
ABSTRACT

Title of dissertation: STORAGE-CENTRIC WIRELESS SENSOR
NETWORKS FOR SMART BUILDINGS

Baobing Wang, Doctor of Philosophy, 2013

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

In the first part of the dissertation, we propose a model-based systems de-

sign framework, called WSNDesign, to facilitate the design and implementation of

wireless sensor networks for Smart Buildings. We apply model-based systems engi-

neering principles to enhance model reusability and collaboration among multiple

engineering domains. Specifically, we describe a hierarchy of model libraries to

model various behaviors and structures of sensor networks in the context of Smart

Buildings, and introduce a system design flow to compose both continuous-time

and event-triggered modules to develop applications with support for performance

evaluation. WSNDesign can obtain early feedback and high-confidence evaluation

of a design without requiring any intrusive and costly deployment. In addition, we

develop a graphical tool that exposes a sequence of design choices to system de-

signers, and provides instant feedback about the influence of a design decision on

the complexity of system analysis. Our tool can facilitate comprehensive analysis

and bring competitive advantage to the systems design workflow by reducing costly

unanticipated behaviors.

One of the main challenges to design efficient sensor networks is to collect

and process the data generated by various sensor motes in Smart Buildings effi-

ciently. To make this task easier, we provide an abstraction for data collection and

retrieval in the second part of the dissertation. Specifically, we design and imple-

ment a distributed database system, called HybridDB, for application development.

HybridDB enables sensors to store large-scale datasets in situ on local NAND flash

using a novel resource-aware data storage system, and can process typical queries in

sensor networks extremely efficiently. In addition, HybridDB supports incremental

ε-approximate querying that enables clients to retrieve a just-sufficient set of sensor

data by issuing refinement and zoom-in sub-queries to search events and analyze

sensor data efficiently. HybridDB can always return an approximate dataset with

guaranteed maximum absolute (L∞-norm) error bound, after applying temporal ap-

proximate locally on each sensor, and spatial approximate in the neighborhood on

the proxy. Furthermore, HybridDB exploits an adaptive error distribution mecha-

nism between temporal approximate and spatial approximate for trade-offs of energy

consumption between sensors and the proxy, and response times between the cur-

rent sub-query and the following sub-queries. The implementation of HybridDB

in TinyOS 2.1 is transformed and imported to WSNDesign as a part of the model

libraries.

STORAGE-CENTRIC WIRELESS SENSOR NETWORKS
FOR SMART BUILDINGS

by

Baobing Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Mark A. Austin, Dean’s Representative
Professor Shuvra S. Bhattacharyya
Professor Gang Qu
Professor Uzi Vishkin

c© Copyright by
Baobing Wang

2013

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I would like to thank my advisor, Professor John S. Baras

for giving me an invaluable opportunity to work on challenging and extremely inter-

esting projects over the past four years. His deep insight on amazingly broad area

of research, limitless energy and enthusiasm on challenging problems has been the

most important support for my work. Dr. Shah-An Yang was also a great source

of help and encouragement, to whom I am extremely grateful for the guidance and

knowledge that he so generously shared. I would also like to thank Dr. Mark A.

Austin, Dr. Shuvra S. Bhattacharyya, Dr. Gang Qu and Dr. Uzi Vishkin, for agree-

ing to serve on my thesis committee and for sparing their invaluable time reviewing

the manuscript.

Sincerely thanks to Dr. Shanshan Zheng, Dr. Kiran Somasundaram, Kaus-

tubh Jain, Dr. Ion Matei, Tuan Ta, Dr. Hua Chen, and other colleagues in the

HyNet center and SEIL lab, who have enriched my graduate life in many ways and

with whom I always had inspiring and fruitful discussions. Also I would like to

thank Mrs. Kim Edwards for her great administrative support.

This dissertation is partially supported by DARPA and SRC through grant

award 013641-001 of the FCRP, by the National Science Foundation (NSF) under

grant award CNS-1035655, and by the National Institute of Standards and Technol-

ogy (NIST) under grant award 70NANB11H148.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Wireless Sensor Networks and Smart Buildings 1
1.2 Main Contributions . 3

1.2.1 Model-Based Systems Design Framework 3
1.2.2 Data Storage and Incremental ε-Approximate Querying 5

1.3 Thesis Organization . 8

I Model-Based Systems Design Framework 9

2 WSNDesign: An Integrated Modeling and Simulation Framework 10
2.1 Introduction . 10
2.2 Overview of the WSNDesign . 13

2.2.1 Hierarchy of System Models 13
2.2.2 System Design Flow . 16

2.3 System Component Models . 19
2.3.1 Modeling Wireless Sensor Networks 19

2.3.1.1 Physical Platforms 19
2.3.1.2 MAC Layer Components 22
2.3.1.3 Wireless Channels 23

2.3.2 Modeling Physical Environments 23
2.4 Case Study . 24

2.4.1 Building Thermal Control System 25
2.4.1.1 Physical Platforms 26
2.4.1.2 IEEE 802.15.4 MAC Protocol 26
2.4.1.3 Building Thermal Model in Simulink 27
2.4.1.4 Overall System Composition 28

2.4.2 Evaluation . 29
2.5 Summary . 31

3 HybridSim: A Modeling and Co-simulation Toolchain 33
3.1 Introduction . 33
3.2 Related Work . 36
3.3 Background . 37

3.3.1 Functional Mock-up Interface 38
3.3.2 TinyOS and Avrora . 38
3.3.3 Modelica . 39

3.4 HybridSim: Design and Implementation 39
3.4.1 HybridSim Workflow . 39
3.4.2 SysML-centric Integration Environment 41
3.4.3 FMI-based Co-simulation Toolchain 45

iii

3.5 Case Study . 48
3.5.1 Modelica Model and TinyOS Application 49
3.5.2 Co-simulation Results . 52

3.6 Discussion . 55
3.7 Summary . 56

4 Reduce System Analysis Complexity 58
4.1 Introduction . 58
4.2 Related Work . 60
4.3 Tool Development and Case Studies 62

4.3.1 Tool Development . 62
4.3.2 Wireless Sensor Networks . 63
4.3.3 Quadrotor Example . 66

4.4 Discussion . 72
4.5 Summary . 73

II Flash-based Data Storage and Incremental ε-Approximate Querying 74

5 Distributed Database System for Wireless Sensor Networks 75
5.1 Introduction . 75
5.2 Related Work . 80

5.2.1 Flash-based Storage Systems 81
5.2.2 Approximate Data Retrieval 84

5.3 Problem Formulation . 86
5.3.1 Query Model and Data Storage 86
5.3.2 Research Objectives . 89

5.4 Design Considerations . 89
5.4.1 Design Challenges . 89

5.4.1.1 Flash Constraints . 89
5.4.1.2 Energy Constraints 90
5.4.1.3 Memory Constraints 91
5.4.1.4 Incremental Set Computation 91

5.4.2 Design Principles . 92

6 HybridStore: An Efficient Flash-based Data Management System 94
6.1 Storage Manager . 95
6.2 Index Manager . 96

6.2.1 Inter-segment Skip List . 98
6.2.2 In-segment β-Tree . 100
6.2.3 In-segment Bloom Filter . 104
6.2.4 Copy Index from the NOR flash to the NAND flash 106

6.3 Query Processor . 107
6.4 Data Aging and Space Reclamation 110
6.5 Failure Recovery . 111

iv

6.5.1 Recovery Algorithm . 112
6.5.2 Expected Overhead . 115

6.6 Implementation and Evaluation . 118
6.6.1 Insertions . 119
6.6.2 Time-based Equality Queries 122
6.6.3 Joint Queries: Time-based Range and Value-based Equality . 123
6.6.4 Joint Queries: Both Time-based and Value-based Ranges . . . 125
6.6.5 Failure Recovery . 130

6.7 Summary . 130

7 HybridDB: An Efficient DB for Incremental ε-Approximate Querying 132
7.1 Overview of HybridDB . 132
7.2 Incremental Temporal Approximate 138
7.3 Incremental Spatial Approximate . 140
7.4 Construct Ψ̃i on the Client . 144
7.5 Adaptive Error Distribution . 146
7.6 Implementation and Evaluation . 148
7.7 Summary . 154

8 Conclusions 155

A Formulation of Tree Decomposition 156

B Publication 161

Bibliography 163

v

List of Figures

2.1 Hierarchy of System Models . 14
2.2 Integrated Design Environment . 16
2.3 Behavior Model of a Transceiver Using Statechart 20
2.4 SysML Internal Block Diagram for Physical Sensor Motes 26
2.5 SysML Internal Block Diagram for the IEEE 802.15.4 Unslotted CS-

MA/CA Mode for the PAN Coordinator 27
2.6 Simulink Thermal Dynamics Model of the Data Center 28
2.7 SysML Internal Block Diagram for the Whole System 29
2.8 Room Temperatures and Total Electricity Cost 31
2.9 Working Statuses of the A/C, Heater and Pipe 32

3.1 HybridSim Toolchain Workflow . 40
3.2 FMI Co-simulation Master . 48
3.3 System Configuration . 51
3.4 TinyOS Emulator Configuration . 51
3.5 Co-simulation Configuration . 52
3.6 Impact of Sampling Rates . 53
3.7 Impact of Network Size . 54

4.1 Interpretation of commutative semirings by subclasses 59
4.2 GUI and the generated relationship graph for the case study 62
4.3 The generated tree of cliques . 65
4.4 Parametric diagram for high level tradeoffs of a quadrotor 67
4.5 Quadrotor example . 69
4.6 The completed Block Diagram of the tree decomposition of the quadro-

tor . 70
4.7 Summary propagation applied to the block diagram of Fig. 4.6. We

treat each of the blocks as sets. The overall system is understood as
the intersection of all the sets. We can use a generalized version of
summary propagation to efficiently run queries on this structure . . . 72

6.1 System architecture . 96
6.2 Skip-list header recovery (H = 4): HybridStore loads the magenta

skip-list nodes from their corresponding header pages following the
green pointers; The restored skip-list header consists of all blue pointers.114

6.3 Performance per insertion . 121
6.3 Performance per insertion . 122
6.4 Energy consumption of insertions (without bucket information cache) 122
6.5 Energy consumption of insertions (with a cache for 5 bucket informa-

tion) . 123
6.6 Performance of time-equality queries: HybridStore (β-Tree) v.s. An-

telope [1] . 124

vi

6.7 Impact of Bloom Filter on value-based equality queries for nonexis-
tent keys . 126

6.8 Impact of Bloom Filter on value-based equality queries for existing
keys . 127

6.9 HybridStore performance per query of full queries 129
6.10 Expected overhead of failure recovery 131

7.1 Illustration of irregular time windows in incremental temporal ap-
proximate: filled points stand for the readings transmitted to the
proxy, and square points and triangle points are the first and last
readings in the corresponding time window fractions. 139

7.2 Distribution histograms of the readings from Sensor 7 147
7.3 Testbed deployment in the Engineering Annex building: both single-

hop and multi-hop networks are considered. In the latter case, mote 1
– 8 locates within one hop of the proxy, while mote 9 – 12 communi-
cate with the proxy through two-hop paths. 149

7.4 Number of packets sent by each sensor in each sub-query 150
7.5 Number of packets sent by the proxy in each sub-query 151
7.6 The response time of each sub-query with different query time win-

dows in different network topologies 152
7.7 The response time of a sequence of Refinement-ZoomIn sub-queries

in different network topologies . 153

A.1 This figure shows the search tree through the permutation space.
The nodes are the different valid eliminations. The shaded region
represents the nodes held in memory for which statistics have been
collected. 160

vii

Chapter 1

Introduction

1.1 Wireless Sensor Networks and Smart Buildings

Buildings are some of the largest energy consumers in the world. Improving

the energy efficiency of buildings is an important step towards a more sustainable

lifestyle leading to significant cost savings for energy consumption, and a more com-

fortable environment for occupants. Due to their significant advantages, Wireless

Sensor Networks (WSNs) will play a fundamental role in future Smart Buildings.

It is possible to retrofit old buildings to enable sensing and monitoring with mini-

mal changes, and even integrate WSNs with existing Building Energy and Control

Systems (BECS) for finer grained distributed control. In addition, a large number

of parameters can be measured to capture spatial and temporal distributions at a

much finer granularity than other technologies available.

However, it is notoriously difficult to design efficient and reliable WSNs for

Smart Buildings. Firstly, the design of such hybrid systems requires collaboration

and optimization across multiple engineering domains. For example, some special-

ized teams are involved with the HVAC (Heating, Ventilation, and Air Conditioning)

system design, while other experts focus on the protocol design and data collection

in WSNs. The high coupling of various components requires that the various engi-

neering teams collaborate and share their designs with each other regularly to ensure

1

that the final design meets the overall design goals [2]. Secondly, the cyber-physical

interactions must be thoroughly investigated. The success of separated tests of the

BECS system and sensor network cannot guarantee that the overall system satis-

fies the requirements. Therefore, both subsystems must be tested in an integrated

framework, which must enable various teams to design concurrently [3]. Thirdly,

component reusability must be imposed. Since it is too costly to design such hybrid

systems from scratch, the framework must be able to import existing component

libraries. Finally, data collection and retrieval in WSNs is generally a tricky and te-

dious task, and the deployment of WSNs is complex due to the complicated interior

structures of buildings [4].

The LoCal project1 is very good example, which aims to design a network

architecture for localized electrical energy reduction, generation and sharing. This

project currently provides around 2000 distinct measurement channels that monitor

electricity consumption, environmental quality data, HVAC parameters, weather

data, etc [5]. In one of their experiments, 455 wireless power meters running TinyOS2

over 6loWPAN/IPv6 are deployed in a commercial building for around one year, and

over 900 million individual readings are collected (over 4000 readings per node per

day on average) [6]. During their deployment, much effort was made to place the

gateways to ensure load balancing, connectivity and short paths for the sensors to

connect to the gateways.

1http://local.cs.berkeley.edu/
2http://www.tinyos.net/

2

1.2 Main Contributions

In this dissertation, our objective is to answer the following questions: (1)

How to develop an integration framework for the design and evaluation of WSNs in

Smart Buildings across multiple engineering domains; (2) How to store and retrieve

the large amount of sensor readings efficiently to facilitate the access to various

sensor readings for building applications. The solution to the first question can

facilitate the system-level design, while the solution to the second question can

facilitate the system implementation by abstracting data storage and transmission.

The main contributions of this dissertation are summarized as follows.

1.2.1 Model-Based Systems Design Framework

To answer the first question, we propose a model-based systems design frame-

work, called WSNDesign, which is SysML-centric with three key features. Firstly,

WSNDesign provides a hierarchy of model libraries to model various behaviors and

structures of WSNs in the context of Smart Buildings, including the models for

applications, system services, computation and communication algorithms, phys-

ical platforms, and cyber systems (including environments and BECS systems).

Event-triggered components are either modeled in SysML Statechart Diagrams, or

imported from existing TinyOS protocol libraries. Continuous-time components are

modeled in Simulink or Modelica and their behaviors are described by differential

equations, which are then transformed to SysML and imported to WSNDesign.

Therefore, with the help of WSNDesign, system engineers can take advantage of

3

many existing TinyOS and Modelica libraries, rather than design every thing from

scratch. In addition, it enables multiple design teams to work concurrently.

Secondly, WSNDesign can generate source codes and configuration scripts to

evaluate the performance of the system by simulations. Although theoretical anal-

ysis produces immediate performance results, accuracy is often sacrificed to over-

simplifications and assumptions, especially for large complex systems. With code

generation from system models, WSNDesign can save system engineers the trouble

of writing simulation codes manually. WSNDesign integrates the existing widely

accepted simulators to increase the confidence of the simulation results.

Finally, WSNDesign provides an interactive tool to reduce the complexity of

system analysis. Due to the interaction of connected components, exploration in

existing formal verification tools typically makes the complexity of system analysis

either high-order polynomial, or exponential in the system size. However, for a large

class of systems, the essential complexity is linear in system size and exponential

in treewidth, which means the previous notion of exponential complexity in system

size is overestimated. WSNDesign reduce the complexity of system analysis using

summary propagation on factor graphs transformed from SysML Parameter Dia-

grams [7], and expose a sequence of design choices to system designers to provide

instant feedback about the influence of a design decision on the complexity of system

analysis.

4

1.2.2 Data Storage and Incremental ε-Approximate Querying

The rest of this dissertation provides the answer for the second question. For

many building applications, the data is needed only in aggregate form, such as the

average power consumption over each hour or the peak power consumption for each

day [1]. In addition, sometimes it is more interesting to derive usage patterns, rather

than collect accurate individual readings. For example, based on the usage patterns

derived from the readings of wireless energy plus-load meters, authors in [6] figured

out which parts in the building and when they are wasting energy, which is very

useful for improving the building management. Since data storage and querying

are common desired features for such applications, it is preferable to provide these

modules in the model libraries.

Existing centralized data acquisition techniques suffer from large energy con-

sumption and traffic overhead, as all the readings are transmitted to the sink. In

long-term deployments, it is preferable to store a large number of readings in situ

and transmit a small subset only when requested [8, 9]. This framework becomes

practically possible with the new generation NAND flash. Recent studies show

that NAND flash is at least two orders of magnitude cheaper than communication

and comparable in cost to computation [10]. Therefore, extending NAND flash to

low-end sensor platforms can potentially improve in-network processing and energy-

efficiency substantially.

However, due to the fundamentally different read and write semantics of

NAND flash, and tightly constrained resource on sensor platforms, designing an

5

efficient resource-aware data management system for flash-based sensor devices is

a very challenging task. Existing techniques (e.g., [11–15]) are not applicable due

to their large RAM footprints. Other works, such as TL-Tree [16] and FlashLog-

ger [17], can only process simple time-based queries. More importantly, however,

none of existing works take advantage of both the on-board random-accessible NOR

flash that is quite suitable for index structures available in current sensor platforms,

and external economical energy-efficient NAND flash with high-capacity, which is

ideal for massive data storage.

For queries retrieving a relatively large set of readings, data approximate is a

popular technique to reduce the traffic. Traditional methods [18–20] require users to

specify fixed error bounds to address the trade-off between accuracy and overhead.

However, in many scenarios, it is unfeasible and inefficient for users to determine

in advance what error bounds can lead to acceptable results. On one hand, if an

error bound is too tight, much energy will be wasted to retrieve more readings than

needed, resulting in an over-qualified result. On the other hand, if the error bound

is not tight enough, the set of readings returned by the query cannot produce a

satisfactory result. In this case, the user needs to re-issue this query with a tighter

error bound. Traditional schemes will treat it as an independent new query, and

thus all readings that have been retrieved by the previous query will be transmitted

again, resulting in much energy waste as well.

In the second part of the dissertation, we design and implement HybridDB,

an efficient light-weight distributed database system for flash-based storage-centric

WSNs. HybridDB exploits a novel resource-aware data storage system, called

6

HybridStore, to store and query sensor data in situ on each sensor mote. HybridStore

has three key features. Firstly, it takes advantage of the on-board random-accessible

NOR flash in current sensor platforms to guarantee that all NAND pages used by

it are fully occupied and written in a purely sequential fashion, and expensive in-

place updates and out-of-place writes to an existing NAND page are completely

avoided. Thus, both raw NAND flash chips and FTL-equipped (Flash Translation

Layer) flash packages can be supported efficiently. Secondly, HybridStore can pro-

cess typical joint queries involving both time windows and key value ranges as filter

conditions extremely efficiently, even on large-scale datasets. Finally, HybridStore

can trivially support time-based data aging without any extra overhead, and pro-

vides an efficient failure recovery mechanism that guarantees the highest level of

data consistency without the need for any checkpoint.

Based on HybridStore, HybridDB provides the support for incremental ε-

approximate querying that enables clients to retrieve a just-sufficient set of readings

by issuing sub-queries with decreasing error-bounds. HybridDB will return an ap-

proximate dataset with arbitrary maximum absolute (L∞-norm) error bound, after

applying temporal approximate locally on each sensor, and spatial approximate in

the neighborhood on the proxy. In addition, HybridDB exploits an adaptive error

distribution mechanism between temporal approximate and spatial approximate for

trade-offs of energy consumption between sensors and the proxy, and response times

between the current sub-query and following sub-queries. The implementation of

HybridDB in TinyOS 2.1 can be transformed and imported to WSNDesign as a part

of the model libraries. We also analyze its expected performance to integrate it into

7

the theoretical performance estimation process of WSNDesign.

1.3 Thesis Organization

The rest of the dissertation is organized as follows. Part I focuses on WSNDesign,

our model-based systems design framework. Chapter 2 describes the hierarchy of

system model libraries and the integration of SysML and Simulink. Chapter 3

presents a modeling and co-simulation toolchain with the support for code genera-

tion and integration of TinyOS and Modelica. Chapter 4 discusses the interactive

tool for reducing the complexity of system analysis.

Part II focuses on data storage and incremental ε-approximate querying. Chap-

ter 5 discusses the background and formulates our problem. Chapter 6 describes

HybridStore, an efficient flash-based data management system. Chapter 7 present

HybridDB, an efficient distributed database system for incremental ε-approximate

querying. Finally, Chapter 8 concludes this dissertation.

8

Part I

Model-Based Systems Design Framework

9

Chapter 2

WSNDesign: An Integrated Modeling and Simulation Framework

2.1 Introduction

Wireless Sensor Networks (WSNs) are engineered systems consisting of closely

interacting physical environments, physical platforms, communication protocols and

computation algorithms. The design of such hybrid systems requires a systems en-

gineering view and an integrated design framework that can support joint event-

triggered and continuous-time dynamics [21]. In addition, since hybrid systems

usually are very complex and too costly to be designed from scratch, component

reusability can never be overemphasized. Developing such a design framework for

WSNs faces several challenges. For example, due to the wide variety of WSN ap-

plications and the heterogeneity of sensor platforms, it is difficult to figure out

the primitive function modules, which are imperative for reusability. In addition,

integrating the numerical solvers for continuous-time models with event-triggered

models is an established, but far-from-trivial problem.

Several works have tried to improve the code reusability of sensor network

protocols. Klues et al. [22] proposed a component-based architecture for the MAC

layer in WSNs. Ee et al. [23] introduced a modular network layer to enable co-

existing protocols to share and reduce code and resources consumed at run-time.

However, both works focus on protocol implementations rather than system designs.

10

Viptos, a joint modeling and design framework for WSNs, was proposed in [24].

Mozumdar et al. [25] presented a similar work modeled in Simulink. They can an-

alyze the performance of system designs by simulations and generate the TinyOS

application codes. Another work [26], introduced a method to integrate Simulink

and ns-2 for hybrid networked control systems. However, sensor behaviors in these

works are tightly coupled with communication protocols, which makes their compo-

nents hard to be reused.

Samper et al. [27] presented an approach for the formal modeling and analysis

of WSNs at various abstraction levels. Formal model checking tools can be applied to

verify their models of hybrid systems. However, trade-off analysis is not considered

and the component reusability is not clearly supported in their approach. Mop-

pet, a model-driven performance engineering framework for WSNs, was proposed

in [28], which is the closest work to our framework. Moppet enables users to design

WSN applications using the model libraries and estimate their performances using

event calculus and network calculus without simulations. However, the continuous

dynamic behaviors of physical environments are not considered.

In this chapter, we propose a model-based system design framework for WSNs,

called WSNDesign, which applies system engineering principles to model both event-

triggered and continuous-time components. Firstly, WSNDesign is proposed, which

provides a hierarchy of system model libraries for applications, system services,

computation and communication algorithms, physical platforms and physical envi-

ronments to support a plug-and-play design fashion. Event-triggered components

are modeled in SysML and statechart diagrams are exploited to model their behav-

11

iors. Continuous-time components are modeled in Simulink or Modelica and their

behaviors are described by differential equations. To make our ideas more clear,

the model libraries for the MAC layer, physical platforms, wireless channels and

physical environments are briefly explained.

Secondly, based on WSNDesign, a system design flow is proposed, which can

integrate both event-triggered and continuous-time modules. With the help of IBM

Rational Rhapsody [29], Simulink and C/C++ source files can be generated auto-

matically from WSNDesign, which can be used for performance study and interactive

simulations.

Finally, a building thermal control system is used as the case study to demon-

strate the reusability and flexibility of the proposed framework. In this example,

we illustrate how hybrid systems can be easily developed using the modules in the

model libraries, and how their performance can be studied. Using WSNDesign,

developers can focus on the system design strategies, rather than implementation

details that are usually not familiar to system experts.

The rest of this chapter is organized as follows. We introduce the proposed

framework and design flow in Section 2.2. In Section 2.3, we describe the main

modules in some model libraries. The case study is presented in Section 2.4. Finally,

Section 2.5 summarizes this chapter.

12

2.2 Overview of the WSNDesign

In this section, we first introduce the proposed framework, with a hierarchy

of model libraries to model various behaviors and structures of WSNs. Then we

describe the design flow to develop applications with support for automatic code

generation for simulations.

2.2.1 Hierarchy of System Models

We view a sensor network as an application-oriented data-centric service provider.

Sensors collaborate to deliver services to accomplish the network missions, fulfill-

ing its requirements and optimizing its performance subject to platform and en-

vironment constraints. The hierarchy of system model libraries in WSNDesign is

shown in Fig. 2.1, aligned with their corresponding counterparts in the real world.

WSNDesign provides the model libraries for applications, services, computation al-

gorithms, communication protocols, physical platforms and cyber systems.

Application Model Library. A WSN application can be specified with

function requirements, performance requirements, physical platforms and the physi-

cal environment where the sensor network will be deployed. The Application Model

Library provides modules that can precisely describe common sensor network appli-

cations. In addition, special applications can also be modeled by extending proper

models in the library.

Service Model Library. Most WSN applications share several common

features that are used frequently, such as the query service to retrieve data locally

13

Applications
(Requirements)

Wireless Sensor Networks System Models

System Services
(Information-oriented)

Application Models
(Functionality and Performance Reqs.)

Detection MonitoringTracking ...

Service Models
(Distributed Data Store and Retrieval)

Naming LocationQuery Syn ...

Computation/Algorithms,
Data Presentation,

Communication Protocols

Network Models
(Communication and Management)

Routing MobilityMAC Data
...Topology Control Power Control

Physical Systems
(Functions and Resource)

Physical Models
(Functions and Performance)

Actuator RouterSensor ...

Base Station Wireless Channel

Environment & BECS
Cyber System Models

HVACPhenomena ...

Mapping

Mapping

Mapping

Figure 2.1: Hierarchy of System Models

or remotely, the naming service to uniquely identify motes locally or globally, the

location service to compute the virtual or physical locations and regions of sensor

motes, etc. The Service Model Library provides modules for these common services

with interfaces to customize to fulfill the application requirements.

Network Model Library. This library resides in the center of WSNDesign,

consisting of communication modules, computation modules and data management

modules that are necessary to implement various algorithms and protocols to accom-

plish the upper layer services. By well defining their interfaces, different algorithms

and protocols can be studied and compared systematically in a plug-and-play way,

14

using components of the same functionalities and ports, but with different imple-

mentations.

Physical System Model Library. This library is composed of modules for

various physical platforms in heterogeneous WSNs. Despite their different capaci-

ties and computation powers, these platforms can be viewed to be composed of at

most four parts: CPU, sensor, transceiver and battery. We have distilled the various

common primitives and parameters to describe these components and their ports.

In addition, this library provides wireless channel models with different radio propa-

gation models, channel fading models and bit error rates under different modulation

schemes.

Environment Model Library. This library serves as the bridge between

the continuous-time domain and the event-triggered domain. On one hand, physical

environments usually exhibit continuous dynamic behaviors. On the other hand,

algorithms and protocols in WSNs are usually event-driven and exhibit discrete

dynamic behaviors. This library provides modules to exchange information between

these two domains.

All event-triggered components are modeled in SysML using statecharts and

primitive operations are implemented in C/C++. All continuous-time components

are modeled using Simulink or Modelica, which are then compiled to generate S-

Funtions and imported to SysML. Continuous data are passed through flow ports,

while events and discrete data are exchanged via rapid ports.

15

2.2.2 System Design Flow

The objective of WSNDesign is to develop an integration framework for the

design and evaluation of WSNs in Smart Buildings across multiple engineering do-

mains. The integrated design environment and its associated design flow is shown

in Fig. 2.2, which can compose both event-triggered and continuous-time modules,

with support for model transformation and integration, complexity reduction of

system analysis, and automatic code generation.

Requirements WSNs Model
Libraries (SysML)

Environment Models
(Simulink/Modelica)

BECS Models
(Simulink/Modelica)

Simulink/Modelica
to SysML

Model Integration (SysML BDD/IBD/Parametric Diagrams)

SFunction/Simulink
Model Generator

SFunction and
Simulink Model

Matlab/Simulink
Simulations

Complexity
Analyzer

Modelica Code
Genrator

TinyOS Scripts
Generator

Application
Source Codes

Modelica Source
Codes

Sensor Network
Simulator

Modelica SimulatorRuntime
Infrastructure

Protocols in TinyOSTinyOS Parser

Figure 2.2: Integrated Design Environment

System designs are developed by composing proper modules from the model

libraries. System engineers can model event-triggered components using SysML

Statechart Diagrams directly. However, since TinyOS is the most popular open-

source operating system for low-power wireless devices, and many applications and

16

protocols have been implemented in TinyOS, it makes no sense to model every thing

from scratch. To reuse the existing TinyOS libraries, WSNDesign can transform

their structures into the SysML format, and import them into the model libraries.

WSNDesign refers to their TinyOS source codes for the behaviors of these modules,

which will be used to generate simulation codes. Similarly, continuous-time com-

ponents can be imported from existing Simulink or Modelica libraries, such as the

Modelica Buildings Library1.

After a system design is decided, system engineers must evaluate its perfor-

mance in details. Although theoretical analysis produces instant performance re-

sults, accuracy is often sacrificed to oversimplifications and assumptions, especially

for large complex systems. Simulation is probably the most popular method, which

can predict the performance of complex and large networking systems that are theo-

retically very difficult to analyze without the need for expensive and time-consuming

testbed experiments. WSNDesign can generate source codes and configuration

scripts for simulations automatically from system models, which can save system

engineers the trouble of writing simulation codes manually. In order to increase the

confidence of the simulation results, WSNDesign integrates several existing widely

accepted simulators for both Modelica and TinyOS.

Note that WSNDesign is independent from development tools, although some

tools may be helpful to implement certain functions. In this dissertation, we choose

IBM Rational Rhapsody2 as the development environment, because it provides a

1http://simulationresearch.lbl.gov/modelica
2http://www.ibm.com/software/products/us/en/ratirhapfami/

17

complete open API to develop new plug-ins. Meanwhile, if all components are mod-

eled in SysML and Simulink, it can generate C/C++ codes to simulate the system

directly, or SFunction/Simulink models to simulate in Matlab. In this chapter, we

adopt this method to take advantage of the functions provided by IBM Rhapsody.

In Chapter 3, we develop a toolchain to integrate Modelica and TinyOS.

Another important process in systems design is investigate the correctness

and optimality of the designed systems. However, as systems grow in size, the num-

ber of variables increase rapidly, which can make these problems computationally

intractable. By partitioning a system into a graph of components, system engi-

neers can understand the overall system by using a series of local analysis and a

compositional technique to compose the results. However, most partitioning meth-

ods are ad-hoc and there are no quantitative metrics for measuring the complexity.

Based on [7] that identified treewidth as a metric for the essential system complex-

ity, WSNDesign provides an interactive tool to calculate the system treewidth, and

expose a sequence of design choices to system engineers to provide instant feed-

back about the influence of a design decision on the complexity of system analysis.

WSNDesign reduce the complexity of system analysis using summary propagation

on factor graphs transformed from SysML Parameter Diagrams. Note that the ob-

jective of WSNDesign is not to formally verify or optimize the designed systems,

but to help system engineers understand the implications of their design decisions

on system complexity.

18

2.3 System Component Models

Modeling WSNs is generally a complex task due to the wide variety of WSN

applications, the heterogeneity of physical platforms, and the complex interactions

with their physical environments. In order to enhance the reusability, it is impera-

tive to identify primitive function components in different layers and the interfaces

for them to interact with each other. In this section, we briefly describe the main

modules for physical platforms, the MAC layer, wireless channels and physical en-

vironments3.

2.3.1 Modeling Wireless Sensor Networks

Sensor motes (wireless routers or base stations) consist of physical platforms

and softwares (i.e., algorithms and protocols), communicating through wireless chan-

nels. Sensor motes provide ports to get the clear channel assessment (CCA), query

environment phenomenon data, register themselves to the wireless channel compo-

nent and send/receive packets.

2.3.1.1 Physical Platforms

A physical platform is composed of four parts: battery, CPU, sensor and

transceiver. Their interactions in a typical composition of a physical sensor platform

is shown in Fig. 2.4. We describe the transceiver module in detail as an example,

3For more details, please refer to http://www.ece.umd.edu/˜briankw/resources/

Wang_WETICE_2012_Full.pdf

19

whose behaviors are modeled as a state machine in Fig. 2.3.

Figure 2.3: Behavior Model of a Transceiver Using Statechart

Each transceiver has four power states, whose levels are given by sleepPower,

standbyPower, txPower and rcvPower, respectively. To support the Unit Disk

Graph (UDG) model, the txRange attribute can specify the transmission range.

The transceiver sends the energy consumption information to the battery period-

ically and transits to the termination state if an evDead event is received. In

addition, it will transit its power state accordingly if an evMoteCtrl message is

20

received.

If an evMACCCAQ query is received from the MAC layer, which requires to

poll the channel to get the CCA information, the transceiver will forward this query

with the mote ID to the wireless channel component via pCCAQ. The reply evCCAR

that contains the strength of the strongest signal in the channel near this mote

is returned by the wireless channel component through pCCAR. The transceiver

compares this signal strength with its carrier sense threshold (specified by the

CCAThreshold attribute) and sends the result (true or false) to the MAC

layer through pMACCCAR.

If an evMACSend request that contains the packet to be sent is received from

the MAC layer, the transceiver will forward this packet to the wireless channel

component through pChSend. Furthermore, the amount of energy consumed to

send this packet is sent to the battery component. If an evChReceive event that

contains the packet forwarded by the wireless channel component is received from

pChReceive, the transceiver will check the received signal strength (RSS) and the

destination of the packet. If it is the destination and the RSS exceeds its receive

sensitivity (specified by rcvThreshold), it will forward this packet to the MAC

layer through pMACRcv. Otherwise, this packet will be dropped. Similarly, the

energy consumption for packet processing is sent to the battery component.

21

2.3.1.2 MAC Layer Components

A MAC layer component provides the ports for upper layers to send and receive

packets, set the transmission power of the transceiver and control the power states

of the physical sensor platform. The main subcomponents in this layer are described

as follows, some of which are developed based on [22]. A composition example is

shown in Fig. 2.5.

The Low Power Listener (LPL) component adjusts the transceiver’s power

state based on channel activity. Both the fixed LPL listener and the periodic LPL

listener are provided in WSNDesign. The CSMA/CA Channel Access component

is responsible to gain the channel access right for a transmission using the CS-

MA/CA mechanism. The CSMA/CA Sender component is responsible to send a

packet using the CSMA/CA mechanism. The Slot Manager component manages

the slot schedule for TDMA mechanism. The TDMA Sender component is similar

to the CSMA/CA Sender, except that packets are sent using the TDMA mechanism.

The Receiver component is responsible to broadcast received packets to the MAC

Controller and other protocol-specific components for further process. The Queue

Manager component is responsible to buffer packets in the MAC layer.

The MAC Controller component is the only one that needs to be customized

by users. This component specifies the control logic of a MAC protocol. Every MAC

protocol should extend this abstract component and implement the protocol-specific

behaviors. The ports to interact with other modules have been defined, including

components in upper layers and other components in the MAC layer.

22

2.3.1.3 Wireless Channels

Wireless channel components model various wireless channels with different

radio propagation models, channel fading models and bit error rates (BERs) under

different modulation schemes. Each network instance usually has only one wireless

channel component, to which all sensor motes, actuators, wireless routers and base

stations must register themselves with their IDs, physical positions and transmission

powers/ranges.

Since the channel component interacts with all nodes in a network instance, it

may not be able to process all requests immediately. Therefore, the channel compo-

nent needs to buffer the received requests in FIFO queues. In addition, the channel

component needs to maintain the information of all nodes in the network, including

their IDs, physical positions and transmission powers/ranges. Furthermore, this

component needs to maintain the information of all ongoing transmissions in the

channel, including the physical positions and transmission powers/ranges of the

senders, the start time-stamps and their required transmission times. These infor-

mation are essential for the evaluation of CCAs and BERs.

2.3.2 Modeling Physical Environments

Environment phenomena (e.g., temperature and humidity) usually exhibit con-

tinuous dynamic behaviors, which are typically described by differential equations

according to their physical laws and modeled using Matlab/Simulink or Modelica.

Simulink is a generic data-flow simulation tool good for modeling control systems.

23

Simulink models are first built using the Embedded Coder in Matlab to generate

C/C++ source codes, and then imported as SysML blocks to Rational Rhapsody.

Modelica is a more powerful topological-based modeling language with support for

symbolic manipulation of equations and non-causality, which makes it excellent for

modeling plants and physical world. Modelica models should be transformed to

Simulink S-Functions first [30]. The outputs of their solvers are forwarded to the

Phenomenon module through flow ports.

The Phenomenon component serves as the interface between the continuous-

time domain and the event-triggered domain. The basic Phenomenon component

periodically sends new phenomenon information to the Environment component.

The Environment component models the propagation of information that are re-

ceived from the Phenomenon module. It accepts queries from sensors, computes

the phenomenon values based on the propagation model and the distances between

sensors and the phenomenon, and returns the results to sensors. Several Environ-

ment modules can be composed in a network for different environment regions. For

example, two such modules are included in our case study with one for each room.

2.4 Case Study

WSNDesign proposed in this chapter is intended to provide a reusable and ex-

tensible mechanism for system design and performance simulations. In this section,

we present a simple building thermal control system as the case study to demon-

strate the composability, reusability and power of WSNDesign.

24

2.4.1 Building Thermal Control System

A building thermal control system is responsible to control the temperature

inside a building so that people can feel comfortable and equipments can work in

a optimal condition. In addition, it also needs to reduce the energy consumed by

heaters and air conditioners (ACs).

In this case study, we consider a simple building that consists of two large

rooms: the living room and the data center. Each room has a desired temperature,

which is usually 22 ◦C and much higher than the environment temperature in the

winter. Therefore, a heater is needed in the living room to generate warmth. On

the other side, the temperature in the data center will naturally rise because the

large amount of electrical power used by the computer systems will heat the air.

Consequently, an AC is needed in the data center to keep the temperature at the

desired level.

An efficient way to reduce the energy consumption is to use the heat emitted

by the computer systems to heat the living room through a pipe. A central control

system decides when the heater, AC and pipe should be turned on or off. One

temperature sensor is deployed in each room, which sends the room temperature to

the control system in the base station through the wireless channel. The commands

from the control system are sent to the heater, AC and pipe directly.

In this case study, we assumed the IEEE 802.15.4 unslotted CSMA/CA [31] is

used as the MAC protocol, and both the two sensors and base station can communi-

cate with the personal area network (PAN) coordinator directly. The compositions

25

of the main components are introduced as follows.

2.4.1.1 Physical Platforms

The temperature sensors, base station and PAN coordinator can be composed

using components from the physical system model library. The internal composition

of a temperature sensor is shown in Fig. 2.4. The base station and PAN coordinator

can be composed in the similar way but without the sensor component.

Figure 2.4: SysML Internal Block Diagram for Physical Sensor Motes

2.4.1.2 IEEE 802.15.4 MAC Protocol

The unslotted CSMA/CA MAC protocol for each node can be composed using

components from the network model library. The internal composition of the MAC

protocol for the PAN coordinator is shown in Fig. 2.5. Both the sensors and base

station act as RFDs, whose MAC protocols can be composed in the similar way

26

but without the queue manager component, and the PAN controller component is

replaced with a RFD controller component.

Figure 2.5: SysML Internal Block Diagram for the IEEE 802.15.4 Unslotted CS-

MA/CA Mode for the PAN Coordinator

2.4.1.3 Building Thermal Model in Simulink

The control system and building thermal dynamics are modeled in Simulink.

The thermal dynamics model of the Data Center is shown in Fig. 2.6 as an example.

The control system decides when the heater, AC and pipe should be turned

on or off based on the following rules:

• Heater: turn on if TLR ≤ 20 and turn off if TLR ≥ 24

• AC: turn on if TDC ≥ 24 and turn off if TDC ≤ 20

• Pipe: turn on if TLR ≤ 22 and turn off if TLR ≥ 24

27

T_DC

3

Pipe_Out

2

C_DC

1

Server Heat Splitter Pipe Heat

Transfer Efficiency

Gain

1/s

1/s

Heat Losses

1/Req

Gain
Ratio

Environment

Temperature

10

Data Server

HeatFlow

Cost

Calculator

ColdCost

Air Conditionar

On/Off

T_DC

ColdFlow

1/Mc

1/(M*c)

A/C_On/Off

2

Pipe_On/Off

1

Figure 2.6: Simulink Thermal Dynamics Model of the Data Center

where TLR and TDC are temperatures of the living room and data center, respec-

tively. Here, a variance of 2 ◦C around the desired temperature is allowed to avoid

oscillations.

2.4.1.4 Overall System Composition

After all required components have been composed using the model libraries,

they can be connected together to model the whole system. The overall system com-

position of our case study is shown in Fig. 2.7. The channel component with the

ITU indoor propagation model [32], Rayleigh fading and BPSK modulation scheme

is selected for this system. The connections between the channel component and

the node components are not shown here for clarity. Ports with the same name (in-

dicated by the same color) should be connected. The SL ControlSystem compo-

nent is used to import the Simulink models by applying the <<SimulinkBlock>>

stereotype.

28

Figure 2.7: SysML Internal Block Diagram for the Whole System

2.4.2 Evaluation

The Simulink source file for the overall system is generated from the Simulink

structure block in Figure 2.7 automatically, which is then simulated in Matlab/Simulink.

The following four scenarios are considered in our simulations:

• Wireless + No Pipe. The temperatures are collected to the base station

using the WSN, but the pipe is never turned on. Each sensor measures once

every 5 seconds.

• Wireless + Pipe (5s). Similar to the above scenario, but the pipe feature

is enabled.

• Wireless + Pipe (60s). Similar to the above scenario, but the sensor sleep

interval is 60 seconds.

• Wired + Pipe. The room temperatures are fed back to the control center

29

directly. This scenario is used as the reference to study the impacts of the

delays in the WSN.

The temperatures of the environment, the heater, the AC and the air flow

from the computer systems are 10 ◦C, 50 ◦C, 4 ◦C and 50 ◦C, respectively. The air

flow rate of the AC, the heater and the computer systems are 2 kg/s, 2 kg/s and

0.5 kg/s, respectively. We assume 50% of the air flow from the computer systems

can be piped out and 30% of their heat can be delivered to the living room. The

MAC protocol uses the default parameter values specified in [31].

The initial temperature of both rooms is 20 ◦C. The simulation results for the

first 2 hours of the room temperatures and cost are shown in Figure 2.8, and the

working statuses of the AC, heater and pipe are shown in Figure 2.9. The results

indicate that the pipe is working efficiently, which can decrease the working time

of the heater and AC, and thus reduce the total electricity cost by 24%. When the

sensors wake up to measure the temperature once every 5 seconds, the impacts of the

delays on the system performance are negligible. However, if the interval between

two successive measurements is increased to 60 seconds, the room temperatures may

cross the desired boundaries, which should be avoided. This can be used to study

the trade-off between the system performance and energy efficiency of the sensor

motes.

30

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
19

20

21

22

23

24

25
Data Center Temperature

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
19

20

21

22

23

24

25
Living Room Temperature

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
0

10

20

30

40

50

60

70

Time

Total Electricity Cost

Wireless + No Pipe Wired + Pipe Wireless + Pipe (5s) Wireless + Pipe (60s)

Figure 2.8: Room Temperatures and Total Electricity Cost

2.5 Summary

In this chapter, we have proposed a model-based system design framework

for WSNs, which can model both continuous-time and event-driven components,

and integrate them by composition for performance study by simulations. SysML,

Simulink and Modelica that are standard modeling languages in the industry are

used to develop the model libraries. The main component models for physical plat-

forms, the MAC layer, wireless channels and physical environments are described

briefly. A hybrid system is used as the case study to demonstrate the composability,

reusability and flexibility of WSNDesign.

31

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

A/C On/Off

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

Heater On/Off

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

Time

Pipe On/Off

Wireless + No Pipe Wired + Pipe Wireless + Pipe (5s) Wireless + Pipe (60s)

Figure 2.9: Working Statuses of the A/C, Heater and Pipe

32

Chapter 3

HybridSim: A Modeling and Co-simulation Toolchain

3.1 Introduction

One of the most pervasive applications of Cyber-Physical systems (CPS) is to

integrate cyber environment and physical systems through computing and network-

ing [26]. Traditionally, sensor measurements are fed to controllers through wired

networks, which are also used to deliver control commands to actuators. However,

for some applications (e.g., Smart Buildings, manufacture monitoring, etc.), it can

be very expensive and complex to deploy and evolve such wired networks. For some

other applications (e.g., unmanned aerial vehicles, healthcare monitoring, etc.), it

will be impossible to use wired networks for communications. Therefore, it is prefer-

able to integrate computational and physical devices through self-organized wireless

networks.

However, wireless networks suffer from unreliable wireless channels, especially

in indoor applications and body-area networks. It is imperative to understand how

wireless networks and control systems affect each other as a function of network traf-

fic, topology and background interference, in terms of the stability and performance

of control systems before deployment [33]. Considering the complexity of CPS,

simulations are preferable to pure mathematical analysis. Given the multi-domain

nature of CPS, it is more appropriate to use a heterogeneous simulation environ-

33

ment to study system dynamics. However, the integration of numerical solvers for

continues-time models and simulators for event-triggered models is an established,

but far-from-trivial problem [34].

In addition, different domain engineering groups generally exploit different

domain languages and tools to model and evaluate their designs, which may not be

familiar to systems engineers. It is error-prone and inefficient if systems engineers

have to work with these domain languages and tools directly to design and evaluate

overall systems. Instead, the outputs of domain groups should be integrated into a

unified framework that is friendly to systems engineers [21].

In this chapter, we design and implement an integrated modeling and co-

simulation toolchain, called HybridSim, for the design and evaluation of CPS.

HybridSim has three key features. Firstly, HybridSim provides a unified framework

for systems engineers to integrate the outputs of domain groups to design overall

systems. Specifically, we consider that a CPS consists of three main subsystems: 1)

a cyber environment in which the CPS is deployed; 2) a wireless sensor and actuator

network that is used to deliver sensor measurements and control commands; and 3) a

control and computation system that is responsible to process information and make

decisions. We assume the second subsystem is designed and implemented in TinyOS

that is the most popular operating system for low-power wireless devices, and the

other two subsystems are modeled and simulated in Modelica. HybridSim can trans-

form and import TinyOS implementations and Modelica models into SysML blocks.

Section 3.6 discusses how to extend HybridSim to support other domain tools and

languages.

34

Secondly, systems engineers can design CPS by using the imported SysML

blocks in a drag-and-drop fashion. Such SysML blocks appear as black boxes and

all domain-specific details are hidden from systems engineers. HybridSim provides

a set of SysML stereotypes for systems engineers to configure overall systems and

provide guidance for code generation and co-simulations.

Finally, HybridSim can generate configuration scripts and simulation mod-

ules for domain implementations and models automatically from SysML designs.

Based on the Functional Mock-up Interface (FMI) standard [35], HybridSim can

co-simulate these subsystems by leveraging the advantages of their respective pro-

fessional simulators and emulators. HybridSim provides a robust and flexible mech-

anism for data exchange and synchronization between these subsystems.

The convenience and efficiency of HybridSim is demonstrated by using a com-

prehensive hydronic heating system model for Smart Buildings as the case study.

We investigate the impact of sampling rates, background traffic, and network sizes

in wireless sensor networks on the performance of the control system modeled in

Modelica.

The rest of this chapter is organized as follows. We discuss related work in

Section 3.2 and introduce some background briefly in Section 3.3. In Section 3.4,

we explain the design and implementation of HybridSim in details. The case study

is presented in Section 3.5. Finally we discuss some observations, limits and future

work for HybridSim in Section 3.6 and conclude this chapter in Section 3.7.

35

3.2 Related Work

Since the design and synthesis of CPS has become a hot topic in both industry

and academia, several co-simulation paradigms have been proposed. TrueTime [36]

extends Matlab/Simulink with libraries for co-simulation of controller task execu-

tion in real-time kernels, network transmissions, and continuous plant dynamics.

However, physical and MAC layer protocols must be modeled from scratch, which is

complex and time-consuming. In addition, providing support for higher layer pro-

tocols in TrueTime can be a formidable task because they generally utilize complex

algorithms that are distributed in nature and encompass multi-hop communica-

tions [33].

Viptos [24] extends TOSSIM [37] by providing interrupt-level simulation of

actual TinyOS programs, with packet-level simulation of the network, while allowing

developers to use Ptolemy II to model the physical environment and other parts of

the system. However, information can only flow from Ptolemy II to TOSSIM because

there is no way for Ptolemy II to receive data from TOSSIM. Therefore, Viptos

cannot be used to investigate the impact of network dynamics on the performance

of overall CPS.

The Modelica/ns-2 co-simulation platform [33] integrates Modelica and ns-2

for CPS, with ns-2 deciding their communication times. Therefore, sending data

between Modelica and ns-2 in response to events generated inside Modelica is not

supported. The synchronization mechanism is improved later in [38]. NCSWT

(Networked Control System Wind Tunnel) [26] integrates Matlab/Simulink with

36

ns-2 according to the High Level Architecture (HLA) standard. To conform to the

HLA standard, the time management mechanisms of both simulators are modified

to enable synchronization between them. However, the overhead of NCSWT is very

large, which takes more than one hour to complete a 98-second simulation. There

are also other similar works on the integration of Matlab/Simulink and ns-2 [39,40].

In all the above work, simulators involved in co-simulations are tightly coupled

with each other, and even need to be modified to enable data exchange and synchro-

nization. Comparatively, HybridSim adopts the FMI standard, and only interacts

with FMI-compatible API that are supported by more than 40 commercial and

open-source tools1. This implies the extensibility of HybridSim to integrate other

tools. In addition, existing works require systems engineers to work with domain

languages and tools directly, while HybridSim enables systems engineers to work

with only SysML blocks by transforming and importing domain implementations

and models.

3.3 Background

In this section, we briefly introduce the tools and standards based on which

HybridSim is designed and implemented.

1Full tool list: https://www.fmi-standard.org/tools

37

3.3.1 Functional Mock-up Interface

FMI [35] is a tool independent standard to support both model exchange and

co-simulation of dynamic models using a combination of XML files and compiled C-

code. FMI provides a set of standard functions to exchange data between subsystems

and synchronize them in communication steps. These subsystems are called FMI

slaves, while the co-simulation coordinator is called FMI master. FMI compliant

models are referred to as Functional Mock-up Units (FMUs)

3.3.2 TinyOS and Avrora

TinyOS [41] is an open source operating system (OS) designed for low-power

wireless devices, such as those used in sensor networks, ubiquitous computing, per-

sonal area networks, smart buildings, and smart meters. TinyOS emphasizes react-

ing to external events, extremely low-power operation and small memory footprint.

Rather than a monolithic OS, TinyOS is object-oriented, providing a set of compo-

nents that are included as-needed in applications by extending the C language with

concepts of interfaces, modules and configurations. TinyOS is the most popular OS

that is widely used to design and implement wireless sensor networks.

Avrora [42] is a set of emulation and analysis tools for programs written for

MicaZ and mica2 sensor platforms. Avrora contains a flexible framework for em-

ulating and analyzing executable binary files compiled from TinyOS applications,

providing a clean Java API and infrastructure for experimentation, profiling, and

analysis. Unlike TOSSIM [37], Avrora provides cycle-accurate instruction-level tim-

38

ing accuracy.

3.3.3 Modelica

Modelica [43] is an object-oriented language for modeling of large, complex,

and heterogeneous systems. Models in Modelica are mathematically described by

differential, algebraic and discrete equations. Modelica is designed so that available,

specialized algorithms can be utilized to enable efficient handling of large models

having more than one hundred thousand equations. Dymola [30] is a commercial

modeling and simulation environment based on Modelica, which can compile Mod-

elica codes, solve equations and simulate Modelica models. Specifically, Dymola can

generate an FMU by wrapping a whole Modelica system model.

3.4 HybridSim: Design and Implementation

In this section, we first introduce the workflow of HybridSim, and then describe

the model integration environment and co-simulation toolchain in more details.

3.4.1 HybridSim Workflow

HybridSim is an important module of WSNDesign. Its workflow is shown in

Fig. 3.1, which roughly consists of three major steps: model transformation, system

configuration, and co-simulation.

Model Transformation. The design of a cyber-physical system usually in-

volves multiple engineering groups from different domains. For example, to design a

39

IBM Rhapsody WSNDesign Plug-in

TinyOS
(*.nc, *.h)

TinyOS FMU
(*.fmu)

Modelica FMU
(*.fmu)

Modelica
(*.mo)

TinyOS-SysML
Importer

Modelica-SysML
Importer

TinyOS
SysML Blocks

TinyOS-FMU
SysML Blocks

Modelica-FMU
SysML Blocks

Modelica
SysML Blocks

FMU-SysML
Importer

TinyOS FMU
Generator

Avrora Emulator
(fmi-avrora.jar)

FMI Wrapper
(*.c, *.h) Configuration

Generator

Modelica FMU
Generator

FMI Co-simulation
Master (*.py)

TinyOSApp.fmu ModelicaSys.fmu

ModelicaSys
Result

TinyOSApp
Result

ConnectionConfig.txt

Figure 3.1: HybridSim Toolchain Workflow

smart building, we can have one group working on the HVAC (heating, ventilation,

and air conditioning) system, and another group working on the communication

network. Generally, different domain groups exploit different languages and tools

to model and evaluate their designs, which may not be familiar to systems engi-

neers. HybridSim solves this problem by transforming and importing domain models

into SysML, which is widely used for model-based systems engineering. Currently

HybridSim can transform TinyOS components, Modelica modules and FMUs, and

import them as SysML blocks.

System Configuration. Systems engineers can create SysML Block Defini-

tion Diagrams and SysML Internal Block Diagrams, by selecting TinyOS SysML

blocks, Modelica SysML blocks and FMU SysML blocks to set up a system-level

40

simulation environment to evaluate the performance and dynamics of an overall

system. Particularly, systems engineers need to configure simulation parameters for

both TinyOS emulator and Modelica simulator, and specify information exchanging

between them.

Co-simulation. After systems engineers have set up a simulation environ-

ment, HybridSim will compile TinyOS application codes and Modelica models, and

generate their corresponding FMUs. Meanwhile, related configuration files and sim-

ulation scripts are generated automatically as well. Then HybridSim launches the

FMI co-simulation master to co-simulate TinyOS FMU and Modelica FMU, and

outputs their corresponding results.

3.4.2 SysML-centric Integration Environment

HybridSim is developed according to the following principles:

• Domain engineers work with the languages and tools with which they are

familiar. They should not be required to re-implement their designs just for

overall system simulation and evaluation. Ideally, domain engineers just need

to provide standard interfaces for systems engineers to exchange information

and synchronize with other domain simulators.

• Systems engineers only need to work with their favorite languages and tools

as well. For overall system integration and simulation, they take the outputs

of domain engineering groups as black boxes. Systems engineers only need to

work with the interfaces provided by domain implementations and models.

41

• Systems engineers should take advantage of exiting professional simulators/em-

ulators in each domain for overall system evaluation. In addition, the burden

to set up a co-simulation environment should be minimized for systems engi-

neers.

Support Modelica. As SysML is widely used for model-based systems en-

gineering, HybridSim selects SysML as the working language for systems engineers.

Meanwhile, Modelica is becoming increasingly popular to model CPS in both in-

dustry and academia in recent years. For example, researchers at the Lawrence

Berkeley National Laboratory have developed a Modelica Buildings Library with

dynamic simulation models for building energy and control systems in Smart Build-

ings [44]. Therefore, HybridSim supports Modelica as a very important domain

language. Specifically, HybridSim can import Modelica models in two formats into

SysML blocks: both Modelica FMUs and Modelica source codes.

The FMU-SysML Importer reads the model description (i.e., modelDescrip-

tion.xml) of a Modelica FMU to figure out its input and output ports, and then

creates a SysML block with corresponding input and output flow ports. In addi-

tion, the ModelicaFMU stereotype is applied to this SysML block, which has a tag

referring to the original FMU for simulation code generation.

Similarly, the Modelica-SysML Importer parses Modelica source codes to ex-

tract its input and output ports information, and then generates SysML blocks.

Unlike SyM [45], HybridSim only extracts the high-level structure information of

a Modelica module, and ignores its internal component connections and behav-

42

ior definitions. Therefore, this importer is much simpler and very stable. The

ModelicaSource stereotype is applied to generated SysML blocks to refer their

behaviors to the original source codes, and specify which tool should be used to

generate FMUs from these SysML blocks. Currently, Dymola is the only tool sup-

ported by HybridSim. However, it is very easy to extend HybridSim to support

OpenModelica or other Modelica tools.

Support TinyOS. WSNs will play a fundamental role in future CPS, such as

Smart Buildings [46]. As TinyOS is the most popular operating system to develop

sensor applications, HybridSim supports TinyOS and its programming language,

nesC, for communication networks design. Similarly, HybridSim can transform and

import TinyOS components in two formats into SysML blocks: TinyOS FMUs and

nesC source codes.

As Modelica FMUs, TinyOS FMUs are transformed and imported by the

FMU-SysML Importer as well. However, the TinyOSFMU stereotype is applied to

their corresponding SysML blocks, which provides additional tags for co-simulation

setup in addition to the reference to the original FMU. To the best of our knowledge,

HybridSim is currently the only tool that can generate TinyOS FMUs. Considering

that design groups of communication systems may not be familiar with SysML and

IBM Rational Rhapsody, an independent version of TinyOS FMU Generator of

HybridSim is also available.

To import TinyOS components from nesC source codes, HybridSim takes ad-

vantage of the XML output feature of the nesC compiler, from where input and out-

put interfaces of TinyOS components are extracted. If a component does not have

43

any interface (i.e., it is a complete TinyOS application), the TinyOSSource stereo-

type is applied to its corresponding SysML block. Otherwise, TinyOSComponent

is applied.

Systems engineers can integrate a sensor network implementation into the

overall system in two ways from source codes. The easiest way is to select an exist-

ing SysML block tagged with TinyOSSource. The other way is to create a new

SysML block that is applied with TinyOSSource, and then specify a reference

to an executable binary file, or create an Internal Block Diagram for it. Systems

engineers can select and connect existing TinyOS components in a drag-and-drop

fashion in this diagram to specify its source code. This enables systems engineers to

develop simple sensor network applications for partial evaluation of overall systems

before real applications are finished. Note that HybridSim only has a limited support

for the second method, without interface compatibility checking for connections. In

addition, although HybridSim can make use of existing imported TinyOS compo-

nents, systems engineers cannot modify their source codes or create new TinyOS

components in HybridSim. This is reasonable because systems engineers are not

supposed to directly work with domain languages.

In order to exchange information with Modelica models, HybridSim provides a

simple mechanism that allows systems engineers to input data coming from Modelica

simulators into sensors, and vice verse. An example is shown in Fig. 3.3. To input

data to sensors on a mote, systems engineers just need to add input flow ports to

the SysML block (tagged with TinyOSSource) representing the application to be

run on that mote. The name of an input port must exactly be the type of the

44

target sensor (e.g., temperature, light, etc.). Currently, only scalar-valued sensors

are supported. To get data out of motes, output flow ports should be added to

their corresponding SysML blocks. The name of an output port must exactly be

the name of a variable declared with module-scope in some TinyOS module. The

TinyOSVariable stereotype should be applied to that port to specify in which

module that variable is declared.

3.4.3 FMI-based Co-simulation Toolchain

HybridSim adopts the FMI standard to co-simulate TinyOS and Modelica,

and synchronizes and exchanges information between their respective simulators by

calling their FMI-compatible API. The implementation details of the Modelica FMU

Generator, the TinyOS FMU Generator, the Configuration Generator and the FMI

Co-simulation Master are described as follows.

Modelica FMU Generator. If a SysML block is tagged with ModelicaFMU,

HybridSim just needs to forward the location of the corresponding FMU to the Con-

figuration Generator. If that block is tagged with ModelicaSource, HybridSim

calls Dymola to compile the source codes and generate an FMU.

TinyOS FMU Generator. SysML blocks tagged with TinyOSFMU are

processed similarly as blocks tagged with ModelicaFMU. For blocks tagged with

TinyOSSource, HybridSim needs to compile nesC source codes, prepare the TinyOS

Emulator, and compile the FMI Wrapper source codes.

To compile nesC source codes, HybridSim first checks how the TinyOS ap-

45

plication is created. If it is directly imported from TinyOS libraries, HybridSim

just needs to set up certain environment variables and read its associated Makefile

to compile it. Otherwise, if it is created in the second way as described above,

HybridSim will collect information about all the required TinyOS components and

generate a Makefile. The output of this step is a set of ELF (Executable and Linkable

Format) files, which will be loaded by the TinyOS Emulator.

The TinyOS Emulator is developed based on Avrora [42] in Java, which is

extended as follows. Firstly, the TinyOS Emulator provides interfaces to input

data into sensors from outside interactively. Secondly, the TinyOS Emulator can

extract runtime values of variables from TinyOS components. By processing the

ports tagged with TinyOSVariable, the TinyOS Emulator can infer the actual

variable names in ELF files, and their memory addresses when these ELF files are

loaded into RAM. Monitors are added to monitor these RAM addresses, which can

reconstruct the variable values when they are updated. These two extensions enable

the TinyOS Emulator to exchange data with a Modelica simulator. Finally, a new

synchronization mechanism is developed, which can synchronize all threads of sensor

motes, get information about the next system-wide event from local event queues,

and enable the FMI Co-simulation Master to control the size of each synchronization

step.

The FMI Wrapper is developed based on FMU-SDK [47] in C, which is ex-

tended with a more flexible mechanism to handle variable references. In addition,

the FMI Wrapper provides convenient interfaces to interactive with the TinyOS

Emulator through the Java Native Interface framework. Finally, the FMI Wrapper

46

can process the output of the Configuration Generator to generate modelDescrip-

tion.xml and compile all files into a stand-alone FMU with the TinyOS Emulator

included.

Configuration Generator. The main output of this module is two configu-

ration files for co-simulation. The first one is an Avrora configuration script, which

specifies a set of options for the TinyOS Emulator, sensor types for each mote, and

a set of variables whose values should be extracted and the TinyOS components in

which they are declared. The second one is a connection configuration file, which

specifies connections of the output and input ports of a TinyOS FMU and a Model-

ica FMU. This file is used by the FMI Co-simulation Master to exchange information

between the TinyOS Emulator and a Modelica simulator.

FMI Co-simulation Master. Fig. 3.2 describes the algorithm of the FMI

Co-simulation Master, which is developed based on PyFMI [48] in Python. The

master first parses the connection configuration file and records connections in two

hashtables. The key of an entry is an output port of the given FMU, and the value

is its corresponding input port of the other FMU. After the two FMU slaves have

been instantiated and initialized, the master begins to co-simulate them in steps.

In each step, the master first reads the values of output ports of the Modelica slave,

which are then forwarded to the TinyOS slave. Next, the step size δ is computed

as the minimum of the specified communication step size, and the two incremental

times of the next event in the TinyOS slave and in the Modelica slave, respectively.

Therefore, no interaction event is missed. Then the master stimulates the TinyOS

slave to emulate up to t+ δ. After that, the values of its output ports are forwarded

47

to the input ports of the Modelica slave, which is then stimulated to simulate up

to t + δ similarly. When the specified end time of co-simulation is reached, the

master terminates both slaves and releases the resource occupied by them. The co-

simulation results for both slaves are stored in Dymola format, which can be loaded

into Dymola for further analysis, or plotted in HybridSim directly.

Input: Two FMUs, stopTime, connSize, config.txt
Output: TOSResult.txt, MdlResult.txt

1: [TOSConn,MdlConn]← parse(config.txt);
2: TOSSlave← loadFMU(TinyOSApp.fmu);
3: MdlSlave← loadFMU(ModelicaSys.fmu);
4: TOSResult = newDymolaWriter(TOSSlave);
5: MdlResult = newDymolaWriter(MdlSlave);
6: TOSSlave.initialize(); MdlSlave.initialize();
7: t← 0;
8: while t < stopT ime do
9: values←MdlSlave.get(MdlConn.keys);

10: TOSSlave.set(MdlConn.values, values);
11: δ ← getStep(connSize, TOSSlave,MdlSlave);
12: TOSSlave.doStep(t, δ);
13: values← TOSSlave.get(TOSConn.keys);
14: MdlSlave.set(TOSConn.values, values);
15: MdlSlave.doStep(t, δ);
16: TOSResult.writePoint(); MdlResult.writePoint();
17: t← t+ δ;
18: end while
19: TOSSlave.terminate(); MdlSlave.terminate()
20: TOSSlave.free(); MdlSlave.free()

Figure 3.2: FMI Co-simulation Master

3.5 Case Study

In this section, we use a comprehensive hydronic heating system as the case

study to demonstrate the convenience and efficiency of HybridSim. Specifically, we

48

investigate the impacts of packet loss and sampling rate that are introduced by

wireless sensor networks on the heating system.

3.5.1 Modelica Model and TinyOS Application

Our Modelica model is developed based on an example provided by the Mod-

elica Buildings Library [44], which comprehensively models the hydronic heating

system for a building with energy storage and thermostatic radiator valves. Two

rooms on the same intermediate floor are modeled using a dynamic model for the

heat transfer through opaque constructions, with the same temperature above and

below them. They share one common wall and have two windows. Realistic weather

data traces from Chicago are fed into this model as the outside environment.

The hydronic heating system consists of a boiler, a storage tank and a radiator

with a thermostatic valve in each room. The supply water temperature setpoint is

reset based on the outside temperature. A three-way-valve mixes the water from the

tank with the water from the radiator return. The pump has a variable frequency

drive that controls the pump head. The building has a controlled fresh air supply

with a heat recovery ventilator to preheat the outside air. Each room has a leakage

model of the facade, through which the difference in air supply will flow if the supply

and exhaust air are unbalanced.

A finite state machine is used to control the boiler and its pump. They are

switched on when the temperature at the top of the tank is less than 1 Kelvin above

the setpoint temperature for the supply water of the radiator loop. The boiler

49

is switched on 10 seconds later than the pump. They are switched off when the

temperature at the bottom of the tank reaches 55 ◦C. The pump is switched off 10

seconds later than the boiler.

In this case study, we only care about the temperatures of the two rooms, and

the top and bottom of the tank, each of which is monitored by a temperature sensor.

Originally, their readings are directly fed into the controller without any delay or

loss. To investigate the impact of wireless sensor networks, the connections between

the sensors and the controller are deleted. Instead, their readings are provided to

four output ports respectively. Correspondingly, four input ports that are connected

to the controller are created to get data from outside.

The TinyOS application consists of a set of relay motes and four sensor motes

sampling the temperatures of the two rooms, and the top and bottom of the tank. In

addition, a sink (i.e., base station) is assigned to collect all their readings through

multi-hop communications. The Collection Tree Protocol [49] is selected as the

routing protocol, and the Rician fading channel model is applied in the TinyOS

Emulator.

Fig. 3.3 demonstrates a system configuration for one of our co-simulation sce-

narios. Four sensor motes (two on the left and two on the right) are created by

referring to an existing ELF file, which is created by the nesC compiler. The sink

and relay motes are created by referring to the Makefile for their source codes (the

ELF file is actually compiled from this source codes), while the hydronic heating

system model is imported from an existing Modelica FMU.

HybridSim first generates a configuration file for the TinyOS Emulator as

50

bdd [Package] Block Definition Diagrams [System_Configuration]

HydronicHeating
«Block,ModelicaFMU»

Tags

file:RhpString=HydronicHeating.fmu

TbotOut:float

TtopOut:float Troom2Out:float

Troom1Out:float

TbotIn:floatTtopIn:float
Troom2In:float Troom1In:float

TbotOut:float

TtopOut:float Troom2Out:float

Troom1Out:float

TbotIn:floatTtopIn:float
Troom2In:float Troom1In:float

RelayMote
«Block,TinyOSSource»

Tags

id:RhpString=0, 6, 7

isELF:RhpBoolean

location:RhpString=0: (), 6:(20, 10.5, 0), 7:(20, 21, 0)

source:RhpString=SmartBuildings/Makefile

Sink
«Block,TinyOSSource»

Tags

id:RhpString=1

isELF:RhpBoolean

location:RhpString=1:(20, 31.5, 0)

source:RhpString=SmartBuildings/Mak...

TtopOut:float

Troom2Out:float Troom1Out:float

TbotOut:floatTtopOut:float

Troom2Out:float Troom1Out:float

TbotOut:float

TankBotMote
«Block,TinyOSSource»

Tags

id:RhpString=5

isELF:RhpBoolean=True

location:RhpString=5:(22.5, 2.5, 0)

source:RhpString=SmartBuildings.elf

temperature:floattemperature:float

TankTopMote
«Block,TinyOSSource»

Tags

id:RhpString=4

isELF:RhpBoolean=True

location:RhpString=4:(20, 0, 0)

source:RhpString=SmartBuildings.elf

temperature:floattemperature:float

Room1Mote
«Block,TinyOSSource»

Tags

id:RhpString=2

isELF:RhpBoolean=True

location:RhpString=2:(12.5, 7, 0)

source:RhpString=SmartBuildings.elf

temperature:floattemperature:float

Room2Mote
«Block,TinyOSSource»

Tags

id:RhpString=3

isELF:RhpBoolean=True

location:RhpString=3:(15, 2.5, 0)

source:RhpString=SmartBuildings.elf

temperature:floattemperature:float

Figure 3.3: System Configuration

shown in Fig. 3.4. The topology file is generated by HybridSim based on the ID and

location of each mote as specified in Fig. 3.3. Each parameter is assigned a unique

reference number, which is required by the FMI standard. The name of an output

parameter is N〈id〉 〈component〉 〈outPort〉, while that of an input parameter

is N〈id〉 〈inPort〉. This file is also parsed to generate the TinyOS FMU. The

corresponding configuration for co-simulation setup is shown in Fig. 3.5.

options for the Avrora emulator
options = -nodecount=8 -topology-file=top.txt ... SmartBuildings.elf
direction refNum paramName initialValue
output 915 N1_SmartBuildingsC__Troom1Out 20
output 925 N1_SmartBuildingsC__Troom2Out 20
output 935 N1_SmartBuildingsC__TtopOut 20
output 945 N1_SmartBuildingsC__TbotOut 20
input 715 N2_temperature 20
input 725 N3_temperature 20
input 735 N4_temperature 20
input 745 N5_temperature 20

Figure 3.4: TinyOS Emulator Configuration

51

Direction: output = input
HH: HydronicHeating, SB: SmartBuildings
Abbreviated from the original file
HH->TtopOut = SB->N4_temperature
HH->TbotOut = SB->N5_temperature
HH->Troom1Out = SB->N2_temperature
HH->Troom2Out = SB->N3_temperature
SB->N1_SmartBuildingsC__TtopOut = HH->TtopIn
SB->N1_SmartBuildingsC__TbotOut = HH->TbotIn
SB->N1_SmartBuildingsC__Troom1Out = HH->Troom1In
SB->N1_SmartBuildingsC__Troom2Out = HH->Troom2In

Figure 3.5: Co-simulation Configuration

3.5.2 Co-simulation Results

We first investigate the impact of sampling rate of sensor motes by simulating

the system for one day. The communication step size for the TinyOS slave and the

Modelica slave to exchange data and synchronize with each other is one second.

Fig. 3.6 shows the simulation results when the sampling period is 10 seconds and 60

seconds, respectively. The four sensor motes locate within one-hop neighborhood of

the sink, and no background traffic is considered. The simulation result of the orig-

inal Modelica model in which all sensor readings are fed into the controller directly

is used as the reference. As we can see, when the sampling period is 10 seconds, its

impact is imperceptible. If the sampling period is increased to 60 seconds, there is

a little variation, but its result is still very close to the reference. This is reasonable

because temperature usually changes slowly. This indicates that wireless sensor

networks can be used in some CPS to reduce deployment complexity and costs.

Especially for slow response systems, such as our hydronic heating system, low sen-

sor duty cycles can still guarantee acceptable system performance while increasing

sensor lifetime significantly.

52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

16

17

18

19

20

21

T
e
m

p
e
ra

tu
re

 (
◦
C

)
Reference

Hop=1,Period=10s

Hop=1,Period=60s

(a) Room1 Temperature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

T
e
m

p
e
ra

tu
re

 (
◦
C

)

Reference

Hop=1,Period=10s

Hop=1,Period=60s

(b) Room2 Temperature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

20

30

40

50

60

70

T
e
m

p
e
ra

tu
re

 (
◦
C

)

Reference

Hop=1,Period=10s

Hop=1,Period=60s

(c) Temperature of Tank Top

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

20

25

30

35

40

45

50

55

60

65

T
e
m

p
e
ra

tu
re

 (
◦
C

)

Reference

Hop=1,Period=10s

Hop=1,Period=60s

(d) Temperature of Tank Bottom

Figure 3.6: Impact of Sampling Rates

Smart Buildings, especially commercial buildings, are not clean environments

for sensor communications, which usually suffer from heavy background traffic in-

terference, such as WiFi traffic and Bluetooth traffic. In this scenario, we simulate

the hydronic heating system under heavy WiFi traffic interference. Specifically, we

feed a real-world noise trace into the TinyOS Emulator, which is measured in the

Meyer Library at Stanford University with a large HTTP download and other WiFi

traffic going-on [50]. The simulation results for different network sizes are shown in

Fig. 3.7, which indicate that it is impractical to deploy a sensor network with more

than 3 hops from a sensor mote to the sink in our case. Note that we only analyze

the simulation results directly in HybridSim in this case study, which can also be

53

processed by exiting tools for Avrora emulator and Modelica simulator.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

16

17

18

19

20

21

22

T
e
m

p
e
ra

tu
re

 (
◦
C

)

Reference

Hop=1

Hop=2

Hop=3

Hop=4

(a) Room1 Temperature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (H)

17

18

19

20

21

22

23

T
e
m

p
e
ra

tu
re

 (
◦
C

)

Reference

Hop=1

Hop=2

Hop=3

Hop=4

(b) Room2 Temperature

Figure 3.7: Impact of Network Size

Table 3.1 shows the run-time efficiency of HybridSim. It can be seen that the

performance of HybridSim depends on the network complexity. Actually, the effi-

ciency is dominated by TinyOS Emulator that provides cycle-accurate instruction-

level emulation.

54

Table 3.1: Run-time Efficiency (Simulation Time = 24 Hours)

Scenario # of Nodes Runtime (H)

1 Hop 6 4.54

2 Hop 8 6.18

3 Hop 11 9.04

4 Hop 14 11.24

3.6 Discussion

In this section, we discuss some observations, limits and future work for

HybridSim. Communication step sizes impact co-simulation overhead and accu-

racy. HybridSim adopts variable communication step sizes based on the time of the

next event in both slaves to provide fine-grained interactions between them, so that

no event potentially requiring interactions is missed. However, in some scenarios,

such a big overhead is not necessary. For example, in our case study, the TinyOS

slave and the Modelica slave only interact at sampling points, and the sampling

period is much larger than variable communication steps. If communication step

sizes are fixed to a reasonable value (e.g., 1 second), the overhead imposed by the

co-simulation master can be reduced significantly, while a good accuracy is still

guaranteed. Systems engineers need to study the trade-off between overhead and

accuracy depending on their system characteristics.

HybridSim can be extended with more interesting features. Firstly, the ns-

3 network simulator [51] can be integrated into HybridSim. Since ns-3 is a more

55

general discrete-event simulator for both wireless and wired networks, and preferable

for fast prototyping of network designs, this feature will make HybridSim more

interesting to a larger community. An FMI wrapper for ns-3 should be developed,

similar to our FMI wrapper for the Avrora emulator. In addition, it will be very

interesting to integrate Matlab/Simulink into HybridSim as well. For this feature,

an FMU generator for Matlab/Simulink models is desired.

Another future work is to enhance the coupling between HybridSim and IBM

Rational Rhapsody, which currently only serves as the environment for the FMI

Co-simulation Master. We are interested in integrating the Rhapsody simulator

into HybridSim, which can generate simulation source codes for SysML Activity

Diagrams and Statechart Diagrams. With this feature, HybridSim will become a

much better design framework and toolchain for model-based systems engineering.

Another interesting topic is to support distributed co-simulations, which is also

specified in the FMI standard and is more suitable for large complex systems.

3.7 Summary

In this chapter, we designed and implemented a modeling and co-simulation

toolchain, called HybridSim, for Cyber-Physical Systems. HybridSim can transform

and import existing TinyOS components and Modelica models into SysML, so that

systems engineers can design and simulate overall systems in a uniform framework.

Based on the FMI standard, HybridSim provides a robust and flexible mechanism to

exchange data and synchronize the TinyOS Emulator and the Modelica simulator.

56

Therefore, HybridSim can leverage the advantage of their respective professional

emulator and simulator, and investigate complex cyber-physical interactions. In

addition, HybridSim enables domain engineering groups to work relatively indepen-

dently, while facilitating systems engineers to design and evaluate overall systems

by using outputs from domain groups. A comprehensive case study is discussed to

illustrate the convenience and efficiency of HybridSim.

57

Chapter 4

Reduce System Analysis Complexity

4.1 Introduction

As systems engineers, we are intimately familiar with using graphical models

to describe systems. However, these graphical models are non-unique and there

is usually a wide range of behaviorally equivalent ways to model the same prob-

lem. One successful application of graphical models from a different community is

Bayesian networks (see [52] for a review). In this chapter, we take some of the math-

ematical analysis of the graphical models of Bayesian networks and translate it into

terms that are more familiar to systems engineers. In a systems oriented fashion, we

may think of the Bayesian network as being a subclass of the more abstract class of

commutative semirings, which has many other subclasses. As shown in Fig. 4.1, one

particularly interesting subclass from the perspective of systems engineering is the

Tropical semiring. It encodes optimization over structures where the overall cost

function is the sum of costs over individual components.

The basic essence of each of these cases is to solve a problem described over

a network of components where decisions in one component may affect the choices

available in another component and there is a global objective that can only be

understood by examining the complete space of decisions. Examples of this class of

problem include vertex cover, independent set, dominating set, graph k-colorability,

58

Figure 4.1: Interpretation of commutative semirings by subclasses

hamiltonian circuit, network reliability [53], and dynamic programming [54]. This

class of problems is computationally challenging in general and embodies the curse

of dimensionality. Using structural decomposition techniques of systems engineering

is one approach towards solving these problems. However, there are very few tools

available for doing this systematically. We present a tool that achieves this.

It turns out that complexity is exponential in treewidth and linear in problem

size. The intuition behind this result is that problems on graphs are difficult to

solve due to the presence of loops. Removing the loops by multiplexing variables

(aggregating them into objects) can lead to tree decompositions of graph problems.

Once the problem is in the form of a tree, then summary propagation is a viable

technique for solving the problems. Multiplexing variables creates local complexity

roughly in proportion to the number of variables tied together. More precisely, if

we consider a discrete context, the space that needs to be explored is the product of

the number of discretization bins, i.e., if there are N variables with D quantization

levels each in an aggregate object, then the complexity of analyzing that object

59

in DN . The complexity of the overall system is the summation of the complexity

of analyzing each system independently. This sum is dominated by the largest

exponent in the system, which is precisely what the treewidth measures.

Our Contribution. In [55], we presented some theory of tree decomposition,

which is summarized in Appendix A. This chapter describes a prototype that we

have been working on to make the theory usable and several examples of problems

solved using this tool. The main contribution of this chapter is an interactive tool

for measuring treewidth of systems. A byproduct of this measurement is a system

tree decomposition algorithm that can be used for analysis. We work out many

examples using the tool and describe the algorithm used.

4.2 Related Work

Guenov [56] estimates the complexity to aid high-level designers in comparing

alternatives during pre-competitive studies or during the architectural design process

of composition systems. This approach is based on Boltzmann’s entropy concept

to measure the distribution of functional couplings in the system’s decomposition.

However, no mechanism is proposed to reduce the complexity.

Lu et al. [57] considered that the “overall difficulty” of an engineering system

design consists of “inborn complication” due to custom requirements and external

constraints as well as “acquired complexity” associated with uncertainty in satis-

fying the functional requirements caused by design decisions. They introduced the

Axiomatic Design Theory and the Design-centric Complexity Theory to guide the

60

creation and improvement of complex engineering systems. However, they cannot

provide instant feedback on the impact of design decisions on the complexity.

Clarke [58] presented a framework to reduce the complexity of temporal logic

model checking in systems composed of many parallel processes by using additional

interface processes to model the environment for a component. These interface

processes are typically much simpler than the full environment of the component.

By composing a component with its interface processes and then checking properties

of this composition, one can guarantee that these properties will be preserved at the

global level. However, this partitioning is ad-hoc and depends heavily on rules of

thumb and the expertise of systems engineers.

A large number of model checking algorithms are based on the symbolic model

checking method, which was first proposed in [59]. This method avoids building a

state graph by using Boolean formulas to represent sets and relations. A variety of

properties characterized by least and greatest fixed points can be verified purely by

manipulations of these formulas using Ordered Binary Decision Diagrams. Instead

of enumerating reachable states one at a time, the state space is traversed much

more efficiently by considering large numbers of states at a single step. Such state

space traversal is based on representations of state sets and transition relations as

formulas, binary decision diagrams or other related data structures as in [60]. Several

tools that can reduce the complexity of formal verification based on symbolic model-

checking and homomorphic reduction are discussed in [61]. While these tools can

reduce the complexity of formal verification efficiently, they cannot provide guidance

on how to improve the system designs to facilitate formal verification further.

61

4.3 Tool Development and Case Studies

4.3.1 Tool Development

To facilitate the usage and enhance the understanding of the tree search al-

gorithm, a user-friendly GUI was developed in Java, which enables users to control

the execution of the algorithm interactively and view the results graphically. The

GUI is shown in Fig. 4.2, painting the relationship graph for the parameters in our

case study, which will be explained later.

Figure 4.2: GUI and the generated relationship graph for the case study

Function definitions can be loaded from a pre-saved file, or input to the table

in the upper left corner, by specifying their names and parameters. Then they can

be checked and parsed to the data structures used in the tree search algorithm. If

all functions are defined correctly, the tree search algorithm will process the chordal

62

vertices [55] automatically. The algorithm control area in the lower left corner will

provide the list of unprocessed parameters and the parameters that have already

been processed. Users can select an unprocessed parameter to continue the algorithm

and the resulting treewidth will be calculated and updated incrementally. Users

can also roll back the algorithm to its previous state and make a different choice,

potentially with a smaller treewidth.

An observer thread is running in the background to update the relationship

graph of the parameters and the resulted tree of cliques periodically, which are

shown in the right tabbed panel. Users can also update them instantly by clicking

the Refresh button. Based on the characteristics of the graph and the tree, users

can select different layout algorithms to place the vertices automatically to get a

better view, or arrange them manually. The Java Universal Network/Graph (JUNG)

Framework1 is used for data visualization.

4.3.2 Wireless Sensor Networks

We consider the trade-off analysis between energy efficiency and transmission

reliability in wireless sensor networks, where the IEEE 802.15.4 standard is applied

as the media access control protocol. For simplicity, we only provide high-level

abstract functions here, emphasizing the abstract relationships between the param-

eters in each function. More details are available in [62]. The following functions

are used in this trade-off analysis, in which the blue parameters are their outputs:

1http://jung.sourceforge.net/index.html

63

• Tradeoff(score, energy, rel) = 0. This function specifies the trade-off rules

between energy efficiency and transmission reliability.

• Reliability(rel, dist) = 0. This function calculates the reliability based

on the static distribution of the Markov chain model in [Wang et al., 2011],

which models the peer-to-peer communications for time-critical applications

in wireless sensor networks using the enhanced IEEE 802.15.4 protocol.

• StaticDist(dist, config) = 0. This function computes the static distribu-

tion, based on the configuration information specified for the protocol.

• Config(config, retry, waitRound, lambda) = 0. This function pro-

cesses the protocol parameters, such as the maximum retransmission times

and the maximum waiting rounds, to generate the configuration information.

Lambda(lambda, constant) = 0. This function is defined to simplify the Con-

fig function, by processing other protocol-specific constants and feeding the

results to the Config function.

• Energy(energy, config, pGTS, pCAP) = 0. This function calculates the

expected energy consumption for each transmission, based on the configuration

information, and the expected energy consumptions in the contention-based

access period (CAP) and in the guranteed time-slot period (GTS).

• PGTS(pGTS, config , pIdle, pRcv, pTx) = 0. This function computes

the expected energy consumption in the GTS period, based on the transmis-

sion power, receiving power, the power in the idle state and the configuration

64

information.

• PCAP(pCAP, pIdle, pRcv, pTx, per) = 0. This function is very similar

to the PGTS function, except that the packet error ratio (PER) is considered

here.

• PER(per, size) = 0. This function simply calculates the PERs based on

packet sizes.

Figure 4.3: The generated tree of cliques

The generated tree of cliques is shown in Fig. 4.3, in which each vertex stands

for a clique in the relationship graph of parameters, and the edge direction represents

the reverse order of information propagation. When a vertex has received the infor-

mation from all its children, it begins to calculate the parameters in its clique locally

and propagate the result back to its parent. Now suppose every parameter can have

10 different values (continuous parameters can be sampled discretely). Then the

65

complexity can be reduced significantly to: 102 ∗ 2 + 103 ∗ 3 + 104 ∗ 2 + 105 + 106 =

1123200, compared to 1016 in the original computation.

4.3.3 Quadrotor Example

Fig. 4.4 shows the relationships between variables in a quadrotor that is de-

signed to fly out to a specified destination, land, perch and take observations. It

uses a parametric diagram, which is exactly equivalent to a factor graph, in being

a bipartite graph that has variable nodes in one partition and function nodes in

the other partition. Consider the constraints shown in this diagram. The Tradeoff

constraint reflects the fact that we are interested in the relationship between cost

and range of the quadrotor. As indicated by the Cost constraint, the cost value is

determined entirely, in this model, by the choice of payload and battery. The weight

is also determined by these two variables, as shown by the Weight constraint. The

range of the quadrotor, as indicated by the Range constraint, is determined by

the choice of battery and the power requirements expressed as current. The flight

current needed is determined by the weight of the quadrotor, as indicated by the

Current constraint. Finally, there is a perch time variable that is solely determined

by the payload as shown in the PerchTime constraint.

The fact that it is a factor graph means that summary propagation can be

used as a solution algorithm with the correct interpretation of the summation and

multiplication operations. This particular parametric diagram reflects a query on

the tradeoff between range and cost. The constraint Tradeoff is a query in this

66

case and modifies the structure of the parametric diagram, which in turn has an

impact on the resulting tree decomposition. In working with this system of tree

decompositions, this dependency of structure on the query occurs often. If a query

relates two variables that were previously unrelated, then a link must be added to

the graph reflecting this added coupling.

Figure 4.4: Parametric diagram for high level tradeoffs of a quadrotor

The different functions specify feasible regions of values for the various param-

eters, but there is a locality structure to this specification because certain variables

are not directly related. For example, the current needed to fly the quadrotor de-

pends on the weight (as indicated in the Current constraint, but these variables are

not directly connected to the cost). Weight depends on the battery and payload

chosen, which then directly contribute to the cost.

We would like to determine all feasible configurations with respect to range

and cost in our trade study. We shall assume that every parameter takes on a

discrete set of values, which could come from discretization. Naively, there are 7

67

variables in this system. Evaluating over all of them simultaneously using brute

force could involve D7 evaluations, where D is the number of discretization levels.

Fig. 4.5a shows the input to the tool representing the relationships between

the variables. Compare this to Fig. 4.4. The name column contains exactly en-

tries corresponding to the constraints of the parametric diagram and the parameter

column contains the arguments to those constraints.

Fig. 4.5b shows the initial topology of the quadrotor (the functional depen-

dence graph in the language of [55]), which is extracted from the relationships in

Fig. 4.5a. Note that this graph is not chordal [55], which means that the designer

will need to choose additional variable couplings for the system to decompose.

At this point, the designer has a decision to make because the only simplical

node is PerchTime, which is eliminated by the algorithm. Elimination on the rest

of the nodes creates fillins. To make this decision, the designer thinks about which

variables most naturally fit together with respect to the fillins created. Since the

relationship between weight and range is the most intuitive, the next elimination is

FlightCurrent, which creates a fillin between weight and range. This is shown in

Fig. 4.5c. One more fillin is neeed to complete the system decomposition.

A link was added between weight and range, coupling these two variables

within the analysis even though there is no immediate equation describing this re-

lationship. This is an artifact of performing the tree decomposition of the system.

Of the remaining variables, the next most intuitive relationship is the one between

payload and range, so we eliminate cost next, which requires payload and range to

be coupled. Fig. 4.5d shows the result. This system is chordal and has a tree de-

68

composition. The tree structure consists of three tetrahedrons that are stacked next

to each other and a tail consisting of the PerchTime, which is only loosely coupled

with the rest of the system. The tool produces Fig. 4.5e as the tree decomposition

of the system using these hints from the designer.

(a) Input to the tool (b) Functional dependence graph (initial)

(c) Functional dependence graph

(with additional fillins)

(d) Chordal transformation (e) Join tree

Figure 4.5: Quadrotor example

The last step in the analysis described in [55] is to map the original constraints

and functions back to the resulting join tree. The most natural language for express-

69

ing this is a block diagram, as shown in Fig. 4.6. The associations between blocks

are labeled according to the shared variables. There is always a way to assign the

constraints back to the aggregations in such a way that every constraint has all its

parameters in its local block. Though mapping is not unique in general, it happens

that the assignment of the constraints back to the structure is unique in this case.

Figure 4.6: The completed Block Diagram of the tree decomposition of the quadrotor

To analyze the system shown in Fig. 4.6, we use a very simplistic algorithm

using sets. Each block, Perch, Metrics, Weight, and Range, can be thought of as

describing a set of feasible points based on the constraints. The overall space of the

system can be described as the intersection of the spaces described in the blocks. To

apply summary propagation, we use set intersection as the multiplication operation

and projection as the summation operation. Since this is a trade study, our goal is

to evaluate the Metrics block. Fig. 4.7 depicts the general strategy of evaluation.

Using the decomposition of Fig. 4.6 reduces the complexity of analyzing the system

70

from D7 down to 3D4 + D2. This is a significant reduction. Suppose, for example,

we use a grid of 20 points. 207 = 1.28 ∗ 109 while 3 ∗ 204 + 202 = 480, 400, which is

orders of magnitude fewer samples.

Now we summarize how systems engineers can use our tool to improve their

designs. Firstly, a system engineer transforms the constraints (i.e., functions) in

the SysML Parametric Diagrams and inputs them into our tool as in Fig. 4.5a.

If the generated functional dependence graph is not chordal (e.g., Fig. 4.5b), the

engineer needs to interact with our tool to help it transform the initial functional

dependence graph into a chordal graph, which is essential for our algorithm. The

basic operation is to add more fillins. However, the transformation is not unique.

Different set of added fillins can result in different expected complexity of system

analysis, which is dominated by the size of the maximum clique in the chordal

graph. The engineer can try different options, and if the current selection induces a

large complexity, the engineer can roll back the current graph to its previous status

and continue investigation with other options. Therefore, our tool can expose a

sequence of design choices to systems engineers to provide instant feedback about

the influence of a design decision on the complexity of system analysis.

With a chordal graph, our tool will generate a join tree, based on which the

engineer can create a SysML Block Diagram by assigning constraints to blocks. This

Block Diagram is essentially a factor join tree, in which blocks are the factor nodes,

and the intersection of parameters in two blocks is the variable node between them,

as shown in Fig. 4.6. Based on this Block Diagram, the engineer can revise the orig-

inal SysML Parametric Diagrams accordingly, such that constrains and parameters

71

Figure 4.7: Summary propagation applied to the block diagram of Fig. 4.6. We treat

each of the blocks as sets. The overall system is understood as the intersection of

all the sets. We can use a generalized version of summary propagation to efficiently

run queries on this structure

in the same block can be grouped together locally. Then the engineer can analyze

the system using summary propagation as shown in Fig. 4.7. Therefore, our tool

can provide guidance for systems engineers to improve their designs and analyze

their systems.

Other examples are available in [63].

4.4 Discussion

One interesting property of the technique is how counterintuitive these join

trees are from the perspective of creating block diagrams. However, looking at

Fig. 4.5d reveals an interesting relationship between the geometry of the chordal

decomposition and the resulting block structure. The Battery and Range variables

are shared by the three blocks. It is apparent in the geometry that these two

72

variables form an axis which connects the three tetrahedrons and thus Battery and

Range are shared variables over three of the blocks in the block diagram. We are

not accustomed, as engineers to expressing decompositions using shared variables,

although it is apparent that this is natural because the constraint structure has a

both locality and a dependence structure. Having a tool for performing this analysis

certainly helps in finding the tree decompositions.

As shown through the examples, this is a very general technique that can be

applied to many domains. In the examples of this chapter, the sets are static in

nature. In [64], we show how the same technique of composition and projection can

help in the formal analysis of dynamic Bayesian networks.

4.5 Summary

We have presented a tool that uses an interactive method to compute junction

trees and show how the technique can be applied in structuring the analysis of broad

range of systems. Theoretically, problems that can be encoded as commutative

semirings are amenable to analysis by this technique, but it is not limited to this

domain. We believe this tool and graphical decomposition technique could be of use

to many systems engineers. It is complexity aware and generates decompositions

that are amenable to localized computational analysis.

73

Part II

Flash-based Data Storage and Incremental ε-Approximate Querying

74

Chapter 5

Distributed Database System for Wireless Sensor Networks

In the second part of the dissertation, we describe the design and implementa-

tion of an energy-efficient distributed database system that enables sensors to store

readings in situ in local flash memories and supports incremental ε-approximate

querying. This system can greatly simplify the development of sensor network ap-

plications by abstracting data collection and processing. This system is integrated

into the Service Model Library in WSNDesign.

In this chapter, we introduce our main contributions in the second part of

the dissertation, formulate the problem, and describe our design considerations.

In Chapter 6, we present the detailed design of HybridStore, including the index

structure and query processing algorithm. HybridDB is described in Chapter 7,

including the incremental query processing algorithm and adaptive error distribution

mechanism.

5.1 Introduction

One of the main challenges in wireless sensor networks is the storage and re-

trieval of sensor data. Traditional centralized data acquisition techniques (e.g., [65])

suffer from large energy consumption, as all the readings are transmitted to the

sink. In long-term deployments, it is preferable to store a large number of readings

75

in situ and transmit a small subset only when requested [8, 9]. This framework

becomes practically possible with the new generation NAND flash memories that

has dramatically altered the capacity and energy-efficiency of local storage. Recent

studies show that NAND flash memories is at least two orders of magnitude cheaper

than communication and comparable in cost to computation [10]. Therefore, extend-

ing NAND flash memories to off-the-shelf low-end sensor platforms can potentially

improve in-network processing and energy-efficiency substantially.

However, due to the fundamentally different read and write semantics of

NAND flash memories, and tightly constrained resource on sensor platforms, de-

signing an efficient resource-aware data management system for flash-based sensor

devices is a very challenging task. Existing techniques, such as LA-Tree [11], µ-

Tree [12], B-File [13], FlashDB [14] and PBFilter [15], are not applicable to sensor

platforms due to their large RAM footprints. Capsule [66] provides a stream-index

object to store data stream efficiently, however, with very limited supports for gen-

eral queries. Other works, such as TL-Tree [16] and FlashLogger [17], can only

process simple time-based queries. More importantly, however, none of existing

works take advantage of both the on-board random-accessible NOR flash memo-

ries that is quite suitable for index structures available in current sensor platforms,

and external economical energy-efficient NAND flash memories with high-capacity,

which is ideal for massive data storage.

In the network level, data approximation is a popular technique to support

in-network energy-efficient query processing to retrieve multi-dimensional readings

from multiple sensor motes. Traditional data approximation methods [18–20, 67]

76

require users to specify fixed error bounds to address the trade-off between result

accuracy and energy efficiency of queries. However, in many real-world scenarios,

it is unfeasible and inefficient for users to determine in advance what error bounds

can lead to affordable cost or acceptable results. On one hand, if an error bound

is too tight, much energy will be wasted to retrieve more readings than needed,

resulting in an over-qualified result. On the other hand, if the error bound is not

tight enough, the set of readings returned by the query cannot produce a satisfactory

result. In this case, the user needs to re-issue this query with a tighter error bound.

Traditional schemes will treat it as an independent new query, and thus all readings

that have been retrieved by the previous query will be transmitted again, resulting

in much energy waste as well. To handle these problems, we need an incremental

approximate querying mechanism.

In the second of part of the dissertation, we design and implement HybridDB,

an efficient light-weight distributed database system for flash-based storage-centric

wireless sensor networks. HybridDB exploits a novel efficient resource-aware data

storage system, called HybridStore, which exploits both the on-board NOR flash

and external NAND flash to store and query readings in situ on each sensor mote.

In order to completely avoid expensive in-place updates and out-of-place writes to

existing NAND pages, the index structure is created and updated in the NOR flash.

To handle the problem that the capacity of NOR flash on low-end sensor platforms

is very limited (512KB to 1MB), HybridStore divides a sensor data stream into

segments, the index of which can be stored in one or multiple erase blocks in the

NOR flash. Since the NAND flash is much faster and more energy-efficient for

77

reading, the index of each segment is copied to the NAND flash after the NOR

segment is full. Therefore, all NAND pages used by HybridStore are fully occupied

and written in a purely sequential fashion, which means it can support both raw

NAND flash chips and FTL-equipped flash packages efficiently.

HybridStore can process typical joint queries involving both time windows

and key value ranges as selection predicates extremely efficiently even on large-scale

datasets, which sharply distinguishes HybridStore from existing works. The key

technique is a novel index structure that consists of the inter-segment skip list, and

the in-segment β-Tree and Bloom filter of each segment. The inter-segment skip

list can locate the desired segments within the time window of a query efficiently.

The β-Tree of a segment exploits a simple prediction-based method to split each

node in the tree adaptively to generate a rather balanced tree, even when key values

are very unevenly distributed. The Bloom filter of a segment facilitates value-based

equality queries inside that segment, which can detect the existence of a given key

value efficiently. Our index can eliminate a substantial number of unnecessary page

reads when processing joint queries.

In addition, HybridStore can trivially support time-based data aging without

any extra overhead, because no garbage collection mechanism is needed here, which

can induce extensive page reads and writes to move valid pages within the reclaimed

erase blocks to new locations. Finally, HybridStore provides a simple and efficient

failure recovery mechanism that can guarantee the highest level of data consistency

without the need for any checkpoint.

Based on HybridStore, HybridDB provides the support for incremental ε-

78

approximate querying that enables clients to retrieve a just-sufficient accuracy level

of sensor data by issuing sub-queries with decreasing error bounds. Unlike tra-

ditional approximate querying methods, sensor readings that have been already

retrieved by previous sub-queries with looser error bounds will not be transmitted

again. HybridDB processes a sub-query with maximum absolute (L∞-norm) error

bound εi (εi ≥ 0) with the help of a proxy in two steps. Firstly, the proxy for-

wards the sub-query to the sensors but with error bound εi,1 ≤ εi. Each sensor

processes this sub-query, retrieves the incremental set of readings from HybridStore

by applying temporal approximate locally with error bound εi,1, and transmits them

to the proxy. Secondly, after the proxy has received readings from all sensors, it

applies spatial approximate on them with error bound εi,2, and returns the incre-

mental set of readings to the client. We prove that the L∞-norm error of the set

of readings received by the client is guaranteed to be bounded by εi,1 + εi,2. Thus,

if HybridDB chooses εi,2 = εi − εi,1, the overall error bound of the sub-query from

the client is satisfied. Traditional proxies are pre-deployed more powerful gateways.

However, as smart phones have become ubiquitous and powerful mobile computing

platforms [68,69], we exploit them as temporary proxies.

For the following sub-query, if its error bound εi+1 (εi+1 < εi) satisfies εi+1 ≥

εi,1, the proxy can process it directly using the readings that have been retrieved

in previous sub-queries, without retrieving any new readings from sensors. The

incremental set of readings that can improve the error bound of spatial approximate

from εi,2 to εi+1 − εi,1 will be returned to the client directly. Therefore, for each

sub-query, the value of εi,1 decides the trade-offs of energy consumption between

79

sensor motes and the proxy, and of response times between the current sub-query

and the following sub-queries. Smaller εi,1 means more readings must be retrieved

from sensors, and thus larger response time for the current sub-query. However, the

proxy may be able to satisfy the error bounds of following sub-queries using only

the readings buffered locally with higher probability, and thus reduce their response

times significantly. To balance these trade-offs, HybridDB adopts an adaptive error

distribution mechanism between εi,1 and εi,2, based on the parameters of each sub-

query and the distribution of sensor readings.

Our implementation of HybridDB in TinyOS 2.1 consumes approximately

22.5KB ROM and 3.76KB RAM, which is well below the limit of most constrained

sensor platforms. We conduct both simulations with a large-scale real-world dataset

and testbed experiments to investigate the performance of HybridDB. Our evalu-

ation results demonstrate that HybridDB can process ε-incremental approximate

queries with both time windows and value ranges as selection predicates efficiently

and balance the trade-offs effectively.

5.2 Related Work

In this section, we first review existing works on flash-based storage systems,

and then discuss prior approximate data retrieval techniques.

80

5.2.1 Flash-based Storage Systems

A large number of flash-based storage systems have been proposed in the last

few years, for both resource-constrained embedded systems and high performance

platforms. The energy efficiency of currently available flash-based storage options

for sensor platforms is comprehensively evaluated in [10], which showed that NAND

flash is at least two orders of magnitude cheaper than communication and compara-

ble in cost to computation. Their results introduced a new dimension in traditional

computation-communication trade-offs and a promising option for the design of

energy-efficient sensor networks and data-centric applications. Later, they proposed

Capsule [66], a log-structured object storage abstraction for flash-based sensor plat-

forms. Capsule provides a programming-oriented framework consisting of commonly

used storage objects such as streams, files, arrays, queues and lists to facilitate the

development of storage-centric sensor network applications. Another generic flash-

based file system is presented in [70], which consumes vary small RAM resource

and provides a POSIX-compatible programming interface to hide the complexity of

various flash memory operations. However, none of these works can support effi-

cient data retrieval and query processing on historical information, for which various

challenges and querying capability requirements are discussed in [8].

FlashDB [14] is a self-tuning B+-tree based index that dynamically adapts

its storage structure to the mix of reads and writes workload. However, its RAM

footprint increases fast as the number of readings increases, which makes it only suit-

able for gateways. FlashLogger [17] incorporates a suite of compression algorithms

81

suitable for progressively compressing time series scalar, audio, and image data to

provide data logging service with amnesic compression in a flash-efficient manner.

However, it can only support time-range queries. The interplay between RAM and

flash memory is explored in [71], which proposed a memory-adaptive storage system.

Although they have compared a partition-based index with a global index, they did

not investigate how to take advantage of the partition-based index and organize par-

titions efficiently. As a result, the RAM footprint of their approach is large because

the per-partition B-tree index, interval table, and the last page of each interval’s

list must be maintained in RAM. TL-Tree [16] is designed to minimize out-of-place

writes to NAND flash by making use of program flash memory on sensor platforms,

which complicates the storage management at the risk of messing up the installed

program. Besides, TL-Tree only supports time-range queries as well.

The most related works are Antelope [1] and MicroHash [9]. Antelope is a

light-weight database management system for low-end sensor platforms based on the

Coffee file system [70], which enables run-time creation and deletion of databases

and indexes. However, its main index for value-based queries, MaxHeap, requires

expensive byte-addressable random writes in flash. Therefore, Antelope is more

suitable for NOR flash, which limits its performance because NOR flash is much

slower and more energy-consuming compared to NAND flash. In addition, it can

only retrieve discrete values in value-based range queries. MicroHash is an effi-

cient index structure for NAND flash-based sensor devices, supporting value-based

equality queries and time-based range queries separately. However, it suffers from

out-of-place writes to existing pages, resulting in long chains of partially occupied

82

pages. They alleviated this problem by combining multiple such pages into a fully

occupied page, which induces extensive page reads and writes during insertions.

More importantly, neither Antelope nor MicroHash can support joint queries in-

volving both time windows and value ranges as selection predicates efficiently. That

means, even though a query just wants to search readings within a certain value

range in a small time window, they still needs to traverse the whole global index.

Other works designed flash-based storage systems for high performance plat-

forms to overcome the access bottlenecks of hard disks. B-File [13] is designed to

efficiently maintain a large sample in a flash memory and query them for a subsample

of an arbitrary size. They also investigated the performance of sequential, random

and semi-random writes on FTL-equipped flash packages. LA-Tree [11] minimizes

accesses to flash by performing update operations in a lazy manner using cascaded

buffers to amortize the cost of node reads and writes. The buffer sizes are dynam-

ically adapted to workload using an online algorithm. PBFilter [15] organizes the

index structure in a purely sequential way using two principles called summariza-

tion and partitioning based on Bloom filters to lookup keys efficiently. µ-Tree [12]

minimizes the number of cascaded flash page writes when a leaf node is updated by

putting together all the nodes along the path from the root to the leaf into a single

flash page. SkimpyStash [72] uses a hash table directory in RAM to index key-value

pairs stored in a log-structured manner on flash, where multiple keys that resolve

to the same hash table bucket are chained in a linked list. SkimpyStash can only

support key equality lookups as PBFilter. None of these works can be applied to

low-end sensor platforms due to their large RAM footprints.

83

5.2.2 Approximate Data Retrieval

Approximate data retrieval is an efficient way to reduce energy consumption in

wireless sensor networks. [73] proposed an optimal online algorithm for constructing

a piecewise constant approximation of a time series produced by a single sensor,

guaranteeing a L∞-norm error bound. [74] presented distributed regression to build

in-network models of sensor data based on kernel linear regression. Instead of trans-

mitting raw readings, sensors communicate constraints on the model parameters.

Then each sensor can answer queries for its local region based on the data model.

BBQ [19] exploits a similar approach to build statistical models to reduce the sensing

and communication cost for processing queries with user-specified error intervals and

confidence levels. Later, they designed MauveDB [75], a database system integrat-

ing statistical models to support model-based views that provide independence from

the details of the underlying data generating mechanism and hide the irregularities

of the data by using models to present a consistent view to the users.

Ken [18] uses replicated dynamic probabilistic models at both the base sta-

tion and sensor motes to reduce communication cost for continuously obtaining

approximate data from the sensor network, by intelligently exploiting spatial corre-

lations across sensor nodes. Region Sampling [76] tries to support approximate data

retrieval in a different way, by segmenting a sensor network into partitions of non-

overlapping regions and performing sampling and local aggregation for each region

to bound the energy consumption. Although Region Sampling can be used to in-

crementally retrieve data from sensor networks, the full dataset cannot be recovered

84

from these samples with bounded L∞-norm error. TSAR [20] provides a hierarchi-

cal architecture to separate data from metadata by employing local archiving at the

sensors and distributed indexing at the proxies. TSAR employs a multi-resolution

ordered distributed index structure at the proxy tier for efficiently supporting spatio-

temporal and value queries, and at the sensor tier supports energy-aware adaptive

summarization that can balance the trade-off between the cost of transmitting meta-

data to the proxies and the overhead of false hits due to a coarse-grain index .

EAQ [77] is the work most related to our incremental ε-approximate querying

mechanism. EAQ exploits a data shuffling algorithm to convert a dataset into a

multi-version array that enables users to incrementally refine previously obtained

approximate data to reach arbitrary accuracy and recover approximate versions of

the entire dataset. Although a modified version of their data shuffling algorithm

is exploited in our system, HybridDB exhibits three major differences from EAQ.

Firstly, EAQ can only handle a snapshot dataset that consists of the readings gen-

erated by all sensors in the same period, while HybridDB can process historical

querying with large time windows efficiently. Secondly, EAQ can only support sim-

ple refinement queries on a snapshot dataset, while HybridDB can process both

complicated refinement queries and zoom-in queries to search interesting events ef-

ficiently. Finally, HybridDB exploits an adaptive error distribution mechanism to

balance trade-offs, which is not considered in EAQ.

85

5.3 Problem Formulation

In this section, we formulate the approximate error model, incremental ε-

approximate querying and sensor data storage, and describe our research objectives.

5.3.1 Query Model and Data Storage

We consider a wireless sensor network consisting of N motes deployed in a

small geographical area. The network performs data sampling once every τ seconds.

For each sampling period, every mote measures the environment and generates a

reading rid,t = 〈id, t, key, v2, . . . , vd〉, where id is the identifier of this mote, t is the

timestamp when this reading is generated (can be either the elapsed time since

mote id is booted, or the epoch number), key is the attribute that will be indexed,

and v2, . . . , vd, are other attributes observed by this mote. The ID differences reflect

the geographical proximity of sensor motes. In other words, nearby sensor motes

are assigned closer IDs, and vice versa. This can be achieved by assigning manually

as in our testbed, or mapping automatically as in [77], which is beyond the topic of

this paper. Note that a large sensor network can be considered to consist of multiple

such small geographical areas.

Given a time interval [t1, t2], the set {rid,t}t2t=t1 is called the local dataset gen-

erated on mote id, and Υ = {rid,t}N, t2id=1, t=t1
is called the network dataset. An ap-

proximate version Υ̃ of Υ conceptually contains a corresponding reading r̃id,t for

each rid,t (i.e., Υ̃ = {r̃id,t}N, t2id=1, t=t1
), but has smaller actual representation. The

86

maximum absolute (L∞-norm) error of the approximation Υ̃ is defined as:

L∞(Υ̃,Υ) =
N

max
id=1

t2
max
t=t1
‖ (r̃id,t− rid,t)×w ‖∞=

N
max
id=1

t2
max
t=t1

d+2
max
j=1
|(r̃id,t[j]− rid,t[j])× wj|

where r̃id,t[j] and rid,t[j] are the jth field of r̃id,t and rid,t, respectively, and wj (0 ≤

wj ≤ 1) is the weight of this field.

An approximate query Q = {ρ1, ρ2, . . . , ρλ} consists of λ sub-queries. Each

sub-query ρi = {[ti,1, ti,2], [k1, k2], εi} retrieves a subset Oi of Ψi = {rid,t | (ti,1 ≤ t ≤

ti,2) ∧ (k1 ≤ key ≤ k2)} ⊆ Υ such that the approximate version Ψ̃i of Ψi recovered

from Oi can guarantee L∞(Ψ̃i,Ψi) ≤ εi. To simplify the statements, we also denote

L∞(Oi) , L∞(Ψ̃i,Ψi). Here, we require that 0 ≤ εi+1 < εi and [ti+1,1, ti+1,2] ⊆

[ti,1, ti,2] (i = 1, 2, . . . , λ − 1). If [ti+1,1, ti+1,2] = [ti,1, ti,2], ρi+1 is called a refinement

to ρi; if [ti+1,1, ti+1,2] ⊂ [ti,1, ti,2], ρi+1 is called a zoom-in to ρi. Refinement and

zoom-in sub-queries enable clients to retrieve sensor data gradually. A client can

first obtain an overall view of the data by issuing ρ1 with large ε1 to learn the general

situation, and then issue refinement sub-queries to get more details gradually. If

interesting phenomena are observed in some time interval, the client can issue zoom-

in sub-queries to focus on more details for that time interval. Therefore, the client

can find interesting events efficiently without retrieving unnecessary readings from

sensors, resulting in significant energy saving and much shorter response time.

The key technique to support refinement and zoom-in sub-queries is incremen-

tal data retrieval. For each ρi, instead of treating it as an independent sub-query and

returning Oi as in traditional approximate query processing mechanisms, HybridDB

processes it as an intermediate step of Q and returns only ∆i = Oi \ Oi−1, which

87

is called the incremental set of readings for ρi. The client can construct Oi from

∆1,∆2, . . . ,∆i, because Oi ⊆
⋃i
j=1 ∆j. If every ρj (j = 1, 2, . . . , i) is a refinement

sub-query, Oi =
⋃i
j=1 ∆j. Otherwise,

⋃i
j=1 ∆j on the client side contains readings

outside [ti,1, ti,2]. In this case, Oi can be constructed by filtering all rid,t ∈
⋃i
j=1 ∆j

satisfying t 6∈ [ti,1, ti,2].

Based on the above notations, incremental ε-approximate querying is formu-

lated as follows:

Definition 5.1 (Incremental ε-approximate Querying). HybridDB is said to support

incremental ε-approximate querying if for any query Q = {ρ1, ρ2, . . . , ρλ}, where ρi =

{[ti,1, ti,2], [k1, k2], εi} (i = 1, 2, . . . , λ) with 0 ≤ εi+1 < εi and [ti+1,1, ti+1,2] ⊆ [ti,1, ti,2]

(i = 1, 2, . . . , λ− 1), all the following conditions are satisfied:

1. For any ρi (i = 2, . . . , λ), only ∆i = Oi \Oi−1 are returned to the client.

2. ∆1 = O1 and ∆i ∩∆j = ∅ for all i 6= j (i, j = 1, 2, . . . , λ).

3. For any ρi (i = 1, . . . , λ), Oi can be constructed from ∆1,∆2, . . . ,∆i.

4. For any ρi (i = 1, . . . , λ), L∞(Oi) ≤ εi and L∞(Oi \ {rid,t}) > εi for ∀rid,t ∈ Oi

Conditions (1)–(3) ensure that the set received by the client contains all desired

readings and each reading is transmitted exactly once. Condition (4) guarantees that

the error bound of each sub-query is satisfied, and only a just-sufficient reading set

is transmitted to the client for each sub-query ρi, i.e., its error bound requirement

cannot be satisfied if any reading is removed from Oi.

88

In HybridDB, each sensor mote stores all its readings locally on high-capacity

flash memories for energy-efficiency. Due to the large number of readings on each

mote, an index structure is required in order to process each sub-query efficiently.

In addition, since the number of index entries is also large and the RAM resource

on current sensor platforms is very limited, the index structure must be stored on

flash memories as well.

5.3.2 Research Objectives

Our research objectives in this part are three-fold. Firstly, we want to design

an efficient data storage system for resource-constrained sensor platforms to handle

large-scale datasets. Secondly, we aim to design an efficient query processing mech-

anism to support incremental ε-approximate querying. Finally, we must evaluate

the performance of HybridDB in real-world deployments.

5.4 Design Considerations

In this section, we first discuss various factors that make the design of HybridDB

challenging. Then we discuss our design principles.

5.4.1 Design Challenges

5.4.1.1 Flash Constraints

Flash memory complicates the design of HybridDB by prohibiting in-place

updates. Unlike magnetic disks, flash memories only allow bits to be programmed

89

from 1 to 0. To reset a bit to 1, a large block of consecutive bytes must be erased,

which is typically several kilobytes large [78]. There are two kinds of flash memories.

NOR flash memories are byte-addressable and permit random access I/O, but their

erase blocks are very large. NAND flash memories are page-oriented and limited to

sequential writes within an erase block that can be significantly smaller than a NOR

flash block. Reads and writes on NAND flash happen at a page granularity. Since

each page can be written only once after each complete block erasure, out-of-place

writes to an existing NAND page are complex and very expensive. Portable flash

packages such as SD cards and CF cards exploit a Flash Translation Layer (FTL)

to hide many of these complexities and provide a disk-like interface. However,

random page writes on current FTL-equipped devices are still well over two orders

of magnitude more expensive than sequential writes, while semi-random writes are

very efficient [13].

5.4.1.2 Energy Constraints

NOR flash memories and NAND flash memories are very different in speed

and energy-efficiency. Table 5.1 shows the latency and energy consumption of each

operation on the 512KB Atmel AT45DB041B NOR flash [10, 79] equipped on the

Mica family, and the 128MB Toshiba TC58DVG02A1FT00 NAND flash [66] used

extensively in the research community. Each NAND block consists of 32 pages

of 512B each. We can observe that the NAND flash has a much larger storage

capacity, and much faster and more energy-efficient I/O, while the only advantage

90

of the NOR flash is random access and byte-addressable. These features influence

the design of HybridDB extensively.

Table 5.1: Performance of flash memory operations

Atmel NOR (per byte) Toshiba NAND (per page)

Latency Energy Latency Energy

Read 12.12µs 0.26µJ 969.61µs 57.83µJ

Write 12.6µs 4.3µJ 1081.42µs 73.79µJ

Block Erase 12ms/2KB 648µJ/2KB 2.6ms/16KB 65.54µJ/16KB

5.4.1.3 Memory Constraints

RAM is very limited on sensor platforms. Current low-end sensor platforms

(e.g., MicaZ, Iris and Tmote Sky) are equipped with no more than 10KB RAM.

Even on advanced sensor platforms (e.g., iMote2) with tens of megabytes RAM,

RAM is still a very precious resource, because complex data processing applications

with much higher RAM demands are expected to run on these platforms. Therefore,

HybridDB must be designed to minimize the RAM footprint.

5.4.1.4 Incremental Set Computation

The key issue in incremental ε-approximate querying is how to compute the

incremental set ∆i (i = 1, 2, . . . , λ) efficiently. Due to the limited RAM resource

and potentially large cardinality of Ψi, it is impossible for a sensor mote to maintain

a data structure in RAM to mark which readings have been already retrieved in

91

previous sub-queries. Although these information can be stored in flash memories,

it will be very expensive to update them and complicate the storage management

of flash memories. Therefore, we must develop a mechanism that can compute ∆i

for each sub-query ρi efficiently on the fly with little overhead.

5.4.2 Design Principles

Given the above challenges, the design of HybridDB should follow a few design

principles. Firstly, the system should take advantage of both the on-board NOR flash

and external NAND flash. To support both raw NAND flash and FTL-equipped

devices, random page writes should be avoided. To increase the energy-efficiency

and storage-efficiency, out-of-place writes to an existing NAND page should be elim-

inated as well.

Secondly, writes should be batched to match the write granularity of the

NAND flash, which can be satisfied by using a page write buffer in RAM. In addi-

tion, since the NAND flash is much faster and more energy-efficient, most or even

all reads should happen in the NAND flash.

Thirdly, the system should support multiple storage allocation units and align

them to erase block boundaries to minimize reclamation costs. Moreover, the system

should maintain most data structures and information in flash memories whenever

possible to minimize the RAM footprint.

Fourthly, HybridDB should support data aging to reclaim space for new data

when the NAND flash starts filling up with minimum overhead. Finally, each sensor

92

mote should organize its readings in such a way that readings in Ψi can be efficiently

located with the help of the index structure, and ∆i can be computed efficiently for

each sub-query ρi.

93

Chapter 6

HybridStore: An Efficient Flash-based Data Management System

In this chapter, we present the design details of HybridStore, which is a novel

efficient resource-aware data storage system used by HybridDB to store and query

readings in situ on each sensor mote, following the design principles discussed in

Chapter 5. Note that HybridStore can be used independently as a general data

storage system as [1, 9]. Therefore, instead of describing how to process a sub-

query ρi, we design HybridStore to process more general queries with only time

windows and value ranges, but no error bounds, as the selection predicates. In

Chapter 7, we will explain how to modify HybridStore slightly for ρi to compute ∆i.

HybridStore provides the following interface to insert new sensor readings and

query existing readings:

• command error t insert(float key, void* record, uint8 t length)

• command error t select(uint32 t t1, uint32 t t2, float k1, float k2)

The insert function inserts a reading rid,t (excluding the field id) to the storage

system and updates the index structure, while the select function supports joint

queries involving both time windows ([t1, t2]) and key ranges ([k1, k2]) as their se-

lection predicate. HybridStore consists of the following main components: Storage

Manager, Index Manager, Query Processor, Data Aging and Space Reclamation

Module, and Failure Recovery Module.

94

6.1 Storage Manager

The Storage Manager allocates storage space from the NOR flash and the

NAND flash for index construction and data storage upon request. Fig. 6.1a shows

the storage hierarchy of the system. Both the NOR flash and the NAND flash are

organized as circular arrays, resulting in the minimum RAM overhead, because we

do not need to maintain a data structure in RAM to track free blocks. In addition,

this organization directly addresses the write constraints, space reclamation, and

wear-leveling requirements (Section 6.4).

At the highest level, the NOR flash is divided into equally-sized segments, each

of which consists of one or multiple consecutive erase blocks. Storage is allocated

and reclaimed at the granularity of a segment. The NAND flash is allocated at the

granularity of an erase block, but reclaimed at the granularity of a segment that

logically consists of several consecutive erase blocks storing readings, the index of

this segment copied from the corresponding NOR segment (colored in green and

purple), and the header page, as shown in Fig. 6.1b.

Only four absolutely necessary data structures are maintained in RAM. The

write buffer is of one page size to batch the writes to the NAND flash, and the read

buffer is two pages large (one for index page reads and the other for data page reads).

The other two data structures are the skip list header and Bloom filter buffer that

are discussed in the next section. Our design not only minimizes the RAM footprint

of HybridStore and complies with the write and read granularity of NAND flash,

but also makes the failure recovery mechanism simple and efficient (Section 6.5).

95

Bloom
Filter Buffer

Write
Buffer

Read
Buffer

Skip List Header

...

Adaptive
Binary Tree

Bloom Filter

...

Segment Segment Segment
...

RAM

NOR

NAND

NOR
Segment

NOR
Segment

(a) Storage hierarchy

Bloom Filter
Tree

...

Readings ...

Readings ...

Tree

Readings

Readings

}Header
Page

(b) NAND segment structure

Figure 6.1: System architecture

6.2 Index Manager

In this section, we present the most important component of HybridStore: the

Index Manager. HybridStore leverages a memory hierarchy to achieve more effi-

96

cient index operations. Specifically, HybridStore divides a sensor data stream into

dynamically-sized partitions, each of which is stored in a logical NAND segment.

The size of a stream partition is decided by the size of a NOR segment, and the

distribution of the key values of readings in that partition. The index for this parti-

tion is first “cached” in a NOR segment, which is then copied to the corresponding

logical NAND segment when it is filled. Next, HybridStore allocates a new NOR

segment for the next partition, and stores its readings from the next page on the

NAND flash memory.

HybridStore exploits an inter-segment skip list to locate the segments covered

by [t1, t2] efficiently. Within each segment, HybridStore maintains an in-segment

β-Tree to locate all readings within [k1, k2] efficiently. To speed up the processing of

value-equality queries (i.e., k1 = k2), an in-segment Bloom filter is created for each

segment to quickly detect the existence of a given key.

HybridStore chooses the partition-based index scheme instead of a global in-

dex as in [1, 9] for the following reasons. Firstly, typical queries on sensor data

always involve time windows. Especially, readings in small time windows are more

interesting due to their temporal correlations. Since each logical NAND segment

only stores the readings of a partition that corresponds to a small time window,

many logical NAND segments outside the query time window can be skipped, re-

ducing a substantial number of unnecessary page reads during query processing.

Secondly, the number of readings in a partition is very limited compared to that

in the whole steam. This allows index structure optimization and much cheaper

index construction costs. Thirdly, the range of the key values of readings in a par-

97

tition is very small compared to the whole range of all possible key values. When

processing a query with a value range within its selection predicate, many logical

NAND segments outside the query value range can be skipped as well, further re-

ducing many unnecessary page reads. Therefore, HybridStore is extremely efficient

to process joint queries with both time windows and value ranges as their selection

predicates. Finally, since all logical NAND segments are relatively independent of

each other, HybridStore can support time-based data aging without any garbage

collection mechanism, resulting in the substantially reduced overhead.

Now we discuss the index structure of HybridStore in details, which consists

of three main modules: the inter-segment skip list, the in-segment β-Tree, and the

in-segment Bloom filter. In the last subsection, the procedure to copy the “cached”

index from the NOR flash to the NAND flash is described as well.

6.2.1 Inter-segment Skip List

The key issue to process a query with a time window is to locate the seg-

ments containing readings within that time window. A naive approach is to scan

the headers of all the segments one by one, assuming the time window of all the

readings in a segment is available in its header and all segments are chained using

previous segment address pointers. The expected number of page reads to locate

the most recent segment within the query time window is linear with the number of

segments. However, we actually can do much better by exploiting the fact that the

time windows of all segments are naturally ordered in descending order. Note that

98

the desired segments cannot be located using binary search on timestamps, because

neither the size of a segment nor the number of readings in that segment is fixed.

To facilitate efficiently locating the desired segments for a query, we organize

all segments as a skip list [80]. A skip list is an ordered linked list with additional

forward links added randomly, so that a search in the list can quickly skip parts of

the list. The expected cost for most operations is O(log n), where n is the number

of items in the list. Since segments are created in increasing order of timestamp, a

new segment is always inserted at the front of the skip list, which can be efficiently

implemented in a flash.

The inter-segment skip list consists of a header node in RAM and a node in

the header page of each segment (colored in blue in Fig. 6.1). Each node keeps

H forward pointers, each of which references the address of the header page of a

segment and the timestamp of the first (oldest) reading stored in that segment.

All pointers in the header node are initialized to null at first. When a segment is

full, the skip-list node in its header page is created and inserted into the skip list

before a new segment starts as follows. Firstly, a level h ∈ [1, H] is generated for

it randomly, such that a fraction q (q = 1
2

typically) of the nodes with level j can

appear in level j + 1. The maximum level of all segments in the current system is

updated if it is smaller than h. Then every pointer in level j ∈ [1, h] in the skip-list

header is copied as the level j pointer to the header page. Finally, the timestamp

of the first reading in this segment and the header page address are written as the

new level j pointer to the skip-list header.

The header page of each segment contains the timestamps of the first and

99

the last readings stored in this segment. To search the segments containing readings

within [t1, t2], we first locate the most recent segment with a start timestamp smaller

than t2, using an algorithm similar to the search algorithm in [80]. The subsequent

segments can be located by following the level 1 pointer in the skip-list node of each

segment, until a segment with a start timestamp smaller than t1 is encountered.

6.2.2 In-segment β-Tree

To support value-based equality and range queries, HybridStore exploits an

adaptive binary tree structure, called β-Tree, to store the index for each segment.

The β-Tree consists of a set of equal-sized buckets, each of which stores index entries

within a certain value range, while the root bucket is with range [−∞,∞]. The

header of a bucket consists of its value range, the bucket IDs of its left and right

child, and the value to split its value range to obtain the value ranges for its children.

The β-Tree is first created and updated in a NOR segment, and then copied to the

corresponding logical NAND segment when this NOR segment is full.

An index entry < key, addr > is inserted into the β-Tree as follows. Suppose

the current bucket is b and key ∈ (b.min, b.max], then this entry is appended to b.

Otherwise, we traverse the β-Tree from the root bucket to locate the leaf bucket b′

such that key ∈ (b′.min, b′.max], and append this entry to b′. If b (or b′) is full,

its value range is split into (b.min,mid] and (mid, b.max], and a new bucket bnew

is allocated as its left child if key ≤ mid, or as its right child otherwise. Then the

headers of both b (or b′) and bnew are updated correspondingly and this entry is

100

appended into bnew. Since the children of a bucket are allocated only if necessary, it

is possible to have b′ = null in the above case if, for example, b′ is the left child of

its parent but only the right child of its parent has been allocated since its splitting.

In this case, a new bucket is allocated for b′ first.

Instead of splitting the value range of a bucket evenly as in [1,9], HybridStore

exploits a prediction-based adaptive bucket splitting method, because readings are

temporally correlated, which can be used to predict the value range of the following

readings based on the most recent readings, and split a bucket range accordingly.

This method is preferred for the following reasons. Firstly, each partition corre-

sponds to a small time window, and thus contains readings in a small value range.

If the very large range for all possible key values is split evenly in each step, the

index tree of a segment may degenerate to a long list at the beginning, resulting in

more time and energy consumption to traverse the index. Secondly, although the

whole range is very large, most readings will belong to a much smaller range due

to their uneven distribution. As shown in Fig. 11 in [9], over 95% of the tempera-

ture measurements belong to [30 ◦F, 80 ◦F], while the whole range is [−60 ◦F, 120 ◦F].

Again, the evenly splitting method will result in a rather unbalanced tree.

HybridStore exploits the Simple Linear Regression estimator for prediction

due to its simplicity in computation, negligible constant RAM overhead, and high

accuracy for temporally correlated data. HybridStore buffers the keys of the most

recent nidx readings and predicts the value range for the following 2nidx readings,

where nidx is the number of entries that can be stored in a bucket. Suppose the

range of the current bucket is (b.min, b.max] and the predicted range is [x, y], the

101

splitting point mid is computed as:

mid =

x+y
2

[x, y] ⊆ (b.min, b.max]

b.min+b.max
2

(b.min, b.max] ⊆ [x, y]

b.min+y
2

x ≤ b.min < y ≤ b.max and 2nidx∗(y−b.min)
y−x > nidx

max(y, b.min+b.max
2

) x ≤ b.min < y ≤ b.max and 2nidx∗(y−b.min)
y−x ≤ nidx

x+b.max
2

b.min ≤ x < b.max ≤ y and 2nidx∗(b.max−x)
y−x > nidx

min(x, b.min+b.max
2

) b.min ≤ x < b.max ≤ y and 2nidx∗(b.max−x)
y−x ≤ nidx

The intuition is that if among the next 2nidx readings, the expected number of

readings belong to (b.min, b.max] is more than nidx, the value range should be split

such that these readings can be distributed evenly to the left and right child buckets.

Otherwise, the value range should be split such that all these readings can be stored

in the left or right child bucket alone, while avoiding splitting the value range too

unevenly whenever possible.

Compared to MaxHeap [1], which is an evenly splitting scheme, HybridStore

can generate a more balanced tree. For example, suppose each bucket can store the

index entries generated in half an hour, the current temperature is 80 ◦F and will

increase 1 ◦F every half an hour, and the whole range is [−60 ◦F, 120 ◦F]. Assuming

HybridStore can predict accurately, the root will be split with mid = 82 ◦F, and

its right child will be split with mid = 84 ◦F. The resulting β-tree will have three

layers for readings in the following 2.5 hours, while MaxHeap degenerates to a list

with 5 buckets. In addition, MaxHeap allocates two child buckets at the same

time when a bucket needs to be split, resulting in more wasted space with empty

102

buckets. To handle the uneven distribution of key values, MaxHeap selects a bucket

for an index entry based on the hashed key value, but stores the unhashed key.

As a result, MaxHeap can only retrieve discrete values in a range search. More

importantly, however, any spatial correlation of index insertions is destroyed. After

hashing, the index entries for consecutive readings are very likely to be stored in

many different buckets, which will increase the read costs both for bucket locating

and query processing substantially. On the contrary, these entries will be stored in

the same bucket in the β-Tree. Finally, different from [1, 9], our prediction-based

adaptive splitting scheme does not require a priori knowledge of the whole key value

range, which makes HybridStore more suitable for general applications.

As the β-Tree grows, the value range of each bucket becomes smaller and

smaller. Due to the vibration of key values, a sequence of consecutive index entries

may need to be appended to a few nearby buckets back and forth. The above design

requires HybridStore to traverse the β-Tree from the root all the way to the desired

leaf bucket whenever a bucket switch is needed. To improve the performance and

avoid traversing the β-Tree to switch between a few nearby buckets back and forth,

HybridStore exploits a small least-recently-used cache to store the value ranges and

IDs for a few buckets. Section 6.6.1 shows that the average insertion latency can be

significantly reduced with an information cache for only 5 buckets.

103

6.2.3 In-segment Bloom Filter

A special case of value-based queries is value-based equality search that is also

often desired [1]. Although β-Trees can support this kind of queries, HybridStore

needs to traverse the whole β-Tree even when the given key does not exist in a

segment. To better support these queries, HybridStore creates a Bloom filter [81]

for each segment to detect the existence of a key value in this segment efficiently.

A Bloom Filter (BF) is a space-efficient probabilistic data structure for mem-

bership queries in a set with low false positive rate but no false negative. It uses

a vector of c bits (initially all set to 1) to represent a set of nbf elements, and f

independent hash functions, each producing an integer ∈ [0, c − 1]. To insert an

element a, the bits at positions h1(a), . . . , hf (a) in the bit vector are cleared to 0.

Given a query for element a′, all bits at positions h1(a′), . . . , hf (a
′) are checked. If

any of them is 1, a′ cannot exist in this set. Otherwise we assume that a′ is in this

set.

Since a Bloom filter requires bit-level random writes, it must be buffered in

RAM. However, if a single Bloom filter is used to represent all readings in a segment,

this buffer size may be very large in order to keep p∓ very low. For example, suppose

a segment can store 4096 readings and three hash functions are used, in order to

keep p∓ ≈ 3.06%, then the size of its Bloom filter buffer must be at least 4KB.

To reduce the RAM footprint, HybridStore horizontally partitions the big

Bloom filter of a segment into a sequence of small fix-sized Bloom filters sections,

and allocates a small buffer in RAM for a section. Suppose the buffer size is c

104

bits, the number of hash functions is f , and the desired false positive rate is p∓,

the maximum number nbf of readings that a BF section is able to represent can be

calculated from the equation p∓ =
(

1−
(
1− 1

c

)nbff
)f

. Whenever nbf readings have

been inserted into the current BF section, the BF buffer is flushed to the current

NOR segment, and then initialized for the next section. In our implementation,

c = 2048 bits, f = 3, p∓ = 3.06%, and nbf = 256.

Algorithm 1 checkBF(addr, lfrag, key)

Input: addr: start address of the BF pages, lfrag: length of a BF fragment in bytes,
key: key value

Output: true if there is a record with the given key in this segment; false otherwise
1: code← hashcode(key); bv ← createBitVector(dBpage

lfrag
e);

2: for i = 0→ code.size do
3: bfPage← loadPage(addr + b code[i]

8lfrag
c ∗Bpage); bv.setAll();

4: for j = 0→ bv.size do
5: mask ← 0x80 >> (code[i] % 8); offset← code[i] % 8lfrag;
6: if bfPage[j ∗ lfrag + boffset

8
c] & mask 6= 0 then bv.clear(j); end if

7: end for
8: exist← false;
9: for i = 0→ bv.size do

10: exist = exist | bv.get(i);
11: end for
12: if !exist then return false; end if
13: end for
14: return true;

A drawback of horizontal partitions is that all BF sections of a segment must

be scanned to decide whether the given key exists in this segment. HybridStore

addresses this drawback by vertically splitting these BF sections into fragments

and grouping them into pages when the NOR segment is copied to the logical

NAND segment. Assume there are s BF sections in the current segment when

it is full. Then the size of a fragment is lfrag =
⌊
Bpage

s

⌋
bytes, so that the bits

in the range [i ∗ 8lfrag, (i+ 1) ∗ 8lfrag − 1] from every BF section are grouped to

105

page i ∈
[
0, dBpage

lfrag
e − 1

]
. Here, Bpage is the size of a NAND flash page in bytes.

Thus HybridStore only needs to scan at most f pages at
⌊
h1(key)
8lfrag

⌋
, . . . , bhf (key)

8lfrag
c

when checking a key value key, as shown in Algorithm 1. For each hash code code[i],

HybridStore firstly loads the page containing all the code[i]-th bits of every BF sec-

tion (Line 3), and then check the corresponding bit in each BF fragment (Line 4–7).

If the corresponding bit is not set in any fragment in that page (Line 9–11), we can

conclude that this key does not exist (Line 12).

Note that the maximum number of readings in a segment must be no more

than nbf ∗ Bpage to guarantee lfrag 6= 0, which is a valid assumption. For example,

in our implementation, Bpage = 512, nbf = 256 and the storage overhead to index

each reading is at least 9 bytes (4 bytes for the key, 4 bytes for the address pointer

and at least 1 byte for the Bloom filter). Therefore, the maximum size of a NOR

segment is at least 1.125MB, which is even larger than the capacity of NOR flash

on most current sensor platforms.

6.2.4 Copy Index from the NOR flash to the NAND flash

Within a NOR segment, BF sections are stored sequentially from the begin-

ning, while β-Tree buckets are stored sequentially from the end. Since the NAND

flash is much faster and more energy-efficient, the index of a segment is copied to the

NAND flash after the NOR segment is full as follows. Firstly, the BF sections are

copied as described above. Secondly, the β-Tree is copied and multiple consecutive

buckets are written to the same page if they can fit in. The Query Processor is able

106

to translate a bucket ID to the right page address and offset to load the desired

bucket. Hence, the bucket size should be Bpage

2i
(256 bytes is recommended for the

sake of storage-efficiency). Then the current NOR segment is erased. Finally, the

time window and value range of all readings in this segment, the addresses of the

first page for readings, for Bloom filter and for the β-Tree, the length of a BF frag-

ment, and the skip-list node are written to the next page, which is the header page

of this segment. Thus, all page writes in the NAND flash are purely sequential; the

reason why HybridStore can support both raw NAND flash chips and FTL-equipped

NAND flash cards efficiently.

6.3 Query Processor

In this section, we show how HybridStore can efficiently process joint queries

involving both time windows and value ranges as their selection predicates, as shown

in Algorithm 2. The basic idea is to skip all the segments that do not satisfy the

selection predicate by checking their header pages, or do not contain the given key by

checking their Bloom filters. For the current segment, into which new readings are

inserting, its index is still maintained in the corresponding NOR segment. However,

the process is very similar, except that the access to its index is redirected to the

NOR segment, and the information to be loaded from the header page are available

in RAM.

HybridStore starts by locating the most recent segment within the time win-

dow using the inter-segment skip list (Line 1), and then scans segments sequen-

107

Algorithm 2 select(t1, t2, k1, k2)

Input: Time window [t1, t2] and key value range [k1, k2] of a query
Output: The readings that satisfy the query criteria

1: addr ← skipListSearch(t2);
2: while addr ≥ 0 do
3: addr ← segmentSearch(addr, t1, t2, k1, k2);
4: end while
5: signal finished;

6: function segmentSearch(addr, t1, t2, k1, k2)
7: hp← loadPage(addr); . Load the header page
8: if [k1, k2] ∩ [hp.minK, hp.maxK] 6= ∅ then
9: if (t1 == t2) || ([hp.minK, hp.maxK] ⊆ [k1, k2]) then

10: directRetrieve(hp, t1, t2);
11: return (hp.startT > t1 ∧ hp.sl[0].time ≥ Sys.minT) ? hp.sl[0].addr : −1;
12: else if k1 == k2 then . Value-based equality query
13: if checkBF(hp.bfAddr, hp.bfFragSize, k1) == false then
14: return (hp.startT > t1 ∧ hp.sl[0].time ≥ Sys.minT) ? hp.sl[0].addr : −1;
15: end if
16: end if
17: queue← createQueue(hp.idxAddr); . Traverse β-tree
18: while !queue.empty() do
19: b← loadBucket(queue.dequeue());
20: for i = 0→ b.entries.size do
21: if (b.entries[i] == null) || (b.entries[i].addr ≥ hp.bfAddr) then break;

end if
22: if b.entries[i].key ∈ [k1, k2] then
23: dataP ← loadPage(b.entries[i].addr);
24: if dataP [b.entries[i].addr % Bpage].timestamp ∈ [t1, t2] then
25: signal dataP [b.entries[i].addr % Bpage];
26: end if
27: end if
28: end for
29: if (b.left 6= null) ∧ (b.middle ≥ k1) then queue.enqueue(b.left); end if
30: if (b.right 6= null) ∧ (b.middle < k2) then queue.enqueue(b.right); end if
31: end while
32: end if
33: return (hp.startT > t1 ∧ hp.sl[0].time ≥ Sys.minT) ? hp.sl[0].addr : −1;
34: end function

tially until the whole time window has been covered (Line 2–4). For each seg-

ment, its header page is loaded first. If this segment potentially contains readings

108

within the value range of the query (Line 8), HybridStore continues to retrieve the

readings. Otherwise, this segment will be skipped. Two special cases are treated

separately. Firstly, if the value range of this segment is completely contained by

the query value range (Line 9), HybridStore can retrieve the desired readings di-

rectly, without traversing the β-Tree to locate them. The directRetrieve func-

tion first computes the address of the first reading in [t1, t2] as hp.dataAddr +

max {0,
⌊
t1−hp.startT

τ

⌋
×Brec}, where Brec is the size of a sensor reading in bytes.

Then it retrieves readings sequentially from there until a reading outside [t1, t2] is

encountered, or the end of this segment is reached. Time-based equality queries

(Line 9) are processed in the same way as a special case. Secondly, for value-based

equality queries (Line 12), HybridStore first checks the existence of the key in this

segment using Algorithm 1. If this key does not exist, this segment will be skipped

as well. For general joint queries, the β-Tree of this segment is traversed using the

Breadth-First Search algorithm (Line 17–31). An index entry may become invalid

due to a sudden power failure (Section 6.5), because the last a few readings that

are stored in the write buffer right before the power failure are lost, but their index

entries are inserted into the β-Tree successfully. After failure recovery, the page that

is supposed to store the lost readings will become the first page for Bloom filter.

These invalid index entries can be recognized by checking the second condition in

Line 21. Note that HybridStore can be easily extended to support traditional ag-

gregation queries (e.g., MAX, MIN, AVERAGE, etc.), which is beyond the focus of

this work.

To reduce the RAM footprint, HybridStore returns readings on a record-by-

109

record basis. Actually, the β-Tree traversal is also implemented in a split-phase

fashion (bucket-by-bucket using the signal-post mechanism), although a queue-based

implementation is presented here for clarity. In addition, to take advantage of the

temporal correlations and spatial locality of readings, a small address pool is ap-

plied here to buffer the addresses of the readings to be loaded. Therefore, instead of

loading a data page immediately as in Line 23, HybridStore first scans the address

pool to remove any address that is smaller than the new reading address addr, but

belongs to the same data page. Then addr is added to the pool if it is not full. Oth-

erwise, HybridStore removes one address from the pool and loads its corresponding

data page. If this address points to the last reading that satisfies the selection pred-

icates in that data page, all readings satisfying the selection predicates in this page

will be returned. Otherwise, they will be ignored. After that, addr is added to

the pool. When the β-Tree traversal is finished, the pool is cleared up by removing

addresses from it and loading the corresponding data pages iteratively. Obviously,

each desired reading will be returned exactly once, even though its data page may

be loaded multiple times.

6.4 Data Aging and Space Reclamation

As shown in [10], a sensor mote can store over 10GB data during its lifetime.

If the capacity of the external NAND flash is not big enough to store all these data,

some data need to be deleted to make room for future data as the flash starts filling

up. HybridStore exploits a simple time-based data aging mechanism to discard the

110

oldest data. When no space is available on the NAND flash to insert the current

reading, HybridStore will locate the oldest segment and erase all the blocks in that

segment, except the last block if its header page is not the last page in this block.

Then the minimum timestamp of all the readings currently stored in the system

(i.e., Sys.minT) is updated. Since NAND flash is organized as a circular array,

wear-leveling is trivially guaranteed. In addition, since segments are independent of

each other, no garbage collection mechanism is needed here. On the contrary, other

index schemes (e.g., [1,66,71]), require extensive page reads and writes to move valid

pages within the reclaimed erase blocks to new locations, and maintain extra data

structures in flash or RAM.

Note that we do not need to delete the pointers referencing the reclaimed

segment from the skip list, even though they become invalid now. This problem

is handled by the select algorithm (Line 11, 14 and 33). Whenever a pointer

with a timestamp smaller than Sys.minT is encountered, the select algorithm

knows that this pointer is invalid and the query processing is already completed

successfully. On the contrary, for each invalid index entry, MicroHash [9] must

load the referenced data page to learn that this page has been deleted and re-used,

resulting in many unnecessary page reads.

6.5 Failure Recovery

A failure recovery mechanism that can cope with sudden power failures is

required for a resilient storage system. Existing storage systems, such as [9, 12],

111

rely on checkpointing, in which data structures maintained in RAM are periodically

written into a special checkpoint area in the NAND flash. Checkpointing complicates

the management of the NAND flash and violates the wear-leveling requirement of

NAND pages, while providing only a coarse level of data consistency (modifications

after the last checkpoint are not guaranteed to be recovered). HybridStore exploits

a simple and efficient recovery mechanism that takes advantage of only existing

data structures stored on flash memories without the need for any checkpoint, and

provides the highest level of data consistency.

6.5.1 Recovery Algorithm

To recover from a failure, the following information must be restored: the

information to be written to the header page of the latest segment, the Bloom filter

buffer and the skip-list header node. Firstly, HybridStore scans the NOR flash by

reading an index entry idx at Bseg − Bbkt that is supposed to be the in-segment

offset of the first index entry from each NOR segment (remind that β-Tree buckets

are stored from the end in each NOR segment). Here, Bseg and Bbkt are the sizes

of a NOR segment and a β-Tree bucket in bytes, respectively. The NOR segment

with any byte in idx not equal to 0xFF is the one storing the index structure for

the last stream partition, and idx.addr points to the NAND page storing the first

reading in this partition. By loading this page, the lower bound of the time window

of this segment can be recovered.

Secondly, HybridStore scans from the beginning of this NOR segment to find

112

out the number of valid BF sections. It reads from each potential section byte by

byte. If any byte is not equal to 0xFF , it increases the counter by one and jumps to

the next potential section. This process repeats until a section with all bytes equal

to 0xFF is encountered. Suppose there are η valid BF sections. Then HybridStore

begins to scan the NAND flash from idx.addr + nbf ∗ η ∗ Brec to retrieve all valid

readings sequentially to restore the Bloom filter buffer and the upper bound of the

time window of this segment. Next, the Bloom filter buffer is flushed to the last BF

section with all bytes equal to 0xFF in the NOR segment, whose content is then

copied to the corresponding NAND segment as specified in Section 6.2.4. During

this process, the value range of this segment, the addresses of the first page for the

Bloom filter and for β-Tree, and the length of a BF fragment can be recovered.

Finally, the skip-list header node in RAM can be restored as follows. Firstly,

HybridStore loads the header page hp1 of the last segment that has been saved

successfully at idx.addr − Bpage. Suppose the maximum level of its skip-list node

is h1. Then the tuple 〈idx.addr−Bpage, hp1.startT 〉 is written as the level j pointer

to the skip-list header for ∀j ∈ [1, h1]. Next, HybridStore follows the level h1 pointer

to load the header page hp2 of an older segment at hp1.sl[h1].addr. Suppose the

maximum level of the skip-list node in this segment is h2. Obviously, h2 ≥ h1.

If h2 > h1, the tuple 〈hp1.sl[h1].addr, hp2.startT 〉 is written as the level j pointer to

the skip-list header for ∀j ∈ [h1 + 1, h2]. Otherwise, HybridStore just continues to

load the header page at hp2.sl[h2].addr. This process repeats until an invalid pointer

or a skip-list node with a null pointer in every level from h1 to H is encountered,

or H pointers have been restored to the skip-list header node, as shown in Fig. 6.2.

113

After that, the latest segment can be inserted into the skip list as described in

Section 6.2.1, the header page can be written to the next page in the latest NAND

segment, and a new stream partition starts.

NU
LL

Header

Figure 6.2: Skip-list header recovery (H = 4): HybridStore loads the magenta skip-

list nodes from their corresponding header pages following the green pointers; The

restored skip-list header consists of all blue pointers.

Note that only readings stored in the NAND write buffer right before the

power failure are lost, which cannot be recovered by any failure recovery mechanism

as long as a write buffer is used. Therefore, HybridStore provides the highest level

of data consistency. However, their index entries are inserted successfully. This

problem can be solved by Line 21 in Algorithm 2, which does not induce any NAND

page read overhead.

In addition, the value of Sys.minT is not restored by our recovery mechanism,

which is used only when the Query Processor is processing a query with t1 smaller

than Sys.minT (Line 11, 14 and 33 in Algorithm 2). HybridStore exploits a passive

approach to recover Sys.minT to reduce the recovery overhead. Sys.minT is

initiated to 0 upon a failure recovery, and then updated in the following two available

ways. Firstly, if the data aging function is triggered to delete the oldest segment,

114

it can be recovered immediately from the header page of the new oldest segment.

Secondly, during the processing of the first query with t1 smaller than the actual

value of Sys.minT in Algorithm 2 after the recovery, the Query Processor will

encounter a segment with invalid pointers in the header page when it tries to load a

data page, or a β-Tree bucket. Then HybridStore will load the next page following

this header page, which is the first data page of the oldest segment in the current

system. Sys.minT is restored as the timestamp of the first reading in this data

page.

6.5.2 Expected Overhead

In this section, we analyze the expected overhead in terms of latency and

energy consumption for HybridStore to recover from a failure. We denote the cost

to read a byte from the NOR flash as CNOR, and the cost to read a page from the

NAND flash as CNAND, respectively. Firstly, the expected cost to locate the NOR

segment for the latest stream partition and the lower bound of the time window is:

BNOR

2×Bseg

×Bidx × CNOR + CNAND (6.1)

where BNOR is the capacity of NOR flash, and Bidx is the size of an index entry in

bytes, respectively.

Secondly, in each BF section in the NOR segment located above, the probabil-

ity that a certain bit is set is pset = 1−
(
1− 1

c

)nbff . Therefore, the expected number

of bytes that will be read from each valid BF section by the recovery algorithm is∑ c
8
−1

j=1 jp
8(j−1)
set (1− p8

set) + c
8
pc−8
set =

1−pcset
1−p8set

. Note that all bytes in the last BF section

115

must be read because its content has not been flushed to the NOR segment. Obvi-

ously, the maximum number of BF sections in each NOR segment is

⌊
Bseg

c
8

+
Bbkt
nidx

×nbf

⌋
.

In addition, the expected number of pages that will be read from the NAND flash

to reconstruct the BF buffer is

⌈
nbf

2×bBpage
Brec

c

⌉
. Therefore, the expect cost to recover

the BF buffer and the upper bound of the time window is:(
1

2

⌊
Bseg

c
8

+ Bbkt

nidx
× nbf

⌋
− 1

)
× 1− pcset

1− p8
set

×CNOR +
c

8
CNOR +

⌈
nbf

2× bBpage

Brec
c

⌉
×CNAND

(6.2)

Finally, to analyze the expected cost to recover the skip list header, we model

the third step in Section 6.5.1 as an absorbing Markov chain. Specifically, state Xh,m

(1 ≤ h ≤ H, 1 ≤ m ≤ M) represents that the header page of the mth segment is

loaded, which contains a skip-list node of maximum level h. Here, M is the total

number of segments currently stored in HybridStore and the first segment is the

oldest one. The absorbing state ⊗ represents that the skip list header has been

recovered successfully. In a skip list, the probability that a particular node is of

level h or higher is P{Y ≥ h} = qh−1, and of exact level h is:

P{Y = h} =

qh−1(1− q) 1 ≤ h ≤ H − 1

qh−1 h = H

In this Markov chain, a transition from Xh1,m1 to Xh2,m2 (h1 < H, h1 ≤ h2,m1 > m2)

means that the level h1 pointer in the skip-list node of the mth
1 segment points to

the mth
2 segment, which can happen only if the maximum level of the skip-list node

116

in each segment m1 − 1,m1 − 2, . . . ,m2 + 1 is smaller than h1. Therefore, we have:

P{Xh2,m2 | Xh1,m1} = (1−qh1−1)m1−m2−1×P{Y = h2} (h1 < H, h1 ≤ h2,m1 > m2)

(6.3)

A state Xh,m can transit to the absorbing state if h = H, or the maximum level of

the skip-list node in each segment m − 1,m − 2, . . . , 1 is smaller than h. Thus we

have:

P{⊗ | Xh,m} =

(1− qh−1)m−1 1 ≤ h < H, 1 ≤ m ≤M

1 h = H, 1 ≤ m ≤M

(6.4)

Equations (6.3) and (6.4) define the transition matrix T of this absorbing Markov

chain. If the states are ordered as {X1,M , . . . , XH,M , X1,M−1, . . . , XH,M−1, . . . , X1,1,

. . . , XH,1,⊗}, we can obtain the canonical form of T as:

T =

T1 T2

0 1

where T1 is a HM -by-HM matrix describing the probability of transitions between

transient states, T2 is a HM -by-1 column vector describing the probability of tran-

sitions from transient states to ⊗, and 0 is a 1-by-HM zero row vector. From

equation (6.3), we have:

T1[(M−m1)H+h1][(M−m2)H+h2] = P{Xh2,m2 |Xh1,m1} (h1 < H, h1 ≤ h2,m1 > m2)

and all other entries in T1 are zero. The expected number of steps before being

absorbed to ⊗ when starting from a transient state Xh,m is the ((M −m)H + h)-th

entry of the column vector (IHM − T1)−1 1, where IHM is the HM -by-HM identify

matrix and 1 is a HM -by-1 column vector whose entries are all 1. Obviously, the

117

recovery algorithm starts from a transient state Xh,M (1 ≤ h ≤ H) with probabil-

ity P{Y = h}. Therefore, the expected cost to recover the skip list header is:[
1− q q(1− q) . . . qH−2(1− q) qH−1 0 . . . 0︸ ︷︷ ︸

(M−1)H

]
(IHM − T1)−1 1× CNAND

(6.5)

As a result, the expected total overhead to recover from a failure is the sum-

mation of the expected costs given in (6.1), (6.2) and (6.5).

6.6 Implementation and Evaluation

In this section, we describe the details of our experiments. HybridStore is im-

plemented in TinyOS 2.1 and simulated in PowerTOSSIMz [82], an accurate power

modeling extension to TOSSIM for MicaZ sensor platform. We additionally devel-

oped an emulator for a Toshiba TC58DVG02A1FT00 NAND flash (128MB), and a

library that intercepts all communications between TinyOS and flash chips (both

the NOR and the NAND flash) and calculate the latency and energy consumption

based on Table 5.1. With all features included, our implementation requires ap-

proximately 16.5KB ROM and 3.2KB RAM, which is well below the limit of most

constrained sensor platforms.

The page size and block size of NAND flash are 512B and 16KB, respectively.

The segment size of NOR flash varies from 64KB to 256KB. Each Bloom filter

section can represent 256 records, with a size of 256B and 3 hash functions. The

skip list header buffer is 8B ∗ 10, the size of the address pool is 4B ∗ 15, and the size

of a β-Tree bucket is 256B. To improve the performance of insertions as described

118

in Section 6.2.2, the bucket information cache is 10B ∗ 5.

We adopt a trace-driven experimental methodology in which a real dataset is

fed into the PowerTOSSIMz simulator. Specifically, we use the Washington Climate

Dataset, which is a real dataset of atmospheric information collected by the Depart-

ment of Atmospheric Sciences at the University of Washington. Our dataset con-

tains 2, 630, 880 readings on a per-minute basis between 01/01/2000 and 12/31/2004.

Each reading consists of temperature, barometric pressure, etc. We only index the

temperature values and use the rest as part of the data records, each of which is

of 32 bytes. To simulate data missing (e.g., reading drops due to the long latency

during long queries and block erasures, or adaptive sensing), 5% readings are deleted

randomly. For each kind of queries, 1000 instances are generated randomly and their

average performance is presented here.

We compare HybridStore with MicroHash [9], Antelope [1] and the system

in [71]. Since we do not have enough details to reproduce their complete experiments,

we directly use the results reported in their papers if necessary. We use the same

dataset as MicroHash, and fully implement the static bucket splitting scheme used

in [1, 9].

6.6.1 Insertions

We first insert all readings in our dataset into the sensor mote and record

the performance of each insertion. Fig. 6.3 shows the average performance of β-

Tree and the static bucket splitting scheme used in [1, 9]. Compared to β-Tree, the

119

latter scheme consumes 13.24% more energy, induces 22.72% more space overhead,

and results in 18.47% more latency on average if the bucket information cache is

disabled. The latency and energy consumption of each insertion approximately

equal to the write of 1.31 NAND pages and 0.91 NAND pages, respectively. With

a small cache to buffer the information of 5 most recently used buckets, the average

energy consumption and latency for each insertion of β-Tree can be further reduced

by 13.35% and 42.54%, respectively. We can also observe that the performance

can be improved only slightly with a larger cache, because consecutive readings will

only be inserted to a few nearby buckets. Therefore, in our final implementation,

the bucket information cache is set to be 5 to reduce the overhead.

Fig. 6.4 and Fig. 6.5 show a part of the timeline for insertions at the beginning

when the NOR segment size is 64KB with no bucket cache and a cache for 5 bucket

information, respectively. Our key observations are as follows. First, although it is

very energy-consuming (26.8mJ) to transfer the index from NOR flash to NAND

flash, it only happens once every 3–4 days and is independent of the data record

size. Second, during regular operation, each insertion consumes only 34.4µJ . When

a reading is not within the current bucket range, the proper bucket can be located

or created after traversing about 8–10 bucket headers in β-Tree, even when the

current segment is almost full. Since there are about 236 buckets in the β-tree for

each segment, our adaptive bucket splitting scheme generates a rather balanced tree.

The points corresponding to around 0.15mJ (or 0.11mJ) and 1.2mJ additionally

include the energy consumption to flush the write buffer to NAND flash and the

Bloom filter buffer to NOR flash, respectively. Finally, the bucket information cache

120

64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NOR Flash Segment Size (KB)

T
im

e
 (

m
s
)

β−Tree (10) β−Tree (5) β−Tree Static tree

(a) Latency

64 128 256
0

10

20

30

40

50

60

70

80

90

NOR Flash Segment Size (KB)

E
n
e
rg

y
 (

µ
J
)

β−Tree (10) β−Tree (5) β−Tree Static tree

(b) Energy

Figure 6.3: Performance per insertion

can take advantage of temporal correlation to facilitate the search for the desired

β-Tree buckets during insertions efficiently.

121

64 128 256
0

5

10

15

20

25

30

35

40

NOR Flash Segment Size (KB)

S
p
a
c
e
 O

v
e
rh

e
a
d
 (

%
)

β−Tree (10) β−Tree (5) β−Tree Static tree

(c) Space Overhead

Figure 6.3: Performance per insertion

Jan/03 00:00 Jan/03 06:00 Jan/03 12:00 Jan/03 18:00 Jan/04 00:00 Jan/04 06:00

0.15

1.2

26.8

0.034

0.07

Timeline

E
n
e
rg

y
 (

m
J
)

Figure 6.4: Energy consumption of insertions (without bucket information cache)

6.6.2 Time-based Equality Queries

In this experiment, we investigate the performance of time-based equality

queries to find a record by its timestamp (t1 = t2). Fig. 6.6 shows that even though

the query time window is quite large (i.e., over 2.5 million readings in 5 years),

HybridStore is able to locate the record with about 5–6 page reads. Such a high

performance can be achieved due to the following reasons. Firstly, the β-Tree im-

122

Jan/03 06:00 Jan/03 12:00 Jan/03 18:00 Jan/04 00:00 jan/04 06:00 Jan/04 12:00
0.034

0.07
0.11
0.15

1.2

26.8

Timeline

E
n
e
rg

y
 (

m
J
)

Figure 6.5: Energy consumption of insertions (with a cache for 5 bucket information)

proves the storage efficiency, resulting in fewer segments to store the same number

of readings. Secondly, the skip list can locate the segment containing the required

timestamp efficiently. Thirdly, the scale binary search can locate the page quickly

because all readings are stored continuously in each segment, avoiding traversing

through a block chain. Therefore, compared to a global index (e.g., MicroHash re-

quires about 5.4 page reads to process such a query when the buffer size is 2.5KB,

as shown in Fig. 14 in [9]), HybridStore has almost the same performance, while

consuming less RAM. Compared to Antelope [1], HybridStore can achieve a much

better performance if the same dataset is used.

6.6.3 Joint Queries: Time-based Range and Value-based Equality

In this scenario, we study the impact of Bloom filter on joint time-based range

and value-based equality queries. Fig. 6.7 shows the average performance per query

to search nonexistent key values. We can observe that the in-segment Bloom filter

can significantly improve the performance of value-based equality queries (more

than 3 times improvement when the NOR segment size is 64KB and the time range

123

64 128 256
0

2

4

6

8

NOR Flash Segment Size (KB)

T
im

e
 (

m
s
)

β−Tree

Static tree

(a) Latency

64 128 256
0

100

200

300

400

500

600

NOR Flash Segment Size (KB)

E
n
e
rg

y
 (

µ
J
)

β−Tree

Static tree

(b) Energy

Figure 6.6: Performance of time-equality queries: HybridStore (β-Tree) v.s. Ante-

lope [1]

is more than 3 months). In addition, β-Tree can reduce the latency and energy

consumption for queries involving large time window by about 4ms and 230µJ ,

124

respectively. Finally, HybridStore is extremely efficient to check the existence of

key values. When the NOR segment size is 256KB, HybridStore can decide the

existence of a key value in over 0.5 million readings spanning one year time window

in 26.18ms, consuming only 1.56mJ .

We also investigate the average performance per query to search existing key

values, which is shown in Fig. 6.8. The key values vary in [40 ◦F, 60 ◦F]. We can

observe that the in-segment Bloom filter can reduce the latency and energy consump-

tion for queries involving large time window by 38–116ms and 3–7mJ , respectively.

More importantly, HybridStore requires approximately only 826 page reads to get all

readings with the given key value in one year time window when the NOR segment

size is 256KB. Comparatively, MicroHash requires about 8700 page reads on average

to search a given key value ∈ [40 ◦F, 60 ◦F] in five years time window. Even if we

assume that MicroHash can “intelligently” stop searching when a reading below the

lower bound of the query time window is encountered, it still requires much more

than 1740 page reads for one year time window, because many index pages and data

pages are read unnecessarily.

6.6.4 Joint Queries: Both Time-based and Value-based Ranges

In this scenario, we investigate the most common type of queries that involves

both time windows and value ranges as selection predicates. Fig. 6.9 shows the

average performance per query when the NOR segment size is 64KB. We can observe

that HybridStore is extremely efficient to process such queries. When the value range

125

1 day 1 week 1 month 3 month 1 year
0

50

100

150

200

250

300

Time Range

T
im

e
 (

m
s
)

β−Tree (64KB)

β−Tree (128KB)

β−Tree (256KB)

β−Tree (64KB w/o BF)

Static (128KB)

(a) Latency

1 day 1 week 1 month 3 month 1 year
0

2

4

6

8

10

12

14

16

18

Time Range

E
n

e
rg

y
 (

m
J
)

β−Tree (64KB)

β−Tree (128KB)

β−Tree (256KB)

β−Tree (64KB w/o BF)

Static (128KB)

(b) Energy

Figure 6.7: Impact of Bloom Filter on value-based equality queries for nonexistent

keys

is 1 ◦F and the time window is 1 month (typical queries, because readings in small

time windows are more interesting), HybridStore can finish the query in 461.6ms,

126

1 hour 1 day 1 week 1 month 3 months 6 months 1 year
0

200

400

600

800

1000

1200

Time Range

T
im

e
 (

m
s
)

64KB + BF

64KB

128KB + BF

128KB

256KB + BF

256KB

(a) Latency

1 hour 1 day 1 week 1 month 3 months 6 months 1 year
0

10

20

30

40

50

60

70

Time Range

E
n
e
rg

y
 (

m
J
)

64KB + BF

64KB

128KB + BF

128KB

256KB + BF

256KB

(b) Energy

Figure 6.8: Impact of Bloom Filter on value-based equality queries for existing keys

consumes only 27.5mJ and returns 2678 readings. For queries involving a large

value range (e.g., 9 ◦F) and a long time window (e.g., 1 year), HybridStore can

127

return 120, 363 readings in 11.08s, consuming only 660.7mJ (92.04µs and 5.48µJ

per reading on average). Compared to Antelope [1], since the NOR flash is much

slower and less energy-efficient, Antelope will take about 20s to retrieve 50% readings

from a table with only 50, 000 tuples in a range query (shown in Fig. 8 in [1]).

Another index scheme proposed in [71] can support range queries. It will

consume about 40mJ on average to process a query with 5-degree range on about

only 100, 000 readings (about 13, 000 readings are returned). Comparatively, HybridStore

will consume 75.61mJ to return the same number of readings by processing the same

query on more than 2.5 million readings. While our dataset size is 25 times larger

than the dataset used in [71], HybridStore consumes only 89% more energy. There-

fore, HybridStore is more energy efficient to support queries on large-scale datasets.

Besides, the size of each reading in [71] is much smaller, which consists of only a

timestamp and a temperature value (12B is enough, while our record size is 32B),

resulting in much less data pages. Finally, their scheme requires much more RAM

resource (close to 10KB, shown in Page 10 in [71]), because the per-partition B-tree

index, interval table, and the last page of each interval’s list must be maintained in

RAM.

The remarkable performance of HybridStore can be explained as follows. Firstly,

the inter-segment skip list can skip irrelevant segments outside a query time window

and locate the desired segments efficiently, thus avoiding a large number of unneces-

sary index and data page reads in a global index scheme. Secondly, HybridStore can

skip irrelevant segments within the query time window, but storing readings with

key values outside the query value range efficiently. Thirdly, our adaptive bucket

128

1 day 1 week 1 month 3 months 6 months 1 year
0

2

4

6

8

10

12

Time Range

T
im

e
 (

s
)

/
Q

u
e
ry

1 degree

3 degree

5 degree

7 degree

9 degree

(a) Total Latency per query

1 day 1 week 1 month 3 months 6 months 1 year
0

100

200

300

400

500

600

700

Time Range

E
n
e
rg

y
 (

m
J
)

/
Q

u
e
ry

1 degree

3 degree

5 degree

7 degree

9 degree

(b) Total energy per query

Figure 6.9: HybridStore performance per query of full queries

129

splitting method can create a relatively balanced tree for each segment, thus reduc-

ing the number of page reads to retrieve readings from a segment. Furthermore, the

in-segment Bloom filter can speed up the existence detection of a key value, while

inducing negligible storage overhead (only 1 byte per reading). Finally, the record

pool takes advantage of the temporal correlation and spacial locality of sensor read-

ings to further reduce the number of page reads with a small RAM overhead (120B

in our case).

6.6.5 Failure Recovery

In this section, we calculate the expected overhead for HybridStore to recover

from a failure, using the theoretical results from Section 6.5.2. Fig. 6.10 shows that

the overhead is very small and increases slightly as the number of stored readings

increases significantly. Therefore, our recovery mechanism is very efficient for large-

scale data storage.

6.7 Summary

In this chapter, we proposed HybridStore, an efficient data management sys-

tem for low-end sensor platforms, which exploits both the on-board NOR flash and

external NAND flash to store and query sensor data. Compared to existing works

that can only support simple queries, HybridStore can process typical joint queries

involving both time windows and key value ranges as selection predicates extremely

efficiently, even on large-scale datasets. Our evaluation with a large-scale real-world

130

100 200 400 600 800 1000
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

Number of NAND Segments

L
a

te
n

c
y
 (

m
s
)

NOR Segment = 64KB

NOR Segment = 128KB

NOR Segment = 256KB

(a) Latency

100 200 400 600 800 1000
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Number of NAND Segments

E
n

e
rg

y
 (

m
J
)

NOR Segment = 64KB

NOR Segment = 128KB

NOR Segment = 256KB

(b) Energy

Figure 6.10: Expected overhead of failure recovery

dataset reveals that HybridStore can achieve remarkable performance at a small cost

of constructing the index. Therefore, HybridStore provides a powerful new frame-

work to realize in situ data storage in WSNs to improve both in-network processing

and energy-efficiency.

131

Chapter 7

HybridDB: An Efficient DB for Incremental ε-Approximate Querying

Based on HybridStore, HybridDB provides the support for incremental ε-

approximate querying that enables clients to retrieve a just-sufficient accuracy level

of sensor readings by issuing sub-queries ρi sequentially. In this section, we first

present an overview of HybridDB with some related basic concepts and algorithms.

Then we explain incremental temporal and spatial approximate, and how clients

can reconstruct Ψ̃i from ∆1,∆2, . . . ,∆i. Finally, we describe the adaptive error

distribution mechanism to balance trade-offs.

The following interface is provided to issue new queries and update existing

queries:

• command uint8 t approxQuery(uint32 t t1,1, uint32 t t1,2, float k1, float k2,

float ε1, uint16 t base)

• command error t approxUpdate(uint8 t queryID, uint32 t ti,1, uint32 t ti,2,

float εi)

7.1 Overview of HybridDB

A query Q is started by issuing ρ1 that will be processed by the approxQuery

method. HybridDB assigns a unique ID to each query, which is returned to the client

as a reference for the following sub-queries. The parameter base determines the error

132

distribution between temporal approximate and spatial approximate (Section 7.5).

The following sub-queries ρ2, ρ3, . . . , ρλ, either refinement or zoom-in, are issued

with the ID of Q and processed by the approxUpdate method. Note that the

value range [k1, k2] is the same for all sub-queries of Q. For simplicity, we assume

that for each ρi, ti,1 is either the timestamp of the first reading in some data page or

smaller than System.minT, while ti,2 is either the timestamp of the last reading in

another data page or larger than the current time. Otherwise, HybridDB will relax

the time window [ti,1, ti,2] to satisfy this assumption. In other words, all the readings

in every data page that will be loaded by HybridDB during processing ρi must be

completely covered by [ti,1, ti,2]. The reason is that temporal approximate will take

all the readings in a data page as a dataset unit (Section 7.2). This assumption is

crucial for the correctness of our incremental ε-approximate querying algorithm.

HybridDB processes each sub-query with the help of a proxy, which can be

a pre-deployed powerful gateway, or a smart phone appearing in the network area

temporarily. As smart phones have become ubiquitous and powerful mobile com-

puting platforms, the latter choice is preferred in this paper, which can reduce

the deployment costs and complexity significantly. Since smart phones can only

serve as temporary proxies and different queries may be served by different smart

phones, we cannot assume that all the readings that have been retrieved by previous

queries are buffered locally on a proxy as in [75]. Instead, a proxy is assumed to

have no historical information before processing ρ1. In addition, we assume that all

sub-queries of Q are served by the same proxy. Therefore, clients can issue queries

remotely to smart phones, which then return the query results to the clients through

133

3G/4G/WiFi across the Internet.

Each sub-query ρi is processed in two steps. Firstly, the proxy forwards ρ′i

to the sensors, which is formed by modifying the error bound of ρi from εi to εi,1

(εi,1 ≤ εi). Each sensor processes ρ′i by applying incremental temporal approximate

locally and transmits the incremental set of readings from HybridStore to the proxy.

Incremental temporal approximate is defined as follows:

Definition 7.1 (Incremental Temporal Approximate). Given any subset Ψi[id]

of Ψi (|Ψi[id]| ≥ 3), which is the set of readings contributed by mote id, tempo-

ral approximate on mote id retrieves a dataset Ri[id] (Ri[id] ⊆ Ψi[id]), such that

L∞(Ψ̂i[id],Ψi[id]) ≤ εi,1. Here, Ψ̂i[id] = {r̂id,t | (∀t ∈ [ti,1, ti,2]) ∧ (rid,t ∈ Ψi[id])} is

constructed using linear approximation as:

r̂id,t =

t−t′′
t′−t′′ rid,t′ + t′−t

t′−t′′ rid,t′′ rid,t 6∈ Ri[id]

rid,t o.w.

(7.1)

in which rid,t′ and rid,t′′ are two readings in Ri[id] with the first and second closest

timestamps to rid,t. Obviously, îd = id and t̂ = t. Incremental temporal approximate

on mote id returns only Ri[id]\Ri−1[id] to the proxy for each ρ′i, and satisfies similar

conditions to those in Definition 5.1. The parameter εi,1 is called the temporal

approximate error bound for ρi.

Secondly, after the proxy has received readings from all sensors, it applies

incremental spatial approximate on them with error bound εi,2, and returns ∆i to

the client. Incremental spatial approximate is defined as follows:

134

Definition 7.2 (Incremental spatial Approximate). Given any subset Si[t] = {rid,t|

(∀id ∈ [1, N]) ∧ (rid,t ∈
⋃N
id=1 Ri[id])} with |Si[t]| ≥ 3, which is the set of readings

that are generated at time t and returned by all sensors after processing ρ′1, . . . , ρ
′
i,

spatial approximate on the proxy for time t returns a dataset Θi[t] (Θi[t] ⊆ Si[t]),

such that L∞(Ŝi[t], Si[t]) ≤ εi,2. Here, Ŝi[t] = {r̂id,t | (∀id ∈ [1, N]) ∧ (rid,t ∈ Si[t])}

is constructed using linear approximation as:

r̂id,t =

id−id2
id1−id2 rid1,t + id1−id

id1−id2 rid2,t rid,t 6∈ Θi[t]

rid,t o.w.

(7.2)

in which rid1,t and rid2,t are two readings in Θi[t] with the first and second closest

IDs to rid,t. Obviously, îd = id and t̂ = t. Incremental spatial approximate for time t

returns only Θi[t] \ Θi−1[t] to the client for each ρi, and satisfies similar conditions

to those in Definition 5.1. The parameter εi,2 is called the spatial approximate error

bound for ρi.

For both incremental temporal and spatial approximate, a mechanism is needed

to computeRi[id]\Ri−1[id] and Θi[t]\Θi−1[t] efficiently with little overhead. HybridDB

modifies the data shuffling algorithm proposed in [77] to rank readings in Ψi[id]

or Si[t] according to their importance, i.e., errors induced if otherwise omitted. In

the reordered dataset, readings that will induce larger errors if they are omitted

are assigned higher ranks and precedes those inducing smaller errors. The complete

procedures to process a general dataset is described in Algorithm 3. We assume

that readings in D are sorted in ascending order of t in incremental temporal ap-

proximate, and of id in incremental spatial approximate initially. For simplicity,

135

the jth reading in the initial ordered dataset is denoted as rj, and thus D = {rj}|D|j=1.

The priority queue always pops out the item with the highest rank, i.e., largest

error. The findFarthest(D, x, y) function is the same as that in [77], except

that the weight of each attribute is included to calculate approximate errors. It

returns ru (x < u < y) with the largest error erru if ru is approximated using rx

and ry according to equation (7.1) or (7.2).

Algorithm 3 getDelta(D, εold, εnew)

Input: Dataset D = {rj}|D|j=1, previous error bound εold, and new error bound εnew
(εold > εnew)

Output: The subset of readings that can improve the error bound from εold to εnew
1: if |D| ≤ 2 then return (εold =∞) ? D : ∅; end if
2: result← ∅;
3: if εold =∞ then result.add(r1); result.add(r|D|); end if . |D| ≥ 3
4: queue← createQueue(); . Initiate the priority queue to be ∅
5: 〈u, erru〉 ← findFarthest(D, 1, |D|);
6: queue.enqueue(〈1, |D|, u, erru〉);
7: while !queue.empty() do
8: 〈j1, j3, j2, err〉 ← queue.dequeue(); . Process a new reading
9: if εnew < err ≤ εold then result.add(rj3); end if . rj3 must be returned

10: if err ≤ εnew then break; end if . Enough readings have been retrieved
11: if j1 + 2 ≤ j2 then . Readings exist between rj1 and rj2
12: 〈u, erru〉 ← findFarthest(D, j1, j2);
13: queue.enqueue(〈j1, j2, u, erru〉);
14: end if
15: if j2 + 2 ≤ j3 then . Readings exist between rj2 and rj3
16: 〈u, erru〉 ← findFarthest(D, j2, j3);
17: queue.enqueue(〈j2, j3, u, erru〉);
18: end if
19: end while
20: return result;

In each step, our algorithm approximates readings rj1+1, rj1+2, . . . , rj3−1 us-

ing rj1 and rj3 to find the reading rj2 with the largest error err (Line 8). If err ≥ εold,

that means rj2 has already been retrieved in previous sub-queries, and thus it will

136

not be retrieved again. If err ≤ εnew, that means enough readings have already been

retrieved to guarantee the new error bound (Line 10). If εnew < err ≤ εold, that

means rj2 must be retrieved in order to improve the error bound from εold to εnew

(Line 9). After adding rj2 to the result, we continue to check if the new error bound

can be satisfied, by finding the readings with the largest approximate errors from

rj1+1, . . . , rj2−1 and rj2+1, . . . , rj3−1, respectively (Line 11 to 18). r1 and r|D| should

be retrieved only by the first sub-query, for which εold =∞ (Line 1 and 3).

From Algorithm 3, we can obtain the following important lemma:

Lemma 7.3. Given a decreasing sequence ε′0, ε
′
1, . . . , ε

′
i where ε′0 = ∞, and de-

note the result returned by getDelta(D, ε′j1 , ε
′
j2

) as D∆[j1 : j2] (j1 < j2), we have⋃i
j=1D∆[j − 1 : j] = D∆[0 : i], D∆[j1 − 1 : j1]

⋂
D∆[j2 − 1 : j2] = ∅ for all j1 6= j2,

and L∞(D̂,D) ≤ ε′i, where D̂ is an approximate version of D constructed from⋃i
j=1D∆[j − 1 : j].

Proof. Firstly, for ∀ru ∈ D∆[0 : i], since Algorithm 3 processes it and decides to

add it to D∆[0 : i], we can know ε′i < erru < ∞. Then we must have ∃j ∈ [0, i]

such that ε′j < erru ≤ ε′j−1. That means ru ∈ D∆[j − 1 : j]. Similarly, we can

easily prove for ∀ru ∈
⋃i
j=1 D∆[j − 1 : j], we can obtain ru ∈ D∆[0 : i]. Therefore,⋃i

j=1D∆[j − 1 : j] = D∆[0 : i].

Assume D∆[j1 − 1 : j1]
⋂
D∆[j2 − 1 : j2] 6= ∅ for some j1 and j2, i.e., there

is at least one reading ru belongs to both sets. We can learn from Algorithm 3

that ε′j1 < erru ≤ ε′j1−1 and ε′j2 < erru ≤ ε′j2−1, which is impossible because either

ε′j2 < ε′j2−1 ≤ ε′j1 < ε′j1−1 or ε′j1 < ε′j1−1 ≤ ε′j2 < ε′j2−1. Therefore, D∆[j1 − 1 :

137

j1]
⋂
D∆[j2 − 1 : j2] = ∅ for all j1 6= j2.

Based on the results in [77], L∞(D̂,D) ≤ ε′i, where D̂ is an approximate version

of D constructed from D∆[0 : i] =
⋃i
j=1 D∆[j − 1 : j].

7.2 Incremental Temporal Approximate

The select function provided by HybridStore can be modified slightly such

that each sensor id can process ρ′i to retrieve all readings in Ri[id]\Ri−1[id] efficiently

and transmit them to the proxy, which is shown as follows:

• command error t approxSelect(uint32 t t1, uint32 t t2, float k1, float k2, float

εold, float εnew)

To reduce the overhead, the Query Processor on each mote is designed to be state-

less, which has no information about previous sub-queries and thus treats each new

sub-query independently. However, the more powerful proxy maintains these infor-

mation and will provide the right value of εold to sensors, which will be explained in

Algorithm 4.

The main difference between approxSelect and select is how readings are

retrieved after a data page is loaded. In select, if a reading satisfying the selection

predicates is found in the data page, it is transmitted immediately. However, in

approxSelect, the readings that do not satisfy the selection predicates are first

removed from the data page read buffer. The rest readings in the read buffer are

ordered in ascending order of t naturally. Then they are passed to Algorithm 3 along

with εold and εi,1, and only readings in the result set are transmitted to the proxy. In

138

other words, HybridDB basically takes advantage of the data page read buffer and

applies Algorithm 3 to process the readings satisfying the selection predicates in each

data page. Although the local NAND flash on each sensor must be accessed again for

each sub-query, HybridDB still can reduce the energy consumption extensively with

incremental temporal approximate, based on the fact that NAND flash operations

are at least two orders of magnitude cheaper than communication.

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

21.6

21.8

22

22.2

22.4

22.6

22.8

23

23.2

23.4

Time (s)

T
e

m
p

e
ra

tu
re

 (°
C

)

Figure 7.1: Illustration of irregular time windows in incremental temporal approx-

imate: filled points stand for the readings transmitted to the proxy, and square

points and triangle points are the first and last readings in the corresponding time

window fractions.

HybridDB must solve the problem of irregular time windows brought by value

range selection predicates, as illustrated in Fig. 7.1. In the result set, an expected

reading rid,t with t ∈ [t1, t2] may be missing for two reasons. Firstly, this reading

may be filtered because key 6∈ [k1, k2] (blue trace). Secondly, this reading may be

suppressed because r̂id,t recovered from Ri[id] on the proxy using equation (7.1) can

guarantee ‖(r̂id,t−rid,t)×w‖∞ ≤ εnew (Line 10 in Algorithm 3, red trace). HybridDB

must distinguish these two cases such that a client can reconstruct Ψ̃i. Only for the

139

latter case the client needs to recover r̃id,t and include it in Ψ̃i.

This problem is solved by asking sensors to report their time window fractions

to the proxy when processing ρ1 as follows. When each sensor is processing a data

page, if all readings in this page satisfy the selection predicates, the first and last

readings that will surely be included in the result set are transmitted together in

one packet, in which a flag is set. When the proxy receives this packet, it will take

the timestamps of these two readings as the beginning and end of a time window

fraction with no overhead. Otherwise, this sensor must transmit the information

about the set of time window fractions in this page explicitly to the proxy, which

consists of the timestamp of the first reading and a bitmap with one bit for each

reading in this page to indicate whether it is included in Ψi[id]. Since each page

contains only a few readings generated in a short time, the latter case can occur

to only a few pages. With these information, the proxy is able to infer all the

time window fractions for each sensor, which are then forwarded to the client along

with ∆1 . Note that for the following sub-query ρi (i = 2, 3, . . . , λ), the client can

figure out all the time window fractions directly as the intersection of the previous

set of time window fractions and [ti,1, ti,2].

7.3 Incremental Spatial Approximate

For each ρi, after the proxy has received all the readings in Ri[id] \ Ri−1[id]

from each sensor id, it constructs Si[t] with readings sorted in ascending order of id

for ∀t ∈ [ti,1, ti,2] from
⋃N
id=1Ri[id], which is then passed to Algorithm 3. Readings

140

in the result set are returned to the client as Θi[t] \ Θi−1[t]. The values of εnew

and εold to be passed to Algorithm 3 is calculated in Algorithm 4, which describes

the implementation of the HybridDB interface on the proxy.

Similarly, a reading rid,t may be missing from Θi[t] \ Θi−1[t] for two reasons

as well: either rid,t 6∈ Si[t] because it is not retrieved from mote id, or rid,t ∈

Si[t] but it is suppressed by incremental spatial approximate. HybridDB exploits

bitmaps to distinguish these two cases. Specifically, for each ρi (i = 1, 2, . . . , λ),

the proxy creates a bitmap Bi with
(
ti,2
τ
− ti,1

τ
+ 1
)
N bits if new readings will

be retrieved from sensors. If rid,t ∈ Si[t], the
((

t
τ
− ti,1

τ

)
N + id

)
-th bit of Bi is

set, resulting in a sparse bitmap. To reduce the overhead, the proxy compresses Bi

before sending it to the client. The main consideration here is the compression ratio,

rather than bitwise operation optimization. Therefore, HybridDB adopts DEFLATE

to compress each bitmap, which is a lossless data compression algorithm specified

in [83] with high compression ratio. Its implementation is available in the libraries

of many programming languages. After the client receives and decompresses Bi, it

truncates its local bitmap to retain only the bits corresponding to [ti,1, ti,2], and then

carries out the OR bitwise operation on it with Bi to update the local bitmap.

The proxy maintains the status and parameters for each query. For ρ2, ρ3, . . . , ρλ,

the proxy needs to validate the parameters (Line 8), and check if this sub-query needs

to be processed (Line 9). The proxy processes each ρi based on εi by exploiting the

conclusion from Theorem 7.4, which says that the summation of the temporal ap-

proximate error εi,1 and the spatial approximate error εi,2 cannot exceed the overall

error bound constraint, i.e., εi,1 + εi,2 ≤ εi. If εi < εi−1,1, that means more readings

141

Algorithm 4 Implementation of the HybridDB Interface

1: Q← ∅; QID ← 0; . Q stores the status and parameters for each query
2: function approxQuery(t1,1, t1,2, k1, k2, ε1, base)
3: T1 ← t1,1;T2 ← t1,2;K1 ← k1;K2 ← k2; ε∗ ←∞; ε←∞;R← ∅;
4: Q[QID]← 〈T1, T2, K1, K2, ε

∗, ε, base, R〉; . Save the query status
5: post execute(QID, t1,1, t1,2, k1, k2, ε1); return QID++; . Begin to process
6: end function
7: function approxUpdate(qid, ti,1, ti,2, εi)
8: if (Q[qid] == null) || ([ti,1, ti,2] * [Q[qid].T1, Q[qid].T2]) then return
ERROR; end if

9: if εi ≥ Q[qid].ε then return SUCCESS; end if
10: Q[qid].T1 ← ti,1;Q[qid].T2 ← ti,2; . Update the query status
11: post execute(qid, ti,1, ti,2, Q[qid].K1, Q[qid].K2, εi); return SUCCESS;
12: end function

13: function execute(qid, ti,1, ti,2, k1, k2, εi)
14: if εi < Q[qid].ε∗ then . Must retrieve more data from sensors
15: δ ← splitError(Q[qid], εi); . Decide εi,1 and εi,2

16: Bi ← newBitmap
(

(
ti,2
τ
− ti,1

τ
+ 1)N

)
; . Initiate the bitmap

17: for id = 1, 2, . . . , N do . Retrive Ri[id] \Ri−1[id] from each mote id
18: 〈TWFid, R∆[id]〉 ← sensors[id].approxSelect(ti,1, ti,2, k1, k2, Q[qid].ε∗, δεi);
19: if TWFid 6= ∅ then radio.send(TWFid); end if
20: Q[qid].R← Q[qid].R

⋃
R∆[id]; Bi.update(R∆[id]);

21: end for
22: Bi.compress(); radio.send(Bi);
23: end if
24: for t = t1, t1 + 1, . . . , t2 do . Process each Si[t]
25: Si[t]← {rid,t | (∀id ∈ [1, N]) ∧ (rid,t ∈ Q[qid].R)};
26: if εi < Q[qid].ε∗ then . Make use of the new data retrieved from sensors
27: Θ∆[t]← getDelta(Si[t],∞, (1− δ)εi); . εi,2 = (1− δ)εi
28: Θ∆[t].removeDuplicate();Q[qid].ε∗ ← δεi;
29: else . Run spatial approximate from last place
30: Θ∆[t]← getDelta(Si[t], Q[qid].ε−Q[qid].ε∗, εi −Q[qid].ε∗);
31: end if
32: radio.send(Θ∆[t]);Q[qid].ε← εi;
33: end for
34: end function

must be retrieved from the sensors to improve the error bound (Line 14 – 23). An

adaptive error distribution mechanism is adopted to decide εi,1 and εi,2 (Line 15).

The splitError function returns a value δ ∈ (0, 1] based on the parameters of ρi,

142

which will be explained in Section 7.5. Note that only the set of readings that

can improve the temporal approximate error from εi−1,1 to εi,1 = δεi is retrieved

(Line 18).

For ρ1, each sensor will report its time window fractions to the proxy as de-

scribed in Section 7.2. In this case, the proxy needs to forward these information to

the client (Line 19). Meanwhile, all retrieved readings will be buffered locally and

the bitmap is updated accordingly (Line 20). After all readings in Ri[id] \ Ri−1[id]

have been received from each mote id, the bitmap is compressed and transmitted to

the client (Line 22). We can observe that if the proxy can satisfy the error bound

of ρi using only the readings buffered locally, the overhead to maintain and transmit

the bitmap can be eliminated.

Then the proxy applies spatial approximate for every t ∈ [t1, t2] in two different

ways based on based on εi (Line 24 – 33). If εi < εi−1,1, the proxy needs to start over

with (1− δ)εi as the desired error bound (Line 27), because new readings may have

been added to Si[t]. The readings that have already been transmitted for previous

sub-queries will be removed from the result, and the new εi,1 = δεi is recorded

(Line 28). To facilitate this step, the proxy adds a flag to each reading to indicate

whether it has been transmitted to the client. If εi ≥ εi−1,1, the proxy just needs to

carry out spatial approximate to retrieve readings that can improve the error bound

from εi−1 − εi−1,1 to εi − εi−1,1 (Line 30). Finally, all readings in Θi[t] \ Θi−1[t] are

sent to the client, and the new εi is recorded (Line 32). Based on Lemma 7.3, we

can easily know that ∆i =
⋃ti,2
t=ti,1

(Θi[t] \Θi−1[t]), and ∆i ∩ ∆j = ∅ for all i 6= j

(i, j = 1, 2, . . . , λ).

143

7.4 Construct Ψ̃i on the Client

For each ρi (i = 1, 2, . . . , λ), the client can construct Ψ̃i in three steps. Firstly,

based on Lemma 7.3, the client constructs Oi by retrieving every reading rid,t

with ti,1 ≤ t ≤ ti,2 from ∆1,∆2, . . . ,∆i, i.e., Oi = {rid,t | (∀rid,t ∈
⋃i
j=1 ∆j) ∧ (t ∈

[ti,1, ti,2])}. Obviously, Θi[t] = Oi[t], where Oi[t] is the subset of readings with the

same timestamp t in Oi. Secondly, Ŝi[t] (∀t ∈ [ti,1, ti,2]) is constructed from Θi[t]

with the help of the bitmap. Ŝi[t] is initiated with all the readings in Θi[t]. Then

for any id (id = 1, 2, . . . , N), if rid,t 6∈ Θi[t] but the
((

t
τ
− ti,1

τ

)
N + id

)
-th bit

of its local bitmap is set, HybridDB adds an approximate version r̂id,t to Ŝi[t],

which is constructed according to equation (7.2). Meanwhile, the approximate

version R̂i[id] of Ri[id] can be constructed as R̂i[id] =
{
r̂id,t | r̂id,t ∈

⋃ti,2
t=ti,1

Ŝi[t]
}

.

Finally, Ψ̃i[id] = {r̃id,t | t belongs to some time window fraction of mote id} is con-

structed as:

r̃id,t =

t−t′′
t′−t′′ r̂id,t′ + t′−t

t′−t′′ r̂id,t′′ r̂id,t 6∈ R̂i[id]

r̂id,t o.w.

(7.3)

which is similar to equation (7.1), except that Ri[id] is replaced with R̂i[id]. Obvi-

ously, ĩd = id and t̃ = t. Then, the client can construct Ψ̃i as Ψ̃i =
⋃N
id=1 Ψ̃i[id].

Theorem 7.4. The process described above can construct Ψ̃i correctly, i.e., for

any rid,t ∈ Ψi, there is a corresponding r̃id,t ∈ Ψ̃i, and vice verse. In addition,

L∞(Ψ̃i,Ψi) ≤ εi,1 + εi,2 is guaranteed.

Proof. We first prove that ∃r̃id,t ∈ Ψ̃i for ∀rid,t ∈ Ψi. Obviously, t must belong to

a time window fraction of mote id if rid,t ∈ Ψi. In addition, from Definition 7.1

144

and 7.2, we have ĩd = îd = id and t̃ = t̂ = t. Thus, R̂i[id] ⊆
⋃ti,2
t=ti,1

Ŝi[t] ⊆ Ψ̃i. If

rid,t ∈ Θi[t], r̃id,t = r̂id,t = rid,t ∈ R̂i[id] ⊆ Ψ̃i. Otherwise, rid,t may be suppressed

either by spatial approximate or temporal approximate. For the former case, the((
t
τ
− ti,1

τ

)
N + id

)
-th bit of the bitmap is set, and thus r̂id,t is recovered and added

to R̂i[id], which means r̃id,t = r̂id,t ∈ R̂i[id] ⊆ Ψ̃i. For the latter case, r̃id,t will be

recovered and added to Ψ̃i based on equation (7.3). Similarly, we can prove that

∃rid,t ∈ Ψi for ∀r̃id,t ∈ Ψ̃i. Therefore, the approximate version Ψ̃i of Ψi is constructed

correctly.

Next we prove L∞(Ψ̃i,Ψi) ≤ εi,1 + εi,2. For any rid,t ∈ Ψi, if the proxy does

not apply spatial approximate and returns Si[t]\Si−1[t] directly, we have r̂id,t = rid,t

and L∞(r̃id,t, rid,t) ≤ εi,1 based on Lemma 7.3. Now due to spatial approximate,

L∞(r̂id,t, rid,t) ≤ εi,2 based on Lemma 7.3 as well. In addition, according to Algo-

rithm 3, Ri[id] contains the first and last readings of every data page covered by

[ti,1, ti,2]. Consequently, in equation (7.3) in the third step, r̃id,t is approximated

using the approximate versions of another two readings (i.e., r̂id,t′ and r̂id,t′′) in the

same data page just as that in Algorithm 3, which means t′ < t < t′′. Therefore, for

any j, (j = 3, 4, . . . , d+ 2), we can obtain:

|(r̃id,t[j]− rid,t[j])wj| ≤
∣∣∣∣(t− t′′t′ − t′′

r̂id,t′ [j] +
t′ − t
t′ − t′′

r̂id,t′′ [j]− rid,t[j]
)
wj

∣∣∣∣
≤
∣∣∣∣(t− t′′t′ − t′′

(
rid,t′ [j]±

εi,2
wj

)
+

t′ − t
t′ − t′′

(
rid,t′′ [j]±

εi,2
wj

)
− rid,t[j]

)
wj

∣∣∣∣
≤
∣∣∣∣(t− t′′t′ − t′′

rid,t′ [j] +
t′ − t
t′ − t′′

rid,t′′ [j]− rid,t[j]
)
wj

∣∣∣∣+

∣∣∣∣ t− t′′t′ − t′′
± t′ − t
t′ − t′′

∣∣∣∣ εi,2
≤ εi,1 +

∣∣∣∣ t− t′′t′ − t′′
± t′ − t
t′ − t′′

∣∣∣∣ εi,2 ≤ εi,1 + εi,2

145

Therefore, L∞(Ψ̃i,Ψi) ≤ εi,1 + εi,2.

Base on Theorem 7.4, if HybridDB selects εi,2 = εi − εi,1 as shown in Algo-

rithm 4, the final overall error bound is guaranteed.

7.5 Adaptive Error Distribution

Algorithm 4 shows that the value of εi,1 decides the trade-offs of energy con-

sumption between sensor motes and the proxy, and response times between ρi

and ρi+1, ρi+2, Smaller εi,1 means more readings must be retrieved from sensors,

and thus larger response time for ρi. However, the proxy may be able to satisfy the

error bounds of ρi+1, ρi+2, . . . using only the readings buffered locally with higher

probability, and thus reduce their response times significantly and eliminate the

overhead to compute and transmit the bitmaps. In addition, with larger εi,2, more

readings can be suppressed by spatial approximate, which will reduce the number

of readings transmitted to the client by the proxy. Therefore, an adaptive mech-

anism is needed to adjust the error distribution between εi,1 and εi,2 based on the

parameters of ρi, which is implemented in the splitError function by the proxy.

The splitError function is designed based on the following observations

from the dataset collected from our testbed (Section 7.6). Firstly, temporal cor-

relation between sensor readings is stronger than spatial correlation. Thus, with

the same error bound, temporal approximate can potentially suppress more read-

ings than spatial approximate. Secondly, the cardinality of Ri[id] \ Ri−1[id] is very

small with large εi,1, but increases dramatically as εi,1 becomes small, as shown in

146

00.20.40.60.81
0

100

200

300

400

500

600

Error Bound

N
u

m
b

e
r

o
f

R
e

c
o

rd
s
 (

In
c
re

m
e

n
ta

l)

(a) Error step: 0.01

00.020.040.060.080.1
0

50

100

150

200

250

300

350

Error Bound

N
u

m
b

e
r

o
f

R
e

c
o

rd
s
 (

In
c
re

m
e

n
ta

l)

(b) Error step: 0.001

Figure 7.2: Distribution histograms of the readings from Sensor 7

Fig. 7.2a. In addition, with small εi−1,1, the cardinality of Ri[id] \ Ri−1[id] can still

be large even with a very tiny improvement on the error bound (i.e., εi−1,1 − εi,1 is

very tiny), as shown in Fig. 7.2b. Therefore, splitError should return a larger

value to favor temporal approximate for large k2− k1, large ti,2− ti,1 or small εi. In

our implementation, the following expression is adopted:

δ =

(
max

(
base

ti,2 − ti,1
× c1

k2 − k1

, 1

))−min (c2εi, c3)

∈ (0, 1] (7.4)

147

where base is an adjustable parameter inputted by the client, and c1, c2 and c3 are

application-specific positive constants.

7.6 Implementation and Evaluation

In this section, we describe the details of our experimental methodology. We

have implemented HybridDB in TinyOS 2.1 and evaluated incremental ε-approximate

querying in the network level. With all features included, our implementation re-

quires approximately 22.5KB ROM and 3.76KB RAM, which is well below the limit

of most constrained sensor platforms. All parameters of the HybridStore implemen-

tation are the same as those in Section 6.6.

We investigate the performance of HybridDB from a networking perspective,

evaluating the efficiency of incremental ε-approximate querying for both typical re-

finement queries and zoom-in queries in a real testbed. Our experiment testbed

consists of 12 IRIS sensor motes, one iMote2 mote as the proxy, and another iMote2

mote as the client that is connected to a PC through a serial port to receive queries

and report experiment statistics. The testbed is deployed in the north wing of the

Engineering Annex building in our campus, as shown in Fig. 7.3, to sample temper-

ature, relative humidity and light once every 30 seconds. Each IRIS mote partitions

its flash memory into two volumes: the first volume of 64KB is used as the NOR

flash, and the second volume of 448KB emulates a Toshiba TC58DVG02A1FT00

NAND flash. Each IRIS mote transmits two readings in every packet, while the

proxy puts four readings together into each packet. In the case of multi-hop com-

148

munication, each IRIS mote only records the number of packets sent by itself, and

does not count the packets forwarded for other motes. To ensure reliable data

collection, a packet will be retransmitted upon failure.

Figure 7.3: Testbed deployment in the Engineering Annex building: both single-

hop and multi-hop networks are considered. In the latter case, mote 1 – 8 locates

within one hop of the proxy, while mote 9 – 12 communicate with the proxy through

two-hop paths.

We first investigate the performance of HybridDB to process refinement queries.

Two queries are issued to the proxy by the client, with a short time window (2 hours)

and a long time window (8 hours), respectively. The value range for both queries

is [20 ◦C, 25 ◦C], and the error bounds of their sub-queries decrease from 1.5 to 0.

Other parameters are configured such that δ = 10−εi after substituting them into

equation (7.4). The statistics of the number of packets sent by each IRIS mote and

the proxy are shown Fig. 7.4 and Fig. 7.5, respectively.

We can observe that the test results of both refinement queries show similar

characteristics. Firstly, both the sensors and the proxy need to transmit many

packets for ρ1, because they need to transmit not only sensor readings, but also

149

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Sensor ID

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

1.5 1.1 0.8 0.5 0.1 0.025 0.01 0.00125 0.0

(a) Time window = 2 hours

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

350

400

450

500

Sensor ID

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

1.5 1.1 0.8 0.5 0.1 0.025 0.01 0.00125 0.0

(b) Time window = 8 hours

Figure 7.4: Number of packets sent by each sensor in each sub-query

the information about time window fractions on each sensor and the bitmap. Due

to the relatively large number of readings, the compression ratio of the bitmap on

the proxy is not so good, resulting in more overhead. However, since ε1 is large,

our adaptive error distribution mechanism predicts that the client is very likely to

issue more refinement sub-queries in order to get a satisfactory set of readings. As

a result, a small δ is returned such that more readings can be retrieved from the

sensors in advance. We can see that the proxy processes the following four sub-

queries directly using only the readings buffered locally. This can not only reduce

the response times for these sub-queries significantly as shown in Fig. 7.6, but also

150

1.5 1.1 0.8 0.5 0.1 0.025 0.01 0.00125 0.0
0

20

40

60

80

100

120

Error Bound

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

(a) Time window = 2 hours

1.5 1.1 0.8 0.5 0.1 0.025 0.01 0.00125 0.0
0

50

100

150

200

250

300

350

400

450

Error Bound

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

(b) Time window = 8 hours

Figure 7.5: Number of packets sent by the proxy in each sub-query

eliminate the overhead to transmit bitmaps to the client because they do not require

the proxy to retrieve more readings from the sensors. Finally, as εi becomes very

small, a large δ is returned to force the proxy to retrieve only the required readings

from the sensors, because the client may be satisfied with the output of ρi with high

151

probability. Meanwhile, as shown in Fig 7.2b, only a minor improvement over a tiny

error bound may result in a large amount of extra readings to be retrieved.

1.5 1.1 0.8 0.5 0.1 0.025 0.01 0.00125 0.0
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

Error Bound

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

2 Hours, 1 Hop

2 Hours, 2 Hops

8 Hours, 1 Hop

8 hours, 2 Hops

Figure 7.6: The response time of each sub-query with different query time windows

in different network topologies

With the help of our adaptive error distribution mechanism, the response times

for sub-queries with small error bounds are well balanced. As a result, HybridDB can

also provide a much better user experience, because the client can refine the query

result gradually with an acceptable response time for each improvement, rather

than wait for a long time at the risk of no response from the proxy, or retrieving

over-qualified set of readings. Fig. 7.6 also shows that HybridDB works well in the

multi-hop network, with the average response time increased by 41.61% compared

to that in the single-hop network.

Next, we investigate the performance of HybridDB to process zoom-in queries,

which are especially useful for searching interesting events in large time windows

and retrieving only a small amount of readings to get detailed information about

these events. In this scenario, the parameters in equation (7.4) are configured such

152

that δ =
(

12 hours
ti,2−ti,1

)−εi
. We imitate a typical procedure that may be adopted by the

client to locate interesting events. The client first issue three sub-queries with large

time windows and large error bounds to obtain an overview of the environment to

learn the general situation. Suppose the client finds a time interval in which some

interesting events potentially happened. Then, the client issues the following zoom-

in sub-queries with tighter error bounds and smaller time windows to focus on the

interesting events and obtain more detailed information gradually. The test result

is shown in Fig. 7.7, which reveals that HybridDB can process each zoom-in sub-

queries promptly. The client can locate the interesting events efficiently with highly

or even completely accurate information, while significantly reducing the amount of

energy wasted to retrieve unnecessary details in blind event searching and avoiding

depressing large latency.

1.5 (12h) 1.0 (12h) 0.5 (12h) 0.25 (10h) 0.125 (8h) 0.05 (4h) 0.025 (3h) 0.00125 (2h) 0.0 (1h)

2

4

6

8

10

Error Bound (Time Window)

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

1 Hop

2 Hops

Figure 7.7: The response time of a sequence of Refinement-ZoomIn sub-queries in

different network topologies

153

7.7 Summary

In this chapter, we proposed HybridDB, an efficient light-weight distributed

database system for flashed-based storage-centric wireless sensor networks. HybridDB

supports an incremental ε-approximate querying scheme, with which clients can

carry out “Google Map”-like refinement queries and zoom-in queries to locate in-

teresting events and retrieve just-sufficient set of readings with arbitrary L∞-norm

error bounds gradually. Unlike traditional approximate querying mechanisms, sen-

sor readings that have been already retrieved by previous sub-queries with looser

error bounds will not be transmitted again. An adaptive error distribution mecha-

nism between temporal approximate and spatial approximate is designed based on

the characteristics of sensor readings and typical query procedures. This mechanism

can balance the trade-offs of energy consumption between sensors and the proxy,

and response times between the current sub-query and the following sub-queries

effectively.

Our implementation and evaluation of HybridDB on our sensor testbed de-

ployed in real world reveals that HybridDB can process both refinement queries

and zoom-in queries efficiently, providing much better user experience by processing

each sub-query promptly, and significantly reducing the amount of energy wasted

to retrieve unnecessary readings that will generate over-qualified results.

154

Chapter 8

Conclusions

In this dissertation, we designed and implemented a model-based systems de-

sign framework, called WSNDesign, to facilitate the design and implementation of

wireless sensor networks for Smart Buildings. WSNDesign provides a hierarchy of

model libraries to model various behaviors and structures of sensor networks in the

context of Smart Buildings, and introduces a system design flow to compose both

continuous-time and event-triggered modules to develop applications. WSNDesign

can support co-simulations of SysML and Simulink with the help of IBM Rhapsody.

In addition, based on the FMI standard, WSNDesign can generate codes and FMUs

to co-simulate TinyOS applications and Modelica models. Finally, WSNDesign can

expose a sequence of design choices to system designers, and provides instant feed-

back about the influence of a design decision on the complexity of system analysis.

To enrich our model libraries and facilitate the collection and retrieval of sen-

sor data for application development, we designed and implemented HybridDB, a

distributed database system supporting in situ data storage on sensor motes and

ε-approximate querying in sensor networks. We implemented HybridDB in TinyOS

2.1 and studied its performance on a sensor network testbed. The implementation

of HybridDB is transformed and imported to WSNDesign as a part of the Service

Library.

155

Appendix A

Formulation of Tree Decomposition

Definition A.1. Define a system as the tuple P = 〈L,P1(X1), . . . ,PM(XM)〉, with

L = {Σ1, . . . ,ΣN} and Xi ⊆ L for i = 1, . . . ,M. Each Σi ∈ L is a set corresponding

to the domain of a system variable xi. Each Pi (i = 1, . . . ,M) is a general component

that influences the variables with domains Xi.

Observe that in general, the X values are not disjoint. In this model, the

sharing of variables between components indicates communication between those

components. We may exploit a Parametric diagram in SysML to capture any system

as defined above. The constraint blocks are the components Pi of the system and

the variables correspond to the variables Σi of the system. Each constraint block Pi

has its own associated list of variables Xi.

Definition A.2. Define the flattening of a system P as the graph G = 〈L, E〉 with

E = {(x, y) | ∃i ∈ [1,M] s.t. (x, y ∈ Xi) ∧ (x 6= y)}. Every parameter set defined

by Xi induces a clique of mutually connected nodes in the flattened graph G.

Definition A.3. Define the elimination of a node Σ ∈ L from the graph G =

〈L, E〉, denoted by
⊕

ΣG, as the graph G′ = 〈L \ {Σ}, E ′〉, where E ′ is defined as

(E \ {(x, y) | Σ ∈ {x, y}})
⋃
F . Here, F is the set of links in the clique induced by

the set of neighbors N(Σ) of Σ.

This definition reflects the fact that in a semiring context, eliminating a vari-

156

able (by summation) first entails collecting all the constraints that include this

variable. The induced clique over the neighbors of Σ affects the necessary collection

of constraints. Let Lp = 〈Σi1 , . . . ,ΣiM〉 be a permutation of L, which can be viewed

as an elimination ordering.

Definition A.4. The sequence of graphs induced by an elimination ordering Lp,

which is denoted by 〈G1(Lp), . . . , GN+1(Lp)〉, is defined asG1(Lp) = G andGk+1(Lp) =⊕
Σik

Gk(Lp) for k = 1, . . . ,N .

It is clear from the above definition that GN+1(Lp) must be an empty graph

because all nodes have been eliminated. This elimination induces also a sequence of

cliques in the graph.

Definition A.5. The sequence of cliques induced by an elimination ordering Lp,

which is denoted by 〈C1(Lp), . . . , CN (Lp)〉, is defined as Ck = NGk(Lp)(Σik)
⋃
{Σik}

for k = 1, . . . ,N . Here, NGk(Lp)(Σik) is the set of neighbors of Σik in Gk(Lp) from

the sequence of graphs induced by Lp.

Note that in this definition, there may be cliques Ck(Lp) that are contained

in other cliques.

Definition A.6. The width of graph G with respect to ordering Lp is defined as

the maximum size of the cliques in the sequence of induced cliques minus 1, i.e.,

WG(Lp) = maxk |Ck(Lp)| − 1 .

The extra minus 1 ensures that the treewidth of a tree is 1. The treewidth W

157

of a system P is defined as:

W = min
Lp

WG(Lp) = min
Lp

max
k
|Ck(Lp)| − 1 (A.1)

The value of W gives the minimal tree decomposition of the system. The optimiza-

tion in equation (A.1) is NP-hard [84]. Since such problems are not tractable in

general, we present a hierarchical algorithm exploiting random search to compute a

sequence of upper bound on treewidth.

A node is simplical if all of its neighbors are mutually connected. Since the

optimization parameter is a permutation, the search space has a tree structure.

There are sub-sequences of the permutation that are determined and do not need to

be searched. Specially, when there are simplical nodes in the network, they can be

eliminated immediately. Furthermore, when there are multiple simplical nodes, the

order of their eliminations does not affect the resulting treewidth. A simplical node

can be eliminated by removing it from the set of nodes and all the links incident to

it. Given two simplical nodes x and y, the resulting graph after eliminating both of

them from G = 〈L, E〉 has the nodes L \ {x, y} and the set of edges that are not

incident to x or y. Therefore, the eliminating order of x and y does not matter to

the resulting graph, i.e.,
⊕

x

⊕
y G =

⊕
y

⊕
xG.

Theorem A.7. Let Lp be an elimination order where Σik and Σik+1 are both sim-

plical in Gk(Lp), and L′p be another elimination order by swapping Σik and Σik+1

in Lp. Then WG(L′p) = WG(Lp).

Proof. Since Lp and L′p differ only in swapping Σik and Σik+1, we have Gi(Lp) =

Gi(L′p) for i = 1, . . . , k. In addition, since both Σik and Σik+1 are simplical, we

158

can obtain Gi(Lp) = Gi(L′p) for i = k + 3, . . .N + 1 from the above discussion.

Now we consider the cases for i = k + 1, k + 2. If Σik and Σik+1 are neighbors,

the fact that they are simplical in Gk(Lp) implies that Σik and Σik+1 are part of

the same clique in Gk(Lp). So Σik and Σik+1 are symmetrical and indistinguishable

with respect to the sizes of the cliques formed. If they are not neighbors, it is clear

that Ci+1(Lp) = Ci+2(L′p) and Ci+2(Lp) = Ci+1(L′p) because the eliminations are

completely independent of each other. Therefore, we have WG(L′p) = WG(Lp).

Theorem A.7 states that eliminations of simplical nodes are commutative with

respect to the treewidth of the resulting graphs. Therefore, simplical nodes can be

eliminated in any order without impacting the width of the graph.

Interactive Tool Based on the theory of tree decomposition, we develop a graphical

tool that exposes a sequence of design choices to system designers, provides instant

feedback about the influence of a design decision on the complexity of system anal-

ysis, and gradually reduce the upper bound on system treewidth over time. The

algorithm to find the treewidth of a graph can be sketched out as follows:

1. Eliminate all simplical nodes in any order.

2. If any nodes remain, eliminate one randomly.

3. If any nodes remain, return to step 1.

This algorithm eventually finds all valid elimination orders if running enough iter-

ations. The probability that a particular order is not found is roughly
(
1− 1

n

)k
,

159

where n is the number of all valid elimination orders and k is the number of itera-

tions.

In order to speed up convergence of the above algorithm, we collect statistics

about the decisions made and use these statistics to improve future guesses. The

algorithm that we implement builds a tree of pre-specified bounded size, as shown in

Fig. A.1. The system uses a predefined size for the search tree, bounded by memory

constraints. At each node of the tree, a metric representing the sample mean under

blind search from that node is maintained. The algorithm alternates between blind

search and directed search. The blind search samples alternatives uniformly. The

directed search samples branches in proportion to the expected value of the score

function, which in this case is e−w where w is the expected width of a branch.

 

Figure A.1: This figure shows the search tree through the permutation space. The

nodes are the different valid eliminations. The shaded region represents the nodes

held in memory for which statistics have been collected.

160

Appendix B

Publication

[1] B. Wang and J. S. Baras. “WSNDesign: A Modeling, Design and Co-
simulation Framework for Wireless Sensor Networks”. In preparation for jour-
nal submission, 2013.

[2] Book chapter in “System Design, Modeling, and Simulation Using Ptolemy
II” (Editor: Claudius Ptolemaeus), Ptolemy.org, 2014

[3] B. Wang and J. S. Baras. “HybridSim: A Modeling and Co-simulation
Toolchain for Cyber-physical Systems ”. In the 17th IEEE/ACM International
Symposium on Distributed Simulation and Real Time Applications (DS-RT),
2013, Delft, Netherlands.

[4] B. Wang. “Storage-centric Sensor Networks for Smart Buildings”. In the
12th ACM/IEEE Conference on Information Processing in Sensor Networks
(IPSN, extended abstract), 2013.

[5] B. Wang and J. S. Baras. “HybridDB: An Efficient Database System Sup-
porting Incremental ε-Approximate Querying for Storage-Centric Sensor Net-
works”. Submitted to the ACM Transactions on Sensor Networks, 2013

[6] S. Yang, B. Wang and J. S. Baras. “Interactive Tree Decomposition Tool for
Reducing System Analysis Complexity”. In the 11th Annual Conference on
Systems Engineering Research, 2013.

[7] B. Wang and J. S. Baras. “HybridStore: An Efficient Data Management Sys-
tem for Hybrid Flash-based Sensor Devices”. In the 10th European Conference
on Wireless Sensor Networks (EWSN), 2013, Ghent, Belgium.

[8] B. Wang and J. S. Baras. “Minimizing Aggregation Latency under the Phys-
ical Interference Model in Wireless Sensor Networks”. In IEEE SmartGrid-
Comm, 2012, Tainan City, Taiwan.

[9] B. Wang and J. S. Baras. “Integrated Modeling and Simulation Framework
for Wireless Sensor Networks”. In IEEE WETICE (CoMetS track), 2012,
Toulouse, France.

[10] B. Wang and J. S. Baras. “Performance Analysis of Time-Critical Peer-
to-Peer Communications in IEEE 802.15.4 Networks”. In IEEE ICC, 2011,
Kyoto, Japan.

161

[11] K. Jain, K. Somasundaram, A. R. Chowdhury, B. Wang and J. S. Baras.
“Study of OLSR for Real-time Media Streaming over 802.11 Wireless Networks
in Software Emulation Environment”. In ICST SIMUTools, 2011, Barcelona,
Spain.

[12] B. Wang and X. Jia. “Reduce Data Aggregation Latency by Using Par-
tially Overlapped Channels in Wireless Sensor Networks”. In IEEE Globe-
Com, 2009, Hawaii, USA.

[13] J. Zhang, B. Wang and X. Jia. “Relative-Closest Connect-First Method for
Topology Control in Wireless Mesh Networks”. In IEEE GlobeCom, 2009,
Hawaii, USA.

[14] D. Li, B. Wang and X. Jia. “Topology Control for Throughput Optimization
in Wireless Mesh Networks”. In The 4th International Conference on Mobile
Ad-hoc and Sensor Networks (MSN), 2008, Wuhan, China.

162

Bibliography

[1] Nicolas Tsiftes and Adam Dunkels. A database in every sensor. In Proceedings
of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys
’11, pages 316–332, 2011.

[2] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML: Systems Modeling Language (2nd Edition). Morgan Kaufmann Pub-
lishers Inc., 2011.

[3] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. Mod-
eling cyber-physical systems. Proceedings of the IEEE Special Issue on CPS,
December 2011.

[4] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I. Sookoor, Raymond
Dawson, John Stankovic, and Kamin Whitehouse. The hitchhiker’s guide to
successful residential sensing deployments. In Proceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems, SenSys ’11, pages 232–245,
2011.

[5] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and
David Culler. smap: a simple measurement and actuation profile for physical in-
formation. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’10, pages 197–210, 2010.

[6] Stephen Dawson-Haggerty, Steven Lanzisera, Jay Taneja, Richard Brown, and
David Culler. @scale: insights from a large, long-lived appliance energy wsn.
In Proceedings of the 11th international conference on Information Processing
in Sensor Networks, IPSN ’12, pages 37–48, 2012.

[7] Shah-An Yang and John S. Baras. Factor join trees for systems exploration.
In Proceedings of the 23rd International Conference on Software and Systems
Engineering and their Applications, ICSSEA ’11, pages 1 – 12, 2011.

[8] Yanlei Diao, Deepak Ganesan, Gaurav Mathur, and Prashant Shenoy. Re-
thinking data management for storage-centric sensor networks. In CIDR, pages
22–31, 2007.

[9] Song Lin, Demetrios Zeinalipour-Yazti, Vana Kalogeraki, Dimitrios Gunopulos,
and Walid A. Najjar. Efficient indexing data structures for flash-based sensor
devices. ACM Trans. on Storage, 2(4):468–503, November 2006.

[10] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy.
Ultra-low power data storage for sensor networks. In Proceedings of the 5th
international conference on Information processing in sensor networks, IPSN
’06, pages 374–381, 2006.

163

[11] Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao, and Shashi
Singh. Lazy-adaptive tree: an optimized index structure for flash devices. In
Proc. VLDB Endow., volume 2, pages 361–372. VLDB Endowment, August
2009.

[12] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, and Jin-Soo Kim. µ-tree: an
ordered index structure for nand flash memory. In Proceedings of the 7th ACM
& IEEE international conference on Embedded software, EMSOFT ’07, pages
144–153, 2007.

[13] Suman Nath and Phillip B. Gibbons. Online maintenance of very large random
samples on flash storage. In Proc. VLDB Endow., pages 970–983, 2008.

[14] Suman Nath and Aman Kansal. FlashDB: dynamic self-tuning database for
nand flash. In Proceedings of the 6th international conference on Information
processing in sensor networks, IPSN ’07, pages 410–419, 2007.

[15] Shaoyi Yin, Philippe Pucheral, and Xiaofeng Meng. A sequential indexing
scheme for flash-based embedded systems. In Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’09, pages 588–599, 2009.

[16] Huan Li, Dong Liang, Lihui Xie, Gong Zhang, and Krithi Ramamritham. TL-
Tree: flash-optimized storage for time-series sensing data on sensor platforms.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 1565–1572, 2012.

[17] Suman Nath. Energy efficient sensor data logging with amnesic flash storage.
In Proceedings of the 2009 International Conference on Information Processing
in Sensor Networks, IPSN ’09, pages 157–168, 2009.

[18] David Chu, Amol Deshpande, Joseph M. Hellerstein, and Wei Hong. Approx-
imate data collection in sensor networks using probabilistic models. In Pro-
ceedings of the 22nd International Conference on Data Engineering, ICDE ’06,
pages 48–60, 2006.

[19] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein,
and Wei Hong. Model-driven data acquisition in sensor networks. In Proceedings
of the Thirtieth international conference on Very large data bases - Volume 30,
VLDB ’04, pages 588–599, 2004.

[20] Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. TSAR: a two tier
sensor storage architecture using interval skip graphs. In Proceedings of the 3rd
international conference on Embedded networked sensor systems, SenSys ’05,
pages 39–50, 2005.

[21] P. Derler, E.A. Lee, and A.-S. Vincentelli. Modeling cyber-physical systems.
Proceedings of the IEEE, 100(1):13–28, 2012.

164

[22] Kevin Klues, Gregory Hackmann, Octav Chipara, and Chenyang Lu. A
component-based architecture for power-efficient media access control in wire-
less sensor networks. SenSys, pages 59–72, November 2007.

[23] Cheng Tien Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, Arsalan
Tavakoli, David Culler, Scott Shenker, and Ion Stoica. A modular network
layer for sensornets. USENIX OSDI, 2006.

[24] Elaine Cheong, Edward A. Lee, and Yang Zhao. Viptos: a graphical develop-
ment and simulation environment for tinyos-based wireless sensor networks. In
ACM SenSys, pages 302–302, 2005.

[25] M M R Mozumdar, Francesco Gregoretti, Luciano Lavagno, Laura Vanzago,
and Stefano Olivieri. A framework for modeling, simulation and automatic code
generation of sensor network applications. SECON, 2008.

[26] Derek Riley, Emeka Eyisi, Jia Bai, Xenofon Koutsoukos, Yuan Xue, and Janos
Sztipanovits. Networked control system wind tunnel (ncswt): an evaluation
tool for networked multi-agent systems. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques (SIMUTools), pages 9–
18, 2011.

[27] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel.
Glonemo: global and accurate formal models for the analysis of ad-hoc sensor
networks. 1st Intl. Conf. on Integrated Internet Ad Hoc and Sensor Networks
(InterSense), 2006.

[28] Pruet Boonma and Junichi Suzuki. Moppet: A model-driven performance
engineering framework for wireless sensor networks. The Computer Journal,
53(10):1674–1690, 2010.

[29] IBM. IBM Rational Rhapsody Help. www.ibm.com/software/awdtools/
rhapsody/.

[30] Dassault Systemes. Dymola. http://www.3ds.com/products/catia/
portfolio/dymola.

[31] IEEE 802.15 TG4. IEEE 802.15.4 Standard. http://www.ieee802.org/
15/pub/TG4.html.

[32] ITU-R. Propagation data and prediction models for indoor radio communica-
tion systems. ITU-R Recommendations, 2001.

[33] Ahmad T. Al-Hammouri, Michael S. Branicky, and Vincenzo Liberatore. Co-
simulation tools for networked control systems. In Proceedings of the 11th in-
ternational conference on Hybrid Systems: Computation and Control (HSCC),
pages 16–29, 2008.

165

[34] Baobing Wang and John S. Baras. Integrated modeling and simulation frame-
work for wireless sensor networks. In IEEE 21st WETICE, pages 1 – 6, 2012.

[35] MAP FMI. Functional Mock-up Interface. https://www.fmi-standard.
org/.

[36] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen. How does control
timing affect performance? analysis and simulation of timing using jitterbug
and truetime. IEEE Control Systems, 23(3):16–30, 2003.

[37] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: accurate
and scalable simulation of entire tinyos applications. In ACM SenSys, pages
126–137, 2003.

[38] Ahmad T. Al-Hammouri. A comprehensive co-simulation platform for cyber-
physical systems. Computer Communications, 36(1):8–19, December 2012.

[39] T. Kohtamaki, M. Pohjola, J. Brand, and L.M. Eriksson. PiccSIM toolchain -
design, simulation and automatic implementation of wireless networked control
systems. In Networking, Sensing and Control, 2009. ICNSC ’09. International
Conference on, pages 49–54, 2009.

[40] O. Heimlich, R. Sailer, and L. Budzisz. NMLab: A co-simulation framework
for matlab and ns-2. In Advances in System Simulation (SIMUL), 2010 Second
International Conference on, pages 152–157, 2010.

[41] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. ACM
SIGPLAN Notices, 35(11):93–104, November 2000.

[42] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sensor
network simulation with precise timing. In ACM/IEEE IPSN, 2005.

[43] Modelica Association. Modelica Language Specification 3.3. https://www.
modelica.org.

[44] Lawrence Berkeley National Laboratory. Modelica Buildings Library. http:
//simulationresearch.lbl.gov/modelica/.

[45] Christiaan J.J. Paredis, Yves Bernard, Roger M. Burkhart, Hans-Peter de Kon-
ing, Sanford Friedenthal, Peter Fritzson, Nicolas F. Rouquette, and Wladimir
Schamai. An overview of the sysml-modelica transformation specification. In
INCOSE International Symposium, 2010.

[46] Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre Borgnat, Patrick Flan-
drin, Kensuke Fukuda, David Culler, and Hiroshi Esaki. Strip, bind, and
search: a method for identifying abnormal energy consumption in buildings.
In ACM/IEEE IPSN, pages 129–140, 2013.

166

[47] QTronic GmbH. FMU SDK 1.0.2. http://www.qtronic.de/en/
fmusdk.html.

[48] JModelica.org. PyFMI 1.2.1. http://www.jmodelica.org/page/4924.

[49] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Collection tree protocol. In ACM SenSys, pages 1–14, 2009.

[50] HyungJune Lee, Alberto Cerpa, and Philip Levis. Improving wireless simulation
through noise modeling. In ACM/IEEE IPSN, pages 21–30, 2007.

[51] NS-3 Consortium. ns-3 Network Simulator. http://www.nsnam.org/.

[52] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. 1988.

[53] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard
problems restricted to partial k-trees. Discrete Appl. Math., 23(1):11–24, 1989.

[54] H. Bodlaender. Dynamic programming on graphs with bounded treewidth.
Automata, Languages and Programming, pages 105–118, 1988.

[55] S. Yang and J. S. Baras. Factor join trees for systems exploration. In Interna-
tional Conference on Software and Systems Engineering and their Applications,
pages 1–10, 2011.

[56] Marin D. Guenov. Complexity and cost effectiveness measures for systems
design. In Manufacturing Complexity Network Conference, pages 1–13, 2002.

[57] Stephen C. Y. Lu and Nam-Pyo Suh. Complexity in design of technical systems.
CIRP Annals - Manufacturing Technology, 58(1):157 – 160, 2009.

[58] E.M. Clarke. Compositional model checking. In Proceedings of Fourth Annual
Symposium on Logic in Computer Science, pages 353 – 362, 1989.

[59] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, 1992. UMI Order No. GAX92-24209.

[60] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’99, pages 193–207, 1999.

[61] E.M. Clarke. Computer-aided verification. IEEE Spectrum, 33(6):61 – 67, 1996.

[62] Baobing Wang and J.S. Baras. Performance analysis of time-critical peer-to-
peer communications in ieee 802.15.4 networks. In IEEE ICC, pages 1–6, 2011.

[63] Shah-An Yang, Baobing Wang, and John S. Baras. Interactive tree decompo-
sition tool for reducing system analysis complexity. In the 11th Annual Con-
ference on Systems Engineering Research, CSER ’13, pages 1 – 10, 2013.

167

[64] S. Yang, Y. Zhou, and J. S. Baras. Compositional analysis of dynamic bayesian
networks and applications to cps. In Conference on Systems Engineering Re-
search (CSER), pages 1–10, 2013.

[65] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Trans. on Database Syst., 30(1):122–173, March 2005.

[66] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Cap-
sule: an energy-optimized object storage system for memory-constrained sensor
devices. In Proceedings of the 4th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’06, pages 195–208, 2006.

[67] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
Approximate query processing using wavelets. The VLDB Journal, 10(2-3):199–
223, September 2001.

[68] Waylon Brunette, Rita Sodt, Rohit Chaudhri, Mayank Goel, Michael Falcone,
Jaylen Van Orden, and Gaetano Borriello. Open data kit sensors: a sensor
integration framework for android at the application-level. In Proceedings of
the 10th international conference on Mobile systems, applications, and services,
MobiSys ’12, pages 351–364, 2012.

[69] Unkyu Park and John Heidemann. Data muling with mobile phones for sen-
sornets. In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’11, pages 162–175, 2011.

[70] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt. Enabling large-
scale storage in sensor networks with the coffee file system. In Proceedings of the
2009 International Conference on Information Processing in Sensor Networks,
IPSN ’09, pages 349–360, 2009.

[71] Devesh Agrawal, Boduo Li, Zhao Cao, Deepak Ganesan, Yanlei Diao, and
Prashant Shenoy. Exploiting the interplay between memory and flash storage
in embedded sensor devices. In 16th IEEE Intl. Conf. on Embedded and Real-
Time Computing Systems and Applications, pages 227–236, 2010.

[72] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyStash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, SIGMOD
’11, pages 25–36, 2011.

[73] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with
quality guarantees. In Proceedings of the 19th IEEE International Conference
on Data Engineering, ICDE ’03, pages 429 – 440, march 2003.

[74] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin, and Samuel
Madden. Distributed regression: an efficient framework for modeling sensor

168

network data. In Proceedings of the 3rd international symposium on Informa-
tion processing in sensor networks, IPSN ’04, pages 1–10, 2004.

[75] Amol Deshpande and Samuel Madden. MauveDB: supporting model-based
user views in database systems. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 73–84,
2006.

[76] Song Lin, B. Arai, D. Gunopulos, and G. Das. Region sampling: Continuous
adaptive sampling on sensor networks. In Proceedings of the 24th IEEE In-
ternational Conference on Data Engineering, ICDE ’08, pages 794 –803, april
2008.

[77] Liu Yu, Jianzhong Li, Hong Gao, and Xiaolin Fang. Enabling ε-approximate
querying in sensor networks. Proc. VLDB Endow., 2(1):169–180, August 2009.

[78] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.
ACM Computing Surveys, 37(2):138–163, 2005.

[79] Atmel Inc. AT45DB041B. http://www.atmel.com/Images/doc3443.
pdf.

[80] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Com-
munications of the ACM, 33(6):668–676, 1990.

[81] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[82] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and
Ciarán Mc Goldrick. PowerTOSSIMz: realistic energy modelling for wireless
sensor network environments. In Proc. of the 3nd ACM workshop on Perfor-
mance monitoring and measurement of heterogeneous wireless and wired net-
works, pages 35 – 42, 2008.

[83] L. Peter Deutsch. DEFLATE compressed data format specification. http:
//tools.ietf.org/pdf/rfc1951.pdf, 1996.

[84] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of
finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–
284, April 1987.

169

