
Studying Directory Access Patterns via Reuse Distance Analysis and
Evaluating Their Impact on Multi-Level Directory Caches

Minshu Zhao, and Donald Yeung
Department of Electrical and Computer Engineering

University of Maryland at College Park
{mszhao,yeung}@umd.edu

Abstract
The trend for multicore CPUs is towards increasing core

count. One of the key limiters to scaling will be the on-chip
directory cache. Our work investigates moving portions of
the directory away from the cores, perhaps to off-chip DRAM,
where ample capacity exists. While suchmulti-level directory
caches exhibit increased latency, several aspects of directory
accesses will shield CPU performance from the slower direc-
tory, including low access frequency and latency hiding un-
derneath data accesses to main memory.
While multi-level directory caches have been studied pre-

viously, no work has of yet comprehensively quantified the
directory access patterns themselves, making it difficult to un-
derstand multi-level behavior in depth. This paper presents a
framework based on multicore reuse distance for studying di-
rectory cache access patterns. Using our analysis framework,
we show between 69–93% of directory entries are looked up
only once or twice during their liftimes in the directory cache,
and between 51–71% of dynamic directory accesses are la-
tency tolerant. Using cache simulations, we show a very
small L1 directory cache can service 80% of latency critical
directory lookups. Although a significant number of directory
lookups and eviction notifications must access the slower L2
directory cache, virtually all of these are latency tolerant.

1. Introduction
The trend for high-performance CPUs is towards integrating
a larger number of cores on-chip. As core count increases,
scalability will become a major issue. Many factors can limit
multicore scalability, but one of the key culprits is the cache
hierarchy and its associated coherence hardware. Maintain-
ing cache coherence across a large number of cores requires
directory-based coherence protocols that employ directory
caches [14]. Unfortunately, these structures can become very
large, consuming significant area and power.

The problem is directories tend to increase as a function of
both data cache size and core count, resulting in superlinear
growth as multicores scale. Numerous techniques have tried
to address this problem, including minimizing sharing vec-
tors [1, 5, 7, 8, 9, 14, 22, 25] as well as reducing the number
of directory entries by mitigating over-provisioning [13] or
omitting entries for private data [11, 10]. Most techniques,
however, do not eliminate the superlinear growth problem,
and those that can achieve linear scaling do so at the expense
of being able to efficiently track data blocks for certain shar-
ing patterns, degrading performance.

Rather than compact the directory, this paper investigates
varying its proximity to the cores. Most existing techniques
implement directory caches monolithically in SRAM on the
same die as the cores and data caches. This enables high-
speed access to both data and directories. While efficient ac-
cess to on-chip data is essential for performance, it is less
clear whether the same is true for directories. If parts of the di-
rectory are insensitive to slower access speeds, they could be
stored farther away from the cores, perhaps even in DRAM.
Such multi-level directory caches would provide more flexi-
bility to increase directory size as CPUs scale.

In fact, researchers have recently investigated this ap-
proach for improving directory scaling. In particular, PS-
DIR [25] proposes using embedded DRAM (eDRAM) to pro-
vide higher density directory storage on the CPU die itself.
Alternatively, WayPoint [17] uses system DRAM to imple-
ment an off-chip extension of the on-chip directory cache.

For such multi-level designs to succeed, it should be the
case that CPU performance is less sensitive to the latency of
directory cache access compared to data cache access. There
are several reasons to believe this is true. First, directory ac-
cesses are typically infrequent since they occur along the miss
path of the private data caches. Because hits in cores’ private
caches usually dominate the misses, a large portion of the
CPU’s memory references are “filtered” from the directory
cache, reducing its overall access rate.

But also, a significant number of directory entries may be
accessed very rarely. This is due to private data. A data
block that is only referenced by a single core does not gen-
erate any directory accesses after it is filled into the cache.
Upon eviction, it may generate a single notification to the di-
rectory. Hence, the associated directory entry could receive
one or two accesses during its entire lifetime in the directory
cache. Researchers have observed private data dominate in
many parallel programs [11, 10, 25], so the majority of direc-
tory entries may exhibit such low temporal reuse.

Not only are directories accessed infrequently, but many
accesses are latency tolerant. In particular, the directory ac-
cesses associated with data cache fills may be performed in
parallel with data accesses to main memory. In these cases,
the directory access latency may be hidden underneath the
long latency data access. Moreover, data cache evictions that
notify the directory can be performed after their data cache
fills complete. In these cases, the directory access latency is
completely off the CPU’s critical path.

These observations suggest major portions of the direc-
tory cache can be moved to slower memory for scalabil-
ity, and indeed, the recent research has shown promising re-
sults [17, 25]. However, no previous work has comprehen-
sively studied the directory access patterns themselves, which
can be quite complex. In particular, the cache misses that de-
termine directory accesses depend on complex interactions
between applications’ memory accesses and the data cache
hierarchy. Worse yet, these directory accesses vary with data
cache size. Not only does the number of misses change,
but the amount of sharing captured between data caches also
changes, affecting the private cases mentioned above. With-
out detailed studies that shed light on such complex access
patterns, it is difficult to understand multi-level behavior.

Traditionally, computer architects have used architectural
simulation alone to study cache effects. Simulators can
model memory behavior accurately, but they provide very
limited insights. Deep insights usually require exploring nu-
merous cache configurations and observing how architecture-
application interactions change. Due to their slow speed, sim-
ulators can only consider a moderate number of configura-
tions. But as multicores scale, their cache design spaces can
easily exhibit 1000s to millions of different configurations.

Recently, there has been significant interest in evaluating
multicore cache hierarchies via locality analysis [12, 16, 24,
23, 28, 29]. These techniques acquire reuse distance (RD)
profiles using LRU stacks to characterize program-level lo-
cality. The key is profiles are architecture independent, so a
few profiles can reveal caching behavior across entire design
spaces. Recent advances have extended uniprocessor profil-
ing to handle multicore CPUs by modeling inter-thread in-
teractions. For example, private-stack reuse distance (PRD)
profiling [24, 23, 28] uses per-thread coherent LRU stacks
to model the interactions that occur in private data caches. 1

PRD (and other techniques) have already yielded significant
insights that have eluded simulation studies.

In this paper, we study multi-level directory caches using
two evaluation methodologies. First, we employ multicore
RD analysis to study directory cache access patterns. To en-
able this study, we propose a framework based on PRD stacks
that can extract the directory access stream associated with di-
rectory lookups, and implement it in a profiler. A key feature
of our framework is its ability to analyze relative reuse dis-
tance between sharers, thus assessing sharing in a capacity-
sensitive fashion. Our framework can quantify the frequency
and distribution of lookups across the directory state. It can
also break down the number of latency tolerant accesses. Last
but not least, our framework can perform all of these analy-
ses at every possible private data cache size, revealing how
directory access patterns will evolve with data cache scaling.

1PRD is sensitive to memory reference interleaving, so strictly speaking,
it is architecture dependent. But studies have shown interleaving perturba-
tions are benign for symmetric threads in programs exploiting loop-level par-
allelism [16, 28]. So, PRD profiles are accurate for this class of programs.

Second, we use cache simulation to quantify the caching
performance of directories with two levels of hierarchy. Our
simulator evaluates how effectively the L1 directory cache
captures temporal reuse, especially for directory accesses that
are latency sensitive. It also measures the accesses to the
L2 directory cache, including writeback notifications that our
analysis framework does not model. Most importantly, we
cross-reference our analyses and simulations to check for
agreement between the two methodologies.

Our profiler shows the majority of directory entries are ac-
cessed infrequently. Across a suite of 15 parallel benchmarks
running on 64 cores, we find between 69–93% of directory
entries (depending on private cache size) receive only 1 or
2 lookups during their lifetimes in the directory cache. And
most, between 62–86%, receive only a single lookup. Rel-
atively few directory entry lifetimes (7–31%) witness more
than two lookups. In addition, our analysis framework also
shows the majority of directory cache accesses, between 51–
71%, are latency tolerant. Comparatively fewer lookups, be-
tween 29–49%, are latency critical.

Our simulator shows multi-level directory caches can effec-
tively exploit the temporal reuse on directory entries shown
by our analyses, especially for latency critical lookups. We
find an L1 directory cache with only 4.5% of the private
data caches’ SRAM (i.e. providing 0.18X coverage of the
data cache blocks) can achieve a 75–80% hit rate for latency
critical directory lookups. A significant fraction of all direc-
tory lookups, between 58–74%, still miss in the L1 directory
cache, resulting in L2 directory cache traffic of between 2.3–
4.2 accesses per 1000 instructions (APKI). However, the vast
majority of these are latency tolerant. Finally, writeback traf-
fic to the L2 directory cache is significant too, between 2.6–
6.5 APKI. But all of these are latency tolerant as well.

The rest of this paper is organized as follows. Section 2
discusses directory cache accesses, and their implications
for multi-level implementation. Then, Section 3 presents
our framework for analyzing directory cache access patterns.
Next, Sections 4 and 5 report results from our analysis frame-
work and cache simulations, respectively. Finally, Section 6
discusses related work and Section 7 concludes the paper.

2. Directory Cache Accesses
Figure 1 illustrates a multicore cache hierarchy. At the top of
the hierarchy are the cores and their private data caches, with
multiple levels of private cache per core (only the last level is
shown). Below the private caches is the CPU’s sharing point
where the directory cache sits. Optionally, there may also be a
shared data cache at the sharing point. Finally, main memory
appears below the directory and shared data caches.

The directory cache is accessed on data cache transactions
that perform directory lookups. It is also accessed when data
cache evictions notify the directory. Our analysis framework
focuses on the lookup-inducing cache transactions (the notifi-
cations are addressed by our simulations). To illustrate, Fig-

2

Core

Private
Data Cache

Directory
Cache

Shared
Data Cache

T3

Main Memory

Private
Data Cache

Core

(Optional)

...

T2

T2 T2

T1

...

Figure 1: Different directory cache accesses.
ure 1 groups cache transactions into 3 categories, labeled T1–
T3, based on a directory entry’s life cycle. First, a memory
request may miss all the way to main memory (T1), causing
a new data block to be brought on-chip and a directory en-
try fill into the directory cache. These transactions initiate
new directory entry lifetimes within the directory cache. Sec-
ond, a memory request may miss to the sharing point, but
find its data on-chip in a remote private cache (T2). These
“sharing-based” transactions require directory lookups to de-
termine the kind of remote actions needed as well as the shar-
ers involved. Their accesses reuse directory entries previ-
ously filled by T1 transactions. Third, a memory request may
hit in a core’s private data cache (T3). These transactions are
satisfied completely within the core’s local private cache hier-
archy, and do not lookup the directory. Finally, the life cycle
ends when all copies of a data block and the directory entry
have been evicted from the data and directory caches.

Two characteristics of the cache transactions in Figure 1 de-
termine a directory cache’s impact on CPU performance. The
first is access frequency. In particular, total access frequency–
i.e. the number of T1 + T2 vs. T3 transactions–reflects the im-
portance of directory cache accesses compared to data cache
accesses. But in addition, per-entry access frequency–i.e. the
distribution of T1 and T2 transactions across different direc-
tory entries–reflects the criticality of individual entries.

The second characteristic is latency tolerance. Because T2
transactions incur on-chip latencies and are serialized with
their directory lookups (they need the sharing set to proceed),
they are sensitive to directory access latency. In contrast, T1
transactions incur much higher off-chip latencies and only re-
quire the memory address to proceed. Although a directory
lookup is still needed to determine the data is not on-chip, this
can be speculated (see Section 2.1), allowing the lookup and
data access to occur in parallel. So, T1 transactions are toler-
ant of slower directory access. The number of T2 vs. T1 trans-
actions reflects the latency sensitivity of the directory cache.

Notice, the cache transactions in Figure 1 are determined
by the private data caches. This means a directory cache’s
access frequency and latency tolerance characteristics vary
with the private data caches. In particular, as private cache
size scales, the number of T1 + T2 transactions will change
as well as their distribution over different directory entries.
Furthermore, private cache size scaling will also change the

System DRAM

Multicore CPU

L1 Dir

L2 Dir

System DRAM

Multicore CPU

L1 Dir

L2 Dir

Stacked DRAM Chip Boundary

Package Boundary

System DRAM

Multicore CPU

L1 Dir L2 Dir

DRAM

SRAM

SRAM

eDRAM
or

A. B. C.

Figure 2: Multi-level directory cache implementations.
amount of sharing that is captured on-chip. This can turn
shared accesses into private accesses, affecting the T2/T3 bal-
ance. But it can also change the number of misses that find
their data on- vs. off-chip, affecting the T1/T2 balance and
the directory cache’s latency sensitivity.

Lastly, while the impact of directory caches on CPU per-
formance is mainly determined by private caches, shared data
caches also play an important role. For example, shared cache
hits for data that would otherwise not be on-chip affect the la-
tency sensitivity of some T1 transactions. They potentially
make the associated directory lookups latency critical even
though their data is not resident in the private caches. Sec-
tion 5.3 will study shared caches, and evaluate techniques to
address such latency sensitivity issues.
2.1. Implications for Directory Implementation
The different cache transactions in Figure 1 give rise to asym-
metric directory access latency requirements. Conventional
directory caches do not exploit such asymmetry. They treat
all directory entries equally, storing them in SRAM on the
CPU die for high performance. But this is overkill for many
accesses. Our work studies directory caches with two levels–
a fast L1 directory cache backed by a slower L2 directory
cache–that exploit access asymmetry to improve scalability.

In particular, directory entries that are frequently involved
in T2 transactions should be kept in the L1 directory cache.
This will provide low latency to the most important entries
with lookups on the CPU’s critical path. In contrast, directory
entries solely involved in T1 transactions can reside in the
L2 directory cache. Due to T1’s latency tolerance, keeping
their entries in the slower L2 will have little impact on CPU
performance, but will take capacity pressure off of the L1. It
may also be possible to place directory entries with infrequent
T2 transactions in the L2. This will further reduce L1 pressure
while slowing down only a few latency-critical transactions.

Notice, if strong differentiation is achieved between the
two directory caches, then T1 speculation can be highly ac-
curate. As mentioned earlier, T1 transactions are (strictly
speaking) serialized with their directory accesses. But if very
few T2 transactions access the L2 directory cache, then an L1
miss would strongly suggest that the transaction is of type T1.

For high performance, the L1 should be implemented in
SRAM on-chip, just like a conventional directory cache. But
there are many possibilities for the L2, as shown in Figure 2.
First, the L2 can also be implemented in on-chip SRAM.
While this does not reduce the total on-chip directory size,

3

C
A B

G
Core C1:
Core C2:

A
F

Time: 51 2 3 4 6 7

E

8

C

9

H
D

10 11

C
JI

12 13 14

B C

15

Figure 3: Two interleaved memory reference streams.
it permits a smaller L1, allowing L1 hits to incur lower la-
tency and power. It also allows energy reduction techniques
that increase access latency to be aggressively applied to the
L2 only. Another on-chip solution is to implement the L2 in
eDRAM. This is the approach taken by PS-Dir [25]. It can
improve directory scaling since eDRAM enables a larger di-
rectory than SRAM given the same area.

Alternatively, the L2 directory cache can be implemented
in off-chip DRAM, either as a stacked die on top of the CPU
die or in main memory, as is done in WayPoint [17]. These
two approaches essentially provide unlimited capacity to im-
plement the L2, and hence, offer the greatest potential for
directory scaling. However, they also increase the L2’s ac-
cess latency and energy. Fortunately, our results will show
most L2 lookups are T1 transactions. Because T1s occur in
parallel with data accesses to system DRAM, we expect the
increased latency to have no performance impact for stacked
DRAM and only minimal impact for main memory. But in-
creased energy, especially for the main memory option, can
be significant. Of the options in Figure 2, stacked DRAM
offers the best scalability with minimal performance/power
impact, but all options are viable.

3. Analysis Framework
This section presents our analysis framework. Section 3.1 re-
views multicore RD techniques. Then, Section 3.2 develops
new analyses to identify different cache transactions and their
associated directory lookups, as discussed in Section 2.
3.1. Multicore RD Analysis
Reuse distance has been used to analyze uniprocessor local-
ity. A reuse distance (RD) profile is a histogram of RD val-
ues for all memory references in a sequential program, where
each RD value is the number of unique data blocks referenced
since the last reference to the same data block. Because a
cache of size CS can satisfy references with RD < CS (as-
suming LRU), its cache misses can be predicted as the sum
of all references in an RD profile above the RD value for ca-
pacityCS. Also, RD profiles are architecture independent, so
a single profile can predict the misses for any cache size CS.

More recently, RD profiling has been extended for multi-
core processors by using parallel LRU stacks. For example,
private-stack reuse distance (PRD) profiling [24, 23, 28, 29]
replicates LRU stacks, one per core, and plays each core’s
memory references on its local stack while maintaining co-
herence between all of the stacks. This technique can predict
the hits and misses occurring within private data caches.

To illustrate, Figure 3 shows the memory references from
two cores performed on data blocks A–J, and Figure 4 shows
the corresponding LRU stacks at different times. In particular,
Figure 4(a) shows C1’s re-reference of A at t = 10, assuming

C2C1a.

B
C

A

= hole

D
E

C
G
H

C2C1b.
Wr C

F
A

B
C
D
E F

A

C2C1c.

E
A
C
B

H
I
J

G
D C

Ref A, t = 10 Write C, t = 7 Ref C, t = 15

C

CS2
CS3

CS1

Figure 4: LRU stacks illustrating (a) intra-thread reuse and
replication, (b) invalidation, and (c) PRDremote.
all references in Figure 3 are reads. Block A is found below
blocks B–E in C1’s LRU stack, so we say its PRD = 4. A
cache of size 5 or more blocks would capture this reuse; other-
wise, a cache miss would occur from C1’s private cache. Simi-
lar to sequential RD analysis, the histogram of all PRD values
can predict a thread’s private cache misses for any cache size.

In addition to intra-thread reuse, PRD profiling also cap-
tures inter-thread interactions, such as sharing. For read
sharing, PRD captures the resulting replication effects across
LRU stacks. In Figure 3, both C1 and C2 access data block
C. Assuming these are both reads, Figure 4(a) shows the C
block is replicated in the cores’ stacks. Such shared replicas
increase capacity pressure in the affected stacks, thus model-
ing the additional cache misses that would occur.

PRD also captures write sharing effects by maintaining co-
herence between LRU stacks. For example, suppose C2’s ref-
erence to C at t = 7 is a write instead of a read. Then, inval-
idation would occur in C1’s stack, as shown in Figure 4(b).
To prevent promotion of blocks further down the LRU stack,
invalidated blocks leave behind holes [24]. Holes are unaf-
fected by references to blocks above the hole, but a refer-
ence to a block below the hole moves the hole to where the
referenced block was found. In our example, when C 1 re-
references A at t = 10, E and D in Figure 4(b) will be pushed
down and the hole will move to depth 4 (A’s old position),
preserving the stack depth of B. After the invalidation, C 1’s
re-reference of C at t = 12 will miss regardless of the cache
capacity–i.e. a coherence miss–so we say its PRD = '.

3.2. Directory Access Analysis
Because PRD profiling can predict private data cache misses,
it has the basic capability to identify directory cache lookups.
In particular, given a memory reference’s PRD and access
mode (read or write), we can predict whether a directory ac-
cess will occur at some cache sizeCS, and if so, its type.

Consider the examples from Section 3.1. In Figure 4(a),
if C1’s private cache is sufficiently large to capture the
reuse on block A (PRD < CS), then the reference hits–a T3
transaction–and no directory lookup occurs. Otherwise (PRD
≥CS), the reference misses and generates a directory lookup.
Given there are no other copies of A on-chip, this is a T1
transaction that initiates a new directory entry lifetime. In
Figure 4(b), if C2’s reference to block C is a write rather
than a read, then the references at t = 7 and 12 would both

4

miss and generate directory lookups. (Like Figure 4(a), these
also depend on the cache size CS, which we address below).
Since these are due to inter-thread communication, they are
T2 transactions that reuse the directory entry filled at t = 3.

One issue PRD profiling does not address is sharing’s de-
pendence on cache size. Granted, sharing is an application-
level property. But even if a program’s threads share data,
whether or not that sharing manifests itself on-chip depends
on the size of the CPU’s caches. So, the frequency of sharing-
based T2 transactions is also tied to temporal locality–in par-
ticular, to the relative reuse distance between sharers.

Figure 4(c) illustrates this by showing C1’s reuse of block
C at t = 15. Both cores have brought the block into their LRU
stacks, but C1 has referenced the block more recently than C2.
So, the block appears at different depths in the two stacks. Be-
cause there is a non-zero relative stack distance between the
two copies, the behavior will depend on the private cache size.
Figure 4(c) shows three cases, labeledCS1–CS3. If the cache
size is CS1, then neither copy is on-chip, so C1’s reference
misses and generates a T1 directory lookup. If the cache size
is CS2, then only C1’s copy is on-chip. We say block C is
“temporally private”–i.e. it is private within the limited time
window captured by CS2. In this case, C1’s reference is a hit
regardless of access mode (a T3 transaction) with no direc-
tory lookup. Lastly, if the cache size is CS3, then both copies
are on-chip. While a read would again be a T3 transaction, a
write would cause a sharing-based T2 directory lookup.

To enable locality-aware sharing analysis, we introduce the
notion of remote reuse distance, or PRDremote. A memory
reference’s PRDremote is the minimum stack depth across all
remote LRU stacks (i.e. all stacks except for the core’s local
stack). If PRDremote = ', then the associated data block only
resides in the core’s local stack, and the memory reference is
“truly private.” If, however, PRDremote is finite, then its value
specifies the capacity at which sharing is captured on-chip.
Given a private cache of sizeCS, PRDremote <CSwould mean
the sharing is captured; otherwise, PRDremote ≥ CS would
mean the memory reference is temporally private.

Table 1 lists all data cache transactions that can occur by
permuting the access mode (read or write) and the different
PRD/PRDremote outcomes (< CS, ≥ CS, and ') discussed
above. In total, there are 18 different cache transactions. Ta-
ble 1 reports all of them in terms of the T1–T3 categories.
3.2.1. Access Mode, PRD, PRDremote Characterization.
The first eight transactions in Table 1 form the T1 category.
All of these do not find the requested block in the local pri-
vate cache, and there is no sharing captured on-chip (PRD
and PRDremote ≥CS). Transactions 1 and 2 correspond to Fig-
ure 4(a) assumingCS< 5; transactions 3 and 4 correspond to
Figure 4(c) assuming CS = CS1; transactions 5 and 6 repre-
sent cold misses; and transactions 7 and 8 are indistinguish-
able from cold misses, though a remote core did previously
access the block. Because the requested data is not on-chip,
these transactions perform off-chip accesses.

Mode PRD PRDremote Comment
T1 Transactions: New Lifetimes

1 R ≥CS ' Truly Private
2 W ≥CS ' Truly Private
3 R ≥CS ≥CS Temporally Private
4 W ≥CS ≥CS Temporally Private
5 R ' ' Cold Miss
6 W ' ' Cold Miss
7 R ' ≥CS Temporal Cold Miss
8 W ' ≥CS Temporal Cold Miss

T2 Transactions: Directory Reuse
9 R ' <CS Coherence

10 W ' <CS Coherence
11 R ≥CS <CS Forwarding
12 W ≥CS <CS Coherence
13 W <CS <CS Coherence

T3 Transactions: Data Cache Hits
14 R <CS ' Truly Private
15 W <CS ' Truly Private
16 R <CS ≥CS Temporally Private
17 W <CS ≥CS Temporally Private
18 R <CS <CS Read to Shared

Table 1: Access mode, PRD, and PRDremote characterization of
data cache transactions and T1–T3 categorization.

The next five transactions in Table 1 form the T2 cate-
gory. All of these exhibit sharing that is captured on-chip
(PRDremote <CS) and some remote action is required–either
invalidation or forwarding of the requested block. Transac-
tion 10 corresponds to Figure 4(b) assuming PRDremote <CS,
and transaction 9 corresponds to the same example, but later
at t = 12. Transactions 12 and 13 are similar to 10 and trans-
action 11 is similar to 9 except the accessed block was refer-
enced by the local core previously, but we still need remote
actions. Because remote actions are needed, these transac-
tions’ directory lookups are on the CPU’s critical path.

The last five transactions form the T3 category. All of these
exhibit sufficient temporal reuse to be captured in the local
private cache (PRD <CS) and do not require remote actions.
Transactions 14 and 15 correspond to Figure 4(a) assuming
CS ≥ 5; transactions 16 and 17 correspond to Figure 4(c)
assuming CS = CS2; and transaction 18 corresponds to Fig-
ure 4(c) assuming CS =CS3. Because these transactions are
satisfied locally, they do not incur directory lookups.

4. Access Pattern Experiments
This section applies our analysis framework to gain insights
into directory cache access patterns. First, we describe our
profiler that implements the analysis framework. Then, we
present the profiling results.
4.1. PIN Profiler
We implemented directory access profiling within the Intel
PIN tool [18]. We modified PIN to maintain coherent private
LRU stacks and perform PRD profiling, as discussed in Sec-
tion 3.1. (We assume 64-byte blocks in all LRU stacks). For
every memory reference, our profiler consults the LRU stacks

5

CS1

CS2

CS3

xact ctrs

xact ctrs

xact ctrs

dir entry ctrs

dir entry ctrs

dir entry ctrs

A

A

16KB

16KB

. .
 . . .
 .

. .
 .

. . .

. . .

. . .

16KB

lifetimes @ CS1,

lifetime @

lifetime @

Multiple LRU Stacks
CS2, CS3 begin

CS2 ends

counters for
data block ACS1 ends

Figure 5: Counters implemented in the PIN profiler.
to compute PRD and PRDremote, using Table 1 to determine
the cache transaction and directory lookup type. Most T1/T2
transactions perform read-modify-writes, but our profiler at-
tributes a single directory cache access to each transaction.
Section 5 will break down the reads and writes separately.

To enable capacity-sensitive analysis, our PIN profiler
refers to Table 1 multiple times per memory reference, deter-
mining the directory cache behavior for different CS values.
While our framework allows exploring all CS exhaustively,
we step CS in increments of 16KB and stop at the applica-
tion’s maximum PRD for profiling speed. For eachCS value,
we maintain 18 counters, one per cache transaction in Table 1,
and increment the corresponding counter based on the result
from the table. Figure 5 illustrates the per-transaction coun-
ters at each profiled private cache size (labeled “xact ctrs”).

In addition to counting cache transactions, our PIN pro-
filer also counts lookups to individual directory entries during
their lifetimes in the directory cache. We maintain a set of di-
rectory entry counters, one per unique data block contained
in all of the LRU stacks, at every profiled capacity. Figure 5
illustrates these counters (labeled “dir entry ctrs”). After up-
dating the “xact ctr” at a particular CS, we also check if the
transaction causes a directory lookup. If so, we increment the
corresponding “dir entry ctr” to register the directory entry’s
access at that CS value. Whenever the copies of a data block
are pushed below a certain size CSi across all LRU stacks,
the data block’s lifetime in the private caches ends. Our pro-
filer assumes the directory entry’s lifetime in the directory
cache also ends (a simplification we will address in Section 5).
Moreover, the corresponding “dir entry ctr” reflects the num-
ber of lookups the directory entry received during its lifetime
given private caches of sizeCSi. We record this counter value
in a histogram for CSi, and clear it to prepare for the next
lifetime. Figure 5 shows how a reference to block A initiates
directory entry lifetimes at capacitiesCS1, CS2, andCS3, and
how the first two lifetimes terminate as the block is pushed
below capacities CS1 and CS2. (This example assumes block
A is at depth >CS3 in all other LRU stacks).

Finally, our PIN profiler follows McCurdy’s method [19]
which performs functional execution only, context switch-
ing threads after every memory reference. This interleaves
threads’ memory references uniformly in time. Studies have
shown that for parallel programs with symmetric threads, this

Benchmark Suite Problem Size Inst.
fft (kernel) SPLASH2 222 elements 2.46
lu (kernel) SPLASH2 20482 elements 25.1
radix (kernel) SPLASH2 224 keys 3.15
barnes SPLASH2 219 particles 19.3
fmm SPLASH2 219 particles 16.5
ocean SPLASH2 10262 grid 1.72
water SPLASH2 403 molecules 1.86
kmeans MineBench 222 objects, 18 features 10.7
blackscholes PARSEC 222 options 3.94
bodytrack PARSEC B_261,16k particles 13.9
canneal PARSEC 2500000.net 0.12
fluidanimate PARSEC in_500k.fluid 4.30
raytrace PARSEC 1920x1080 pixels 4.39
swaptions PARSEC 218 swaptions 26.7
streamcluster PARSEC 218 data points 5.14

Table 2: Parallel benchmarks used in the evaluations.
approach yields profiles that accurately reflect locality on real
CPUs [16, 28], especially for PRD profiles.

We profiled 15 parallel benchmarks. Our results assume
64 threads running on 64 cores (i.e. 64 LRU stacks). Ta-
ble 2 lists the benchmarks and their suites: SPLASH2 [26],
MineBench [21], or PARSEC [6]. The last two columns in
Table 2 report the problem sizes and their dynamic instruc-
tion counts (in billions). For the kernels (indicated in the first
column), we profiled the entire benchmark run. For all other
benchmarks, we ran the first parallel iteration to warm up the
PRD stacks, and then profiled the second parallel iteration.
4.2. Access Frequency
As described in Section 2, the directory cache is looked up on
data cache misses (T1 + T2). Table 3 and Figure 6 present our
cache miss results for our benchmarks running on 64 cores.
In particular, the middle 3 columns of Table 3 report private
cache miss rates, and hence, the directory cache’s access rate,
as measured by our PIN profiler. Results are shown for pri-
vate cache sizes of 1KB, 256KB, and 1MB per core. At 1KB,
the directory cache lookup rate is between 4–35%. But for
more realistic cache sizes, lookups drop quickly. By 256KB,
on average, only 1.7% of all memory references lookup the
directory cache, and by 1MB, only 1.3%.

The solid lines in Figure 6 labeled “Total Lookups” plot
the private cache misses (or directory cache lookup accesses)
per 1000 instructions–i.e. MPKI or “APKI”–as a function of
private cache size. The X-axis spans a wide range of cache
sizes, from 16KB to the maximum PRD observed in each
benchmark. Like Table 3, these results also show lookups
drop to low values as cache capacity scales. Averaged across
all benchmarks, the directory cache experiences 5.6 and 4.0
APKI at private cache sizes of 256KB and 1MB, respectively.

Granted, cache miss behavior is highly application and
problem size dependent. For our benchmarks, Table 3 and
Figure 6 show directory cache lookups are fairly infrequent.
But in general, one can expect a significant fraction of mem-
ory references to be filtered from the directory cache.

6

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

Total Lookups
T2 Transactions

(a) fft

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

Sim Total Lookups
Sim T2 Transactions

(b) lu

0.0

5.0

10.0

15.0

20.0

25.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(c) radix

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

16K 0.5 1 1.5 2 2.5 3 3.5 4A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(d) barnes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(e) fmm

0.0
5.0

10.0
15.0
20.0
25.0
30.0

16K 0.5 1 1.5 2 2.5 3 3.5 4A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(f) ocean

0.0
0.5
1.0
1.5
2.0
2.5
3.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(g) water

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(h) kmeans

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(i) blackscholes

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

16K 0.5 1 1.5 2 2.5 3A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(j) bodytrack

0.0

5.0

10.0

15.0

20.0

25.0

16K 0.5 1 1.5 2 2.5A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(k) canneal

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(l) fluidanimate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16K 0.5 1 1.5 2 2.5 3

A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(m) raytrace

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(n) swaptions

4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5A
c
c
e
s
s
e
s

p
e
r

1
K

I
n
s
t
r
u
c
t
i
o
n
s

Per-Core Private Cache Size(MB)

(o) streamcluster
Figure 6: Number of total and T2-type directory cache lookups per 1000 instructions as a function of private cache size.

Benchmark Dir Access Rate T2 Coverage
1KB 256KB 1MB 256KB 2MB

fft 9.5% 1.7% 1.7% 10.0% 28.3%
lu 6.8% 0.7% 0.4% 99.9% 100.0%
radix 21.9% 3.1% 3.1% 92.9% 28.8%
barnes 4.0% 0.1% 0.1% 90.2% 95.2%
fmm 34.4% 0.5% 0.4% 72.4% 94.7%
ocean 14.5% 3.3% 1.5% 95.3% 98.1%
water 11.5% 0.4% 0.2% 60.0% 83.1%
kmeans 4.3% 0.4% 0.4% 100.0% 100.0%
blackscholes 10.6% 0.1% 0.1% 100.0% 100.0%
bodytrack 8.1% 0.1% 0.1% 97.7% 99.9%
canneal 20.6% 7.1% 7.2% 65.7% 93.3%
fluidanimate 8.3% 0.3% 0.2% 91.1% 99.6%
raytrace 4.0% 0.1% 0.1% 61.2% 44.6%
swaptions 12.4% 2.2% 2.2% 96.1% 96.1%
streamcluster 7.2% 5.7% 1.6% 70.4% 100.0%
Average 11.9% 1.7% 1.3% 80.2% 84.1%

Table 3: Directory cache access rates and T2 transaction cov-
erage in≥ 3 lifetimes for different private data cache sizes.

Next, we study how accesses are distributed across individ-
ual directory entries. Figure 7 breaks down all directory entry
lifetimes observed throughout our benchmarks’ runs in terms
of number of lookups received at different private cache sizes.
In each graph, five curves plot the fraction of directory en-
tries receiving ≥ 1, ≥ 2, ≥ 3, ≥ 5, and ≥ 10 lookups while
resident in the directory cache. These breakdowns are shown
across the same range of private cache sizes as in Figure 6.

Figure 7 shows for smaller private caches, the vast major-
ity of directory entries receive very few lookups during their
lifetimes. For example, at 256KB private caches, 93% of
all directory entry lifetimes experience only 1 or 2 lookups
(i.e. the gap between the “1” and “3” curves) averaged across
all benchmarks. In fact, most directory entry lifetimes experi-
ence only a single lookup: 86% on average.

The singleton lifetimes are due to private data. As men-
tioned earlier, data blocks referenced by a single core do not
generate directory lookups while resident in cache. For such

private blocks, our profiler observes one directory lookup for
the initial data cache fill–a T1 transaction–but does not ob-
serve any further lookups (i.e. there are no T2 transactions
that reuse the filled entry). So, for 256KB private caches, not
only are directory cache accesses infrequent, as shown in Ta-
ble 3 and Figure 6, but the majority of directory entries within
the directory cache exhibit very low reuse due to private data.

For larger private caches, however, many of our bench-
marks exhibit increased sharing and more lookups per direc-
tory entry. As discussed in Section 3.2, sharing may occur
between threads but remain invisible to on-chip coherence
mechanisms due to insufficient capacity to capture the sharers.
Indeed, Figure 7 shows as private cache size scales, the frac-
tion of directory entry lifetimes that experience reuse (i.e.≥ 2
lookups) increases in half the benchmarks. For fft, lu, barnes,
bodytrack, and streamcluster, the private cases that dominated
at 256KB are in the minority by 2MB, making up only 21% of
all directory entry lifetimes. A similar trend occurs for radix,
fmm, and canneal, though the private cases still dominate at
2MB in those benchmarks. These results show there are many
temporally private blocks at 256KB which become shared by
2MB, exposing more T2 transactions to the directory cache.

Overall, this redistribution of private vs. shared blocks with
capacity scaling reduces the number of low-reuse directory
entries in the directory cache, but low-reuse is still the pre-
dominant behavior. Averaged across all benchmarks, Figure 7
shows 69% of directory entry lifetimes experience only 1 or
2 lookups given 2MB of private cache (instead of 93% at
256KB), with 62% experiencing only a single lookup.

4.3. Latency Tolerance and Temporal Locality
As described in Section 2, directory cache accesses for T2
transactions are latency critical whereas those for T1 transac-
tions are latency tolerant. Figure 6 quantifies the T2 vs. T1
balance. In addition to the solid lines plotting total directory
lookups, Figure 6 also plots as dotted lines the lookups asso-
ciated with T2 transactions only. Hence, the gap between the
solid and dotted lines quantify the T1 lookups.

7

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

1
2
3
5

10

(a) fft

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(b) lu

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(c) radix

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(d) barnes

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(e) fmm

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(f) ocean

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(g) water

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(h) kmeans

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(i) blackscholes

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(j) bodytrack

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(k) canneal

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(l) fluidanimate

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(m) raytrace

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(n) swaptions

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
r
a
c
t
i
o
n

o
f

D
i
r
e
c
t
o
r
y

E
n
t
r
y

L
i
f
e
t
i
m
e
s

Per-Core Private Cache Size(MB)

(o) streamcluster
Figure 7: Distribution of lookups over individual directory entries during their lifetimes as a function of private cache size.
Figure 6 shows a large fraction of directory cache lookups

are latency tolerant, especially at small private caches. Given
256KB private caches, 71.1% of directory lookups on aver-
age are T1 transactions. These results are consistent with our
per-entry analysis. In particular, the singleton lifetimes for
private data in Figure 7 each generate a T1 transaction, and as
discussed in Section 4.2, these dominate at 256KB. Many of
the non-singleton lifetimes in Figure 7 contribute multiple T2
transactions and reduce the fraction of T1 transactions. Still,
most directory cache lookups are latency tolerant at 256KB.

For larger private caches, a significant fraction of direc-
tory lookups become latency critical. At 2MB private caches,
about half (50.8% on average) are latency critical and half
are latency tolerant. This is mainly due to the drop in cache
misses with scaling as discussed in Section 4.2, eliminating
cache fills and their T1 transactions. Interestingly, Figure 6
shows T2 transactions also drop in some cases (lu, barnes,
blackscholes, bodytrack, and streamcluster). This is due to
read sharing. As cache size grows, forwarding transactions
(#11 in Table 1) increase as remote sharers are captured on-
chip. But once all sharers are cached, the directory lookups
are eliminated–i.e. the read-sharing working set fits in cache.

In contrast, write sharing causes coherence-related misses
(#9, 10, 12, and 13 in Table 1). These also increase with ca-
pacity scaling, but unlike read sharing, they cannot be elimi-
nated by capturing the sharing on-chip. This causes the steady
rise in T2 transactions visible in Figure 6, which increases
overall latency sensitivity. Notice, at each benchmark’s maxi-
mum PRD, all read-shared T2 transactions are eliminated but
all write sharing becomes exposed. These “'” private caches
quantify the maximum T2 transactions possible from write-
sharing. Figure 6 shows such worst-case write sharing gen-
erates only 2.1 lookup APKI on average. For small private
caches, the T1 transactions easily dominate this write sharing
traffic. So, unless read sharing is significant, directory caches
can be highly latency tolerant given small private cache sizes.

Finally, because T2 transactions are concentrated in non-

singleton directory entry lifetimes and because these are in
the minority, there is significant temporal reuse of directory
entries across T2 transactions. The last two columns in Ta-
ble 3 report the percentage of T2 transactions that access di-
rectory entries with ≥ 3 per-lifetime lookups. Results are
shown for 256KB and 2MB private caches. Although ≥ 3
lifetimes only make up 7% of all directory entry lifetimes
at 256KB (see Section 4.2), Table 3 shows they account for
80.2% of all T2 transactions on average. A similar T2 trans-
action coverage is achieved at 2MB, 84.1%, though more di-
rectory entry lifetimes are involved, 31%. These results show
a small directory cache can potentially hold the majority of
directory entries accessed by latency-critical T2 transactions.

5. Cache Simulation Experiments
This section evaluates the caching performance of two-level
directory caches. We first discuss our simulator infrastructure.
Then, we present the results without and with shared caches.
5.1. Directory Cache Simulator
We implemented a cache simulator that models two versions
of the hierarchy in Figure 1. Our simulator uses the same PIN
tool from Section 4.1 except the LRU stacks are replaced by
cache models. In one hierarchy, we use three levels of private
cache, and in the other, we use two levels of private cache and
a shared cache. All caches are inclusive. For both hierarchies,
we maintain private cache coherence via a directory-based
MESI protocol with full-map directories. (While other imple-
mentations are possible, full-map eliminates transactions for
imprecise sharer encodings, leaving the T1 and T2 accesses
our study focuses on). To show scaling effects, we simulate
four different last-level private cache sizes in the private-only
hierarchy. Table 4 lists the simulation parameters.

Our simulator also models a two-level directory cache. We
choose parameters (see below) that are suited for Figures 2B
and C, but our cache performance and traffic results provide
insights into all options in Figure 2. Besides the data cache
misses our profiler analyzes, our simulator’s directory cache
also receives writes from data cache evictions. (Our MESI

8

0%
20%
40%
60%
80%

100%

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

P
e
c
e
n
t
a
g
e

B
r
e
a
k
d
o
w
n

T2 L1 hit T2 L1 miss T1 L1 hit T1 L2 hit T1 L2 miss

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 8: Hit and miss rates for T1 and T2 lookups at different levels of the directory cache for different private cache sizes.
Data Cache Hierarchy

Private Only Private + Shared
Private L1: 16 KB, 4-way Private L1: 16 KB, 4-way
Private L2: 64KB, 8-way Private L2: 256KB, 8-way
Private L3: 256KB, 512KB, Shared L3: 64MB, 8-way

1MB, or 2MB, 8-way
Directory Cache Hierarchy

L1: 732KB, 1.4MB, 2.8MB or 5.7MB, 6-way
L2: 30.5MB, 61MB, 122MB, or 244MB, 1-way

Table 4: Cache simulation parameters. All data cache blocks
are 64 bytes.
protocol notifies the directory when evicting modified and ex-
clusive data blocks [13], while shared data blocks are silently
evicted). Another difference is that in our simulator, a direc-
tory entry’s lifetime ends when it is evicted from the directory
cache, not when its data block(s) are evicted from the data
caches. This results in longer lifetimes.

Two-level directory cache management is as follows. On a
directory lookup, the L1 is checked first, and then the L2 is
checked if the L1 misses. On an L2 miss (a T1 transaction),
a new directory entry is filled into the L1 (a new lifetime)
where it may receive 1 or more hits (fast T2 transactions).
Eventually, the entry is evicted from the L1 and gets filled into
the L2 via a writeback. On an L2 hit (a slow T2 transaction),
the directory entry is promoted to the L1, leaving its copy in
the L2. L1 entries that were inserted via T2-based promotions
may not be modified, so the L1 maintains per-entry dirty bits
to avoid unnecessary L2 writebacks. Both the L1 and L2 are
set associative, performing evictions in per-set LRU order.

The L1 and L2 directory caches are sized to be a fixed frac-
tion of the total last-level private data cache. Table 4 reports
four L1 and L2 directory cache sizes, one for each of the four
last-level private cache sizes we simulated. The L1 and L2
directories are always 4.5% and 91%, respectively, of the to-
tal private data cache. (In terms of the “directory entry to data
cache block ratio,” the L1 and L2 provide 0.18X and 8X “cov-
erage,” respectively, of the private caches). The L1 sizes were
chosen to match the average footprint for frequently accessed
directory entries (see Section 4.3). The L2 sizes were chosen
to minimize conflicts. Given its potentially high access cost
(e.g. Figures 2B/C), we made the L2 direct mapped so each
L1 miss only performs one L2 access. We found 8X coverage
mitigates the L2 conflicts. While the L2 sizes are large, they
are still small compared to what DRAM can provide.

5.2. Private Cache Results
We begin by comparing the directory access counts from our
simulator against those in Section 4 to help validate our anal-
ysis framework. Figure 6 plots the APKI measured on our
simulator for both total and T2-type directory cache lookups,
labeled “Sim Total Lookups” and “Sim T2 Transactions,” re-
spectively. There are four simulation datapoints per APKI
measurement, one for each of the four private cache sizes we
consider. In water and fluidanimate, the 2MB cache size is
larger than the maximum PRD for those benchmarks, so these
simulation datapoints should be compared against the corre-
sponding access counts at the benchmarks’ maximum PRD.

As Figure 6 shows, the simulator and profiler results are
very close in most cases. Averaged across all simulation
points and benchmarks, the error in total APKI is only 9.2%
while the error in T2-type APKI is 13.6%. For total APKI, the
simulator is usually higher than the profiler. This is because
our analysis framework uses ideal LRU stacks which do not
model cache conflicts, thus underpredicting the actual cache
misses that lookup the directory. In contrast, cache conflicts
do not systematically affect the amount of on-chip sharing.
So for T2-type APKI, the simulated results can be higher or
lower than the analysis results; however, there is no bias.

Next, we look at how effectively multi-level directory
caches exploit temporal locality. Figure 8 breaks down the
rate at which T1 and T2 lookups hit in different directory
caches as a percentage of total accesses. For each benchmark,
groups of bars report the results for different private cache
sizes, with each bar breaking down five categories: T2 ac-
cesses that hit or miss in the L1 directory cache, T1 accesses
that hit in either the L1 or L2 directory caches, and T1 ac-
cesses that miss in both directory caches.

Figure 8 shows the majority of T2 lookups hit in the L1
directory cache. As the “T2 L1 Hit” and “T2 L1 Miss” com-
ponents show, the T2 hit rate across different cache sizes is
between 26–42% for all lookups, which is 75–80% for the T2
lookups. Recall from Section 4.3 that 7–31% of frequently ac-
cessed directory entries account for roughly 80–84% of all T2
lookups. Our simulations confirm a very small L1 directory
cache can exploit this temporal reuse. Hence, most latency-
critical T2 lookups are serviced rapidly, so only a minority–
about 20% on average–incur longer L2 accesses.

Figure 8 also shows the majority of lookups miss in both
directory caches. These lookups, labeled “T1 L2 Miss,” are
the T1 directory fills that initiate new directory entry lifetimes.
As Figure 8 shows, they account for 49–64% of all directory

9

0.00
5.00

10.00
15.00
20.00

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

R
e
a
d

A
P
K
I

T1 L2 miss
T1 L2 hit

T2 L1 miss

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 9: L2 directory cache read APKI for different private cache sizes.
lookups across different cache sizes, which is consistent with
our analysis framework (see T1 vs. T2 validation above). No-
tice, Figure 8 also shows some T1 lookups hit in the L1 or
L2 directory caches. Directory entries may linger in the di-
rectory cache after their data blocks are evicted, an effect our
analysis framework does not model. During these extended
lifetimes, an entry can receive more accesses which may be
significant for small caches that repeatedly evict frequently
accessed blocks (fft and swaptions). But Figure 8 shows only
2.9–10.2% of T1 lookups hit in the L1 or L2 on average. So,
our analysis framework accounts for most T1 lookups.

Lastly, Figure 8 shows T1 speculation will be highly ac-
curate. On an L1 directory cache miss, if we speculate the
transaction is of type T1 (see Section 2.1), then we will be
wrong only 12% of the time on average (i.e. the percentage
of L1 misses that are of type T2). In these mispeculated T2
cases, we will needlessly fetch a data block from main mem-
ory, but for all other L1 misses, we will gainfully overlap the
L2 directory access with its data access.

Figures 9 and 10 report traffic from/to the L2 directory
cache. The former shows read traffic due to lookups in Fig-
ure 8 that could not be serviced from the L1 (“T2 L1 miss,”
“T1 L2 hit,” and “T1 L2 miss” components) and the latter
shows write traffic due to writebacks for both dirty L1 direc-
tory entries and private data blocks in modified or exclusive
state. We use the same format as Figure 8, except APKI is
plotted along the Y-axis.

Figures 9 and 10 show L2 directory cache traffic is appli-
cation dependent. For 9 benchmarks, the traffic is very small,
with total read and write traffic always under 2 APKI. This is
due to low directory lookup rates reported in Section 4.2 and
filtering of many T2 lookups by the L1 directory cache. But
in the remaining benchmarks, the traffic can be significant.
For fft, radix, ocean, swaptions, and streamcluster, read and
write traffic are each between 4.1–21.0 APKI, while in can-
neal, they can each reach 25.0–34.2 APKI. Across all bench-
marks, read and write traffic are each between 2.3–6.5 APKI.

While the L2 directory cache traffic can be significant in
some cases, it is almost entirely off the CPU’s critical path.
The vast majority of read traffic consists of latency tolerant
T1 lookups. Moreover, all of the write traffic in Figure 10
can be buffered and performed without stalling the CPU. Al-
though writes are significant in canneal and a few others, con-
ventional DRAM should be able to keep up with these write
APKI, especially given the writebacks can be pipelined. In
contrast, except for canneal and streamcluster, Figure 9 shows
latency critical T2 lookups are very rare. Across all bench-
marks, they comprise 13% of all reads.

Benchmark No Shared Shared Shared+Deferred
fft 0.07 0.02 0.02
lu 0.10 0.10 0.01
radix 0.02 0.04 0.04
barnes 0.02 0.04 0.01
fmm 0.03 0.04 0.03
ocean 0.33 0.49 0.30
water 0.12 0.21 0.08
kmeans 0.00 0.00 0.00
blackscholes 0.00 0.00 0.00
bodytrack 0.01 0.01 0.01
canneal 2.04 2.90 1.42
fluidanimate 0.09 0.14 0.07
raytrace 0.02 0.02 0.01
swaptions 0.08 0.05 0.04
streamcluster 1.38 8.27 0.04
Average 0.29 0.82 0.14

Table 5: Latency critical L2 directory cache read APKI for
256KB private caches with or without shared caches and de-
ferred updates.

5.3. Shared Cache Impact
As discussed in Section 2, directory cache behavior is mainly
determined by private caches, but having a shared cache can
make some T1 transactions latency critical. While still ab-
sent from the private caches, the data for certain T1 transac-
tions may now be found in the on-chip shared cache, eliminat-
ing their off-chip data accesses and potentially putting their
slower L2 directory accesses on the CPU’s critical path.

Table 5 shows how many L2 directory cache accesses be-
come latency critical with a shared cache. The second column
in Table 5 reports the read APKI for latency critical transac-
tions in a private-only hierarchy with 256KB private caches
(i.e. the “T2 L1 miss” components from the “256K” bars in
Figure 9). Then, the third column reports the same but for a
hierarchy that includes a 64MB shared cache in which shared
cache hits for T1 lookups are treated as latency critical.

Averaged across all benchmarks, Table 5 shows the latency
critical portion of the L2 directory’s read traffic increases
from 0.29 APKI without a shared cache to 0.82 APKI with
a shared cache. This is due to the “T1 L2 hit” components
in Figure 9. These L2 accesses correspond to data that were
recently evicted from the private data caches, and hence, their
directory entries are still in the L2 directory cache. They
mostly involve data blocks that were in shared state whose
evictions do not notify the directory. Because of good tempo-
ral reuse, there is a high likelihood for these accesses to hit in
the shared cache. Our results show essentially all of the “T1
L2 hit” components move into the latency critical category.

10

0.00
5.00

10.00
15.00
20.00

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

W
r
i
t
e

A
P
K
I

343025

Exclusive
Modified

Dirty L1 Entries

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 10: L2 directory cache write APKI for different private cache sizes.
While shared cache hits eliminate one source of latency tol-

erance, it may still be possible to overlap a T1 transaction’s
L2 directory access if we defer the directory entry update. For
many shared cache hits, the T1 transactions will find the data
blocks in shared state as mentioned above. If the T1 access
is a data read and the shared cache includes the state informa-
tion as part of its cache tags, then the shared cache data can be
forwarded to the requesting core immediately without further
stalling the core. Granted, the L2 directory access must still
occur (i.e. we need to add a sharer to the sharing vector), but
this can happen off the critical path of the core’s data access.

The last column in Table 5 shows the impact of this op-
timization: the latency critical read APKI drops to 0.14 on
average, becoming even lower than the original traffic with-
out a shared cache. The reason is because we can also defer
directory entry updates for some T2 transactions performing
read forwarding (i.e. #11 in Table 1). In these cases, the re-
questing core does not need to wait for the directory access to
determine the remote sharer from which to forward since the
data is already available in the shared cache. So, deferred up-
dates address latency criticality for T1 transactions and make
certain T2 transactions latency tolerant as well.

6. Related Work
Recently, there has been significant interest in developing
RD analysis techniques for parallel programs by adding mod-
els for thread interactions. Our work exploits PRD pro-
filing [24, 23, 28] which accounts for thread interactions
in private caches. There has also been work for shared
caches [12, 16, 27, 28]. But all prior art has focused on an-
alyzing data reuse. Our work further extends RD analysis to
reason about reuse across the directory state.

A significant amount of research has been devoted to mini-
mizing the directory’s size. Sparse directories [14] only keep
directory entries for data blocks resident in the private data
caches, but require significant over-provisioning to reduce
conflicts. Limited pointers [1, 5, 7, 8, 9] and coarse vec-
tors [14] reduce sharing vectors at the expense of extra co-
herence messages. Tagless directories [30] use bloom filters
to compact the directory. Cuckoo [13] employs sophisticated
hashing schemes to reduce conflicts without significant over-
provisioning. And SCD [22] uses variable directory tags to
match the sharing vector width to actual sharing set size.

Our approach is orthogonal to these existing techniques.
Rather than compact the directory, we exploit variation in ac-
cess frequency and latency tolerance to split the directory into
smaller/faster vs. larger/slower caches. Although we evaluate

a very simple full-map scheme, this general approach could
be applied to any of the above techniques given the Figure 2A
option (except perhaps Tagless directories). The DRAM op-
tions in Figures 2B and C, which are better matched to the
simulation parameters in Section 5, are more limited. The
above techniques could be applied to the L1 directory cache,
but given its high access cost, only simple techniques like lim-
ited pointers could be applied to the DRAM-based L2 direc-
tory cache. But our research provides the analyses for deeply
understanding all of these multi-level architectures.

Our work is closely related to PS-Dir [25] and Way-
Point [17], early implementations of two-level directory
caches. PS-Dir and other work by the same authors [11, 10]
are the first to observe the importance of privately accessed
data. And, WayPoint observes there is temporal reuse on cer-
tain directory entries. Compared to these papers, our work
focuses on analyzing the directory access patterns, and pro-
viding deep insights into those access patterns. In particular,
we agree private data is important, but our results show shar-
ing can become dominant in some cases, especially for large
caches. Our analyses quantify how private vs. shared entries
vary across data cache size. Similarly, we quantify the contin-
uum of temporal locality that the WayPoint paper talks about
qualitatively. We also show the contribution of write sharing
to directory entry reuse, which is much less significant in the
WayPoint work. (They focus on streaming workloads that do
not exhibit much write sharing). Lastly, we also quantify la-
tency tolerance which is not considered by either work.

Multi-level directory caches have also been studied in the
context of CC-NUMA machines [2, 3, 4, 15, 20]. In this case,
the directory is far away from the cores, so directory entries
are cached above the sharing point near the cores to reduce ac-
cess latency. In multicores, the directory and sharing point are
close to the cores but storage is limited, so directory entries
are cached further below the sharing point to improve scala-
bility. Conceptually, the two are very similar. We focus on
analyzing directory access patterns for multicores. However,
our analysis framework could be modified to reason about
CC-NUMA directory caches.

7. Conclusion
This paper develops RD-based techniques for analyzing di-
rectory cache access patterns. Our analysis framework can
quantify directory cache accesses and their distribution over
individual entries, as well as break down the number of la-
tency tolerant vs. critical accesses. Also, our framework can
perform these analyses for all private cache sizes. Using these

11

techniques, we show most directory entry lifetimes, 69–93%,
receive only 1 or 2 lookups, with the majority of latency criti-
cal reuse accesses confined to a small number of directory en-
tries. We also find a majority of directory cache accesses, 51–
71%, are latency tolerant. Our work also conducts cache sim-
ulations to quantify the caching performance of multi-level di-
rectory caches. We find very small L1 directory caches (with
only 0.18X coverage) can service 80% of latency critical di-
rectory accesses. Although a significant number of cache
transactions access the slower L2 directory cache, virtually
all of these are latency tolerant.

References
[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “A New Scal-

able Directory Architecture for Large-Scale Multiprocessors,” in Pro-
ceedings of the 7th International Symposium on High Performance
Computer Architecture, Washington, D.C., 2001.

[2] M. E. Acacio, J. González, J. M. García, and J. Duato, “A novel ap-
proach to reduce l2 miss latency in shared-memory multiprocessors,”
in Proceedings of the 16th International Parallel and Distributed Pro-
cessing Symposium, ser. IPDPS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 25–.

[3] ——, “Reducing the latency of l2 misses in shared-memory multi-
processors through on-chip directory integration,” in Proceedings of
the 10th Euromicro conference on Parallel, distributed and network-
based processing, ser. EUROMICRO-PDP’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 368–375.

[4] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato, “An architecture
for high-performance scalable shared-memory multiprocessors ex-
ploiting on-chip integration,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 15, no. 8, pp. 755–768, 2004.

[5] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An Eval-
uation of Directory Schemes for Cache Coherence,” in Proceedings
of the 15th International Symposium on Computer Architecture, Los
Alamitos, CA, 1988.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceed-
ings of the International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directo-
ries: A Scalable Cache Coherence Scheme,” in Proceedings of the 4th
International Conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, 1991.

[8] G. Chen, “SLiD–A Cost-Effective and Scalable Limited-Directory
Scheme for Cache Coherence,” in Proceedings of the Parallel Archi-
tectures and Languages Europe, Heidelberg, Germany, 1993.

[9] J. H. Choi and K. H. Park, “Segment Directory Enhancing the Lim-
ited Directory Cache Coherence Schemes,” in Proceedings of the 13th
International Symposium on Parallel Processing and the 10th Sympo-
sium on Parallel and Distributed Processing, Washington, D.C., 1999.

[10] B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by avoiding the tracking of non-
coherent memory blocks,” IEEE Transactions on Computers, vol. 62,
no. 3, pp. 482–495, 2013.

[11] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “In-
creasing the effectiveness of directory caches by deactivating coher-
ence for private memory blocks,” in Proceedings of the 38th annual
international symposium on Computer architecture. New York, NY,
USA: ACM, 2011, pp. 93–104.

[12] C. Ding and T. Chilimbi, “A Composable Model for Analyzing Local-
ity of Multi-threaded Programs,” Microsoft Research, Technical Re-
port MSR-TR-2009-107, 2009.

[13] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo di-
rectory: A scalable directory for many-core systems,” in 17th IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2011, pp. 169–180.

[14] A. Gupta, W. dietrich Weber, and T. Mowry, “Reducing memory
and traffic requirements for scalable directory-based cache coher-
ence schemes,” in In International Conference on Parallel Processing,
1990, pp. 312–321.

[15] R. Iyer, L. Bhuyan, and A. Nanda, “Using switch directories to speed
up cache-to-cache transfers in cc-numa multiprocessors,” in Parallel
and Distributed Processing Symposium, 2000. IPDPS 2000. Proceed-
ings. 14th International, 2000, pp. 721–728.

[16] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is Reuse Distance Ap-
plicable to Data Locality Analysis on Chip Multiprocessors?” in Pro-
ceeding of Compiler Construction, 2010.

[17] J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J. Patel, “Waypoint:
Scaling coherence to thousand-core architectures,” in Proceedings of
the 19th International Conference on Parallel Architectures and Com-
pilation Techniques, ser. PACT ’10. New York, NY, USA: ACM,
2010, pp. 99–110.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005.

[19] C. McCurdy and C. Fischer, “Using pin as a memory reference gener-
ator for multiprocessor simulation,” ACM SIGARCH Computer Archi-
tecture News, vol. 33, 2005.

[20] M. M. Michael and A. K. Nanda, “Design and performance of direc-
tory caches for scalable shared memory multiprocessors,” in Proceed-
ings of the 5th International Symposium on High Performance Com-
puter Architecture, ser. HPCA ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 142–.

[21] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary, “MineBench: A Benchmark Suite for Data Mining
Workloads,” in Proceedings of the International Symposium on Work-
load Characterization, 2006.

[22] D. Sanchez and C. Kozyrakis, “SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding,” in Proceedings of the 18th In-
ternational Symposium on High Performance Computer Architecture,
2012.

[23] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating Multicore
Reuse Distance Analysis with Sampling and Parallelization,” in Pro-
ceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques, 2010.

[24] D. L. Schuff, B. S. Parsons, and J. S. Pai, “Multicore-Aware Reuse
Distance Analysis,” Purdue University, Technical Report TR-ECE-09-
08, 2009.

[25] J. J. Valls, A. Ros, J. Sahuquillo, M. E. Gómez, and J. Duato, “Ps-dir:
a scalable two-level directory cache,” in Proceedings of the 21st inter-
national conference on Parallel architectures and compilation tech-
niques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 451–
452.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consid-
erations,” in Proceedings of the 22nd International Symposium on
Computer Architecture, 1995.

[27] M.-J. Wu and D. Yeung, “Coherent Profiles: Enabling Efficient Reuse
Distance Analysis of Multicore Scaling for Loop-based Parallel Pro-
grams,” in Proc. of the 20th International Conference on Parallel Ar-
chitectures and Compilation Techniques, Galveston Island, TX, Octo-
ber 2011.

[28] ——, “Efficient Reuse Distance Analysis of Multicore Scaling for
Loop-based Parallel Programs,” ACM Transactions on Computer Sys-
tems, vol. 31, no. 1, 2013.

[29] M.-J. Wu, M. Zhao, and D. Yeung, “Studying Multicore Processor
Scaling via Reuse Distance Analysis,” in Proceeding of the Interna-
tional Symposium on Computer Architecture, Tel-Aviv, Israel, June
2013.

[30] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A Tag-
less Coherence Directory,” in Proceedings of the 42nd International
Symposium on Microarchitecture, New York, NY, 2009.

12

