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are well-described by the M1 closure model, and our implementation shows excel-

lent behavior for a problem with a concentrated radiation source containing both
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the RSLA is minimal. We present an analysis of the dispersion relation of RHD lin-
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mechanism for cloud disruption, which may be particularly important in super star

clusters with deep gravitational potential wells.
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τλ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.20 Semi-analytic (solid line) and computed (circles) solutions of the gas

(top) and radiation (bottom) temperature profiles for a sub-critical,

non-equilibrium radiative shock with M0 = 3. . . . . . . . . . . . . 84

xi



3.21 Detail of the Zel’dovich spike in the semi-analytic (solid line) and

numerical (circles) solutions of the gas temperature profile shown in

Figure 3.20 using the M1 model. For reference, we also include the

gas temperature profile numerically obtained using the Eddington

(P1) approximation (exes) instead of computed eigenvalues. . . . . . 85

3.22 Snapshots of the gas surface density at regular time intervals for the

thin shell formation of gas ejected by a central radiation source. The

linear scale ranges from Σ = 0 (black) to Σ = 1.34 (white). The

source radiation model is described by Equation (2.54) and gas is

initially distributed as a uniformly dense sphere of radius r0. By time

t = 0.076t0, a thin shell has formed near r = r0. . . . . . . . . . . . . 89

3.23 Initial equilibrium profile of the reduced flux, f , for the spherically

symmetric thin shell problem with the M1 closure relation (solid line).

For reference, the approximate planar model solutions with the M1

(dashed line) and P1 (i.e., Eddington; dash-dotted line) closure rela-

tions are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.24 Density averaged over radial shells at regular time intervals t/t0 =

{0, 0.042, 0.083, 0.124} and for several values of ĉ/a0 in the radiatively
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Chapter 1

Introduction

The importance of radiation to gaseous evolution in many astrophysical systems is

well known. To name but a few, these include star formation in a variety of envi-

ronments (e.g., Murray et al. 2010; Thompson et al. 2005), cosmological structure

formation via radiative heating/cooling processes and ionization (e.g., Barkana and

Loeb 2001), the dynamics of accretion disks around supermassive black holes (Hi-

rose et al. 2009), and galaxy evolution with central black hole feedback (Ciotti and

Ostriker 2007). For example, in star-forming regions of galactic disks with very high

surface density Σ, radiation pressure may contribute significantly to the vertical

support of the disk (Krumholz and Thompson 2012; Thompson et al. 2005), which

would lead to a surface density of star formation ΣSFR that is correlated linearly with

Σ, rather than quadratically as expected for disks dominated by supernova feedback

(Ostriker and Shetty 2011). For the most massive GMCs, radiation pressure may

dominate the disruption process (Murray et al. 2010), and in the inner regions of

accretion disks, radiation pressure may dominate gas pressure by up to a factor of

10 (Hirose et al. 2009). To properly gauge the effects of radiation in these and other

systems, it is necessary to solve the equations of RHD in fully three-dimensional,

time-dependent numerical models.
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The equations of RHD consist of the Euler equations of gas dynamics and the

time-dependent equation of radiative transfer. Although the equations and methods

for gas dynamics are well-known, there continues to be intensive investigation over

the form of the radiative transfer equation to solve and how to incorporate it with gas

dynamics. The solution of the full time-dependent transfer equation, which consists

of a six-dimensional integro-differential equation for each frequency of radiation,

remains beyond the reach of modern computing. However, the transfer equation

is commonly simplified by truncating a hierarchy of moments at the second order,

resulting in a system of time-dependent evolution equations for the radiation energy

density and flux.

To solve the flux equation, the radiation pressure tensor (or Eddington tensor,

which is the ratio of pressure to energy density) must be supplied at each physical

location, and various methods have been proposed to compute this variable Edding-

ton tensor (VET). For example, the VET can be computed directly from the formal

solution of the time-independent transfer equation in the optically thin case from a

small, static set of radiation sources (Gnedin and Abel 2001), or along short char-

acteristics taken over a set of preferred directions (Davis et al. 2012, and references

therein). An alternative approach is to make a simplifying geometric assumption

regarding the angular dependence of the underlying radiation intensity field itself.

The M1 closure, originally proposed by Levermore (1984) and recently implemented

by González et al. (2007) and Aubert and Teyssier (2008), among others, is consis-

tent with the angular dependence of a Lorentz-boosted, isotropic distribution. For

a single source, the M1 closure can describe the limiting cases of optically thin, free-

streaming radiation (with F → E/c) and optically thick, diffusing radiation (with

F → 0) exactly, while smoothly connecting these limits in intermediate regimes.

In this work, we shall adopt the M1 closure, while also comparing with isotropic

2



closure relations for some tests.

An alternative to the two-moment formalism is the FLD approximation, where

the radiative flux is assumed proportional to the gradient of the radiation energy

density field (as in Fick’s law of diffusion), with special flux limiters put in place

to prevent superluminal transport of radiation (Levermore and Pomraning 1981).

Although this is by far the most popular method currently used in RHD applica-

tions (Commerçon et al. 2011; Fryxell et al. 2000; Gittings et al. 2008; Krumholz

et al. 2007; Reynolds et al. 2009; Swesty and Myra 2009; Turner and Stone 2001;

van der Holst et al. 2011; Zhang et al. 2011), it can potentially lead to serious

physical errors in optically thin regions, e.g., due to FLD’s inability to create and

follow shadows. Furthermore, because the direction of the radiation flux is always

parallel to the gradient in the radiation energy density, radiation forces may accel-

erate gas in the wrong direction. Although the two-moment formalism may increase

the computational requirements compared to FLD, it can potentially rectify these

serious, unphysical effects. Of course, two-moment methods may themselves have

limitations, either from the computational cost of computing the VET when a large

number of angles are required to resolve the radiation distribution, or from the inad-

equacy of adopted closure relations to capture the field arising from complex source

geometries. Therefore, it is important to compare the same problems using different

RHD methods to obtain a better understanding of each approach’s sensitivity to

assumptions and approximations.

In addition to the moment-closure problem, there is debate over the frame in

which to integrate the transfer equation. The absorption and emission coefficients

are isotropic in the Lagrangian frame (i.e., the frame comoving with the gas), hence

their angular moments are trivial. However, photons are observed to move along

curved trajectories with varying frequencies in this frame, which complicates the

3



solution of the transfer equation. Moreover, in the Eulerian frame (i.e., the inertial

“laboratory” frame), the photons move along straight lines with fixed frequencies,

but the material property coefficients are no longer isotropic. Mihalas and Klein

(1982) introduce the approach of solving the moment equations in the so-called

mixed-frame, where material properties are measured in the Lagrangian frame, but

intensities, frequencies, lengths, and times are all measured in the Eulerian frame.

We adopt this formulation and include all terms of O(βτ), where β ≡ v/c and τ

is the optical depth. The importance of including these terms has been extensively

described (Krumholz et al. 2007; Mihalas and Klein 1982).

Finally, the dynamics of RHD systems vary substantially in different physical

regimes, depending on, among other things, the typical optical depth and sound

speed of the gas, and relative contributions of the gas and radiation to the total

energy density and momentum of the system. The equations are well-conditioned

to explicit solution methods in some regimes, but often the source terms coupling

the gas and radiation subsystems are so stiff that alternate methods must be sought

to ensure stability.

In this work, we adopt the reduced speed of light approximation (RSLA), origi-

nally described by Gnedin and Abel (2001), in which the propagation speed of the

radiation field is reduced to some computationally feasible level, while seeking to

preserve all relevant dynamical properties of the system. We also formally evaluate

the RSLA’s regime of applicability (see, e.g., Section 2.2.2): as we shall show, the

validity requirements of the RSLA render our method best suited for systems with

moderate optical depth. Many applications involving star formation lie within this

regime. We employ the existing high-order Godunov methods implemented in the

Athena code (Gardiner and Stone 2005, 2008; Stone et al. 2008) along with an oper-

ator splitting between the source terms and transport terms. We solve the radiation
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momentum equation semi-explicitly; therefore, we must consider the typically large

difference in dynamical time scales between the gas and radiation fields, which can

render the explicit solution of the RHD equations computationally infeasible. The

RSLA offers a means by which to bring this ratio under reasonable control.

Aside from the aforementioned physical advantages, the computational advan-

tage of a semi-explicit, two-moment method adopting the RSLA over a fully-implicit,

one-moment method such as FLD is potentially enormous. First, the convergence

and parallelism issues that are of major concern when using linear solvers can be

entirely avoided by employing an explicit scheme that uses local data only. Sec-

ond, the performance gains can be substantial, as we shall demonstrate. The design

of our algorithm is fundamentally driven by our desire to perform simulations in a

manner that offers both physical and performance improvements over existing meth-

ods within the constraints of our application to the study of feedback-regulated star

formation. However, there are limitations to what our method can do; our various

approximations place restrictions on the physical regimes in which our method is

applicable. It is important to note that in other circumstances, different solution

methods are more appropriate.

We verify our algorithm and its implementation in our code Hyperion using a

suite of established and novel test problems in RHD spanning a wide range of dy-

namical regimes. Among them are tests of angular resolution and shadowing, and

convergence of propagating radiation and diffusion waves in problems with a radi-

ation field that is partially coupled to a static gas field. We also perform a basic

timing benchmark to compare the performance of our code to that of a well-known

FLD code on a problem involving only the partially coupled radiation subsystem.

We then test the fully coupled RHD system by investigating the radiation force in

both optically thin and -thick flows, by examining the role of the O(βτ) terms in
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the strong advection of radiation in an optically thick gas, by exploring the prop-

agation of radiation-modified acoustic waves in a wide range of optical depths and

energy regimes, and by investigating the structure of sub-critical shocks compared

to existing semi-analytic solutions. As a preliminary application, we examine the

expulsion and subsequent driven expansion of a uniform dusty shell of gas by radia-

tion momentum as described by Ostriker and Shetty (2011). Finally, we investigate

the interaction of a turbulent, gravitationally collapsing GMC with the radiation

pressure exerted on dust by the newly formed stars.

The structure of this dissertation is organized as follows. In Chapter 2, we de-

scribe our method and its numerical implementation. In Section 2.1, we give a

detailed derivation of the equations of RHD, examine the various physical regimes

spanned by this system, and discuss the M1 closure in the context of an unsplit

multidimensional Godunov method. In Section 2.2, we give an outline of our algo-

rithm, review the RSLA and examine its implications for the preservation of relevant

dynamical behavior, discuss the hyperbolic transport of radiation in the context of

the M1 model, and discuss the treatment of the various source terms according to

their mathematical properties and their role in the RHD equations. We present our

code verification test suite in Chapter 3, beginning with tests of the uncoupled and

partially coupled radiation subsystem in Section 3.1, and ending with tests of the

fully coupled gas and radiation subsystems in Section 3.3. In Chapter 4, we present

the application of our method to study a model of feedback-regulated star forma-

tion in GMCs, and finally, in Chapter 5, we give a brief summary of our algorithm,

implementation, and application along with a discussion of future investigation.
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Chapter 2

Description of the Method

2.1 The Mixed-Frame Equations of Radiation Hy-

drodynamics

Following Mihalas and Klein (1982), Mihalas and Weibel-Mihalas (1999), and Mi-

halas and Auer (2001), we express the moments of the radiative transfer equation

in the mixed-frame, where coordinates, differential operators, frequencies, and gas

and radiation variables are measured in the inertial lab frame, but material optical

properties such as absorption and emission are measured in the frame comoving with

the gas. The advantage of this hybrid approach is that the differential operators

remain hyperbolic in the inertial frame, while in the comoving frame the material

properties are effectively isotropic. For simplicity, we assume a gray atmosphere

such that the opacities are frequency-independent. Our method can be extended to

multigroup RHD in a straightforward manner (Vaytet et al. 2011), although this is

beyond the scope of this dissertation.
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2.1.1 Gas and Radiation Moment Equations

The lab-frame equations of RHD consist of the Euler equations of hydrodynamics

combined with the frequency-integrated zeroth- and first-order angular moments of

the radiative transfer equation given by

∂tρ+∇ · (ρv) = 0, (2.1a)

∂t(ρv) +∇ · (ρvv + P I) = ρ∇(Φ + Φext) + G, (2.1b)

∂tE +∇ · [(E + P )v] = ρv · ∇(Φ + Φext) + cG0, (2.1c)

1

ĉ
∂tE +∇ ·

(
F

c

)
= −G0, (2.1d)

1

ĉ
∂t

(
F

c

)
+∇ · P = −G, (2.1e)

where ρ, v, and P are the gas density, velocity, and pressure, E ≡ e+ 1
2
ρ|v|2 is the

gas total energy, Φ is the gravitational potential of the gas, and Φext is an external

gravitational potential. Here, e is the gas internal energy, which is related to the

gas pressure via e = P/(γ − 1) for an ideal gas (γ 6= 1). We assume the material is

a perfect gas obeying the law

P =
ρ kBT

µ
, (2.2)

where µ is the mean particle mass, and kB is the Boltzmann constant. In Equa-

tions (2.1d) and (2.1e), E , F, and P are the radiation energy density, flux vector,

and pressure tensor, respectively, defined as frequency-integrated angular moments

of the specific intensity in the inertial frame by



E

F/c

P



≡ 1

c

∫ ∞

0

∮



1

k̂

k̂k̂



I(k̂, ν) dΩ dν, (2.3)

where I(k̂, ν) is the specific intensity of the radiation field in the direction of unit vec-

tor k̂ at frequency ν. The specific radiation four-force density in Equations (2.1b)-
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(2.1e) is given by


G0

G


 ≡ ρ

c

∫ ∞

0

∮



1

k̂




×
(
χ(k̂, ν)I(k̂, ν)− η(k̂, ν)

)
dΩ dν, (2.4)

where η(k̂, ν) and χ(k̂, ν) are the specific emission and absorption coefficients, re-

spectively, as measured in the inertial frame. Note that we use c to denote the ratio

of photon energy to photon momentum, but in anticipation of adopting a reduced

propagation speed for the radiation fluid (see Section 2.2.2), we introduce ĉ in the

time-dependent terms in Equations (2.1d) and (2.1e).

Equations (2.1d) and (2.1e) are often called the radiation energy and radiation

momentum equations, since they describe the dynamic evolution of E and F/c, re-

spectively. Note that by adding Equation (2.1c) and c times Equation (2.1d), and

by neglecting external work, the source terms on the right-hand sides cancel and

we obtain a strong conservation law for a combined energy density, E + (c/ĉ)E .

Similarly, by adding Equations (2.1b) and (2.1e), and by neglecting external forces,

the source terms on the right-hand sides again cancel and we obtain a strong con-

servation law for a combined momentum density, ρv + (1/ĉ)F/c. When ĉ = c, the

combined terms are the total energy density and total momentum density of the

gas plus radiation, respectively. Although they are not the focus of this work, note

also that magnetic terms can be added in conservation law form to Equations (2.1).

The Athena code includes an unsplit evolution of magnetic fields via constrained

transport (Gardiner and Stone 2005, 2008).

For simplicity, we neglect scattering, and we assume that in the comoving frame

(denoted by “0” subscripts) the material property coefficients are isotropic and

characterized by a local temperature T .1 Hence, χ(k̂, ν) = κ(ν0), where ν0 is the

1This local temperature is assumed to be that of the gas. However, in certain cases (e.g.,
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comoving-frame frequency, and by Kirchhoff’s Law, η(k̂0, ν0) = κ(ν0)B(ν0, T ), where

B(ν0, T ) = (2hν3
0/c

2)/(ehν0/kBT−1) is the Planck function, T is the material temper-

ature, and kB is the Boltzmann constant. These assumptions would be valid, e.g.,

for thermal radiation in a sufficiently dense region of the interstellar medium (ISM).

Following Krumholz et al. (2007), we expand the specific radiation four-force

density for a direction-independent flux spectrum (see Mihalas and Auer 2001, equa-

tions 54b and 54d) to O(v/c)2. The result is

G0 = ρ
(
κ0EE − κ0PaRT

4
)

+ ρ (κ0F − 2κ0E)
v

c
· F
c

+
1

2
ρ
[
2 (κ0E − κ0F) E +

(
κ0EE − κ0PaRT

4
)] (v

c

)2

+ ρ (κ0E − κ0F)
v

c

v

c
: P, (2.5a)

G = ρκ0F
F

c
+ ρ

(
κ0EE − κ0PaRT

4
) v

c

− ρκ0F
v

c
· (EI + P) +

1

2
ρκ0F

F

c

(v
c

)2

+ 2ρ (κ0F − κ0E)

(
v

c
· F
c

)
v

c
, (2.5b)

where

κ0P ≡
∫∞

0
κ(ν0)B(ν0, T ) dν0

B
, (2.6a)

κ0E ≡
∫∞

0
κ(ν0)E(ν0) dν0

E0

, (2.6b)

κ0F ≡
∫∞

0
κ(ν0)F (ν0) dν0

F0

, (2.6c)

are the frequency-integrated specific opacities weighted by the Planck function,

energy density, and flux in the comoving frame, respectively.2 The frequency-

the low gas temperature regime) the emission is set by the dust temperature rather than the gas

temperature.

2In the optically thick limit, the flux-mean opacity approaches the Rosseland-mean opacity,

κ0R ≡
∫
∂Bν/∂T dν

/∫
(∂Bν/∂T )/(ρκν) dν, and the energy-mean opacity approaches the Planck-

mean opacity (see Equation 4.2 and surrounding discussion).
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integrated Planck function is related to the temperature by

B =

∫ ∞

0

B(ν0, T ) dν0 =
caRT

4

4π
, (2.7)

where aR = 4σSB/c is the radiation constant and σSB is the Stefan-Boltzmann con-

stant.

For simplicity, we will henceforth take κ0P = κ0F = κ0E ≡ κ0 and retain only

leading-order terms to obtain the system

∂tρ+∇ · (ρv) = 0, (2.8a)

∂t(ρv) +∇ · (ρvv + P I) = ρ∇(Φ + Φext) + ρκ0
F

c

−ρκ0
v

c
· (EI + P), (2.8b)

∂tE +∇ · [(E + P )v] = ρv · ∇(Φ + Φext)− cρκ0(aRT
4 − E)

−cρκ0
v

c
· F
c
, (2.8c)

1

ĉ
∂tE +∇ ·

(
F

c

)
= ρκ0(aRT

4 − E) + ρκ0
v

c
· F
c
, (2.8d)

1

ĉ
∂t

(
F

c

)
+∇ · P = −ρκ0

F

c
+ ρκ0

v

c
· (EI + P). (2.8e)

Note that in going from Equation (2.5b) to Equations (2.8b) and (2.8e), we take

aRT
4 → E for the O(v/c) source terms, as the latter does not require an additional

solution to obtain the gas temperature in the radiation subcycle (see Section 2.1.3).

We also include terms involving the gas gravitational potential, Φ, obtained effi-

ciently from the Poisson equation via fast Fourier transforms (FFTs),3 as well as a

user-specified external gravitational potential, Φext.

With ĉ 6= c, our scheme does not conserve either the total energy or total mo-

mentum of the matter-plus-radiation. Instead, the method is designed to be able

to recover the same quasi-steady radiation field as would be found when the terms

3The Athena code performs FFTs using the open-source FFTW package (see www.fftw.org).
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(1/c) ∂tE and (1/c) ∂t(F/c) are small compared to other terms in the radiation en-

ergy and momentum equations. Provided that the radiation propagation speed ĉ

is sufficiently large compared to other signal speeds, the radiation field is able to

approach this quasi-steady equilibrium configuration rapidly with respect to the

characteristic gas time scales. Note that for the commonly adopted diffusion limit,

(1/c) ∂t(F/c) is set to zero. In cases where thermal time scales are short compared

to dynamical time scales, the thermal state of the gas does not depend on the energy

exchange rate but primarily on other properties such as the radiation temperature.

In particular, the approximations we adopt are suitable for modeling radiation re-

processed by dust.

2.1.2 Physical Regimes for Source Terms

Following Mihalas and Klein (1982), Mihalas and Weibel-Mihalas (1999), Mihalas

and Auer (2001), and Krumholz et al. (2007), we refer to three limiting regimes

based upon the relative sizes of two dimensionless parameters: the optical depth,

τ ≡ L/`, where L is a characteristic flow scale and ` ≡ 1/(ρκ0) is the photon mean

free path, and β ≡ v/c, a measure of how relativistic the gas bulk flow is.

Where τ � 1, the gas and radiation are weakly coupled, and the radiation

streams freely through the medium. In this case, the specific intensity in the co-

moving frame I0, is strongly concentrated about some direction of propagation n̂0,

hence F0 → cE0n̂0 and P0 → E0n̂0n̂0. We refer to this as the streaming limit.

Conversely, where τ � 1, the gas and radiation are strongly coupled, and

the radiation diffuses through the medium. In this case, I0 is nearly isotropi-

cally distributed in the comoving frame, i.e., where the gas is locally at rest, hence

F0 ∼ (cE0/τ)n̂0 → 0 and P0 → 1
3
E0I. Therefore, in a steady state, it follows from

Equation (2.8d) that (aRT
4 − E0) ∼ E0/τ

2 in this frame, i.e., the mean intensity
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approaches that of a blackbody at high optical depth.

In the classical Newtonian limit, β � 1, hence, unless τ is very large, terms of

O(βτ) in Equations (2.8) can be neglected. In this case, the radiation is primarily

transported by diffusing through the gas as if through a completely static medium.

However, if τ is sufficiently large, theO(βτ) terms may contribute significantly to the

dynamical behavior of the system, in which case the radiation is so strongly coupled

to the gas that it is primarily transported by gas advection. We refer to the case

βτ � 1 as the static diffusion limit and the case βτ � 1 as the dynamic diffusion

limit. In terms of the characteristic flow-crossing time scale tflow ∼ L/v and the

characteristic radiation-diffusion time scale tdiff ∼ L2/(c`) = τL/c, βτ ∼ tdiff/tflow

so that tdiff � tflow in the static diffusion limit and tdiff � tflow in the dynamic

diffusion limit.

To clarify the distinction between these limits, we Lorentz-transform the comoving-

frame radiation energy, flux, and pressure, expressing them in the lab frame toO(β2)

to obtain for a one-dimensional flow

E = E0 + 2βF0/c+ β2(E0 + P0), (2.9a)

F/c = F0/c+ β(E0 + P0) + 2β2F0/c, (2.9b)

P = P0 + 2βF0/c+ β2(E0 + P0). (2.9c)

Recall that in the diffusion regime, F0 ∼ cE0/τ , P0 ∼ 1
3
E0, and aRT

4 − E0 ∼ E0/τ
2

in the comoving frame. Thus, Equation (2.9a) implies that

aRT
4 − E ∼ O

(E0

τ 2

)
+O

(
βE0

τ

)
− 4

3
β2E0, (2.10)

to O(β2) in this regime. In the static diffusion limit, βτ � 1 implies that aRT
4−E ∼

O(E0τ
−2), and in the dynamic diffusion limit, βτ � 1 implies that aRT

4 − E ∼

O(β2E0). Using these scaling arguments, in the static diffusion limit it follows that

the terms ρκ0(aRT
4 − E) in Equation (2.8d) and ρκ0F/c in Equation (2.8e) are
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dominant over the remaining terms, which are all higher-order in their respective

equations. Furthermore, in the dynamic diffusion limit, it follows that each term

in Equation (2.8d) is O(β2τ), and each term in Equation (2.8e) is O(βτ), when

compared to E/L. Therefore, in general, all of the higher-order terms in these

equations (and the corresponding terms in Equations (2.8c) and (2.8b)) must be

retained when βτ � 1 or even βτ & 1.

2.1.3 The M1 Closure Relation

The two-moment hierarchy of Equations (2.8d) and (2.8e) can not readily be solved,

since it contains moments of three orders. To proceed, we specify a closure relation

of the form

P = E T(E ,F), (2.11)

where the Eddington tensor T describes the angular dependence of the radiation

pressure, and by assumption depends only on the lower-order moments E and F.

The simplest choice is the P1 closure relation, which is derived from an assump-

tion that the specific intensity is isotropic in the laboratory frame, i.e., T ∝ I. This

completely symmetric model is appropriate to describe the diffusion limit, but fails

in the streaming limit, for example, by allowing directed radiation to leak around an

obstruction instead of casting a shadow. A better choice is the M1 closure relation

(Levermore 1984), which is derived by assuming the specific intensity is rotationally

invariant about some preferred direction n̂, which is taken to be the direction of the

radiative flux. This implies that T is a linear combination of the isotropic unit tensor

I, and the directional tensor n̂n̂, describing a radiation field that is Dirac-distributed

in the direction of n̂.

It follows from the moment definitions in Equations (2.3) that E and F must
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always satisfy the relation

‖F‖ ≤ ‖k̂‖
∣∣∣∣
∮
I dΩ

∣∣∣∣ = cE . (2.12)

Levermore (1984) showed that two sufficient conditions ensuring the flux-limiting

condition of Equation (2.12) is satisfied are given by

trT = 1, (2.13a)

x̂ · (T− ff) · x̂ ≥ 0, ∀ x̂, (2.13b)

where f ≡ F/(cE) denotes the reduced flux. Under the assumptions of the M1

model, Equations (2.13) imply that T must have the form

T =
1− χ

2
I +

3χ− 1

2
n̂n̂, (2.14)

where

n̂ =
F

‖F‖ (2.15)

is a unit vector in the direction of the flux and

χ =
1

cE

∮
[k̂ · n̂]2I dΩ (2.16)

is the Eddington factor. Levermore further showed that if I is isotropic in some

inertial frame, i.e., that the radiation field can be described as a Lorentz-boosted,

isotropic distribution in the laboratory frame, then χ is related to the norm of the

reduced flux, f = ‖F‖/(cE), by the function

χ(f) =
3 + 4f 2

5 + 2
√

4− 3f 2
. (2.17)

It can easily be verified that Equations (2.14) and (2.17) satisfy Equations (2.13a)

and (2.13b), hence the M1 closure scheme is flux-limited.

In the diffusion limit, ‖F‖ � cE , hence f → 0 and χ→ 1
3
. From Equation (2.14),

it follows that T → 1
3
I, hence this regime is described exactly. Furthermore, in the
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streaming limit, ‖F‖ → cE , hence f → 1 and χ → 1. From Equation (2.14), it

follows that T → n̂n̂, hence this regime is also described exactly. It follows from

Equation (2.17) that f ∈ [0, 1] implies χ ∈ [1
3
, 1]. It has been remarked by Sincell

et al. (1999) that certain distributions of radiation may have Eddington factors that

fall outside this range, such as in the case of very high Mach number radiative

shocks. However, these distributions are not isotropic in any inertial frame, hence

the M1 model is only approximate in these situations anyway.

It is important to note that the closure relation described by Equations (2.14),

(2.15), and (2.17) under the M1 closure is based entirely on local data, in contrast to

other schemes such as OTVET (Gnedin and Abel 2001) or the solver of Davis et al.

(2012) that use non-local data to obtain an approximate local Eddington tensor.

While a local closure relation is computationally advantageous, it is also inherently

limited and may not be able to accurately describe complex radiation fields. The

simplifying assumptions of the M1 closure allow it to capture the behavior of ra-

diation well in simple diffusing and streaming limits, but complex radiation field

geometries may be better described using other non-local schemes. It is known, for

example, that the M1 closure is subject to the two-beam instability (Frank et al.

2012), and more generally it cannot be expected to produce an accurate solution

in situations where radiation from distributed sources interacts in an optically thin

region, as we have verified. Nonetheless, the M1 scheme is relatively simple, is imme-

diately parallelizable using MPI, has well-demonstrated performance (Aubert and

Teyssier 2008; González et al. 2007), and has a comparatively low computational

cost (see Section 3.2). These features motivate the application of M1 to identify

the range of radiation regimes and problems where it is most advantageous. We

note that although we have adopted the M1 scheme for this dissertation and the

corresponding implementation in Athena, it is straightforward to substitute alter-
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nate approaches for obtaining an estimate for P (including non-local methods) to

extend the range of our semi-explicit update method to applications for which M1 is

insufficiently accurate. Also, the M1 scheme has been adopted in methods that use

fully implicit rather than semi-explicit update of the radiation moment equations

(González et al. 2007).

Finally, note that we can simplify the application of the O(βτ) source term

ρκ0(v/c) · (EI + P) in Equations (2.8b) and (2.8e) by examining its behavior in

the diffusion regime, i.e., in the only regime where it is non-negligible. For static

diffusion, f ∼ τ−1 implies that χ = 1
3

+ O(τ−2). Similarly, for dynamic diffusion,

f ∼ β implies that χ = 1
3

+ O(β2). From Equation (2.14), it follows that T ∼ 1
3
I

with off-diagonal terms of either O(τ−2) or O(β2), respectively, in these regimes.

When compared to E/L in Equations (2.8b) and (2.8e), these off-diagonal terms

are of order O(βτ−1) and O(β3τ), respectively. These terms can be neglected since

they are not of leading-order in either regime, hence the O(βτ) source term can be

simplified as

ρκ0
v

c
· (EI + P)→ 4

3
Eρκ0

v

c
. (2.18)

The source term given in Equation (2.18) is much more efficient, since it does not

require computing the radiation pressure tensor P explicitly. Also, the source term

in Equation (2.18) is related to the “relativistic work term” described in Krumholz

et al. (2007),4 which is shown to be important in non-equilibrium, non-uniform

dynamic diffusion systems with βτ ∼ 1. They cite as a motivating example the

structure of a radiation-dominated shock, the solution of which will contain errors

within the shock itself (but neither upstream nor downstream where conditions

4Note that in Krumholz et al. (2007), the analogous term appears in their radiation energy dif-

fusion equation as a work term, whereas it appears here as a force term in our radiation momentum

equation.
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become uniform and approach equilibrium) if this term is omitted.

2.2 Numerical Implementation

2.2.1 Algorithm Overview

The system described in Equations (2.8) has the form of a nonlinear, hyperbolic

conservation law plus source terms, which can be expressed compactly as

∂tU +∇ · F = S, (2.19)

where

U ≡




ρ

ρv

E

E

F




, (2.20)

F ≡




ρv

ρvv + P I

(E + P )v

ĉF/c

ĉcP




, (2.21)

S ≡




0

−ρ∇(Φ + Φext) + ρκ0F/c− 4
3
ρκ0(v/c)E

−v · ∇(Φ + Φext)− cρκ0(aRT
4 − E)− cρκ0v/c · F/c

ĉρκ0(aRT
4 − E) + ĉρκ0v/c · F/c

−ĉcρκ0F/c+ ĉc4
3
Eρκ0(v/c)




. (2.22)
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Note that in Equation (2.22) we use the simplified O(βτ) source term given in

Equation (2.18).

The various source terms may cause the differential system to become stiff in

certain regimes. In this case, the numerical solution of Equations (2.19) may become

sensitive to perturbations, hence prone to ringing (LeVeque 2002). Furthermore, the

criteria for stability in explicit integration schemes may place too severe a restriction

on the time step. For these reasons, many algorithms adopt implicit integration

schemes, which offer stability and larger time steps at the price of lower accuracy

and higher computational cost per time step. One common approach is to use

a fractional-step or operator-split method in which one alternately solves the two

subproblems

∂tU +∇ · F = Se, (2.23a)

∂tU = Si, (2.23b)

where Se ≡ Se,gas + Se,rad, and

Se,gas ≡




0

−ρ∇(Φ + Φext) + ρκ0F/c− 4
3
ρκ0(v/c)E

−v · ∇(Φ + Φext)− cρκ0v/c · F/c

0

0




, (2.24)

Se,rad ≡




0

0

0

ĉρκ0v/c · F/c

−ĉcρκ0F/c+ ĉc4
3
Eρκ0(v/c)




, (2.25)
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Si ≡




0

0

−cρκ0(aRT
4 − E)

ĉρκ0(aRT
4 − E)

0




. (2.26)

The separation of source terms into explicit (equations 2.24 and 2.25) and implicit

(equation 2.26) terms is explained in Section 2.2.4 of this Chapter. Note that

Equation (2.23a) is a non-stiff subsystem of hyperbolic partial differential equa-

tions (PDE) and Equation (2.23b) is a stiff subsystem of nonlinear ordinary differ-

ential equations (ODE). Solution methods are also discussed in Section 2.2.4.

The splitting error of this method is formally first-order in time, regardless of

the order of the method used to solve each subproblem. Specifically, the error is

proportional to the commutator bracket of the split differential operators (LeVeque

2002). For example, we demonstrate in Section 3.1.2 that for the simple case of the

advection of a free-streaming radiation wave in a purely absorbing, homogeneous

background medium, Equations (2.23) reduce to a system of constant-coefficient,

linear ODE. In this case, since neither the amount of radiation energy nor momen-

tum absorbed by the medium depends on the location of the wave (i.e., since ρ and

κ0 are held constant), we get the same result whether the wave is first advected

before being absorbed or vice-versa; hence, the differential operators commute ex-

actly, and there is no splitting error. It is more difficult to measure the splitting

error in the general case. However, for the other test problems we have explored,

the first-order splitting error seems to have such a small coefficient that the total

error is dominated by that of the individual numerical methods used for each sub-

problem. For this reason, we have not found it particularly advantageous to pursue

higher-order fractional-step methods such as Strang splitting.
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Explicit Godunov methods offer a high-order accurate, conservative, and rela-

tively inexpensive method for solving the hyperbolic transport subproblem in Equa-

tion (2.23a). However, since the gas and radiation fluids may be transported on very

different time scales, it is useful to apply an additional operator splitting to the sub-

systems describing the gas and radiation dynamics. In this manner, we alternately

evolve the subsystem

∂tUgas +∇ · Fgas = Se,gas, (2.27)

for the hydrodynamic variables ρ, ρv, and E over a time step ∆tgas ∼ ∆x/vmax,

where vmax is the maximum signal speed for the gas variables, and the subsystem

∂tUrad +∇ · Frad = Se,rad, (2.28)

for the radiation variables E and F over a series of time steps ∆trad ∼ ∆x/ĉ, where

ĉ is the propagation speed of the radiation variables, until both subsystems have

been formally advanced to the same time. This allows the use of a stable explicit

method to advance the radiation subsystem without having to advance the hydro-

dynamic subsystem over unnecessarily small a time step. Furthermore, the existing

code framework of Athena is designed for a hydrodynamic subsystem such as Equa-

tion (2.27), is second-order accurate, and can handle the radiation subsystem in

Equation (2.28) with only slight modification. Finally, note that a hyperbolic solu-

tion of the two-moment radiation subsystem has the desirable property that wave

solutions naturally propagate at finite speeds. However, splitting the gas and radi-

ation subsystems means that conservation of combined energy and momentum can

not be strictly maintained, since the source terms are not integrated on the same

time scales.

For the stiff subproblem in Equation (2.23b), we must use an implicit method

such as Backward Euler to ensure stability on a reasonable time scale. If the system
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is nonlinear, an iterative method such as Newton-Raphson must be used. Note

that although the O(βτ) source terms in Equations (2.8d) and (2.8e) may become

dynamically important in certain regimes, as we have demonstrated in Section 2.1.2,

they are typically small compared to the dominant source terms. Therefore, we can

treat these terms explicitly without adversely affecting the overall stability of the

method. We discuss in Section 2.2.4 of this Chapter which source terms are stiff

and must be updated implicitly, and which can be updated explicitly.

An alternative approach is to drop the temporal derivative in Equation (2.8e),

yielding F = −[c/(ρκ0)]∇ · P for the βτ � 1 case, which when inserted in Equa-

tion (2.8d) results in a parabolic diffusion equation for the radiation energy density.

To ensure finite-speed propagation in this approach, some form of flux-limiting must

be employed. Furthermore, any approach that introduces a spatial differential op-

erator to the right-hand side source terms results in a numerical method containing

non-local information. To treat stiff terms implicitly, this requires an additional

iterative solver such as GMRES (Saad and Schultz 1986) to invert a sparse matrix

as well as corresponding boundary conditions. The resulting FLD approach is cur-

rently the most common method used for RHD in astrophysics (Commerçon et al.

2011; Fryxell et al. 2000; Gittings et al. 2008; Krumholz et al. 2007; Reynolds et al.

2009; Swesty and Myra 2009; Turner and Stone 2001; van der Holst et al. 2011;

Zhang et al. 2011).

The hydrodynamic time step ∆tgas, determined using the standard Courant-

Friedrichs-Lewy (CFL) condition based on the fastest signal speed, must be modified

to account for the effect of radiation pressure on the propagation of acoustic waves.

Krumholz et al. (2007) give an approximate expression for the effective sound speed,

ceff ≡
√
γP + 4

9
E(1− e−ρκ0 ∆x)

ρ
, (2.29)

which interpolates between the limit for optically thick cells, where radiation pres-
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sure contributes to the total pressure and increases the effective speed of acoustic

waves, and optically thin cells where the radiation pressure does not contribute.

The hydrodynamic time step is then set to

∆tgas = K0
∆x

vmax

, (2.30)

where K0 is the Courant number, usually 0.4 for a van Leer (VL) integration scheme,

and vmax ≡ max{|v|+ ceff} is the maximum effective signal speed over all grid cells.

When a reduced speed of light is used for the hyperbolic radiation subsystem, we

usually set ĉ so that

R ≡ ĉ

vmax

� 1, (2.31)

with typical radiation-to-gas signal propagation speed ratio R ∼ 10 for optically

thin cases. In the diffusion regime, there may be additional constraints on ĉ and R

(see Section 2.2.2). Alternatively, in situations where c is not too large compared to

vmax, we instead take ĉ→ c and R ≡ c/vmax. In our code, the radiation time step is

set to

∆trad = K0
∆x

ĉ
=

∆tgas

R
, (2.32)

hence for every gas integration cycle of time step ∆tgas, roughly R radiation inte-

gration subcycles of time step ∆trad must be performed. Note that R is not fixed,

since the gas time step is set by the (variable) maximum acoustic signal speed, vmax,

but the radiation time step is set by the (constant) reduced speed of light, ĉ.

Our algorithm can be summarized as follows:

1. Calculate the gas time step, ∆tgas, at time tn using the radiation-modified

CFL condition as described in Equation (2.30). Then calculate the radiation

time step, ∆trad, using ∆tgas and ĉ as described in Equation (2.32).

2. Integrate the source term Si in Equation (2.23b) over the time step ∆tgas using

an implicit solver.
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3. Integrate the gas subsystem in Equation (2.27) over the time step ∆tgas using

an explicit, hyperbolic Godunov solver, adding in the source term Se,gas at

first-order using the radiation variables at time tn.

4. Integrate the radiation subsystem in Equation (2.28) over the time step ∆trad

using an explicit, hyperbolic Godunov solver, adding in the source term Se,rad

at second-order.

5. Repeat Step 4 (≈ R times) until the gas and radiation variables have been

formally advanced to the same time, tn+1 = tn + ∆tgas.

6. Correct the source term Se,gas to second-order in the gas subsystem in Equa-

tion (2.27) using the radiation variables at time tn+1.

7. Repeat Steps 1 through 6 until time tfinal is reached.

2.2.2 The Reduced Speed of Light Approximation

In many astrophysical settings, the ratio of the radiation propagation speed, c, to

the maximum acoustic signal speed of the gas, vmax ≡ max{|v|+ ceff}, can be quite

large. Consequently, the ratio of the corresponding CFL time steps for explicit

integration of the gas and radiation transport subsystems, ∆tgas/∆trad ∼ c/vmax,

may be many orders of magnitude greater than 1. An explicit scheme for the

radiation subsystem, such as the one described in Section 2.2.1, can be rendered

impractical by such a large ratio. Fortunately, in many situations we can reduce the

signal propagation speed of the radiation fluid to some value ĉ � c, which in turn

reduces the gas-to-radiation explicit time step ratio to a computationally tractable

level, while preserving the essential dynamical behavior of the RHD system. This

is the essence of the RSLA, originally described by Gnedin and Abel (2001) and
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recently implemented by González et al. (2007), Aubert and Teyssier (2008), and

Petkova and Springel (2011).

Stated more precisely, local dynamics are insensitive to the RSLA as long as

the relevant ordering of time scales in a given dynamical regime is preserved. First,

consider the Newtonian (i.e., non-relativistic) limit, in which the speed of light is

taken to be effectively infinite (i.e., c � vmax). Under the RSLA, the RHD system

will remain within a first-order approximation of the Newtonian limit provided

ĉ� vmax. (2.33)

Second, consider the static diffusion limit in which the gas dynamical time scale

tdyn ≡ L/vmax, is large compared to the radiation-diffusion time scale tdiff ≡ Lτ/c.

In this regime, reducing the speed of light to ĉ corresponds to increasing the charac-

teristic radiation-diffusion time scale to t̂diff ≡ Lτ/ĉ = (c/ĉ)tdiff . To ensure that the

original ordering of time scales is not altered under the RSLA, we must impose an

effective lower limit on ĉ so that t̂diff � tdyn whenever tdiff � tdyn. This is satisfied

provided

ĉ� vmaxτmax, (2.34)

where τmax is the maximum optical depth in a given problem. Equations (2.33)

and (2.34) can be combined to form the RSLA static diffusion criterion given by

ĉ� vmax max{1, τmax}. (2.35)

It is clear that ĉ satisfying Equation (2.35) will be much larger than all other sig-

nal propagation speeds, and that the gas dynamical time scale will remain large

compared to the radiation-diffusion time scale when τmax � 1.

In the regime which is of most practical interest for the application of our code

(i.e., star-formation/ISM), static diffusion applies and we set ĉ according to Equa-

25



tion (2.35), hence the gas-to-radiation time step ratio R is given by

R ≡ ĉ

vmax

� max{1, τmax}. (2.36)

For problems in the optically thin regime, Equation (2.35) is satisfied provided R�

1; we typically choose R ∼ 10, corresponding to roughly 10 radiation subcycles per

gas cycle. For problems in the diffusion regime with optical depths up to τmax ∼ 10,

Equation (2.35) is satisfied for R in the range ∼10-100. Recall that ĉ only enters as

a factor in the time-dependent terms of the radiation Equations (2.8d) and (2.8e);

the true speed of light c is used in all source terms and in the ratio of radiation

flux to energy. One important consequence of this is that the spatial structure of

quasi-steady radiation solutions is insensitive to the RSLA.

Finally, note that since ĉ is held constant throughout the computation, in certain

situations it may be difficult to know a priori exactly what τmax will be. Therefore,

we can first make a conservative choice of ĉ by assuming that τmax is a few times

ρ̄κ0,maxL, where ρ̄ is the mean density, κ0,max is an upper-bound on what κ0 may

become, and L is the size of the computational domain or other relevant spatial scale

in a given problem. Second, we can analyze the structure of the output to assess

the actual value of τmax; the value of ĉ can then be adjusted up or down accordingly.

The first run can be done at lower resolution and the second at higher resolution to

save computational costs. In particular, in studying star formation, sink particles

can be used to represent collapsed cores (e.g., Gong and Ostriker 2013), providing

a maximum cutoff density to facilitate the selection of ĉ.
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2.2.3 Hyperbolic Transport of Radiation

To evolve the transport Equation (2.28), we use the VL integrator implemented

in Athena (Stone and Gardiner 2009), a high-order Godunov finite-volume method

based on a variation of the MUSCL-Hancock scheme described by Falle (1991).

To advance the radiation field, we use the second-order, piecewise-linear spatial

reconstruction implemented in Athena along with a Harten-Lax-van Leer (HLL)

Riemann solver such as the one described by González et al. (2007).

To compute the HLL flux, e.g., in the x-direction, we first compute the fluxes

FL/R = FL/R − SL/RUL/R along characteristics, where FL/R = x̂ · FL/R is the flux

in the x-direction, UL/R is the volume-averaged state vector, and SL/R is the fastest

left/right-going signal propagation speed on either side of the cell interface. The

intermediate-state flux is then given by

F∗ =
1

2
(FL + FR) +

1

2
(F L −FR)

(
SR + SL

SR − SL

)
. (2.37)

For numerical stability, we must upwind the HLL flux whenever SL and SR have the

same sign. Thus, the proper HLL flux is then given by

FHLL
x; i−1/2 =





FL, SL > 0

F∗, SL ≤ 0 ≤ SR

FR, SR < 0

. (2.38)

Alternatively, the HLL flux in Equation (2.38) can be written as

FHLL
x; i−1/2 =

S+
R FL − S−L FR + S+

RS
−
L (UR −UL)

S+
R − S−L

, (2.39)

where SR ≡ max {λmax(UL), λmax(UR)} and SL ≡ min
{
λmin(UL), λmin(UR)

}
are

estimates of the fastest right- and left-moving wave speeds, respectively, of the lin-

earized, hyperbolic radiation subsystem projected in the x-direction, and S+
R ≡
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max{SR, 0} and S−L ≡ min{SL, 0} are their properly upwinded values. In Equa-

tion (2.39), the indices (L,R) correspond to (i − 1, i) for the first-order fluxes and

to (i − 1
2
, i − 1

2
) for the second-order fluxes. Note that the HLL scheme uses a sin-

gle intermediate state, thus it can not resolve isolated contact discontinuities. This

makes it more dissipative than schemes with additional intermediate states, i.e.,

schemes that track additional waves. Nonetheless, the HLL scheme is fairly simple,

and it is robust and positivity-preserving for one-dimensional problems, making it

an attractive choice of Riemann solver for our method.

The radiation transport subsystem for Urad can be written compactly as

∂tUrad + A∂xUrad = 0, (2.40)

where A(Urad) = ∂F/∂Urad is the 4 × 4 Jacobian matrix for the fluxes in the x-

direction. By taking A constant about some state Un
rad, Equation (2.40) becomes

a linear system. The wave speeds λ are the eigenvalues of A, which are real for a

hyperbolic system. Furthermore, by the axisymmetry assumption of the M1 model,

described in Section 2.1.3, these eigenvalues can only depend on ĉ, on the norm

of the reduced flux, f , and on the angle θ that n̂ = f/f makes with the interface

normal x̂, but not on n̂ itself. Without loss of generality, we can rotate our local

coordinate system about x̂, transforming from coordinates (x, y, z) to (x, y′, z′), so

that ẑ′ · n̂ = 0 in the new coordinate system. Since A depends only on fx = f · x̂ and

fy′ = f ·ŷ′, i.e., on E , Fx, and Fy′ only, there can be at most three linearly independent

eigenvectors (i.e., two of the four eigenvectors are always linearly dependent). The
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three corresponding eigenvalues can be shown to be

λ1,3

ĉ
=

{
µf ±

[
2

3

(
4− 3f 2 −

√
4− 3f 2

)

+2µ2
(

2− f 2 −
√

4− 3f 2
)]1/2}

÷
√

4− 3f 2, (2.41a)

λ2

ĉ
=

µ

f

(
2−

√
4− 3f 2

)
, (2.41b)

where µ ≡ cos θ = x̂ · n̂, and where λ1 and λ3 correspond to the (−) and (+) roots,

respectively. It can be shown that the three eigenvalues given in Equations (2.41)

are always ordered λ1 ≤ λ2 ≤ λ3. These eigenvalues are the closed-form, mul-

tidimensional analogs of the wave speeds given explicitly by Audit et al. (2002,

equations 35a,b) for a one-dimensional flow (µ = 1).

Equation (2.40) is hyperbolic, but not strictly so, hence its eigenvalues are not

necessarily distinct. In the streaming limit, it follows from Equations (2.41) with

f → 1 that λ1,2,3 → ĉµ, so that when n̂ and x̂ are parallel, the fastest signal speed

is given by the reduced speed of light, ĉ, and when n̂ and x̂ are perpendicular,

there is zero transport in the x-direction. In the diffusion limit, it follows from

Equations (2.41) with f → 0 that λ2 → 0 and λ1,3 → ∓ĉ/
√

3, so that we recover

the fastest signal speeds given by diffusion theory.

Figure 2.1 shows the dependence of the eigenvalues λ1,2,3 on the norm of the

reduced flux, f , for the cases of parallel (µ = 1) and perpendicular (µ = 0) trans-

port in a given direction. As emphasized by González et al. (2007), the proper

dependence of the eigenvalues on µ in the streaming limit is necessary for capturing

shadowing. Note that the eigenvalue λ2 represents the intermediate wave speed of

an entropy mode while the eigenvalues λ1,3 represent the speeds of the fastest left-

and right-moving radiation waves. All waves become degenerate as f → 1, which

physically represents the fact that all photons propagate in the same direction in
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Figure 2.1: Eigenvalues of the hyperbolic radiation wave matrix, scaled by ĉ,

as a function of the norm of the reduced flux, f ≡ |F|/(cE), for the M1 closure

relation in the cases of perpendicular transport (µ = 0, left) and parallel transport

(µ = 1, right). The dashed and dash-dotted lines show the wave speeds λ1 and

λ3 (Equation (2.41a)), respectively, and the solid lines show the wave speed λ2

(Equation (2.41b)), which is unused in our implementation.

the streaming limit. Since only the fastest left- and right-moving wave speeds are

needed to compute the HLL flux in Equation (2.39), we only need to compute λ1,3.

2.2.4 Treatment of Source Terms

As mentioned in Section 2.2.1, some of the radiation source terms in Equations (2.22)

must be handled carefully in certain physical regimes where they may become stiff.

In this case, stability requirements may become too restrictive on the time step

for explicit methods to remain feasible and one must resort to lower-order implicit

methods. Yet in other regimes, the stability requirements can often be relaxed or

even neglected.
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In our treatment of the O(βτ) source terms, we assume they are never stiff,

i.e., that we are confined to the static diffusion regime with βτ � 1 as described in

Section 2.1.2. Thus, for the update of the radiation subsystem from Equation (2.22),

we first consider only the (potentially) stiff source terms

∂tE = ĉρκ0(aRT
4 − E), (2.42a)

∂tF = −ĉρκ0F. (2.42b)

Equation (2.42b) represents the process of radiative momentum absorption by

the gas, which does not directly affect the gas density, ρ. Thus, by taking ρ constant

over the radiation time step, ∆trad, Equation (2.42b) can be solved using a standard

θ-scheme update given by

Fn+1 = Fn

[
1− (1− θ)ĉρκ0∆trad

1 + θĉρκ0∆trad

]
. (2.43)

Equation (2.43) represents the unconditionally stable, first-order Backward Euler

Method for θ = 1, and the marginally stable, second-order Trapezoidal Method for

θ = 1
2
. In most cases, we can set θ = 0.51 to achieve nearly second-order accuracy

while avoiding the ringing associated with the completely time-centered Trapezoidal

Method. In cases where Equation (2.42b) may become stiff, stability of the update

demands that we use θ = 1; however, the solution is always direct rather than

iterative since the equation is linear in F. With this caveat regarding the choice

of θ, we categorize Equation (2.42b) as “non-stiff” and include the corresponding

source term in Equation (2.25).

Furthermore, Equation (2.42a) represents the exchange of the radiation and gas

energies via absorption and emission of radiation. Since ρ is also unaffected by gas-

radiation energy exchange, Equation (2.42a) represents a nonlinear ODE in the two

scalar variables E and T , which can be solved using standard iterative methods.
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We can further reduce Equation (2.42a) to a single-variable, nonlinear ODE as

follows. First, we use Equation (2.2) to relate T to the gas internal energy, e. We do

this for both the radiation energy update in Equation (2.42a) and the corresponding

gas internal energy update in Equation (2.23b) (from equation 2.8c) to obtain the

system

∂te = −cρκ0(αe4 − E), (2.44a)

∂tE = ĉρκ0(αe4 − E), (2.44b)

where α ≡ aR[(γ − 1)µ/(ρ kB)]4 is constant over the energy exchange update. Note

that we write Equation (2.44a) as an update to the gas internal energy only; the gas

kinetic energy is not directly affected by the processes of absorption and emission

of radiation. Second, by adding Equations (2.44a) and c/ĉ times Equation (2.44b),

it follows that the quantity

Ē = e+
c

ĉ
E , (2.45)

is constant over the energy exchange update. We can then eliminate e in Equa-

tion (2.44b) using Equation (2.45) to obtain

∂tE = ĉρκ0

[
α
(
Ē − c

ĉ
E
)4

− E
]
, (2.46)

a nonlinear ODE in the single variable E .

In certain physical regimes where Equation (2.46) may become stiff, we must

resort to implicit solution methods to provide stable solutions on the larger time

scale of the gas. We use a standard θ-scheme update given by

En+1 − En
∆trad

= ĉρκ0

{
θ

[
α
(
Ē − c

ĉ
En+1

)4

− En+1

]

+(1− θ)
[
α
(
Ē − c

ĉ
En
)4

− En
]}

, (2.47)

which reduces to the Backward Euler Method for θ = 1, and to the Trapezoidal

Method for θ = 1/2.
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It follows from Equation (2.45) that En+1 is related to en+1 via

En+1 =
ĉ

c
(Ē − en+1). (2.48)

Equation (2.48) can be substituted for En+1 (along with an analogous expression

for En) on the right-hand side of Equation (2.47), to obtain the new left-hand side

−(ĉ/c)[en+1−en]/∆trad. Thus, Equation (2.47) reduces to a fourth-order polynomial

equation in the single variable x ≡ en+1, the solution of which can be found using

standard root-finding methods (Turner and Stone 2001). It can be shown that this

polynomial equation has the form fθ(x) = 0, where

fθ(x) ≡ c4x
4 + c1x+ c0, (2.49a)

c4 ≡ αηθ, (2.49b)

c1 ≡ 1 +
ĉ

c
ηθ, (2.49c)

c0 ≡ (1− θ)η
[
α(en)4 − En

]

−
(
en +

ĉ

c
ηθĒ

)
, (2.49d)

η ≡ cρκ0∆trad. (2.49e)

Since x > 0, c4 > 0, and c1 > 0, it follows immediately that fθ is strictly increasing

and convex, and it can be further shown that fθ is bracketed on some feasible

domain between 0 and min{|c0/c1|, |c0/c4|1/4}, provided c0 ≤ 0. This is guaranteed

for θ = 1 or for a system initially in radiative equilibrium, i.e., one for which

α(en)4 = aR(T n)4 = En. For θ < 1, fθ may fail to be bracketed on a feasible domain if

Equation (2.46) is stiff, in which case there may exist no solution to Equation (2.49).

By default, we use the unconditionally stable value θ = 1, although in most of our

code tests we are able to use the value θ = 0.51 to achieve higher-order accuracy

without introducing instability (see Section 3).

When a solution to Equation (2.49) does exist, Newton-Raphson iteration can

be used to solve for the root, typically with rapid convergence. If that fails, we can

33



resort to the Bisection Method, which is slower but guaranteed to converge. Once

either method has converged to the root x = en+1, within a relative error tolerance

of ε, the update for En+1 is completed by applying Equation (2.48). By default, we

use the value ε = 10−10. It can be shown that the relative error of the solution for

En+1 is approximately Kε, where

K ≡ en+1

(c/ĉ)En+1
(2.50)

is the condition number of the update for En+1 via Equation (2.48). On the one hand,

if K � 1 for a relatively weak but non-negligible radiation field, then there may be

a significant loss of numerical precision of the solution for En+1 upon application of

Equation (2.48), even if the relative error of the solution for en+1 is small. In this

case, it may be preferable to estimate K ≈ en/[(c/ĉ)En] a priori, and preemptively

reduce ε, the relative error tolerance for the solution of en+1, so that ε and Kε yield

acceptable levels of relative error of the solutions for en+1 and En+1, respectively.

Note that this affects the precision of the implicit energy exchange update but has

no effect on Ē, which by construction is conserved to the level of machine precision.

On the other hand, if K � 1 for a negligible radiation field, the update for En+1

may be ill-conditioned, but the relative error of the solution for en+1 will be at

the level of ε � 1. Our algorithm is designed to track a radiation field that is at

least weakly coupled to the gas; in the purely uncoupled limit, including the purely

hydrodynamic limit, one can not reasonably expect to resolve precisely the dynamics

of such an extremely weak radiation field independently of the gas.

The above describes the most general approach to updating the terms in Equa-

tions (2.44), which we categorize as “stiff” for the purposes of Equation (2.23b).

For certain cases, we instead adopt a different approach. In the case of a purely

absorbing medium with no (effective) emission, e.g., absorption of ultraviolet (UV)

or optical radiation by dust (which would be re-emitted in the infrared), we neglect
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source terms for the gas energy equation and Equation (2.42a) reduces to

∂tE = −ĉρκ0E . (2.51)

As before with Equation (2.42b), Equation (2.51) can be solved via the θ-scheme

given by

En+1 = En
[

1− (1− θ)ĉρκ0∆trad

1 + θĉρκ0∆trad

]
, (2.52)

which we use in lieu of the implicit solution of Equation (2.46) described above. Note

that the implicit energy exchange update (equations 2.44) is always computed on the

gas time step, ∆tgas, whereas the alternative absorption-only update (equation 2.51)

is computed on the radiation time step, ∆trad. A second special case important

for applications involving the interaction of infrared (IR) with the dusty ISM is

the condition of radiative equilibrium. In this case, Equation (2.42a) is omitted

altogether, and the corresponding energy exchange term for the gas is also omitted

(i.e, the right-hand sides of both equations 2.44a and 2.44b are zero).

Next, we consider the O(βτ) non-stiff source terms from Equation (2.25) in the

update of the radiation subsystem in Equation (2.28). We add in these contributions

explicitly without regard to stability since they are only dominant in the dynamic

diffusion regime. Recall that we use the VL unsplit integrator to advance the ra-

diation state Un
rad from time tn through R subcycles to time tn+1 = tn + ∆tgas,

while holding the gas state Un
gas fixed. For each subcycle, we advance the radiation

state Um
rad from time tm to time tm+1 = tm + ∆trad, where the index m = 0, . . . , R

runs over the R radiation subcycles so that m = 0 corresponds to time tn and

m = R corresponds to time tn+1. In each radiation subcycle, all of the non-stiff

radiation source terms in Equation (2.25) are computed twice as described in Stone

and Gardiner (2009): at first-order during the prediction step using the radiation

state Um
rad, and then again at second-order during the correction step using the ra-

diation state U
m+1/2
rad advanced to the half-time step tm+1/2 = tm + 1

2
∆trad. Note
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that since the gas state Un
gas remains constant throughout the radiation subcycles,

there is a first-order splitting error of O(∆tgas). Nevertheless, we include the source

term contributions on the smaller time step ∆trad to improve the code’s ability to

approach a quasi-steady radiation state when the O(βτ) terms become significant.

Finally, we consider the non-stiff source term update of the gas subsystem in

Equation (2.27). As for the radiation subsystem, the gas subsystem is advanced

using an unsplit integrator: either the VL integrator described in Stone and Gardiner

(2009) or the corner transport upwind (CTU) integrator described in Gardiner and

Stone (2008). During the prediction step, the non-stiff source terms are added

explicitly at first-order using the gas state Un
gas and the radiation state Un

rad at time

tn. However, during the correction step, the source terms are added explicitly at

first-order again, this time using the gas state U
n+1/2
gas advanced to the half-time step

tn+1/2 = tn + 1
2
∆tgas and the unadvanced radiation state Un

rad, which is still at time

tn. At this point, the first-order gas state Un+1
gas , which is now held fixed, is used

during the radiation subcycles to advance the radiation state from time tn to time

tn+1 in an operator-split manner as described above. Finally, the gas state Un+1
gas is

corrected to second-order using the advanced radiation state Un+1
rad via the update

∆tgas

2

[
Se,gas(U

n+1/2
gas ,Un+1

rad )− Se,gas(U
n+1/2
gas ,Un

rad)
]
. (2.53)

The net result is that the non-stiff source terms in the gas subsystem are time-

centered in all variables.

To summarize, except for the gas-radiation energy exchange term that is updated

implicitly (or explicitly if emission is neglected, or not at all if radiative equilibrium is

assumed), all other source terms are applied via direct (i.e., non-iterative) updates.

Because certain source terms are important only in particular regimes, we have

implemented code switches so that source terms (e.g., the O(βτ) terms) can be

turned on or off.
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2.2.5 Star Particles & Self-Gravity Poisson Solver

In our code, star particles are treated using the algorithm developed by Gong and

Ostriker (2013), with added functionality to account for the luminosity of the parti-

cles. The M1 closure cannot resolve the behavior of a streaming radiation field too

near to a true point source, since the angular dependence of the radiation flux from

such a source varies rapidly. Therefore, radiation sources in our algorithm must be

resolved over some minimum number of grid zones. We have found it convenient to

add radiation energy density to the grid using a Gaussian source function given by

j∗(x) =
L∗

(2πσ2
∗)

3/2
exp

(
−|x− x∗|2

2σ2
∗

)
, (2.54)

where L∗ is the star particle’s luminosity, x∗ is the star particle’s position, and σ∗ ≡

R∗/
√

2 ln 2 is set such that the half-width at half-maximum (HWHM) of the distribu-

tion is equal to the star particle’s effective size, R∗. Note that 4π
∫ r

0
j∗(r

′)r′2 dr′ → L∗

rapidly as r ≡ |x − x∗| → ∞. In practice, we have found that sources with

R∗/∆x & 8 are sufficiently well-resolved that angular variations in the radiation

flux at radii r � R∗ are negligible.

To compute self-gravitational forces, including forces between all combinations of

gas and star particles, we use the PM method to assign the star particle masses to the

discrete grid and apply the “zero-padding” method of Hockney and Eastwood (1988)

to obtain the potential, Φ(x), of an isolated source distribution subject to open

(vacuum) boundary conditions via FFTs. This potential is given by the solution of

Poisson’s equation

∇2Φ = 4πGρ(x), (2.55)

for a given density field, ρ(x). Solutions of Equation (2.55) can be expressed as the

convolution

Φ(x) = 4πG

∫
G(x,x′)ρ(x′) d3x′, (2.56)
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where G(x,x′) = G(|x−x′|) is the Green’s function solution of the equation ∇2Φ =

4πGδ3(x− x′).

Rewriting Equation (2.56) using a discrete convolution, we obtain

Φ(xa, yb, zc) = 4πG
Nx−1∑

a′=0

Ny−1∑

b′=0

Nz−1∑

c′=0

×G(xa, yb, zc;xa′ , yb′ , zc′)ρ(xa′ , yb′ , zc′) ∆x∆y∆z, (2.57)

where (a, b, c) and (a′, b′, c′) are integer indices for the discrete representations of

ρ and G defined at the cell centers of a regular grid. Since ρ is assumed to be

non-zero only on the domain [0, Lx]× [0, Ly]× [0, Lz] and G(xa, yb, zc;xa′ , yb′ , zc′) =

G(|xa − xa′ |, |yb − yb′|, |zc − zc′|) is a symmetric function on the domain [−Lx, Lx]×

[−Ly, Ly]× [−Lz, Lz], if ρ is extended by defining ρ(xa, yb, zc) = 0 for a < 0, b < 0,

or c < 0, then Equation (2.57) can be rewritten as

Φ(xa, yb, zc) = 4πG
Nx−1∑

a′=−Nx

Ny−1∑

b′=−Ny

Nz−1∑

c′=−Nz

×G(xa, yb, zc;xa′ , yb′ , zc′)ρ(xa′ , yb′ , zc′) ∆x∆y∆z. (2.58)

Finally, taking both Gijk and ρijk to be 2Lx-, 2Ly-, and 2Lz-periodic sequences in

the indices i, j, and k, respectively, and using the discrete analog of the Fourier

Convolution Theorem, it follows from Equation 2.58 that

Φijk =
4πG

(2Nx)(2Ny)(2Nz)

2Nx−1∑

l=0

2Ny−1∑

m=0

2Nz−1∑

n=0

×Ĝlmnρ̂lmn exp

[
−2πı

(
il

2Nx

+
jm

2Ny

+
kn

2Nz

)]
, (2.59)

where Ĝlmn and ρ̂lmn are the respective DFTs of the sequences Gijk and ρijk, and

ı ≡
√
−1 is the imaginary unit. It can be shown that Equation (2.59) gives the exact

solution for the potential Φijk at cell centers as defined by the discrete convolution in

Equation (2.57) for a given isolated source distribution, ρijk (Hockney and Eastwood
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1988). This method is computationally efficient if the DFTs can be computed via

FFTs.

In this work, we use a variant of the potential calculation described in Gong

and Ostriker (2013, see Appendix), which defines Ĝlmn indirectly via the DFT of

the finite-difference approximation of the Laplace operator instead of transforming

Gijk directly. The advantage of their approach is that Ĝlmn is given exactly by the

analytic expression

Ĝlmn = 2π

{
cos(2πl/Nx)− 1

∆x2
+

cos(2πm/Ny)− 1

∆y2
+

cos(2πn/Nz)− 1

∆z2

}−1

, (2.60)

hence it does not require FFTs, nor does it need to be stored in memory. However,

this method leads to larger errors in long-range forces compared to the method

where Ĝlmn is computed directly via the DFT of the periodic sequence given by

Gijk =
{

[(i mod 2Nx)∆x]2 + [(j mod 2Ny)∆y]2 + [(k mod 2Nz)∆z]2
}−1/2

, (2.61)

which requires a factor of 8 times more storage than ρijk.

Figure 2.2 shows the relative errors in the specific gravitational forces com-

puted using Ĝlmn obtained via the direct DFT of Gijk and using Ĝlmn obtained

indirectly via the DFT of the finite-difference approximation to the Laplace opera-

tor as defined in Equation (2.60) compared to the true specific gravitational force

Fgrav = (−GM/r2)r̂. In this calculation, a single particle of mass M has been uni-

formly distributed over the innermost 8 zones with zero background density, and

units have been chosen such that GM = 1. The potentials are computed over the

cubic domain x ∈ [−1, 1]3 with resolutions N = {32, 64, 128} using both methods,

and the corresponding forces are computed using centered-difference approximations

to the gradient operator, which are O(N−2). For a given computed force Fcomp, the

angle-averaged relative error, given by the expression
〈 |Fcomp(r)− Fgrav(r)|

|Fgrav(r)|

〉

φθ

, (2.62)
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is computed over N−3 radial bins evenly spaced from rmin = 2∆x to rmax = 1−∆x.5

It is clear from Figure 2.2 that the errors in the long-range gravitational forces are

larger using the indirect method. Furthermore, they do not improve with increasing

resolution, since the errors are dominated by the low-k end of the wave number

spectrum, whereas for the direct method, the long-range forces seem to improve

at second-order. Motivated by this result, we opt for the alternative approach of

computing Ĝlmn directly via DFTs, even though the storage requirements for Ĝlmn
are larger.6

5Note that the gravitational potential is not resolved within the control volume of each star

particle (Gong and Ostriker 2013). Also, since we do not employ ghost zones here, centered-

difference gradients are not available at the boundaries of the computational domain. Therefore,

the radial bins containing these zones have been excluded from Figure (2.2).

6The extra storage requirements for ρ̂lmn can be eliminated by dividing the calculation into

separate summations over even and odd indices and introducing offsets into the DFTs; the amount

of calculation required to compute the DFTs themselves is unaffected.
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Figure 2.2: Angle-averaged radial profiles of the relative errors for the specific

gravitational forces computed using both the direct and indirect methods of ob-

taining Ĝlmn compared to the true specific gravitational force Fgrav = (−GM/r2)r̂.

In the first method, Ĝlmn is computed directly from the DFT of the Green’s

function given in Equation (2.61) (solid lines), and in the second method, Ĝlmn
is obtained indirectly via the DFT of the finite-difference approximation of the

Laplace operator (dashed lines). In both versions, units are chosen such that

GM = 1, and the potentials are computed over the cubic domain x ∈ [−1, 1]3

for the resolutions N = {32, 64, 128}. The gravitational forces are computed us-

ing centered-difference approximations to the gradient of Φ, which are O(N−2),

and the angle-averaged relative errors are computed over N − 3 radial bins from

rmin = 2∆x to rmax = 1−∆x.

41



Chapter 3

Verification Tests of the Method

We now present a suite of tests designed to verify the methods used in our code.

These tests are presented in increasing order of the amount of physics and code

features they exercise. Where tests are borrowed from other authors, we try to

preserve their overall character as much as possible, adhering to published parameter

sets, to initial and boundary conditions, and to grid resolutions, within the confines

of our particular algorithm, in order to provide a standard basis of comparison with

other published methods.

Note that in the non-dimensionalization process, we frequently make use of the

parameter P0 ≡ aRT
4
0 /(ρ0a

2
0) (Lowrie and Morel 2001), where T0, ρ0, and a0 are

characteristic values of the gas temperature, density, and sound speed. We refer to

P0 here as the dimensionless, radiation-to-gas pressure ratio, although more accu-

rately, P0 is proportional to this ratio or to the ratio of radiation-to-gas energies.

Unless otherwise specified, all tests use the value θ = 0.51 in the energy exchange

update of Equation (2.47). Except as noted for specific tests, we omit the O(βτ)

radiation terms.
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3.1 Tests of the Radiation Subsystem

In these first radiation tests, the gas is held motionless and only the radiation sub-

system is evolved. The evolution of the radiation subsystem will include an exchange

of energies via the solution of Equations (2.42) if emission terms are included, but

there will be no change to gas density or momentum. Since the overall time step is

set only by the CFL condition for radiation, which does not depend on gas velocity

or sound speed, we can take ĉ→ c in these tests.

3.1.1 Shadowing by a Dense Cloud

As argued by Hayes and Norman (2003), the ability to reproduce and preserve strong

angular variations in the radiation field is an important feature of an RHD method.

To that end, we begin by reproducing their test of shadowing by a dense cloud.

This two-dimensional test consists of a domain of length Lx = 1.0 cm and height

Ly = 0.12 cm filled with gas at an ambient density of ρ0 = 10−3 g cm−3 in which is

placed an ellipsoidal cloud of density ρ1 = 1.0 g cm−3 with density structure given

by

ρcloud(x, y) = ρ0 +
ρ1 − ρ0

1 + e∆
, (3.1)

where

∆ ≡ 10

[(
x− xc
x0

)2

+

(
y − yc
y0

)2

− 1

]
. (3.2)

Equations (3.1) and (3.2) describe a cloud with a thin, “fuzzy” surface instead of

one whose density transitions instantaneously from ρ1 to ρ0. The cloud is centered

at (xc, yc) = (0.5, 0) with major and minor axes given by x0 = 0.10 and y0 = 0.06,

respectively.

The system is initially in radiative equilibrium with temperature Tgas = Trad =

T0 = 290 K, where Tgas and Trad are the gas and radiation temperatures, respectively.
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Figure 3.1: Top: False color image indicating radiation temperature Trad in units

of T0 after 10 light-crossing times, with red high and blue low, for the shadow

test. Bottom: radiation temperature profile measured at the far right boundary.

Emission is neglected, yielding a very sharply defined shadow behind the cloud.

The width of the transition corresponds to the transition from optically thick to

thin conditions at the surface of the cloud.

At time t = 0, a uniform source with temperature T1 = 6T0 = 1740 K directed

toward the right illuminates the left boundary. We use the specific absorption

opacity

κ(Tgas, ρ) = κ0

(
Tgas

T0

)−3.5(
ρ

ρ0

)
, (3.3)

with κ0 = 100 cm2 g−1, which gives a nearly transparent ambient medium and a

highly opaque cloud. We use a Dirichlet boundary condition on the left, an outflow

boundary condition on the right and top, and reflecting boundary conditions on the

bottom. We use a grid resolution of Nx ×Ny = 280× 80 and evolve the system for

10 horizontal light-crossing times. Finally, we measure the temperature at the right

boundary.

In our first version of the test, we neglect the energy emission terms, solving
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Figure 3.2: Same as Figure 3.1, but with thermal emission terms included. The

angular resolution of the shadow is not as sharp due to increased numerical dif-

fusion caused by the operator-split implicit solver.

Equation (2.51) for the radiation source term update. As seen in Figure 3.1, this

yields a well-defined shadow with a very sharp radiation temperature profile behind

the cloud, demonstrating the code’s ability to maintain sharp angular features a good

distance behind the target. The characteristic width of the radiation temperature

gradient is consistent with the width of the transition from optically thick to -thin

conditions at the surface of the cloud.

In our second version of the test, we add in the thermal emission terms (now

solving Equations (2.42) for the source term update), obtaining the somewhat less

sharp radiation temperature profile shown in Figure 3.2. Although the angular

resolution is not as sharp now due to increased numerical diffusion caused by the

operator-split implicit solver, the shadow is still fairly well-preserved a distance

behind the target.

As noted by Hayes and Norman (2003) and González et al. (2007), methods
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that are not angularly well-resolved will fail to preserve a shadow in this test. For

example, FLD fails immediately since the radiation pressure tensor in the diffusion

approximation, P = 1
3
EI, is inherently isotropic, allowing radiation to “leak” around

the back of the cloud. Our solution is comparable to that obtained by González

et al. (2007) using the M1 closure relation.

3.1.2 Radiation Wave Propagation

As a simple test of hyperbolic transport of the radiation subsystem, we investigate

the propagation of small-amplitude, free-streaming radiation waves in a purely ab-

sorbing, homogeneous medium with low optical depth. This test is similar to the

two-dimensional hydrodynamic linear wave propagation test described in Gardiner

and Stone (2005) and its three-dimensional analog described in Gardiner and Stone

(2008). Ignoring the hydrodynamic equations and emission terms, the radiation

subsystem reduces to

1

ĉ
∂tE +∇ ·

(
F

c

)
= −ρκ0E , (3.4a)

1

ĉ
∂t

(
F

c

)
+∇ · P = −ρκ0

F

c
. (3.4b)

with P = En̂n̂ in the streaming limit. We consider temporally damped, plane-wave

solutions of the form ei(k·x−ωt) with k ∈ R3 and ω ∈ C, which leads to the dispersion

relation

ω = ±ĉk − iĉρκ0. (3.5)

Thus, the solutions to Equations (3.4) consist of weakly damped, linear radiation

waves propagating with a phase speed equal to ĉ and a damping rate equal to ĉρκ0.

It is convenient to describe the initial wave state vector in the rotated coordinates

(x′, y′, z′), which are chosen such that the wave propagates in the x′-direction. These
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coordinates are related to the grid coordinates (x, y, z) by the transformation

x′ = x cosα cos β + y cosα sin β + z sinα, (3.6a)

y′ = −x sin β + y cos β, (3.6b)

z′ = −x sinα cos β − y sinα sin β + z cosα, (3.6c)

where the angle β measures the inclination of the wave vector in the xy-plane with

respect to the x-axis, and the angle α measures the inclination of the wave vector

above the xy-plane. We set the initial state vector to

U = Ūrad + ε sin

(
2πx′

λ

)
, (3.7)

where Ūrad is the mean background state, ε � 1 is the wave amplitude, and λ is

the wavelength. We allow the wave to propagate a distance of one wavelength in

a time equal to one wave period, tλ ≡ λ/ĉ, and then we compare the result to the

analytic solution U∗(x′, tλ) = Ūrad + εe−ρκ0λ sin(2πx′/λ).

For the one-dimensional version of this test, we use a domain of size L with a

grid of resolution N . The wave propagates along the x-axis (α = β = 0), and we

set L = λ so that there is one complete wave period in the x-direction. For the

two-dimensional version, we use a domain of size 2L × L with a grid of resolution

2N ×N . The wave is inclined at an angle β = tan−1(2) ≈ 63.◦4 with respect to the

x-axis and lies in the xy-plane (α = 0). We set L = (
√

5/2)λ so that there is one

complete wave period in each of the x- and y-directions. For the three-dimensional

version, we use a domain of size 2L× L× L with a grid resolution of 2N ×N ×N .

The wave is inclined at an angle β = tan−1(2) ≈ 63.◦4 with respect to the x-axis and

is inclined at an angle of α = tan−1(2/
√

5) ≈ 41.◦8 with respect to the xy-plane. We

set L = 3
2
λ so that there is one complete wave period in each coordinate direction.

For each test, we use a wave amplitude of ε = 10−6, an optical depth per wavelength

of τλ ≡ ρ0κ0λ = 0.1, and periodic boundary conditions everywhere.
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Figure 3.3: Convergence of |δU| for various levels of discretization of the radiation

wave propagation test in one, two, and three dimensions. For reference, we plot a

line of slope −2 (dashed) to show that the convergence is second-order in 1/N .

The L1-error vector for the d-dimensional solution at time t = tλ is defined as

δU ≡ 1

2Nd

∑

i

|Ui −U∗i |, (3.8)

where Ui and U∗i are the computed and analytic solutions, respectively, and the

summation runs over all zones. Figure 3.3 shows a plot of |δU| for various values of

N and for the one-, two-, and three-dimensional tests. Since there is no emission, the

source term calculation is exact, hence, we observe a nearly second-order convergence

rate as expected from the second-order integration method (see Section 2.2.1 in

Chapter 2).
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3.1.3 Non-equilibrium Marshak Wave

In this problem, we investigate non-equilibrium diffusion of radiation in a cold,

homogeneous, absorbing medium occupying the right half-plane, 0 ≤ x < ∞. This

time-dependent diffusion problem is originally described by Marshak (1958) and a

semi-analytic solution is given by Su and Olson (1996). As for the previous two

tests, the gas density is fixed and the gas velocity is zero, thus we take ĉ→ c. The

gas temperature and radiation energy density are also zero initially.

At time t = 0, a constant flux, x̂ Finc, impinges upon the boundary at x = 0 and

a radiation wave diffuses into the medium. Exchange between radiative and thermal

energies (or equivalently, temperatures) is given by the equations

cv∂tT = −cρκ0(aRT
4 − E), (3.9a)

∂tE + ∂xF = cρκ0(aRT
4 − E), (3.9b)

where cv ≡ ∂e/∂T is the constant-volume heat capacity of the gas, e is the gas in-

ternal energy, and T is the gas temperature. Equation (3.9a) replaces the material

energy equation of Equation (2.8c) in this problem. Two simplifications to Mar-

shak’s original description due to Pomraning (1979) are to assume that the specific

absorption coefficient κ0, is independent of T and that cv = αT 3 for some constant

α so that the thermal emission depends linearly on the internal energy.

Additionally, Marshak and subsequently Su & Olson make the diffusion and

Eddington approximations, which lead to a parabolic ODE describing a diffusion

process. Since our code is hyperbolic in nature, we must independently solve the

radiation momentum Equation (2.8e),

1

c
∂t

(
F

c

)
+ ∂xPxx = −ρκ0

F

c
, (3.10)

where the radiation pressure component Pxx is derived from E and F via the M1
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closure relation.

The so-called Marshak boundary condition, which imposes the constraint of

constant radiative flux on the surface x = 0, is given by

cE(0, t) + 2F (0, t) = 4Finc. (3.11)

This, together with the boundary condition

E(x, t)→ 0 as x→∞, (3.12)

the initial condition

E(x, 0) = T (x, 0) = 0, (3.13)

and Equations (3.9) and (3.10) define the radiation subsystem that we solve numer-

ically.

The semi-analytic solution of Su & Olson is given in terms of the dimensionless

independent variables χ ≡
√

3ρκ0x and τ ≡ εcρκ0t, and the dependent variables

u(χ, τ) ≡ cE(x, t)/(4Finc) and v(χ, τ) ≡ caRT
4(x, t)/(4Finc), where ε ≡ 4aR/α is a

retardation parameter. By choosing a system of units in which aR = c = 1 and

Finc = 1
4
, we can identify (u, v) with (E , T 4), respectively. With these definitions,

the equations to be integrated become

∂τv = −(v − u), (3.14a)

ε ∂τu+
√

3 ∂χ

(
F

4Finc

)
= (v − u), (3.14b)

ε ∂τ

(
F

4Finc

)
+
√

3 ∂χ

(
cPxx
4Finc

)
= −

(
F

4Finc

)
. (3.14c)

We impose the Marshak boundary condition in Equation (3.11) indirectly via
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the semi-analytic solution for u of Equations (3.14), given by

usoln(χ, τ) =
cE(x, t)

4Finc

= 1− 2
√

3

π

∫ 1

0

dη e−τη
2

{
sin[χΓ1(η) + Θ1(η)]

η
√

3 + 4Γ2
1(η)

}

−
√

3

π
e−τ

∫ 1

0

dη e−τ/εη

{
sin[χΓ2(η) + Θ2(η)]

η(1 + εη)
√

3 + 4Γ2
2(η)

}
, (3.15)

where

Γ1(η) = η

√
ε+

1

1− η2
, (3.16a)

Γ2(η) =

√
(1− η)

(
ε+

1

η

)
, (3.16b)

Θn(η) = cos−1

√
3

3 + 4Γ2
n(η)

, n = 1, 2, (3.16c)

evaluated at χ = 0 (see Su and Olson 1996, equation 36). Once E(0, t) = usoln(0, τ)

has been so obtained, we compute F (0, t) via Equation (3.11). Note that we need

not compute v(0, τ) at the left boundary since it is neither required to compute

u(0, τ) nor to compute κ0, which is constant.

Since the solution in Equation (3.15) represents a parabolic approximation to the

hyperbolic behavior of our radiation subsystem at χ = 0, at least to the extent that

the radiation is actually in the streaming regime at low optical depth, we evaluate the

integrals using simple midpoint quadrature in lieu of some more elaborate scheme.

On the right side, we use the Dirichlet boundary condition u = v = 0. The domain is

chosen sufficiently large that the asymptotic boundary condition in Equation (3.12)

is reasonably approximated.

To evolve the internal energy of the gas, we use a θ-scheme update of the gas

51



10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

χ =
√
3ρκ0x

 

 
u128
v128
u1024
v1024
usoln

Figure 3.4: Computed solution of u ≡ E and v ≡ T 4 for the non-equilibrium Mar-

shak wave problem with N = 128, as well as a reference solution using N = 1024,

at times τ = {1, 10, 100} (left to right) on a log-linear scale. The semi-analytic

(equation 3.15) solution usoln of the diffusion equation is shown for comparison.

energy Equation (3.9a) given by

vn+1 = vn + ∆v, (3.17a)

un+1 = un + ∆u, (3.17b)

∆v =
−(vn − un) ∆τ

1 + θ(1 + 1/ε)∆τ
, (3.17c)

∆u = −∆v/ε, (3.17d)

where we have used conservation of energy to write Equation (3.17d). This is done

for the source terms in Equations (3.14a) and (3.14b) in lieu of the usual energy

balance source term step as described in Section 2.2.4 of Chapter 2.

We use a one-dimensional grid of resolution N = 128 on the domain χ ∈ [0, 100],

with background density ρ0 = 1, specific absorption opacity κ0 = 1, and retardation

parameter ε = 1. The computed results for u and v at times τ = {1, 10, 100}
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Figure 3.5: Same as Figure 3.4 on a log-log scale.

are shown on log-linear and log-log scales in Figures 3.4 and 3.5, respectively. For

comparison, we have also plotted reference solutions for a grid of resolutionN = 1024

as well as the semi-analytic solution usoln in Equation (3.15). The plots show good

agreement between the solutions, which improves at later time, i.e., at larger optical

depth, as the system approaches the equilibrium diffusion regime. However, at

earlier time, i.e., at small optical depth, the system is still in the streaming regime.

Thus, our computed solution is expected to differ from the semi-analytic solution

of Su & Olson, which is based on the diffusion approximation. Also, since we solve

a hyperbolic system of PDE, our wave solution propagates at finite speed. On

the contrary, Su & Olson solve a parabolic system of PDE, hence their solution

propagates instantaneously (see Su and Olson 1996, equations 9 and 10). This is

especially evident in the higher-resolution reference solution u1024 at τ = 1 (i.e.,

t = 1), which contains less numerical diffusion than the lower-resolution solution,

hence the wave front at χ =
√

3 (i.e., x = ct = 1) is more sharply defined there.
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3.2 Performance Benchmark Test

Next, we perform a timing benchmark, comparing results from our code to results

obtained with the FLD module of the well-known code Enzo (Reynolds et al. 2009).

Our aim is to compare the performance of our algorithm for solving the radiation

moment equations, which combines explicit Godunov transport with implicit source

term treatment, against the fully implicit iterative methods typically used in FLD

codes. We choose for our benchmark the non-equilibrium Marshak wave problem, in

which only the radiation energy and momentum, and the gas energy are integrated;

the gas density and momentum are held constant.

We use the same parameter set and boundary conditions as described in Sec-

tion 3.1.3, and run the problem to dimensionless time τ = {1, 10, 100} on one-

dimensional grids of resolution varying from N = 16 to N = 2048. We perform the

same test using both our code, which we have named Hyperion, and the Enzo code

on the same 2.8 GHz Intel Core i7 processor, and record the total wall-clock time

elapsed during each run.1 The adaptive time step for the Enzo code is primarily

controlled by prescribed accuracy requirements; in this case, an accuracy tolerance

of ε = 10−7 is used. We use the same tolerance for the iterative solution of the

energy balance update given in Equation (2.42a).

Figure 3.6 shows the timings for both Hyperion (circles) and Enzo (squares)

versus the grid resolution N , along with a reference curve of O(N) (solid line) for

the Marshak wave evolved to τ = {1, 10, 100}. Since the Marshak wave problem

1It is more fair to compare total CPU usage between codes; however, we were only provided

wall-clock timings in the Enzo runs and chose to compare to the wall-clock timings of Hyperion in

a consistent manner. The frequency of data output was the same for both codes; thus, we expect

the scaling of each code’s wall-clock timings to be dominated by the peculiarities of each respective

code’s numerical algorithm.
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Figure 3.6: Timing benchmark comparison of our code, Hyperion, with the FLD

module of Enzo on the one-dimensional non-equilibrium Marshak wave problem

evolved to τ = {1, 10, 100} (top, middle, bottom). The number of zones varies

from N = 32 to N = 2048. All tests were run on a single 2.8 GHz Intel Core i7

processor.
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is inherently one-dimensional, all runs were performed using the one-dimensional

integrator in each respective code.2 The data clearly show that the timing of the

Hyperion code scales linearly with grid resolution, as one would expect for an al-

gorithm whose execution time is dominated by the explicit Godunov method. In

contrast, the timing of the Enzo code is approximately constant, which Reynolds

et al. (2009) suggest may be attributed to the fact that the Inexact Newton’s Method

used to iteratively solve the nonlinear radiation subsystem has been shown to be

independent of spatial resolution for diffusive problems, such as the non-equilibrium

Marshak wave. This suggests that there is some resolution beyond which the Enzo

code will outperform the Hyperion code; however, this threshold seems to be at a

higher resolution than most practical applications would require.

3.3 Fully Coupled Radiation Hydrodynamics Tests

In the next tests, the gas and radiation subsystems are fully coupled. These tests

are designed to verify the interplay between the gas and radiation dynamics in

the context of the RSLA. In each test, the reduced speed of light ĉ must first be

determined in order to preserve the relevant ordering of characteristic time scales

while allowing for computationally feasible explicit time subcycling.

2We were not able to perform the last run at resolution N = 2048 using Enzo. The authors

of Enzo did not provide an explanation for this other than to say that their code was primarily

designed for multi-dimensional runs.
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3.3.1 Radiatively Inhibited Accretion and Radiatively Driven

Wind

To test the accuracy of the radiation force in the optically thin regime, we present a

one-dimensional, planar version of the radiatively inhibited Bondi accretion problem

of Krumholz et al. (2007). We consider the steady flow of an isothermal gas under

the assumption that it is neither heated nor cooled by the radiation. We set κ0 to

a sufficiently small value such that the gas is optically thin throughout the compu-

tational domain. We consider a constant radiation field in the streaming limit with

F = F0ẑ and E = F0/c. The radiation applies a specific force of

frad = κ0
F0

c
ẑ, (3.18)

to the gas. We also consider a linear gravitational potential of the form Φgrav = g0z,

for some constant g0 > 0, which applies a specific force of

fgrav = −g0ẑ, (3.19)

to the gas. Thus, the total specific force on the gas is given by

ftotal = frad + fgrav = −(1− ηEdd)g0ẑ, (3.20)

where ηEdd is the fraction of the Eddington-limit flux defined by

ηEdd ≡
κ0F0

cg0

. (3.21)

For ηEdd = 1, the radiation and gravitational forces balance and the system is in

hydrostatic equilibrium; for 0 ≤ ηEdd < 1, the gravitational force dominates and the

gas is steadily accreted inward; for ηEdd > 1, the radiation force dominates and the

gas is steadily driven outward in a wind.
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To set the initial conditions, we use the constants of motion given by

a0 =

√
P

ρ
, (3.22)

Ṁ = ρv. (3.23)

The flow must satisfy the Bernoulli equation, B = constant, along streamlines for

B =
1

2
v2 + h+ Φtotal, (3.24)

where

h ≡
∫
dP

ρ
= a2

0 ln ρ (3.25)

is the specific enthalpy of an isothermal gas derived from Equation (3.22), and

Φtotal = (1−ηEdd)g0z is the potential of the total force given in Equation (3.20). Note

that for a hydrostatic, isothermal atmosphere with no radiation, Equation (3.24)

implies that ρ = ρ0e
−z/H , where

H ≡ a2
0

g0

(3.26)

is the isothermal scale height.

For our problem, we scale the gas density to ρ0, its value at z = 0, the gas

velocity to the background sound speed, a0, and the z-coordinate to the isothermal

scale height, H. In terms of the dimensionless density α ≡ ρ/ρ0, Mach number

M ≡ v/a0, height χ ≡ z/H, and mass-accretion rate λ ≡ Ṁ/ρ0a0, it follows from

Equation (3.23) that

λ = αM, (3.27)

and from Equation (3.24) that

B̃ =
1

2
M2 + lnα + (1− ηEdd)χ. (3.28)

Once a value for the Mach number M0 at χ = 0 is chosen, we have B̃ = 1
2
M2

0 and

λ =M0. The initial conditions are obtained by solving

M2 −M2
0

2
+ ln

(M0

M

)
+ (1− ηEdd)χ = 0 (3.29)
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Figure 3.7: Relative errors of the computed solutions of the dimensionless density

α and velocityM for the radiatively inhibited accretion problem with ηEdd = 0.5.

The relative errors are plotted for both a subsonic flow (left) with M0 = 0.1

and a supersonic flow (right) with M0 = 2.5. The maximum relative error is

approximately 0.0098% for all solutions.

for M as a function of χ via Newton–Raphson iteration and using α =M0/M.

We use Dirichlet boundary conditions based on the initial conditions obtained

from Equation (3.29) for both the gas and radiation on the domain χ ∈ [0, 1] with

resolution N = 128. Starting from the semi-analytic solution, we evolve for 10 grid

sound-crossing times. To obtain a total optical depth over the simulation domain

similar to that of Krumholz et al. (2007), we set κ0 = 10−6. By computing dχ/dM

and d2χ/dM2 at the sonic point, i.e., where M = 1, for fixed values of λ and ηEdd,

it can be shown that there are no trans-sonic solutions; only entirely subsonic or

supersonic solutions exist. We compute solutions for both a radiatively inhibited

accretion flow with ηEdd = 0.5 and a radiatively driven wind flow with ηEdd = 1.5,
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Figure 3.8: Same as Figure 3.7 for a wind solution with ηEdd = 1.5. The maximum

relative error is approximately 0.070% for all solutions.

for both a subsonic case withM0 = 0.1 and a supersonic case withM0 = 2.5. Since

this problem lies squarely within the optically thin regime, we set ĉ = 10vmax, where

vmax =M0 + 1 in problem units, so that R ∼ 10 radiation subcycles are performed

per gas cycle. Figure 3.7 shows the relative error of the computed solutions for the

dimensionless density, α, and velocity, M, compared to the semi-analytic solution

obtained from Equation (3.29) for a radiatively inhibited accretion flow in both

the subsonic (left) and supersonic (right) cases. The maximum relative error is

≈ 0.0098% for all solutions. Figure 3.8 shows the same plots as Figure 3.7 for

the radiatively driven wind flow with a maximum relative error of ≈ 0.070% for

all solutions. The error in the computed solution for each of these steady flows is

dominated by operator splitting error, which causes a slight force imbalance leading

to a nearby solution of Equation (3.29). This solution differs slightly from the initial
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conditions, which are held fixed at the boundaries, and as expected, the discontinuity

causes an increase in the error there. These tests provide good evidence of the code’s

ability to accurately compute the radiation force in optically thin regimes.

3.3.2 Advection of a Radiation Pulse

As a test of the O(βτ) terms in the radiation energy and flux equations in the

dynamic diffusion regime, we simulate the strong advection of a diffusing radiation

pulse by the gas. A similar test is described by Krumholz et al. (2007).

We advect a pulse of radiation energy in an optically thick gas with a uniform

background flow velocity. Initially, the system is in both pressure and radiative

equilibrium everywhere, implying that ∇(P + 1
3
E) = 0 and E = aRT

4. It follows

that the initial density and gas temperature are related by

ρ

ρ0

=
T0

T
+
γP0

3

[
T0

T
−
(
T

T0

)3
]
, (3.30)

where ρ0, T0, and P0 are the background values of density, gas temperature, and

dimensionless pressure ratio, respectively, away from the pulse. The gas temperature

is initialized to a constant-plus-Gaussian profile of width w, centered at the origin,

with peak temperature twice the background value T0, given by

T

T0

= 1 + exp

(
− x2

2w2

)
. (3.31)

From Equation (3.30), it is clear that the increase in both gas and radiation pressure

due to an increase in gas temperature above T0 must be offset by a corresponding

decrease in density below ρ0. As excess radiation diffuses outward from the pulse,

pressure equilibrium is lost and gas moves inward.

For the parameter set of Krumholz et al. (2007), in the background state the

dimensionless pressure ratio is P0 ≈ 0.18, the characteristic optical depth over a
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distance w is τ0 = ρ0κ0w = 2900, the flow Mach number is M0 ≡ v/a0 ≈ 0.053,

and β ≡ v/c ≈ 3.3 × 10−5. Thus, βτ0 ≈ 0.096 and P0τ0 ≈ 520 � 1. Since

P0 < 1 and M0 � 1, the dynamics of this problem are dominated by the gas

pressure force; the characteristic dynamical time is tdyn ∼ w/a0 = w/
√
γkBT0/µ,

and the characteristic diffusion time is tdiff ∼ wτ0/c. The ratio of these time scales is

tdyn/tdiff = c/(a0τ0) ≈ 0.55; for our test, we must require ĉ/(a0τ0) ≈ 0.55 in order to

obtain similar behavior to the Krumholz et al. (2007) solution. This is not feasible

for our code with an optical depth of τ0 = 2900, so we choose instead a smaller value

of τ0 such that ĉ/a0 ≈ 100. Also, we choose a background flow velocity v so that the

flow remains subsonic with βτ0 ∼ 0.1, in order to preserve the relative sizes of the

O(βτ) source terms. Furthermore, since the splitting of the source term integration

between the gas and radiation subsystems in our code introduces a non-conservation

of momentum of O(P0τ0), such a large value of P0 would lead to significant splitting

error. Instead, we choose parameters so that P0τ0 . 1.

With these considerations in mind, we use the background density ρ0 = 25 g cm−3,

temperature T0 = 1.1 × 107 K, w = 20 cm, mean particle mass µ = mH =

1.67 × 10−24 g, specific absorption opacity κ0 = 0.4 cm2 g−1, and background flow

velocity v = 3 × 106 cm s−1. It follows that τ0 ≈ 200, P0 ≈ 0.005, and v � a0 ≈

3× 107 cm s−1, hence the flow remains subsonic. We also choose ĉ = 100a0, so that

with our other parameters tdyn/t̂diff ∼ ĉ/(a0τ0) ≈ 0.5 and βτ0 ≈ 0.02, both of which

are comparable to the parameter set of Krumholz et al. (2007). Furthermore, we

have for our problem P0τ0 ≈ 1.

We use periodic boundary conditions on the one-dimensional domain with x/w ∈

[−21.25, 21.25], using a grid resolution of N = 512 zones, and we run the simulation

for a time t = 2w/v so that the pulse is advected over twice its width. Since there

is no simple analytic solution for this test, we compare the results to those of an
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unadvected run with zero background flow velocity. So that the two runs both end

up centered about the origin, we shift the initial profile of the advected run by a

distance vt = 2w to the left. Finally, we run the test with and without the O(βτ)

source terms included. Since βτ ≈ 0.02, the error in the solution without the O(βτ)

terms should be slightly larger than with the terms included.

Figure 3.9 shows the solutions of the density, temperature, and velocity (sub-

tracting out the background) for both the advected radiation pulse and the unad-

vected reference solution at the same time with the O(βτ) source terms included.

The high optical depth of the gas in this problem keeps the system so near to

radiative equilibrium that we do not distinguish between the gas and radiation tem-

peratures, which are equivalent at the 10−3 level. Figure 3.10 shows the relative

error in the density and temperature for this run, but we do not compute the rel-

ative error in the velocity since the reference value is close to 0 in places. The

agreement between the advected and unadvected solutions is good, and the relative

errors in density and temperature are less than 6.6% across the domain. Figure 3.11

shows the relative error without the O(βτ) terms included. In this run, the maxi-

mum relative errors in the density and temperature are slightly larger, but they are

less than 7.7% across the domain, so the agreement is still fair. This test provides

good evidence of the code’s ability to reproduce the effect of strong advection of a

radiation field by optically thick gas in the static diffusion regime. This test also

indicates the importance of including the O(βτ) source terms when βτ ∼ 1.
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Figure 3.9: Solution of the advected radiation pulse (solid line) along with the

unadvected reference solution (dashed line) for ρ, T , and v with the O(βτ) source

terms included.
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Figure 3.10: Relative error in the solutions of the density and temperature of the

advected radiation pulse versus the unadvected reference solution with the O(βτ)

source terms included. The relative errors are less than 6.6% across the domain.
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Figure 3.11: Same as Figure 3.10, but without the O(βτ) source terms included.

The relative errors are slightly larger in this case, but are less than 7.7% across

the domain.

3.3.3 Radiation Pressure Tube

Krumholz et al. (2007) describe a simulation to test the accuracy of the radiation

pressure force in a one-dimensional tube filled with gas and radiation in static equi-

librium. The gas is optically thick, hence the Eddington approximation holds. Also,

the gas and radiation are in equilibrium, hence their temperatures are equal and we

can define T ≡ Tgas = Trad. Force balance between the gas and radiation pressures

implies that the total pressure is constant throughout the domain, from which it

follows that [
ρ

ρ0

+
4

3

(
T

T0

)3
]
T ′

T0

+
T

T0

ρ′

ρ0

= 0, (3.32)

where primes denote spatial derivatives. By choosing T0 such that aRT
4
0 = ρ0kBT0/µ,

coefficients are absorbed into the problem units. Furthermore, slab symmetry im-

65



plies that the radiative flux is constant, from which it follows that

− ρ0

ρ

ρ′

ρ0

T ′

T0

+ 3
T0

T

(
T ′

T0

)2

+
T ′′

T0

= 0. (3.33)

To obtain a semi-analytic solution, we note that this system can be written as

a nonlinear, first-order ODE in the variables ρ, T , and T ′. Given the values ρ0, T0,

and T ′0 at the left boundary, the ODE can be integrated to the right boundary with

arbitrary precision using conventional methods.

We use the parameter set of Krumholz et al. (2007), where ρ0 = 1 g cm−3 and

ρ′0 = 5 × 10−3 g cm−4. The gas is characterized by a mean particle mass of µ =

3.9 × 10−24 g so that T0 = 2.75 × 107 K, and by the specific absorption opacity of

κ0 = 100 cm2 g−1. This yields a system with roughly comparable pressures that is

dominated by radiation pressure on the left and by gas pressure on the right. We

use a one-dimensional domain of length L = 128 cm with grid resolution N = 128,

and impose Dirichlet boundary conditions on the gas and radiation3. We include

the energy balance source term in Equation (2.42a) so that radiative equilibrium

must be maintained numerically rather than enforced, presenting a more rigorous

test of the code. Figure 3.12 shows the semi-analytic solutions for the density and

temperature, as well as the resulting gas pressure, radiation pressure, and total

pressure. We set these solutions as the initial condition for our problem and evolve

the system for 10 sound crossing times tsound ≡ L/a0 =
√
γkBT0/µ. Since the flux

absorption source term in Equation (2.42b) is very stiff, we use the fully implicit

Backward Euler method with θ = 1.

With such a large characteristic optical depth of τ ∼ ρ0κ0L = 1.28× 103 across

3Krumholz et al. (2007) impose symmetry (reflection) boundary conditions on the gas in order

to preserve the total mass, but this is not helpful in our code since the radiation force is not applied

symmetrically. In our test, the relative error in the total mass at the end of the run compared to

the initial value is 4.7× 10−6, suggesting that mass loss is not the dominant source of error.
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Figure 3.12: Semi-analytic solution of the density (top), temperature (middle),

and pressure (bottom) versus position for the radiation tube problem. The bottom

plot shows the total pressure (solid), gas internal pressure (dashed), and radiation

pressure (dot-dashed).

the simulation domain, one might expect that the RSLA might not be feasible in

this problem. However, the relevant time scales of interest are the characteristic

sound-crossing time, tsound, and the characteristic diffusion time tdiff ∼ ρ0κ0L
2/c,

whose ratio tdiff/tsound ∼ τ
√
kBT0/µ/c ≈ 13 � 1 varies by at most a factor of

order unity across the domain. The requirement to preserve the time scale ordering

tdiff � tsound in this case means that for the RSLA we need t̂diff � tsound, which is

satisfied using ĉ = 10a0, since t̂diff = (c/ĉ)tdiff � tdiff � tsound.

Figure 3.13 shows the relative error in the computed solutions for the gas density

and for the gas and radiation temperatures compared to their semi-analytic solu-

tions. The maximum absolute values of the relative error over the grid is 5.1× 10−6

for both the gas and radiation temperatures, and is 1.4× 10−5 for the density. This

test demonstrates the code’s ability to maintain static radiative equilibrium as well
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Figure 3.13: Relative error of the computed solutions for ρ (solid), Tgas (dashed),

and Trad (dot-dashed), compared to the semi-analytic solution for the radiation

tube problem. The maximum absolute value of the relative error over the grid is

5.1×10−6 for both the gas and radiation temperature solutions, and is 1.4×10−5

for the density solution.

as to accurately calculate equilibrium forces in both the gas- and radiation-pressure-

dominated regimes in the optically thick limit.

3.3.4 RHD Linear Waves

A rigorous test of the fully coupled, non-equilibrium system is the propagation of

linear acoustic waves in a radiating medium. For a plane-wave disturbance of the

form ei(kx−ωt), with wave number k and frequency ω, the problem can be described

either for the case of the spatial damping of a driven wave (k ∈ C, ω ∈ R), often

called the boundary value problem (BVP), or for the case of the temporal damping

of an initial disturbance (k ∈ R, ω ∈ C), often called the initial value problem (IVP).

The dispersion relation for the BVP, which reduces to a complex quadratic in k2,
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and the resulting dynamics have been extensively described by Mihalas and Weibel-

Mihalas (1999). Similar analysis of the dispersion relation of the IVP, which reduces

to a fifth-order complex polynomial in ω, is described in Johnson and Klein (2010);

Lowrie et al. (1999). Here, we augment the analyses of both the BVP and IVP to

account for the effects of the RSLA.

We begin with the linearized equations of RHD for a medium initially at rest and

in radiative equilibrium with background density ρ0, gas temperature T0, and sound

speed a0, and adopt the Eddington approximation (see Mihalas and Weibel-Mihalas

1999, Section 101). To nondimensionalize the equations, we set the density unit to

the background value ρ0, the length unit equal to the wavelength λ, and the time

unit equal to the sound-crossing time tsound ≡ λ/a0 of one wavelength.

For the BVP, this leads to the dispersion relation

c4z
4 + c2z

2 + c0 = 0, (3.34)

where z ≡ a0k/ω, and

c4 = 1 + i
2(γ − 1)P0Cτλ

π
, (3.35a)

c2 = − 3

Ĉ2

(
1 + i

Ĉτλ
2π

)2

− 1− i2γ(γ − 1)P0Cτλ
π

+
(γ − 1)P0τ

2
λ

π2

[
2 + 3

C
Ĉ

+
4

3
γP0

]
, (3.35b)

c0 =
3

Ĉ2

[(
1 + i

Ĉτλ
2π

)2

+ i
2γ(γ − 1)P0Cτλ

π

(
1 + i

Ĉτλ
2π

)]
. (3.35c)

In Equations (3.35), P0 ≡ aRT
4
0 /(ρ0a

2
0) is the dimensionless pressure ratio in the

equilibrium background state; C ≡ c/a0 and Ĉ ≡ ĉ/a0 are the original and reduced

speeds of light, respectively, in units of the adiabatic sound speed a0 =
√
γkBT0/µ;

and τλ ≡ ρκ0λ is the optical depth across one wavelength of a linear disturbance

propagating at the speed a0. The solutions of Equation (3.34) are of the form
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z = ±(zR − izI), representing wave modes propagating in the ±x-direction with

phase speed vp/a0 ≡ 1/zR and spatial damping length Ldamp/λ ≡ zR/(2πzI).

As remarked by Jiang et al. (2012), the quantities P0τλ and P0Cτλ, which appear

as coefficients of the coupling terms in the gas momentum and energy equations

when written in nondimensional form, measure the importance of momentum- and

energy-exchange between the gas and radiation fields, respectively. As either P0 → 0

or τλ → 0, the gas and radiation subsystems become decoupled and wave damping

by radiative processes is weak. For P0Cτλ & 1 but P0τλ � 1, the gas and radiation

energies are strongly coupled, but the momentum carried by the radiation waves

is relatively unimportant. However, for P0τλ & 1, momentum transport by the

radiation waves becomes dominant.

The quadratic form of the dispersion relation for the BVP is generally much

simpler to analyze than the fifth-order form for the IVP, and reveals some very

useful information about the effects of reducing the speed of light on the phase

speeds and damping rates of the various wave families in the limiting regimes. In

our code, we are primarily concerned with the behavior of damped acoustic waves

propagating at or near the adiabatic sound speed, since radiation and diffusion

waves propagating at or near the speed of light typically must be resolved on very

small time scales on the order of the light-crossing time of a grid zone. As we

shall demonstrate, the phase speeds and damping rates of acoustic waves are not

sensitive to the actual speed of propagation of the radiation in most cases, provided

we preserve the temporal ordering of certain physical processes such as that of static

radiative diffusion.

First, we consider the gas-energy-dominated case P0 � 1. Following the analysis

by Mihalas and Mihalas (1983), it can be shown that for the optically thin regime

with τλ � 1/max{1,P0C}, Equation (3.34) yields a weakly damped acoustic wave
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with

z ≈ 1 + i
(γ − 1)2P0Cτλ

π
, (3.36)

which implies a phase speed of vp ≈ a0 and a damping length of Ldamp ≈ λ/[2(γ −

1)2P0Cτλ]. Note that Equation (3.34) also yields a radiation mode propagating with

a phase speed of vp ≈ ĉ/
√

3 (instead of ĉ due to the Eddington approximation), but

the acoustic mode is unaffected by the RSLA in this regime. Furthermore, for the

optically thick regime with τλ � max{1,P0C}, provided Ĉ � max{1,P0C} is also

satisfied, Equation (3.34) yields a weakly damped acoustic wave with

z ≈ 1 + i
4πγ(γ − 1)P0C

3τλ
, (3.37)

which implies a phase speed of vp ≈ a0 and a damping length of Ldamp ≈ 3λτλ/[8π
2γ(γ−

1)P0C].

Second, we consider the radiation-energy-dominated case P0 � 1. For the op-

tically thin regime with τλ � 1/(P0C), Equation (3.34) once again yields a weakly

damped acoustic wave given by the solution in Equation (3.36). Furthermore, in

the optically thick limit with τλ � C/P0, provided Ĉ � C/P0 is also satisfied,

Equation (3.34) yields a radiation-modified acoustic wave with

z ≈ 3

2

( C
P0Ĉ

)1/2 [
1 + i

3πC
4P0τλ

]
, (3.38)

with a phase speed of vp ≈ 2
3
(P0Ĉ/C)1/2a0 and a damping length of Ldamp ≈

2λP0τλ/(3π
2C). From Equation (3.38), it is evident that the radiation-modified

acoustic mode will always be affected by the RSLA. Thus, only as Ĉ → C do we re-

cover the correct acoustic mode phase speed in this regime, which is approximately

equal to the true radiation-modified acoustic speed given by

a∗0 ≡
1

3

[
9 + 60P0(γ − 1) + 16P2

0γ(γ − 1)

1 + 4P0γ(γ − 1)

]1/2

a0 ≈
2

3
P1/2

0 a0, (3.39)
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(see Lowrie et al. 1999, equation 45). In this case, our algorithm is only feasible for

Ĉ ≈ C . 10 or so.

Note that for the case P0 � 1 with τλ � max{1,P0C},4 the provision Ĉ �

max{1,P0C} needed to obtain Equation (3.37) follows whenever Ĉ & τλ is satisfied.

For τλ � 1, the condition Ĉ & τλ is equivalent to the RSLA static diffusion criterion

of Equation (2.35) when the background flow velocity is negligible. Also, note that

this condition is sufficient to ensure that the relevant acoustic waves are unaltered

by the RSLA, but it may be more restrictive than necessary.

For the IVP, the analysis is much more difficult, but the behavior of the acoustic

wave mode in the various regimes previously discussed should mirror the behavior

of this mode for the BVP. To investigate the behavior of the IVP, we solve the

corresponding dispersion relation numerically using the Newton-Raphson method.

We do this for several values of Ĉ ∈ [10, C] in both the gas-energy- and radiation-

energy-dominated cases, and examine the behavior of the phase speed and temporal

damping rate as a function of optical depth per wavelength τλ. The dispersion

relation to be solved is the fifth-order polynomial equation given by

(Z2 − 1)Z


1− 3

Ĉ2

(
Z + i

Ĉτλ
2π

)2

− i2γP0τλ

πĈ

(
Z + i

Ĉτλ
2π

)


+ i
2(γ − 1)P0Cτλ

π
(γZ2 − 1)

[
1− 3

Ĉ2

(
1− Ĉ

3(γ − 1)C

)
Z

(
Z + i

Ĉτλ
2π

)]

+ i
2(γ − 1)P0τλ

πĈ
Z

[
i
2γP0Cτλ

3π
+

1

3(γ − 1)
Z + i

Cτλ
2π

]
= 0, (3.40)

where Z ≡ 1/z = ω/(a0k), and τλ, P0, C, and Ĉ are defined as before. Equa-

tion (3.40) is a fifth-degree, complex polynomial whose roots, in general, must

be found numerically. There are 3 principal wave modes represented by the so-

lutions to Equation (3.40): an entropy mode that is always purely damped and

4This case corresponds to “region a” in Figure 1 of Johnson and Klein (2010).
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non-propagating; an acoustic mode propagating in the ±x-direction at either the

adiabatic, isothermal, or radiation-modified sound speed; and a radiation mode

propagating in the ±x-direction at a phase speed of Ĉ/
√

3 in the optically thin

regime, but non-propagating in the so-called quiet regime at larger optical depth

(Lowrie et al. 1999).

Figure 3.14 shows the phase speed ωR/(a0k) = Re(Z) and damping rate ωI/(a0k) =

Im(Z) as a function of optical depth per wavelength τλ for the acoustic and radia-

tion modes of the dispersion relation of Equation (3.40) in the gas-energy-dominated

case with P0 = 10−3, C = 104, γ = 5
3
, and for values of the reduced speed of light

ranging from Ĉ = 10 to Ĉ = C. For small and large τλ, the acoustic mode propa-

gates at the adiabatic sound speed a0 and is weakly damped, as predicted by Equa-

tions (3.36) and (3.37), respectively, in the analysis of the BVP described above.

For 1/(P0C) . τλ . P0C, the acoustic mode propagates at the isothermal sound

speed, aiso ≡ a0/
√
γ, and is more strongly damped. Furthermore, the phase speed

and damping rate for the RSLA (i.e., Ĉ < C) solutions agree with the Ĉ = C solution

when Ĉ/τλ is sufficiently large, as predicted by the analysis of the BVP.

Figure 3.15 shows the same phase speed and damping rate plots as Figure 3.14,

but in the radiation-energy-dominated case with P0 = 101. Once more, for small τλ,

the acoustic mode propagates at the adiabatic sound speed a0 and is weakly damped,

as predicted by Equation (3.36). However, for large τλ, the acoustic mode propagates

at the phase speed predicted by Equation (3.38), which is approximately equal to

the radiation-modified acoustic speed a∗0 given in Equation (3.39) when Ĉ ≈ C. Once

again, the solutions of the RSLA dispersion relation in Equation (3.40) with Ĉ < C

agree with the Ĉ = C solution wherever Ĉ/τλ is sufficiently large.

To test the code, we examine the behavior of the propagating acoustic mode

(either adiabatic, isothermal, or radiation-modified) of the IVP for a range of optical
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Figure 3.14: Phase speed (top) and damping rate (bottom) as a function of τλ
for the acoustic (solid) and radiation (dashed) modes of the linear RHD wave

dispersion relation (equation 3.40) in the gas-energy-dominated case with P0 =

10−3 and C = 104. In each plot, the value of Ĉ corresponding to each curve

increases from bottom to top, from Ĉ = 10 to Ĉ = C.
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Figure 3.15: Same as Figure 3.14 in the radiation-energy-dominated case with

P0 = 101, C = 104, and various values of Ĉ approaching C. In each plot, the value

of Ĉ corresponding to each curve increases from bottom to top, from Ĉ = 10 to

Ĉ = 104 = C.
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depths per wavelength from τλ = 10−2 to τλ = 102. We impose periodic boundary

conditions on a one-dimensional domain spanning a single wavelength with grid

resolution N = 512. We continue to use γ = 5
3

and C = 104 as before, and for our

first test, we use P0 = 10−3 for the gas-energy-dominated case. We set Ĉ = 10 for

τλ ≤ 10, but for τλ = 100 � P0C = 10, we use Ĉ = 100. The gas and radiation

variables are initialized with a linear combination of right- and left-propagating

eigenmodes in order to produce a standing linear wave of amplitude 10−6, and we

evolve the solution for 10 wave periods. We measure the phase speed (i.e., ωR)

and damping rate (i.e., ωI) of the mode by regularly sampling the density solution

several times per wave period at some particular anti-node (amplitude extremum)

of the wave. Once the amplitude maxima have been located in time, we measure

and average the first 10 wave periods to determine the phase speed, then fit an

exponential-decay envelope to the waveform to determine the damping rate.

Figure 3.16 shows the computed phase speed and damping rate for each value

of τλ considered. For each τλ ≤ 10, our computations adopt Ĉ = 10. The resulting

values of ωR and ωI are in good agreement with the semi-analytic solution of Equa-

tion (3.40) for Ĉ = 10. In addition, these computed values agree with the solution

of Equation (3.40) for Ĉ = 104 = C, i.e., the true solution. For τλ & 10, the solution

of the dispersion relation using Ĉ = 10 departs significantly from the true (Ĉ = 104)

solution, while our Ĉ = 100 semi-analytic solution remains close for large τλ. By

using Ĉ = 100 for our numerical computation at τλ = 100, we obtain a phase speed

and damping rate consistent with the semi-analytic Ĉ = 100 solution and close to

the Ĉ = 104 = C solution. We can not expect to obtain better values for large τλ in

this test, since Ĉ = 100 is at the limit of what we can feasibly do with our algorithm.

Next, we repeat this experiment for P0 = 1 and P0 = 10 in order to consider

cases where the gas and radiation energies are similar and where the radiation
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Ĉ = 101
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Figure 3.16: Computed phase speed (top) and damping rate (bottom) as a func-

tion of τλ for the acoustic mode in the gas-energy-dominated case with P0 = 10−3,

C = 104, and γ = 5
3 . We use a grid resolution of N = 512 and evolve a standing

wave for 10 periods. In each plot, we show the semi-analytic solution of Equa-

tion (3.40) for various values of Ĉ along with the numerical results using Ĉ = 10

for all τλ ≤ 10, and Ĉ = 100 for the τλ = 100 case.
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Figure 3.17: Same as Figure 3.16 in the case of equal gas and radiation energies

with P0 = 1, C = 104, and γ = 5
3 . The numerical results are computed using

Ĉ = 10 for all τλ ≤ 10, while for the τλ = 100 case we use Ĉ = 100.
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Figure 3.18: Same as Figure 3.16 in the radiation-energy-dominated case with

P0 = 101, C = 104, and γ = 5
3 . The numerical results are computed using Ĉ = 10

for all τλ ≤ 10, and Ĉ = 100 for the τλ = 100 case.
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Figure 3.19: Same as Figure 3.16 in the relativistic case with P0 = 1, C = 10, and

γ = 5
3 . The numerical results are computed using Ĉ = 10 = C for all τλ.
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energy is dominant. The results for these cases are shown in Figures 3.17 and 3.18,

respectively. We use all of the same parameters as the previous test, including

the same values of τλ and the corresponding values of Ĉ. Again, we find that the

numerical results agree with the solutions of Equation (3.40) and that provided

Ĉ & τλ, the RSLA solution agrees with the Ĉ = C solution. This is fortunate, since

P0τλ � 1 indicates that the gas and radiation momenta are strongly coupled, and

the fact that our algorithm employs an operator splitting between the solutions of

the gas and radiation subsystems means that there is no guarantee that the combined

momentum will be conserved. There is some discrepancy in both of these tests for

the computed values of the smallest damping rates, which are on the order of 10−4.

This discrepancy may be due to numerical diffusion or to measurement error, since

the waves are hardly damped at all in 10 periods.

From the above tests, we conclude that provided Ĉ � max{1, τλ}, which is

equivalent to Equation (2.35) for vmax = a0, the RSLA does not affect the character

of linear waves, and both propagation speeds and damping rates are recovered using

our numerical code.

In our last test, we consider a nearly relativistic gas with C = 10, in which case

we can use Ĉ = C in order to investigate the behavior of the linear waves when the

RSLA is not employed. We use P0 = 1, and set all other parameters as before. The

results shown in Figure 3.19 indicate that there is some error for the largest value of

P0τλ, which must be caused by the splitting error. Nonetheless, the algorithm does

compute the radiation-modified acoustic speed reasonably well in this case.
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3.3.5 Radiative Shocks

Another test of the fully coupled, non-equilibrium system is the shock of a cold,

optically thick medium in the presence of radiation. The classical analysis is de-

scribed by Zel’dovich and Raizer (2002) and Mihalas and Weibel-Mihalas (1999).

More recently, Lowrie and Edwards (2008) have described a semi-analytic method

for obtaining the full family of non-equilibrium shock solutions parameterized by

the shock Mach number.

In the diffusion limit, the non-equilibrium radiation energy equation in non-

dimensional form reduces to (see Mihalas and Weibel-Mihalas 1999, Section 97)

c

ĉ
∂tT

4
rad +

4

3
∂x(vT

4
rad)− ∂x

(
c

3ρκ0

∂xT
4
rad

)
= cρκ0(T 4

gas − T 4
rad) +

1

3
v∂xT

4
rad, (3.41)

where aRT
4
rad ≡ E0 defines Trad, the comoving-frame radiation temperature. Note

that a steady-state solution satisfying Equation (3.41) will not depend on ĉ. The

corresponding hydrodynamic equations in non-dimensional form are given by

∂tρ+ ∂x(ρv) = 0, (3.42)

∂t(ρv) + ∂x

(
ρv2 + P +

1

3
P0T

4
rad

)
= 0, (3.43)

∂tE + ∂x[(E + P )v] = −P0

[
cρκ0(T 4

gas − T 4
rad) +

1

3
v∂xT

4
rad

]
, (3.44)

where P0 ≡ aRT
4
0 /(ρ0a

2
0) is the dimensionless pressure ratio, and T0, ρ0, and a0

are the gas temperature, density, and adiabatic sound speed, respectively, in the

upstream state. For given values of γ, κ0, and P0, the structure of the shock solution

can be entirely characterized by the upstream Mach number, M0.

We use the non-dimensional parameters γ = 5
3
, κ0 = 1, P0 = 1 × 10−4, and

M0 = 3 to set the upstream state, then calculate the downstream state according to

the Rankine–Hugoniot jump conditions (see Lowrie and Edwards 2008, equation 8).
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We use Dirichlet boundary conditions for the gas and radiation variables on a one-

dimensional grid whose size is determined by setting the fractional temperature

change equal to ∆T/T0 = 10−4 in both the upstream and downstream states. We

use a resolution of N = 1024 zones and allow the solution to evolve for several

sound-crossing times until the radiative shock solution has reached a steady state.

Although we compute the solution in the rest frame of the shock with the interface

initially located at the origin, the accumulation of small numerical errors will cause

the computed shock solution to migrate by a small amount, much less than the size

of the computational domain. It is therefore necessary to track the shock front,

which can be done by minimizing the relative residuals of the hydrodynamic jump

conditions in a manner similar to the method described by Lowrie and Edwards

(2008).

Figure 3.20 shows the gas and radiation temperature profiles for the non-equilibrium

radiative shock withM0 = 3. This value of the upstream Mach number yields a sub-

critical shock, i.e., the gas temperature in the radiatively heated shock precursor is

less than the downstream value, for this parameter set. Figure 3.21 shows the detail

of the Zel’dovich spike in the gas temperature profile of the upstream solution near

the shock front. These figures show good agreement with the semi-analytic solution,

although there is some resolution-independent discrepancy in the gas and radiation

temperatures of the shock precursor for the solution using computed eigenvalues.

We ran the same test with the eigenvalues fixed at λ1,3 = ∓ĉ/
√

3 (see Section 2.1.3)

according to the Eddington approximation and include these results in Figure 3.21

for comparison with the computed-eigenvalue solution.

The relative errors of the computed-eigenvalue solution with respect to the semi-

analytic model are 1.7% for the density, 6.1% for the gas temperature, and 7.8%

for the radiation temperature, except at the shock interface where the solution is
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Figure 3.20: Semi-analytic (solid line) and computed (circles) solutions of the

gas (top) and radiation (bottom) temperature profiles for a sub-critical, non-

equilibrium radiative shock with M0 = 3.
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Figure 3.21: Detail of the Zel’dovich spike in the semi-analytic (solid line) and

numerical (circles) solutions of the gas temperature profile shown in Figure 3.20

using the M1 model. For reference, we also include the gas temperature profile

numerically obtained using the Eddington (P1) approximation (exes) instead of

computed eigenvalues.

discontinuous. For the fixed-eigenvalue solution, the relative errors are 0.42% for the

density, 0.49% for the gas temperature, and 0.42% for the radiation temperature.

Tests with other Mach numbers also agree well with the semi-analytic solution. This

suggests that the error observed in Figure 3.20, i.e., for the computed-eigenvalue

solution, is primarily a result of the Eddington approximation in the semi-analytic

model (Lowrie and Edwards 2008), not of the RSLA, which is expected to have no

effect on the spatial variation of steady-state solutions (see Section 2.2.2).
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3.3.6 Radiative Momentum-driven Expanding Shell

As a final radiation test, we consider the evolution of a spherical, dusty shell of

gas with expansion driven by absorption of radiation momentum from a central

source. The problem set-up is a modified version of that described in Appendix A

of Ostriker and Shetty (2011). For simplicity, here we assume an isothermal equation

of state under the condition of radiative equilibrium and neglect the gravitational

potential. The problem considers an idealized GMC of mass MGMC that forms stars

of total mass M∗ with efficiency εGMC = M∗/MGMC over its lifetime. The remaining

gas of mass Msh ≡ (1 − εGMC)MGMC is ejected as an expanding, spherical shell of

(variable) radius r due to the radiation force from the stellar component, which we

model here as a centrally located cluster with (fixed) radius r∗ and luminosity per

unit mass Ψ ≡ L∗/M∗ typical of young, luminous clusters. Here, as in Ostriker and

Shetty (2011), we consider just the effects of reprocessed IR continuum radiation, as

the corresponding radiation force exceeds that of the primary UV/optical streaming

photons by a factor∼ τIR when the dusty shell is optically thick. The source function

for the central luminous cluster is given by Equation (2.54).

Assuming the ejected shell is thin, i.e., H � r for a shell of thickness H at

radius r, the volume of the shell is approximately V (r) ≈ 4πr2H, the density of

the shell is approximately ρsh(r) ≈ Msh/(4πr
2H), and the optical depth across the

shell is approximately τsh(r) ≈Mshκ0/(4πr
2), where κ0 is the absorption opacity of

the dust, which is hydrodynamically coupled to the gas, to infrared radiation. For

τsh & 1, the diffuse radiation reprocessed by the dust applies a force Frad ≈ L∗τsh/c

on the shell. Neglecting gravitational and internal pressure forces, the outward

acceleration of the shell is

r̈ =
L∗κ0

4πr2c
, (3.45)
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which is independent of the shell’s thickness.5 With r̈ given by Equation (3.45), the

characteristic dynamical time for acceleration is given by

tdyn ≡
(
r̈

r

)−1/2

=

(
L∗κ0

4πr3c

)−1/2

, (3.46)

and the characteristic velocity produced is given by

vdyn ≡
r

tdyn

=

(
L∗κ0

4πrc

)1/2

. (3.47)

To non-dimensionalize the problem, we set the length unit to r0, set the density

unit to ρ0 ≡ Msh/(
4
3
πr3

0), the density of a uniform spherical cloud of gas with

radius r0 and mass Msh, and the speed unit to a0, the isothermal sound speed. The

corresponding time unit is t0 ≡ r0/a0.

Choosing dimensional parameters Ψ = 2000 erg s−1 g−1, MGMC = 106M�, κ0 =

20 cm2 g−1, together with r0 = 5 pc, a0 = 2× 105 cm s−1, and with an efficiency of

εGMC = 0.5,6 we obtain the reference dynamical Mach number

M0 ≡
vdyn(r0)

a0

=

(
L∗κ0

4πr0ca2
0

)1/2

≈ 13

[
(εGMC/0.5)(Ψ/2000 erg s−1 g−1)

(r0/5 pc)(a0/2× 105 cm s−1)2

×(MGMC/106M�)(κ0/20 cm2 g−1)

]1/2

, (3.48)

5Note that the inward gravitational acceleration of the shell, arising from both the gravitational

force of the central cluster as well as the self-gravitational force of the shell itself, has the same

r−2 dependence as the acceleration given in Equation (3.45); hence, the net acceleration may be

reduced correspondingly depending on the relative strengths of the gravitational and radiation

forces. Ostriker and Shetty (2011, see their Equation A1) point out that in this case the shell

can become unbound only if εGMC > εmin ≡ [Ψκ0/(2πcG) − 1]−1; Murray et al. (2010, see their

Equation 17) reached a similar conclusion.

6Although we neglect gravitational forces here, this value of εGMC corresponds to the minimum

efficiency that would be required for the shell to become unbound if gravitational forces were

included in the net acceleration using the given parameter set. See Footnote 5.

87



and the reference optical depth across a thin shell of mass Msh at radius r0 by

τ0 ≡ τsh(r0) =
Mshκ0

4πr2
0

≈ 6.6

[
([1− εGMC]/0.5)(MGMC/106M�)(κ0/20 cm2 g−1)

(r0/5 pc)2

]
. (3.49)

We begin with a spherical cloud of uniform density ρcl = Msh/(
4
3
πr3

0) = 3ρ0(H/r0),

and at time t = 0, we turn on a source with emission profile given by Equation (2.54)

in order to investigate the premise that the ejected gas forms a thin shell. In a time

tdyn/t0 =M−1
0 ≈ 0.076, a thin shell should form near the radius r0. Since the prob-

lem is spherically symmetric, we can simplify the full three-dimensional problem by

restricting our computation to the octant (x, y, z) ≥ 0 and by imposing reflection

boundary conditions on the inner boundaries, effectively doubling the resolution.

According to the RSLA static diffusion criterion of Equation (2.35), we should

choose a value of ĉ/a0 such that vdyn ∼ a0M0 � v̂diff ∼ ĉ/τcl for this test, where

τcl = ρclκ0r0 = 3τ0 is the optical depth from the center of the cloud, i.e., such that

ĉ/a0 � 3M0τ0. Yet for M0 = 13 and τ0 = 6.6, this would require ĉ/a0 � 260,

which is impractically large. Instead, we choose ĉ/a0 = 260, the consequence of

which is that vdiff may not be large enough compared to vdyn for the radiation to

properly diffuse through the medium, hence the radiation force acting on the shell

may initially be too large. However, we relax this requirement here since we are

primarily interested in the qualitative behavior of shell formation in this test; we

shall investigate the quantitative behavior more carefully in our next test.

We use a uniform, three-dimensional grid with a resolution of N3 = 1283 zones

in the domain (x, y, z) ∈ [0, 1.2r0]3 and impose outflow boundary conditions on

the outer boundaries. Snapshots of the surface density Σ ≡
∫
ρ dz at regular time

intervals are shown in Figure 3.22, demonstrating that a thin shell has indeed formed

around r = r0 by t = 0.076t0.
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Figure 3.22: Snapshots of the gas surface density at regular time intervals for the

thin shell formation of gas ejected by a central radiation source. The linear scale

ranges from Σ = 0 (black) to Σ = 1.34 (white). The source radiation model is

described by Equation (2.54) and gas is initially distributed as a uniformly dense

sphere of radius r0. By time t = 0.076t0, a thin shell has formed near r = r0.
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For our second test, we assume that at time t = 0 a shell of thickness H is

located at initial radius r0 = 5 pc with zero initial velocity. We then evolve the shell

and compare with the analytic solution. This reference solution is obtained by first

rewriting Equation (3.45) in terms of the variables r̃ ≡ r/r0 and t̃ ≡ t/t0 to obtain

the simplified ODE

d2r̃

dt̃2
=
M2

0

r̃2
. (3.50)

Equation (3.50) can then be integrated to obtain the shell velocity

dr̃

dt̃
=M0

√
2

(
1− 1

r̃

)1/2

, (3.51)

for r̃ ≥ 1. Equation (3.51) can then be integrated once more to obtain

t̃ =
1

M0

√
2

[√
r̃
√
r̃ − 1 + ln

(√
r̃ +
√
r̃ − 1

)]
, (3.52)

for r̃ ≥ 1.

In order to preserve the original ordering of time scales under the RSLA, we must

choose ĉ such that vmax � v̂diff at all times during this test, which is equivalent to the

RSLA static diffusion criterion in Equation (2.35), requiring that ĉ� τmaxvmax. The

optical depth across the shell is given by τsh ∼ τ0(r/r0)−2 ≤ τ0 = 6.6. The maximum

signal speed in the gas is given by vmax ≡ vflow + ceff , where vflow ≡ a0(dr̃/dt̃) is the

typical flow speed with dr̃/dt̃ ∼M0 = 13� 1 given by Equation (3.51), and ceff ∼

a0 is the effective sound speed given by Equation (2.29), hence vmax ∼ a0M0 � a0.

The RSLA static diffusion criterion requires that vdiff ∼ ĉ/τmax � vmax in the flow.

Since τmax ≤ τ0 and vmax .M0a0 for the range r0 ≤ r ≤ 2r0 of our simulation, if we

adopt ĉ/a0 = 10τ0M0 = 860, then the we have vdiff > 10vmax and the RSLA static

diffusion criterion will be satisfied. Although this value of ĉ might seem prohibitively

large, recall that the typical gas time step is set by vmax � a0. Our choice of ĉ results

in a gas-to-radiation time step ratio R ≡ ∆tgas/∆trad = ĉ/vmax ∼ 10τ0 = 66 and in
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practice R is in the range 53-73 with an average of ∼ 55, which is computationally

feasible.

Additionally, the internal gas pressure force in the shell is given by Fpress ∼

4πr2H∇P ∼ 4πr2ρ0a
2
0, which implies that Frad/Fpress ∼ M2

0Hr
3
0/r

4. If we assume

H/r & 0.1, the gas pressure forces will remain small until r ∼ 2.6r0 = 13 pc. We

evolve the shell from radius r = 5 pc to r = 10 pc in our test. Thus, neglecting the

internal pressure forces in the model described by Equation (3.45) is justified.

Since the radiation field is quasi-static with respect to the gas and the condition

of radiative equilibrium has been imposed, the initial radiation flux profile F∗(r) can

be approximated by solving the ODE ∇ · F∗ = j∗(r) to obtain

F∗(r) =
L∗

4πr2

[
erf

(
r√
2σ∗

)
− 2r√

2πσ2
∗

exp

(
− r2

2σ2
∗

)]
, (3.53)

where the bracketed expression in Equation (3.53) rapidly approaches 1 as r/σ∗ →

∞. To approximate the initial profile for the radiation energy density, we then solve

the ODE

∇ · P = −ρκ0
F

c
, (3.54)

using the M1 closure relation to relate P to E and F.

For a spherically symmetric system, Equation (3.54) reduces to

1

r2
∂r(r

2Prr)−
1

r
(Pφφ + Pθθ) = −ρκ0

F

c
, (3.55)

where we have expanded the radial component of the divergence of the radiation

pressure tensor. Recalling that trP = E , expressing Prr = Eχ in terms of the

Eddington factor, χ, and using E = F/(cf) and χ = 1
3
(5− 2

√
4− 3f 2) to eliminate

E and χ in favor of the known flux function F (r) and the unknown reduced flux
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f(r), we obtain the ODE

∂rf =
3f
√

4− 3f 2

5
√

4− 3f 2 − 8

[
∂r lnF

3
(5− 2

√
4− 3f 2)

+
2

r
(2−

√
4− 3f 2) + ρκ0f

]
. (3.56)

It is evident that the nonlinear ODE in Equation (3.56) is singular at the critical

value fcrit = 2
√

3/5. A necessary condition for this to be a regular singularity of the

ODE is that the bracketed expression in Equation (3.56) also vanish at the point rcrit

for which f(rcrit) = fcrit. In general, this point will depend on the specific profiles

ρ(r) and F (r), and its location can be determined by solving the nonlinear equation

3 ∂r lnF +
4

r
+ 2
√

3ρκ0 = 0 (3.57)

numerically for r, taking F (r) from Equation (3.53). Any regular solution of Equa-

tion (3.56) must pass through the critical point (rcrit, fcrit), hence this point can

be used as an internal boundary condition from which Equation (3.56) can be in-

tegrated outward to either larger or smaller r to obtain the semi-analytic solution

f(r). Once this solution has been obtained, we have E(r) = F∗(r)/[cf(r)].

We model the initial density of the shell using the Gaussian profile given by

ρsh(r) =
Msh

4πr2
√

2πσ2
sh

exp

(
−(r − r0)2

2σ2
sh

)
, (3.58)

where σsh ≡ H/(2
√

2 ln 2) is the HWHM of the shell. The profile in Equation (3.58)

is a smooth function of r whose volume integral rapidly approaches the shell mass,

Msh, as |r − r0| → ∞. For our choice of τ0 = Mshκ0/(4πr
2
0) ≈ 6.6, we solve

Equation (3.57) iteratively via Newton’s method to obtain rcrit ≈ 1.128 r0. Integrat-

ing Equation (3.56) outward and inward from rcrit via a fourth-order Runge-Kutta

scheme, we obtain the semi-analytic solution f(r) shown in Figure 3.23. For ref-

erence, we also show the solutions for the P1 (i.e., Eddington) and M1 closures in
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Figure 3.23: Initial equilibrium profile of the reduced flux, f , for the spherically

symmetric thin shell problem with the M1 closure relation (solid line). For refer-

ence, the approximate planar model solutions with the M1 (dashed line) and P1

(i.e., Eddington; dash-dotted line) closure relations are also shown.

planar geometry. Note in Figure 3.23 that all three solutions are approximately

equal in the vicinity of the shell, but far from the shell where geometric effects

become important, the planar solutions do not adequately describe the true, spher-

ically symmetric radiation field.

We initialize our test using Equation (3.58) for the radial density profile, v0 = 0

for the initial velocity, Equation (3.53) for the radial flux profile, and the semi-

analytic solution of Equation (3.56) for the radial energy density profile. To prevent

the gas time steps from becoming prohibitively small, we enforce a density floor

of ρmin ≡ 10−8ρ0 initially as well as after each gas integration. We use a uniform,

three-dimensional grid of resolution N3 = 1283 on the domain (x, y, z) ∈ [0, 2 r0]3,

with reflection boundary conditions on the inner boundaries and outflow boundary
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conditions on the outer boundaries, to enhance efficiency. When gas evolution is

turned off, the code holds the predicted spherical M1 solution shown in Figure 3.23

very well; it also relaxes to this solution when started from other initial conditions.

When gas evolution is turned on, from Equation (3.52) we expect the shell to reach

radius r = 2 r0 at time tfinal ≈ 0.12t0.

In Figure 3.24, we plot the gas density ρ, averaged over spherical shells, at the

same time intervals for a range of values of ĉ/a0, including the sufficiently large value

ĉ/a0 = 860 as well as one-half and one-quarter of this value. It is clear from this

figure that for too small a value of ĉ/a0 the radiation force is too strong, hence the

shell remains thinner and expands more rapidly than expected. Figure 3.25 shows a

series of snapshots of Σ at regular time intervals along with a reference curve indi-

cating the shell radius given by the semi-analytic solution of Equation (3.52), where

it can be seen that the shell remains uniformly spherical and thin as it expands.

Line plots of the radiative flux measured along the positive x-axis as well as the

flux profile modeled in Equation (3.53) are shown in Figure 3.26 for the same time

intervals with ĉ/a0 = 860. The numerical flux is close to the total flux corresponding

to the underlying source function described in Equation (2.54). This total flux is

the sum of the directed flux from the source and the diffusive flux from radiation

reprocessed by the gas in the shell, which further indicates that the radiation has

sufficient time to diffuse through the shell in a gas time step. Figure 3.27 shows

line plots of the radiative energy density, averaged over spherical shells, at the same

time intervals with ĉ/a0 = 860. For reference, we also show the radiative energy

density in the interior of the shell predicted by the plane-parallel model using the

Eddington closure relation. This model is given by

EEdd(r) ≡ 3F∗(r)

c

(
τsh(r) +

2

3

)
, (3.59)

where F∗(r) is flux given in Equation (3.53) for a shell of radius r, and τsh(r) ≡
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Mshκ0/(4πr
2) is the total optical depth across a uniformly dense shell of mass Msh

and radius r. At a given time t, we estimate the shell radius using r = 〈r〉, where

〈r〉 ≡
∫
ρr dV∫
ρ dV

, (3.60)

is the density-weighted radial coordinate of the shell computed by the code.

To compare our computed solution with the predicted ODE solutions given by

Equations (3.51) and (3.52), we compute 〈r〉, defined in Equation (3.60), as well as

the density-weighted radial velocity defined by

〈vr〉 ≡
∫
ρ(v · r̂) dV∫

ρ dV
, (3.61)

with the volume integrals in Equations (3.60) and (3.61) performed over the entire

grid. Figure 3.28 shows the data for the quantities 〈r〉 and 〈vr〉 along with the models

given by the semi-analytic solutions of Equations (3.52) and (3.51), respectively, as

the shell expands. For ĉ/a0 = 860, the maximum relative errors for 〈r〉 and 〈vr〉

are approximately 3.1% and 7.0%, respectively, showing good agreement with the

model. For ĉ/a0 = 430 the maximum relative errors are 5.3% and 13%, and for

ĉ/a0 = 215 they are 8.5% and 23%, respectively. The sizes of the relative errors

when ĉ/a0 < 860 underscores the importance of taking ĉ/a0 sufficiently large in

order to preserve the proper ordering of time scales under the RSLA.

3.4 Test of Star Particles & Poisson Solver

Lastly, we test the integration of star particle motions from the gravitational forces

produced by our self-gravity Poisson solver by reproducing the circular particle

orbits test from Gong and Ostriker (2013). In this test, two star particles of equal

mass m and separation d0 orbit their common center of mass, initially located at

the center of a cubic domain of side length L. The particles have initial positions
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Figure 3.24: Density averaged over radial shells at regular time intervals t/t0 =

{0, 0.042, 0.083, 0.124} and for several values of ĉ/a0 in the radiatively driven

expanding shell problem.

r = ±x̂ d0/2 and velocities v = ±ŷ (1/2)
√

2Gm/d0 and are integrated for 10 orbital

periods of torbit = 2π
√
d3

0/(2Gm). The background gas density is set to ρ0 ≡ 0 and

the gas integration is suspended so that each particle feels only the gravitational

force from the other. We repeat the test for d0/L = {0.2, 0.3} with grid resolutions

N = {32, 64, 128}. For convenience, we choose units such that G = m = L = 1.

Figure 3.29 shows the relative error in the star particles’ separation, d, compared

to their initial separation, d0, versus the number of orbits completed for the cases

with d0/L = 0.2 and d0/L = 0.3. The maximum relative errors in d over all orbits are

listed in Table 3.1 for each separation and resolution considered. As noted in Gong

and Ostriker (2013), for d0/L = 0.2 at resolution N = 32, the separation between

the particle smoothing volumes is only a few grid zones, hence the gravitational

96



Figure 3.25: Snapshots of the gas surface density Σ ≡
∫
ρ dz at regular time

intervals for the radiatively driven expanding shell problem with ĉ/a0 = 860. The

linear scale ranges from Σ = 0 (black) to Σ = 0.706 (white). For reference, we

plot a curve (dash) indicating the shell radius given by the semi-analytic solution

of Equation (3.52) at the indicated time.
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Figure 3.26: Radiative flux (solid) averaged over radial shells at regular time

intervals for the radiatively driven expanding shell problem with ĉ/a0 = 860.

For reference, we also plot the equilibrium solution (dash-dot) given by Equa-

tion (3.53), and the density profile (dash).
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Figure 3.27: The same as Figure 3.26 for the radiative energy density (solid). For

reference, we also plot the density profile (dash) and the model solution EEdd(r)

defined by Equation (3.59) (dash-dot), where we use r = 〈r〉, the average radial

coordinate defined by Equation (3.60).
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Figure 3.28: Density-averaged radial position, 〈r〉 (top), and velocity, 〈vr〉 (bot-

tom), of the radiation-driven shell at regular time intervals and for several values

of ĉ in the radiatively driven expanding shell problem. For ĉ/a0 = 860, the maxi-

mum relative errors for the computed solution (circles) are 3.1% and 7.0% for 〈r〉
and 〈vr〉, respectively.
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Table 3.1. Maximum Relative Errors for the

Circular Particle Orbits Test

N d0/L = 0.2 d0/L = 0.3

32 0.21 0.082

64 0.047 0.022

128 0.0098 0.0080

Note. — Maximum relative error of the particle separation com-

pared to the initial separation, defined by maxt |(d− d0)/d0|, over

10 particle orbits. Data are given for runs with initial separations

d0/L = {0.2, 0.3} and the resolutions N = {32, 64, 128}.

potential is not well-approximated by that of two point masses. Therefore, the

errors in particle separation are somewhat high at low resolution, yet appear to

decrease at the expected O(N−2) rate. The errors are smaller overall for the larger

separation d0/L = 0.3, which is consistent with the trend of the single-particle

force errors to decrease with radius as demonstrated in Figure 2.2. These results

demonstrate that PM method combined with our open boundary condition Poisson

solver returns highly accurate orbits when particle separations are well-resolved.
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Figure 3.29: Relative error of the particle separation, d, compared to the initial

separation, d0, as a function of number of orbits completed, t/torbit, for the circular

particle orbits test. Results are shown for runs with initial separation d0/L = 0.2

(top) and d0/L = 0.3 (bottom) resolutions N = {32, 64, 128}. All data are for

one particle; the orbit of the other particle is symmetric to machine precision.
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Chapter 4

Application of the Method

4.1 Model Description

The model for our application is a turbulent GMC that fragments gravitationally

to form a massive cluster of stars. The radiation produced by these stars is followed

via the methods we have developed, such that a portion of the cloud’s initial gas

mass is expelled from the system. Our initial conditions consist of a uniformly

dense, isothermal sphere of gas and dust of radius RGMC and total mass MGMC. A

turbulent velocity field is applied, which creates density structure within the cloud

because it is highly supersonic. The cloud is centered in a computational box of

side length 4RGMC with background density set to 1% of the cloud density. We

assume the stars that form in the cloud have a bolometric luminosity per unit mass

of Ψ = 1700 erg s−1 g−1, estimated by the Starburst99 model (Leitherer et al. 1999)

for the total luminosity of a young cluster of mass Mcluster = 106M� that fully

samples the initial mass function (IMF), averaged over a period of ∼ 1 Myr. In

these simulations, the density threshold for star particle creation is set using the
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Larson-Penston criterion, ρthr = ρLP(∆x/2), where

ρLP(r) =
8.86c2

s

4πGr2
(4.1)

describes the singular density profile of an initially-static and gravitationally-unstable

collapsing isothermal sphere (Larson 1969; Penston 1969). As discussed in Gong and

Ostriker (2013), the Larson-Penston density criterion is a factor of ∼ 14 times larger

than the Truelove criterion (Truelove et al. 1997) used in many other star particle

creation implementations, but the star particles produced are essentially the same.

We initialize the turbulent velocity field with a Gaussian random perturbation

with power spectrum |δv| ∝ k−4, for k/dk ∈ [2, 64], where dk = 2π/(4RGMC),

as described in Stone et al. (1998). The perturbations are normalized such that

Ekin,init = Egrav,init, representing a just-bound state, where Ekin,init = 1
2
MGMC|δv|2

and Egrav,init = 3
5
GM2

GMC/RGMC are the initial kinetic and gravitational energies,

respectively, and such that no net momentum is added to the computational domain,

i.e.,
∫
ρδv dV = 0. The initial turbulent velocity field, once set, is allowed to decay.

The isothermal sound speed is set to cs = 2 km s−1, such that the initial Mach

number of the turbulence in our fiducial model is 11.

As in Section 2.2.5, we model the source emission for the ith star particle (which

is actually a star cluster, at the resolution of our simulations) using the Gaussian

distribution in the radiation energy density given by Equation (2.54), with position

x∗,i and physical size R∗ = 1 pc. Sources of this size are consistent with observations

of young, embedded super-star clusters (Johnson and Kobulnicky 2003). Here, we

do not attempt to model the H II region that those star clusters would create.

Radiation pressure on dust in H II regions is known to cause non-uniform density

conditions1 (Draine 2011), which may be further enhanced by pressure from gas that

1Such non-uniformity in the density structure contrasts with the classical solution of Strömgren

(see, e.g., Draine 2011) for simple photoionization without significant radiation pressure effects.
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has been shock-heated by stellar wind, provided the gas can be confined effectively

within the H II shell (Lopez et al. 2011). Given the uncertainties about the effective

size of the emission region in which the cluster’s radiation is reprocessed into IR, we

opt to keep R∗ fixed rather than having it depend on the mass and age of the star

particle.

Preliminary results suggest that the final total mass in stars, M∗ ≡
∑

iM∗,i,

where M∗,i is the mass of the ith star particle, has a parametric dependence on

the logarithm of R∗ as shown in Figure 4.1. The total luminosity of the ith star

particle is set to L∗,i = M∗,iΨ, which is taken to be independent of the age of the

star particle since it does not change substantially over the lifetime of the cloud.

Preliminary results also indicate that there is little variation in simulation outcomes

with respect to the specific realization of the initial random perturbed velocity field.

This indicates that the simulation parameters we employ can predict the average

cloud properties we observe fairly robustly.

In our current investigation, which focuses on effects of reprocessed radiation, the

absorption opacity of the gas is fixed at κ0, which we take to be κIR, representing

a mean value of the IR absorption opacity of the dust. The primary source of

radiation is UV streaming from young, hot stars, but since the absorption cross-

section increases strongly with frequency, the UV photons are likely to be absorbed

by dust very near the source. These absorbed UV photons are then re-radiated

isotropically in the lower-frequency IR band, which has a much smaller cross-section

for absorption. The net momentum imparted to the dust and gas is ∝ L∗/c in the

radial direction for the case of a single photon absorption (which would describe

the initial interaction of stellar UV with the cloud), but as τIR, the optical depth

with respect to the absorption of IR photons, increases, the net momentum may

approach a value ∝ L∗τIR/c.
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Figure 4.1: Parametric dependence of εGMC ≡M∗/MGMC on R∗/pc.

Realistically, the opacity law would depend on the frequency of the radiation

as well as on local properties of the dust such as temperature. Furthermore, how

the frequency-averaged opacities are treated depends on the regime. For an opti-

cally thick flow, the diffusion approximation holds, i.e., Fν ∝ ∇Eν/(ρκν), where

all quantities are measured in the laboratory frame and “ν” subscripts indicate

frequency-dependent quantities. If we assume the radiation field is that of a black-

body, then Eν ∝ Bν(T ), where Bν(T ) is the Planck function and T is the local dust

temperature. It follows from Equation (2.6) that κE = κP, i.e., the energy- and

Planck-mean opacities are equal. Furthermore, ∇Eν ∝ (∂Bν/∂T )∇T , which implies
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that Fν ∝ (∂Bν/∂T )∇T/(ρκν). Therefore,

κF ≡
∫
ρκνFν dν∫
Fν dν

,

=

∫
∂Bν/∂T dν∫

(∂Bν/∂T )/(ρκν) dν
,

≡ κR. (4.2)

That is, in the optically thick limit, the flux-mean opacity would be equal to the

Rosseland-mean opacity. For an optically thin flow, since Fν ∝ Eν , it follows that

κF = κE , i.e., the flux- and energy-mean opacities are equal. However, the assump-

tion that the radiation field is a blackbody is dubious in this regime, hence it is

unclear that the energy- and Planck-mean opacities are at all related. For a full

frequency-dependent treatment of radiation there would be a transition between

optically thick and thin regimes. Here, however, we treat a simplified system with

radiation assumed to be gray, and we are interested in the optically thick case such

that Equation (4.2) holds.

In the range T ∼ 10-100 K, the Rosseland-mean of the absorption opacity is

well-approximated by the model

κR ≈ κ0

(
T

T0

)2

, (4.3)

where κ0 = 2 cm2 g−1 and T0 = 100 K (see, e.g., Draine 2011, Figure 23.12). For a

spherically symmetric cloud where the dust and radiation are in thermal equilibrium

in the diffusion limit, if we assume that the dust temperature varies radially, then for

given a density profile, the average opacity across the cloud can be self-consistently

estimated. Taking T ≡ Trad = Tdust, it follows that E = aRT
4. We obtain from

Equation (2.8d) with source function given by Equation (2.54) that F = L∗/(4πr
2).

Thus, it follows from Equation (2.8e) that

d

dr

[
aRT

4(r)

3

]
= −L∗ρκR(r)

4πcr2
. (4.4)
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Taking L∗ = εGMCMGMCΨ to be the total luminosity of the centrally located source

and ρ0 = (1 − εGMC)MGMC/(
4
3
πR3

GMC) to be the constant density of the spheri-

cal cloud of unaccreted gas and dust, and substituting Equation (4.2) into Equa-

tion (4.4), we obtain an ODE that can be integrated to find the radial dependence

of the temperature. The integration constants can be fixed if we assume that the

cloud is optically thick, in which case the emergent flux at the surface of the cloud

is given by F (RGMC) = L∗/(4πR
2
GMC) = σSBT

4(RGMC). The temperature profile so

obtained is given by

T (r) = T (RGMC)

[
1 +

3

8
ρ0κR(RGMC)RGMC

(
RGMC

r
− 1

)]1/2

, (4.5)

where T (RGMC) = [εGMCMGMCΨ/(4πσSBR
2
GMC)]1/4. Substituting Equation (4.5)

back into Equation (4.2), we then find that the radial profile for the Rosseland

opacity is given by

κR(r) = κR(RGMC)

[
1 +

3

8
ρ0κR(RGMC)RGMC

(
RGMC

r
− 1

)]
, (4.6)

where κR(RGMC) = κ0[T (RGMC)/T0]2.

If we define the radially-averaged Rosseland opacity such that 〈κR〉
∫
ρ0 dr =

∫
κR(r)ρ0 dr, then integrating from R∗ to RGMC, we obtain the relation

〈κR〉 = κR(RGMC)

[
1− 3

8
ρ0κR(RGMC)RGMC

(
ln(R∗/RGMC)

1−R∗/RGMC

+ 1

)]
. (4.7)

Using the fiducial parameters MGMC = 106M�, R∗ = 1 pc, Ψ = 1700 erg s−1 g−1,

and estimating the star formation efficiency using the typical value εGMC = 0.4, we

can estimate 〈κR〉 as well as the corresponding average IR optical depth, 〈τIR〉 ≡

ρ0κRRGMC as functions of RGMC using Equation (4.7). Figures 4.2 and 4.3 show

the average values of κR and τIR as functions of the cloud size RGMC, respectively.

It is clear that for a cloud with fiducial radius RGMC = 10 pc, the average value

of the self-consistent estimate of κR is somewhat small with 〈κR〉 ∼ 0.7 cm2 g−1.
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Figure 4.2: Dependence of the spatially-averaged value 〈κR〉 on the cloud radius,

RGMC, using a self-consistent, temperature-dependent model (Equation 4.7).

The corresponding average optical depth is given by 〈τIR〉 ∼ 0.2, which is also

somewhat small. However, near RGMC ∼ 5 pc, 〈κR〉 increases rapidly toward the

typical maximum opacity of ∼ 10 cm2 g−1; correspondingly, the average optical

depth at this radius approaches 〈τIR〉 ∼ 10, which is the typical maximum optical

depth for which our method is effective.

In our first set of simulations, we simplify considerably by adopting a constant

value of κIR for each model. We study a range of κIR between 0.5 and 10 cm2g−1,

similar to the range indicated in Figure 4.2. This would correspond to dust temper-

atures between 50 and 220 K.

109



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

RGMC/pc

〈τ
I
R
〉

Figure 4.3: Same as Figure 4.2, but for 〈τIR〉.

4.2 Fiducial Model Results

We now conduct numerical experiments using the implementation of our algorithm

that we have described. We solve the gray equations of RHD under the assumption of

radiative equilibrium in the static diffusion regime, neglecting the energy exchange

source terms as well as all terms of O(βτ). The only remaining source term is

the radiation force term ρκ0F/c appearing with opposite signs in Equations (2.8b)

and (2.8e). In principal, κ0 would be the Rosseland-mean opacity κ0R defined in

Equation (4.2); in practice, we take κ0 to be an input parameter that we can adjust

to explore its effect on the evolution of our model.

First, we examine the structure and evolution of our model with the fiducial

parameters MGMC = 106M�, R∗ = 1 pc, RGMC = 10 pc, Ψ = 1700 erg s−1 g−1, and

κIR = 10 cm2 g−1. We run the simulation on a grid on resolution N3 = 2563 for 5
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free-fall times, defined as

tff ≡
(

3π

32Gρ0

)1/2

, (4.8)

where ρ0 = MGMC/(
4
3
πR3

GMC) is the uniform density of the initial spherical cloud.

For our fiducial parameter set, the free-fall time is given by tff = 0.52 Myr. We use

a strict outflow condition on all boundaries to help control the total mass inside the

simulation domain.

Figure 4.4 shows a series of histograms of the angle-averaged radial radiation

pressure, 〈Prr〉φθ, sampling 64 bins over the radial domain r ∈ [0, 2RGMC], at the

regular time intervals t = {0.80, 1.6, 2.4}tff = {0.42, 0.84, 1.3} Myr. Also plotted is a

semi-analytic model obtained by integrating the spherically-symmetric ODE given

in Equation (3.56), as is described in Section 3.3.6, where the radial profiles for

ρ(r) and F (r) are estimated using piecewise-linear reconstructions of angle-averaged

density 〈ρ〉φθ and flux 〈F 〉φθ, respectively. As the system evolves, the radiation field

approaches the quasi-static, spherically-symmetric solution based on the M1 closure

as expected. The correspondence is especially good at large radii, but at smaller

radii the sources are distributed rather than centrally concentrated, hence the system

may not be well-described by a spherically symmetric model.

As the gas collapses to form star particles and the luminosity begins to build,

the unaccreted gas in the cloud is eventually driven out of the cloud by radiation

pressure. This can be seen by examining snapshots of the angle-averaged radial

component of the gas velocity, V ≡ 〈vr〉φθ. Figure 4.5 shows V at the same regular

time intervals as before. At time t = 0.80tff , a few star particles have formed

as the gas collapses inward under its own gravity, but they have not yet begun

to significantly contribute significant radiation feedback pressure into the system.

Therefore, V is comparatively small in magnitude and averages to a small negative

value over all radii. Later, at time t = 1.6tff , the outward radiative force has
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Figure 4.4: Angle-averaged radial radiation pressure 〈Prr〉φθ (circles) from the

fiducial model, along with the semi-analytic model based on 〈ρ〉φθ and 〈F 〉φθ
(dashed line), at times t = {0.80, 1.6, 2.4}tff = {0.42, 0.84, 1.3} Myr.
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dominated the inward gravitational force and V is everywhere positive, driving

the gas outward at speeds of up to ∼ 30 km s−1. Finally, at time t = 2.4tff , the

remaining gas in the cloud has become tenuous, the bulk of it having been either

accreted onto star particles or driven out by radiative feedback; thus, the radiation

forces and corresponding values of V are somewhat lower, especially at small radii,

although they remain positive everywhere.

Another indicator of the net force on the gas is the radial Eddington factor,

defined as

fEdd ≡
∫
|ρκIRFr/c| dV∫
|ρ∂rΦtot| dV

, (4.9)

which measures the ratio of the volume-averaged radial components of the radia-

tion and total gravitational forces, respectively. Figure 4.6 shows fEdd measured at

regular intervals from time t = 0 to t = 2.4tff . The Eddington factor is 0 until the

first star particles form around time t = 0.5tff , then it increases sharply as the star

particle masses grow via accretion of the ambient gas. Around time t = 1.0tff , fEdd

begins to exceed the value 1, at which point the volume-averaged radial component

of the radiation force becomes comparable to and subsequently exceeds the volume-

averaged radial gravitational force. The growth of the Eddington factor continues,

slowing somewhat until approximately time t = 1.6tff when it reaches a maximum

of ∼ 6. At this point, the cloud is significantly disrupted by radiative feedback;

accretion of the ambient gas onto star particles ceases leaving the total luminosity

and Eddington factor essentially fixed for the remainder of the simulation.

To get a clearer picture of the structure of the gas and radiation fields in this

fiducial run, we examine snapshots of two-dimensional data slices perpendicular to

the x-direction; slices in the y- and z-directions are similar. For each time step

considered, we slice along the plane closest to the most massive star particle and

plot the gas density using a false color map with overlaid contours of the radiation
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Figure 4.5: Angle-averaged radial histogram of the radial component of velocity,

V ≡ 〈vr〉φθ at times t = {0.80, 1.6, 2.4}tff = {0.42, 0.84, 1.3} Myr.

114



0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

t/tff

f
E
d
d
≡

∫

|ρ
κ
I
R
F

r
/
c|

d
V

/

∫

|ρ
∂
r
Φ
|
d
V

Figure 4.6: Time evolution of the radial Eddington factor, fEdd defined by Equa-

tion (4.9) computed at regular intervals for t = 0 to t = 2.4tff .

energy density as well as vectors of the in-plane components of the radiation flux.

Additionally, we overlay a two-dimensional projection of all star particles—whether

or not they lie in the plane of the most massive particle—as spheres with colors

mapped to their respective masses. Figure 4.7 shows a snapshot at time t = 0.8tff =

0.43 Myr, where it can be seen that a few star particles have formed near high-

density gas that has undergone gravitational collapse. Predominantly, vectors of

radiation flux emanate radially from the most massive star particle. However, it can

be seen in Figure 4.7 that these flux vectors are not always normal to the contours of

the radiation energy density, since notably our method does not necessarily require

F ‖ ∇E . This stands in contrast with methods based on FLD in which F ∝ −∇E by

construction, which may result in acceleration in the wrong direction. In Figure 4.8
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at time t = 1.6tff = 0.86 Myr, several more star particles have formed throughout

the simulation domain and the radiation fluxes have increased, corresponding to

an increase in total star particle mass, hence total luminosity. The unaccreted,

turbulent gas has begun to be driven outward within several overlapping shell-like

structures that become evident at this point. By time t = 2.4tff = 1.3 Myr, as

shown in Figure 4.9, radiation forces have disrupted the cloud and the remaining

low-density gas is being pushed off the grid. Although a large density contrast can

be seen as the driven gas piles up onto the expanding shells, the radiation flux

does not seem to be preferentially correlated with low-density channels. Thus, our

results once again contrast with those of FLD-based methods, such as the two-

dimensional simulations of Krumholz and Thompson (2012), which produce a non-

uniform radiation field that is strongly correlated with a non-uniform density field.

Such a high level of correlation may cause the radiation to “escape” through low-

density channels, thereby reducing the rate of radiative pressure-driven expansion

around strong radiation sources and leading to an underestimate of the level of

energy and momentum feedback that can be produced by such systems.

4.3 Parameter Study

Next, we examine the response to variation of certain model input parameters. Of

considerable physical interest in subgrid models of star formation are the efficiency

of star formation within the GMC, defined by

εGMC ≡M∗/MGMC, (4.10)
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Figure 4.7: Snapshot of the of the gas density (color map), radiation energy

density (contours) and radiation flux (vectors) in the plane of the data parallel to

the x̂-direction closest to the location of the most massive star cluster (x ≈ −2.0)

at time t = 0.8tff = 0.43 Myr. For reference, a two-dimensional projection of all

star particles is plotted (spheres) with color mapped to cluster mass.

where M∗ is the stellar mass measured after accretion has essentially ceased,2 and

pr,ej ≡
∫ ∮

ρvr v · dA dt, (4.11)

2Depending on the specific input parameters for a given simulation, the accretion of gas onto

star particles may be cut off by disruption of the cloud via radiative feedback, or it may continue

until the reservoir of gravitationally bound gas has been depleted. Either way, for our purposes,

we can consider accretion to have essentially ceased when the total accretion rate averaged over

∼ 1000 time steps falls below 1% of its maximum value.
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Figure 4.8: Same as Figure 4.7 in the data plane closest to x ≈ −1.8 at time

t = 1.6tff = 0.86 Myr.

the cumulative radial momentum ejected from the system per unit mass accreted in

star particles. In addition, the free energy of the ejected gas, defined by

Efree,ej ≡
∫ ∮

ρ

(
1

2
v2 + Φ +

3

2
c2
s

)
v · dA dt, (4.12)

is of interest. From the point of view of the (potentially) ejected gas, only the

momentum of the radiation field is important, since we use an isothermal equation

of state and neglect energy exchange between the gas and radiation fields. Thus,

important dimensionless parameters are expected to be ΨR2
GMC/(cGMGMC), the
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Figure 4.9: Same as Figure 4.7 in the data plane closest to x ≈ −0.18 at time

t = 2.4tff = 1.3 Myr.

acceleration of the gas due to radiation from stars in units of the gravitational

acceleration, and κIRMGMC/R
2
GMC, the characteristic cloud optical depth. If MGMC

and RGMC are varied such that ΣGMC,init ∝ MGMC/R
2
GMC is held constant, then

neither of these parameters will change. However, it’s also clear from preliminary

results described in Section 4.1 that the ratio R∗/RGMC has an effect on εGMC. Thus,

some differences are expected as RGMC is varied with R∗ = 1 pc held fixed, but we

expect the effect to be at most sublinear.

Motivated by the result of Section 4.1 that in self-consistent, temperature-
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dependent models of IR dust opacity in the ∼ 10− 100 K range, the average value

〈κIR〉 can lie in the range ∼ 0.5−10 cm2 g−1 for RGMC ∼ 5−10 pc, our first series of

tests investigates the response of our model to variations in κIR over this range. We

hold MGMC = 106M� and RGMC = 10 pc fixed and vary κIR as shown in Runs A-J

in Table 4.1 using the exact same realization of the initial turbulent velocity per-

turbation. The remaining simulation parameters are set as described in Section 4.1.

Table 4.2 shows the dimensionless diagnostic simulation outcomes for the various

runs performed, including εGMC, pr,ej/(M∗cs), and Efree,ej/Ekin,init.

In Runs A-E with κIR . 2 cm2 g−1, we have Efree,ej . 0, indicating that the

ejected material is at least marginally gravitationally bound.3 For the IR optical

depth in these runs, we have τIR . 1, and in Runs F-J for which Efree,ej & 0, we

have τIR & 1, suggesting that the cloud must be optically thick to IR radiation to

become unbound.

Figure 4.10 shows the response of εGMC with respect to variation of κIR in the

simulations performed, along with the best-fit model

εGMC = 0.34 + 0.48

(
κIR

cm2 g−1

)−1

, κIR ≥ 2 cm2 g−1. (4.13)

Equation (4.13) is a fit of the data points with κIR ≥ 2 cm2 g−1, since the cloud

does not seem to become unbound if τIR is less than unity. Note, however, that

the data points only depart significantly from the model for the smallest values of

κIR. Generically, we expect εGMC ∝ κ−1
IR for a system in which the radiation and

gravitational forces are comparable such that radiation is able to expell the gas.

This is because Frad ∼ τIRL∗/c ∼ κIRM∗ΨMgas/(r
2c) and Fgrav ∼ GM2

gas/r
2 so that

Frad ∼ Fgrav when Mgas/M∗ ∼ ΨκIR/(cG), where Mgas = (1 − εGMC)MGMC is the

mass of the unaccreted gas.

3The strict outflow boundary conditions employed in our simulations ensure that any ejected

material cannot fall back inside the simulation domain, even if it is gravitationally bound.
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Table 4.1. Input Parameters

Run MGMC RGMC κIR ΣGMC,init σturb,init τIR tff,init ĉ

A 106 10 0.0 0.67 23 0.0 0.54 —

B 106 10 0.5 0.67 23 0.25 0.54 120

C 106 10 1.0 0.67 23 0.50 0.54 250

D 106 10 1.5 0.67 23 0.75 0.54 370

E 106 10 2.0 0.67 23 1.0 0.54 490

F 106 10 2.5 0.67 23 1.3 0.54 620

G 106 10 3.5 0.67 23 1.7 0.54 860

H 106 10 5.0 0.67 23 2.5 0.54 1200

I 106 10 7.5 0.67 23 3.7 0.54 1800

J 106 10 10 0.67 23 5.0 0.54 2500

K 1.25e5 10 10 0.083 8.0 0.62 1.5 120

L 2.5e5 10 10 0.17 11 1.2 1.1 330

M 3.75e5 10 10 0.25 14 1.9 0.88 600

N 5e5 10 10 0.33 16 2.5 0.76 900

O 7.5e5 10 10 0.50 20 3.7 0.62 1600

P 1.5e6 10 10 1.0 28 7.5 0.44 4500

Q 2e6 10 10 1.3 32 10 0.38 6800

R 106 10/
√

2 10 1.3 27 10 0.32 5800

S 106 10
√

2 10 0.33 19 2.5 0.90 1000

T 106 17 10 0.23 17 1.7 1.2 670

U 106 20 10 0.17 16 1.2 1.5 450

V 6.25e4 2.5 10 0.67 11 5.0 0.27 1300

W 2.5e5 5 10 0.67 16 5.0 0.38 1800

X 5.625e5 7.5 10 0.67 20 5.0 0.46 2200

Y 2.25e6 15 10 0.67 28 5.0 0.66 3000

Z 4e6 20 10 0.67 32 5.0 0.76 3400

Note. — Input parameters for the various runs of the radiative feedback simulation per-

formed. Note that MGMC is given is units of M�, RGMC in pc, κIR in cm2 g−1, ΣGMC,init

in g cm−2, σturb,init in km s−1, tff,init in Myr, and ĉ in km s−1. Recall that the IR optical

depth of the initial uniformly dense cloud is measured radially from the center outward, i.e.,

τIR ≡ κIRRGMCMGMC/(
4
3
πR3

GMC) = 3
4
κIRΣGMC,init. The value of ĉ is set using the initial IR opti-

cal across the entire cloud, i.e., twice τIR, and using a maximum signal speed of vmax ≡ σturb,init+cs.

Thus, in our simulations, ĉ ≈ 20vmaxτIR.
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Table 4.2. Simulation Outcomes

Run εGMC pr,ej/(M∗cs) Efree,ej/Ekin,init

A 1.1 0.97 -0.012

B 0.96 1.1 -0.013

C 0.92 1.3 -0.019

D 0.70 2.1 -0.036

E 0.58 4.5 -0.028

F 0.54 8.4 0.086

G 0.49 14 0.37

H 0.45 20 0.79

I 0.41 30 1.6

J 0.38 38 2.4

K 0.20 4.9 0.027

L 0.29 10 0.18

M 0.33 15 0.49

N 0.36 24 1.6

O 0.39 29 1.8

P 0.40 53 3.5

Q 0.41 60 3.8

R 0.45 40 2.8

S 0.33 38 2.3

T 0.29 37 2.0

U 0.26 34 1.3

V 0.50 2.9 -0.022

W 0.44 16 1.0

X 0.43 25 1.8

Y 0.33 68 3.7

Z 0.31 96 4.5

Note. — Dimensionless diagnostic outcomes for the various runs of the radiative

feedback simulation performed. For εGMC ≡M∗/MGMC, the star formation efficiency

within the GMC, the quantity M∗ is the total, time-integrated mass accreted onto

star particles over the duration of the simulation. Since the mass of the low-density

background gas accounts for ∼ 10% of the total mass in the simulation domain, εGMC

may exceed 1 in some runs. The quantities pr,ej and Efree,ej, representing the radial

momentum and free energy, respectively, ejected from the simulation domain through

the boundary, are also time-integrated over the duration of the simulation.
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An interesting feature of Equation (4.13) is the apparent existence of a lower

bound for εGMC at large κIR, i.e., at large optical depth. According to the single

shell model of Ostriker and Shetty (2011), there is a minimum efficiency εmin ≡

[ΨκIR/(2πcG)]−1 for the radiation pressure to disrupt the GMC. Using their fiducial

parameters of Ψ = 2000 erg s−1 g−1 and κIR = 20 cm2 g−1, they find that εmin =

0.45. In fact, for κIR < 13 cm2 g−1, it follows that εmin > 1, suggesting that the cloud

cannot become unbound for too small an opacity. Using our fiducial parameter of

Ψ = 1700 erg s−1 g−1, we find that εmin > 1 for κIR < 15 cm2 g−1. Thus, the single

shell model predicts that the clouds cannot become unbound using any of the values

of κIR considered in our simulations, yet this is clearly not the case. Presumably,

this is because the interaction is more complex in a volume-filling turbulent cloud

than in a single spherical shell. Moreover, the single shell model predicts that

εmin → 0 as κIR increases. It is certainly reasonable to expect εGMC to decrease as

κIR increases, i.e., as the strength of the radiation pressure force increases relative

to the gravitational force. However, we additionally observe an apparent minimum

efficiency that is independent of κIR. This suggests either that radiation pressure

feedback can only disrupt the cloud once at least ∼ 1/3 of the cloud mass has been

converted to stars, or that turbulence in the cloud allows this minimum fraction of

the cloud mass to be accreted onto stars before the remaining material is ultimately

expelled.

The bimodal nature of the free energy ejected in the optically thin and thick

cases can also clearly be seen in Figure 4.11, which includes the best-fit model

Efree,ej

Ekin,init

= −0.73 + 0.32

(
κIR

cm2 g−1

)
, κIR ≥ 2 cm2 g−1, (4.14)

obtained using the values of κIR for which the clouds are optically thick. Assuming

εGMC is approximately constant, as it is for sufficiently large κIR in Equation (4.13),

we expect the radiation force, hence Ekin,ej, to scale linearly with κIR. Since Ekin,init =
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Figure 4.10: Plot of εGMC versus κIR (circles) along with the best-fit model

(dashed line). The model fit is based on data from the simulations with

κIR ≥ 2 cm2 g−1 (i.e., τIR ≥ 1) only.

Egrav,init varies with MGMC and RGMC but not κIR, the linear scaling of Efree,ej/Ekin,init

with κIR in Equation (4.14) is consistent with expectations.

Figure 4.12 shows the response of pr,ej/(M∗cs), the radial momentum of the

ejected material per unit mass in stars formed divided by the isothermal sound

speed, to variations in κIR, along with the best-fit model

pr,ej

M∗cs
= −22 + 19

(
κIR

cm2 g−1

)1/2

, κIR ≥ 2 cm2 g−1, (4.15)

computed using only the data points for the simulations in which optically thick

conditions apply. Recall that our adopted sound speed is cs = 2 km s−1. Using the

same arguments leading to Equation (3.51) in Section 3.3.6, but including gravity,
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Figure 4.11: Same as Figure 4.10 for Efree,ej/Ekin,init.

it follows from the single shell model that

pr,ej

M∗cs
=

1− εGMC

εGMC

[
GMGMC

c2
sRGMC

(
κIRΨεGMC

2πGc
− (1 + εGMC)

)(
RGMC

R∗
− 1

)]1/2

,

(4.16)

where the ODE has been integrated fromR∗ toRGMC. Once again, taking εGMC to be

constant at large κIR as in Equation (4.13), Equation (4.16) predicts that pr,ej/(M∗cs)

should scale with κ
1/2
IR , which is consistent with the fit in Equation (4.15). There is

also a weak dependence on R∗ in Equation (4.16)

Next, we perform a series of runs in which MGMC is varied independently (Runs

K-Q in Tables 4.1 and 4.2), RGMC is varied independently (Runs R-U), and finally

MGMC and RGMC are varied together such that ΣGMC ∝ MGMC/R
2
GMC, hence τIR

is held constant (Runs V-Z). In each subset of runs, all other parameters are held

constant and the same initial turbulent velocity perturbation is used (still keeping

Ekin,init = Egrav,init for the varying cloud radius and mass). The results along with
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Figure 4.12: Same as Figure 4.10 for pr,ej/(M∗cs).

corresponding best-fit models are shown for each subset of runs in Figures 4.13,

4.14, and 4.15, respectively. The weak response of εGMC with respect to variation of

MGMC and RGMC in Runs K-Z shown in Figures 4.13-4.15, compared to the response

of εGMC to variation of κIR, follows from the same simple scaling argument that the

lowest-order dependence should be εGMC ∼ cG/(ΨκIR). There is a slight increase in

εGMC with increasing MGMC or decreasing RGMC in each case that is not predicted

by these scaling arguments. This subtle behavior is something for which numerical

simulations are essential. The same can be said of the response of Efree,ej/Ekin,init to

variations in MGMC and RGMC shown in these same Figures.

The response of pr,ej/(M∗cs), however, seems to follow from the same scaling

argument leading to Equation (4.16). There, we see that pr,ej/(M∗cs) scales with

M
1/2
GMC when RGMC is fixed, is essentially constant when MGMC is fixed and RGMC/R∗

is large, and taking ΣGMC constant such that MGMC ∝ R2
GMC, scales linearly with
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RGMC. This scaling behavior is consistent with the models shown in Figures 4.13-

4.15, suggesting that the dominant driving mechanism in these simulations is ra-

diation pressure from an approximately central cluster of stars, analogous to that

described in the single shell model of Ostriker and Shetty (2011).

We conclude that the overall behavior is similar to expectations derived from

simple scaling arguments, although the quantitative results and detailed parameter

dependence obtained from simulations go far beyond these simple arguments. The

results of these initial models suggest that radiation pressure is likely to play an

important role in the formation of dense stellar clusters within massive IR-opaque

molecular clouds.
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Figure 4.13: Plots of εGMC (top), Efree,ej/Ekin,init (middle), and pr,ej/(M∗cs) (bot-

tom) versus MGMC corresponding to Runs K-Q in Tables 4.1 and 4.2. In each

figure, data from Table 4.2 (circles) is accompanied by a best-fit models (dashed

line).
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Figure 4.14: Same as Figure 4.13, but for variation with respect to RGMC.
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Figure 4.15: Same as Figure 4.13, but for variation with respect to RGMC and

MGMC such that ΣGMC ∝MGMC/R
2
GMC is held constant.
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Chapter 5

Conclusions

We have described a module for the Athena code that solves the gray equations of

RHD, including all terms of O(v/c), using the M1 closure of the radiation moment

equations and an explicit update for the radiation transport terms. Our algorithm

has been designed primarily to study star formation in galactic disks and in GMCs.

We employ the RSLA with subcycling of the radiation variables in order to re-

duce computational costs, and have identified the regime of applicability of this

approximation. Our numerical implementation, Hyperion, is based on the Athena

astrophysical magnetohydrodynamics (MHD) code (Stone et al. 2008) and has been

tested over a wide range of optical depths and energy ranges. Like Athena, Hyperion

is dimensionally unsplit in one, two, and three dimensions. We have also added an

efficient implementation of the open (vacuum) boundary condition gravity solver of

Hockney and Eastwood (1988) that solves Poisson’s equation via Fourier transforms

to calculate the self-gravity of an isolated source distribution.

We have verified our algorithm using a wide variety of novel and established

quantitative tests, including propagation of linear RHD waves, strong advection

of radiation, non-equilibrium radiative shocks, force balance in optically thin and

optically thick systems, and radiative momentum-driven expanding shells. We have
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also carried out a basic timing benchmark comparing the performance of Hyperion

with that of the FLD module in the Enzo code (Reynolds et al. 2009), which suggests

a clear advantage of our method over others that require expensive matrix inversions,

in cases where the RSLA is practical (generally optical depths . 10).

We have applied our method and its numerical implementation toward the study

of feedback-regulated star formation in a model of a turbulent, gravitationally col-

lapsing GMC. Our simulations find that force from reprocessed radiation exerted

on dust by the newly formed star clusters can be quite substantial, leading to mass

ejection at speeds comparable to the escape velocity of the cloud. We also find

that there is a clear bimodality in the dynamical behavior of clouds depending on

whether they are IR-opaque or not, and that radiation-driven expulsion of gas can

lead to a net star-forming efficiency in the cloud as low as εGMC ∼ 0.3. We have

parameterized the response of the model to variations in κIR, MGMC, and RGMC un-

der a variety of conditions, and we find that some behavior is generally as expected

based on simplified physical models and scaling arguments, although the more subtle

parameter dependence as revealed by our numerical simulations goes beyond these

simple arguments.

There are some limitations to our algorithm that might be improved in future

versions. For example, our algorithm does not perform as efficiently in the dynamic

diffusion regime as other fully implicit methods, since the dynamical properties of

this regime do not permit us to reduce ĉ to computationally feasible levels. This

requires a feasible, conservative, estimate of ĉ a priori, which may be over- or under-

estimated, depending on the specific dynamical behavior of each simulation. Also,

operator splitting of transport and source terms in our algorithm introduces an er-

ror that is formally first-order in the relevant time step, although in practice, the

coefficient is typically small (LeVeque 2002). In systems where the gas and radiation
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are so tightly coupled that this operator splitting leads to significant errors, e.g., in

the dynamical diffusion regime, it may be necessary to solve the RHD equations in

an unsplit manner. Also, the M1 approximation is known to have limited accuracy

in situations where the optical depth is low and there are multiple radiation sources

of comparable strength. In this case, our RSLA semi-explicit algorithm can be ex-

tended by substituting for the M1 closure relation a directly computed estimate

of the Eddington tensor (e.g., as already implemented in Athena by Davis et al.

(2012) using the short-characteristics solution of the transfer equation). Finally,

the gray approximation can be improved upon by introducing a finite number of

multi-frequency bins as described in Vaytet et al. (2011) and providing rate equa-

tions to govern the transitions of photons between frequency bins in an energy- and

momentum-conserving manner. This is especially important in systems where, e.g.,

both streaming UV and diffusing IR radiation fields occur simultaneously within

the same physical domain.

Further comparison of our method with other more exact RHD solvers will also be

important for defining where our approximate—but relatively inexpensive—method

is most advantageous to use in astrophysical applications.
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Appendix A

List of Acronyms

BVP boundary value problem

CFL Courant-Friedrichs-Lewy

CTU corner transport upwind

DFT discrete Fourier transform

FFT fast Fourier transform

FLD flux-limited diffusion

GMC giant molecular cloud

GMRES generalized minimal-residual

HLL Harten-Lax-van Leer

HWHM half-width at half-maximum

IMF initial mass function

IR infrared

134



ISM interstellar medium

IVP initial value problem

MHD magnetohydrodynamics

MPI Message-Passing Interface

MUSCL monotone upwind method for scalar conservation laws

ODE ordinary differential equation

OTVET optically thin variable Eddington tensor

PM particle mesh

PDE partial differential equation

RHD radiation hydrodynamics

RSLA reduced speed of light approximation

SFT star formation rate

UV ultraviolet

VET variable Eddington tensor

VL van Leer

a
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Appendix B

List of Symbols

This list is representative of the nomenclature used in this dissertation, but it is not

comprehensive.

β relativistic parameter

χ Eddington factor

∆tgas gas CFL time step

∆trad radiation CFL time step

` absorption mean-free path

γ adiabatic index

ĉ reduced speed of light

κ0 gray specific absorption opacity

I unit (identity) tensor

P radiation pressure tensor

F radiation flux
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f reduced flux

v gas velocity

E radiation energy density

M Mach number

µ mean particle mass

ν frequency

Φ self-gravitational potential of gas and stars

Φext external gravitational potential

ρ gas density

σSB Stefan-Boltzmann constant

τ optical depth

aR radiation constant

B Planck function

c speed of light

cs gas sound speed

ceff radiation modified (effective) sound speed

E gas total energy

e gas internal energy

G gravitational constant
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h Planck constant

I specific intensity

kB Boltzmann constant

L characteristic length scale

L∗ source luminosity

P gas pressure

R radiation-to-gas signal propagation speed ratio (gas-to-radiation CFL time

step ratio)

T gas temperature
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