (dt) 

          solids brought in from organization 2 (dt) 

       biogas generated from biosolids for generating electricity (cf) 

        biogas generated from biosolids (cf) 

    
      biogas generated from biosolids sold to the transportation sector CNG (cf) 

  
      biosolids Class A produced for land application (dt) 

  
       biosolids Class A sold in the agricultural market (dt) 

       electricity bought from external sources and used at WWTP (kWh) 
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         electricity generated from biogas and used at WWTP (kWh) 

  
       electricity generated from biogas and sold to the spot market (kWh) 

  
         electricity generated from solar energy and used at WWTP (kWh) 

  
       electricity generated from solar energy and sold to the spot market (kWh) 

   
        natural gas purchased from external sources (cf)  

 

3.2.2 Parameters 
35

 

     maximum amount of Class B production (dt)  

     maximum amount of solids from organization 1 (dt) 

      maximum amount of solids from organization 2 (dt) 

     maximum amount of solids used to produce biogas (dt) 

   biogas production factor (cf)  

    methane production factor (unitless) 
36

  

      CNG production factor (unitless) 
37

  

   amount of dry tons of Class A biosolids per dry ton of solids influent  

   factor used to calculate generated electricity from biogas (kwh/cf) 

       average daily amount of natural gas consumption at WWTP
38

 from historical 

data (cf) 

  
   factor used to calculate carbon dioxide emissions from electricity (t/kWh)  

                                                 
35

 See details on Appendix B. 
36

 The biogas (CH4 + CO2 + H2O + trace gases) can be broken down into the following component shares: 

55-65% methane gas (CH4), 30-40% carbon dioxide gas (CO2), and 0-5% water vapor, traces of hydrogen 

sulfide H2S and hydrogen H2 (Appels et al. 2008).  Consequently, in the model presented below, an average 

60% of methane composition in biogas is used. 
37

The reduction of CNG from 100% of natural gas is due to further processing for gas quality outside of 

WWTP (http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510).  
38

 The highest natural gas consumption obtained from the energy saving plan report of December, 2010. 

http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510


 

59 

 

  
   factor used to calculate carbon dioxide emissions from used natural gas for 

heat (t/cf)  

  
   factor used to calculate carbon dioxide emissions from incineration (t/dt)  

  
    factor used to calculate carbon dioxide offset from sold CNG for  the 

transportation sector (t/cf)  

  
 
  factor used to calculate carbon dioxide offset from biosolids used as fertilizer 

(t/dt)  

  
   factor used to calculate carbon dioxide emissions from transportating 

biosolids to the land application field (t/dt)  

  
   factor used to calculate fossil fuel consumption to transport Class A and/or B 

biosolids to land application fields (kWh/dt) 

  
   factor used to calculate natural gas consumption at WWTP (kWh/cf)  

  
   supplementary fuel for incineration process factor (kWh-$/dt-gal) 

  
  factor used to calculate fossil fuel consumption for transportation Class A 

and/or B biosolids to land application fields and to agricultural market in 

gallon per dry ton (gal/dt) 

  
     electricity generation costs ($/kWh) 

    
     CNG compression costs ($/cf) 

  
     Class A biosolids composted costs ($/dt) 

    
   ash disposal cost ($/dt) 

    
   CNG prices ($/cf)  

  
    tipping fees ($/dt of biosolids) 

      
      CDE allowance  (t) 
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       installation area of solar panels (m
2
) 

     credits from renewable electricity standard ($/kWh) 

   
   

  parameter used to turn on REC or CO2 credits and it is equal to 0 or 1 

     renewable energy credits ($/t CDE) 

 

Random parameters 

        probability for each scenario 
39

 

          uncertain solids influent to digester (dt) 

        (s)  uncertain electricity consumption at WWTP (kWh) 

          (s)  uncertain electricity purchasing prices ($/kWh) 

     (s)  uncertain electricity selling prices ($/kWh) 

           (s) uncertain natural gas purchasing prices ($/cf) 

       (s)   uncertain fossil fuel prices to transport Class A and B bisolids ($/gal) 

       (s)   uncertain fertilizer prices ($/t) 

    (s)   uncertain carbon credits ($/t CDE) 

      (s)   uncertain solar radiation (kWh/m
2
)
40

 

         (s)  uncertain generated solar electricity cost ($/kWh) 

 

3.2.3 Constraints 

All constraints except for those defining binary variables are linear and the 

majority of them represent some form of conservation of product. 

                                                 
39

 See details in Appendix B. 
40

 While the amount of solar radiation is a random variable, the amount of solar power generated from it is 

an upper-level, second-stage decision variable. 
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3.2.3.1 First-stage Constraints 

For the digester cost, VD, the model selects one digester design from five possible 

cases: 1) four trains of thermal hydrolysis (TH) and anaerobic digestion (4TH & digester) 

and a lime stabilization (LS), 2) two trains of thermal hydrolysis and anaerobic digestion 

(2TH & digester) and a lime stabilization (LS), 3) four trains of thermal hydrolysis and 

anaerobic digestion (4TH & digester) with another two trains of thermal hydrolysis and 

anaerobic digestion (2TH & digester) and a lime stabilization, 4) only a lime stabilization 

process, or 5) only a incineration process. Each of these five types of digesters 

(i=1,2,3,4,5) has three cost curve segments (j=1,2,3) relating to a change in the process 

with different costs. For example, x11 corresponds to segment one for digestion option 

number one (thermal hydrolysis and anaerobic digestion with lime stabilization). Fig. 3.3 

and the analysis below show the costs of the five possible digester cases. 

The costs of each digester consist of a fixed cost, denoted by hij, and variable 

costs related to the solids influent amount, denoted by aij. Only one digester can be 

selected and this is controlled by the binary variable wij.  Constraint (3.1) defines the 

investment cost of the digester. 

 

    ∑ ∑            ∑ ∑               $ (3.1) 
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Figure 3.3 Cost of five possible types of digester 

(a 50-year digester lifetime is assumed). 

Note that this 50-year lifetime is an assumption and specifically used for this case study.  

 

3.2.3.2 Second-stage Constraints 

Influent constraints 

                                                    dt (3.2a) 

                                dt (3.2b) 

      ∑ ∑               dt   (3.2c) 

                               dt (3.2d) 
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     {   }              (3.2i) 

                        (3.2j) 

                        (3.2k) 

 

 Constraint (3.2a) defines the conservation of produced solids expressed in dt. 

 Constraint (3.2b) defines the amount of solids in dt required in the lime 

stabilization process to produce Class B biosolids. 

 Constraints (3.2c), (3.2d) and (3.2e) define the amount of solids in dt that will go 

into the digester to produce biogas. The binary variables                = 1 mean that 

only lime stabilization option is used and               = 1 means that only 

incineration is used, thereby no biogas. 

Constraints (3.2f) and (3.2g) define the maximum amount of solids from outside 

sources in dt. 

Constraint (3.2h) defines at most one of the wij variables is equal to 1 

The binary constraint is (3.2i) and constraints (3.2j) and (3.2k) refer to upper 

bounds on the biosolids amount, constrained respectively by the maximum solids 

capacity and the minimum solids used to produce biogas.      indicates solids used to 

produce biogas in dt. 

 

Biogas constraints 

                          
          cf (3.3a)  

                          cf (3.3b) 

    
                         cf (3.3c) 
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 Constraint (3.3a) defines the total amount of biogas in cf generated from the 

solids influent. Constraint (3.3b) defines the amount of bio-methane gas 
41

 from the solids 

influent in cf. Constraint (3.3c) is similarly defined but for CNG. 

 

Biosolids constraints 

  
       

                          dt (3.4) 

 

Constraint (3.4) defines the total amount of Class A biosolids from the digester 

and composting processes in dt that can be land applied or sold to the agricultural market. 

 

Electricity constraints 

                    
          

           kWh (3.5a) 

  
          

                   kWh (3.5b) 

  
          

                              kWh (3.5c) 

 

 Constraint (3.5a) defines the daily amount of electricity used at the AWTP for 

operations, which is an uncertain data element and is denoted by “           ”. The 

electricity may be bought from external sources         or generated from biogas 

   
         and used at the AWTP. In addition, it is possible to generate electricity from 

solar power    
         to be used at the AWTP. 

                                                 
41

 Bio-methane is one part of biogas which also includes carbon dioxide and other gases. 
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 Constraint (3.5b) defines the electricity in kWh from the biogas produced during 

the digestion process and use at the AWTP or sold to the spot market. Constraint (3.5c) 

defines the electricity in kWh from solar power and used at the AWTP or sold to the spot 

market. 

 

Natural gas consumption constraint 

   
                             cf (3.6)  

 

Constraint (3.6) defines the total natural gas used at the AWTP for heat expressed 

in cf (       . Natural gas may be purchased from external sources (   
    ) or 

produced at AWTP in the form of bio-methane (      ). 

 

Carbon dioxide equivalent emission constraint 

        
           

          
     

           
      

             

  
            

    
 
           

       
         

      
         t CDE (3.7) 

 

 Constraint (3.7) defines the net total carbon dioxide equivalent emissions in t 

CDE, consisting of CDE emissions from AWTP operations    
        , natural gas 

heating (  
      

     , transportation of biosolids    
          

       
        and 

incineration    
         less offsets from renewable electricity generated 

   
    

          
     

          and used at AWTP, sold CNG    
         , 

used/sold bioslids as fertilizer    
 
         

       
       . 
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Energy purchasing constraint 

        
          

       
                         

    
           

  
                         kWh (3.8)  

 

Constraint (3.8) defines the total purchased energy of AWTP, which includes 

energy for transportation of Class A and/or Class B biosolids to land applied sites 

   
          

       
       , transportation of solids from organizations 1 and 2 

   
 (               ) , natural gas consumption    

    
     , electricity consumption 

       , and supplement fuel for incineration    
                   in kWh. 

 

Value constraints 

              (      
          )    

   
    (      

          ) (     
   

) $(3.9a) 

  

                           where:     $ (3.9b) 

 

Constraint (3.9a) defines the revenue from carbon dioxide or renewable energy 

credits. 

 Constraint (3.9b) defines the net AWTP total value in $. It is composed of the 

following costs (with a negative sign in front): digester cost (  ), cost of electricity 

(                  ) and natural gas bought externally from the spot market 

(                 
    ), solar electricity generation cost (               

        

  
     ), production cost of CNG (    

        
    ), ash disposal cost (    

       ), cost of 

transporting Class A and B biosolids to land application fields (  
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            ), transporting cost from organization 1 and 2  (  

                     

       ), supplement fuel cost (  
                 ) and composting cost (  

         ). In 

addition, the total value includes the following revenues: sales of Class A biosolids to the 

agricultural market (            
  ); sales of electricity (          

                  

      
      , CNG from the digestion process to the spot market or transportation 

sector (    
      

    ); tipping fees from both organizations (  
                    ); 

and carbon dioxide and renewable energy credits (      ). 

 

3.2.4 Objective of a Stochastic Model 

There are three objectives to be optimized: maximizing expected total value, 

minimizing expected net CDE emissions and minimizing expected purchased energy. As 

is the case with two-stage recourse models, the objective(s) is (are) applied to the full 

model (i.e., the deterministic equivalent). The expectation is taken over all the scenarios 

considered after discretizing the fitted probability distributions shown in Fig. 3.2. 

This study is focused on the tradeoff between maximizing the benefits (also 

discussed as “value”) from the operational and investment decisions and minimizing the 

net carbon dioxide equivalent emissions when purchased energy is considered at an 

average amount. Thirdly, the objective of just minimizing purchased energy is also 

considered. 

These three objectives compete with each other and this is typified as follows.  

The small digester is chosen when maximizing expected benefits since it allows for lower 

costs than the big one but permits the WWTP to be active in the fertilizer, electric power, 

and CNG transportation markets.  In fact, the highest level of Class A solids are produced 
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(either from the digester or by composting) under this objective.  By contrast, when 

minimizing expected carbon dioxide equivalent emissions, it is more effective to use a 

big digester.  This choice of first-stage variables allows for selling the biogas-based 

electricity to the spot market and there is no activity in the CNG market.  Lastly, when 

minimizing expecting purchased energy a big digester is also chosen.  However, the uses 

are different for the output.  In particular, the biogas-based electricity is used on-site and 

nothing is sold to the spot market.  Moreover, there is also no CNG produced under this 

objective. For example, once maximum benefits (value) are considered, a small digester 

(lower costs than big digester) should be selected to product biogas and Class A 

biosolids. Biogas-based electricity, thus, these three objectives produce different first- 

and second-stage decisions for the WWTP 

1. Maximize              dollar  

2. Minimize             ton CDE  

3. Minimize             kWh   

 

3.3 Scenario Reduction 

The model as stated above contains 59,049 scenarios resulting from the 10 groups 

of uncertainties that were transformed from continuous distributions (see Fig. 3.2) to 

three-point, discrete distributions (Keefer 1994; Hoyland and Wallace 2001). Each 

distribution function was discretized to low, medium and high values with the 

corresponding probabilities. The scenario-based optimization then takes into account the 

resulting three-point distributions and related probabilities of 10 uncertain elements (3
10

 = 

59,049 scenarios used). This stochastic optimization model has been solved using an 
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Intel(R) Core (TM) i7-2670QM computer with a CPU@2.2 GHz and 8 GB of RAM. The 

computational time required to solve this problem for one objective at a time was about 

56 minutes for maximizing total value, 153 minutes for minimizing purchased energy and 

165 minutes for minimizing carbon dioxide emissions. However, the computational time 

increased to about 2.5 hours when two objectives were optimized at the same time (multi-

objective optimization) to obtain one Pareto optimal point. The constraint method was 

used optimizing one objective while other objectives were constrained (Cohon 2003). 

The approximated Pareto optimal frontier was created with about 50 Pareto solutions 

from the stochastic optimization model. For computational purposes, a scenario-reduction 

approach (Morales el al. 2009; Conejo el al. 2010) was used to reduce the computational 

time and effort. 

Scenario reduction begins with a subset of the full set of 59,049 scenarios. In this 

research the distance functions between the reduced scenario tree and the original one, 

i.e., the monitoring function, are computed internally by GAMS/SCENRED2 

(GAMS/SCENRED2 2007; Dupacova et al. 2003; Heitsch and Romisch 2003 and 2009). 

This is done in an iterative fashion until convergence criteria are met. The scenario 

reduction method is shown step by step in Fig. 3.4. 

 

mailto:CPU@2.2
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Figure 3.4 The scenario reduction method 

 

As described in (Conejo et al. 2010), a large scenario tree can be reduced to a 

smaller one via a probability measure distance (relative distance for 

GAMS/SCENRED2). It can be shown that the optimal value of the objective function of 

the reduced scenario tree is close to the optimal value of the objective function of the 

initial scenario tree if the reduced scenario tree is properly chosen (Conejo et al. 2010). A 

convergence analysis (Dupacova et al. 2003) was run by varying the percentage of 

relative distance of the reduced scenario tree relative to the initial probability measure.  

The reduced tree could be run between 0% of the relative distance (the original scenario 

tree) and 100% (having only one scenario). Fig. 3.5 shows maximizing the expected 

WWTP total value objective function as a function of the number of scenarios in the 

reduced tree. The reduced tree was obtained by varying the relative distance measure. 

The full scenario tree was only used in this case to test the quality of the scenario-

reduction approach.  In general, one would not have access to the full scenario tree. 
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Figure 3.5 Results from the stochastic model varying the number of scenarios 

 

The reduced tree was estimated by assigning percent reduction on GAMS 

subroutine GAMS/SCENRED2 (GAMS/SCENRED2 2007; Heitsch and Romisch 2003 

and 2009). In Figure 3.5, for all the reduced-scenario outputs shown, the model selected 

two trains of a thermal hydrolysis and anaerobic digestion (2TH & digester) and a lime 

stabilization (LS) for the first-stage decision (i.e., the small digester). As the size of the 

reduced set of scenarios increases, excluding pathological cases, the objective function 

(expected total value) should after some point be close to that of the model with the full 

set of scenarios.  However, more scenarios generally means more computational time is 

needed.  Thus, there is a tradeoff in the quality of the solution when a reduced set of 

scenarios is used and the computational time.   In this study, a tolerance of 2% from the 

optimal objective function value for the full set of scenarios was used in conjunction with 

the GAMS/SCENRED2 subroutine, which automatically selected the subset of scenarios.  

The expected total value -$103,300 of the reduced tree was 98.9% accurate relative to the 
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optimal objective function value of -$104,371 for the tree with the full set of scenarios.  

With this procedure, the number of scenarios was reduced from 59,049 to 15,966.  

 

3.4.Results and Discussion 

In this section, we summarize the results of the stochastic optimization model by 

analyzing each of the three objectives one at the time. Also we compare the optimal 

objective function value between the deterministic and the stochastic optimization 

models.  

For each of the three objectives, four cases were considered as shown in Figures 

3.6, 3.7, and 3.8. 

1. $0 per dry ton of biosolids for tipping fee from the two outside organizations, 

no solar power from on-site. 

2. $0 per dry ton of biosolids for tipping fee, and solar power allowed on-site. 

3. $50 per dry ton of biosolids for tipping fee, and solar power allowed on-site. 

4. $100 per dry ton of biosolids for tipping fee, and solar power allowed on-site. 

When maximizing the expected value to the WWTP, the second digester strategy 

(two TH & anaerobic digester and lime stabilization) with the maximum amount of solids 

(250 dt) was selected to produce biogas. The cost of this digester was a key item because 

the chosen option has the lowest operational and maintenance costs (costs per dry ton of 

solids) for operated solid end products for 0-250 dt compared to other digester types 

(shown in Fig. 3.3). The optimal objective function value without tipping fees and solar 

power had a cost of $109,808 per day (shown in Fig. 3.6). However, the tipping fee and 

solar power were important options for the WWTP to increase its value (profit). For 
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example, if a $0 tipping fee and solar power were considered, the operational costs 

decreased to $109,742.  However, with solar power but tipping fees of $50 or $100, the 

value increased to only  $104,371 and $98,871 per day of costs, respectively. 

 

 
 

Figure 3.6 Optimal objective value of the maximizing expected AWTP total 

value in dollars. 

 

Fig. 3.7 shows the results when minimizing the second objective of expected 

purchased energy. The third digester option (four TH & anaerobic digester and two TH & 

anaerobic digester) with a maximum capacity of 620 dt was selected to produce biogas. 

The optimal objective function value without tipping fee and solar power showed that 

430,984kWh per day of energy was purchased, and this amount was reduced to 412,263 

kWh if on-site solar power was generated in combination with a $100 tipping fee. 
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Figure 3.7 Optimal objective value of the minimizing expected purchased energy 

in kWh. 

 

Figure 3.8 shows the results when minimizing the third objective of expected net 

CDE emissions. The third digester option (four TH & anaerobic digester and two TH & 

anaerobic digester plus LS) was selected. Electricity from solar power was also 

generated. The optimal objective function value for the specific case that did not include 

tipping fees and solar power was 288 tons CDE emissions per day. The expected net 

CDE emissions could be offset to 268 tons per day if solar power was generated and used 

at AWTP. 
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Figure 3.8 Optimal objective values of the minimizing expected net CDE 

emissions in ton. 

 

The above results indicate the benefits of generated biogas from wastewater; solar 

power generated on-site, and tipping fees. The expected WWTP total value could be 

increased from the internal renewable energy production revenue (selling generated 

electricity and CNG) and tipping fees. However, the small digester (digester type 2) 

option was selected to produce biogas if the objective were to maximize total value. The 

amount of solids end product if higher than the digester capacity (250 dt), are composted 

and sold to the agricultural market as Class A biosolids (fertilizer) when maximizing 

value. 

However, when either minimizing the expected purchased energy from outside 

sources or minimizing the expected net CDE emissions are used as objectives, there is a 

different first-stage solution.  In particular, with both these objectives, the big digester is 

preferred.  
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One difference between these two objectives is the use of the output from the big 

digester.  When minimizing purchased energy is chosen as the objective, the big digester 

allows for more internally generated electricity and thus offsets the outside energy that 

needs to be bought.  When minimizing CDE, the big digester has another function.  

Namely, more of the internally produced electricity is sold to the outside power market. 

Table 3.1 shows optimal solutions for the three, conflicting objectives where the expected 

amounts of various model outputs are shown. 

 

Table 3.1 The expected amount of related products from solid end products 

Objective  Max VT Min CT Min PT 

Digester type Small Big Big 

Class A biosolids sold as fertilizer (dt) 274 158 107 

Renewable-based electricity used at 

WWTP (kWh) 79,006 18,547 171,615 

Renewable-based electricity sold to the 

outside power market (kWh) 101,319 218,897 0 

CNG sold (cf) 86,540 0 0 

 

 An approximation of the Pareto optimal frontier was generated to show the 

relationship between the expected AWTP total value in $ and the expected net CDE 

emissions in ton by fixing the values of the expected purchased energy at 634,000 

(average energy consumption) kWh.  Figure 3.9 provides some insights on trading off 

CDE emissions with operational costs.  The second digester option was selected and the 

expected net CDE emissions were grouped into three portions based on a statistical 

regression analysis. According to the three equations shown in Figure 3.9, the AWTP 

needs to spend about $36, $173, or $371 on operational costs to reduce 1 ton of CDE 

emissions at average energy consumption when the range of CDE emissions were 
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considered [154,160] for the first portion, (160, 177] for the second portion and (177, 

202] for the third portion. 

Clearly, WWTP managers must carefully balance the tradeoffs between 

environmental/sustainability goals and profitability in making decisions concerning 

wastewater-to-energy programs.  These decisions in turn, can affect the external energy 

markets as well as the CNG and agricultural markets.  In terms of the Smart Grid, since 

WWTPs are prosumers, this balancing of goals could have important effects on the power 

sector if WWTPs’ generation scales up. 

 

 
 

Figure 3.9 Approximation of the Pareto optimal frontier showing the relationship 

between maximizing expected AWTP total value and minimizing expected net CDE 

emissions when the expected purchasing energy 634,000 kWh. 
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analyze three different objectives: maximizing expected WWTP total value (i.e., profit), 

minimizing expected net carbon dioxide equivalent emissions, and minimizing expected 

purchased energy. The first-stage decisions involve selecting one of five possible 

digester-lime stabilization cases : four thermal hydrolysis & digester and a lime 

stabilization, two thermal hydrolysis & digester and a lime stabilization, four thermal 

hydrolysis & digester with two thermal hydrolysis & digester and a lime stabilization, a 

only lime stabilization and an only incinerator. The WWTP can then either choose to 

produce biogas from digestion, dispose of it by incineration, compost it to obtain Class A 

biosolids, or stabilize it by lime to produce Class B biosolids.   

The results show that the WWTP could reduce CDE emissions and decrease 

purchased energy from outside sources by using a big digester (four thermal hydrolysis & 

digester with two thermal hydrolysis & digester and a lime stabilization) to produce 

biogas from biosolids. On the other hand, the smallest digester (two thermal hydrolysis & 

digester and a lime stabilization) was selected to minimize operational and investment 

costs for maximizing the expected WWTP total value.  Additionally, the analysis shows 

that incremental digestion of solid waste from nearby organizations increases the 

revenue. By using solar energy on-site, the analysis shows a decreased dependence on 

purchased energy from outside sources. Further analysis indicates that there is a Pareto 

optimal tradeoff for the WWTP between the environmental and the associated investment 

and operational costs for digestion. 

This study shows that optimal investment and operational decisions for a 

wastewater treatment plant taking into account energy and environmental considerations 

(CDE emissions) can be complicated. Given the increasing concerns for social, 
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economic, environment and interest in renewable energy, the stochastic optimization  

model presented however, could be of great use to wastewater treatment plants and 

energy managers to guide them with evaluating all the tradeoffs. 
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Chapter 4: A Stochastic MPEC for Sustainable Wastewater 

Management  

 

Models to assist decision-makers for environmental management have been 

considered by a number of researchers. In this study, we present a novel, stochastic 

mathematical program with equilibrium constraints (MPEC) model for wastewater 

management. The area of wastewater management is studied not only in the 

environmental area but also in energy, transportation and agriculture given the various 

end products from wastewater. Some research by others has considered various aspects of 

wastewater management. For example, wastewater treatments plant design and the 

quality of treated water (Ellis and Tang 1991; Draper et al. 2003; Cunha et al. 2009; 

Alvarez-Vázquez et al. 2010). Others have considered optimization modeling of energy 

consumption in wastewater treatment plants and renewable energy harvests from water 

distribution (Ye and Soga 2012; Hu et al. 2013). However, it is rare that other research 

has concentrated on the end products of wastewater treatment plants. From the 

perspective of MPECs, there have been many works in the last 20 or 30 years. Many of 

them focused on energy or other markets structure area but not wastewater (Luo et al. 

1996; Gabriel et al. 2013). Some of these MPECs have also been stochastic in nature 

such as a stochastic Stackelberg equilibrium model for the European natural gas market 

(De Wolf and Smeers 1997) and a stochastic MPEC approach for electricity markets 

(Wogrin et al. 2011), to name two examples.  

 The model is based on the Blue Plains Advanced Wastewater Treatment Plant 

(AWTP) run by the District of Columbia Water and Sewer Authority (DC Water). This 
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plant’s ammonia is converted by nitrification and denitrification into nitrogen gas, and 

through this nitrogen removal process a treatment plant is considered an AWTP. Without 

this procedure, it is considered as just a wastewater treatment plant (WWTP).  We use 

this latter definition for the more general case in this study. The Blue Plains AWTP is 

listed as the one of the largest wastewater treatment plants in the world
42

 
43

 and as such 

provides an excellent test bed.  The stochastic MPEC encompasses both the investment 

and operational aspects of converting wastewater to: biosolids (Class B) for land 

application, biosolids (Class A) for plant fertilizer, compressed natural gas for 

transportation, and methane for electric power production or other uses in the residential 

natural gas sector.  As such the model is a stochastic MPEC where the stochasticity arises 

from the probabilistic nature of many of the inputs such as: natural gas prices, electricity 

prices, solid end products from wastewater operational process, etc.  As described in a 

later section, the various probability distributions for these inputs are discretized leading 

to a scenario-tree approach.  The overall size of this stochastic MPEC can therefore be 

large, depending on the number of scenarios and processes considered.  Indeed, in the 

case of used a reduced number of 2,187 scenarios, the upper-level problem has 102,789 

continuous variables and 32,805 binary variables and the lower-level problem has 

166,212 continuous variables, 247,131 binary variables and 30,618 SOS1 (special 

ordered sets of type 1) variables, thus making this a very large-scale problem. 

 The general formulation for a mathematical program with equilibrium constraints 

is given by the following:
 
 

                                                 
42

 http://enr.construction.com/infrastructure/water_dams/2012/extras/0328/slideshow.asp?slide=11 

(Illustration: Justin Reynolds for Engineering News-Record (ENR.com)). 
43

 The 2008 The Clean Watersheds Needs Survey (CWNS) is available through EPA’s Office of 

Wastewater Management and can be accessed at: 

http://water.epa.gov/scitech/datait/databases/cwns/index.cfm. 

http://enr.construction.com/infrastructure/water_dams/2012/extras/0328/slideshow.asp?slide=11
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s.t.            (4.1) 

       

where there are two sets of  continuous variables       ,       respectively, the 

vector of upper-level and lower-level variables. The overall objective function is        

and   represents the joint feasible region between the upper- and lower-level variables.  

The challenging constraints are that the lower-level variables y belong to     , the 

solution set of the lower-level problem.  This bottom-level problem can be one or more 

optimization problems, a complementarity problem  (Cottle et al. 2009)  or variational 

inequality problem (Luo et al. 1996).  Even if all other parts of  (4.1) are linear, the last 

set of constraints are non-convex and can cause computational difficulties unless a 

specialized MPEC approach is applied, rather than just treating (4.1) as a regular 

nonlinear program (Bazaraa et al. 1993). 

 Much research has been devoted over the last 25-30 years to efficiently solving 

MPECs (Luo et al. 1996; Scheel and Scholtes 2000). Some recent approaches include the 

works by Fletcher et al. (2004, 2006), Leyffer et al. (2006) and Anitescu et al. (2007) that 

search for stationary points of these problems. These methods have been shown to obtain 

local solutions to moderately sized MPECs. However, given the non-convexity of 

MPECs, it may work for small problems might not work for large instances.  As 

described by Chen et al. (2006), a two-stage process was needed to solve their large 

energy market MPEC.  There have been general algorithms that provide global solutions 

(Gumus et al. 2001; Hu et al. 2007; Mitsos 2010) to MPECs proposed in the literature as 
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well.  Other methods (Steffensen and Ulbrich 2010; Uderzo 2010) also exist but have not 

been shown to work for large-scale models.   

 In this study, we make use of the new SOS1 (Beale and Tomlin 1970) approach of 

Siddiqui and Gabriel (2012) to transform the complementarity conditions of the lower-

level problem appropriately.  This work, partially based on (Gabriel et al. 2006) 

reformulates an MPEC into a single-level, SOS1-constrained optimization problem or 

one with a penalty-like term.  It has been used in combination with a heuristic adjustment 

procedure (Siddiqui and Gabriel 2012) to solve an MPEC of approximately 9,400 

variables for the North American natural gas market.  Thus, it appears that it can scale to 

larger problems.  This is important in the current application which, depending on the 

number of scenarios used for the upper-level problem, could be rather large.  Moreover, 

this approach has been shown in (Siddiqui and Gabriel 2012) to be numerically superior 

(at least on the problems tried) than the method of disjunctive constraints (Fortuny-Amat 

and McCarl 1981). 

At the top level of this MPEC is the depiction of the wastewater treatment plant 

(WWTP) whose activities are modeled as a two-stage, stochastic optimization problem 

with recourse.  The first-stage variables include investments in digesters (different 

capacities) that convert the solid end products from the wastewater treatment process to 

methane and Class A biosolids. 

 The first-stage decisions are combined with recourse actions such as how much 

methane to produce from the digestion process, how much electricity to produce from the 

methane, how much compressed natural gas (CNG) to sell to the Washington, DC CNG 

bus system, how much natural gas to sell to the residential sector, and how much high-
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end (Class A) or Class B fertilizer 
44

 (biosolids) to produce and sell in retail stores or land 

apply at reuse sites, respectively. 

 Given the proximity to Washington, DC’s CNG fleet of buses, local farms, and 

the possibility to generate its own electricity (to some extent), the Blue Plains facility has 

the potential to influence (at least locally) several related markets.  First, currently in the 

Washington, DC CNG bus market, 1.98 million cubic feet per day of this fuel is used. 

The Blue Plains potential production of CNG is about 2.55 million cubic feet per day so 

that in principle it could be enough to entirely cover this market (Chandler et al. 2006).   

In addition, a CNG station could be established at DC Water to support other CNG 

vehicles.  At present, the District of Columbia has no public stations, two private ones, 

and the State of Maryland has three public and six private ones. Virginia has five public 

and 12 private ones. 
45

 

 DC Water can also be a player in the natural gas market beyond CNG by selling 

its digester-based methane to natural gas consumers.  Burning the methane to produce 

electricity is also another recourse option for the Blue Plains WWTP.  At present, this 

facility buys about 15 MW from its local supplier (PEPCO) and potentially as much as 10 

MW could be produced from digested-based methane (Metcalf & Eddy and AECOM 

2008). 

 Lastly, as Class A biosolids are an organic fertilizer, Blue Plains could also be an 

important influence in the high-end, fertilizer market.  On average, Blue Plains produces 

some 370 dt per day, which is about 18% of an average U.S. state’s fertilizer 

                                                 
44

 See the next section for an explanation of Class A and class B biosolids. 
45

 http://www.afdc.energy.gov/fuels/natural_gas_locations.html. 
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consumption.
46

 If DC Water decides to sell its digester-derived, Class A biosolids in this 

market for the Washington metro area, it could have a significant effect on fertilizer 

market prices. 

 The MPEC nature of the model arises since decisions that DC Water can make 

(e.g., how much Class A biosolids to produce) can have a significant effect on the 

various, lower-level markets outlined above.  From that perspective, DC Water has a 

Stackelberg leader position in these markets (Gabriel et al. 2013) so that the MPEC 

paradigm is appropriate.  Moreover, as DC Water represents one of the largest WWTPs 

in the world, other wastewater treatment plants may follow their lead in innovate thinking 

vis-à-vis expanding the role of wastewater management.  Lastly, as a renewable energy 

source (and transportation fuel), certain renewable energy credits (RECs) and carbon 

credits are available to WWTPs that pursue this wastewater-to-energy route.  Moreover, 

such a renewable energy source increases with population growth and generally does not 

compete for arable land as do crop-based biofuels.  From that perspective, wastewater 

and the resulting products offer a renewable energy source that correlates positively with 

population growth and is thus a sustainable approach. 

 In summary, this study offers the following. First, it provides a novel model for 

wastewater management at WWTPs on how to be active in several markets such as 

energy, agriculture and transportation. Moreover, the model allows for the WWTP to be a 

local Stackelberg leader in the market application. The study also provides a novel 

formulation for a stochastic MPEC. Lastly, the numerical results indicate that such a 

model can successfully be solved with a representative number of scenarios. 

                                                 
46

 The U.S. fertilizer consumption in 2009 was 37 Mega tons/year which when divided by 50 (for the U.S. 

States) yields 748,000 tons/year/state, http://www.ers.usda.gov/data-products/fertilizer-use-and-

price.aspx#26720. 
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4.1 The Blue Plains Advanced Wastewater Treatment Plant (AWTP) Operational 

Processes  

The Blue Plains facility is located on the banks of the Potomac River in 

Washington, DC and covers an area about 150 acres (60.7 hectares). This location has the 

potential to produce renewable energy from photovoltaic (PV) solar power 
47

 in addition 

to its primary wastewater treatment function.   Based on a growing U.S. population, it is 

expected that the Blue Plains treatment capacity will be increased to an average amount 

of 370 million gallons/day (MGD) (1,400.6 liters/day) 
48

. The treatment processes are 

divided into separate parts, each with a distinct function. The solid end products from the 

primary, secondary, nitrification and denitrification are thickened separated and 

dewatered. These products can be used to produce Class B biosolids 
49

 by lime 

stabilization, Class A biosolids 
50

 by composting and/or biogas from the digestion process 

(Oleszkiewicz and Mavinic 2002). 

 

4.2 Overview of Model Formulation 

The overall model is a two-level, stochastic MPEC with a wastewater treatment 

plant as the Stackelberg leader at the top level and four separate markets at the bottom 

level.  At this top level, the investment and operational decisions of the wastewater 

treatment plant are depicted as a two-stage stochastic optimization problem with 

                                                 
47

 NREL, Solar radiation data manual for flat-plate and concentrating collectors 

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/targzs/targzs_by_state.html#M. 
48

 http://www.dcwater.com/about/gen_information.cfm. 
49

 Class B biosolids require farm management practices and area restrictions before application, even 

though they already have a reduced amount of pathogens (EPA 1994 2006). 
50

 Class A biosolids require a total amount of pathogens to be lower than a detectable level and must meet 

the limitations of metal contaminants related to regulation 503 (EPA 1994). 
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recourse. The wastewater treatment plant is modeled as maximizing its profit for a typical 

day.  The uncertainty stems from certain inputs (e.g., prices, influent) that are random and 

the various probability distributions are described below. The wastewater treatment 

plant’s first-stage investment decisions include what size of digester to build to convert 

the influent into methane and Class A biosolids. The recourse decisions relate to levels of 

the various outputs to produce such as methane, electricity, Class A or Class B biosolids. 

The second-stage involves scenario-based decisions about how much revenue less costs 

WWTP is able to produce. Lastly, the lower level consists of profit-maximization 

problems for each of the four markets considered (high-end fertilizer, CNG 

transportation, residential natural gas sector, power sector) as well as related market-

clearing conditions. 

 

4.2.1 Upper-Level Problem: Stochastic Optimization Model 

The top-level, stochastic optimization problem for the wastewater treatment plant 

is shown in Figure 4.1. The first step in this flowchart represents the inflow of wastewater 

directly to the plant facility. Solid end products from primary treatment, secondary 

treatment nitrification and denitrification are collected and inflow to digester, incinerator, 

lime stabilization or composting processes. The model also considers solids from outside 

organizations that are outsourcing their wastewater treatment. 

 Based on a goodness-of-fit test, a Weibull distribution function is used to 

represent the range of the solid end products (influent) between 113-814 dry tons 
51

 (dt) 

from the Blue Plains facility and is denoted by      (s) with “s” the scenario index.  

There are 6,561 scenarios described in the next section, resulting from discretizing this 

                                                 
51

 All units are calculated for an average day. 
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Lognormal 

Triangular 

Triangular 

Lognormal 

and other probability distributions. In addition to this random inflow, solids (waste) from 

two outside organizations are also considered for the digester. In particular, there are 

decisions variables of solids from organization 1, IOR1(s) or organization 2, (IOR2(s)), 

which have respectively, a maximum 60 dt and maximum 50 dt per day.  

 

 
 

 

 

Figure 4.1 Flowchart of the stochastic optimization model for biosolids management 

program at the Blue Plains AWTP 
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From Figure 4.1, it can be seen that solids influent can flow to the anaerobic 

digester (IG(s)), be incinerated (II(s)), lime-stabilized into Class B biosolids (IB(s)), or 

composted as Class A bisolids. (IA(s)).  The resulting products from the digestion process 

are biogas and Class A biosolids (  
            

     . Lime stabilization is used to 

produce Class B biosolids for land application, but the composting process produces 

Class A biosolids for fertilizer.  

 The biogas from the digester can be cleaned up to make bio-methane (      ), 

compressed natural gas for transportation (    
    ), and gas to generate electricity 

(GE(s)).  For the quantity of Class A biosolids, the model will select whether the biosolids 

should be land applied on farms (  
    ) or sold in the agricultural market (  

     ). 

According to the potential to generate electricity from solar energy, solar radiation is 

described by the variable           and solar power generation costs are given by 

            . 

 The model selects sales to relevant markets at the lower-level: residential natural 

gas sector, CNG for the transportation market, electricity, fertilizer, or using the 

wastewater-derived power along with the renewable energy credits and carbon allowance 

market considerations. 

 

4.2.1.1 Decision Variables and Parameters 

The following is the description of the sets, variables and parameters used in the 

model with the main variables shown in Figure 4.1.  Note that the model solves for values 

of only one typical day; hence, all the variable values are in units per day. 

Sets 
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i ϵ {1,2,3,4,5}    options for five types of digester, lime stabilization, and incineration 
52

 

j ϵ {1,2,3}    three segments for the digester cost curves 

s ϵ {1,2,..6,561} scenarios 

 

Main upper-level variables 
53

 

       solids used to produce biogas (dt) 

       solids used to produce Class B biosolids from lime stabilization for land 

application (dt) 

       solids used to produce Class A biosolids not from the digester (dt) 

       solids incinerated (dt)  

          solids brought in from organization 1 (dt) 

          solids brought in from organization 2 (dt) 

       biogas generated from biosolids for generating electricity (cf) 

        methane gas transformed from biogas generated from the digestion process, 

called bio-methane (Ryckebosch et al. 2011) and used in the residential 

natural gas sector (cf) 

    
      CNG transformed from biogas generated from the digestion process, called 

bio-CNG (cf) (Ryan and Caulfield 2010)  

  
      biosolids Class A produced for land application (dt) 

  
       biosolids Class A sold in the agricultural market (dt) 

       electricity bought from external sources and used at the AWTP (kWh) 

                                                 
52

 Each digester type is described in Figure 4.2 and defined in a later section. 
53

 All variables are assumed to be nonnegative unless specified otherwise.  Also, only the main primal 

variables are shown.  The endogenously determined prices (dual variables) are not shown here but are 

described later in the text. 
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        electricity generated from biogas and used at the WWTP (kWh) 

  
       electricity generated from biogas and sold to the spot market (kWh) 

  
        electricity generated from solar energy and used at the WWTP (kWh) 

  
       electricity generated from solar energy and sold to the spot market (kWh) 

   
        natural gas purchased from external sources (cf)  

       total net carbon dioxide equivalent (t) 

       total energy purchased at WWTP (kWh) 

       total WWTP value, which is the revenue minus costs ($) 

      amount of solids processed by digester i and segment j (dt) 

     {
                                                                  

           
    

 

Parameters 
54

  

CAP  maximum amount of Class B production (dt)  

 ̅   maximum amount of bio-methane production (cf) 

 ̅   
  maximum amount of bio-CNG production (cf) 

 ̅ 
   maximum amount of Class A biosolids sold in the agricultural market (dt) 

 ̅ 
   maximum amount of electricity generated from biogas and sold to the grid 

(kWh) 

 ̅ 
   maximum amount of electricity generated from solar radiation and sold to the 

grid (kWh) 

SOR1  maximum amount of solids from organization 1 (dt) 

SOR2  maximum amount of solids from organization 2 (dt) 

                                                 
54

 See the Appendix D for values of the parameters.  
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Sgas maximum amount of solids used to produce biogas (dt) 

fG  biogas production factor (cf/dt)  

fNG  bio-methane production factor (average 60% methane gas is produced from 

biogas) (unitless) 
55

  

fCNG  bio-CNG production factor  (average 57.6% CNG is produced from biogas) 

 (unitless) 
56

  

fB  amount of dry tons of Class A biosolids per dry ton of solids influent (dt/dt) 

fE  factor used to calculate generated electricity from biogas (kwh/m
3
) 

WWTPNG  average daily amount of natural gas consumption at WWTP 
57

 from historical 

data (cf) 

  
   factor used to calculate carbon dioxide emissions from electricity (t CDE 

/kWh)  

  
   factor used to calculate carbon dioxide emissions from natural gas  used for 

heating at the Blue Plains facility (t CDE /cf)  

  
   factor used to calculate carbon dioxide emissions from incineration (t CDE 

/dt)  

  
    factor used to calculate carbon dioxide offset from sold CNG for  the 

transportation sector (t CDE / cf) 

                                                 
55

 The biogas (CH4 + CO2 + H2O + trace gases) can be broken down into the following component shares: 

55-65% methane gas (CH4), 30-40% carbon dioxide gas (CO2), and 0-5% water vapour, traces of hydrogen 

sulphide H2S and hydrogen H2 (Appels et al. 2008).  Consequently, in the model presented below, an 

average 60% of methane composition in biogas is used. 
56

The reduction of CNG from 100% of natural gas is due to further processing for gas quality outside of 

WWTP (http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510). CO2 

scrubbing is and other purification steps are needed in order to prepare the bio-methane for use as CNG.  

See Appendix A and Figure A-1 for more details. 
57

 The highest natural gas consumption obtained from the energy saving plan report of December, 2010. 

http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510
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  factor used to calculate carbon dioxide offset from biosolids used as fertilizer 

(t CDE /dt) 

  
   factor used to calculate carbon dioxide emissions from transportating 

biosolids to the land application field (t CDE/dt) 

  
   factor used to calculate fossil fuel consumption to transport Class A and/or B 

biosolids to land application fields (kWh/dt) 

  
   factor used to calculate natural gas consumption at WWTP (kWh/cf) 

  
   supplementary fuel for incineration process factor (kWh-$/dt-gal) 

  
  factor used to calculate fossil fuel consumption for transportation Class A 

and/or B biosolids to land application fields and to agricultural market in 

gallon per dry ton (gal/dt) 
58

 

  
     electricity generation costs ($/kWh) 

          CNG compression costs ($/cf) 
59

 

              non-transportation natural gas production costs ($/cf) 

  
     biosolids Class A production costs ($/dt) 

    
   ash from incineration disposal cost ($/dt) 

  
    tipping fees ($/dt of biosolids) 

      
      CDE allowance (ton CDE) 

Spanel  installation area of solar panels (m
2
) 

RES  credits from renewable electricity standard ($/kWh) 

                                                 
58

 Note that the transportation cost factor is given independent of distance to the reuse site.  This was done 

to approximate the costs based solely on volume rather than having the model keep track of all the reuse 

sites and delivery of product there. 
59

 The convention is to use   only for lower-level, unit production costs.  
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  parameter used to turn on REC or CO2 credits (mutually exclusive options) 

and it is equal to 0 or 1, respectively (fixed for any given run) 

REC  renewable energy credits ($/t CDE) 

 ̅    maximum amount of inorganic fertilizer in the market (dt) 

 ̅    maximum amount of organic fertilizer in the market (dt) 

 ̅        maximum amount of fossil fuel-based electricity sold to the grid (kWh) 

 ̅         maximum amount of nuclear-based electricity sold to the grid (kWh) 

 ̅      maximum amount of fossil-fuel based electricity sold to the grid (kWh) 

 ̅    maximum amount of CNG for transportation  sold to the natural gas grid (cf) 

 ̅    maximum amount of natural gas sold to the  natural gas grid (cf) 

     inorganic fertilizer production costs ($/dt) 

     organic fertilizer production costs ($/dt) 

        fossil fuel based-electricity production costs ($/kwh)  

           nuclear based-electricity production costs ($/kwh) 

        hydropower based-electricity production costs ($/kwh) 

      CNG for transportation production costs ($/cf) 

    non-transportation natural gas production costs ($/cf) 

 

Random parameters 

Pr(s)   probability for each scenario  

     (s)   uncertain solids influent to digester (dt) 

        (s)  uncertain electricity consumption at WWTP (kWh) 

          (s)  uncertain electricity purchasing prices ($/kWh) 
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           (s) uncertain natural gas purchasing prices ($/cf) 

       (s)   uncertain fossil fuel prices to transport Class A and B bisolids ($/gal) 

    (s)   uncertain carbon credits ($/t CDE) 

      (s)   uncertain solar radiation (kWh/m
2
) 

60
 

         (s)  uncertain generated solar electricity cost ($/kWh) 

 

4.2.1.2 Constraints 

All constraints except for those defining binary variables are linear and the 

majority of them represent some form of conservation of product. 
61

  The first-stage 

constraints define the five possible types of digester costs VD  (constraint (14a) shown in 

the next section), where i=1,2,3,4,5 represent the five type of digesters each having three 

cost curve segments indexed by j=1,2,3 (see Figure 4.2). 

 Type 1 is four trains of thermal hydrolysis (TH) and anaerobic digestion 

(4TH & digester) and lime stabilization (LS) 

 Type 2 is two trains of thermal hydrolysis and anaerobic digestion (2TH & 

digester) and lime stabilization (LS) 

 Type 3 is four trains of thermal hydrolysis and anaerobic digestion (4TH 

& digester) with another two trains of thermal hydrolysis and anaerobic 

digestion (2TH & digester) and lime stabilization (LS) 

 only a lime stabilization process (LS) 

 only an incineration process 

                                                 
60

 While the amount of solar radiation is a random variable, the amount of solar power generated from it is 

an upper-level, second-stage decision variable. 
61

 This does not include complementarity constraints arising from the lower-level problem. 
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The costs of digesters consist of a fixed cost, denoted by hij, and variable costs 

related to the solids influent amount, denoted by aij. Only one digester and segment j of a 

cost curve can be selected and this is controlled by the binary variable wij. 

 

 
 

Figure 4.2 Costs of five possible types of digesters ($) 

 

 Second-stage constraints relate to biosolids influent, biogas production, biosolids 

Class A production, natural gas consumption, electricity, carbon dioxide equivalent 

emissions, energy purchased and value constraints. All constraints consider the 6,561 

scenarios from eight groups of uncertain data. Appropriate probability density functions 

(pdf) are created 
62

 using goodness-of-fit techniques (Sheldon 2012). Using Blue Plains’ 

historical data, a Weibull pdf best represented solid end products inflow to the digester 

and a triangular pdf was selected for energy consumption.  Solar radiation, solar 

generated costs, fossil fuel costs and CO2 credits were also fitted with triangular pdfs 

based on historical data. Lognormal pdfs were used for the natural gas and electricity 

prices. 

                                                 
62

 http://highered.mcgraw-hill.com/sites/0073376280/student_view0/arena_software_download.html. 

 -
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 The uncertainties were transformed from continuous distributions to three-point, 

discrete distributions (Keefer 1994; Hoyland and Wallace 2001) to serve as input in the 

upper-level problem. Each distribution function was discretized to low, medium and high 

values with the corresponding probabilities. For example, the three discrete numbers 

representing Blue Plains’ energy consumption are 615.5, 701.0 and 786.5 MWh per day 

with 0.321, 0.429 and 0.250 probabilities, respectively. As described in the Appendix C, 

these probabilities were determined by picking key cut-off values. The scenario-based 

optimization then takes into accounts the resulting three-point distributions and related 

probabilities 
63

 of eight uncertain elements 
64

 (3
8
 = 6,561 scenarios used). 

 

4.2.1.3 Objective of the Stochastic Optimization Model 

Maximizing expected total value is the objective to be optimized expressed in 

dollars for the upper-level problem. The expectation is taken over all the scenarios 

considered after discretizing the fitted probability distributions shown in Figure 4.1 and 

described above. 

 

4.2.2 Lower-Level Problem 

The objective of the lower-level separate optimization problems is to maximize 

expected profit (in dollars).  There is one optimization problem for each of the relevant 

markets including fertilizer, electricity, residential natural gas and CNG for 

transportation. Markets are assumed to be perfectly competitive, so players are price-

takers (Shy 1995). These prices are determined by market-clearing conditions for each 

                                                 
63

 Pr(s) represents probability for each scenario. 
64

 Uncertain elements include         ,           ,           ,         ,          ,       ,         , 

            . 
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market at the lower level which together with the KKT conditions of these separate 

optimization problems constitute the lower-level problem. 
65

 

 

4.2.2.1 Lower-Level Optimization Problem of Selling Class A Biosolids to the 

Fertilizer Market. 

The U.S. Department of Agriculture categorizes plant nutrients (fertilizer) into 

three different groups: 1) single (nitrogen, phosphate) nutrient, 2) multiple (mono 

ammonium-phosphate) nutrients, 3) secondary and micronutrients (manure, compost, and 

sewage sludge) 
66

, dependent on the end-use purposes. This research didn’t consider the 

end-use purposes but focused on compositions of fertilizer by categorizing them into two 

groups: 1) inorganic fertilizer and 2) organic fertilizer. The objective of this part of the 

lower-level problem is to maximize the expected profit of the fertilizer market. 

Considering both the inorganic and organic fertilizer producers, expected profits of each 

player are calculated from the difference of revenues based on fertilizer prices 

(               67, and linear production costs of inorganic and organic fertilizer 
68

 

(            . In addition, the quantities of inorganic and organic fertilizer should be less 

than or equal to the maximum amount of supply in the fertilizer market.  Problem (4.2) 

describes the optimization problem for the fertilizer markets. 

 

                                                 
65

 Note that due to the assumption of perfect competition, the separate profit-maximization problems of 

both players can be put together into one overall fertilizer problem since the resulting KKT conditions are 

the same. A similar line of reasoning applies to the other lower-level optimization problems. 
66

 http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#26720. 
67

 Note that there is a just one fertilizer price but two quantities: inorganic and organic fertilizers (see 

(Abrell and Weigt 2012) for similar reasoning in the electricity market ). 
68

 See the Appendix D. 
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                  ∑      {     (               )                         }  

           (4.2a) 

s.t.  

         ̅                      (       )            (4.2b) 

         ̅                      (       )        (4.2c) 

                                                       (4.2d) 

 

where: 

        = amount of inorganic fertilizer in dt 

       = amount of organic fertilizer in dt 

        = dual price of inorganic fertilizer constraint 

       = dual price of organic fertilizer constraint 

 

4.2.2.2 Lower-Level Optimization Problem of Selling Electricity to the Grid 

The objective function for this part of the lower-level problem is to maximize the 

expected profit of selling electricity to the grid; three types of power generators are 

considered: fossil fuel (coal, natural gas and petroleum), nuclear, and renewables 

(hydropower). Expected profits of each of the three players (fuel types) are calculated 

from the difference between revenues based on electricity sold (               , and 

linear production costs of fossil, nuclear and hydro-based electricity
69

 

(                           . The quantities of generated electricity from each source 

                                                 
69

 See the Appendix D for particular values. 
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should be less than or equal to the maximum amount of supply in the power market. The 

associated optimization problem is shown in (4.3). 

 

                                  ∑      {      (                       

         )                                                       }  (4.3a) 

s.t. 

            ̅                               (          )            (4.3b) 

             ̅                          (           )         (4.3c) 

           ̅                             (         )          (4.3d) 

                                             (4.3e) 

 

where: 

          = amount of fossil fuel-based electricity in kWh 

           = amount of nuclear-based electricity in kWh 

         = amount of hydropower-based electricity in kWh 

          = dual price of fossil fuel-based electricity constraint 

           = dual price of nuclear-based electricity constraint 

         = dual price of hydropower-based electricity constraint 

 

4.2.2.3 Lower-Level Optimization Problem of Selling CNG to the Transportation 

Sector 
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In this lower-level problem, the objective is to maximize the expected profit of 

selling CNG to the transportation sector. This form of natural gas is produced from the 

methane coming as an output of the digester. Profits are calculated as the difference 

between revenues using natural gas prices (                , and linear production 

costs 
70

 (      . The quantities of CNG actually sold should be less than or equal to the 

maximum amount of supply in the CNG transportation market.  Formulation (4.4) is the 

associated optimization problem. 

 

          ∑      {                           }    (4.4a) 

s.t. 

         ̅                      (       )              (4.4b) 

                             (4.4c) 

 

where: 

       =amount of natural gas for transportation sector in cf
 

       =dual price of natural gas for transportation sector constraint 

 

4.2.2.4 Lower-Level Optimization Problem for Selling Natural Gas to the 

Residential Natural Gas Sector 

The objective in this lower-level problem is similar to the CNG one, namely 

maximizing the expected profit of selling natural gas to residential sector. Here the 

                                                 
70

 See the Appendix D for particular values. 
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related gas prices are (               , and the linear production costs 
71

 are    . 

Quantities of natural gas sold should be less than or equal to the maximum amount of 

supply in this market.  Formulation (4.5) depicts this lower-level optimization problem. 

 

         ∑      {                       }     (4.5a) 

s.t. 

        ̅                     (      )                (4.5b) 

                          (4.5c) 

 

where: 

      = amount of natural gas for the residential sector in cf
 

      =dual price of natural gas for the residential sector constant 

 

4.2.3 Market-Clearing Conditions for the Lower-Level Markets 

In addition to the lower-level optimization problems just described, there are 

market-clearing conditions (MCC) for each of the markets as shown in (4.16). For each 

market, these MCC stipulate that total supply (either from the lower- or upper-level or 

exogenously) must equal demand. The latter is described by linear demand function. 

Lastly, for each of these MCC, there is an associated Lagrange multiplier or price that is 

used by the lower-level players in each of the markets.    

 

 

                                                 
71

 See the Appendix D for particular values. 
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4.3 Mathematical Formulation of the stochastic MPEC  

As described above, this study considers DC Water as the strategic player at the 

upper-level of a stochastic MPEC, modeled as maximizing expected profit (expected total 

value) subject to operational and investment constraints. The upper-level player decides 

on how much to produce of the following end products: 1) biosolids Class A, 2) biogas-

and solar-based electricity, 3) bio-CNG and 4) bio-methane to be supplied to the relevant 

markets at the lower-level problem (see Figure 4.3). In addition, the upper-level player 

determines the amount of Class B biosolids that go to land application. 

 

Maximize expected DC Water total value ($) 

s.t. 

First-stage constraints related to digester investment cost  ($) 

 Five possible types of digesters  

- 4 TH&digester and lime stabilization 

- 2 TH&digester and lime stabilization 

- 4 TH&digester, 2 TH&digester and lime stabilization 

- lime stabilization 

- incineration 

Second-stage constraints related to the 6,561 scenarios 

Solids influent constraints    (dt)  

Biogas constraints    (cf)  

  Biosolids Class A constraints   (dt)  

  Natural gas consumption constraints  (cf) 

  Carbon dioxide emission constraints  (t CDE)  

  Energy consumption constraints  (kWh)  

  Electricity constraints     (kWh) 

  Value constraints    ($) 

 

   

 

Maximize expected profit of the fertilizer market    ($) 

  Maximize expected profit of the residential natural gas market  ($) 

  Maximize expected profit of natural gas for CNG transportation  ($) 

  Maximize expected profit of electricity sold to the grid  ($) 

  Market-clearing conditions for relevant markets   ($) 

  

 

Figure 4.3 Over all structure of the Stochastic MPEC. 

Lower-level problem 

Upper-level problem 
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The upper-level player will first make a decision on one of five possible types of 

digester and optimize the amount of Class A biosolids (  
     ) in dt, the amount of 

electricity generated from solar energy (  
     ) and biogas sold to the spot market 

(  
     ) in kWh, as well as the amount of CNG (bio-CNG) production (    

    ) and 

natural gas (bio-methane) for residential usage        in cf. The lower-level will 

consider those quantities as fixed and solve the respective optimization problems in 

addition to the MCC to produce equilibrium prices of fertilizer (     ) in $/dt, electricity 

(     ) in $/kWh, CNG (       ) and natural gas (        in $/cf. The structure of the 

two-level problem is shown in Figure 4.3 and the formulation of the two-level problem 
72

 

are shown in (4.6) - (4.16). 

The complete upper-level of the Stochastic MPEC is shown in (4.6)-(4.14) where 

the intermediate variables revenues and costs are defined as follows: 

revenues =        
     +       

     +   
                 

+             +           
    +  

                    +       

where        are the renewable energy or CO2 credits described in (14b). 
73

 

costs =    +                     +                   
     + 

                
          

      +               
     +                    + 

     
        +   

               
       

               
                             

+    
                  +            

                                                 
72

 Related constants and parameters are in the Appendix D. 
73

 There are three sources of renewable energy revenue being modeling.  First, RES is the renewable energy 

standard paid by the government for using renewable energy except biogas.  Second, as shown in (14b) 

there are two mutually exclusive options for renewable energy credits: either carbon credits or renewable 

energy credits. 
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where    are the digester (and related) costs described in (4.14a). 

 

    ∑                                 $ (4.6) 

s.t. 

 

Solids influent constraints  

                                              dt (4.7a) 

                               dt (4.7b) 

      ∑ ∑              dt   (4.7c) 

                              dt (4.7d) 

                              dt (4.7e) 
74

 

                 dt (4.7f) 

                 dt (4.7g) 

∑ ∑                  (4.7h) 
75

  

     {   }             (4.7i) 

                     (4.7j) 
76

 

                        (4.7k) 
77

 

 

Biogas production constraints 

                                                 
74

 Constraints (7c)-(7e) define the amount of solids in dt that will go into the digester to produce biogas. 

The binary variables               = 1 mean that only the lime stabilization option is used and 

              = 1 means that only the incineration option is used, therefore no biogas.  
75

 Constraint (7h) is a constraint to enforce mutual exclusivity of the digester-segment options. 
76

 Constraint (7j) refers to upper bounds on the biosolids amount by the maximum solids capacity in dt. 
77

 Constraint (7k) refers to the minimum solids used to produce biogas.      indicates solids used to produce 

biogas in dt.  
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         cf (4.8a)  

                         cf (4.8b) 

    
                        cf  (4.8c) 

        ̅             cf (4.8d) 

    
      ̅   

            cf (4.4.8e) 

 

Class A biosolids production constraints 

  
       

                         dt (4.9a) 

  
       ̅ 

             dt (4.9b) 

 

Electricity consumption constraints 

                    
          

          kWh  (4.10a) 

  
          

                  kWh  (4.10b) 

  
          

                             kWh  (4.10c) 

  
       ̅ 

             kWh  (4.10d) 

  
       ̅ 

             kWh  (4.10e) 

 

Natural gas residential sector consumption constraints 

          
        (s)          cf (4.11)  

 

Conservation of CDE emissions  

                            ton (4.12) 

where 
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Emissions =   
       +  

     
    +   

          
       

      +   
         

Offsets =   
    

          
     

        +   
       

     +  
        +  

 
       

  
       

       

 

Conservation of energy purchased  

        
 (        

       
     )+  

 (               )+  
    

    +     +  
  

                       kWh (4.13)  

 

Digester costs 

    ∑ ∑            ∑ ∑                $ (4.14a) 
78

 

 

Revenue from CDE emissions or renewable energy credits 

            (      
          )    

   
    (      

          )       
   

   

$ (4.14b)  

 

Karush–Kuhn–Tucker (KKT) conditions of the lower-level individual optimization 

problems by market  

 

Fertilizer market: 

                                             (4.15a) 

   ̅                              (4.15b) 

                                                 
78

 Values of               are shown in Appendix D. 
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       (           )                          (4.15c) 

   ̅                              (4.15d) 

 

Electricity market: 

       (              )                             (4.15e) 

   ̅                                      (4.15f) 

                                                      (4.15g) 

   ̅                                        (4.15h) 

       (             )                           (4.15i) 

   ̅                                   (4.15j) 

 

CNG market: 

                                             (4.15k) 

   ̅                             (4.15l) 

 

Residental natural gas market: 

                                          (4.15m) 

   ̅                           (4.15n) 

 

Market-clearing conditions of the relevant markets: 

                  
                                         (4.16a) 

                                   
        

      

                                    (4.16b) 



 

109 

 

            
                                          (4.16c)      

                                                   (4.16d) 

 

 An objective function (4.6) computes the expected profit in dollars (net value). It 

is composed of the following revenues as a function of scenario: sales of Class A 

biosolids to the agricultural market (       
     ); sales of electricity to the grid 

(       
              

                 , bio-methane or bio-CNG from the 

digestion process sold to the natural gas spot market (            ) or transportation 

sector (           
    ); tipping fees from both outsourcing organizations 

(  
                    ); and carbon dioxide and renewable energy credits (      ). In 

addition, the expected net value includes the following costs: digester cost (  ), cost of 

electricity (                  ) and natural gas bought externally from the spot market 

(                 
    ), electricity generation costs (               

        

  
     ), production costs of bio-CNG (             

    ), production costs of bio-

methane (                  ), ash disposal costs (    
       ), cost of transporting Class 

A and B biosolids to land application fields (  
               

       
            ), 

transporting costs from organizations 1 and 2  (  
                            ), 

supplementary fuel costs  (  
                 ) and composting costs (          ).  

 Conservation of CDE emissions (4.12) defines the net total carbon dioxide 

equivalent emissions in tons. The CDE emissions from AWTP operations    
        , 

natural gas heating   
      

     , transportation of biosolids    
          

     

  
        and incineration   

         and the offsets from renewable electricity generated 

   
    

          
     

          and used at the AWTP, sold bio-CNG 
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     , sold bio-methane   
          used/sold biosolids as fertilizer 

   
 
         

       
       . 

  Conservation of purchased energy (4.13) defines the total purchased energy of the 

AWTP including energy for transportation of Class A and/or Class B biosolids to land 

application sites    
          

       
       , transportation of solids from 

organizations 1 and 2    
 (               ) , natural gas consumption    

    
     , 

electricity purchased from outside sources        , and supplementary fuel for 

incineration     
                    in kWh. 

 The right-hand sides of (4.16) represent the inverse demand equations for each of 

the markets.  These equations were determined from least-squares regression using data 

from the following sources: fertilizer market
79

 (Mankiw 2007), electricity market 

(Bernstein and Griffin 2006; EIA 2013), CNG market
80

  
81

 (Bernstein and Griffin 2006; 

DOE 2013), residential natural gas market (Bernstein and Griffin 2006; DOE 2013). 

 The SOS type 1 variables (SOS1) are used to transform the complemenarity 

conditions of the lower-level optimization problems into integer linear constraints. 
82

 For 

example, constraints (4.15a) and (4.15b) were transformed and shown in (4.17).  

 

     
           {           }              (4.17a) 

       
             

            
                (4.17b) 

       
             

           
                (4.17c) 

                                                 
79

 http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#26720. 
80

 http://www.afdc.energy.gov/fuels/properties.html. 
81

 Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, version 

1.7. 2007. Input Fuel Specifications. Argonne National Laboratory. Chicago, IL., and  

www.afdc.energy.gov. 
82

 See detail on Appendix D. 

http://www.afdc.energy.gov/fuels/properties.html
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      ̅                  (4.17d) 

       
             

            
                (4.17e) 

       
             

           
                (4.17f) 

     
          

             (4.17g) 

                  (4.17h) 

                  (4.17i) 

      
            

            
            

      are SOS1 variables 

 

 The objective function has computationally difficult bilinear (non-convex) terms. 

For instance, the revenue from biosolids Class A sold to the fertilizer market 

(       
     ) is a bilinear term as it is the produce of price and quantity which are both 

variables. These bilinear terms can be linearly approximated using discrete levels for one 

of the variables in the manner described in (Gabriel et al. 2009; Gabriel and Leuthold 

2010).  For example, in the bilinear term above, the continuous variable   
      

measuring the production of Class A biosolids can be discretized to a set of possible 

production levels. We follow the linearization procedure from (Gabriel and Leuthold 

2010) and apply it to the bilinear terms:        
     ,        

     ,        
     , 

           
     and             . 

83
 Note that there are alternative ways to 

“convexify” these bilinear terms but they may depend on a special structure (e.g., Ruiz 

and Conejo 2009). 

 

                                                 
83

 See details on Appendix D. 
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4.4 Generation of Subset of Scenarios 

Reduction of the 6,561 scenarios was needed for computational purposes. Many 

methods could be used to decrease the size of the full scenario tree (6,561 scenarios). In 

this study conditional (random) sampling and scenario reduction approaches were both 

tried.  

 Scenario-reduction approaches (Morales el at. 2009; Conejo el at. 2010) are used 

to find a reduced scenario tree that is close to the original one and finding such a reduced 

tree is a computationally challenging problem (Dupacova et al. 2003; Heitsch and 

Romisch 2003 and 2009).  The monitoring function, which results from the distance 

between the original scenario tree and the reduced one, was used to generate reduced 

scenario trees and GAMS/SCENRED2 
84

 was used to that end. Convergence analysis was 

run by varying the percentage of the relative distance between the original and the 

reduced trees until convergence criteria were met (see Figure 4.4). The reduced tree could 

be generated by using between 0% of the relative distance (original scenario tree) and 

100% (having only one scenario) or desired number of preserved scenarios. Results in 

Figure 4.4 indicated how to select the number of scenarios. Using a reduced number of 

2,187 scenarios, the expected total value stabilized (Figure 4.4). This number of scenarios 

was then used given computational considerations. 

                                                 
84

 www.gams.com/dd/docs/solvers/scenred2.pdf‎. 
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Figure 4.4 Results from the two-level model varying the number of scenarios (Key: 

(number of scenarios, optimal objective function value)) 

 

 Another approach besides scenario reduction is conditional (random) sampling.
85

  

This is a common method to produce a subset of scenarios by sampling from the full 

scenario tree (Kaut and Wallace 2007; Kouwenberg 2001). Figure 4.5 compares the 

expected total value of the sample of reduced scenarios (27, 81 and 243 of the 6,561 

scenarios) using conditional (random) sampling and scenario reduction approaches as 

mentioned above. The number of reduced scenarios in conditional (random) sampling 

was selected by fixing some groups of uncertain data such as carbon dioxide credits, 

electricity consumption, solar radiation, solar power generation costs and/or fossil fuel 

costs.   For example, of the eight uncertain data elements, when three of them were fixed, 

a scenario tree from the remaining four elements gave a resulting 3
4 

= 81 scenarios. 
86

  

                                                 
85

 http://ntnu.diva-portal.org/smash/get/diva2:122673/FULLTEXT01.pdf. 
86

 In fact, there are 8 choose 3= 56 ways of getting 243 scenarios as described above same as 8 choose 5 of 

getting 27 scenarios.  It would be computationally prohibitive to try all those 56 ways so three such ways 

were chosen and are displayed as circles in Figure 4.5.   When four of the random variables are fixed, there 
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Similarly, when three of the eight random variables were fixed, 3
5 

= 243 scenarios 

resulted.  The purpose of this test is to see when different random variables are fixed (It 

can be the 27, the 81 or the 243 cases), does the optimal objective function vary 

considerably.  If yes, it means that the particular scenarios selected are important.  

Otherwise, any 27, 81 or 243 could be used.  Figure 4.5 shows that there is not much 

variation between the three optimal objective function values shown as circles.  This 

reinforces the fact that the particular 27, 81 or 243 scenarios are not so important. 

Consequently, scenario reduction via GAMS/SCENRED2 which itself picks the 

scenarios in the reduced tree can be trusted as long as the number of scenarios is greater 

than 27.  From Figure 4.4, the number of scenarios where the optimal objective function 

stabilized was 2,187 and thus this was the chosen value for the reduced number of 

scenarios. 

 

 
 

Figure 4.5 the optimal solutions of scenario reduction and conditional sampling 

approach 

 

                                                                                                                                                 
are 70 ways to choose the 81 scenarios.  Again, for computational reasons only three were chosen and 

shown in Figure 4.5. 
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 The reduced scenario tree had 2,187 scenarios 
87

 because of the convergence 

analysis and the computational time (see next section).  Note that in general, one would 

not necessarily be able to solve the problem with the full scenario tree as we did to 

compare against a solution with a reduced tree. However, the GAMS routine does not in 

general need the full scenario tree to operate. 

 

4.5 Results and Discussion 

4.5.1 Numerical Results 

Figure 4.6 shows the numerical results from solving the stochastic MPEC. The 

maximum expected total value (profit) is -$93,270. 
88

 The model selected a small 

digester, namely the 2 thermal hydrolysis & anaerobic digestion and lime stabilization 

processes. In this case, a larger digester is not necessarily better.  One reason is that a 

smaller digester is less expensive in terms of investment and operational costs in spite of 

producing less methane for the downstream CNG and electricity markets. Also, a smaller 

digested amount of material allows for more high-end biosolids to be sold as organic 

fertilizer where the unit profit could be higher. 

 The expected amount of biosolids of 106 dt were delivered to land application 

fields (delivered biosolids had some of Class A and Class B). Biogas from the digestion 

process produced bio-methane, bio-CNG and generated biogas-based electricity.  Bio-

methane and bio-CNG were sold to the natural gas market, but the expected amount of 

                                                 
87

 The number of 243 leaves in the reduced scenario tree were input to arrive at  a total of 2,187 scenarios 

to be used by GAMS. 
88

 The optimal profit is negative in part because only an important subset of the AWTPs activities are 

modeled.  For example, fees from customers to treat the wastewater are not included as they don’t vary but 

they do represent a revenue source. 
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biogas-based electricity of 171,170 kWh was used internally as was the solar-based 

electricity that was generated the expected amount 18,722 kWh. 

 The expected amount of Class A biosolids of 206 dt were sold as high-end 

fertilizer with a market-clearing price of $249.60 per dt equal to the marginal production 

cost for organic fertilizer in the lower-level problem. The expected amount of bio-CNG 

was 348,930 cubic feet per day and bio-methane was 370,210 cubic feet per day
 
and were 

sold in the CNG and residential sectors, with expected prices $0.009 and $0.003 per 

cubic feet, respectively.  All of the biogas-based and solar-based electricity generated at 

Blue Plains was used there none of it was sold to the spot market. Figure 4.6 shows a 

summary of the output. 

 It is interesting to note that the bio-CNG (for the transportation sector) and the 

bio-methane (for the residential sector) selected by the model were smaller than their 

maximum values of 5,652,751 and 5,888,282 cubic feet per day indicating that all things 

being equal, these sectors were less important to the AWTP than the high-end fertilizer 

market.  This is an interesting observation that may provide guidance to AWTP 

managers. 
89

  

                                                 
89

 This analysis assumes that if there are multiple solutions that the same reasoning relative to maximum 

production quantities holds. 
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Figure 4.6 the expected amount of results from Stochastic MPEC  

 

4.5.2 Computational Issues 

This stochastic MPEC has been solved using XPRESS with GAMS on an Intel(R) 

Core (TM) i7-2670QM computer with a CPU@2.2 GHz and 8 GB of RAM. The 

computational time required to solve this problem with different number of scenarios 

(size of problem) are shown in Table 1. Not only the size of the problem but also the 

linearization of the bilinear terms in the objective function influenced the computational 

time (see (Ruiz and Conejo 2009) for a similar discussion of computational time with 

bilinear terms). Two linearization schemes for bilinear terms were selected. Case 1 was a 

two-point linearization that had a lower value of zero and an upper value at the maximum 

generation level of   
        

        
          

     and       .  Case 2 had four 

values (depending on the bilinear terms) used in the linearization. The CPU time of case 

1 was less than for case 2 and significantly less when a large number of scenarios were 

Maximizing DC Water total value in $ 

Small digester 

Expected DC Water total value is -$93,270 

 

Maximizing expected profit of fertilizer market in $ 

Maximizing expected profit of electricity grid market in $ 

Maximizing expected profit of natural gas for transportation market in $ 

Maximizing expected profit of natural gas for residential used market in $ 

 

 

  

High-end fertilizer 206 dt 

CNG for transportation 348,930 cf 

NG for residential used 370,210 cf 

Expected fertilizer price $249.60 per dt 

Expected CNG price $0.009 cf 

Expected NG price $0.003 cf 

mailto:CPU@2.2
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used. Therefore, it appears that the appropriate selection of how many terms in the 

bilinear linearization to use as well as the number of scenarios in the reduced tree is 

important in order to solve larger problems. 
90

 

 

Table 4.1 Computational time with different number of scenarios 

No. Scenarios 2,187 
91

 729 343 

CPU time* (s) 95 70 44 

CPU time**(s) 302 82 66 
 

Note that * represents case one, and ** represents case two. 

 

4.6 Summary and Conclusions 

 In this study, we have introduced a novel stochastic MPEC model for 

wastewater management at a large advanced wastewater treatment plant (AWTP). From 

maximizing expected total value (profits) of the AWTP, the numerical results indicate 

that a small digester is preferred. This digester is used to produce biogas and then 

produce products such as bio-methane, bio-CNG, electricity-based biogas and Class A 

biosolids. The AWTP is a regional Stackelberg leader since it can influence the fertilizer, 

compressed natural gas and residential natural gas markets by the level of the products it 

produces: Class A biosolids, CNG, methane. 

 This study also explored a scenario reduction and conditional sampling 

procedure given the large number of scenarios (6,561) to use in the complete scenario 

                                                 
90

 For 27 scenarios, we also ran a case where the bilinear terms were not linearized.  After two days of wall 

clock time, the solution procedure had not finished.  From that perspective, the linearization of the bilinear 

terms seems quite important. 
91

 For the 2,187-scenario case, the upper-level problem has 102,789 continuous variables and 32,805 binary 

variables; the lower-level problem has 166,212 continuous variables, 247,131 binary variables and 30,618 

SOS1 variables. 
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tree. It was found that 2,187 sufficed since at that number, the optimal objective function 

stabilized. 

 It could be concluded from this study that this stochastic two-level problem 

could be of great use to wastewater managers who need to consider many factors beside 

just wastewater in the face of profitability and sustainability goals. 
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Chapter 5: Summary of the Three Optimization Models Developed and 

Sensitivity Analysis Comparing Their Output 

 

Decision-making problems often involve uncertainty in the inputs. With an 

assumption of certain data, the deterministic formulation of the problem suffices. 

However, in the face of uncertainty, a stochastic formulation of the problem is required 

(Conejo et. al. 2010). Furthermore, for some problems, an optimal decision depends not 

only on the outcome of uncertain events, but also on the decisions made by potentially 

different players being modeled. This situation is the case for a typical WWTP. In 

Chapter 4 of this dissertation, an MPEC was formulated to account for both the 

uncertainty of events and the dependency of the lower-level players’ decisions on the 

upper-level decisions. 

 The three models discussed in Chapters 2, 3 and 4 have different approaches:  

deterministic, stochastic and two-level, stochastic modeling, respectively. Average data 

were optimized in the deterministic model (Chapter 2). One of four types of digesters 

(anaerobic digester or lime stabilization) was chosen and the amount of the related 

products such as biogas, biosolids, electricity, natural gas were decided regarding solid 

end products.  

For the single-level, stochastic optimization model (Chapter 3), 10 groups of 

uncertain data were used with a two-stage, recourse formulation.   The uncertainty was 

used in the second-stage problem for corrective (recourse) actions based on three-point 

probability mass functions used to approximate calibrated continuous probability 

distributions (e.g., lognormal). 
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Finally, in Chapter 4, a two-level stochastic MPEC model was developed to 

account for first-mover advantages by the upper-level WWTP. DC Water, as the 

strategic, upper-level player, made value-maximizing decisions at the upper-level, which 

included the type of digester, the amount of biosolids Class A, the amount of bio-

methane, the amount of bio-CNG, the amount of biogas-based and solar-based electricity. 

The lower-level players also optimized their respective profit-maximization decisions in 

the electricity grid market, fertilizer, CNG and natural gas for residential markets. 

 This chapter summarizes and compares the results of the three approaches (same 

decision variables and constraints), the benefits of each model, the value of information 

while considering stochasticity and different optimal solutions while considering the two-

level problem. Additionally, the last part of this chapter considers a sensitivity analysis of 

the single and two-level (MPEC) stochastic optimization models’ output. 

 

5.1 Single-level Optimization Problems Analysis 

5.1.1 Comparison of Deterministic and Stochastic approaches for single-level 

optimization problems 

Based on the information available to DC Water, decision makers face 

uncertainty. As such the stochastic optimization approach is ideal. However, there are 

computational issues to consider when uncertain data are included.  For example, the 

computational time to find an optimal solution for a stochastic optimization model with 

differing objectives for wastewater derived energy was about 60-180 minutes. 
92

 On the 

other hand, for a given set of data, the deterministic optimization model for wastewater-

                                                 
92

 This stochastic model has been solved using XPRESS with GAMS on an Intel(R) Core (TM) i7-2670QM 

computer with a CPU@2.2 GHz and 8 GB of RAM. 

mailto:CPU@2.2
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derived energy only required about 2-10 minutes to solve using the same computer. 

Stochastic optimization is more computationally challenging but more revealing in terms 

of tradeoffs and risk. 

Two theoretical concepts can explain the accuracy of the optimal objective value: 

the expected value of perfect information (EVPI) and the value of the stochastic solution 

(VSS). The EVPI is the amount that decision makers would find reasonable to pay (in 

terms of their objective) in return for complete and accurate information about the future 

(Birge and Louveaux 1997). The VSS is the benefit of using a stochastic rather than a 

deterministic model (Birge and Louveaux 1997; Escudero et al. 2007).  

 The EVPI, by definition, is the difference between the wait-and-see (WS) and the 

here-and-now recourse problem (RP) solution (Birge and Louveaux 1997) and is defined 

below assuming a minimization problem formulation. 

 

                 (5.1) 

where: 

                      (5.2) 

                     (5.3) 

  = the levels of the five possible types of digester in the first-stage constraints 

  = the random data vector resulting in 59,049 scenarios  

The VSS, is the difference between the here-and-now (RP) solution and the 

expected result of using mean values (EV) problem (EEV) (Birge and Louveaux 1997).  

 

                (5.4) 
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where: 

             ̅      (5.5) 

          ̅( ̅)         (5.5) 

 ̅             (5.6) 
93

 

 ̅( ̅)                               

  

 

Figure 5.1 A comparison of the optimal objective values (Maximizing total value in 

dollars) of the three deterministic cases to that of the stochastic case. 

 

 For the purpose of evaluating the EVPI and VSS, three deterministic cases were 

constructed that differ by the value of the inputs. The inputs to the three cases were 

chosen to represent the minimum, mean and maximum value of each input. For each 

case, the optimal objective values were -$82,420, -$99,750 and -$145,800 respectively 

(see Figure 5.1). The optimal objective value is negative in part because only an 
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important subset of the WWTPs activities is modeled such as biosolids management costs 

and revenues.  However, some other operational costs and revenues were not included. 

For example, fees from customers to treat the wastewater are not included as they do not 

vary but they do represent a revenue source.  

The wait-and-see optimal objective function value was -$99,557, 
94

 while the 

here-and-now (recourse) optimal objective function value was -$108,700. The EVPI for 

this maximizing DC Water total value problem was thus $9,143. 

 A much simpler approach to solve the WS problem was obtained by replacing all 

random variables by their expected value (mean value). The measure of utility, or lack 

thereof, of optimization by mean values is expressed in the value of the stochastic 

solution. 

 The here-and-now (recourse) solution value was -$108,700, while the expected 

result of using mean value (EEV) was -$112,036. Thus, the VSS was $3,336 indicating 

how much better the WWTP could do by considering a stochastic rather than a 

deterministic model. In this case, the optimal objective value of stochastic model 

represents 2.9% improvement over the expected result of using the mean value solution 

(EEV).  

 The deterministic and stochastic models indicated the use of the small digester to 

produce biogas and related products such as Class A biosolids, bio-CNG, bio-methane 

and biogas-based electricity. The small digester is less expensive in terms of investment 

and operational costs.  Bio-CNG and bio-methane were produced and sold to the markets 

when the deterministic model was used. However, with the stochastic model, biogas-

                                                 
94

 The objective function value is based on maximizing different from the suggested WS approach shown 

earlier. 
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based electricity was also produced and sold. 

 

5.1.2 Risk measurement in stochastic optimization model 

The stochastic optimization model was considered with uncertainty, so the total 

values (profits) were random variables based on scenarios. Using only the expected value 

in the objective function ignores any risk associated with the WWTPs decisions. 

Consequently, a risk measure is also needed and the conditional Value-at-Risk (CVaR) 

was used.   CVaR is one of many types of risk measures and has been shown to be 

coherent (Conejo et al. 2010). CVaR (α,x) defines the expected value of the profits 

smaller than the (1-α)-quantile 
95

 of the distribution of total profits (Conejo et al 2010).    

Mathematically, CVaR for a generic two-stage problem is given below in (5.7).  CVaR 

elements are given by:   
 

   
∑              in the objective function as well as the 

constraints   (             )            and             that 

enforce the necessary definition of CVaR (see (Conejeo et al. 2010) for more details). 

             {  
 

   
  {   {          }}}             (5.7) 

   
             

          ∑               
   

     
 

   
∑          

   
 

s.t.                    (5.8) 

                          (5.9)   

  (             )             (5.10)  

               (5.11) 

                   (5.12)  
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where:   x is the first-stage decision variable 

  y is the second-stage decision variable and related with scenarios   

     {          } 

    = auxiliary variable  

 

Figure 5.2 The efficient frontier represented in the term of expected total value and CVaR 

when α was 0.8.   

 

Figure 5.2 shows the efficient frontier represented in terms of expected total value 

and CVaR when α was 0.8 (0.2-quantile). The tradeoff between expected total value and 

CVaR was generated by varying the weighting parameter β. 
96

 The risk in the model will 

increase if β is reduced to zero since it won’t be accounted for in the objective function.  

According to the analysis of risk measure for this stochastic model, the expected total 

value was -$108,000 (cost) when β was 0.05 and the expected total value was reduced to 

-$128,800 (increased costs) for β equal to 1. The higher the risk (more negative CVaR) 
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the higher the expected total value as shown in Figure 5.2. 

It is also important to see how the solution changes as a function of  β.  Table 3.2 

shows optimal solutions when CVaR was considered with different values of β. 

Regardless of the value of β, a small digester was always selected. However, what is 

interesting, is the different solutions chosen by the model as β varied. When the model 

was optimized with high risk (β close to zero), a relatively higher amount of biogas was 

used to generate electricity which was then sold to the electric power market. On the 

other hand, a significantly larger amount of digested biogas was used to produce bio-

CNG and sold to the transportation market when the model considered small risk (β was 

close to one).  Why is this happening? One explanation is that in the face of risk, the 

WWTP will devote much more of its activities to the CNG market where the price was 

deterministic instead of to the power market whose prices are stochastic.  This is a nice 

example of how the WWTP’s strategies can shift to avoid risk. 

 

Table 3.2 The expected amount of products of digested biogas when considered CVaR 

with different β. 

Beta 0.0 0.25 0.5 0.75 1.0 

CVaR -543,533 -131,669 -130,197 -129,336 -128,786 

Expected value ($) -108,700 -111,323 -116,656 -122,569 -128,786 

Class A sold as fertilizer (dt) 121 121 121 121 98 

Biogas-based electricity sold to 

the outside power market 

(kWh) 84,247 73,215 67,081 62,402 46,475 

Solar-based electricity sold to 

the outside power market 

(kWh) 17,858 15,683 15,919 16,064 11,255 

CNG sold to the outside 

transportation market (cf) 8,154 303,169 442,327 530,276 351,516 

 



 

128 

 

5.2 Comparison of Stochastic Optimization and Stochastic MPEC approaches    

The 2.6% ($2,936 per day) improvement in value resulting from the stochastic 

model provides the motivation to further study the impact of uncertainty in wastewater-

to-energy management. In this section, the stochastic, mathematical model with 

equilibrium constraints (two-level optimization model) was compared with the stochastic 

optimization model (one-level optimization model).  

 
 

Figure 5.3 The difference between the expected DC Water total value of the stochastic 

optimization model and stochastic MPEC. 

 

 Figure 5.3 shows the difference between the optimal objective value of the 

stochastic MPEC and the stochastic optimization model.  The stochastic MPEC indicated 

14% lower value (lower costs) compared to the results from the stochastic optimization 

model. Both models selected a small digester for maximizing the DC Water total value. 

However, when market equilibrium was considered, that is, in the MPEC, the proportion 
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of end-products had the effect of raising the prices of some of the associated products of 

biogas such as Class A biosolids, bio-methane and bio-CNG, thus accounting for the 

higher expected objective value. 

The endogenous prices of fertilizer, CNG and NG taken from market-clearing 

conditions of the relevant markets were assigned as exogenous prices in the stochastic 

optimization model. The expected DC Water total value increased from -$108,700 to -

$84,340 because the prices of products were raised and were closer to the real market. 

For example, high-end fertilizer prices were increased from $62 to $249.60 per dry ton 

and the fertilizer prices in agricultural market was $252 per dry ton in 2010. 
97

 These 

limited results indicate the influence of the top-level player (the WWTP) on determining 

market prices (and other things) to their advantage. 

 

5.3 Sensitivity Analysis 

Uncertain information about the parameters in the stochastic optimization model 

and stochastic MPEC were represented by probability distributions. It is important to 

state that the underlying probability distributions are generally unknown (Fente et al. 

1999; Van Groenendaal and Kleijnen 2002) and thus they have to be estimated with a 

goodness-of-fit measure. The dependence of the model’s behavior on its parameters 

(uncertain information) could be found by sensitivity analysis from using different 

probability density functions (pdf) e.g., the triangular distribution, probability mass 

functions (pmf) and/or using different data from cumulative density functions (cdf). 

However, not all of these sensitivity analyses could be shown in this dissertation. An 

example of quantified values of distribution functions was presented to study the 

                                                 
97

 http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#26720. 
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sensitivity analysis of the models. Two different sets of distribution functions that were 

selected by the best and the second best fit were studied as an initial sensitivity analysis.   

The next part of this chapter presents a sensitivity analysis of the case study where 

the optimal objective values are compared against two different sets of probability 

distributions for both the stochastic optimization model and the stochastic MPEC. 

 Case 1 (Base Case) had ten distribution functions and was shown in Figure 5.4.  

 Case 2 had ten distribution functions and was shown in Figure 5.5.  

Table 1 shows the different probability distributions used for each of the uncertain data 

elements.  Two cases were considered as part of a sensitivity analysis that included how 

the optimal objective functions changed.  

Table 5.1 Uncertain data used for Cases 1 and 2.    

Uncertainty data Case 1 Case 2 

Solid influent to digester (dt) Weibull pdf Lognormal pdf 

Natural gas costs ($/cf) Lognormal pdf Weibull pdf 

Electricity consumption (kWh) Triangular pdf Weibull pdf 

Electricity prices ($/kWh) Lognormal pdf Triangular pdf 

Electricity  costs ($/kWh) Lognormal pdf Triangular pdf 

Fossil fuel prices ($/gal) Triangular pdf Weibull pdf 

Fertilizer prices ($/ton) Weibull pdf Triangular pdf 

Solar electricity costs ($/kWh) Triangular pdf Weibull pdf 

Solar radiation (kWh/m
2
) Triangular pdf Weibull pdf 

CO2 credits ($/ton) Triangular pdf Lognormal pdf 
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Figure 5.4 Diagram showing all probability density functions for Case 1. 

Note that low = low amount, med = medium amount, high = high amount 

Solid = solid end products, Elec = electricity, Fuel = fossil fuel, Fer = fertilizer, sol = solar electricity. 
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Figure 5.5 Diagram showing all probability density functions for Case 2. 

Note that low = low amount, med = medium amount, high = high amount 

Solid = solid end products, Elec = electricity, Fuel = fossil fuel, Fer = fertilizer, sol = solar electricity. 
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For both cases, the stochastic model and the stochastic MPEC indicated that DC 

Water should invest in a small digester to produce biogas in the first stage, use biogas-

based electricity internally and sell the related products such as Class A biosolids, bio-

methane and/or bio-CNG in the second stage. However, the different distribution 

functions that represented uncertain data provided slightly different optimal objective 

values as shown in Figure 5.6. The stochastic, mixed-integer optimization model for 

wastewater-derived energy indicated a 4.3% difference between the Base Case (Case 1) 

and Case 2 when optimized to maximize the DC Water total value. For the stochastic 

MPEC, the optimal objective values of the Base Case and Case 2 differed by 0.63%.  

Lastly, the Base Case (Case 1) had a better optimal objective function value than Case 2 

for the single-level problem but this was slightly reversed for the stochastic MPEC. 

 

Figure 5.6 The difference of the expected maximizing total value of the stochastic 

optimization model and stochastic MPEC when optimized based on two different sets of 

distribution functions. 
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Moreover, parameters such as conversion rates of biogas, prices for solar panels, 

renewable energy credits, lifetime of equipment, etc., fixed costs for equipment could 

also be captured in the sensitivity analysis. However, the study of sensitivity analysis of 

these parts did not be included in this dissertation. 

 

5.4 Conclusions 

The purpose of the sensitivity analysis quantified above was to show the 

dependence of the model behavior on its parameters. However, from the given data in the 

two cases chosen, since there was a small difference (below 5%) in the results, this 

suggests that the model is not very sensitive to the selected data.  However, a more 

extensive sensitivity analysis with different parameters values for the same distributions, 

different distributions, or other different model parameters might show very different 

results. For example, conversion rates of biogas, prices for solar panels, renewable energy 

credits, lifetime of equipment, etc., fixed costs for equipment could also be captured in 

the sensitivity analysis. However, the study of sensitivity analysis of these parts did not 

be included in this dissertation. 

The comparisons between the stochastic and deterministic analyses show the 

significance of explicit consideration of the probabilistic information (Gunawan et al. 

2005) for these optimization problems. The value of the stochastic solution provided an 

improvement of about 2.9% on the optimal objective value. 

Moreover, the stochastic MPEC showed an increased sales level of products from 

the digester to the relevant markets over that shown by the stochastic optimization 

problem. In both models, a small digester was preferred to produce biogas and sell bio-



 

135 

 

CNG as well as bio-methane to the relevant markets DC Water was able to gain more 

revenues from solids end products of wastewater treatment operation process. However, 

the expected optimal objective value of the stochastic MPEC showed $15,830 per day or 

$5.77 million per year lower costs than the single-objective stochastic optimization model 

by selling associated products from biogas to relevant markets.  Exogenous prices of bio-

CNG, bio-methane and biosolids Class A were taken into account when the stochastic 

model (single-level problem) was optimized. These downstream markets were not 

influenced by the decisions of the upper-level player (DC Water). On the other hand, for 

the two-level, stochastic MPEC, the top-level player was able to exert its influence to 

achieve a higher profit.  
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Chapter 6: Conclusions and Possible Future Directions  

 

This dissertation presented novel one-level deterministic and stochastic 

optimization models as well as an innovative stochastic MPEC and compared the relative 

benefits of each model (Chapter 5).  An application of the model of a wastewater 

treatment plant was provided to show the benefit for each approach and the Blue Plains 

facility was used as a testbed. In this section, the conclusions regarding each model are 

presented, the contributions of this dissertation are enumerated and proposals for future 

work as an extension of the current work are provided. 

 

6.1 Contribution of This Dissertation 

The models and applications presented in this dissertation address the complexity 

of operational and investment decisions in a typical WWTP and the interaction with 

many markets such as agricultural, carbon dioxide, and energy markets.  

The first major contribution of this research is the development of a deterministic, 

multi-objective optimization model for wastewater-derived energy to maximize WWTP 

total value, minimize net carbon dioxide equivalent (CDE) emissions, and minimize 

energy purchased from external sources. These models can assist DC Water as well as 

other WWTPs in defining optimal wastewater treatment management policies and 

operational systems. 

A second major contribution of this research is the development a stochastic, 

multi-objective optimization model for wastewater-derived energy meeting the same 

three objectives (maximizing WWTP total value, minimizing net CDE emissions, and 
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minimizing energy purchased from external sources). This model can assist WWTPs, in 

particular, to find the optimal solutions under uncertain conditions (e.g. solid end 

products resulting from uncertain wastewater inflow, energy consumption internal 

operating plant and related markets conditions). In this second thrust, scenario-reduction 

techniques and certain computational aspects are also considered given the large-scale 

nature of the work. 

A third major contribution presents a stochastic MPEC where DC Water is the 

top-level player interacting with the agricultural, natural gas for transportation, natural 

gas for residential used and power markets at the bottom level. This type of problem, 

which is concerned with making an optimal decision with other players present in a non-

cooperative competitive environment, is known in economics as a Stackelberg Game. 

Other WWTPs, solid waste disposal plants, and community management groups can 

apply this model to find their usefulness decisions and sustainable development.  

A fourth contribution of this dissertation is in Chapter 5 where a comparison of 

the various one- and two-level optimization models is performed. Besides clarifying the 

advantages of each of the three models described, it is anticipated that decision makers, 

project managers, and plant operators who design wastewater systems will also benefit 

from this comparative analysis.  

In sum, these three novel models provide DC Water with an optimal wastewater 

solids management strategy. Other WWTPs, solid waste disposal plants, and community 

management groups can apply the model to make better waste management decisions 

under uncertain conditions. Also, future investigators such as decision makers and plant 

operators can compare the relative benefits of the deterministic optimization, the 
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stochastic optimization and the stochastic MPEC within the WWTP context.  The end 

result is that WWTP management can be better guided towards sustainability and other 

goals. 

 

6.2 Conclusions 

A multi-objective, mixed-integer optimization model for wastewater-derived 

energy has been developed in Chapter 2 using the Blue Plains advanced wastewater plant 

(AWTP) as a case study. The results of the deterministic model can assist DC Water, the 

operator of Blue Plains, and operators like it to achieve environmental and economic 

goals. Since DC Water can reduce its CDE emissions as well as reduce the energy 

purchased from external sources, using electricity from digested biogas to supply the 

Blue Plains facility is a sustainable and environmentally friendly course of action. One 

result from the analysis of the output of these models was that using a small digester was 

advantageous when total plant value (revenues less costs) was maximized.  

 The deterministic optimization model shows that DC Water should use electricity 

from digested biogas internally. Using biogas and biogas-based electricity produced from 

the digester on site at  Blue Plains is an environmental friendly choice (reducing CDE 

emissions). However, each ton of CDE offsets results in higher operational costs so there 

is an interesting tradeoff that can be made.  The models and the resulting guidance could 

greatly help decision-makers at the other 3,171 WWTPs around the U.S. and in other 

countries.  

In addition, solar power could be a significant renewable energy option to reduce 

energy purchased from outside sources and reduce the total amount of CDE emissions. 
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Also, tipping fees from organizations that outsourced their wastewater processing to Blue 

Plains could be another important source of revenue for DC Water.  

Perfect decisions require perfect information. However, not every case can find 

the complete information necessary to make such a decision. In Chapter 3, a stochastic 

optimization version of the model was presented using 59,049 scenarios resulting from 

uncertain data. Many stochastic parameters were considered such as the amount of solids 

end product, the level of energy consumption, energy prices and costs, and CO2 credits. 

Decision-makers can use this type of model to hedge their decisions against an uncertain 

future.  A stochastic optimization model could be of great use to wastewater managers 

who need to consider many factors besides wastewater in the face of profitability 

(maximizing total value) and sustainability goals (environment, economics and social). 

In Chapter 4, a stochastic MPEC for sustainable wastewater management 

presented, which was developed. The upper level of this two-level problem was the 

WWTP. The bottom level was composed of the various downstream market players that 

could be influenced by the WWTP’s choices of producing fertilizer, methane or 

electricity as well as market-clearing conditions. This large-scale, complex two-level 

problem presented a computational challenge. A scenario-reduction approach was 

adopted to reduce the number of scenarios. Additionally, SOS1 variables were used to 

transform the optimality conditions of the lower-level to a more tractable form.  Also, for 

computationally efficiency a linearization of bilinear terms (of the form price times 

quantity) was used. There are a variety of other disciplines, such as process engineering 

in chemical engineering, pipeline operations and solid waste management that could also 

develop and apply both the SOS1 and linearization of bilinear terms approaches to solve 
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large-scale, complex problems.    

In Chapter 5, a comparison of the three optimization models is developed.  

Specifically, we provide a sensitivity analysis of the model inputs, the benefits of each 

model and advantages of each approach (the deterministic optimization, stochastic 

optimization and stochastic MPEC). The deterministic optimization model was used to 

optimize the complicated systems by using average data. However, the stochastic 

optimization approach was applied to optimize when uncertainty was involved.  

Incorporating stochasticity showed an improvement and a motivation to use a stochastic 

MPEC to maximize total value for the top-level player (the wastewater treatment plant). 

 

6.3 Future Research 

6.3.1 Decomposition Aspects 

The stochastic optimization and the stochastic MPEC models contained a large 

number of scenarios because 10 and 8 uncertain groups of data were involved, 

respectively. A scenario-reduction approach was employed to reduce the computational 

time for the resulting large-scale problem. With the goal of speeding up computation, 

decomposition strategies like Benders method/L-shaped method (Birge and Louveaux 

1997) could be applied to allow for more probabilistic details.  Further decomposition 

efforts would not only yield computational benefits, but also allow the model to make 

better use of uncertain information and/or include multiple time periods in the model. For 

example, allowing the model to consider a multi-year timeframe instead of just a current 

“typical day” for a planning horizon relative to investment decisions would be an 

improvement. Also, decision makers can consider more detail on seasonal aspects of the 
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relevant markets conditions.  Development of computationally efficient decomposition 

(or other_ methods) for stochastic MPECs like the one developed in this dissertation 

would therefore be an interesting line of future research. 

 

6.3.2 More Detail on the Lower-level Problems of a Stochastic MPEC for 

Sustainable Wastewater Management 

The lower level players of the MPEC represent the downstream markets that can 

be influenced by the WWTP by its choices of producing high-end fertilizer, methane or 

electricity.  These markets include: agriculture, compressed natural gas (CNG) 

transportation, residential natural gas, and electricity. A second area of potential future 

research would be to enhance these lower-level models from what was developed in this 

dissertation to allow for more realism in the formulation. 

 For example, DC Water may consider investing in an internal CNG station 

infrastructure. According to the digester design (Metcalf & Eddy and AECOM 2008), DC 

Water has the potential to produce and supply about 2.55 million cf/d of bio-CNG to the 

transportation sector in Washington, DC. The demand for CNG for buses in the 

Washington D.C. metro area is about 1.98 million cf/d consumption in 2006. In addition, 

a CNG station could be established at DC Water to support other CNG vehicles.  At 

present, the District of Columbia has no public stations, two private ones, and the State of 

Maryland has three public and six private ones. Virginia has five public and twelve 

private ones. 
98

   

 

                                                 
98

 http://www.afdc.energy.gov/fuels/natural_gas_locations.html 
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Appendices 

 

Appendix A: Parameters Used for the Deterministic Optimization 

Model 

 

       = 383 dt 

       = 428 dt 

Cap = 719 dt 

    = 12,012 cf/dt (339.94 m
3
/dt) 

     = 0.6 (See detail in A-1) 

     = 0.579  

   = 0.4838 dt/dt solid  

      = 634,000 kWh 

   = 0.057 kWh/cf (2.02 kwh/m
3
) 

        = 172,240 cf (4,874.39 m
3
) 

  
   = 0.00055 t/kWh (See A-2)  

  
   = 0.000056 t/cf (0.00197 t/m

3
) (The climate registry 2008)  

  
    = 0.000054 t/cf (0.001908 t/m

3
) (The climate registry 2008) 

  
 
  = 0.1 t/dt (Brown 2004) 

  
   = 0.2 t/dt (Brown 2004) 

  
   = 73.50 kWh/dt 

  
  = $0.086 per kWh 

   
   = $0.00529 per cf ($0.187 per m

3
) 
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     = $0.00506 per kWh 

    
     = $0.002876 per cf ($0.1016 per m

3
) 

  
  = $ 2.1 per dt 

  
       

 = $36 per dt 

  
 
 = $69.86 per dt  

  
   = $0.052 per kWh 

    
   = $0.0116 per cf ($0.408 per m

3
) 

      
     = 346.18 t CDE 

  
  = $0.05 per t CDE  

    
  = $1.89 per t CDE  

F  = 0 

Digester fixed costs (      in dollars 

Digester/segment 1 2 3 

1 66,145.68 15,670.68 15,670.68 

2 41,982.36 16,744.86 16,744.86 

3 66,145.68 108,128.04 32,415.54 

4 48,658.94 48,658.94 48,658.94 

 

Operation and Maintenance costs (      in dollars 

Digester/segment 1 2 3 

1 170.23 271.18 271.18 

2 170.23 271.18 271.18 

3 170.23 170.23 271.18 

4 490.81 490.81 490.81 
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Minimum solids use to produce biogas (      in dt 

Digester/segment 1 2 3 

1 500 500.001 750.001 

2 250 250.001 750.001 

3 500 500.001 750.001 

4 500 500.001 750.001 

 

A.1 The calculation of bio-methane and bio-CNG from biogas 

Anaerobic digestion of organic matter, especially from landfill, waste, sewage and 

wastewater, produces biogas, which methane and carbon dioxide gas are the main 

compositions. Methane from biodegradation can also call bio-methane. Bio-methane can 

be used as energy like natural gas by using it on-site for heat or power generation, or take 

it to off-site by injecting into nearly natural gas pipeline or trucking in two different 

forms, which are compressed natural gas (CNG) and liquefied natural gas (LNG). 
99

 

 
 

Figure A-1 Composition of bio-methane and bio-CNG on biogas 
100

 
101

 (Appels et al. 2008)  

 

A.2 The calculation indirect CDE emissions from electricity 

Emission factors for Washington, DC 1,095.53 lbs CO2/MWh
 

      0.028  lbs CH4/MWh 

      0.017  lbs N20/MWh  

                                                 
99

 http://suscon.org/cowpower/biomethaneSourcebook/biomethanesourcebook.php 
100

  http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510. 
101

 www.biocng.us. 

Clean System 

Water, Sulfurs 

Siloxanes and 

CO2 

Purification and 

compression 

Biogas  Bio-CNG (96.5%CH4) 

 

Bio-methane (60%CH4)  

 

http://www.environmental-expert.com/products/biogas-to-compressed-natural-gas-35510
http://www.biocng.us/
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(The climate registry 2008) 

CDE emission factors from electricity are calculated as follows taking into account the 

molecular weight of each compound: 

 

1095.53 + 0.028x21 + 0.017x310 = 1,101.388 lbs CDE/MWh 

= 0.00055 t CDE/kWh 

This constant is used for parameter   
 . 

 

A.3 The calculation CDE emissions/offsets from land application process  

CO2 emissions from transportation (Brown 2004), (  
 ) = 0.2  t CDE/dt of biosolids 

CO2 offsets from using biosolids as fertilizer (Brown, 2004), (  
 
) = 0.1 t CDE/dt of 

biosolids 

 

A.4 The calculation of CDE emissions for using bio-methane as natural gas  

CO2 emissions from natural gas = 53.06 kg CDE/mmBTU 

= 0.000056 t CDE/cf 

This constant is used for parameter   
  . 

 

A.5 The calculation of CDE offsets for selling CNG for transportation sector  

CO2 offsets from selling CNG = 0.000054 t CDE/cf of CNG (The climate registry 2008) 

This constant is used for parameter   
   . 
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Appendix B: Parameters and Density Functions Used for the Stochastic 

Optimization Model 

 

CAP  = 1000 dt  

SOR1  = 60 dt 
102

  

SOR2  = 50 dt 
103

  

Sgas = 620 dt (Metcalf & Eddy and AECOM 2008) 

fG  = 12,012 cf/dt 
104

 

fNG  = 0.6  

fCNG  = 0.579 

fB  = 0.4838 (Metcalf & Eddy and AECOM 2008)  

fE  = 0.057 kwh/cf 
105

 

WWTPNG = 172,240 cf 
106

 

  
   = 0.00055 t/kWh (The climate registry 2008)  

  
   = 0.000056 t/cf (The climate registry 2008) 

  
   = 1.44 t/dt (Brown, et al. 2010) 

  
    = 0.000054 t/cf (The climate registry 2008) 

  
 
  = 0.1 t/dt (Brown 2004)  

  
   = 0.2 t/dt (Brown 2004)  

                                                 
102

 1,400,000 population, 1.4 x 10
-4 

wet tons per day produced sludge rate, and 70% water content 
103

 Wastewater influent 60 MGD and the solid production rate 0.82 
104

 The maximum biogas of approximately 4.4x10
6
 cf comes from the digester design, which is equal to 

12,012 cf/dt times each dry ton of solids influent.  
105

 Calculated from the efficiency of one type of power generator using biogas (Metcalf & Eddy and 

AECOM 2008). 
106

 The highest natural gas consumption obtained from the energy saving plan report of December, 2010. 
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   = 73.5 kWh/dt  

  
   = 0.057 kWh/cf  

  
   = 26.58 kWh-$/dt-gal 

  
  = 0.56  gal/dt 

  
     = $0.00506 per kWh 

    
     = $0.002876 per cf 

  
     = $36 per dt 

    
   = $27.85 per dt 

    
   = $0.0116 per cf 

  
    = $0, $50, $100 per dt of biosolids influent to digester 

      
     = 346.2 t  

Spanel  = 14,944 m
2
 

RES  = $0.05 per kWh 
107

 

   
   

  = 0  

REC  = $1.89 per ton CDE 

Digester fixed costs (      in dollars 

Digester/segment 1 2 3 

1 66,145.68 15,670.68 15,670.68 

2 41,982.36 16,744.86 16,744.86 

3 66,145.68 108,128.04 32,415.54 

4 48,658.94 48,658.94 48,658.94 

5 61,504.25 61,504.25 61,504.25 

 

 

 

                                                 
107

 EIA, 2009 mentioned that the generated electricity from rooftop photovoltaic and small wind turbines 

will earn 1 credit per kWh after 2014, and gain $0.05 per kWh as market value for each credit. 
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Operation and Maintenance costs (      in dollars 

Digester/segment 1 2 3 

1 170.23 271.18 271.18 

2 170.23 271.18 271.18 

3 170.23 170.23 271.18 

4 490.81 490.81 490.81 

5 92.00 92.00 92.00 

 

Minimum solids use to produce biogas (      in dt 

Digester/segment 1 2 3 

1 500 500.001 750.001 

2 250 250.001 750.001 

3 500 500.001 750.001 

4 500 500.001 750.001 

5 500 500.001 750.001 

 

         = solids influent to digester (113-814 dt) fitted with weibull distribution 

function (113+weibull (202, 1.98)). 

            = electricity consumption at WWTP (564,000-838,000 kWh) fitted with = 

triangular distribution function (triangular (564,000, 684,000, 838,000)). 

              = electricity purchasing costs  ($ 0.030-0.136 per kWh) fitted with log 

normal distribution function (0.01 + lognormal(0.0598, 0.0259)). 

         = electricity selling prices ($0.019-0.288 per kWh) fitted with log normal 

distribution function (0.019 + lognormal(38.5, 31.6)). 

               = natural gas purchasing costs ($0.0029-0.013 per cf) fitted with 

log normal distribution function (0.0029 + lognormal(4.51, 2.27)). 

           = fossil fuel prices to transport Class A and B ($1.43-5 per gallon) fitted 

with triangular distribution function (triangular(1.09, 1.62, 5)). 
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        (s)  = fertilizer prices ($30.92-92.52 per ton) fitted with weibull distribution 

function (30 + weibull(28.8, 1.3)). 

         = carbon credits ($0.05-8 per ton CO2) fitted with triangular distribution 

function (triangular (0, 0.1, 8)). 

           = solar radiation (0.19-2.65 kWh/m
2
) fitted with triangular distribution 

function (triangular (0, 0.677, 2.9)). 

               = generated solar electricity cost $0.12, $0.13 and $0.15 per kWh 

(triangular (16, 17.7, 22.9)) 
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Appendix C: Probability for 59,049 Scenarios Using in the Stochastic 

Model 

 

Probability for each scenario is calculated by multiplying the probability of ten 

groups of uncertainty together (the details of each uncertainty probability are shown in 

Figure B). For example, scenario 1 was multiplied 0.295, 0.338, 0.321, 0.260, 0.136, 

0.289, 0.338, 0.180, 0.530 and 0.037 (respectively, the probabilities for the low case of 

each uncertainty), with a final result of 4.479x10
-7

. Pr(s) denotes the probability for each 

scenario and is used to calculate expected values in the three objective functions. 
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Figure C-1 scenarios tree show probability of uncertain data 
Note that low = low amount, med = medium amount, high = high amount 

Solid = solid end products, Elec = electricity, Fuel = fossil fuel, Fer = fertilizer, sol = solar electricity. 

Wastewater 

Solid 
(low) 

NG costs 
(low) 

Elec con 
(low) 

Elec prices 
(low) 

Elec costs 
(low) 

Fuel costs 
(low) 

Fer prices 
(low) 

Sol costs 
(low) 

Sol radi 
(low) 

CO2 credits 
(low) 

CO2 credits 
(med) 

CO2 credits 
(high) 

Sol radi 
(med) 

Sol 
radi(high) 

Sol costs 
(med) 

Sol costs 
(high) 

Fer prices 
(med) 

Fert prices 
(high) 

Fuel costs 
(med) 

Fuel costs 
(high) 

Elec costs 
(med) 

Elec costs 
(high) 

Elec prices 
(med) 

Elec prices 
(high) 

Elec con 
(med) 

Elec con 
(high) 

NG costs 
(med) 

NG costs 
(high) 

Solid 
(med) 

Solid 
(high) 

Weibull pdf 
Data 196 dt, Pr=0.295 

Data 241.5 dt, Pr = 0.283 

Data 474 dt, Pr = 0.422 

 

Lognormal pdf 

Data 0.0041 cf, Pr=0.338 

Data 0.0064 cf, Pr = 0.407 

Data 0.0103 cf, Pr = 0.255 

 

Lognormal pdf 

Data 0.026 $/kWh, Pr=0.136 

Data 0.046 $/kWh, Pr = 0.531 
Data 0.174 $/kWh, Pr = 0.333 

 

Lognormal pdf 

Data 0.038 $/kWh, Pr=0.260 

Data 0.080 $/kWh, Pr = 0.659 

Data 0.129 $/kWh, Pr = 0.081 

 

 Triangular pdf 

Data 615500 kWh, Pr=0.321 

Data 701000 kWh, Pr = 0.429  

Data 786500 kWh, Pr = 0.250 

 

 

Triangular pdf 

Data 1.80 $/gal, Pr=0.388 

Data 2.69 $/gal, Pr = 0.373 

Data 4.11$/gal, Pr = 0.239 

 

Weibull pdf 

Data 36.76 $/ton, Pr=0.289 
Data 55.20 $/ton, Pr = 0.470 

Data 80.40 $/ton, Pr = 0.241 

Triangular pdf 

Data 0.177, Pr= 0.333 

Data 0.195, Pr = 0.250 

Data 0.212, Pr = 0.417 

 

Triangular pdf 

Data 0.29 kWh/m
2
, Pr=0.180 

Data 0.87 kWh/m
2
, Pr =0.400 

Data 2.03 kWh/m
2
, Pr = 0.420 

 

 

Triangular pdf 

Data 0.125$/t, Pr=0.037 
Data 1.300$/t, Pr = 0.467 

Data 5.200$/t, Pr = 0.496 
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Appendix D: Parameters and Density Functions Used for the Stochastic 

MPEC 

 

CAP  = 1,000 dt  

 ̅   = 166,738 m
3
 (5,888,282 cf) 

 ̅   
  = 160,068 m

3
 (5,652,751 cf)  

 ̅ 
   = 814 dt 

 ̅ 
   = 250,800 kWh 

 ̅ 
   = 30,340 kWh 

SOR1  = 60 dt  

SOR2  = 50 dt  

Sgas = 620 dt (Metcalf & Eddy and AECOM 2008) 

fG  = 339.94 m
3
/dt (12,012 cf/dt)  

fNG  = 0.6  

fCNG  = 0.579 

fB  = 0.4838 (Metcalf & Eddy and AECOM 2008)  

fE  = 2.02 kwh/m
3
 (0.057 kwh/cf)  

WWTPNG  = 4,874.39 m
3
 (172,240 cf)  

  
   = 0.00055 t CDE/kWh (The climate registry 2008)  

  
   = 0.00197 t CDE /m

3 
(0.000056 t/cf) (The climate registry 2008) 

  
   = 1.44 t CDE /dt (Brown, et al. 2010) 

  
    = 0.001908 t CDE /m

3
 (0.000054 t/cf) (The climate registry 2008) 

  
 
  = 0.1 t CDE /dt (Brown 2004)  
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   = 0.2 t CDE /dt (Brown 2004)  

  
   = 73.5 kWh/dt  

  
   = 2.02 kWh/m

3
 (0.057 kWh/cf)  

  
   = 26.58 (kWh-$/dt-gal) 

  
  = 0.56  gal/dt 

  
     = $0.00506 per kWh 

          = $0.1016 per m
3
 ($0.0058 per cf) 

              = $0.1765 per m
3
 ($0.005 per cf) 

  
     = $249.6 per dt 

    
   = $27.85 per dt 

  
    = $0, $50, $100 per dt of biosolids influent to digester 

      
      = 346.2 t  

Spanel  = 14,944 m
2
 

RES  = $0.05 per kWh 
108

 

   
   

  = 0  

REC  = $1.89 per ton CDE 

         = solids influent to digester (113-814 dt) fitted with a Weibull distribution 

function 

            = electricity consumption at WWTP (564,000-838,000 kWh) fitted with a 

triangular distribution function 

               = electricity purchasing prices  ($ 0.03-0.136 per kWh) fitted with a 

lognormal distribution function 

                                                 
108

 In (EIA, 2009) it was mentioned that the generated electricity from rooftop photovoltaic and small wind 

turbines will earn 1 credit per kWh after 2014, and gain $0.05 per kWh as market value for each credit. 
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              = natural gas purchasing prices ($0.102-0.459 per m
3
) or ($0.0029-0.013 

per cf) fitted with a lognormal distribution function  

           = fossil fuel prices to transport Class A and B ($0.38-1.32 per liter) or ($1.43-

5 per gallon) fitted with a triangular distribution function 

        = carbon credits ($0.05-8 per ton CO2) fitted with a triangular distribution 

function 

          = solar radiation (0.19-2.65 kWh/m
2
) fitted with a triangular distribution 

function 

             = generated solar electricity cost $0.12, $0.13 and $0.15 per kWh 

 

Random parameter 

values 

Low Medium High 
value probability value probability value probability 

         (dt) 196 0.295 241.5 0.283 474 0.422 

            (kWh) 615,500 0.321 701,000 0.429 786,500 0.250 

              ($/kWh) 0.038 0.260 0.080 0.659 0.129 0.081 

              ($/m
3
) 0.148 0.338 0.226 0.407 0.364 0.255 

           ($/litter) 0.48 0.388 0.71 0.373 1.09 0.239 

        ($/ton CO2) 0.125 0.037 1.30 0.467 5.20 0.496 

          (kWh/m
2
) 0.29 0.180 0.87 0.400 2.03 0.420 

             ($/kWh) 0.15 0.333 0.13 0.250 0.12 0.417 

Note that the key cut-off value depends on two criteria: 

 it should be about the 30
th

, 60
th

, or the 100
th

 percentiles (for representativeness)  

 the exact percentile is approximated by where a “bin” ends from the goodness-of-

fit.  
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Digester fixed costs (      in dollars 

Digester/segment 1 2 3 

1 66,145.68 15,670.68 15,670.68 

2 41,982.36 16,744.86 16,744.86 

3 66,145.68 108,128.04 32,415.54 

4 48,658.94 48,658.94 48,658.94 

5 61,504.25 61,504.25 61,504.25 

 

Operation and Maintenance costs (      in dollars 

Digester/segment 1 2 3 

1 170.23 271.18 271.18 

2 170.23 271.18 271.18 

3 170.23 170.23 271.18 

4 490.81 490.81 490.81 

5 92.00 92.00 92.00 

 

Minimum solids use to produce biogas (      in dt 

Digester/segment 1 2 3 

1 500 500.001 750.001 

2 250 250.001 750.001 

3 500 500.001 750.001 

4 500 500.001 750.001 

5 500 500.001 750.001 

 

 

 ̅   = 122,019 dt  
109

 

 ̅   = 1,899.8 dt 

 ̅      = 35,476 kWh 
110

 (71.31% of average daily retail sales in 2012) 

 ̅       = 84,920 kWh (16.85% of average daily retail sales in 2012) 

 ̅     = 54,482 kWh (10.81% of average daily retail sale in 2012) 

 ̅   = 1,197,608 m
3
( 42,293,151 cf)   

111
 (EIA 2013) 

                                                 
109

 U.S. department of agricultural (USDA) data from 2000 to 2010 (http://www.ers.usda.gov/data-

products/fertilizer-use-and-price.aspx#26720) 
110

 An average daily amount of retail sales of electricity to the District of Columbia residential sector  is 

504,109.6 kWh (EIA 2013) 
111

 http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html. 
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 ̅  = 1,197,608 m
3
( 42,293,151 cf)    

    = $224 per dt  
112

 

    = $249.6 per dt  
113

 

        = $0.047 per kWh (EIA 2013) 

        = $0.025 per kWh  

      = $0.011 per kWh  

    = $0.671per m
3
( $0.019 per cf) (included $0.0058 per cf production unit, operation, 

and maintenance costs 
114

 and $0.013 per cf natural gas 
115

 cost)  

   =$0.459per m
3
( $0.013 per cf) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
112

 http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#26720. 
113

 The composting process cost in 2008 is $208 per dry ton of fertilizer, which included $8 per dry ton for 

capital cost and $200 per dry ton for operation and maintenance cost (EPA 2002; Harkness et al. 1994; 

Wang et al. 2009), and 20% of management cost was added. 
114

 www.biocng.us. 
115

 http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html. 

http://www.biocng.us/
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