
ABSTRACT

Title of dissertation: CROSS-LAYER ASPECTS OF COGNITIVE
WIRELESS NETWORKS

Anthony A. Fanous, Doctor of Philosophy, 2013

Dissertation directed by: Professor Anthony Ephremides
Department of Electrical and Computer Engineering

We study cognitive wireless networks from a cross-layer perspective, where we

investigate the effects of the PHY layer parameters and enhancements on the MAC

layer performance. We quantify the benefit of using sophisticated techniques such

as cooperative communications and network coding in cognitive networks.

The first part deals with unicast scenarios. We first study the problem of ran-

dom access over time varying channels with cognitive nodes adjusting their access

probabilities according to the decentralized channel state information they acquire

at the PHY layer. We derive the conditions for our random access scheme to out-

perform orthogonal access.

We then study the case where a set of secondary users (SUs) opportunistically ac-

cesses the primary user’s (PU) spectrum whenever it is idle. Since sensing errors

are unavoidable, we study the effect of the interference from the SUs on the stable

throughput of the PU. We then compute the range of the SUs’ transmission param-

eters that guarantees the stability of the PU queue. In order to balance the negative

effects of the interference from the SUs, we propose a PHY layer relaying protocol



between the PU and SU networks that is based on distributed orthogonal space-time

block codes. Under this protocol, it is shown that the PU’s throughput gain from

relaying increases with the number of SUs. Moreover, the SUs might benefit from

relaying the PU’s packets as well.

Next, we propose and analyze access schemes at the SUs aiming at exploiting the

SU’s knowledge of the statistics of various channels and of the average arrival rate

to the PU. The motivation is that although the traditional opportunistic spectrum

access (OSA) guarantees full protection to the PUs, it is sometimes too conservative

if the interference caused by the SUs at the PU receiver is negligible. We derive the

conditions under which schemes without sensing outperform schemes with sensing

since they offer to the SU more data transmission duration.

The second part of the dissertation deals with cognitive multicasting networks.

First, we study relay assisted multicasting. The relay delivers the unsuccessful pack-

ets of the source during the idle slots of the source which are determined by sensing.

This avoids allocating any explicit resources to the relay. We then substantiate the

benefit of using network coding (NC) at the relay.

Finally, we study the problem of reliable spectrum sensing and opportunistic access

on channels with stochastic traffic in batch processing systems such as NC. We show

how an SU can leverage the structure induced by block-based NC on PUs’ channels

to mitigate the effects of channel sensing errors and improve the throughput. We

consider two different objectives at the SU: quickest detection of an idle slot and

throughput maximization. We validate our results with real radio measurements

taken in software-defined radio based wireless network tests.
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Chapter 1: Introduction

One of the main goals of the science of information, known as “information

theory”, is to characterize the ultimate rates at which information can be reliably

communicated over the physical media. Despite its success in characterizing the

information theoretic capacities in several scenarios, characterizing the capacity of

wireless networks is, to date, an open problem. A main obstacle to achieving that

goal is that some of the fundamental assumptions in information theory such as

the continuous availability of traffic and the infinite delay to decoding are not ap-

plicable to networks. In networks, source burstiness is a central phenomenon that

allows resource sharing between users and delay is a fundamental quantity as both

a performance measure and a parameter affecting the rate-accuracy tradeoff [1].

In the scarcity of results on information theoretic capacities for networks, com-

munication networks were traditionally designed in a heuristic layered approach,

where each function is attributed to a particular layer and different layers are sep-

arately designed. Such approach with its standardized framework: the open system

interconnection (OSI) was proven to be very successful in designing robust wired

networks. However, with the proliferation of wireless networks, several shortcomings

have been observed in the OSI model [2, 3]. In fact, it has been demonstrated that
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joint optimization between multiple layers can lead to performance gains in wireless

systems. The reason behind this discrepancy is that the wired medium can well be

modeled as a time invariant system whose characteristics are well understood and

the separate optimization of layers is effective. However, in wireless channels, the

inherent random variations affect all the layers and a cross-layer approach that ac-

counts for the interaction between the layers is essential in designing modern wireless

networks.

The fast paced advances in communication networks, witnessed in the last

decades, were mainly due to both the advances in the design of the protocols and

algorithms as well as the breakthroughs in the hardware technology that allowed

the creation of computationally powerful devices. Such sophisticated devices allowed

the creation of cognitive radios defined as [4]: “A cognitive radio is an intelligent

wireless communication system that is aware of its surrounding environment (i.e.,

outside world), and uses the methodology of understanding-by-building to learn from

the environment and adapt its internal states to statistical variations in the incoming

RF stimuli by making corresponding changes in certain operating parameters (e.g.,

transmit-power, carrier-frequency, and modulation strategy) in real-time, with two

primary objectives in mind: highly reliable communications whenever and wherever

needed and efficient utilization of the radio spectrum.” This latter objective and the

observation that restricting the spectrum access only to licensed users represents a

highly inefficient resource utilization since actual measurements indicated that most

of these spectrum bands remain idle for a significant fraction of time [5–7] motivated

the idea of cognitive networks [4, 8–10]. In cognitive networks, the spectrum is

2



made available to both licensed (also called primary) users as well as unlicensed

(secondary) cognitive users. Secondary users (SUs) by their capability to explore

the spectrum, opportunistically access the licensed spectrum in such a way that the

interference on the primary users (PUs) is limited or even completely avoided.

Several approaches to cognitive radio network operation have been suggested

in the literature [9, 11, 12]. Two main paradigms exist for cognitive access, namely,

spectrum sharing (SS) and opportunistic spectrum access (OSA). In spectrum shar-

ing systems, the SUs are allowed to transmit concurrently with the the PUs given

some measures to keep the interference caused on primary users within allowable

limits, usually within the primary node’s noise floor. However, this restriction leads

to a very low SUs allowable transmission power and the throughput of the SUs

becomes negligible. Opportunistic spectrum access systems aim at avoiding concur-

rent transmissions between the PUs and the SUs by restricting the SUs to access the

channel only at unoccupied temporal, spectral or spatial holes. In order to achieve

that goal, the SUs sense the channel at every slot and access it only if no ongoing

primary transmissions are detected [13,14].

1.1 Cross-Layer Design of Cognitive Wireless Networks

In this dissertation, we aim at presenting a cross-layer approach in designing

cognitive wireless networks. We mainly focus at jointly designing the physical (PHY)

and media access control (MAC) layers to achieve optimal designs that cannot be

achieved with the traditional layered approach. We study several cross-layer designs

3



for both unicast and multicast cognitive networks.

1.1.1 Unicast Cognitive Wireless Networks

Random Access is preferred in large wireless networks since its decentralized

operation eliminates the need of coordination between the nodes, which largely

simplifies the MAC layer protocol design. Even systems with centralized scheduling

use random access for initial admission of the users, where the users use random

access for the initial access to the network before being allocated dedicated resources

(e.g., the random access channel (RACH) in 3G and 4G-LTE systems). Traditional

random access systems (ALOHA) was initiated by the work of Abramson [15] where

the access probabilities of the users are assumed fixed. By adding cognition to

the nodes that randomly access the channel, the transmission probabilities can be

adapted to the channel variations. In that direction, we propose a channel-aware

random access scheme where the users, independently, adjust their transmission

probabilities according to the channel state information that they acquire. We show

that such adaptive scheme might outperform orthogonal access schemes.

We then turn the attention to cognitive networks where the SUs opportunis-

tically access the licensed spectrum of the PUs (OSA). Although several sensing

techniques have been proposed in the literature (e.g., energy detectors [16] and

cyclostationary detectors [14]), sensing errors are unavoidable due to channel im-

pairments such as fading, path loss, and shadowing. This might lead to undesirable

detrimental effects to the performance of the PUs. In order to balance the inter-
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ference from the SUs, we propose an access scheme at the secondary network that

forces the SUs to cooperate with the PUs in delivering their traffic. Cooperative

communications was motivated by the effectiveness of space diversity in combat-

ting fading, and hence single antenna users can benefit by the virtual MIMO effect

induced by other users relaying their transmissions. Cooperative protocols for two

sources- two destinations setup have been proposed and analyzed in [17] and dis-

tributed space-time codes for multiple relay scenarios have been developed in [18,19].

The performance study was based on information theoretic metrics such as capac-

ity regions, achievable rates and outage probabilities. A network-level cooperative

protocol for an uplink where a single pure cognitive relay is introduced to forward

unsuccessful packets from source nodes during their idle slots has been proposed and

analyzed in [20] with stable throughput and average delay as performance metrics

under the assumption of perfect sensing. The assumption of pure relay has been

relaxed in [21, 22] where the relay node is a source node having its own traffic but

multi-relay case was not considered. We propose and analyze a cooperative protocol

between the SUs and the PUs where multiple SUs can forward the PU’s unsuccess-

ful packet using distributed orthogonal space-time block codes (D-OSTBCs). The

proposed cooperative protocol has the attractive property that with more SUs in the

system, the effect of cooperation becomes more prevalent and a higher PU through-

put can be achieved. This can be an incentive for the PUs to share their spectrum

with the SUs.

Next, in a cognitive wireless network with SUs and PUs, we study enhanced

access schemes that exploit the knowledge of the channel statistics at the SUs. In
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fact, the OSA scheme is commonly used when the SUs only know about the statistics

of the PUs’ received signal at the secondary transmitter but no knowledge about

the channels to the receivers nor about the PU traffic dynamics. Although the

schemes based on sensing (e.g., OSA) provide full protection to the PUs, a funda-

mental drawback is that sensing detects the PU transmitters while it is required to

protect the PU receivers from SU’s interference. This might lead to possible waste

of transmission opportunities if a PU is sensed to be busy but the channel between

the SU transmitter and PU receiver (the cross channel) is in deep fade, and hence

SU transmissions will cause negligible interference to the PU. This latter observa-

tion motivated schemes that accurately track the cross channel by overhearing the

PU’s feedback channel leading to a higher SU throughput for the same PU protec-

tion [23–26]. In particular, if the SU has exact information about the PU traffic

dynamics as well as exact knowledge of the channel states; then for Markovian dy-

namics, the optimal access policy can be found through a POMDP formulation as

in [27]. However, this latter extreme of exactly tracking the cross channel and exact

knowledge of the PU traffic dynamics, might require cooperation between the PU

receiver and the SU transmitter as well as higher complexity that may not be feasi-

ble in practice. Moreover, sensing and channel probing consume SU’s resources such

as time duration and processing energy leading to a reduction in the resources used

for data transmission [28]. Thus, from the SU perspective, it is preferable to avoid

sensing if possible. We propose enhanced access schemes that exploit the knowledge

of channel statistics at the SUs. These schemes go beyond the traditional OSA and

whenever possible, the sensing duration is exploited for data transmission. In the
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analysis, we account for the PHY layer parameters such as the sensing duration, the

transmission rates and powers in a PHY/MAC design framework.

1.1.2 Multicast Cognitive Wireless Networks

We then turn the attention to the cross-layer design of multicast networks.

Unlike the unicast case, in multicast networks the source node has to deliver its traffic

to all of its destinations. With ordinary retransmission schemes, the bottleneck is

the destination with the worst channel. For the destinations with stronger channels

that already successfully received a packet, no throughput benefit is achieved during

the retransmissions to the weakest destination. Mitigating this weakness by using

network coding was one of the key advances in network theory in the last decade.

Network coding has emerged as a powerful scheme to improve the throughput

in multicasting networks by coding over the packet traffic [29] and it is well-known

that it can improve the throughput in both multi-hop [30] and single-hop [31] mul-

ticasting networks. Linear network coding is sufficient to achieve the Min-cut Max-

flow capacity [32] for a single multicasting source; and for low complexity network

operation, random linear network coding has been introduced in [30].

In the first work in that direction, we aim at combining network coding with

cognitive cooperation. We study the case where a cognitive relay assists a multicast-

ing source to deliver its traffic. The cognitive relay delivers the source’s unsuccessful

packets during the idle slots of the source which are determined by sensing. For fur-

ther throughput improvements, the relay uses network coding when multicasting

7



the packets it has in queue.

Spectrum sensing techniques are typically applied in a “memoryless” way with-

out taking into account the spectrum dynamics of the PUs or the channel sensing

history. Sensing techniques that exploit the correlation between the PUs’ states

have been proposed, where the memory is limited to one step (first order Markov

chain) as in [33–35], or memory of arbitrary length by introducing the concept of

age as in [36].

Our second work merging network coding with cognitive networks is based

on the fundamental observation that when applied to PUs’ communications, the

possible throughput benefits of network coding may lead to more idle slots available

to the SUs (i.e., higher spectrum availability). In addition, network coding “shapes”

the spectrum and induces a structure to the PUs’ states such that the network-

coded transmissions occur in batches rather than sporadically (i.e., higher spectrum

predictability). Note that the spectrum predictability gain (i.e., “shaping effect”)

is present even when there is no spectrum availability gain, e.g., when the PU

transmitters have perfect channels to multiple receivers or when there is a single

receiver with an imperfect channel (where retransmission is still optimal). Figure

1.1 illustrates the spectrum of one PU with and without network coding. With

network coding, the busy periods on the PUs’ channels are lower-bounded by the

coding block size, K, and the idle periods must accumulate a block of K packets to

start transmissions, leading to a more predictable spectrum. Such a structure would

be observed for any block-based coding at the packet level. These systems include

systems using network coding [32], Fountain codes [37] or traffic shaping techniques.

8



Throughout our work, we use network coding as an example for discussion but the

results apply to the other cases as well.

Figure 1.1: Illustration of typical busy/idle periods with and without network coding.

In our work [38], the question that we answer in that part is how an SU, trying

to opportunistically access the unintentionally shaped PU spectrum due to network

coding, can leverage such structure for better inference of the PU state and hence

mitigating the negative effects of sensing errors. We will see that the structure

induced on a network-coded spectrum can lead to higher SU throughput and more

PU protection from misdetections at the SUs.

1.2 Performance Metrics

As mentioned earlier, information theoretic capacity which is commonly used

as a PHY-layer throughput metric assumes backlogged nodes and infinite delays in

contrast to the burstiness of the traffic as well as the finite packet delay required in

network operation. In fact, traffic burstiness is crucial for the operation of some of

our protocols and analysis such as the cognitive cooperation to be discussed.

Throughout the dissertation, we use several performance measures that are

adequate to capturing the PHY/MAC interactions of the system. The first metric

is the stable throughput, which is a network-layer metric that is largely affected by
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the physical layer parameters. The stable throughput at a queue is the maximum

average arrival rate that can be sustained by that queue while remaining finite at

all times and emptying infinitely often.1 The second metric is the average delay of a

packet which accounts for the queueing and transmission delays.2 Although queue

stability guarantees finiteness of delay, a stable queue can experience very long delays

if the average arrival rate is close to the stable throughput of that queue; and hence

average delay is a more strict metric for performance.

1.3 Interference Models

A main challenge in devising wireless systems is the existence of fading and

undesirable interference from other nodes in the system. In a cognitive environment,

interference can also exist between the SUs and the PUs due to sensing errors. Since

we are interested in network-level (MAC) performance metrics, the communication

unit is considered to be a packet regardless of its bit-content. If a transmission is

successful, the entire packet is considered to be decoded without error; otherwise,

the packet is not successfully decoded and is discarded. In order to capture the

PHY-layer effects on the MAC layer performance, we consider several models for

signal reception. In the absence of interference, it is assumed that the receiver is

able to successfully decode a transmitted packet if the Signal-to-Noise Ratio (SNR)

exceeds some threshold β throughout the packet duration. Hence, the probability

of success is given by Pr[SNR > β]. The threshold β depends on the modulation

1A precise technical definition of queueing stability is given in Section 2.3.
2For all practical purposes, propagation delay is negligible.
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scheme, the coding and the target bit-error-rate (BER) set by the receiving node as

well as other features of the detector structure. In case of simultaneous interfering

transmissions, the capability of reception at the receiver is modeled according to the

sophistication and complexity handled at that receiver. For simple receivers with

no multipacket reception (MPR) capability, we use the traditional collision model

where it is assumed that simultaneous transmissions fail with probability one. On

the other hand, for receivers which can handle MPR, we use the SINR-threshold

model for reception; where the receiver is able to successfully decode a packet if the

Signal-to-Interference plus Noise Ratio (SINR) exceeds some threshold throughout

the packet duration. Clearly, both the SNR and the SINR models incorporate the

effects of the physical layer parameters such as the transmission powers, the channel

gains and the additive noise power.

1.4 Outline of the Dissertation

The first part of the dissertation is devoted to unicast cognitive networks. In

Chapter 2, we study channel-aware random access and substantiate its usefulness

over time varying channels. In Chapter 3, we study the effects of interference induced

in a cognitive network, due to sensing errors at the SUs, on the stable throughput

of the PU. We then propose a PHY-layer multinode relaying protocol between the

SUs and the PU that leads to throughput gain to the PU and hence balancing the

effect of interference due to sensing errors. In Chapter 4, we propose and analyze

several MAC layer access schemes in cognitive networks and study them from a
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PHY/MAC- layer perspective. The target of these access schemes is to maximize

the SU throughput subject to guaranteeing some MAC layer performance level at

the PU. In particular, we focus on the cases where the PU queue must remain stable

and on the more restrictive case of guaranteeing an average delay to the PU.

The second part of the dissertation aims at illuminating the connection between

network coding and cognitive radio and how these two emerging technologies can be

jointly exploited in wireless networks. In Chapter 5, we study the effect of network

coding at a cognitive node relaying the unsuccessful packets of a multicasting source.

In Chapter 6, we study the spectrum shaping effects due to network coding and show

how they can be leveraged for better inference of the PU’s state. Finally, in Chapter

7 we summarize the contributions of the dissertation.
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Chapter 2: Channel-Aware Random Access

2.1 Introduction

Random Access schemes were known to be suboptimal to the orthogonal access

schemes over the collision channel. However, there has been a continuous interest in

studying random access systems due to their simple decentralized operation. A main

difficulty in studying random access systems is the inherent interaction between the

queues. To bypass that difficulty, the authors in [39] used the idea of stochastic dom-

inance to derive sufficient conditions on the stability of two user slotted ALOHA

(S-ALOHA). In [40], the authors used the idea of dominant systems to decouple

the interaction between the queues and derive the exact stability region of two user

S-ALOHA over the collision channel as well as inner bounds for more than two users

(N >2). In [41], the idea of stability ranks was introduced to derive tight bounds on

the stability region over collision channel for N >2. Deviating from the oversimpli-

fied collision channel, a Multipacket Reception (MPR) model was introduced in [42],

where ALOHA with MPR capability under statistically identical infinite users with

single buffers was analyzed. Stable throughput region of S-ALOHA with MPR ca-

pability in an asymmetric configuration was first derived in [43], where it was shown

that for strong MPR capability, the stability region undergoes a phase transition
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from a concave region to a convex polyhedron, and in that case, S-ALOHA outper-

forms orthogonal access. The effect of knowing the channel state information (CSI)

on the maximum aggregate stable throughput rate was studied in [44] for an N user

statistically symmetric S-ALOHA system. However, the practical case of asymmet-

ric users and channels, and the general case of MPR were not considered. In [45]

and [46], the case of asymmetric network was considered under the assumption of

collision channel, that is, no MPR capability. Moreover, the delay was considered

only under the transmission policy that maximizes the stability region. The policy

which minimizes the average delay and its relation to the one maximizing the sta-

bility region were not identified. In this part [47], we study channel-aware random

access with MPR capability and we identify the policy that minimizes the average

delay. We consider an asymmetric two-user S-ALOHA system with i.i.d. two-state

time varying links. One state is the good state where transmitted packets are likely

to be successfully decoded and the other is the bad state where packets are un-

successful with high probability. Users have perfect channel knowledge and adjust

their transmission probabilities according to the channel state (transmission con-

trol). We calculate the stable throughput region with and without MPR capability;

as well as the average delay without MPR. The main result is that S-ALOHA with

transmission control over a collision channel, from a stability or delay point of view,

outperforms orthogonal access whenever the channels tend to be in the bad state.

Moreover, in this case, the optimal strategy is to transmit whenever backlogged. By

enhancing the physical layer by allowing MPR capability, S-ALOHA with transmis-

sion control can outperform orthogonal access even if the channels are not in the bad
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state for long proportion of time. This highlights the advantage of using random

access with transmission control over time varying channels which is suitable to use

over networks that lack strong coordination between the users.

This chapter is organized as follows. In Section 2.2, we introduce the channel model.

In Section 2.3, we rigorously define queueing stability and introduce Loynes’theorem

to be used throughout the dissertation. In Section 2.4, we calculate the stabile

throughput region of a controlled two user S-ALOHA without MPR; while in Sec-

tion 2.5, we consider the effect of Multipacket reception capability (MPR) on the

stability region. In Section 2.6, we consider the minimum average delay per packet

without MPR and drive the delay optimal transmission policy, and in Section 2.7

we conclude the chapter.

2.2 System Model

The system consists of an uplink with two source nodes and one destination

node as shown in Fig. 2.1. Time is slotted with slot duration equal to one packet

transmission duration. User i ∈ {1, 2} receives (or generates) packets according

to a stationary process with average rate λi, and the arrival processes at the two

users are assumed to be independent. Each user has a buffer of infinite capacity

to store the packets. The channels are assumed to be independent among links.

The channel of a particular link can be in one of two states at any given time

slot: the good state that we denote by ‘1’ and the bad state that we denote by

‘0’. The channel state is assumed to be fixed during a slot duration and varies in
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Figure 2.1: System model.

an independent and identically distributed (i.i.d.) manner between slots. The long

term proportion of time in which user j’s channel is in state i is denoted by π
(j)
i ,

i ∈ {0, 1}, j ∈ {1, 2}; and can be obtained either through channel measurements

or through a physical model of the channels. We denote by qij the probability

that user j transmits given that his channel is in state i. We denote by fij the

success probability of user j’s transmission when his channel is in state i. In this

work, we specialize to the case where the channel in ‘bad’ state of the channel is a

deep fade condition, and any transmission through that channel is assumed to fail

with probability one, i.e. f01 = f02 = 0. This assumption is in conform with the

commonly used SNR threshold model for reception in which a packet is successfully

decoded at a destination if and only if the received SNR at that destination exceeds

some threshold value. In the bad state, the received SNR is below the threshold and

hence the success probability is zero; while in the good state, the received SNR is

above the required threshold and hence the reception is successful with probability

one. We relax the latter assumption by allowing some positive success probability

whenever the channel is in the ‘good’ state.
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2.3 Queue Stability

We adopt the definition of stability used by Szpankowski in [48].

Definition 2.1

A multidimensional stochastic process Qt = (Q t
1 , ...,Q

t
M ) is stable if for every x∈

NM
0 the following holds

lim
t→∞

Pr[Qt < x] = F (x) and lim
x→∞

F (x) = 1, (2.1)

where F (x) is the limiting distribution function and the limit x→ ∞ is taken com-

ponentwise. If Qt is an irreducible Markov chain, then stability is equivalent to its

ergodicity. Roughly speaking, a queue is stable if its length is finite at all times

and it empties infinitely often, while an unstable queue grows in length to infinity.

The stable throughput of a queue is the maximum average arrival rate that can be

handled at the queue while keeping it stable.

If a weaker condition holds, namely,

lim
x→∞

lim inf
t→∞

Pr[Qt < x] = 1, (2.2)

then the process is called substable.

The ith queue, i ∈ {1, 2} evolves as

Qt+1
i =

(
Qt
i − Y t

i

)+
+X t

i , (2.3)

where Qt
i is the length of the ith queue at the beginning of time slot t. X t

i and Y
t
i

are the arrival and the service processes at the ith queue in time slot t respectively

and (x)+=max(x, 0).
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Throughout the dissertation, we use the following lemma [48,49], sometimes referred

to as Loynes’ theorem.

Lemma 2.1. For a queue evolving as in Eq. (2.3), if the pair {(X t
i , Y

t
i )} is a strictly

stationary process (i.e. {X t
i} and {Y t

i } are jointly stationary), then

(i) If E[X t
i ] < E[Y t

i ], then the queue is stable in the sense of the definition in Eq.

(2.1).

(ii) If E[X t
i ] > E[Y t

i ], then the queue is unstable and limt→∞Qt
i = ∞ almost surely,

where E denotes the expectation operator.

2.4 Stable Throughput Region (No MPR)

In this section, we consider the case where the destination uses a simple re-

ceiver that does not have any MPR capability, thus, simultaneous transmissions

result in a collision and both packets are lost. Due to the random access scheme

used, the success probability of one user depends on whether the queue of the other

user is empty or not. Hence, the two queues are called interacting. Although the

stability of the queues is equivalent to the ergodicity of the Markov chain accord-

ing to which they evolve, a closed form solution of the stationary distribution of

interacting queues is not easy to obtain, even for the simplest case of random access

over a collision channel [40].1 Hence, the straightforward method of computing the

stationary distribution is not applicable. In order to calculate the stable throughput

1For systems with MPR capability, stable throughput region is not generally known for more

than two interacting queues [43].
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region without solving for the stationary distribution, we will use the technique of

dominant systems as in [40,41] to decouple the interaction between the two queues.

The idea is to come up with hypothetical systems in which the queues do not in-

teract (hence we can exactly solve for their stability region), and yet, the boundary

of their stability region coincides with the boundary of the stability region of the

original system where the queues interact.

-First Dominant System (S1)

In S1, the arrivals to the queues as well as the channel variations are assumed to

be identical to those in the original system. However, in S1, whenever the queue

of user 1 empties, he continues transmitting dummy packets causing more collisions

with the packets of user 2.

The dominant system has the following properties [40]: (i) the queue lengths in

the dominant system are no shorter than the queues in the original system; hence if

the queues in the dominant system are stable then the queues in the original system

are stable as well, (ii) the two systems coincide at saturation, that is, if the queue

of user 1 never empties (that is, if it is saturated or unstable), then the dominant

system and the original system are indistinguishable; and thus, the instability of

the dominant system implies the instability of the original system. Clearly, (i) and

(ii) imply that the stability of the dominant system is a necessary and sufficient

condition for the stability of the original system and hence, the stable throughput

regions of both systems coincide for fixed transmission probabilities. It is clear

that in S1, Q1 never empties and hence Q2 sees a constant service rate while Q1

service rate depends on the state of Q2 (empty or not). Specifically, Q2 in the first
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dominant system evolves as a discrete M/M/1 queue with stability condition (by

Loynes’ theorem)

λ2 < µ2 = Pr[User 2 is successful in a slot] = π
(2)
1 q12f12

(
1− π

(1)
0 q01 − π

(1)
1 q11

)
.

(2.4)

Since the service rate of Q1 depends on the state of Q2, we have

λ1 < π
(1)
1 q11f11

(
1− λ2

µ2

)
+ π

(1)
1 q11f11

(
λ2
µ2

)(
1− π

(2)
0 q02 − π

(2)
1 q12

)
, (2.5)

where
(
λ2
µ2

)
and

(
1− λ2

µ2

)
are the probabilities that Q2 is busy and idle in a slot,

respectively.

Equivalently, the stability conditions in S1 can be written as

λ2 < π
(2)
1 q12f12

(
1− π

(1)
0 q01 − π

(1)
1 q11

)
, (2.6)

λ1 < π
(1)
1 q11f11

[
1−

(
λ2
µ2

)(
π
(2)
0 q02 + π

(2)
1 q12

)]
. (2.7)

Similarly for S2 in which Q2 transmits dummy packets whenever it empties

λ1 < µ1 = π
(1)
1 q11f11

(
1− π

(2)
0 q02 − π

(2)
1 q12

)
, (2.8)

λ2 < π
(2)
1 q12f12

[
1−

(
λ1
µ1

)(
π
(1)
0 q01 + π

(1)
1 q11

)]
. (2.9)

It can be easily shown that for optimality: q∗01 = q∗02 = 0, since this leads to a

strictly higher stability region because transmissions whenever the channel is in the

bad state fail with probability one, as expected.

In order to obtain the stable throughput region, we need to find the union over all

(q11, q12) ∈ [0, 1]2 of the regions given by the previous equations for fixed q11 and
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q12. The stability region is thus given by

S =
∪

(q11,q12)∈[0,1]2
S (q11, q12) , (2.10)

where S (q11, q12) is the stability region for fixed transmission probabilities q11 and

q12 and is given by Eqs. (2.6), (2.7), (2.8) and (2.9). Calculating the boundary of

the stability region can be formulated as a constrained optimization problem which

can be directly solved by using the same technique as in [50]. Refer to Section 2.8.1

for details.

Theorem 2.1. If π
(1)
0 + π

(2)
0 < 1: The boundary of the stability region is character-

ized by straight lines near the axes, and by strictly convex function in the middle

part. The resulting stability region is given by R = L1

∪
L2

∪
L3, where

L1 =

{
(λ1, λ2) : λ2 < π

(2)
1 f12 −

(
π
(2)
1 f12

π
(2)
0 f11

)
λ1, forλ1 ∈

[
0, (π

(2)
0 )2f11

)}
,

L2 =

{
(λ1, λ2) :

√
λ1
f11

+

√
λ2
f12

< 1, forλ1 ∈
[
(π

(2)
0 )2f11, (π

(1)
1 )2f11

)}
,

L3 =

{
(λ1, λ2) : λ2 < π

(1)
0 f12 −

(
π
(1)
0 f12

π
(1)
1 f11

)
λ1, forλ1 ∈

[
(π

(1)
1 )2f11, π

(1)
1 f11

)}
.

If π
(1)
0 + π

(2)
0 ≥ 1: The stability region is a convex polyhedron whose boundary is

determined by two lines. The optimal transmission probabilities are (q∗11, q
∗
12) =

(1, 1). The resulting stability region is convex and given by R = L1

∪
L2, where

L1 =

{
(λ1, λ2) : λ2 < π

(2)
1 f12 −

(
π
(2)
1 f12

π
(2)
0 f11

)
λ1, forλ1 ∈

[
0, π

(1)
1 (1− π

(2)
1 )f11

)}
,

L2 =

{
(λ1, λ2) : λ2 < π

(1)
0 f12 −

(
π
(1)
0 f12

π
(1)
1 f11

)
λ1, forλ1 ∈

[
π
(1)
1 (1−π(2)

1 )f11, π
(1)
1 f11

)}
.

21



Figure 2.2: Stable throughput regions (no MPR) for various values of stationary probabilities.

Proof: Refer to Section 2.8.1. �

From Fig. 2.2, we notice that whenever π
(1)
0 + π

(2)
0 < 1, which is the case

when the channels tend to be in the good state, the stability region is a strict

subset of the stability region of the orthogonal access, but is a strict superset of

the stability region of ordinary S-ALOHA without transmission control given by√
λ1

π
(1)
1 f11

+
√

λ2

π
(2)
1 f12

= 1. If π
(1)
0 + π

(2)
0 = 1, the boundary of the stability region

becomes linear and the region coincides with the stability region of the orthogonal

access. Finally, if π
(1)
0 + π

(2)
0 > 1, the stability region undergoes a phase transition

to a convex polyhedron strictly containing the stability region of orthogonal access.

This means that, for collision channels, whenever the channels have tendency to be

in the bad state, random access with transmission control outperforms orthogonal

access while keeping the advantage of simple distributed operation.

2.5 Effect of MPR Capability

So far, we have seen that only if π
(1)
0 +π

(2)
0 > 1, does the random access scheme

with transmission control outperform orthogonal access. In this section, we show
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that, even if π
(1)
0 + π

(2)
0 > 1, we can still get such advantage for random access if

the receiver has multipacket reception capability.2 Depending on the strength of

the MPR, its effect can be either a strict increase of the stability region without a

phase transition (from a concave region to a convex polygon) or an increase of the

stability region with phase transition.

Let f̃i be the probability of success of the ith user whenever both users transmit

simultaneously,3 which is zero for collision channels. Using the dominant system

approach and using that for optimality q∗01 = q∗02 = 0, we obtain the stability condi-

tions in the first dominant system in which Q1 transmits dummy packets as

λ2 < π
(2)
1 q12f12

[
1− π

(1)
1 q11

(
1− f̃2

f12

)]
, (2.11)

λ1 < π
(1)
1 q11f11

1−
(
1− f̃1

f11

)
λ2

f12

[
1− π

(1)
1 q11

(
1− f̃2

f12

)]
 . (2.12)

Similarly for S2 in which Q2 transmits dummy packets:

λ1 < π
(1)
1 q11f11

[
1− π

(2)
1 q12

(
1− f̃1

f11

)]
, (2.13)

λ2 < π
(2)
1 q12f12

1−
(
1− f̃2

f12

)
λ1

f11

[
1− π

(2)
1 q12

(
1− f̃1

f11

)]
 . (2.14)

Following similar steps as in Section 2.8.1, we obtain the stable throughput region

with MPR capability as

2This is possible for instance in a cellular uplink where the receiver (base station) can handle

highly complex receiving algorithms allowing MPR capability.
3According to our earlier assumptions, the two users can transmit simultaneously only if their

channels are in good state.
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Theorem 2.2. If π
(1)
0 + π

(2)
0 + π

(2)
1

f̃1
f11

+ π
(1)
1

f̃2
f12

< 1 The boundary of the stability

region is characterized by straight lines near the axes, and by strictly convex function

in the middle part. The resulting stability region is given by R = L1

∪
L2

∪
L3,

where

L1 =

(λ1, λ2) : λ2

π
(2)
1 f12

+
Ψ2λ1

f11

[
1− π

(2)
1 Ψ1

] < 1, forλ1 ∈

0, f11
[
1− π

(2)
1 Ψ1

]2
Ψ2


 ,

L2 =

(λ1, λ2) :
√

Ψ2λ1
f11

+

√
Ψ1λ2
f12

< 1, forλ1∈

f11
[
1−π(2)

1 Ψ1

]2
Ψ2

, (π
(1)
1 )2f11Ψ2


 ,

L3 =

(λ1, λ2) : λ1

π
(1)
1 f11

+
Ψ1λ2

f12

[
1− π

(1)
1 Ψ2

] < 1, forλ1 ∈
[
(π

(1)
1 )2f11Ψ2, π

(1)
1 f11

) .

and Ψi = 1− f̃i
f1i

for i ∈ {1, 2}.

If π
(1)
0 + π

(2)
0 + π

(2)
1

f̃1
f11

+ π
(1)
1

f̃2
f12

≥ 1 The stability region is a convex polygon whose

boundary is determined by two lines. The optimal transmission probabilities are

(q∗11, q
∗
12) = (1, 1). The resulting stability region is convex and given by R = L1

∪
L2,

where

L1 =

(λ1, λ2) :
λ2

π
(2)
1 f12

+
Ψ2λ1

f11

[
1− π

(2)
1 Ψ1

] < 1, forλ1 ∈
[
0, π

(1)
1 f11

[
1− π

(2)
1 Ψ1

]) ,

L2 =

(λ1, λ2) :
λ1

π
(1)
1 f11

+
Ψ1λ2

f12

[
1− π

(1)
1 Ψ2

] < 1, forλ1∈
[
π
(1)
1 f11

[
1−π(2)

1 Ψ1

]
, π

(1)
1 f11

) .

We thus conclude that by enhancing the physical layer characteristics of the

receiver by allowing MPR capability, random access with transmission control can

outperform orthogonal access over time varying channels despite its simple decen-

tralized operation.
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2.6 Delay Analysis

In this section, we analyze the delay of a symmetric two-user S-ALOHA sys-

tem with transmission control over i.i.d. time varying channels without MPR capa-

bility at the receiver. By symmetry we mean that the arrival processes to the two

users as well as the channels of both links are statistically identical (λ1 = λ2 = λ

and π
(2)
1 = π

(1)
1 ), and hence the users are indistinguishable (q12 = q11). The need

for symmetry is to allow the calculation of the average delay without exactly solv-

ing for the queue length distributions which is, to date, an open problem. In [51],

authors computed the average delay of two user symmetric S-ALOHA over the col-

lision channel as well as the optimal transmission probability to minimize the delay.

In [43], the authors computed the average delay of symmetric S-ALOHA over a

class of channels with MPR capability, namely, channels with capture. We follow

a similar approach to these works to calculate the average delay of S-ALOHA with

transmission control without MPR capability. Our results show that if the chan-

nels are more likely to be in the ‘bad’ states rather than the ‘good’ states, then

the optimal transmission probability is equal to one over all possible arrival rates.

Hence in this case, the strategy of transmitting whenever backlogged if the channel

is in the ‘good’ state is both throughput and delay optimal. On the other hand, if

the channels tend to be in the ‘good’ states, then transmission probability equal to

one is delay optimal only over a certain range of arrival rates. We make this more

specific in the following theorem.

Theorem 2.3. For symmetric two-user S-ALOHA with transmission control under
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the above assumptions, the average delay is given by

Davg =
(1− λ)−

(
1− λ

2

)
π
(1)
1 q11

π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
− λ

.

The optimal transmission probability that minimizes the delay is given by

If π
(1)
0 ≥ 0.5

q∗11 = 1, for λ ∈
[
0, π

(1)
1

(
1− π

(1)
1

)
f11

)
.

If π
(1)
0 ≤ 0.5

q∗11 =


1 for λ ∈

[
0, λ̃1

)
,

p1 for λ ∈
[
λ̃1,

f11
4

)
,

where

λ̃1 =1+f11

(
1−2π

(1)
1 +0.5

(
π
(1)
1

)2)
−

√
1−
(
π
(1)
1

)2
f11+f 2

11

(
1−2π

(1)
1 +0.5

(
π
(1)
1

)2)2

,

p1 =
1

(2− λ)π
(1)
1

[
2(1− λ)−

√
4(1−λ)2− 4

f11

(
1− λ

2

)[
(1− λ)f11−λ

(
1− λ

2

)]]
.

Proof: Refer to Section 2.8.2.�

In Figs. 2.3 and 2.4, we plot the minimum average delay of a symmetric

S-ALOHA with and without transmission control for different values of success

probability f11 and different values of stationary probability of the channel π
(1)
1 . The

success probability f11 only affects the maximum stable throughput rate that can be

handled at the queues. On the other hand, the channel stationary probability π
(1)
1

plays a major role in the relative advantage of transmission control from a delay

point of view: transmission control has more significant advantage whenever the

channels tend to be in the bad states for a longer proportion of time as can be
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Figure 2.3: Minimum average delay vs. throughput per user (π
(1)
1 > 0.5).

inferred from Theorems 2.1 and 2.3. This can be explained by noting that in that

case, since the transmissions fail with probability one when the channels are in bad

states, it is more advantageous for the users to use transmission control to avoid

transmitting in those slots, and thus leaving the channel contention-free to the other

user.

2.7 Summary and Conclusions

In this chapter, we characterized the stable throughput region and the average

delay of two user random access over i.i.d. time varying channels, where the users

exploit their knowledge about their channel states to adjust their channel access

probabilities. We showed that random access with transmission control is very

effective and can outperform orthogonal access whenever the channels tend to be in
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Figure 2.4: Minimum average delay vs. throughput per user (π
(1)
1 < 0.5).

the bad states and in that case, the optimal transmission probabilities are one, which

eliminates the need of scheduling and simplifies the design of the MAC layer protocol.

Moreover, we showed that these transmission probabilities are delay optimal. If

the channels tend to be in the good states, transmission control strictly improves

the stability region compared to ordinary S-ALOHA but in this case, orthogonal

access is better. Furthermore, we showed that enhancing the physical layer by

allowing MPR capability can alleviate this downside, attracting the attention that

transmission control can make S-ALOHA very suitable to use over time varying

channels in networks lacking the capability of coordination between the nodes.
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2.8 Appendix

2.8.1 Proof of Theorem 2.1

In Section 2.4, we computed the stability region for a fixed probability pair

(q11, q12) by using the dominant system approach. We use the constrained opti-

mization technique as in [50] to derive the boundary of the stability region. After

replacing λ1 by x and λ2 by y, the boundary of the stability region for fixed trans-

mission probability pair can be written as

y = π
(2)
1 q12f12

1− x

f11

(
1− π

(2)
1 q12

)
 , for 0 ≤ x < π

(1)
1 q11f11

(
1− π

(2)
1 q12

)
,

(2.15)

x = π
(1)
1 q11f11

1− y

f12

(
1− π

(1)
1 q11

)
 , for 0 ≤ y < π

(2)
1 q12f12

(
1− π

(1)
1 q11

)
.

(2.16)

First we consider the constrained optimization problem as given by Eq. (2.15). It

can be written as

max
q12∈[0,1]

y = π
(2)
1 q12f12 −

π
(2)
1 q12f12x(

1− π
(2)
1 q12

)
f11

,

s.t. 0 ≤ x < π
(1)
1 q11f11

(
1− π

(2)
1 q12

)
. (2.17)

Differentiating the objective function with respect to q12, we obtain

dy

dq12
= π

(2)
1 f12 −

π
(2)
1 f12x(

1− π
(2)
1 q12

)2
f11

. (2.18)
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Setting Eq. (2.18) to zero, we obtain

q∗12 =
1

π
(2)
1

(
1−

√
x

f11

)
. (2.19)

For q∗12 to be a valid probability, we should have

(
1− π

(2)
1

)2
f11 ≤ x ≤ f11. (2.20)

Also, for the constraint in Eq. (2.17) to be satisfied, x must satisfy

x ≤ (π
(1)
1 )2f11. (2.21)

Combining the two conditions, x must satisfy

(
1− π

(2)
1

)2
f11 ≤ x ≤ (π

(1)
1 )2f11. (2.22)

Substituting in the objective function in Eq. (2.17), we find that the boundary of

the stability region within this range is given by√
λ1
f11

+

√
λ2
f12

= 1. (2.23)

Next, we consider the values of x for which x <
(
1− π

(2)
1

)2
f11. It can be easily

shown that

dy

dq12
> 0,∀q12 ∈ [0, 1], (2.24)

therefore, q∗12 = 1. For the constraint in Eq. (2.17) to be satisfied, x < π
(1)
1 π

(2)
0 f11.

Hence, by substituting in the objective function of Eq. (2.17), we get that for

0 < x < min

(
π
(1)
1 π

(2)
0 f11,

(
1− π

(2)
1

)2
f11

)
λ1

π
(2)
0 f11

+
λ2

π
(2)
1 f12

= 1. (2.25)
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Finally, for x >
(
π
(1)
1

)2
f11, and noting that x < π

(1)
1 f11, in order for the constraint

in Eq. (2.17) to be satisfied, we should have that q12 <
1

π
(2)
1

(
1− x

π
(1)
1 f11

)
. It can

be easily shown that dy
dq12

> 0 over the range
(
π
(1)
1

)2
f11 < x < π

(1)
1 f11. Hence,

q∗12 = 1

π
(2)
1

(
1− x

π
(1)
1 f11

)
. For q∗12 to be a valid probability, we should have that

π
(1)
1 f11(1 − π

(2)
1 ) < x < π

(1)
1 f11. Combining both conditions, we get that it is valid

for max

(
π
(1)
1 (1− π

(2)
1 )f11,

(
π
(1)
1

)2
f11

)
< x < π

(1)
1 f11. Substituting in the objective

function in Eq. (2.17), we get that for max

(
π
(1)
1 (1− π

(2)
1 )f11,

(
π
(1)
1

)2
f11

)
< x <

π
(1)
1 f11

λ2

π
(1)
0 f12

+
λ1

π
(1)
1 f11

= 1. (2.26)

By similar arguments, it can be shown that the other dominant system leads to

exactly the same stable throughput region, hence the proof is complete.

It should be finally noted that the shape of the stability region depends on whether

π
(1)
0 + π

(2)
0 > 1 or not. If π

(1)
0 + π

(2)
0 > 1 ⇔ π

(1)
1 π

(2)
0 f11 <

(
1− π

(2)
1

)2
f11 ⇔ π

(1)
1 (1−

π
(2)
1 )f11 >

(
π
(1)
1

)2
f11, the stability region consists of two linear parts while if π

(1)
0 +

π
(2)
0 < 1 ⇔ π

(1)
1 π

(2)
0 f11 >

(
1− π

(2)
1

)2
f11 ⇔ π

(1)
1 (1 − π

(2)
1 )f11 <

(
π
(1)
1

)2
f11, the

stability region consists of three parts as in Theorem 2.1.

2.8.2 Proof of Theorem 2.3

The proof follows a similar approach to [51] and [43] in order to solve for the

average delay in a symmetric configuration without explicitly solving for the joint

queue statistics. The queue of the ith user evolves as

Qt+1
i =

[
Qt
i −Dt

i

]+
+ Ati, i ∈ {1, 2}, (2.27)
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where Qt
i is the queue length of user i at any time slot t, Ati is the number of arrivals

to the queue of the ith user in time slot t and Dt
i is the number of departures from

the queue of the ith user in time slot t.

In order to compute the delay, we solve for the moment generating function of the

joint queue lengths of Q1 and Q2 denoted by G(x, y) = limt→∞ E
[
xQ

t
1yQ

t
2

]
. Using

the queue evolution equation, we have

E
[
xQ

t
1yQ

t
2

]
=E

[
xA

t
1yA

t
2

]{
E
[
1
[
Qt

1 = 0, Qt
2 = 0

]]
+ E

[
xQ

t
1−Dt

11
[
Qt

1 > 0, Qt
2 = 0

]]
+ E

[
yQ

t
2−Dt

21
[
Qt

1 = 0, Qt
2 > 0

]]
+ E

[
xQ

t
1−Dt

1yQ
t
2−Dt

21
[
Qt

1 > 0, Qt
2 > 0

]]}
. (2.28)

Taking the limit as t→ ∞, we obtain

G(x, y) = F (x, y)

{
G(0, 0) + [G(x, 0)−G(0, 0)] Φx + [G(0, y)−G(0, 0)] Φy

+ [G(x, y)−G(x, 0)−G(0, y) +G(0, 0)] Φxy

}
, (2.29)

where Φxy =
[
Φ
(
1− π

(1)
1 q11

)(
1
x
+ 1

y

)]
+
[
1− 2Φ

(
1− π

(1)
1 q11

)]
, Φx =

Φ
x
+(1− Φ),

Φy =
Φ
y
+ (1− Φ), Φ = π

(1)
1 q11f11 and F (x, y) = (λx+ 1− λ)(λy + 1− λ).

It is obvious that G(1, 1) = 1 and by symmetry G(0, 1) = G(1, 0). Using L’Hôpital

rule

G(0, 0)
(
π
(1)
1

)2
q211f11+G(1, 0)π

(1)
1 q11f11

(
1−2π

(1)
1 q11

)
=
[
π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
−λ
]
.

(2.30)

Calculating G1(1, 1) =
∂G(x,y)
∂x

at (x, y) = (1, 1), we get by L’Hôpital rule

[
π
(1)
1 q11f11

(
1− π

(1)
1 q11

)]
G1(1, 1) = λ(1− λ)−G1(1, 0)

(
π
(1)
1

)2
q211f11. (2.31)
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Calculating dG(x,x)
dx

at x = 1 and using L’Hôpital rule, we get

d

dx
G(x, x)

∣∣∣∣
x=1

=
G1(1, 0) π

(1)
1 q11f11

(
1− 2π

(1)
1 q11

)
+ λ− 3

2
λ2[

π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
− λ
] . (2.32)

Using that dG(x,x)
dx

∣∣∣∣
x=1

= 2G1(1, 1) and after some manipulations, we get

G1(1, 1) =
λ(1− λ) + π

(1)
1 q11

(
λ2

2
− λ
)

[
π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
− λ
] . (2.33)

By using Little’s law, we get the average delay per packet as

Davg =
G1(1, 1)

λ
=

(1− λ) + π
(1)
1 q11

(
λ
2
− 1
)[

π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
− λ
] . (2.34)

We next seek q11 ∈ [0, 1] which minimizes Davg while ensuring the stability of the

queues. Specifically, we need to solve

min
q11∈[0,1]

Davg =
(1− λ) + π

(1)
1 q11

(
λ
2
− 1
)[

π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
− λ
]

s.t. λ < π
(1)
1 q11f11

(
1− π

(1)
1 q11

)
. (2.35)

The constraint for stability can be written as

(
π
(1)
1

)2
q211f11 − π

(1)
1 f11q11 + λ < 0. (2.36)

The roots of this equation that we denote by s1 and s2 are given by

s1, s2 =
1∓

√
1− 4λ/f11

2π
(1)
1

. (2.37)

The stability constraint implies that the optimal probability q∗11 satisfies s1 ≤ q∗11 ≤

s2. Ignoring for the moment the constraints and equating the derivative of the

objective function to zero, we get the optimal transmission probabilities as

p1, p2 =
(1− λ)∓

√
λ/2
√

2
f11

(1− λ/2)2 − (1− λ)

(1− λ/2) π
(1)
1

. (2.38)
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After some algebraic manipulations, we can show that 0 ≤ s1 ≤ 1 and that s1 ≤

p1 ≤ s2 ≤ p2. Since the objective function is strictly decreasing on (s1, p1), we can

conclude that the optimal transmission probability q∗11 that minimizes the delay is

given by q∗11 = min(p1, 1).

The stable throughput condition yields that λ < λmax, where

λmax =


f11/4, if π

(1)
1 ≥ 1/2 ⇔ π

(1)
0 ≤ 1/2,

π
(1)
1

(
1− π

(1)
1

)
f11, if π

(1)
1 ≥ 1/2 ⇔ π

(1)
0 ≤ 1/2.

(2.39)

It can be shown after some manipulations that p1 > 1 ⇔ λ ∈ [0, λ∗] and that

p1 < 1 ⇔ λ ∈ [λ∗, λmax), where

λ∗ = 1+ f11

(
1− 2π

(1)
1 +

(
π
(1)
1

)2
/2

)
−

√
1−
(
π
(1)
1

)2
f11+ f 2

11

(
1− 2π

(1)
1 +

(
π
(1)
1

)2
/2

)2

.

(2.40)

Noting that λ∗(π
(1)
1 = 1/2) = f11/4 and that λ∗ < λmax = f11/4 only if π

(1)
0 ≤ 1/2,

the proof is complete.

34



Chapter 3: Cross-Layer Cooperation in Cognitive Networks

3.1 Introduction

Cognitive radio has been studied from an information theoretic point of view

in [52, 53]. However, such formulation mainly focuses on sophisticated coding tech-

niques at the physical layer and does not take into account the bursty nature of

the traffic.1 In [54], authors studied the stable throughput of a simple cognitive

network consisting of one primary and one secondary source-destination pairs under

the SINR threshold model for reception with and without relaying for perfect and

erroneous sensing. However, such simplified model does not capture the effect of the

potential interference induced in a real network with many secondary nodes sharing

the spectrum with the primary [55], or the effect of the multiple access protocol used

at the secondary network. Moreover, relaying is limited to single node relaying, and

the case where the secondary node can be successful when both the primary and

the secondary transmit simultaneously was not considered. Similar simple models

were considered in [56,57]. In [58], the authors considered the stable throughput of

a more realistic model consisting of a primary TDMA uplink with some dedicated

cognitive relays deployed to help the primary, and a secondary network consisting

1Refer to Chapter 1 for more details.
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of an Ad-Hoc network. However, only the case of perfect sensing of the primary

nodes was considered and the analysis is limited to the oversimplified collision model

for reception. Relaying is restricted to single node relaying despite the presence of

several dedicated relays in the system. In [59], the stable throughput of a network

consisting of one primary link and a symmetric secondary cluster with common des-

tination under perfect sensing assumption is considered. The secondary cluster is

controlled via a central controller with one secondary node scheduled for transmis-

sion at each slot, and communication within the cluster is assumed to be perfect.

However, the assumption of having a secondary cluster is not appropriate for Ad-

Hoc networks where the presence of a central controller is not generally feasible and

the transmissions of the secondary nodes interfere.

In this part, we focus on the effect of the interference in a cognitive network

where many secondary nodes share the spectrum with a primary on both the pri-

mary’s stable throughput and secondary’s throughputs. Secondary interference on

the primary may occur due to sensing errors or even with perfect sensing in the

presence of malicious attacks; while interference between secondary nodes is due to

the random access protocol used in the secondary network. We adopt the SINR

threshold model for reception which allows for the possibility of successful simulta-

neous transmissions and captures the effect of the physical layer parameters on the

performance. In order to mitigate the effect of the secondary interference on the

primary, we propose a multinode relaying protocol that exploits all the SUs that

can decode a PU’s unsuccessful packet to relay that packet using orthogonal space-

time block codes [60]. It is shown that under this protocol, the throughput gain
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Figure 3.1: System Model

of the primary user from relaying increases with more secondary nodes present in

the network [61]. Meanwhile, the secondary nodes might benefit from relaying. The

primary node benefits by having more nodes relaying its packets and the secondary

might benefit by helping the primary to empty his queue and hence having access

to a larger number of idle slots.

This chapter is organized as follows: in Section 3.2, we describe the network

and channel models. In Section 3.3, we study the stable throughput of the PU and

throughputs of the SUs in the perfect sensing case which will serve as an upper

bound on performance, while in Section 3.4, we analyze the effect of erroneous

sensing on the throughputs of the PU and of the SUs. In Section 3.5, we propose the

relaying protocol to benefit from the large population of secondary nodes. Section

3.6 presents the numerical results and in Section 3.7, we conclude the chapter.
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3.2 System Model

The system consists of one primary link and a secondary network consisting

of N secondary source-destination pairs forming an interference network as shown

in Fig. 3.1. All the nodes use the same frequency band for transmission. This

situation arises when that band is licensed to the primary node, while to improve

the spectral efficiency, some secondary nodes are allowed to access that band in an

opportunistic way. All nodes have buffers of infinite capacity to store their packets to

be transmitted. Time is slotted with one packet transmission duration equal to the

slot duration. Arrival process to the primary source node is assumed to be stationary

with an average rate λP packets/slot, while secondary source nodes are assumed

to be saturated. Throughout this chapter, we designate the primary node by the

subscript P and the ith secondary node by the subscript i with i ∈ S = {1, 2, ..., N}.

The ith source node is denoted by Si and the ith destination node is denoted by Di,

i ∈ {P, 1, 2, ..., N}. The ith source node transmits to its destination Di at power

Pi, i ∈ {P, 1, 2, ..., N}.

3.2.1 Channel Model

The physical distance between node i and node j is denoted by rij, where

i, j ∈ {Sk, Dk|k = P, 1, 2, ..., N}. For instance, rSPDj
denotes the physical dis-

tance between the primary source node and the jth secondary destination node.

Path loss exponent is assumed to be equal to α throughout the network. The

link between the (i, j) pair of nodes is subject to stationary block fading with fad-
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ing coefficients {htij} which are independent over slots and mutually independent

among links. All receivers are subject to independent additive white complex Gaus-

sian noise with zero mean and variance N0. Under the adopted SINR-threshold

model for reception, node j is able to successfully decode a packet if the received

signal-to-interference plus noise ratio (SINR) remains larger than some threshold βj

throughout the packet duration [62]. The threshold βj depends on the modulation

scheme, the coding and the target BER set by the receiving node as well as other

features of the detector structure. Upon the success or failure of a packet reception

at a node, an Acknowledgment/Non-Acknowledgment (ACK/NACK) packet is fed-

back to the corresponding transmitter. The ACK/NACK packets are assumed to

be instantaneous and error free. This is a reasonable assumption for short length

ACK/NACK packets that have negligible delay, and small error rate achieved by

using low rate codes on the feedback channel.

Under this model, the transmitted signal by the ith node in the presence of an

interfering set of nodes I at time slot t is received at the jth node as

ytj =
√
Pir

−α
ij h

t
ijx

t
i +
∑
k∈I

√
Pkr

−α
kj h

t
kjx

t
k + ntj, (3.1)

where xtk is the transmitted packet by the kth node at time slot t and is of unit

power and ntj ∼ CN (0, N0) is the additive white complex Gaussian noise at node j.

In this case, the success probability of the transmission of the ith node at the jth

receiver is given by

Pr [SINRij > βj] = Pr

[
Pir

−α
ij |htij|2

N0 +
∑

k∈I Pkr
−α
kj |htkj|2

> βj

]
. (3.2)

39



3.2.2 Multiple Access Protocol

Both the PU and the SUs transmit over the same frequency band. We adopt

the OSA scheme and hence, the SUs are restricted to use the idle slots of the PU.

The primary node has the priority for transmission. At the beginning of each slot,

the SUs sense the channel and only if a slot is detected to be idle, do they access

the channel in a random access way. The ith SU will transmit in a slot with a

probability qi whenever that slot is detected to be idle. We assume that there is

sufficient guard time at the beginning of each slot to allow sensing the channel at

the SUs.

According to the cognitive radio principle, the SUs should be “transparent” to

the primary in the sense that their transmissions should not affect some performance

criterion (here, the queueing stability) of the primary node. If the sensing is perfect,

the SUs never interfere with the PU and can use any values for their transmission

parameters (power/channel access probability) that maximize their sum throughput

without affecting the stability of the PU. However, if the sensing is not perfect,

the SUs must limit their interference on the PU by controlling their transmission

parameters to achieve that goal while maximizing their opportunistic throughput.

We discuss the constraints on the secondary transmission parameters in case of

imperfect sensing in Section IV.

Throughout this chapter, we consider both perfect and imperfect sensing. Per-

fect sensing is an optimistic case and only serves as an upper bound on performance.

We also consider both cases of asymmetric network with arbitrary fading distribu-
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tions and symmetric network with Rayleigh fading where hij ∼ CN (0, σ2
ij). We will

find that most results apply for both cases but in the asymmetric case, some results

are not in closed form.

The symmetric case with Rayleigh fading that we will consider is characterized as

follows

• Pj = P0, for j ∈ S = {1, 2, ..., N}.

• qj = q, for j ∈ S = {1, 2, ..., N}.

• βj = β, for j ∈ S = {1, 2, ..., N}.

• rSkDj
= rj, for j, k ∈ S = {1, 2, ..., N}.

• rSjDP
= r0, for j ∈ S = {1, 2, ..., N}.

• rSPSk
= r, for k ∈ S = {1, 2, ..., N}.

• hSjDk
= h̃j ∼ CN (0, σ̃2), for j, k ∈ S = {1, 2, ..., N}.

• hSjDP
= h̄j ∼ CN (0, σ2

0), for j ∈ S = {1, 2, ..., N}.

• hSPSk
= hk ∼ CN (0, σ2), for k ∈ S = {1, 2, ..., N}.

This geometry, for instance, arises whenever the secondary sources lie on a circle

and secondary destinations, along with primary source-destination pair lie on a

line passing by the center of that circle and perpendicular to its plane. This is

an approximation for the case where the secondary network is an uplink and the

primary network is an uplink or downlink, and the secondary nodes are located far

away from their base station while the primary base station is close to its receiver.

We adopt the definition of queueing stability as in Section 2.3.
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3.3 Perfect Sensing Case

In this case, the SUs are able to perfectly identify the PU’s idle slots where

they can access the channel, from the PU’s busy slots where they must remain silent

to avoid interfering with the PU. In this case, the PU gets his maximum possible

service rate. Clearly, this is an ideal situation serving as an upper bound on the

performance.

3.3.1 Primary User’s Queue

Theorem 3.1. The stability condition for the PU’s queue in the perfect sensing case

is given by

λP < µmax
P = Pr

[
PP |hSPDP

|2r−αSPDP

N0

> βP

]
. (3.3)

For the case of Rayleigh fading, we have that µmax
P = exp

(
−N0βP

PP σ
2
SPDP

r−α
SPDP

)
.

Proof: The service process at the PU’s queue is given by Y t
P = 1

{
Ot
SPDP

}
, where

Ot
SPDP

denotes the event of no outage on the PU source-destination link in slot t

and 1{·} is the indicator function which takes the value of one if its argument is true

and zero otherwise. This event depends on the fading process on the (SP , DP ) link

which is stationary and hence, the process {Y t
P} is stationary. The average service

rate of the PU’s queue in this case, that we denote by µmax
P , is given by

µmax
P = E

[
Y t
P

]
= Pr

[
Ot
SPDP

]
= Pr

[
PP |hSPDP

|2r−αSPDP

N0

> βP

]
. (3.4)

For the Rayleigh fading case, |hSPDP
|2 is exponentially distributed with mean σ2

SPDP
,

and the results follows.
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Finally, by using Loynes’ theorem, we can get the stability condition of the primary

node as given in Eq. (3.3). �

3.3.2 Secondary Users’ Queues

Source node i ∈ S = {1, 2, ..., N} of the secondary network transmits with

probability qi, independently of the other secondary nodes, whenever a slot is de-

tected to be idle.

Theorem 3.2. In the perfect sensing case, the throughput region of the SUs is

R =
∪

q∈[0,1]N

λ ∈ RN
+ : λj =

(
1− λP

µmax
P

) ∑
T ⊆{1,2,...,N}

j∈T

∏
k∈T

qk
∏
l∈S\T

(1− ql)P
T
Sj
, j ∈ S

 ,

(3.5)

where

P T
Sj

= Pr

[
Pj|hSjDj

|2r−αSjDj

N0 +
∑

k∈T ,k ̸=j Pk|hSkDj
|2r−αSkDj

> βj

]
,

which, for the Rayleigh fading case, is equal to

P T
Sj

= exp

(
−N0βj

σ2
SjDj

Pjr
−α
SjDj

)∑
k∈T
k ̸=j

(∏
l ̸=k

θlθk
θl − θk

)
1(

θk + 1/σ2
SjDj

) .
Proof: Let At

T t be the event that only nodes in subset T t ⊆ S of secondary nodes

transmit in slot t and let Ot
SjDj ,T t be the event of no outage on the (Sj, Dj) link in

slot t when all nodes in the set T t transmit.

The departure process of the jth secondary node can be written as

Y t
j =

∑
T t⊆{1,2,...,N},j∈T t

1
{{
Qt
P = 0

}∩
At

Tt

∩
Ot
SjDj ,T t

}
. (3.6)
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By using the fact that if the primary queue is stable, then the process 1{Qt
P = 0} is

stationary [41,48]; it can be easily shown that the process {Y t
j } is stationary. Hence,

we drop the time indices. By Little’s law [63], it follows that Pr [QP = 0] = 1− λP
µmax
P

.

Given a set T ⊆ {1, 2, ..., N} of secondary nodes transmitting in a slot, the proba-

bility that the jth secondary destination node j ∈ T is able to successfully decode

the jth secondary source node transmission is given by

P T
Sj

= Pr
[
OSjDj ,T

]
= Pr

[
Pj|hSjDj

|2r−αSjDj

N0 +
∑

k∈T ,k ̸=j Pk|hSkDj
|2r−αSkDj

> βj

]
. (3.7)

For the case of Rayleigh fading (Refer to Section 3.8.1 for the proof), P T
Sj

is

P T
Sj

= exp

(
−N0βj

σ2
SjDj

Pjr
−α
SjDj

)∑
k∈T
k ̸=j

(∏
l ̸=k

θlθk
θl − θk

)
1(

θk + 1/σ2
SjDj

) , (3.8)

where θk =
Pjr

−α
SjDj

Pkr
−α
SkDj

βjσ2
SkDj

.

By independence of the events in Eq. (3.6), the throughput rate of the jth secondary

source node is given by

λj = E
[
Y t
j

]
=

(
1− λP

µmax
P

) ∑
T ⊆{1,2,...,N}

j∈T

∏
k∈T

qk
∏
l∈S\T

(1− ql)P
T
Sj
. (3.9)

Finally, the throughput region of the secondary network is obtained by taking the

union over all possible transmission probability vectors q = (q1, q2, ..., qN) ∈ [0, 1]N

as in Eq. (3.5). �

Next, we consider the symmetric case introduced in Section 3.2. In that case,

the probability of success of the jth SU in the presence of k other interfering trans-

missions is given by

P (k) = Pr

[
P0|hSjDj

|2r−αj
N0 +

∑k
m=1 P0|h̃m|2r−αj

> β

]
= exp

(
−βN0

σ̃2r−αj P0

)
1

(1 + β)k
. (3.10)

44



Proof: Refer to Section 3.8.1. �

In this case, the throughput rate of the jth secondary node is given by

λj =

(
1− λP

µmax
P

)
q

N−1∑
k=0

(
N − 1

k

)
qk(1− q)N−1−kP (k)

=

(
1− λP

µmax
P

)
exp

(
−βN0

σ̃2r−αj P0

)
q
N−1∑
k=0

(
N − 1

k

)
qk(1− q)N−1−k 1

(1 + β)k

=

(
1− λP

µmax
P

)
exp

(
−βN0

σ̃2r−αj P0

)
q

[
1− q

β

1 + β

]N−1

. (3.11)

We note that due to perfect sensing, the SUs do not interfere with the PU. Hence,

they can transmit at their maximum power in order to maximize their throughput

rate
(
∂λj
∂P0

> 0
)

without affecting the stability of the primary queue. This is not

necessary true in case of imperfect sensing as will be seen in Section 3.4.

Next, we calculate the optimum transmission probability q∗ at which the SUs should

transmit in order to maximize their throughput. A very small q limits the interfer-

ence between the SUs but at the same time reduces the throughput, while a large

value of q causes high interference between the SUs; leading to a degradation in the

throughput. By setting
∂λj
∂q

= 0, we get q∗ = min{1, 1
χN

}, where χ = β
1+β

. Thus, for

a small number of secondary nodes N , it is beneficial to transmit with probability

one, while for a large value of N , the SUs should backoff to limit the interference on

each other. Moreover, it is beneficial for both primary and secondary nodes that the

PU transmits at its maximum power to achieve its maximum service rate and hence

maximize the fraction
(
1− λP

µmax
P

)
of idle slots available to the secondary transmis-

sions. This may not be true if the sensing is not perfect because of the interference

between the PU and the SUs that may suffer from degradation of their throughput
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if the PU increases its transmission power.

3.4 Imperfect Sensing Case

Due to fading and other channel impairments, secondary nodes can encounter

errors while sensing the channel, leading to interference with the primary node that

might cause drastic reduction of its stable throughput. In this section, we quantify

the effect of imperfect sensing on the throughput of primary and secondary nodes.

3.4.1 Channel Sensing

Two errors may occur at the secondary nodes while sensing the channel,

namely, false alarm and misdetection errors. All subsequent results are applica-

ble for any sensing method since they are given in terms of general false alarm P
(i)
f

and misdetection P
(i)
e probabilities at the ith SU. It should be noted that for a

particular detector, P
(i)
f and P

(i)
e are related by its receiver operating characteristics

(ROC) [64]. False alarm occurs whenever the primary node is idle but is sensed to

be busy. Clearly, false alarm errors do not affect the stable throughput of the PU

but degrades the throughput of the SUs. Misdetection occurs when the PU is busy

but is sensed by some SUs to be idle. Those SUs will simultaneously transmit with

the PU causing some interference at the primary destination. If the interference

is strong enough, it may lead to instability of the primary queue. Note that by

the independence of the fading processes between nodes, the misdetection and false

alarm events are independent between secondary nodes.
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3.4.2 Primary Queue Analysis

Theorem 3.3. In the imperfect sensing case, the stability condition of the primary

queue is given by

λP < µP =
∑

U⊆{1,2,...,N}

P U
e

∑
T ⊆U

∏
k∈T

qk
∏

k∈U\T

(1− qk)

µ(T )
P

 , (3.12)

where P U
e and µ

(T )
P are given by Eqs. (3.14) and (3.15).

Proof: Let U t ⊆ S = {1, 2, ..., N} be the set (possibly empty) of SUs that have

misdetections at time slot t. A subset T t ⊆ U t of these nodes chooses to transmit

at that time slot. The service process of the PU can be expressed as

Y t
P =

∑
Ut⊆{1,2,...,N}

∑
T t⊆Ut

1
{
E tUt

∩
At

T t

∩
Ot
SPDP ,T t

}
, (3.13)

where E tUt denotes the event that only nodes in the set U t misdetect the primary

node in time slot t; At
T t is the event that only nodes in the set T t transmit at time

slot t and Ot
SPDP ,T t is the event of no outage on the (SP , DP ) link in the presence

of an interfering set T t of secondary nodes. The process {Y t
P} is clearly stationary,

thus we drop the time indices t subsequently.

By independence, the probability that only nodes in the set U have misdetection is

P U
e = Pr [EU ] =

∏
j∈U

P (j)
e

∏
j∈S\U

(
1− P (j)

e

)
. (3.14)

The service rate at the primary node given a set T of transmitting nodes, as defined

above, is given by

µ
(T )
P = Pr

[
OSPDP ,T

]
= Pr

[
PP |hSPDP

|2r−αSPDP

N0 +
∑

k∈T PSk
|hSkDP

|2r−αSkDP

> βP

]
. (3.15)
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We then obtain the average service rate at the primary queue as given in Eq. (3.15),

and hence by Loynes’ theorem, the proof is complete. �

Note that from Eq. (3.15), µ
(T )
P < µmax

P unless T is the empty set. Since∑
U⊆{1,2,...,N} P

U
e

[∑
T ⊆U

[∏
k∈T qk

∏
k∈U\T (1− qk)

]]
= 1, it is clear that Eq. (3.12)

is a convex combination of terms less than or equal to µmax
P , hence µP given in Eq.

(3.12) is strictly less than µmax
P , which is an expected result due to secondary inter-

ference.

Next, we specialize to the symmetric case with Rayleigh fading. In that case, by

symmetry, the probability of misdetection is the same for all the secondary nodes,

i.e., P
(j)
e = Pe, j ∈ S = {1, 2, ..., N}.

Let µ
(k)
P be the success probability of the PU given k secondary concurrent trans-

missions, then by similar analysis as in Section 3.8.1, we get µ
(k)
P as

µ
(k)
P = Pr

[
PP |hSpDP

|2r−αSPDP

N0 +
∑k

j=1 P0|hj|2r−α0

> βP

]

= exp

(
−N0βP

σ2
SpDP

PP r
−α
SPDP

)
1(

1 +
P0r

−α
0 βP σ

2
0

σ2
SPDP

PP r
−α
SpDP

)k = µmax
P

(
a

1 + a

)k
, (3.16)

where

a =
σ2
SPDP

PP r
−α
SPDP

σ2
0βPP0r

−α
0

. (3.17)

By symmetry, the average service rate of the primary queue is given by

µP =
N∑
L=0

(
N

L

)
PL
e (1− Pe)

N−L

[
L∑
k=0

(
L

k

)
qk(1− q)L−kµ

(k)
P

]
= µmax

P

[
1− qPe

a+ 1

]N

= µmax
P

[
1− qPe

P0r
−α
0 βPσ

2
0

σ2
SPDP

PP r
−α
SPDP

+ σ2
0P0r

−α
0 βP

]N
. (3.18)

The effect of imperfect sensing is shown in the multiplication of µmax
P by a term less
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than one. By Loynes’ theorem, for stability, we should have

λP < µmax
P

[
1− qPe

P0r
−α
0 βPσ

2
0

σ2
SPDP

PP r
−α
SPDP

+ σ2
0P0r

−α
0 βP

]N
. (3.19)

The primary user chooses its arrival rate λP < µmax
P independently of the

secondary network. In the imperfect sensing case, µP < µmax
P , and hence, the SUs

should limit their transmission power and/or transmission probabilities to limit the

interference on the PU to ensure that its arrival rate λP be less than µP to avoid

the instability of its queue.

It is straightforward to establish the following properties about the PU service rate

µP given by Eq. (3.18).

Proposition 3.1. The primary node service rate in the imperfect sensing case, as

given by Eq. (3.18) satisfies

(i) 0 ≤ µP ≤ µmax
P .

(ii) lim
a→∞

µP = µmax
P .

(iii) lim
a→0

µP =


µmax
P [1− qPe]

N , if PP > 0 and P0 → ∞

0, if PP → 0.

(iv)
∂µP
∂a

> 0, i.e., µP is strictly increasing with a.

(v) lim
q→0

µP = µmax
P .

(vi) lim
q→1

µP = µmax
P

[
1− Pe

a+ 1

]N
.

(vii)
∂µP
∂q

< 0, i.e., µP is strictly decreasing with q.

From Proposition 3.1, we can draw the following conclusions: property (i)
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states that the effect of sensing errors at the SUs is the degradation of the service

rate of the PU licensed node due to the interference from the SUs on the primary.

Properties (ii),(iii) and (iv) reveal that unless a → ∞ (i.e., either PP → ∞ or

P0 → 0), the primary node cannot achieve its maximum service rate µmax
P that is

achieved in the case of perfect sensing. Also, for finite PP , which is the case of inter-

est here, the SUs have a maximum power, possibly infinite if λP < µmax
P (1− qPe)

N ,

at which they can transmit without affecting the stability of the primary node.

Moreover, even if the interference of the SUs is very high (case of P0 → ∞), the PU

can still achieve a portion (1 − qPe)
N of its maximum service rate µmax

P . Finally,

properties (v), (vi) and (vii) show that for fixed PP and P0, the secondary nodes can

control their interference level on the primary user by adjusting their transmission

probabilities q. This might be easier to implement than power control due to hard-

ware complexity and non-linearity of the power amplifiers used for power control

over wide range.

For λP < µP to be satisfied, we can solve for the minimum value of a =
σ2
SPDP

PP r
−α
SPDP

σ2
0βPP0r

−α
0

and for the maximum value of q to calculate the maximum possible transmission

power (Pmax
0 ) and the maximum possible transmission probability (qmax) of the SUs

while remaining “transparent” to the PU, i.e., without affecting its stability.

By using Eq. (3.18) and Proposition 3.1, we obtain

q < qmax =


1, if λP < µmax

P

[
1− Pe

a+1

]N
[
1−

(
λP
µmax
P

)1/N]
a+1
Pe
, if µmax

P

[
1− Pe

a+1

]N
< λP < µmax

P .

(3.20)

For fixed primary transmission power PP , we can calculate the maximum transmis-
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sion power allowed at the secondary nodes as

P0 < Pmax
0 =


∞, if λP < µmax

P (1− qPe)
N

σ2
SPDP

PP r
−α
SPDP

r−α
0 βP σ

2
0

[
1−(λP /µ

max
P )1/N

qPe−1+(λP /µ
max
P )1/N

]
, if µmax

P (1− qPe)
N < λP < µmax

P .

(3.21)

From Eqs. (3.20) and (3.21), we conclude that for fixed PP , if λP < µmax
P

[
1− Pe

a+1

]N
,

the SUs can transmit at any desired chosen probability without affecting the stability

of the primary, while they have to backoff to reduce their interference on the primary

node if µmax
P

[
1− Pe

a+1

]N
< λP < µmax

P . On the other hand, for fixed transmission

probability q, if λP < µmax
P (1− qPe)

N , the SUs can transmit at any power without

affecting the stability of the PU, while there exists a finite maximum allowed power

if λP > µmax
P (1 − qPe)

N . This can be understood by noting that (1 − qPe)
N is the

probability that none of the SUs transmit in a slot when the PU is busy, and hence,

in addition to the simplicity of its decentralized operation, using random access as a

multiple access protocol in the secondary network provides an additional protection

to the primary. Note that, in practical situations, the transmission power of a node

is also limited by the power amplifier used, but we ignore this aspect here.

3.4.3 Secondary Queues

A secondary node gets a packet served in the imperfect sensing case, either if

the PU is idle with no false alarm occurring at that SU and that node transmits and

is successful, or if the PU is busy with an incorrect detection of the PU occurring

at that secondary node and the SU transmits and is successful.
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Theorem 3.4. The throughput of the jth secondary source node in the imperfect

sensing case is

λj =

(
1− λP

µP

)
λ
(P idle)
j +

(
λP
µP

)
λ
(P busy)
j , (3.22)

where λ
(P idle)
j and λ

(P busy)
j are the average throughput rates of the jth secondary

node given that the primary node is idle, and busy respectively. and are given by

Eqs. (3.28) and (3.29).

Proof: By the saturation assumption of the secondary queues, the average service

rate of the primary node is independent of the states of the queues of the SUs (i.e.

there is no queueing interactions) and hence, the probability that the primary node

is idle = 1- Probability that primary node is busy = 1− λP
µP

.

The departure process at the jth secondary source node is given by

Y t
j =

∑
Ft⊆{S\{j}}

∑
T t⊆{S\Ft}, j∈T t

1
{
{Qt

P = 0}
∩

F t
∩

At
T t

∩
Ot
SjDj ,Ft,T t

}
+

∑
Et⊆S, j∈Et

∑
T t⊆Et, j∈T t

1
{
{Qt

P ̸= 0}
∩

E t
∩

At
T t

∩
Ot
SjDj ,Et,T t

}
, (3.23)

where S = {1, 2, ..., N}, F t is the event that only the nodes in set F have a false

alarm in slot t whenever the primary source node is idle, E t is the event that only

the nodes in set E have a misdetection of the primary node in slot t whenever the

primary is busy, At
T t is the event that only nodes in set T t transmit at time slot

t. The event Ot
SjDj ,Ft,T t is the event of no outage on the jth secondary source-

destination link when the set F of nodes has false alarm and nodes in the set T of

secondary nodes transmit simultaneously at time slot t, while the event Ot
SjDj ,Et,T t

is the event of no outage on the jth secondary source-destination link when the set
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E t of nodes has misdetection of the activity of the primary node, and nodes in the

set T t of secondary nodes transmit simultaneously.

Since the process is stationary, we can drop the time indices.

The jth secondary node departure rate can be written as

λj = E[Y t
j ] =

(
1− λP

µP

)
λ
(P idle)
j +

(
λP
µP

)
λ
(P busy)
j . (3.24)

If the primary node is idle, then the probability that a set F ⊆ {S\{j}} of secondary

nodes has false alarms while all other secondary nodes do not is

Pr[F | P is idle] =
∏
i∈F

P
(i)
f

∏
i∈S\F

(
1− P

(i)
f

)
, (3.25)

then we can write

λ
(P idle)
j =

∑
F⊆S\{j}

Pr[F | P is idle] λ
(P idle, F)
j , (3.26)

where

λ
(P idle, F)
j =

∑
T ⊆S\F , j∈T

[∏
i∈T

qi
∏
i∈T c

(1− qi)

]
Pr

[
Pj|hSjDj

|2r−αSjDj

N0 +
∑

l∈T Pl|hSlDj
|2r−αSlDj

> βj

]
,

(3.27)

and T c = S \ {F
∪

T }.

Hence

λ
(P idle)
j =

∑
F⊆S\{j}

∏
i∈F

P
(i)
f

∏
i∈S\F

(
1− P

(i)
f

)λ(P idle, F)
j . (3.28)

Similarly

λ
(P busy)
j =

∑
E⊆S, j∈E

∏
i∈E

P (i)
e

∏
i∈S\E

(
1− P (i)

e

)λ(P busy, E)
j , (3.29)

where

λ
(P busy, E)
j =

∑
T ⊆E, j∈T

∏
i∈T

qi
∏
i∈E\T

(1− qi)

P (T ) , (3.30)
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and P (T ) = Pr

[
Pj |hSjDj

|2r−α
SjDj

N0+PP |hSPDj
|2r−α

SPDj
+
∑

l∈T Pl|hSlDj
|2r−α

SlDj

> βj

]
. Finally, the through-

put region of the secondary nodes is given by

L =
∪

(q1,q2,...,qN )∈[0,1]N

{
(λ1, λ2, ..., λN)

}
(3.31)

where λj is given by Eq. (3.24) for j ∈ S = {1, 2, ..., N}. �

Next, we specialize to the case of symmetric secondary cluster introduced in

Section 3.2. In this case, P
(j)
e = Pe and P

(j)
f = Pf for all j ∈ {1, 2, ..., N}. The

average throughput of the jth secondary node can be written as

λj =

(
1− λP

µP

)
q(1− Pf )

N−1∑
L=0

(
N − 1

l

)
(1− Pf )

LPN−1−L
f

[
L∑
k=0

(
L

k

)
qk(1− q)L−kλ

(idle,k)
j

]

+

(
λP
µP

)
qPe

N−1∑
L=0

(
N − 1

L

)
PL
e (1− Pe)

N−1−L

[
L∑
k=0

(
L

k

)
qk(1− q)L−kλ

(busy,k)
j

]
,

(3.32)

where

λ
(idle,k)
j = Pr

[
P0|hSjDj

|2r−αj
N0 +

∑k
l=1 P0|h̃l|2r−αj

> β

]
= exp

(
−βN0

σ̃2P0r
−α
j

)
1

(1 + β)k
, (3.33)

λ
(busy,k)
j = Pr

[
P0|hSjDj

|2r−αj
N0 +

∑k
l=1 P0|h̃l|2r−αj + PP |hSpDj

|2r−αj
> β

]

= exp

(
−βN0

σ̃2P0r
−α
j

)(
1 +

PP r
−α
SPDj

βσ2
SPDj

P0r
−α
j σ̃2

)−1
1

(1 + β)k
. (3.34)

After some algebra, the throughput of the jth secondary source node is written as

λj =

(
1− λP

µP

)
exp

(
−βN0

σ̃2P0r
−α
j

)
q(1− Pf )

[
1− q(1− Pf )

β

β + 1

]N−1

+

(
λP
µP

)
exp

(
−βN0

σ̃2P0r
−α
j

)
qPe

(
1 +

PP r
−α
SPDj

βσ2
SPDj

P0r
−α
j σ̃2

)−1 [
1− qPe

β

β + 1

]N−1

.

(3.35)
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The secondary nodes aim at maximizing their throughputs (for example sum through-

put) by optimizing P0 and q subject to the constraints given by Eqs. (3.20) and

(3.21). That is by solving

max
P0≥0, q≥0

N∑
j=1

λj

s.t. Eqs. (3.20) and (3.21),

where λj is given by Eq. (3.35).

The objective function is however non-convex and the solution is hard to find in

closed form. In Section 3.6, we present numerical solutions to that optimization

problem and in the following, we present some intuitive properties of the solution

based on the structure of the objective function. Clearly, the smaller the value of

the false alarm probability Pf , the higher the fraction of idle slots in which the SUs

access the channel without interference from the primary. The secondary throughput

of node j (λj) decreases with Pf because of the smaller fraction of idle slots accessed

by the SUs but also increases with Pf due to less interference between them. Such

variation depends on other parameter values, but in general, if N is small, then the

first effect can be significant while if N is large enough, then only the second effect

becomes prevalent. Let I =
PP r

−α
SPDj

σ2
SPDj

β

P0r
−α
j σ̃2 , which is proportional to the ratio of the

interference of the PU on an SU to the SU’s transmission power. If this term is large,

then the PU highly interferes with the SU and the throughputs of the SUs when the

PU is busy are largely reduced. In this case, the secondary throughput is dominated

by the first term of Eq. (3.35). On the other hand, if I is small enough, then the

second term of Eq. (3.35) might become significant and the interference from the PU
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does not significantly reduce the throughputs of the SUs. In this case, λj increases

with increasing Pe because of more opportunities for the SUs to transmit when the

PU is busy despite the fact that the term [1−qPe β
β+1

]N−1 decreases with Pe because

of the secondary interference on each other. The variation of λj with
λP
µmax
P

is more

subtle. On one hand, the fraction of idle slots 1− λP
µP

decreases with increasing λP
µmax
P

;

but also λP
µP

which represents the fraction of busy slots increases. Such variation

is highly dependable on the other parameters. For small values of λP
µmax
P

, secondary

nodes (by Eq. (3.21)) can transmit at their maximum power and get increasing

throughputs due to the increase in the fraction of busy slots, especially when Pe is

high until λP
µmax
P

reaches a value at which transmission power P0 and/or transmission

probabilities q should decrease to limit the interference on the primary and thus

secondary throughputs decrease as well. Finally, it should be noted that sensing

errors might lead to higher SU throughputs compared with the perfect sensing case

(in contrast with the PU where imperfect sensing always leads to lower maximum

stable throughput). This can be explained by observing that incorrect sensing gives

the secondary nodes more opportunities for transmission during the busy slots of

the PU which might lead to a net increase in throughputs especially when λP
µmax
P

is

large. Such observations will become clearer in Section 3.6.

3.5 Relaying in the Perfect Sensing Case

Primary users would be willing to share their channel resources with secondary

users if they benefit from such sharing. Hence, forcing the secondary nodes to relay
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the primary node’s unsuccessful packets would be the price that the SUs pay for

accessing the PU’s channel and the incentive for the PU to share his resources with

the SUs. Moreover, by relaying the PU’s packets, the SUs might benefit from the

increase of the number of idle slots available for their transmissions. In this section,

we propose and analyze a distributed cooperative protocol between the secondary

and primary nodes. We restrict the analysis to the perfect sensing case2. We

also restrict the analysis to the symmetric case as described previously. Similar

properties of the results can be shown for the asymmetric case with arbitrary fading

distributions as shown in Section 3.8.2.

3.5.1 Relaying Protocol

The relaying protocol achieves throughput gain with no channel state informa-

tion (CSI) about hSkDP
fading coefficients available at the SUs by using Distributed

Orthogonal Space-Time Block Code (D-OSTBC). That is, each of the SUs that

are able to successfully decode a PU’s unsuccessful packet mimics an antenna in a

regular Space-Time Code (STC) setting of a multiple-input single-output (MISO)

channel. Such OSTBC schemes always exist for one dimensional signal constella-

tions for any number of relaying nodes [65]. For that case, these OSTBC schemes

achieve full diversity gain at coding rate =1 while ensuring simple decoding rule

based on linear processing at the receiver.

Remarks:

2As will be seen, the imperfect sensing case involve solving for N + 1 interacting queues which

is, to date, an open problem for N > 1 [43].
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1. Each of the relaying nodes must know which antenna it mimics in the underlying

STC used. This can be achieved by either some coordination between the SUs,

or by a prior node indexing and observing ACK/NACK packets generated by the

SUs regarding the primary packet. Those ACK/NACK messages are assumed to be

available to all nodes throughout the network.

2. If the packet length is not an integer multiple of the number of relaying nodes,

the last block of symbols in the packet is relayed by a smaller number of nodes.

However, such effect is typically small since for all practical situations the number

of symbols per packet is much larger than the number of relaying nodes and thus,

we ignore such “edge effects” in the sequel.

3. For two-dimensional constellations, it is shown in [66] that the rates of complex

orthogonal spacetime block codes for more than two transmit antennas are upper-

bounded by 3/4, while the rates of generalized complex orthogonal spacetime block

codes for more than two transmit antennas are upper-bounded by 4/5. In this part,

we mainly focus on the case of one dimensional constellation with code rate =1 in

order to avoid both analytical and practical issues (such as synchronization prob-

lems) related to variable rate systems.

The relaying protocol works as follows. At every busy slot of the primary node, if

one or more SUs are able to successfully decode the packet sent by the PU while

the primary destination can not, then these SUs store this packet in a special queue

(relaying queue) and send an ACK feedback to the primary, and the primary node

releases the packet from its queue. We assume that this ACK messages will also

be heard by all the SUs and thus the SUs which could not receive that packet will
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abstain from transmission until that packet is successfully delivered to the primary

destination and thus avoiding interfering with the PU’s relayed packets. In the

next available PU’s idle slot, the SUs which were able to decode the PU packet

will transmit it using D-OSTBC as described above. It should be noted that the

primary packets are given priority for transmission, i.e., a secondary source node

will not transmit its own packets unless it does not have any primary packets to

relay and none of the other secondary nodes has any.

We illustrate the protocol operation by the following example for N = 3, where ‘B’

stands for Busy, ‘I’ stands for Idle, ‘S’ stands for Success and ‘F’ stands for Fail.

Time Slot 1 2 3 4 5 6 7 8

PU B, S B, F B, S B, F I I B, S I

SU1 S F B(P2),F B(P2),S I

SU2 F S I I B(P4),S

SU3 S S B(P2),F B(P2),S B(P4),S

In the first slot, the PU transmits a packet and is successful. The packet is then

released from the system. In the second slot, the PU has a failed transmission while

SU1 and SU3 were able to decode that packet. They then send an ACK to the

PU transmitter which drops the packet from its queue. Meanwhile, SU2 receives

that ACK and knows that packet 2 of the PU was not successful and that SU1 and

SU3 were able to successfully decode it. Subsequently, SU2 will not transmit until

receiving an ACK from the PU destination regarding packet 2. In slot 3, the PU

has packet 3 successfully delivered to the PU destination. In slot 4, the PU has a
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failed transmission, but both SU2 and SU3 are able to successfully decode it. SU2

and SU3 send an ACK to the PU. SU1 also receives that ACK. Then, once packet

2 is delivered, SU1 will not transmit until packet 4 is delivered. In slot 5, the PU

becomes idle. SU2 knows that packet 2 has not been delivered yet and that SU1 and

SU3 have it, then SU2 remains silent. Both SU1 and SU3 transmit packet 2 using

D-OSTBC but the PU destination can not decode it. In slot 6, they retransmit it

and are successful. In slot 7, the PU transmits and is successful. In slot 8, the PU

is idle, and both SU2 and SU3 transmit packet 4 and are successful.

3.5.2 Protocol Analysis

We proceed by proving the main result for symmetric network with arbitrary

fading distributions, and then we provide closed form expressions for the special

case of Rayleigh fading. For the case of asymmetric network, similar results hold as

proved in Section 3.8.2.

For a secondary source node to successfully decode a primary packet, the minimum

required SNR value is βP . Let Pc be the probability that one of the SUs is able

to successfully decode the PU’s packet (which is same for all secondary nodes by

symmetry), then

Pc = Pr

[
PP |hSPSj

|2r−αSPSj

N0

> βP

]
= Pr

[
|hSPSj

|2 > βPN0

PP r−α

]
. (3.36)

Let M t be a random variable denoting the number of secondary source nodes that

successfully decoded a primary’s packet in time slot t, then

Pr[M t = m] =

(
N

m

)
Pm
c (1− Pc)

N−m, m = 0, 1, ..., N. (3.37)

60



According to the above described protocol, the primary queue service process takes

the form Y t
P = 1

{
Ot
SPDP

∪
Ot
SPSS

}
, where Ot

SPDP
and Ot

SPSS
denote the events of

no outage on the primary source-primary destination link and the event that at least

one secondary source node was able to successfully decode the packet, respectively.

Clearly, the service process at the primary source queue is stationary. Hence, the

success probability is given by

µP = E
[
Y t
P

]
= µmax

P +[1−(1−Pc)N ]−µmax
P [1−(1−Pc)N ] = 1−(1−µmax

P )(1−Pc)N ,

(3.38)

which is strictly greater than µmax
P .

It should be noted that stability of the relaying queues at the SUs (as will come

clearer later in Eq. (3.45)) guarantees that the PU’s packets that were successfully

decoded at the secondary nodes will be eventually delivered to the primary des-

tination because the SU’s relaying queues, due to their stability, empty infinitely

often.

Theorem 3.5. Under the previously described relaying protocol, the stability condi-

tion of the system is

λP <
µPPs

Ps + (1− µmax
P )Pc

, (3.39)

where

Ps =
N−1∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−kPr

[
k+1∑
i=1

|hi|2 >
βPN0

P0r
−α
0

]
. (3.40)

Proof: Each SU, in addition to his own packets to be transmitted, has exogenous

packet arrivals from the primary source node to be relayed in the subsequent idle
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slots. The arrival process to the secondary source node from the primary is

XP
ext = 1

{
{Qt

P ̸= 0}
∩

Ot
SPDP

∩
Ot
SPS

}
, (3.41)

where Ot
SPDP

is the outage event on the primary source-destination link and Ot
SPS

is the event of no outage on the primary source-secondary source link at time slot t.

The SNR per symbol of the relayed packet at the primary destination node given

that k secondary nodes simultaneously transmit using D-OSTBC is given by

SNR =
P0r

−α
0

∑k
i=1 |hi|2

N0

. (3.42)

Hence, the probability of no outage given k + 1 nodes transmit in slot t is given by

Pr[Ot
SDP ,k+1] = Pr

[
k+1∑
i=1

|hi|2 >
βPN0

P0r
−α
0

]
. (3.43)

The service process of the primary packets queued at a secondary source node is

given by

Y P
ext =

N−1∑
k=0

1
{
{Qt

P = 0}
∩

{M̄ t = k}
∩

Ot
SDP ,k+1

}
, (3.44)

where M̄ is a random variable denoting the number of other SUs that could decode

the packet in service, and Ot
SDP ,k+1 is the event of no outage at the PU destination

when k + 1 SUs collaboratively transmit the relayed PU’s packet.

The arrival and service processes XP
ext and Y

P
ext are jointly stationary and hence by

Loynes’ theorem, we can get the condition of stability as

λPext = E
[
XP
ext

]
=

(
λP
µP

)
(1− µmax

P )Pc < µPext = E
[
Y P
ext

]
=

(
1− λP

µP

)
Ps, (3.45)

where Ps is as given by Eq. (3.40).

For stability of the primary queue, we should also have that λP < µP and Eq. (3.45)
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satisfied, leading to

λP < λmax
P =

µPPs
Ps + (1− µmax

P )Pc
, (3.46)

where λmax
P is the maximum stable throughput rate of the primary queue. �

Proposition 3.2. The success probability Ps as given by Eq. (3.40) is strictly

increasing with N . Moreover, as N → ∞, Ps → 1.

Proof: Refer to Section 3.8.3.�

Proposition 3.3. The maximum possible arrival rate at the primary node that keeps

the system stable as given by Eq. (3.46) is higher than in the case of no-relaying

only if µmax
P < Ps[1−(1−Pc)N ]

Pc
.

Proof: Follows immediately by setting

µmax
P <

µPPs

Ps + (1− µmax
P )Pc

,

and substituting µP from Eq. (3.38). �

The term 1−(1−Pc)N

Pc
is always bounded between 1 and 1/Pc and is increasing

with N . Hence, a sufficient condition for the condition in Proposition 3.3 to be sat-

isfied is to have µmax
P < Ps which, by Proposition 3.2, is clearly satisfied for some N ,

possibly large, since Ps can be made arbitrarily close to 1 by increasing the number

of secondary nodes. This attracts the attention that the more SUs the PU shares

the channel with, the more benefit for the PU in terms of his stable throughput. It

should be noted that increasing the transmission power P0 of the SUs leads to sat-

isfying the condition in Proposition 3.3 for a smaller number of secondary relaying

nodes.
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We also note that one node relaying (N = 1) always leads to higher primary stable

throughput rate if

(1− (1− µmax
P )(1− Pc))Ps

Ps + (1− µmax
P )Pc

> µmax
P , (3.47)

which can be simplified to

µmax
P = Pr

[
PP |hSPDP

|2r−αSPDP

N0

> βP

]
< Ps = Pr

[
P0|hi|2r−α0

N0

> βP

]
.

We then proceed to characterize the effect of relaying on the secondary nodes. As

previously mentioned, secondary nodes might benefit from relaying the packets of

the primary. This can be understood by noting that relaying the packets of the

primary helps the primary’s queue to become idle more often, that is, a larger

number of idle slots will be available for the secondary nodes. However, a portion of

that fraction is used for relaying the packets of the primary. If that fraction is smaller

than the additional fraction available for the secondary by relaying, a net increase

in throughput is achieved for the secondary nodes. It should be noted that even if

the secondary nodes suffer from some reduction in throughput by relaying, they still

achieve some non-zero throughput by accessing the resources of the primary and

relaying can then be looked at as the price to pay for opportunistically accessing the

channel. On the other hand, as previously shown, the primary always benefits from

relaying when N is sufficiently large and this is the incentive to share his resources

with more SUs.

The effect of the relaying protocol on the SUs can be found by first rewriting Eq.

(3.11) as λj =
(
1− λP

µmax
P

)
λ̃j. An SU transmits its own traffic in a slot only if the
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slot is idle, the SU does not have any primary traffic to relay and no other nodes

has any. Note that when an SU transmits, it behaves as in the perfect sensing case;

thus we obtain the throughput of the jth secondary node as

λrelayingj =

(
1− λP

µP

)(
1− λPext

µPext

)N
λ̃j. (3.48)

On one hand, the fraction of idle slots available to the secondary nodes is now(
1− λP

µP

)
which is larger than the fraction available to the secondary nodes with no

relaying
(
= 1− λP

µmax
P

)
since µP > µmax

P . However, the SU’s throughput is reduced

by a factor of
(
1− λPext

µPext

)N
due to the priority given to the relayed primary’s packets

instead of transmitting the SU’s own packets. By increasingN , the term
(
1− λPext

µPext

)N
decreases due to the priority to transmit the packets of the primary which is the

price for the secondary nodes to opportunistically access the channel. We make this

precise in the following proposition:

Proposition 3.4. The secondary nodes benefit from relaying only if

(
1− λP

µmax
P

)
<

(
1− λP

µP

)(
1− λPext

µPext

)N
. (3.49)

In particular, for a system with a single secondary node (N = 1), this condition is

equivalent to

(1− (1− µmax
P )(1− Pc))Ps

Ps + (1− µmax
P )Pc

> µmax
P ⇔ µmax

P < Ps.

Proof: Follows directly by rewriting Eq. (3.11) as λno relaying
j =

(
1− λP

µmax
P

)
λ̃j and

using Eq. (3.48). The case for N = 1 follows after some algebra by substituting

N = 1 in Eq. (3.38) and substituting in Eq. (3.49). �
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The condition in Proposition 3.4 for the secondary node to benefit from relay-

ing in the case of N = 1 is identical to the condition in Eq. (3.47) for the primary

node to benefit from relaying in case of one secondary node. This means that with

one secondary node, either both the primary and secondary nodes benefit from re-

laying or none of them does.

For the imperfect sensing case, although having more SUs leads to more potential

interference with the primary node, it also leads to more benefits of relaying as

discussed above. Moreover, it leads to higher opportunities for cooperative channel

sensing [67] leading to more accurate sensing results by reducing both false alarm and

misdetection probabilities converging to the perfect sensing case discussed above.

Quantifying the effect of sensing errors on our cooperative protocol require solving

for N + 1 interacting queues, which is an open problem to date.

Finally, for the special case of Rayleigh fading, the different probabilities and through-

puts are given by

λj =

(
1− λP

µP

)(
1− λPext

µPext

)N
exp

(
−βN0

σ̃2r−αj P0

)
q

[
1− q

β

1 + β

]N−1

, (3.50)

Pc = exp

(
−βPN0

σ2PP r−α

)
, (3.51)

Ps =
N−1∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−k

k!
Γ

(
k + 1,

βPN0

P0r
−α
0 σ2

0

)
, (3.52)

where Γ(s, x) is the upper incomplete gamma function and can be represented by

the integral Γ(s, x) =
∫∞
x
ts−1e−t dt.

For this special case, one node relaying (N = 1) always leads to a higher primary

stable throughput rate if
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(1− (1− µmax
P )(1− Pc))Ps

Ps + (1− µmax
P )Pc

> µmax
P ,

which can be simplified to

µmax
P = exp

(
−βPN0

PPσ2
SPDP

r−αSPDP

)
< Ps = Γ

(
1,

βPN0

P0r
−α
0 σ2

0

)
= exp

(
−βPN0

P0σ2
0r

−α
0

)

⇔ P0r
−α
0 σ2

0 > PP r
−α
SPDP

σ2
SPDP

⇔ E[SNR on S-P link] > E[SNR on P-P link]. (3.53)

In other words, assuming same transmission power for the PU and the SUs, one node

relaying always helps both the primary and the secondary user (by Proposition 3.4)

if the channel between secondary source and primary destination is on average better

than the channel between the primary source and primary destination.

3.6 Numerical Results

In this section, we provide numerical results to illustrate the conclusions drawn

analytically. The values of the parameters are chosen based on practical considera-

tions, but also for the sake of clarity of presentation. Figures 3.2 and 3.3 illustrate

the effect of erroneous sensing on the normalized maximum stable throughput of

the primary node as given by Eq. (3.18). The term
σ2
SPDP

r−α
SPDP

PP

βP r
−α
0 σ2

0

is fixed at value

10 dBW throughout Figs. 3.2 and 3.3. In Fig. 3.2, we plot the normalized maxi-

mum stable throughput of the primary node versus the SUs’ transmission power. It

shows that µP can severely drop from its perfect sensing value µmax
P even for small

number of SUs and small values of qPe, and shows that secondary nodes can effec-
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Figure 3.2: Effect of secondary transmission power on primary maximum stable

throughput rate.

tively limit their interference on the primary by controlling their transmission power

P0, their channel access probability q or by enhancing the sensing performance to

reduce Pe. Figure 3.3 shows the normalized maximum stable throughput rate at

the PU versus the number of SUs N showing a similar effect. However, it should

be noted that as shown in Fig. 3.2, lima→0
µP
µmax
P

= limP0→∞
µP
µmax
P

= (1 − qPe)
N ,

limqPe→1
µP
µmax
P

= [1 − 1
a+1

]N while limN→∞
µP
µmax
P

= 0; meaning that for low enough

primary arrival rates λP , controlling the transmission parameters of the secondary

nodes is not as crucial as controlling the number of secondary transmissions in the

system. This motivates the relaying protocol described earlier whose performance

is illustrated in Figs. 3.4 and 3.5. Let SNR =
P0r

−α
0 σ2

0

βPN0
. Figures 3.4 and 3.5 show
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Figure 3.3: Effect of number of secondary nodes on primary maximum stable throughput rate.

the maximum stable throughput rate at the primary node (λmax
P ) as given by Eq.

(3.46) versus the number of secondary nodes for different SNR values for the case of

Rayleigh fading as given by Eqs. (3.51) and (3.52). With no relaying, λmax
P = µmax

P

and is shown by the horizontal line at µmax
P = 0.3. It is clear that regardless of the

values of the parameters, sufficiently large N always outperforms the non-relaying

case and with higher SNR, a smaller number of secondary nodes is needed to out-

perform non-relaying. We also note that at SNR = 0 dB, even a single relaying

node outperforms the non-relaying case. Figures 3.6 and 3.7 show the SUs’ maxi-

mum throughput (optimized over q and P0) versus the normalized average arrival

rate at the primary node λP/µ
max
P for different values of I =

PP r
−α
SPDj

βσ2
SPDj

r−α
j σ̃2 in both

perfect and imperfect sensing cases as given by Eqs. (3.11) and (3.35), respectively.

Note that for each value of λP/µ
max
P , the feasible set of (q, P0) may be different to
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Figure 3.4: Effect of relaying on maximum stable throughput rate (λmax
P ) for decoding probability

Pc = 0.3.

ensure the protection of the primary node as in Eqs. (3.20) and (3.21). The value

of the secondary threshold β is fixed at 10, βN0

σ̃2r−α
j

= −5 dBW,
σ2
SPDP

PP r
−α
SPDP

σ2
0βP r

−α
0

= 0

dBW and Pf = 0.2. We also impose a maximum possible value on P0 equal to

10dBW which is a typical constraint imposed by the hardware. Figure 3.6 shows

the secondary throughput for I = 100 which is the case where the primary node

exerts high interference on the secondary nodes. In this case, perfect sensing leads to

a higher throughput compared to imperfect sensing. Furthermore, the throughput

λj decreases with increasing the error probability Pe because of the decrease of the

fraction of the idle slots that are primary interference free in spite of the increase

of the busy slots suffering from high primary interference which cannot balance the

reduction of the relatively high throughput acquired in idle slots. Figure 3.7 shows

the case of I = 0.1 which is the case of very low interference from the primary.
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Figure 3.5: Effect of relaying on maximum stable throughput rate (λmax
P ) for decoding probability

Pc = 0.9.

In contrast with Fig. 3.6 in which the SUs’ throughput decreases with increasing

λP/µ
max
P , for some parameters values (for instance, N = 1, Pe = 0.9) secondary

throughput increases with λP/µ
max
P . Moreover, except for N = 1, incorrect sensing

leads to a higher throughput than perfect sensing, and increasing Pe leads to an

increase in throughput. Hence, in this case, although increasing Pe might harm

the primary node, secondary nodes benefit in terms of their throughputs. This is

due to the increase of the opportunities at which the SUs access the channel as the

fraction of busy slots suffering from low primary interference increases. This case is

appealing to the secondary nodes if the primary arrival rate is low enough allowing

them to increase Pe to the level which does not affect the primary node stability as

discussed previously.
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Figure 3.6: Secondary throughput versus primary normalized arrival rate for various values of Pe

and N ; I = 100 (case of high interference from the primary).

3.7 Summary and Conclusions

In this chapter, we studied the effect of the number of secondary nodes and

their transmission parameters on the stable throughput of the primary user as well

as on the secondary’s throughputs in both perfect and imperfect sensing cases. It

was shown that secondary transmission parameters (power and channel access prob-

abilities) must depend on the arrival rate of the primary to ensure some protection

to the primary. If the arrival rate at the PU is less than some calculated finite value,

there is no need for controlling their parameters, otherwise, secondary nodes have to

control their transmission parameters to limit their interference on the primary and

avoid affecting its stability. The number of secondary users can be a benefit or a hin-

drance. If the secondary nodes do not relay the primary’s unsuccessful packets, their

72



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ec

on
da

ry
 T

hr
ou

gh
pu

t (
λ j)

λ
P
 / µ

P
max

 

 
P

e
=0.9, N=1

Perfect Sensing, N=1

P
e
=0.1, N=1

P
e
=0.9, N=2

P
e
=0.1, N=2

Perfect Sensing, N=2

P
e
=0.9, N=4

P
e
=0.1, N=4

Perfect Sensing, N=4

Figure 3.7: Secondary throughput versus primary normalized arrival rate for various values of Pe

and N ; I = 0.1 (case of very low interference from the primary).

presence is a harm for the primary as it reduces its maximum stable throughput.

However, if the secondary nodes are forced to relay the primary’s unsuccessful pack-

ets, then the primary always benefits from having many nodes relaying its packets.

Secondary nodes might benefit from relaying by having access to a larger fraction

of idle slots. This observation reveals that with appropriate relaying protocols, cog-

nitive radio technology is appealing for licensed users to share their resources with

other unlicensed users.

3.8 Appendix

3.8.1 Proof of Eqs. (3.8) and (3.10)

We use the following lemma in the proof.
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Lemma 3.1. Let Xi ∼ exp (θi) be independent random variables, then the probability

density function of the sum Z =
∑N

i=1Xi is given by

fZ(z) =
N∑
i=1

 N∏
j=1
j ̸=i

θjθi
θj − θi

 exp(−θiz). (3.54)

If the random variables Xi are also identically distributed, i.e., Xi ∼ exp(−θ) for

all i, then the sum Z =
∑N

i=1Xi has pdf given by the Erlang distribution

fZ(z) = θ exp(−θz) (θz)
N−1

(N − 1)!
. (3.55)

Proof: The proof follows by induction. Refer to [68] for details.�

Hence, for the case of asymmetric configuration:

Pr

[
PSj

|hSjDj
|2r−αSjDj

N0 +
∑

k∈T ,k ̸=j Pk|hSkDj
|2r−αSkDj

> βj

]
= Pr

[
|hSjDj

|2 > βjN0

Pjr
−α
SjDj

+ Z

]

=

∫ ∞

0

Pr

[
|hSjDj

|2 > βjN0

Pjr
−α
SjDj

+ z

]∑
k∈T
k ̸=j

∏
l ̸=k

θlθk
θl − θk

exp(−θkz) dz

= exp

(
−N0βj

σ2
SjDj

Pjr
−α
SjDj

)∑
k∈T
k ̸=j

(∏
l ̸=k

θlθk
θl − θk

)
1(

θk + 1/σ2
SjDj

) , (3.56)

where θk =
Pjr

−α
SjDj

Pkr
−α
SkDj

σ2
SkDj

βj
.

For the case of symmetric network:

Pr

[
P0|hSjDj

|2r−αj
N0 +

∑k
m=1 P0|hm|2r−αj

> β

]
= Pr

[
|hSjDj

|2 > βN0

P0r
−α
j

+ β
k∑
l=1

|hSlDj
|2
]

=

∫ ∞

0

Pr

[
|hSjDj

|2 > βN0

P0r
−α
j

+ βz

]
exp(−z/σ̃2)(z/σ̃2)k−1

σ̃2(k − 1)!
dz

= exp

(
−βN0

σ̃2P0r
−α
j

)
1

(1 + β)k
, (3.57)

where we have used that
∫∞
0
xk−1 exp(−x) dx = (k − 1)!, for k integer.
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3.8.2 Proof of Relaying Protocol in the General Asymmetric Case

We use the following Lemma in the proof.

Lemma 3.2. If X1, X2, ..., XN are positive random variables, then for every c > 0:

Pr

[
k+1∑
i=1

Xi > c

]
> Pr

[
k∑
i=1

Xi > c

]
, k ∈ {1, 2, ..., N − 1} (3.58)

Proof: Follows immediately by induction.�

Let the flat fading coefficients between the primary source and the jth sec-

ondary source nodes be hSPSj
. The probability that the jth secondary node is able

to successfully decode the primary’s packet is then given by

P (j)
c = Pr

[
PP |hSPSj

|2r−αSPSj

N0

> βP

]
, j ∈ {1, 2, ..., N}. (3.59)

Let S = {1, 2, ..., N} be the set of secondary nodes. The probability that some

subset of the N secondary nodes is able to successfully decode the primary’s packet

is given by

P (N)
c = 1−

∏
k∈S

(
1− P (k)

c

)
, (3.60)

where the superscript N denotes the number of secondary nodes in the system.

According to the relaying protocol, the primary node is served either when the pri-

mary destination can successfully decode the packet or when the primary destination

cannot, but one or more secondary source nodes can. Hence, the average service

rate of the primary node is given by

µP = µmax
P + (1− µmax

P )P (N)
c = P (N)

c +
(
1− P (N)

c

)
µmax
P , (3.61)
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which is clearly greater than µmax
P .

If the relaying queues of the secondary nodes are stable (i.e. they empty infinitely

often), then this ensures that the primary’s unsuccessful packets which are success-

fully decoded by the secondary nodes eventually reach the primary destination.

The average arrival rate to the jth secondary node’s relaying queue is given by

λextj =

(
λP
µP

)
(1− µmax

P )P (j)
c . (3.62)

The average service rate of the jth secondary relaying queue is given by
(
1− λP

µP

)
P

(j)
s ,

where

P (j)
s =

∑
T⊆{1,2,..,N}\{j}

∏
k∈T

P (k)
c

∏
k∈{1,2,...,N}\{T

∪
j}

(
1− P (k)

c

)Pj (T ) , (3.63)

Pj (T ) = Pr

[∑
i∈{T

∪
j} Pi|hSiDP

|2r−αSiDP

N0

> βP

]
. (3.64)

For the stability of all the secondary nodes’ relaying queues, we must have for all

j ∈ {1, 2, ..., N} (
λP
µP

)
(1− µmax

P )P (j)
c <

(
1− λP

µP

)
P (j)
s , (3.65)

which is equivalent to

λP < min
1≤j≤N

{
µPP

(j)
s

P
(j)
s + (1− µmax

P )P
(j)
c

}
. (3.66)

Lemma 3.3. P
(j)
s as given in Eq. (3.63) is monotone increasing with N and con-

verges to 1 as N → ∞.

Proof: The event

{∑
i∈{T

∪
j} Pi|hSiDP

|2r−α
SiDP

N0
> βP

}
implies the event
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{∑
i∈{1,2,...,N} Pi|hSiDP

|2r−α
SiDP

N0
> βP

}
, hence

Pr

[∑
i∈{T

∪
j} Pi|hSiDP

|2r−αSiDP

N0

> βP

]
≤ Pr

[∑
i∈{1,2,...,N} Pi|hSiDP

|2r−αSiDP

N0

> βP

]
.

(3.67)

Using that
∑

T⊆{1,2,..,N}\{j}

[∏
k∈T P

(k)
c

∏
k∈{1,2,...,N}\{T

∪
j}

(
1− P

(k)
c

)]
= 1, we get

that P
(j)
s is upper bounded by Pr

[∑
i∈{1,2,...,N} Pi|hSiDP

|2r−α
SiDP

N0
> βP

]
.

By Lemma 3.2, this bound converges to 1 as N → ∞. We need to show that P
(j)
s

is monotone increasing with N and hence must converge to 1 as N → ∞ by the

monotone convergence theorem.

To show monotonicity, consider

P (j)
s (N) =

∑
T⊆S\{j}

∏
k∈T

P (k)
c

∏
k∈S\{T

∪
j}

(
1− P (k)

c

)Pj(T ),
P (j)
s (N + 1) =

∑
T⊆S

∪
{N+1}\{j}

∏
k∈T

P (k)
c

∏
k∈S

∪
{N+1}\{T

∪
j}

(
1− P (k)

c

)Pj(T ). (3.68)

The summation in P
(j)
s (N+1) has twice as many terms as the summation in P

(j)
s (N).

Specifically, each set in P
(j)
s (N) exists in P

(j)
s (N + 1) as well as the same set union

the set {N + 1}.

Let M be the set of all sets in P
(j)
s (N), then:

P (j)
s (N) =

∑
m∈M

∏
k∈m

P (k)
c

∏
k∈{1,2,...,N}\{m

∪
j}

(
1− P (k)

c

)Pj(m). (3.69)

P (j)
s (N + 1) =

∑
m⊆M

∏
k∈m

P (k)
c

∏
k∈{1,2,...,N+1}\{m

∪
j}

(
1− P (k)

c

)Pj(m)

+
∑
m⊆M

 ∏
k∈{m

∪
{N+1}}

P (k)
c

∏
k∈{1,2,...,N}\{m

∪
j}

(
1− P (k)

c

)Pj (m∪{N + 1}
)
.

(3.70)
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By using that Pj (m
∪
{N + 1}) > Pj(m) since

Pr

[∑
i∈{m

∪
j
∪
{N+1}} Pi|hSiDP

|2r−αSiDP

N0

>βP

]
>Pr

[∑
i∈{m

∪
j} Pi|hSiDP

|2r−αSiDP

N0

>βP

]
,

(3.71)

we get

P (j)
s (N + 1) ≥

∑
m⊆M

P (N+1)
c

∏
k∈m

P (k)
c

∏
k∈{1,2,...,N}\{m

∪
j}

(
1− P (k)

c

)
+

∏
k∈m

P (k)
c

∏
k∈{1,2,...,N}\{m

∪
j}

(
1− P (k)

c

) (
1− P (N+1)

c

)Pj(m)

=
∑
m⊆M

∏
k∈m

P (k)
c

∏
k∈{1,2,...,N}\{m

∪
j}

(
1− P (k)

c

)Pj(m) = P (j)
s (N). (3.72)

�

Hence the sequence P
(j)
s (N) is monotone increasing in N and upper bounded

by 1, hence, converges to 1 as N → ∞ for all j ∈ {1, 2, ..., N}.

If N is sufficiently large (P
(j)
s → 1), the stability condition of the primary node in

case of relaying given by Eq. (3.66) can be approximated by

λP <
µP

1 + (1− µmax
P )max1≤j≤N {P (j)

c }
. (3.73)

The maximum stable throughput rate in Eq. (3.73) is larger than µmax
P only if

µmax
P < P

(N)
c

max1≤j≤N{P (j)
c }

.

Finally, by noting that P
(N)
c = 1 −

∏
k∈{1,2,...,N}

(
1− P

(k)
c

)
≥ max1≤j≤N{P (j)

c },

this condition is always satisfied for sufficiently large N and hence, relaying always

improves the stable throughput of the primary for sufficiently large N .
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3.8.3 Proof of Proposition 3.2

We proceed by showing that Ps is strictly increasing with N .

ψ(N) = Ps =
N−1∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−kPr

[
k+1∑
i=1

|hi|2 > c

]

=
N−1∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−kϕ(k). (3.74)

ψ(N + 1)−ψ(N)=
N∑
k=0

(
N

k

)
P k
c (1−Pc)N−kϕ(k)−

N−1∑
k=0

(
N − 1

k

)
P k
c (1−Pc)N−1−kϕ(k)

= PN
c ϕ(N) +

N−1∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−k
[
k −NPc
N − k

]
ϕ(k)

= PN
c ϕ(N) +

⌊NPc⌋∑
k=0

(
N − 1

k

)
P k
c (1− Pc)

N−1−k
[
k −NPc
N − k

]
ϕ(k)

+
N−1∑

k=⌈NPc⌉

(
N − 1

k

)
P k
c (1− Pc)

N−1−k
[
k −NPc
N − k

]
ϕ(k)

>PN
c ϕ(N) +

N−1∑
k=0

(
N − 1

k

)
P k
c (1−Pc)N−1−k

[
k −NPc
N − k

]
ϕ(⌈NPc⌉)

= PN
c (ϕ(N)− ϕ(⌈NPc⌉)) > 0, (3.75)

where we have used the fact that ϕ(N) > ϕ(N − 1) > ... > ϕ(1) which follows by

Lemma 3.2. Hence, Ps is a monotone increasing sequence with supremum equal to

one and hence converges to one by the monotone convergence theorem.
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Chapter 4: Enhanced Access Schemes for Cognitive Networks

4.1 Introduction

In this part, we propose and analyze low complexity access schemes at the SU

that go beyond the traditional OSA. The proposed schemes [69] only require the

knowledge of the statistics of the channels as well as the average arrival rate to the

PU queue, which can be obtained through channel measurements. These schemes

are capable of efficiently mitigating the negative effects of sensing errors occurring

at the PHY layer. The analysis follows a cross-layer (PHY/MAC) approach taking

into account the bursty nature of the traffic and the exact queue dynamics of both

the PU and SU. Specifically, two low complexity MAC layer schemes are considered.

In the first scheme, the SU accesses the channel at all slots with fixed probability

p∗ without sensing (sensing duration is exploited for data transmission), while in

the second scheme, the SU accesses the channel when sensed to be idle (or busy)

with fixed probabilities p∗1 (or p∗2). Clearly, the first scheme has the advantage of

simple implementation as well as offering the SU more time duration for data trans-

mission but less PU protection since no sensing takes place. The second scheme

offers some PU protection via sensing but less data transmission duration. We first

study these schemes subject to a stability constraint on the PU queue and then
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subject to an average delay constraint on the PU traffic. The analysis shows that

if the receivers can successfully decode packets in presence of interference with high

probability, then the first scheme is preferred for the SU since the sensing duration

can be exploited for SU data transmission and hence higher SU throughput while

the interference on the PU is handled by optimizing p∗ and through the receiver

decoding capability. However, if transmissions are likely to fail in presence of inter-

ference, sensing is crucial for PU protection and the second scheme outperforms the

first. Therefore, in cognitive radio networks, the use of sophisticated receivers that

can handle interference alleviates the need for complicated SU transmitters with

strong sensing performance which is sometimes preferred in practice. For instance,

if the secondary network is an uplink, the base station (receiver) can handle more

complexity than the user equipments (transmitters) and thus the proposed access

schemes are beneficial since sensing can be avoided at the expense of more complex

receiver structure.

Effects of sensing errors on the network-layer performance for cognitive sys-

tems with bursty arrivals have been quantified in works such as [54, 61]. A simple

enhanced cooperative MAC layer scheme for cognitive multiple access going beyond

the traditional OSA has been proposed under perfect sensing in [56] but the analysis

was restricted to a pure network-layer analysis without explicitly taking into account

the PHY-layer parameters as done in our cross-layer (PHY/MAC) approach. Access

schemes based on soft sensing have been analyzed in [70] and [71] with and without

exploiting the primary feedback channel, respectively. However, the analysis was

restricted to the simplified case of collision channels with no MPR capability which
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is necessary to draw the main conclusion of this chapter.

The chapter is organized as follows. In Section 4.2, we describe the system

model and the different access schemes considered in this part. In Section 4.3, we

derive the stable throughput regions of the different access schemes in consideration,

while we extend the problem to the case with an average delay constraint at the PU

in Section 4.4. In Section 4.5, we present the numerical results and in Section 4.6,

we conclude the chapter.

4.2 System Model

We consider a simple network consisting of one primary and one secondary

link as shown in Fig. 4.1. Each user has a queue of infinite capacity to store incom-

ing packets. Time is slotted with slot duration equal to T (seconds). For the PU,

the slot duration is completely dedicated for data transmission while for the SU,

the first τ seconds are dedicated for sensing and the remaining T − τ are for data

transmission. The sensing duration τ is assumed to be fixed to yield some desired

detection probability Pd(τ) and false alarm probability Pf (τ). In this part, we focus

on the practical case where Pd(τ) >> Pf (τ).

Packets arrive to each queue according to a stationary Bernoulli process with an av-

erage arrival rate of λi (packets/slot), i ∈ {1, 2}, where i = 1 designates the primary

user and i = 2 the secondary. Each packet consists of B bits and hence the arrivals

occur with average rates of λi
B
T
(bits/sec), i ∈ {1, 2}. The primary and secondary

nodes transmit at rates of Rp and Rs (bits/sec), respectively. In particular, these
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Figure 4.1: System Model

rates are chosen to be Rp =
B
T
and Rs =

B
T−τ so as to ensure one packet transmission

per slot. Node i transmits at power Pi, i ∈ {1, 2}. Let C(1)
p (or C

(1,2)
p ) be the capacity

of the PU transmitter-receiver link in the absence (or presence) of SU interference.

Similarly, let C
(2)
s (or C

(1,2)
s ) be the capacity of the SU transmitter-receiver link

in the absence (or presence) of PU interference. Unlike the oversimplified collision

model [72], we consider the possibility of simultaneous successful transmissions. We

denote by qi|A the probability that the ith node successfully decodes the packet when

nodes in the set A transmit simultaneously. For a slow fading environment, which

is what we focus on in this work, the success probabilities corresponding to trans-

mission rates Rp and Rs are given by q1|1 = Pr
[
Rp < C

(1)
p

]
, q2|2 = Pr

[
Rs < C

(2)
s

]
,

q1|{1,2} = Pr
[
Rp < C

(1,2)
p

]
and q2|{1,2} = Pr

[
Rs < C

(1,2)
s

]
. Clearly, because of the

effect of the interference, we have q1|{1,2} < q1|1 and q2|{1,2} < q2|2. We define the

quantities γ = 1 − q1|{1,2}
q1|1

> 0 and δ = 1 − q2|{1,2}
q2|2

> 0 to be used throughout this

chapter.

After each transmission, the transmitter receives an instantaneous and error free

Acknowledgment/Non-Acknowledgment (ACK/NACK) message from its receiver

indicating whether the packet was successfully received or not. Failed transmissions
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are retransmitted in subsequent slots.

We adopt the definition of queueing stability as previously defined in Section 2.3.

We study low complexity MAC layer access schemes at the SU that are ca-

pable of mitigating the effects of sensing errors occurring at the PHY-layer. These

schemes leverage the knowledge of the channel statistics as well as the average arrival

rate to the PU λ1
1. We compare these schemes through network-level performance

metrics, namely, the stable throughput and the average delay, which, as we shall

see, embodies a new perspective of the sensing-throughput tradeoff problem. These

schemes trade performance against complexity. The goal of the SU is to maximize

its stable throughput subject to a constraint on the performance of the PU (e.g.,

stability of the PU queue in Section 4.3, and average delay in Section 4.4).

We now present the different access schemes to be used throughout the chapter.

4.2.1 Fixed Access Scheme (FA)

In this scheme, the SU accesses the channel at all slots with the same fixed

probability p without sensing (i.e., τ = 0). The value of p is optimized to yield

maximum stable throughput at the SU while satisfying a performance constraint at

the PU (queueing stability in Section 4.3 and average delay in Section 4.4). This

scheme is appropriate if the sensing process is difficult to implement or if sensing is

to be avoided in order to allow a longer interval of data transmission and/or to save

1λ1 can be known to the SU either by cooperation between the PU and the SU or by using a

learning algorithm such as Baum-Welch algorithm to learn the PU traffic dynamics modeled as a

Hidden Markov process.
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processing energy of the sensed samples at the SU [28]. It should be noted that by

avoiding sensing, the SU transmission rate Rs is equal to B
T

which leads to higher

success probabilities at the SU (Pr[Rs < C
(1)
s ] and Pr[Rs < C

(1,2)
s ]) compared to a

scheme with sensing where the SU transmission rate is Rs =
B
T−τ . It will be shown

later that this scheme is preferred if the channels are strong enough to support

simultaneous transmissions. Under some conditions, this scheme can outperform

other schemes with sensing.

4.2.2 Randomized Access Scheme (RA)

This is a scheme with sensing, where the secondary node upon detecting the

primary to be idle (or busy), decides to transmit with probability p1 (or p2) respec-

tively. These probabilities are optimized to yield maximum stable throughput at

the SU. The advantage of this scheme is to exploit the knowledge of the channel

statistics in optimizing p∗1 and p
∗
2. This represents a simple MAC layer enhancement

of performance for the same PHY-layer sensing errors.

For sake of comparison, in the numerical results in Section 4.5, we also con-

sider the cases of traditional OSA where p∗1 = 1 and p∗2 = 0 with and without perfect

sensing. We will see that using a good sensing technique is beneficial if simultane-

ous PU and SU transmissions are likely to fail; otherwise, a higher misdetection

probability might be beneficial for the SU where misdetections of the PU offer more

transmission opportunities while the interference on the PU can be handled through

the capability of successfully decoding transmissions in presence of interference at
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the receivers.

4.3 Stable Throughput Region Calculation

If sensing is perfect, the SU never interferes with the PU and the two queues

are decoupled. However, in the presence of sensing errors, the service process of one

queue depends on the state (empty or not) of the other. The two queues are hence

“interacting”. To circumvent this difficulty, we use the idea of stochastic dominance

as in Chapter 2.

We proceed by defining the dominant systems for the randomized access case. The

case of fixed access can be derived as a special case of it.

-First Dominant System (S1)

This system is identical to the original system in terms of arrivals, transmissions and

outcomes, except that, whenever the SU queue empties, the SU keeps transmitting

dummy packets consisting of B bits each. Dummy packets do not contribute to the

throughput, but cause interference to the PU. Hence, in S1, the PU queue has a

fixed service rate regardless of the state of the SU queue (no queue interaction).

Let Et or Ft be the events of misdetection and false alarm at the SU transmitter

in slot t when the PU is busy or idle respectively. The events At and Tt represent

the events that the secondary node transmits in slot t, given that the slot is detected

as idle or busy respectively. The service process of the primary node in (bits/sec)

86



is given by

Y t
1 =Rp

[
1
{
Et
∩

At

∩
OS1D1,I

}
+1
{
Et
∩

Tt
∩

OS1D1,I

}
+ 1
{
Et
∩

At

∩
OS1D1,NI

}
+1
{
Et
∩

Tt
∩

OS1D1,NI

}]
, (4.1)

where OS1D1,I and OS1D1,NI are the outage events on the PU transmitter-receiver

channel in the presence or in the absence of SU interference respectively, while 1{•}

is the indicator function and U denotes the complement of the event U . For a value

x, we subsequently denote (1− x) by x̄.

The process {Y t
1 } is stationary since it is a function of stationary events, and also

independent of the arrival process to the PU {X t
1}. Hence, by Loynes’ theorem, we

can get the stability condition of the primary queue in the first dominant system S1

as λ1
B
T
< E[Y t

1 ] which is equivalent to

λ1 < µ1 =
[
q1|1
(
Pdp2 + Pdp1

)
+ q1|{1,2}

(
p2Pd + p1Pd

)]
.

Equivalently

0 ≤ λ1 < µ1 = q1|1 [1− γ (p1 (1− Pd) + p2Pd)] . (4.2)

The service process in (bits/sec) of the secondary queue depends on the state of the

primary queue and is given by

Y t
2 =Rs

(
1− τ

T

)[
1
{
{Qt

1 ̸= 0}
∩

Et
∩

At

∩
OS2D2,I

}
+1
{
{Qt

1 ̸= 0}
∩

Et
∩

Tt
∩

OS2D2,I

}
+ 1

{
{Qt

1 = 0}
∩

Ft
∩

Tt
∩

OS2D2,NI

}
+ 1

{
{Qt

1 = 0}
∩

Ft
∩

At

∩
OS2D2,NI

}]
,

(4.3)

where OS2D2,I and OS2D2,NI are, respectively, the events of outage on the channel

between the SU transmitter and receiver in the presence or in the absence of PU
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interference. Using the result that a stable queue gives rise to stationary idle slots

(see [41,48]), it follows that the processes 1{Qt
1 = 0} and 1{Qt

1 ̸= 0} are stationary.

Hence, the process Y t
2 is also stationary. Using Loynes’ theorem, we obtain the

stability condition of the secondary queue in the first dominant system as λ2
B
T
<

E[Y t
2 ] which is equivalent to

0 ≤ λ2<µ2=

[(
1− λ1

µ1

)
q2|2 [p2Pf+ p1(1− Pf )]+

(
λ1
µ1

)
q2|{1,2} [p2Pd + (1−Pd)p1]

]
.

(4.4)

Equivalently

0 ≤ λ2 < µ2 = q2|2[p2Pf + p1(1− Pf )]

[
1−
(
λ1
µ1

)(
1−

(p2Pd + p1(1− Pd))q2|{1,2}
(p2Pf + p1(1− Pf ))q2|2

)]
.

(4.5)

-Second Dominant System S2

In this system, the PU transmits dummy packets whenever it empties, while other-

wise it is identical to the original system. The stability conditions for the queues in

S2 are given by

0 ≤ λ2 < µ2 = q2|{1,2} [p1(1− Pd) + p2Pd] , (4.6)

0 ≤ λ1< µ1=q1|1

[
1−γ

(
λ2
µ2

)
(p2Pd + p1(1− Pd))

]
. (4.7)

The case of traditional OSA can be directly obtained by setting p1 = 1, p2 = 0;

while the case of fixed access can be obtained by setting p1 = p2 = p, and τ = 0.

Note that in this case Pd(τ = 0) = 0 and Pf (τ = 0) = 1.

Equations (4.2), (4.5), (4.6) and (4.7) give the stability region for fixed p1 and p2

that we denote by S(p1, p2). We seek to obtain the stability region for any (p1, p2),
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that is, S =
∪

(p1,p2)∈[0,1]2 S(p1, p2). This can be done by computing the equation

of the boundary of the region and maximizing it over (p1, p2) ∈ [0, 1]2 for each of

the two dominant systems S1 and S2. Then, taking the union of both optimized

boundaries yields the “envelope” of the regions. It can be shown that S2 always

yields a region that is a subset of that given by S1, hence we focus on obtaining the

union over (p1, p2) ∈ [0, 1]2 of the stability region given by S1.

4.3.1 Stability Region of the Fixed Access Scheme

Substituting p1 = p2 = p, Pd = 0 and Pf = 1 in Eqs. (4.2) and (4.5), yields the

boundary of the stability region by solving the constrained optimization problem

max
0≤p≤1

y = q̃2|2p

[
1− λ1δ̃

q̃1|1(1− γ̃p)

]
,

s.t. 0 ≤ λ1 < q̃1|1(1− γ̃p). (4.8)

Note that the tilde˜notation is used to emphasize that the success probabilities of

this scheme are larger than the success probabilities of the schemes with sensing due

to the difference in transmission rates as discussed in Section 4.2.1.

By using the same approach as in proving Theorem 2.1, we obtain the optimum

transmission probability p∗ as

p∗=



1, 0 ≤ λ1≤min
{
q̃1|{1,2},

q̃1|1(1−γ̃)2

δ̃

}
,

1
γ̃

(
1−

√
λ1δ̃
q̃1|1

)
,

q̃1|1(1−γ̃)2

δ̃
≤ λ1 ≤ q̃1|1δ̃,

1
γ̃

(
1− λ1

q̃1|1

)
, max

{
δ̃q̃1|1, q̃1|{1,2}

}
≤ λ1 ≤ q̃1|1.

(4.9)
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Note that the middle expression for p∗ is valid only if γ̃ + δ̃ ≥ 1 to ensure that

q̃1|1(1−γ̃)2

δ̃
≤ q̃1|1δ̃. Substituting into the objective function in Eq. (4.8), we obtain

the boundary of the stability region. We differentiate between two cases.

4.3.1.1 Case of γ̃ + δ̃ > 1

In this case, q̃1|{1,2} ≥
q̃1|1(1−γ̃)2

δ̃
⇔ δ̃ ≤ (1− γ̃). The stability region consists of

three parts and is bounded by a convex curve. The boundary of the stability region

is given by

λ2 =



q̃2|2

[
1− λ1δ̃

q̃1|1(1−γ̃)

]
, for 0 ≤ λ1 ≤

q̃1|1(1−γ̃)2

δ̃
,

q̃2|2
γ̃

(
1−

√
λ1δ̃
q̃1|1

)2
, for

q̃1|1(1−γ̃)2

δ̃
≤ λ1 ≤ q̃1|1δ̃,

q̃2|2(1−δ̃)
γ̃

(
1− λ1

q̃1|1

)
, for δ̃q̃1|1 ≤ λ1 ≤ q̃1|1.

(4.10)

4.3.1.2 Case of γ̃ + δ̃ ≤ 1

In this case, the stability region consists of two linear parts. The boundary of

the stability region is given by

λ2 =


q̃2|2

[
1− λ1δ̃

q̃1|1(1−γ̃)

]
, for 0 ≤ λ1 ≤ q̃1|1(1− γ̃),

q̃2|2(1−δ̃)
γ̃

(
1− λ1

q̃1|1

)
, for q̃1|1(1− γ̃) ≤ λ1 ≤ q̃1|1.

(4.11)

4.3.2 Stability Region of the Randomized Access Scheme

The stability region in this case can be found by solving the optimization

problem in which we maximize µ2 in Eq. (4.5) subject to the constraint on λ1 in
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Eq. (4.2). This can be written as

max
(p1,p2)∈[0,1]2

y = q2|2 [p2Pf + p1(1− Pf )]

[
1−
(
λ1
µ1

)(
1−

(p2Pd + p1(1− Pd))q2|{1,2}
(p2Pf + p1(1− Pf ))q2|2

)]
s.t. 0 ≤ λ1 ≤ µ1 = q1|1

[
1− γ

(
p1Pd + p2Pd

)]
. (4.12)

The solution of this problem depends on whether γ + δ ≤ 1 or γ + δ > 1, and is

given by

4.3.2.1 Case of γ + δ ≤ 1 ⇔ q1|{1,2}
q1|1

+
q2|{1,2}
q2|2

≥ 1

p∗1 = max

[
0,min

{
1,

1

γ(1− Pd)

(
1− λ1

q1|1

)}]
,

p∗2 = max

[
0,min

{
1,

1

Pd

[
1

γ

(
1− λ1

q1|1

)
− (1− Pd)

]}]
. (4.13)

The boundary of the stability region is given by

λ2 =


q2|2

[
1− λ1δ

q1|1(1−γ)

]
, for 0 ≤ λ1 ≤ q1|1(1− γ),

q2|2(1−δ)
γ

(
1− λ1

q1|1

)
, for q1|1(1− γ) ≤ λ1 ≤ q1|1.

(4.14)

4.3.2.2 Case of γ + δ > 1 ⇔ q1|{1,2}
q1|1

+
q2|{1,2}
q2|2

< 1

In this case p∗1 and p∗2 are given by

p∗1 = max

[
0,min

{
1,

1

γPd

(
1− λ1

q1|1

)
,

1

γPd

(
1−

√
λ1
q1|1

(
1− Pd(1− δ)

1− Pf

))}]
,

(4.15)

p∗2 = max

[
0,min

{
1,

1

Pd

[
1

γ

(
1− λ1

q1|1

)
− Pd

]
,
1

Pd

[
1

γ

(
1−

√
λ1C

q1|1Pf

)
− Pd

]}]
,

(4.16)
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where C = Pf − (1− δ)Pd + γ(Pd − Pf ).

The boundary of the stability region can then be obtained by substituting p∗1 and

p∗2 in µ2 from Eq. (4.5) with 0 ≤ λ1 ≤ q1|1.

Proof: Refer to Section 4.7. �

In the first case where γ + δ ≤ 1 ⇔ q1|{1,2}
q1|1

+
q2|{1,2}
q2|2

≥ 1, the channels can

support simultaneous transmissions with high success probability. As will be shown

in Section 4.5, in this case, the boundary of the stability region is a polyhedron that

might contain all or part of the stability region of the perfect sensing. Hence, in this

case, sensing errors, under optimized randomized access might lead to stable rates

that are not achievable with traditional OSA with perfect sensing. Moreover, the

stability region of the fixed access is a superset of that of the randomized access.

This means that, whenever this condition is satisfied, no sensing with optimal fixed

access is better than sensing with optimal randomized access. This is the result of

avoiding the time overhead needed for sensing, thereby leading to a higher success

probabilities and more data transmission duration for the SU. We also note from

Eq. (4.14) that, with randomized access, any sensor (i.e. any Pf and Pd) leads

to the same stability region since optimal randomized access mitigates the effects

of sensing errors. On the other hand, if γ + δ > 1, the channels are not likely to

support simultaneous transmissions successfully. In this case, the stability region is

bounded by a convex curve. The stability region of the OSA with perfect sensing is

a superset of that of the randomized access which strictly contains that of the fixed

access (except for very small and very large values of λ1). These observations are

discussed further in Section 4.5.
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4.4 Effect of Average Delay Constraint at the PU

So far, we considered the queueing stability problem, where the secondary

node aims at maximizing its stable throughput while guaranteeing the stability of

the primary queue. However, a stable queue may yet achieve long delay values if the

average arrival rate is close to the maximum stable throughput rate of the queue.

In this section, we revisit the problem with an emphasis on the average delay of the

primary node, that is, we study the problem where the SU aims at maximizing its

throughput while guaranteeing an average delay constraint at the PU.

The calculation of the average delay in interacting queues is known to be

extremely thorny. In [73], the average delay of two asymmetric interacting queues

in a random access setting with no multipacket reception capability was computed

by mapping the problem to a Riemann-Hilbert boundary value problem. For the

special case of two symmetric queues, where the arrival processes and the channels

are statistically identical, the average delay has been found in [51] for a collision

channel and in [43] for a channel with multipacket reception capability. However,

the assumption of symmetric queues and channels is not appropriate in a cognitive

setting. In order to bypass the difficulty in the cognitive radio setting, a fluid queue

approximation was used in [74] to approximately characterize the delay behavior

of the SUs. Alternatively, in order to exactly characterize the PU delay behavior,

we consider the special case where the secondary queue is saturated, i.e, never

empties, while the primary queue empties infinitely often. This represents a worst-

case scenario and hence a lower bound on performance for the PU compared with a
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non-saturated SU queue. The secondary node aims at finding p∗1 and p
∗
2 to maximize

its throughput while guaranteeing an average delay constraint to the primary. The

problem is formulated as a quasiconcave program which can be readily solved using

known algorithms [75].

4.4.1 Problem Formulation

Since the arrival process to the primary queue is a Bernoulli process, the

primary queue evolves as a Geo/Geo/1 queue. In every “busy” slot of the PU,

the SU transmits with probability p1 if it senses the channel to be idle, which

occurs with probability 1 − Pd, and with probability p2 if it senses the channel

to be busy which occurs with probability Pd. Let X be the time (in slots) re-

quired to serve one primary packet. Then, X is geometrically distributed with

parameter µ1 = q1|1 [(1− Pd)(1− p1) + Pd(1− p2)] + q1|{1,2} [(1− Pd)p1 + Pdp2]. In

vector notation, we write µ1 = q1|1
[
1− aTx

]
+ q1|{1,2}a

Tx = q1|1
[
1− γaTx

]
, where

a = [1− Pd, Pd]
T , x = [p1, p2]

T and (•)T denotes vector transposition. The average

delay at the primary is then given by [76]

E [D] =
1− λ1
µ1 − λ1

=
1− λ1

q1|1 [1− γaTx]− λ1
, (4.17)

where λ1 < µ1 to ensure the stability of the primary queue.

The SU throughput in (packets/slot) is given by Eq. (4.5), which can be written in
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vector notation as

µ2 =

[(
1− λ1

µ1

)
q2|2 [p2Pf + p1(1− Pf )] +

(
λ1
µ1

)
q2|{1,2} [p2Pd + (1− Pd)p1]

]
=
q2|2q1|1b

Tx− q2|2q1|1γx
TbaTx− q2|2λ1b

Tx+ q2|{1,2}λ1a
Tx

q1|1 [1− γaTx]
, (4.18)

where b = [1 − Pf , Pf ]
T . The minimum average delay at the PU is given by

Dmin = 1−λ1
q1|1−λ1

. If the average delay constraint at the PU is D0, the optimization

problem can be written as

max
0≼x≼1

µ2 =
q2|2q1|1b

Tx− q2|2q1|1γx
TbaTx− q2|2λ1b

Tx+ q2|{1,2}λ1a
Tx

q1|1 [1− γaTx]

s.t.
1− λ1

q1|1 [1− γaTx]− λ1
≤ D0

λ1 < q1|1
[
1− γaTx

]
(4.19)

where ≼ denotes componentwise ≤ operation, and the second constraint is the

stability constraint. Note that as D0 → ∞, the first constraint is always satisfied

and only the stability constraint is of importance.

By rewriting the first constraint as (1− λ1) ≤ D0

(
q1|1
[
1− γaTx

]
− λ1

)
, it is clear

that the stability constraint is implicitly implied since 0 ≤ λ1 < q1|1 < 1, thus we

only focus on the delay constraint. Note that the constraint in this form is affine

and hence convex.

4.4.2 Solution of the Optimization Problem

First we denote the objective function in Eq. (4.19) by f0(x). The domain of

f0(x) is the compact set domf0(x) = [0, 1]2 which is a convex set. In order to show

that the problem in hand is a quasiconcave one, we use the following lemma.
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Lemma 4.1. The objective function in Eq. (4.19) is of the form f0(x) =
p(x)
q(x)

where

p(x) is concave and ≥ 0 over domf0(x) while q(x) is affine and > 0 and hence

convex over domf0(x).

Proof: We have q(x) = q1|1
[
1− γaTx

]
which satisfies 0 < q1|1(1 − γ) ≤ q(x) ≤

q1|1 and is hence positive. Since it is affine, it is also convex. As the secondary

throughput, by definition, is non-negative, we have p(x) ≥ 0. To show concavity

of p(x), we show that its Hessian matrix is a negative semidefinite matrix over

domf0(x). The Hessian matrix of p(x) is given by

▽2p(x) = −γq1|1q2|2
(
baT + abT

)
= −γq1|1q2|2

 2Pf Pd PfPd + PdPf

PfPd + PdPf 2PfPd

 . (4.20)

It is straightforward to show that xT▽2p(x)x ≤ 0 for all x ∈ domf0(x); hence, the

Hessian matrix is negative semidefinite over domf0(x) and hence p(x) is concave

over its domain. �

We now prove the quasiconcavity of the problem.

Lemma 4.2. The optimization problem given in Eq. (4.19) is a quasiconcave opti-

mization problem.

Proof: As discussed above, the constraint is affine and hence convex. There-

fore, we only need to show that the objective function in Eq. (4.19) is quasi-

concave [75]. For ϵ ∈ R, define Sϵ to be the ϵ-superlevel set of f0(x) which

is given by Sϵ = {x ∈ domf0(x) | f0(x) ≥ ϵ}. Since p(x) ≥ 0 and q(x) > 0,
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in order to show quasiconcavity of f0(x), it suffices to show that Sϵ are convex

sets for all ϵ ∈ R [75]. If ϵ < 0, then by the non-negativity of f0(x), we have

Sϵ = {x ∈ domf0(x) | f0(x) ≥ ϵ} = domf0(x) which is a convex set. If ϵ ≥ 0, then

p(x) − ϵq(x) is a concave function and hence, Sϵ = {x ∈ domf0(x) | f0(x) ≥ ϵ} =

{x ∈ domf0(x) | p(x)− ϵq(x) ≥ 0} is a convex set since the superlevel sets of con-

cave functions are convex. �

The problem of maximizing a quasiconcave function over a convex set under

convex constraints, as the problem at hand, can be efficiently solved by converting

the problem into a set of convex feasibility problems and using the bisection method

[75].

4.5 Discussion of the Results

The equations derived so far can be applied to almost any channel model.

However, we need a specific model with formulas for the capacities C
(1)
p , C

(2)
s , C

(1,2)
p

and C
(1,2)
s in order to compute the different success probabilities q1|1, q2|2, q1|{1,2} and

q2|{1,2} in terms of the transmission powers, the channel fading statistics, and the

sensing duration τ . Thermal noise wi at the ith receiver ,i ∈ {1, 2}, is assumed to be

additive complex Gaussian noise with distribution wi ∼ CN (0, N0) and independent

between the two receivers. The channel gain hij on the (i−j)th link has distribution

CN (0, σ2
ij) and the channel gains are independent between the different links. We

assume narrowband transmissions on a bandwidth of W (Hz) such that the fading

is flat. Fading is assumed fixed over the slot duration and is i.i.d. between slots.
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We assume that the receivers have perfect channel state information (CSIR).

Without coordination between the PU and the SU nodes, the PU (or SU) receiver

does not know the codebook used by the SU (or PU) transmitter. Hence, we assume

that the receivers treat the interference as noise.2 The PU and SU transmitters use

random Gaussian codebooks for their transmissions. Assuming that the number of

bits per packet is large (i.e., large value of B), and assuming that the receivers treat

the interference as noise, the capacities (in bits/sec) of the different links for the

schemes with sensing (the RA and OSA schemes) can be approximated by (ignoring

the error due to finite block length)

C(1)
p = W log2

(
1 +

P1|h11|2

N0W

)
, (4.21)

C(2)
s = W

(
1− τ

T

)
log2

(
1 +

P2|h22|2

N0W

)
, (4.22)

C(1,2)
p = W log2

(
1 +

P1|h11|2

N0W + P2|h21|2

)
, (4.23)

C(1,2)
s = W

(
1− τ

T

)
log2

(
1 +

P2|h22|2

N0W + P1|h12|2

)
. (4.24)

The corresponding capacities for the fixed access scheme can be directly obtained

by substituting τ = 0 in Eqs. (4.21)-(4.24). Note that the capacity C
(1,2)
p is the

capacity of the PU source-destination channel in the presence of SU interference.

The first τ seconds during which the SU senses the channel are interference free

while the remaining T − τ seconds incur SU interference. Since the sensing duration

is typically small (i.e., τ << T ), we use the lower bound on the capacity C
(1,2)
p as

given in Eq. (4.23) (which corresponds to a lower bound on q1|{1,2}) assuming that

2It has also been shown that if the codebooks are known but the interference is undecodable at

the receivers, treating the interference as noise does not incur any loss in rate [77].
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the interference occupies the whole slot. The corresponding success probabilities are

given by

q1|1 = Pr

[
Rp < W log2

(
1 +

P1|h11|2

N0W

)]
= exp

(
−C1

σ2
11

)
,

q2|2 = Pr

[
Rs < W

(
1− τ

T

)
log2

(
1 +

P2|h22|2

N0W

)]
= exp

(
−C2

σ2
22

)
,

q1|{1,2}= Pr

[
Rp<W log2

(
1+

P1|h11|2

N0W + P2|h21|2

)]
=exp

(
−C1

σ2
11

)[
σ2
11

σ2
11 + C3σ2

21

]
,

q2|{1,2}=Pr

[
Rs<W

(
1− τ

T

)
log2

(
1+

P2|h22|2

N0W + P1|h12|2

)]
=exp

(
−C2

σ2
22

)[
σ2
22

σ2
22 + C4σ2

12

]
,

(4.25)

where C1 =
(2Rp/W−1)N0W

P1
, C2 =

(2Rs/W−1)N0W

P2
, C3 =

(2Rp/W−1)P2

P1
, C4 =

(2Rs/W−1)P1

P2

and Rs =
B
T−τ .

The success probabilities for the fixed access case q̃1|1, q̃2|2, q̃1|{1,2} and q̃2|{1,2} can be

obtained by substituting τ = 0 in Eqs. (4.25) and using that Rs =
B
T
.

In our numerical results, we choose the values of the parameters based on

practical considerations to illustrate the main conclusions of this chapter. Typical

values of the outdoor delay spread are of order of microseconds, hence we use W =

400 KHz to ensure flat fading. We assume that the slot duration T is equal to 10

msec, and for the schemes with sensing, we choose τ = 1 msec (i.e., τ
T
= 0.1). The

number of bits per packet is chosen to be B = 2500 bits. Define SNR1 = P1

N0W

and SNR2 = P2

N0W
, where N0 is the white Gaussian noise power spectral density.

We use SNR1 = 3 dB and SNR2 = 1 dB. Unless stated otherwise, the false alarm

and detection probabilities for the schemes with sensing are equal to Pf = 0.15 and

Pd = 0.9. The variances of the fading coefficients are σ11 = σ22 = σ12 = 1. We
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consider cases of σ21 = 1 and σ21 = 5, i.e., cases of weak and strong interference

from the SU on the PU which correspond to large (γ+ δ < 1) and small (γ+ δ > 1)

probabilities of successful simultaneous transmissions, respectively.

Figure 4.2 shows the stable throughput regions of the schemes under consid-

eration for the case of γ + δ > 1 (strong SU interference where σ21 = 5). This is

the case where, in general, sensing is needed for a better SU throughput although

it represents an overhead for the SU. The randomized access scheme leads to better

performance for the SU at the expense of more complexity. It should also be noted

that only if the average arrival rate to the PU is small does fixed access outperform

all other schemes since no PU protection is needed, and sensing duration can be

exploited for data transmission. Although the traditional OSA scheme is simple

to implement, the stable rates it achieves are strictly less than those achieved by

the more complicated randomized access scheme if λ1 is less than some value. This

means that the traditional OSA scheme has good performance only if λ1 is suffi-

ciently large; otherwise, it represents a waste of transmission opportunities for the

SU and an overprotective policy for the PU. From Fig. 4.3, we note that a better

sensor leads to a higher SU stable throughput for the randomized access scheme.

Note also that the stable throughput region of the fixed access is independent of

the sensor since no sensing takes place in this scheme. Figure 4.4 shows the sta-

ble throughput region for the case of γ + δ < 1 (σ21 = 1). Unlike the case where

γ + δ > 1, the fixed access scheme outperforms the randomized access for all values

of λ1, meaning that schemes with no sensing are preferred as they give the SU more

duration for data transmission while still protecting the PU receiver. In this case,
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the traditional OSA represents a too conservative approach since the SU can afford

to be more aggressive in transmission. Finally, we note that for γ + δ > 1 as shown

in Fig. 4.2, perfect sensing with OSA is mostly better than all other schemes at the

cost of high complexity to achieve perfect sensing performance. On the other hand,

for γ + δ < 1 as shown in Fig. 4.4, fixed and randomized access schemes are better

since sensing errors lead to more transmission opportunities for the SU and hence

to an increase in throughput.

Figures 4.5 and 4.6 show the SU throughput versus the PU delay tolerance for

λ1 = 0.3 for the cases of γ + δ < 1 and γ + δ > 1 respectively. Clearly, the larger

the value of D0 is, the higher the SU throughput becomes, while for D0 ≤ Dmin,

the SU throughput is zero as expected. For large D0, the delay constraint becomes

ineffective and the problem reduces to the stability problem considered in Section

4.3 where the SU throughput values for various schemes coincide with those in Figs.

4.2 and 4.4, respectively, for λ1 = 0.3. For the case of γ + δ < 1, we note that

unlike the case of maximizing the SU stable throughput subject to PU queueing

stability where the fixed access scheme outperforms the randomized access, we see

from Fig. 4.5 that for values of D0 slightly larger than Dmin, the randomized access

scheme outperforms the fixed access. This can be explained by noting that in this

case, high PU protection is required to avoid violating the PU delay constraint and

hence, schemes with sensing are needed to limit the interference on the PU. This also

illustrates the fundamental difference between the delay and the stability problems

as previously mentioned in Section 4.4.
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Figure 4.2: Stable throughput region for the case with weak MPR capability.
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Figure 4.3: Effect of Pf and Pd on the stable throughput region.
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Figure 4.4: Stable throughput region for the case with strong MPR capability.
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Figure 4.5: Maximum SU throughput versus PU delay tolerance - strong MPR.
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Figure 4.6: Maximum SU throughput versus PU delay tolerance - weak MPR.

4.6 Summary and Conclusions

We studied several MAC layer protocols at the SU that trade complexity of

implementation for performance. A cross-layer (PHY/MAC) approach was followed

in the analysis. The proposed schemes exploit the SU knowledge of the statistics

of the channels as well as the average arrival rate to the PU to enhance the SU

throughput. It was shown that, with a stability constraint at the PU, if the receivers

are capable to carry simultaneous transmissions successfully or if the average arrival

rate at the PU is small; access schemes with no sensing are preferable since they

allow more data transmission duration for the SU while the interference on the PU

is handled through the decoding capability of the receivers. On the other hand, if

simultaneous transmissions of the PU and SU are likely to fail, schemes with sensing
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are essential for PU protection. For the case of an average delay constraint at the

PU, it is shown that if simultaneous transmissions are likely to fail, schemes with

sensing are always preferred. For the case of high success probability of simultaneous

transmissions, schemes with sensing are preferable for small delay tolerance; while

for large delay tolerance at the PU, schemes with no sensing are preferable.

4.7 Appendix: Solution of the Optimization Problem in Eq. (4.12)

Define the linear transformations

ϕ = [p2Pf + p1(1− Pf )] ,

ψ = [p2Pd + p1(1− Pd)] . (4.26)

For the case of interest where Pf < Pd, the regionD1 = {p1, p2|0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1}

is mapped under this transformation to the region D2 as shown in Fig. 4.7.

The region D2 is a parallelogram with sides as given in Table 4.1.

Side Equation Properties

0A ψ = (1−Pd)
(1−Pf )

ϕ p2 = 0

0C ψ = Pd

Pf
ϕ p1 = 0

AB ψ = 1 + Pd

Pf
(ϕ− 1) p1 = 1

CB ψ = 1 + (1−Pd)
(1−Pf )

(ϕ− 1) p2 = 1

Table 4.1: Mapping of feasibility region under the linear transformation.
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Figure 4.7: Linear Transformation

The optimization problem in Eq. (4.12) can then be written as

max
(ϕ,ψ)∈D2

y = q2|2ϕ

[
1− λ1

q1|1(1− γψ)

(
1− ψ(1− δ)

ϕ

)]
s.t. λ1 ≤ q1|1(1− γψ). (4.27)

It can be shown that

∂y

∂ϕ
= 1− λ1

q1|1(1− γψ)
, (4.28)

∂y

∂ψ
=

(−λ1)
q1|1

[
γϕ− (1− δ)

(1− γψ)2

]
. (4.29)

By Eq. (4.28) and the constraint in Eq. (4.27), it is clear that ∂y
∂ϕ

≥ 0 for every ψ.

On the other hand, ∂y
∂ψ

≥ 0 ⇔ ϕ ≤ (1−δ)
γ

.

We differentiate between two cases.

(A) γ + δ ≤ 1 ⇔ (1−δ)
γ

≥ 1

In this case, both ∂y
∂ψ

and ∂y
∂ϕ

are positive, that is y increases with increasing ϕ or

ψ. Hence, choosing ϕ = 1 and ψ = 1 is best. However, this may not be feasible for

some values of λ1 because of the constraint in Eq. (4.27) since ψ ≤ 1
γ

(
1− λ1

q1|1

)
.

Hence, we consider three subcases.
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(1) 0 ≤ λ1 ≤ q1|1 (1− γ) ⇔ ψ = 1
γ

(
1− λ1

q1|1

)
≥ 1

The optimum solution is to choose ψ = ϕ = 1, and the optimum transmission

probabilities are p∗1 = p∗2 = 1.

(2) q1|1 (1− γ) ≤ λ1 ≤ q1|1 [1− γ(1− Pd)] ⇔ (1− Pd) ≤ ψ = 1
γ

(
1− λ1

q1|1

)
≤ 1

The optimum solution is to choose ψ∗ = 1
γ

(
1− λ1

q1|1

)
. An optimum point is the

intersection of the horizontal line ψ∗ = 1
γ

(
1− λ1

q1|1

)
with the segment AB. In this

case, the optimum transmission probabilities are given by p∗1 = 1 and by substituting

in ψ∗, we obtain p∗2 =
1
Pd

[
1
γ

(
1− λ1

q1|1

)
− (1− Pd)

]
.

It should be noted that we only provided one optimal solution (which is not unique

in this case). This can be seen by noting that whenever the constraint in Eq. (4.27)

ψ ≤ 1
γ

(
1− λ1

q1|1

)
is satisfied with equality, the objective function is independent of

ϕ and the optimal choice for ϕ is not unique. Therefore, the values of p∗1 and p∗2 are

not unique.

(3) q1|1 [1− γ(1− Pd)] ≤ λ1 ≤ q1|1 ⇔ 0 ≤ ψ = 1
γ

(
1− λ1

q1|1

)
≤ (1− Pd)

The optimum solution is to choose ψ∗ = 1
γ

(
1− λ1

q1|1

)
. An optimum point is the

intersection of the horizontal line ψ∗ = 1
γ

(
1− λ1

q1|1

)
with the segment 0A. In this

case, the optimum transmission probabilities are given by p∗2 = 0 and by substituting

in ψ∗, p∗1 =
1

γ(1−Pd)

(
1− λ1

q1|1

)
.

Finally the three subcases can be combined as in Eq. (4.13).

(B) γ + δ > 1 ⇔ (1−δ)
γ

< 1. In this case, ∂y
∂ψ

can be greater, less than or equal to

zero. However, ∂y
∂ϕ

≥ 0 for all ψ. Hence, for the case of Pf < Pd, as shown in Fig.

4.7, the optimum point (ϕ∗, ψ∗) lies on either the segment 0A or AB, that is, for

107



optimality, either p∗1 = 1 or p∗2 = 0.

For p∗2 = 0, ψ = p1(1 − Pd) and ϕ = p1(1 − Pf ). By substituting in the objective

function in Eq. (4.27) and solving dy
dp1

= 0, we obtain

p1 =
1

γ(1− Pd)

(
1−

√
λ1
q1|1

(
1− (1− Pd)(1− δ)

1− Pf

))
. (4.30)

Moreover, when p2 = 0, we have d2y
dp21

=
−2γλ1q2|2(1−Pf )(1−Pd)

(
1− (1−Pd)(1−δ)

(1−Pf )

)
q1|1(1−γ(1−Pd)p1)3

< 0, and

hence y is concave and p1 in Eq. (4.30) is indeed a maximizer. By substituting

p2 = 0 into the constraint in Eq. (4.27), we get that

p1 ≤
1

γ(1− Pd)

(
1− λ1

q1|1

)
. (4.31)

Since 0 ≤ p1 ≤ 1, and by concavity of y, the optimal p1 is given by p∗1 as in Eq.

(4.15).

Similarly, for the case of p1 = 1, we have that ϕ = (1 − Pf ) + p2Pf and ψ =

(1− Pd) + p2Pd. Substituting into the objective function in Eq. (4.27) and solving

for p2, we obtain

p2 =
1

Pd

[
1

γ

(
1−

√
λ1C

q1|1Pf

)
− (1− Pd)

]
, (4.32)

where C = Pf + γ(Pd − Pf ) − (1 − δ)Pd. Note that for the case of interest where

γ + δ ≥ 1, we have C ≥ 0.

Substituting p1 = 1 into the constraint in Eq. (4.27), we get

p2 ≤
1

Pd

[
1

γ

(
1− λ1

q1|1

)
− (1− Pd)

]
. (4.33)

Since 0 ≤ p2 ≤ 1, we obtain p∗2 as in Eq. (4.16).
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Chapter 5: Cognitive Relaying with Network Coding for Multicast-

ing Networks

5.1 Introduction

Cooperative communications was shown to be effective in combating multipath

fading over wireless channels due to the induced spatial diversity. Much work has

been done to analyze cooperative diversity at the physical layer based on information

theoretic considerations [17, 78], and at the network layer [21].

Little work has been done to incorporate network coding with cooperative

diversity. In [79] different protocols combining deterministic network coding and

cooperative diversity are proposed and it is shown that, for a single source - single

relay system with two destinations, the use of network coding at the relay increases

the stable throughput of the source. In our work [80], we propose a network-level

relaying protocol in which the relay uses the periods of silence of the source to for-

ward the source’s unsuccessful packets and hence avoiding allocating any explicit

channel resources to the relay. Furthermore, the relay performs random linear net-

work coding on the packets it has in queue. It is shown that, compared with ARQ or

protocols based solely on network coding [81], the stable throughput for the source

109



increases by relaying and further enhancement can be achieved by using network

coding at the relay.

The chapter is organized as follows. We discuss the system model in Sec-

tion 5.2 and introduce various protocols in Section 5.3. In Section 5.4, we evaluate

the maximum stable throughput rate of different protocols and quantify the im-

provements due to cooperation and network coding. In Section 5.5, we present the

numerical results and in Section 5.6 we conclude the chapter.

5.2 System Model

λ
... ...S R

f
SR

D

D

D

1

2

N

.

.

.f
RN

f
R2

f
R1

f
SN

f
S1

Figure 5.1: System Model.

We consider one source node transmitting packets to each of N receivers with

the aid of a relay as shown in Fig. 5.1. We consider a slotted synchronous system

in which one slot duration is equal to one packet transmission duration. Packets

are independently generated (or received) according to a Bernoulli process with av-

erage rate λ and are addressed to each of the N receivers. Noise at the receivers
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and at the relay is assumed to be i.i.d. additive white complex Gaussian random

process with zero mean and variance N0. All links are subject to i.i.d. flat fad-

ing with coefficients hij. After each transmission, an instantaneous and error-free

acknowledgment/non-acknowledgement (ACK/NACK) messages are fedback to the

corresponding transmitter (source or relay). The ACK/NACK messages sent to the

source are also heard by the relay. Throughput the chapter we designate the source

and relay nodes by the subscripts S and R respectively and the jth destination node

by the subscript j ∈ {1, 2, ..., N}. We adopt the SNR threshold model for recep-

tion in which a node j ∈ {1, 2, ..., N} can successfully decode a packet transmitted

by node i ∈ {S,R} if the SNR at node j exceeds some threshold β. This can be

expressed in terms of success probabilities fij over (i− j) link

fij = Pr [SNRij > β] = Pr

[
|hij|2P
N0

> β

]
, (5.1)

where Pi is the transmission power of node i ∈ {S,R}. We adopt the definition of

queueing stability as in Section 2.3 and make use of Loynes’ Theorem. We use the

stable throughput of the source node as the performance metric to compare several

transmission protocols with and without relaying and network coding.

5.3 Network Protocols

In this section, we present different transmission protocols for multicasting

networks with and without relaying and network coding. We compare their stable

throughput performance in Section 5.5.
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5.3.1 Retransmission Policy (ARQ)

This is the ordinary retransmission protocol where neither relaying nor network

coding takes place. The source node transmits a new packet only if the previous

packet has been successfully received by all receivers (i.e., an ACK message has been

received from all the N destinations), otherwise the same packet is retransmitted.

5.3.2 Random Linear Network Coding

The source node buffers the incoming packets in its queue. When K packets

are accumulated, the source node transmits one random linear combination of these

packets at a time until they are all successfully decoded by all the N receivers. Then,

the source node transmits a new combination and so on. The relay does not assist

the source in transmitting its packets.

5.3.3 Cognitive Relaying

The source node transmits its traffic with the help of the cognitive relay with-

out performing network coding on the packets. At each time slot, if the transmitted

packet is successfully received by all N destinations or by the relay; it is released

from the source queue; otherwise it is kept in the source queue for retransmission

in the following time slot. At the beginning of every time slot, the relay senses the

channel. If the source does not have any traffic to send (idle), which happens in-

finitely often1, the relay accesses the channel during these idle time slots to transmit

1This is due to the stability of the source queue. Refer to Section 2.3 for details.
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the packets in its queue to the destinations that could not receive them. This way,

no explicit channel resources are accorded to the relay. We assume that sensing at

the relay is perfect and hence the queues at the source and the relay nodes do not

interact. A packet is released from the relay’s queue if it is successfully decoded by

all the destinations.

5.3.4 Cognitive Relaying with Network Coding at the Relay

Similar to the cognitive relaying protocol but the relay transmits linear com-

binations of the packets it has in queue while the source does not perform any

network coding. Note that we only consider the case of fixed K, that is the relay

only transmits if it has at least K packets in queue.

5.4 Stable Throughput Analysis

In this section , we compute the maximum stable throughput rate at the

source queue for each of the protocols described in Section 5.3. By the stationarity

of the fading and noise processes, it is straightforward to establish the stationarity

of the service processes at the source and relay nodes. Since the arrival process

at the source queue is independent from the service process at the source queue,

by Loynes’ theorem, the stability condition of the source queue is that the average

arrival rate at the source node λ should be less than the average service rate of the

queue. The case with relaying is different and will be considered later.
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5.4.1 Retransmission Policy (ARQ)

The stability condition of the source queue is given by

λ < µARQ =

(
1 +

∞∑
t=1

(
1−

N∏
i=1

[
1− (1− fSi)

t]))−1

. (5.2)

Proof: Let Ni be the number of transmissions required until the ith receiver suc-

cessfully decode a packet transmitted by the source node, then

Pr[Ni = k] = fSi (1− fSi)
k−1 , k = 1, 2, 3, ... and i ∈ {1, 2, ..., N}. (5.3)

Let T denote the number of source transmissions until all the receivers successfully

decode the packet, then

T = max
i=1,2,...,N

Ni. (5.4)

By independence of the channel fading processes

Pr[T ≤ t] =
N∏
i=1

Pr [Ti ≤ t] =
N∏
i=1

t∑
r=1

fSi
(1− fSi

)r−1 . (5.5)

Since the random variable T is non-negative, the expected value of T is given by

E[T ] =
∞∑
t=0

Pr[T > t] = 1 +
∞∑
t=1

(
1−

N∏
i=1

t∑
r=1

fSi (1− fSi)
r−1

)
. (5.6)

Hence, the stability condition is given by

λ <
1

E[T ]
=

(
1 +

∞∑
t=1

(
1−

n∏
i=1

t∑
r=1

fSi (1− fSi)
r−1

))−1

. (5.7)

�

114



5.4.2 Random Linear Network Coding

In [81] it has been shown that that the queueing stability condition of a queue

transmitting network-coded packets is given by λ < µNC = K
E[TNC ]

, where

E[TNC ]=
∞∑

l=K

1

ql−K

(
1− 1

qK

) l−1∏
k=l+1−K

(
1− 1

qk

)(
l +

∞∑
t=l

(
1−

N∏
i=1

t∑
r=l

(
r − 1

l − 1

)
(1− fSi)

r−l
f l
Si

))
,

(5.8)

where q is the field size used for network coding (GF (q)) and K is the coding block

size (number of packets over which network coding is performed).

5.4.3 Cognitive Relaying

In this case, two queues are involved: the source queue, and the relay queue

where the source’s packets to be relayed are stored. The system is stable if both

queues are stable. In the following we analyze each of the two queues separately.

5.4.3.1 Source Queue

The arrival process at the source node is stationary by assumption. The service

process is also stationary as it depends only on the source-destination channels and

the source-relay channel which are subject to i.i.d. (and hence stationary) fading.

Moreover, the service at the source node is independent of the arrivals and thus they

are jointly stationary and we can apply Loynes’ theorem for the source queue. In

other words, the source queue is stable if λ < µ, where

µ =
1

1 +
∑∞

t=1(1−fSR)
t
[
1−
∏N

i=1

[
1− (1− fSi)

t]] . (5.9)

Note that this protocol reduces to the retransmission protocol fSR = 0 as expected.
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Proof: The source queue is served if the packet is successfully delivered to the relay

or to all N destinations. Let T be the number of time slots needed to serve the

source queue, then

T = min{TL, TD}, (5.10)

where TL is the number of time slots needed to deliver the packet to the relay and

TD is the number of time slots needed to deliver the packet to all N destinations.

Pr [TL = k] = fSR (1− fSR)
k−1 , k = 1, 2, 3, ... (5.11)

TD = max
i=1,2,...,N

TDi, (5.12)

where TDi represents the number of time slots needed to deliver the packet to the

ith destination. we have that

Pr[TDi = r] = fSi (1− fSi)
r−1 , r = 1, 2, 3, ... (5.13)

Pr[TD ≤ t] =
N∏
i=1

t∑
r=1

fSi (1− fSi)
r−1 , (5.14)

Pr[T > t] = Pr[TD > t]Pr[TL > t] = (1− fSR)
t

(
1−

N∏
i=1

t∑
r=1

fSi (1− fSi)
r−1

)
,

(5.15)

E[T ] = 1+
∞∑
t=1

(1−fSR)t
(
1−

N∏
i=1

t∑
r=1

fSi (1−fSi)r−1

)
, (5.16)

µ =
1

E[T ]
=

(
1+

∞∑
t=1

(1−fSR)t
(
1−

N∏
i=1

t∑
r=1

fSi(1−fSi)r−1
))−1

. (5.17)

By Loynes’ theorem, the proof is complete. �
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5.4.3.2 Relay Queue

At the time when the relay starts transmitting the packets it has in queue,

there are 2N possible states of the N destinations regarding the state of success of

packet reception. One of them is that all destinations received the packet which

is uninteresting since in that case, the relay has no role in packet delivery. Thus,

we need to consider each of the other 2N − 1 cases separately. According to our

assumptions, the relay receives ACK messages from the destinations that already

received the packet, so the exact state of the N destinations is known at the relay.

Each state of the N destinations is identified by a set S whose elements are the

nodes that already received the packet while source was transmitting and a set

F = Sc = {1, 2, ..., N} \ S, representing nodes that failed to receive that packet

and the relay has to forward the packets to them. The arrival and service processes

at the relay are stationary as they are functions of stationary processes which are

the fading processes. However, they are not independent as in the case of the

source queue. The reason is that if the m-th packet takes a longtime to reach

the relay, which means that it has a long inter-arrival time, then it is more likely

to be successfully delivered to a larger number of destinations during the source

transmissions and hence, it will get served faster at the relay. However, the arrival

and service processes are still jointly stationary since the m-th and the (m + 1)-st

packets are subject to the same transmission conditions which depend on the i.i.d.

fading processes. Thus, the arrival and service processes are jointly stationary and

hence Loynes’ theorem can still be applied at the relay node as a necessary and
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sufficient condition for stability. The stability condition for the relay node is then

given by λR < µR, where

λR =

(
λ

µ

)
fSR

(
1−

N∏
i=1

fSi

)
, (5.18)

µR =

(
1− λ

µ

)
/

(
E[TR]−

λ

µ

)
, (5.19)

where E[TR] is the average number of time slots needed for the relay to deliver the

packet to all destinations that failed to receive it if the relay transmits continuously,

not just during idle time slots of the source and is given by

E[TR] =
∑

all states S,F

 ∞∑
t=0

1−∏
i∈F

(
1−(1−fRi)

t) ∞∑
m=1

Q(1−Q)m−1
∏
i∈F

(1−fSi)
m

∏
j∈S

[
1−

(
1−fSj

)m] ,
(5.20)

where Q = fSR

(
1−
∏N

i=1 fSi

)
.

Proof: Let E[TR] be the average number of time slots needed for the relay to deliver

the packet to all destinations that failed to receive the packet if we allow the relay to

transmit continuously and not to be confined to the idle time slots. Let v1,v2,... be

a sequence of random variables representing the number of successive time slots in

which the source is busy, possibly of length zero if no arrivals occur. It is clear that

this sequence forms an i.i.d sequence of random variables. In a given time slot we

have Pr[an arrival occurs] = 1−Pr[no arrivals] = λ. The source queue is a Geo/G/1

queue. Let ρ = λ
µ
, then using the result in [76]

E[Busy period] =
1

µ− λ
, (5.21)

E[v] = λE[Busy period] =
ρ

1− ρ
. (5.22)

Let T be the total number of time slots needed for the relay to get served, including

those in which the source will be transmitting. Then since between TR time slots of
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the relay we have (TR − 1) source busy periods, possibly of length zero, we have

T = TR +

TR−1∑
i=1

vi, (5.23)

E[T ] = E[TR] + (E[TR]− 1)E[v] =
E[TR]− ρ

1− ρ
, (5.24)

µR =
1

E[T ]
=

1− ρ

E[TR]− ρ
. (5.25)

We then prove the equation for E[TR]. Let T ∗ be the number of time slots until the

relay has an arrival, then

Pr[T ∗ = m] = fSR

(
1−

n∏
i=1

fSi

)[
1− fSR

(
1−

n∏
i=1

fSi

)]m−1

. (5.26)

The destinations are at a certain state before the relay starts transmission, where

the state is described by the set F of destinations that failed to receive the packet.

Then TR = maxi∈F TR,i, where TR,i is the time for the relay to successfully deliver a

packet to the i-th node, which is geometrically distributed with parameter fRi. We

have that

Pr [TR ≤ t] =
∏
i∈F

t∑
k=1

fRi (1− fRi)
k−1 =

∏
i∈F

[
1− (1− fRi)

t] , (5.27)

E[TR| state S,F ] =
∞∑
t=0

[
1−

∏
i∈F

[
1− (1− fRi)

t]] . (5.28)

Thus

E[TR] =
∑

all statesS,F

∞∑
t=0

[
1−

∏
i∈F

[
1− (1− fRi)

t]]P (S,F) , (5.29)

where P (S,F) is the probability that the destinations are in state (S,F) when the
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relay starts transmission.

P (S,F) =
∞∑
m=1

Pr (S,F|T ∗ = m) Pr[T ∗ = m] (5.30)

=
∞∑
m=1

[∏
i∈F

(1− fSi)
m
∏
i∈S

[1− (1− fSi)
m]

]
Pr[T ∗ = m]. (5.31)

Hence, by direct substitution, Eq. (5.20) directly follows. �

For system stability, both source and relay queues should be stable. Hence,

both λ < µ and λR < µR must be satisfied. Substituting λR from Eq. (5.18) in Eq.

(5.19), we get the stability condition for the source queue as

λ < min

µ, µ(1 +QE[TR])−
√

(1 +QE[TR])2 − 4Q

2Q

, (5.32)

where Q = fSR

(
1−

∏N
i=1 fSi

)
and E[TR] is given by Eq. (5.20).

5.4.4 Cognitive Relaying with Network Coding at the Relay

It is clear that the arrival and service processes of the source node as well as

the arrival process to the relay are identical to the case of relaying with no network

coding where the rates are given by Eqs. (5.9) and (5.18). However, the service

process at the relay node is different.

The stability condition for this protocol is given by

λ < min

µ, µ(K +QE[TR])−
√
(K +QE[TR])2 − 4KQ

2Q

 , (5.33)

where Q = fSR

(
1−

∏N
i=1 fSi

)
, µ is as given by Eq. (5.9), q is the field size of

network coding used at the relay, K is the coding block size. The sets Fi and Si
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describe the state of reception of the ith packet at the N destinations when the

relay starts transmission.

E[TR] =
∑

all states F1,..,FK

E[TR|State F1, F2, ...FK ]Pr[State F1, F2, ..., FK ], (5.34)

E[TR| State F1, F2, ...FK ] =

∞∑
l=K

1

ql−K

(
1− 1

qK

) l−1∏
k=l+1−K

(
1− 1

qk

)l+ ∞∑
t=l

1−
∏

i∈
∪K

j=1 Fj

t∑
r=l

(
r − 1

l − 1

)
(1−fRi)r−l f lRi


,

(5.35)

Pr[State F1, F2, ..., FK ]=
K∏
l=1

[
∞∑
m=1

[
Q(1−Q)m−1

∏
i∈Fl

(1−fSi)m
∏
j∈Sl

[1−(1− fSj)
m]

]]
.

(5.36)

Proof: For every packet of the K packets, we have a corresponding state at the N

destinations, i.e. for every packet j ∈ {1, 2, ..., K}, we have a set Fj of destinations

that could not receive that packet. For the relay to serve theK packets, all the desti-

nations in the union of the sets Fj (i.e.
∪K
j=1 Fj) must be able to successfully decode

them. Thus, given a certain state (F1, F2, ..., FK) of the K packets and using the

result of the case of network coding in Section 5.4.2, we get E[TR| State F1, F2, ...FK ]

as in Eq. (5.35). The rest of the proof follows along the same lines as the case of

relaying with no network coding. The factor K is introduced by noting that E[TR]

is the time required to decode a batch of K packets. Hence, the time required to

decode one packet is E[TR]
K

. �
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5.5 Numerical Results

In Fig. 5.2, we compare the maximum stable throughput rate achieved at the

source node for the first three protocols as given by Eqs. (5.2), (5.8) and (5.33).

For clarity of presentation, we consider a symmetric configuration in which all the

source-destinations links have the same success probability denoted by fSD and all

relay-destinations links have the same success probability denoted by fRD. It is

clear that relaying leads to a significant increase in the stable throughput rate of

the source node compared with ARQ and NC where the relay does not assist the

source in forwarding its traffic and thereby losing the advantage of spatial diversity.

It should be noted that relaying only helps whenever the success probability of the

relay-destination channels is larger than that of the source-destination channels.
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Figure 5.2: Stable throughput rates of protocols (A),(B) and (C).
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In Figs. 5.3 and 5.4, we compare the maximum stable throughput rates of

relaying with and without network coding as given, respectively, by Eqs. (5.32) and

(5.33), where K and q are the respectively the coding block size and the field size of

the network coding scheme used at the relay. It is clear that random linear network

coding at the relay can increase the maximum stable throughput of the source by

increasing q or K, and it becomes more advantageous than relaying without network

coding as the number of destinations gets larger. It should also be noted that for

small values of K and q, relaying without network coding can outperform relaying

with network coding. This is due to the fact that for small values of K and q, the

probability of choosing the coefficients to be all zeros
(
= 1

qK

)
or previously chosen

coefficients is high, which degrades the performance of network coding.
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Figure 5.3: Effect of network coding at the Relay for various values of field size q.
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Figure 5.4: Effect of using network coding at the relay for various values of coding block size K.

5.6 Summary and Conclusions

In this work, we proposed and analyzed a (PHY/MAC) protocol for wireless

multicasting networks that exploits cognitive relaying, as well as an enhanced pro-

tocol that combines both benefits of cognitive relaying and network coding at the

relay. Cognitive relaying allows the relay to exploit the idle time slots of the source

node and hence avoiding allocating any explicit resources to the relay. Our analysis

showed that relaying can substantially increase the maximum stable throughput rate

of the source node and further throughput gains can be achieved by using random

linear network coding at the relay.

124



5.7 Appendix (A): Case of symmetric network

In this section, we provide expressions for the symmetric case where fSi = fSD

and fRi = fRD for all i ∈ {1, 2, ..., N}.

5.7.1 Retransmission Policy (ARQ)

Using the Binomial theorem, it is straightforward to establish that

µARQ =

[
1−

N∑
r=1

(
N

r

)
(−1)r

(
(1− fSD)

r

1− (1− fSD)r

)]−1

. (5.37)

5.7.2 Random Linear Network Coding

In this case, Eq. (5.8) can be written as

E[TNC ]=
∞∑

l=K

1

ql−K

(
1− 1

qK

) l−1∏
k=l+1−K

(
1− 1

qk

)l +
∞∑
t=l

1−( t∑
r=l

(
r − 1

l − 1

)
(1− fSD)

r−l
f l
SD

)N
.

(5.38)

5.7.3 Cognitive Relaying

Using the Binomial Theorem, the average service rate of the source queue can

be written as

µ =

[
1−

N∑
r=1

(
N

r

)
(−1)r

(
(1− fSR)(1− fSD)

r

1− (1− fSR)(1− fSD)r

)]−1

. (5.39)

Let Q = fSR
(
1− fNSD

)
and denote by |F | the cardinality of the set F . Clearly in

the symmetric case, summing over all possible states as in Eq. (5.20) is equivalent

to summing over all cardinalities of the sets that failed to receive the packet. After
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some algebra, it can be shown that

E[TR] =
N∑

|F |=1

|S|∑
r=0

|F |∑
v=1

(
|F |
v

)(
|S|
r

)
(−1)r+v+1Q(1−fSD)|F |+r(

1− (1−Q) (1− fSD)
(|F |+r)

)
(1− (1− fRD)v)

,

(5.40)

where |S| = N − |F |.

5.7.4 Cognitive Relaying with Network Coding at the Relay

The expressions in the symmetric case take the following forms.

E[TR| State F1, F2, ...FK ] =

∞∑
l=K

1

ql−K

(
1− 1

qK

) l−1∏
k=l+1−K

(
1− 1

qk

)l+ ∞∑
t=l

1−( t∑
r=l

(
r − 1

l − 1

)
(1−fRD)

r−l f lRD

)|∪K
j=1 Fj|,

(5.41)

Pr[State F1, F2, ..., FK ]=
K∏
v=1

|Sv|∑
r=0

(
|Sv|
r

)
(−1)rQ(1− fSD)

(r+|Fv |)

1− (1−Q)(1− fSD)(|Fv |+r)
, (5.42)

E[TR] =
N∑

|F1|=1

N∑
|F2|=1

...
N∑

|FK |=1

(
N

|F1|

)(
N

|F2|

)
...

(
N

|FK |

)
×

E[TR|State F1, F2, ...FK ]Pr[State F1, F2, ..., FK ].

5.8 Appendix (B): Reducing the computations of the relaying with

network coding protocol

As mentioned in Appendix (A), the expression for E[TR| State F1, F2, ..., FK ]

in that case only depends on the cardinality of the union of the sets F1, ..., FK given

by
∣∣∣∪K

j=1 Fj

∣∣∣ and not on the cardinalities of the individual sets. Let Li be the
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Figure 5.5: Illustration of sets F1, F2, ..., FK .

cardinality of the set Fi, i ∈ {1, 2, ..., K}. Given L1, L2, ..., LK , the cardinality of

the union
∣∣∣∪K

j=1 Fj

∣∣∣ lies between max(L1, L2, ..., LK) and min(N,L1+L2+ ...+LK).

By knowing the number of sets that lead to a union of a particular cardinality, we

can sum over the possible cardinalities of the union of the sets which are NK rather

than summing over all possible set cardinalities which are (2N − 1)K ,and thereby

largely reducing the computations.

The contribution of this part is summarized in the following Lemma.

Lemma 5.1. Given cardinalities 0 ≤ Li ≤ N of the sets Fi, i ∈ {1, 2, ..., K}, the

number of sets of all the possible sets with those cardinalities that has union set of

cardinality R is

(
N

L1

) ∑
s1,s2,...,sK−2

(
N−L1

s1

)(
L1

L2−s1

)(
N−L1−

∑K−2
i=1 si

R−L1−
∑K−2

i=1 si

)(
L1 +

∑K−2
i=1 si

LK + L1 +
∑K−2

i=1 si −R

)

×
K−3∏
j=1

(
N−L1−

∑j
i=1 si

sj+1

)(
L1 +

∑j
i=1 si

Lj+2 − sj+1

)
,

where max(L1, L2, ..., LK) ≤ R ≤ min(N,L1 + L2 + ... + LK), max(0, L2 − L1) ≤

s1 ≤ min(N − L1, L2) and

max

(
0, Lj+2 − L1 −

j∑
i=1

si

)
≤ sj+1 ≤ min

(
N − L1 −

j∑
i=1

si, Lj+2

)
; 1 ≤ j ≤ K−4,
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max

(
0, LK−1−L1−

K−3∑
i=1

si, R−L1−LK−
K−3∑
i=1

si

)
≤ sK−2

≤ min

(
LK−1, N−L1−

K−3∑
i=1

si, R−L1−
K−3∑
i=1

si

)
.

Proof: Let Sj be the elements in the set Fj+1 that do not belong to any of the sets

F1, F2, ..., Fj, i.e., the innovation of the set. This means that for any set Fj+1, the

elements Fj+1 \ Sj are repeated elements found in the previous sets. Suppose we

order the sets as in Fig. 5.5 where for every set Fj, we divide the elements into

the innovation Sj−1 and the repeated elements. Denote by si the cardinality of the

set Si. Then, for the first set, we have
(
N
L1

)
possibilities. For the next set F2, the

innovation has
(
N−L1

s1

)
possibilities and the repeated part has

(
L1

L2−s1

)
possibilities.

The third set F3 has
(
N−L1−s1

s2

)
possible innovations and

(
L+s1
L3−s2

)
possible repeated

parts. Following the same arguments, we obtain the expression in Lemma 5.1. Note

that for the last set, in order to have cardinality of the union equal to R, we should

have R distinct elements per set which enforces that sK−1 = R−L1−s1−...−sK−2 =

R − L1 −
∑K−2

i=1 si. The total number of sets is obtained by summing over all the

possible values of s1, s2, ..., sK−2. The limits on the values of s1, s2, ..., sK−2 can be

easily obtained by expanding the binomial coefficients and setting the factorial terms

to be non-negative. �
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Chapter 6: Opportunistic Access in Network-Coded Spectrum

6.1 Introduction

In this part, we study how an SU can exploit the structure of the PUs’ idle

and busy periods induced by batch processing systems such as network coding,

to reliably learn the spectrum characteristics of the PUs and effectively mitigate

spectrum sensing errors. We mainly focus on the effect of the spectrum predictability

gain by considering perfect channels and show that it leads to throughput gains

for both the PUs and the SU even if there is no spectrum availability gain (i.e.,

same fraction of idle slots available to the SU). The throughput achieved with only

spectrum predictability gain is the worst-case throughput of the SU where spectrum

availability gain exists as well.

Network coding has been studied for spectrum sensing purposes mainly in two

directions. First, network coding can help efficiently disseminate control information

among the SUs for collaborative spectrum sensing [82]. Second, the correlation

among PU spectrum states due to network coding can be used by the SUs to track

multiple PU channels (by assuming a busy slot will be more likely followed by

another busy slot) and to identify an idle channel [83]. However, the model in [83]

assumes that the SU has perfect sensing capability and can correctly distinguish
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an idle slot from a busy one on the channel it chooses to sense. In this work, we

study the practical case with possible spectrum sensing errors. While providing

some degree of protection to the PUs, the SU pursues two objectives: (i) quickest

detection of an idle slot and (ii) average throughput maximization. Since we are

interested in the spectrum predictability gain, we consider perfect PU channels such

that there is no spectrum availability gain (i.e., the fraction of the idle slot is the

same independent of coding block size K).

For the quickest detection problem, we apply the Cumulative Summation

(CUSUM) algorithm [84, 85] if the PUs’ spectrum dynamics are unknown at the

SU, and identify the potential benefit of network coding for spectrum predictability.

Then, we use the Viterbi algorithm [86] to optimize the spectrum sensing perfor-

mance if the PUs’ spectrum dynamics are known. For the throughput maximization

problem, we show that the spectrum predictability due to network coding applied

at the PUs can actually improve the SU throughput (and the gain increases with

K), even when the spectrum utilization remains the same. Our results show that

the benefit of using network coding by the PUs is not limited to possible PUs’

throughput gain, but also, if properly exploited, improves the spectrum sensing

accuracy and increases the throughput for the SU by mitigating possible sensing

errors. Hence, for the PUs, network coding represents a “self-protective” scheme

against SU interference caused by sensing errors. This way, the overall spectrum

efficiency of a cognitive radio network can be significantly improved.

To complement our analytical formulations and simulation studies, we evalu-

ate our approach with testbed measurements. Our testbed results corroborate the
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feasibility of our approach to mitigate spectrum sensing errors and to improve the

SU throughput while protecting the PU transmissions.

The rest of the chapter is organized as follows. In Section 6.2, we introduce

the system model for spectrum sensing on a PU channel. Section 6.3 and Section 6.4

study spectrum predictability gain under quickest idle slot detection and throughput

maximization problems, respectively. We validate the results with testbed experi-

ments in Section 6.5. Section 6.6 concludes the chapter.

6.2 System Model

We consider a cognitive radio network consisting ofM primary users (PUs) and

one secondary user (SU). The SU tries to detect the idle periods on the PUs’ channels

for opportunistic access. The M PUs occupy M orthogonal channels and their

spectrum states (Idle/Busy) are assumed to evolve independently. Time is slotted

with slot duration equal to one packet transmission duration. At the beginning of

every slot, the SU chooses a channel to sense and then senses the spectrum (e.g.,

with an energy detector [16]) to detect whether that PU channel is idle or not. Based

on channel sensing results (subject to detection errors) and possible prior knowledge

about the traffic statistics of the PU, the SU decides on whether to transmit or not.

We consider two goals for the SU, namely quickest detection of an idle slot, and

throughput maximization, while guaranteeing some level of protection to the PUs’

transmissions.
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6.2.1 Network Coding and Traffic Model

Each PU receives (or generates) packets according to a stationary process and

buffers them until K packets are accumulated in its queue. The PU server then

codes each block of K packets linearly and transmits K coded packets. The PU and

its receiver(s) agree on a set of linearly independent coding coefficients such that

K successful transmissions are needed at a receiver to decode a block of K packets

(alternatively, random network coding with sufficiently large field size is used). The

state of each PU channel (idle/busy) is assumed to be fixed over a slot duration

and varies between slots according to a Markov chain that models the correlation

between the PU states. For PU systems without network coding, the busy/idle

periods have been shown to follow a two-state Markov chain (shown in Fig. 6.1)

through channel measurement [87] and this model has been widely used in spectrum

sensing (e.g., [34, 35, 88]). Our model can be viewed as a natural generalization of

this two-state model to network coding. For simplicity, we consider the case of a

perfect PU channel that requires K transmissions (in K slots) to deliver K network-

coded packets. In this case, the busy periods on the PU channels are multiple of K

slots and the idle periods are on average K times longer which introduces K steps

memory to the PU states. The PU state evolution over perfect channels can then

be modeled by the Markov chain in Fig. 6.2 where λ and ν controls the level of

correlation between the idle and busy states, respectively.

From the structure of the Markov chain, we expect that with larger values

of K, the SU can more reliably detect the idle slots on the PU channels through
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Figure 6.1: PU spectrum dynamics without network coding.

better tracking of the PUs’ states, since it is more likely that a busy slot is followed

by another busy slot due to the block transmission of coded packets. On the other

hand, if K = 1, the busy/idle sequence, as modeled by the Markov chain in Fig. 6.1,

involves less structure and in particular, for κ = ζ = 0.5, it forms an i.i.d. sequence

and hence there is no memory between the PU states that the SU can use to track

the sequence.
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1

Busy

2

Busy

K

...

Figure 6.2: PU spectrum dynamics with network coding over perfect channels.

The idle state of the Markov chain in Fig. 6.2 has stationary probability

π0 =
ν

ν+Kλ
and the channel utilization is u = 1− π0 =

Kλ
ν+Kλ

. We choose λ and ν to

approximate the real behavior of a queue using network coding over multicast perfect

channels. Through extensive simulations, it was found that choosing ν = 1 − λ

well approximates the idle/busy evolution of network-coded transmissions for the
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parameter values considered in this chapter. We seek to compare between two

systems: the first evolves according to the Markov chain in Fig. 6.2 with K = 1,

that is where the idle and busy periods can be of any length; and the second is for

general K where once the PU becomes busy, it remains busy for K slots. Since we

aim at studying the gain due to spectrum predictability, the channel utilization for

all K should be the same. This can be achieved by choosing λ = u
u+K(1−u) . This

generates the same fraction of idle and busy slots with busy periods a multiple of K

slots. Although the spectrum availability to the SU is the same, we will show that

the spectrum predictability gain of the PU spectrum achieved by network coding

can be leveraged by the SU to improve the throughput over the case when the PU

does not use network coding.

6.2.2 Channel Sensing Model

At the beginning of each slot, the SU chooses one of the M PU channels to

sense and decides whether or not to transmit based on the current and possibly

previous observations. Although our approach applies with any channel sensing

scheme, here we specify the channel model and channel sensing scheme to be used

for performance evaluation. At each slot, the SU observes n samples {Yi}ni=1 which

constitute the observations in that slot. Under hypothesis 1 (H1), which corresponds

to a busy slot, the observations {Yi}ni=1 are i.i.d. ∼ N (0, P + σ2) and under hy-

pothesis 0 (H0), which corresponds to an idle slot, the observations {Yi}ni=1 are i.i.d.

∼ N (0, σ2), where P denotes the average PU power received at the SU and σ2 is
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the noise variance. For simulations, we will use the Gaussian model of observations,

while for testbed experiments in Section 6.5 we will use empirical distributions de-

rived from real radio transmissions. We assume that the SU makes a hard decision

based on energy detection [16]. The energy detector is used here for its simplicity as

it does not require knowledge of the signal structures of the PUs’ signals1. However,

the SU is assumed to know the coding block size K used by the PUs. Since the

block size is just one number and is fixed, it can be easily known at the SU either

through some prior knowledge about the PU system or prior to the system oper-

ation through mutual communications, with negligible overhead, between the PU

and the SU. One can also try to infer this number by observing PU’s transmissions

over a sufficient time interval as a part of learning the Markov chain structure [89].

For Yi ∼ N (0,Σ2) (where Σ2 = σ2 under hypothesis H0 and Σ2 = σ2 + P under

hypothesis H1), the energy of the observed signals, Z =
∑n

i=1 Y
2
i , has probability

density function given by

fZ(z) =
z(n/2)−1e−z/(2Σ

2)

2n/2ΣnΓ(n/2)
, z ≥ 0, (6.1)

where Γ(k) =
∫∞
0
xk−1e−x dx is the gamma function. For a given detection threshold

τ , the misdetection (pM) and false alarm (pF ) probabilities are given by

pM=Pr

[
1

n

n∑
i=1

Y 2
i ≤ τ |H1

]
=
γ(n

2
, nτ
2(σ2+P )

)

Γ(n/2)
; pF =Pr

[
1

n

n∑
i=1

Y 2
i ≥ τ |H0

]
=
Γ(n

2
, nτ
2σ2 )

Γ(n/2)
,

(6.2)

1By PU signal structure we mean the structure of the PU symbols such as the modulation used,

the FEC used and other PHY-layer parameters required to decode the PU signal.
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where γ(n, x) =
∫ x
0
tn−1e−t dt and Γ(n, x) =

∫∞
x
tn−1e−t dt are the lower and upper

incomplete gamma functions, respectively. The detection threshold τ can be chosen

to yield a tolerable misdetection probability for PU protection pM , and then the

false alarm probability pF can be determined accordingly. We will show that the

SU can mitigate channel sensing errors by tracking the PU spectrum dynamics,

in contrast to the classical memoryless sensing strategies that cannot exploit the

possible correlation of the PU states across slots. We will show in the next sections

that this spectrum predictability gain becomes more significant as the coding block

size increases.

We adopt the commonly used assumption that the PUs and the SU are per-

fectly synchronized. This can be achieved at the SU by overhearing the control

signals of the PU whose channel is to be sensed. Despite being outside the scope of

this work, we expect that synchronization with a PU using network coding is easier

since there are less frequent and more regular transitions of the PU states. With

network coding, the time scale of the change of the PU states is increased by K.

This conjecture is left for future investigations.

6.3 SU Objective 1: Quickest Detection of an Idle Slot

The first objective for the SU is to minimize the expected time to detect an

idle slot given that the initial state of the chain is randomly chosen according to its

stationary distribution. Throughout this section, we restrict ourselves to the case of

a single PU (i.e., M = 1) and show the benefit of using network coding at the PU
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(i.e., larger K). It should be noted that the procedure described in this section can

be applied to the case of multiple PUs if the SU first chooses a channel to sense,

runs the procedure described here on the chosen channel until detecting an idle slot

and then repeats the cycle. We distinguish two cases depending on whether or not

the SU knows the PU traffic dynamics, namely the parameters of the PU Markov

chain in Fig. 6.2.

6.3.1 Unknown PU Spectrum Dynamics

First, we assume that the SU does not know the parameters of the Markov

chain for the underlying PU spectrum dynamics. The Cumulative Summation

(CUSUM) algorithm is the optimal scheme to detect a single change in distribu-

tion based on sequential observations [84, 85] when the distribution of the change

point is not known. After a change from H1 (busy state) to H0 (idle state), the

CUSUM algorithm minimizes the expected delay to capture the change (detecting

an idle slot) under some constraint on the average duration between times of detect-

ing H1 as H0 (misdetection). If that duration is large, the PU is highly protected but

this implies that the expected duration for detecting an idle slot is also large, and

vice versa. The CUSUM algorithm works by accumulating energy over consecutive

slots in contrast to memoryless energy detectors that are restricted to a single slot.

Under the assumption that the expected time to detect a change is much

shorter than the time scale for the change to occur (and hence a single change in

distribution occurs), the CUSUM algorithm was applied to spectrum sensing with
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a single change in [90, 91], and quickest detection was formulated in the framework

of POMDPs in [88], which requires the knowledge of the PU traffic dynamics at

the SU. However, due to the quick dynamics of the PU spectrum, the assumption

of a single change is no longer valid in our case since multiple transitions between

idle and busy states might occur before a decision could be made. In general, the

quickest change detector in the case of multiple changes is unknown. Therefore,

we apply the CUSUM algorithm without any optimality claim, and show the per-

formance gain it achieves. The CUSUM algorithm only requires the knowledge of

the distribution of the observations under both hypotheses and does not need the

knowledge of the traffic parameters of the PU, which may take a long time to be

learned at the SU.

Define f0 and f1 as the probability density functions of one sample Y under hy-

potheses H0 and H1, respectively. The CUSUM algorithm is given as

Algorithm 1 CUSUM Algorithm

1: Initialize k = 0 and S0 = 0.

2: Increment k and compute the log-likelihood ratio (LLR) Zk =
∑n

i=1 log
[
f0(Yi,k)

f1(Yi,k)

]
for each slot k, where Yi,k is the ith observation in the kth slot and n

is the number of samples per slot. The LLR is given by n
2
log
(
1 + P

σ2

)
−

P
2σ2(P+σ2)

(∑n
i=1 Y

2
i,k

)
for i.i.d. Gaussian observations.

3: Compute Sk = max {0, Sk−1 + Zk}. If Sk > h for some threshold h, a decision

that hypothesis H0 exists (i.e. idle slot) is made and the algorithm stops; else,

go to Step 2.

The rationale behind this algorithm is that EH0 [LLR] = D(f0||f1) > 0 while
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EH1 [LLR] = −D(f1||f0) < 0, where D(f0||f1) is the Kullback-Leibler distance be-

tween the densities f0 and f1. Hence, the sequence {Sk} will have positive drift

under H0 and negative drift under H1. Define Xm as the true state of the system

in slot m and Td as the time until a correct decision is made. Then, Td is given

by Td = inf{m : Sm > h and Xm = 0 (“Idle”)}. The threshold h needs to be

chosen such that E[Td] is small (i.e., h is not too large) and misdetection rate2 p̃M

is small (i.e., h is not too small).3 By varying the threshold h and computing the

corresponding E[Td] and p̃M , we provide simulation results for E[Td] versus p̃M for

the CUSUM algorithm. We expect that the performance of the CUSUM gets better

with K, since multiple consecutive changes lead to energy accumulation and hence

the test statistics hits the threshold faster.

In numerical results, we focus on low SNR PU signal observed at the SU.

Unless stated otherwise, the average received signal power at the SU is P = 1 and

the noise variance is σ2 = 1 (i.e., SNR=0 dB). The sensor at the SU uses n = 10

channel sensing samples per slot with pM = 0.2 which corresponds to a false alarm

probability pF = 0.2618. We fix the channel utilization to u = 0.5 by properly

selecting λ. This way, we can evaluate the spectrum predictability gain of NC

by separating the possible gain of extending the SU’s spectrum availability. This

models the worst-case throughput of the SU where spectrum availability gain exists

2Defined as the inverse of the average duration between misdetections.
3The exact calculation of E[Td] and p̃M as a function of the threshold h involves solving Fredholm

integral equation which is a difficult task, even for simple cases [92]. For Markovian evolution of

the idle and busy slots, these quantities can be obtained by Monte-Carlo simulations [92].
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as well.
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Figure 6.3: Quickest detection performance of

the CUSUM algorithm.
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Figure 6.4: Quickest detection performance

of the Viterbi algorithm.

Figure 6.3 shows the expected time to detect an idle slot for the CUSUM

algorithm, where we vary the threshold h and compute E[Td] and the corresponding

p̃M . For the MC shown in Fig. 6.2 and under perfect sensing assumption (pM =

pF = 0), the expected time needed to capture an idle slot is

E[Td] =
Kλ

Kλ+ ν

[
K

2
+

2− ν

2ν

]
, (6.3)

which increases with K for the same u and ν. Equation (6.3) follows from the

first passage time of the MC in Fig. 6.2; and it reveals that with perfect sensing,

due to the long busy periods (of length K), the SU needs longer time to detect an

idle slot as K increases, thus a small value of K is preferred for the SU. If sensing

is imperfect, there are two opposite effects taking place when K increases. The

spectrum predictability improves but in the meantime it takes longer until the MC

changes to the idle state. If the target p̃M is large (i.e., low PU protection), the

SU does not need reliable channel sensing and a small value of K is still better
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for the SU, since the gain associated with spectrum predictability is not needed.

For small target p̃M , the spectrum predictability gain by increasing the value of

K compensates for the increase in E[Td]; therefore, a larger K is preferred. These

opposite effects are shown in Fig. 6.3, where a low (or high) p̃M corresponds to

a high (or low) threshold. In that case, the benefit of increasing K is due to the

energy accumulation over correlated slots in the CUSUM algorithm and thus the

test statistic can hit the required threshold faster.

6.3.2 Known PU Spectrum Dynamics

In this part, we assume that, in addition to the distribution of the observations

under different PU states, the SU knows the parameters of the Markov chain in Fig.

6.2 for the underlying PU spectrum dynamics. This knowledge can be acquired

offline from measurements through learning algorithms such as the Baum-Welch

algorithm [93, 94]. Subsequently, we assume that the parameters of the Hidden

Markov Process (HMP) are perfectly known to the SU. Hidden Markov Models

(HMMs) have been used to learn and track the spectrum availability in [35,87,95].

However, all these works focused on the two-state PU dynamics as in Fig. 6.1,

that cannot be used to address the spectrum availability/predictability gains due

to network coding. After learning the parameters of the PU Markov chain, the SU

tracks the state of the PU spectrum using the Viterbi algorithm [86], which is optimal

for estimating the most likely PU state sequence given all the previous observations.

From the estimated PU state sequence, the SU can estimate the current PU state.
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Protection to the PU is guaranteed by using a spectrum sensor with misdetection

probability pM equal to the target collision probability pC as in [34]. Note that

by such a choice the actual collision probability p̂C satisfies p̂C ≤ pM , if the SU

uses memoryless spectrum sensing, and p̂C < pM , if the SU leverages the memory

through the Viterbi algorithm.

In the following, we illustrate the performance of the Viterbi algorithm for

quickest detection and compare it with the CUSUM algorithm. Figure 6.4 shows the

expected time for detecting an idle slot as a function of the coding block size K. As

shown in Fig. 6.4, for small target misdetection probabilities (e.g., pM = 0.05), it is

not necessarily true that a largerK value is preferred (as in CUSUM algorithm). For

instance, the case with pM = 0.05 has the smallest value of E[Td] at K = 5. This can

be explained by the fact that the benefit of the correlation of the PU states beyond

K = 5 does not compensate for the increase in E[Td] due to the increase in the

duration of the busy period. For the CUSUM algorithm (Fig. 6.3) with pM = 0.05,

the minimum value of E[Td] is 11 and achieved at K = 5, while for pM = 0.1 the

minimum value of E[Td] is 5 and achieved at K = 1. For the same values of K, the

Viterbi algorithm achieves a lower value of E[Td]. This can be seen in Fig. 6.4, where

for pM = 0.05 and K = 5 we have E[Td] = 3.75, whereas for pM = 0.1 and K = 1 we

have E[Td] = 3.7. These expected time values are lower than those achieved by the

CUSUM algorithm. Moreover, the Viterbi algorithm achieves a lower value for the

minimum E[Td] than the CUSUM algorithm for the same misdetection probability,

i.e., for pM = 0.05 and pM = 0.1 the Viterbi algorithm achieves the minimum values

of E[Td] = 3.75 and E[Td] = 3.4 at K = 5 and K = 1, respectively. This shows the
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advantage of exploiting the knowledge of the PU spectrum dynamics at the SU to

detect idle slots on the PU channels.

6.4 SU Objective 2: Average Throughput Maximization

The second objective for the SU is to maximize the average throughput, namely

the average rate of detecting idle slots on the PUs’ channels. We first study the

learning phase, then we focus on the tracking phase, where the SU actively tracks the

channels for opportunistic access. We consider both the optimal POMDP solution

for a single PU in Section 6.4.2, a suboptimal greedy policy for a single PU in Section

6.4.3 and then we extend to the case of multiple PUs in Section 6.4.4.

6.4.1 Learning Phase

For the learning phase, we focus on learning one particular PU channel; but

the procedure is repeated for all the channels until the SU has knowledge about the

traffic parameters of all the PUs. The SU learns the Markov chain parameters given

the coding block size K used by the PU. Define N as the number of slots over which

the SU observes the PU chain for learning and S = {0, 1, ..., K} as the state space

of the PU Markov chain. The true sequence of states sN1 = {st ∈ S|t = 1, 2, ..., N}

is hidden to the SU but a sequence of corresponding sensing outcomes yN1 = {yt ∈

Y|t = 1, 2, ..., N} is available to the SU, where Y ={“Idle”, “Busy”}.

Given only the observation sequence, the Baum-Welch algorithm generates a

sequence of parameter estimates of non-decreasing likelihood values for the Hidden
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Markov Process (HMP). Define η̂r = (π̂r, Âr) as the estimate of the parameters of

the Markov chain at the rth iteration of the algorithm, where π̂r is the estimated

initial distribution of the chain and Âr = [âij]r is the estimated state transition

matrix. The algorithm starts with an initial guess η̂0 = (π̂0, Â0) and then updates

the parameter estimates by maximizing the likelihood given the observation sequence

{yN1 }. The rth iteration starts with an estimate η̂r−1 and estimates a new parameter

set η̂r according to

η̂r = argmax
η̄r

∑
sN1

Pη̂r−1

(
sN1 |yN1

)
ln
[
Pη̄r
(
sN1 , y

N
1

)]
, (6.4)

where Pη̂r−1

(
sN1 |yN1

)
is the probability of the state sequence sN1 given the observation

sequence yN1 under model estimate η̂r−1, and η̄r is the set of the feasible parameters

at the rth iteration. The algorithm terminates when a convergence criterion is

satisfied, e.g., when lnPη̂r(y
N
1 )− lnPη̂r−1(y

N
1 ) < ε for a given threshold ε. Note that

although the Baum-Welch algorithm is guaranteed to converge, it might converge

to a local optimum and therefore different initial guesses may be needed.
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We give an example in Fig. 6.5 for estimating the value of λ with threshold
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ε = 10−4. Figure 6.5 shows that a higher value of K leads to a better estimate

of λ for the same number of observations. For K = 1 and K = 3, the estimate λ̂

does not exactly match the true values of λ, which are 0.5 and 0.25, respectively,

for observation vector lengths of up to 400 slots, while it matches the true value of

λ for K = 5. Figure 6.6 shows the log-likelihood of the estimated parameters given

the observation sequence yN1 for different number of observation slots. For the same

number of observations, the Baum-Welch algorithm achieves higher log-likelihoods

for higher values ofK and this shows that the PU spectrum structure due to network

coding improves the estimate of the PU Markov chain parameters, which we use in

the next section for better tracking of the PU spectrum.

6.4.2 Tracking Phase - Single PU - Optimal Policy

We first consider a single PU whose Markov chain evolves as in Fig. 6.2. We

assume that the SU perfectly knows the parameters of the PU Markov chain. At

the beginning of each slot, the PU Markov chain makes a state transition, then

the SU senses the channel, updates its belief vector (to be defined shortly) and then

chooses between two actions: to transmit or to remain silent. With rewards incurred

for different SU actions and different PU states, the optimal access policy can be

found through a POMDP formulation. The SU maintains a belief vector about the

state of the Markov chain for the PU spectrum. Each component of the belief vector

represents the conditional probability that the PU Markov chain is in a certain state

given the decision and observation history. The belief vector is updated based on
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the sensing outcome and the feedback received upon transmission. Note that we can

incorporate the case of time varying channels modeled as finite state chains (e.g.,

Gilbert-Elliott) with imperfect channel state information at the SU by adding the

channel state as states to the belief vectors at the expense of more complexity in

computing the optimal access policy.

The existence of an optimal policy for infinite-horizon POMDP problems is

undecidable [96], hence we focus on numerical solutions obtained by discretizing

the belief space. The problem of maximizing the SU throughput subject to some

PU protection constraint (e.g., misdetection probability pM) leads to a constrained

POMDP. For constrained POMDPs with discretized belief space, randomized poli-

cies may be needed for optimality, while there always exists an optimal deterministic

policy if they are unconstrained [Theorem 6.2.10 in [97]], [98]. In order to bypass the

difficulties encountered in solving the constrained POMDP problem, we formulate

the problem as an unconstrained POMDP where the PU is protected by using a

reward function at the SU that is a weighted sum of the PU and SU throughputs.

By adjusting the weight, the PU is supported with different throughput values. We

discuss this weighted throughput formulation in the reward part.

As typically assumed in similar models (e.g., [33,34]), we assume that the PU’s

traffic dynamics are independent of the actions taken at the SU and we consider the

extended Markov chain structure in Fig. 6.2 to represent network coding effects.

We denote by Xt ∈ {0, 1, ..., K} the state of the PU in time slot t.
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6.4.2.1 Actions

Two actions are possible at the SU in each slot t, to remain silent (At = 0) or

to transmit (At = 1).

6.4.2.2 Rewards

When the PU spectrum is in state Xt and action At is taken by the SU, the

reward is given by

R(Xt, At) =



0, if Xt = 0, At = 0,

wrP,1, if Xt ̸= 0, At = 0,

(1− w)rS,1, if Xt = 0, At = 1,

wrP,2 + (1− w)rS,2, if Xt ̸= 0, At = 1,

(6.5)

where rP,1 and rS,1 are the rates achieved by the PU and SU, respectively, when

they do not interfere, and rP,2 and rS,2 are the rates achieved by the PU and SU,

respectively, when they interfere with each other. The weight w represents the

relative importance of the PU throughput and is used for the PU protection [99].

Choosing w = 1 gives full priority to the PU throughput (i.e., full PU protection),

while w = 0 favors the SU throughput (i.e., no PU protection). By varying w

between 0 and 1, we can reach different degrees of PU protection corresponding

to different PU throughputs. In the following, we assume rP,2 = 0 and rS,2 = 0,

that is, when both the PU and the SU transmit simultaneously, a collision occurs

and both packets are lost. However, a similar approach can be taken for the more
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general case with multi-packet reception capability. Also, for our packet based

model, rP,1 = rS,1 = 1 (coded) packet/slot.

Note that if the PU codes overK packets, a lost coded packet (due to collision)

may prevent the PU receiver from decoding the entire block of coded packets. This

issue can be overcome if the PU codes over K − 1 packets, transmits this block,

and then at the Kth transmission, either retransmits one of these coded packets if

a collision occurred, or else transmits the left uncoded packet. As we will see, the

optimal access policy at the SU guarantees K − 1 collision-free transmissions out of

K PU transmissions, and hence at least K−1 PU coded packets can be successfully

delivered during every PU busy period. This validates Eq. (6.5) where the PU has

one packet delivered whenever it is busy and no collision occurs.

6.4.2.3 Spectrum Sensing

Although some level of PU protection can be achieved solely by adjusting w in

the reward function, spectrum sensing leads to better inference of the PU spectrum

state and consequently better SU throughput for the same level of PU protection.

We assume that the spectrum sensing scheme has a misdetection probability pM ,

which corresponds to some false alarm probability pF .

6.4.2.4 Channel Feedback from SU receiver

If the SU chooses to transmit, an error-free feedback message is sent from the

SU receiver to the SU transmitter indicating whether the packet was successfully
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received or not. This feedback message also reveals about the idle/busy state of PU

spectrum Specifically, under the collision channel model considered, if an ACK (or

NACK) is received at the end of a slot, the SU learns that the PU was idle (or busy)

during that slot. This feedback is then used by the SU for updating the belief in

the following slot.

6.4.2.5 Observations and Belief Vector

Since the true state of the PU spectrum cannot be exactly observed from

channel sensing results because of possible sensing errors, the SU maintains a belief

about the state of the PU. For POMDP problems, the belief is a sufficient statistic

for deciding on the action given all the past observations and actions [100]. Given

the spectrum sensing observation and the transmission feedback in each slot, the SU

updates its belief regarding the state of the PU. We denote by Λt the (K + 1) × 1

belief vector of the PU state in time slot t, where the mth component Λt(m) denotes

the belief in time slot t that the Markov chain of the PU (Fig. 6.2) is in state m,

where 0 ≤ m ≤ K. Note that the first component of the belief vector is Λt(0).

(a) Under the action (0): The SU chooses not to transmit. No channel feedback is

observed and the belief in the following slot is updated solely based on the channel

sensing outcome in that slot. That is, the observations are either “Busy” or “Idle”.

Given a belief vector Λt, the probability of observing the outcome “Busy” or “Idle”
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in slot t+ 1 are given by

Pr [Busy|Λt] =
K∑
m=0

Pr [Xt= m|Λt]Pr [Busy|Λt,Xt= m]=Λt(0)[λ(1−pM)+(1−λ)pF ]

+Λt(K) [λ(1− pM) + (1− λ)pF ] + (1− pM)

[
K−1∑
m=1

Λt(m)

]
, (6.6)

Pr [Idle|Λt] = Λt(0) [λpM + (1− λ)(1− pF )] +Λt(K) [λpM + (1− λ)(1− pF )]

+ pM

[
K−1∑
m=1

Λt(m)

]
. (6.7)

The belief update under action At = 0 and observation O(At) = Idle is given by

Λt+1(m) = Pr [Xt+1 = m|At = 0,Λt, O(At) = Idle]

=
Pr [O(At) = Idle|At = 0,Λt, Xt+1 = m] Pr [Xt+1 = m|At = 0,Λt]

Pr [O(At) = Idle|At = 0,Λt]

=
[(1− pF )1[m = 0] + pM1[m ̸= 0]] Γm∑K
m=0 [(1− pF )1[m = 0] + pM1[m ̸= 0]] Γm

, (6.8)

where 1[•] is the indicator function and

Γm =
K−1∑
i=1

Λt(i)1[m = i+ 1] + 1[m = 0] [Λt(0)(1− λ) +Λt(K)(1− λ)]

+ 1[m = 1] [Λt(0)λ+Λt(K)λ] . (6.9)

Under observation O(At) = Busy, the belief is updated according to

Λt+1(m) = Pr [Xt+1 = m|At = 0,Λt, O(At) = Busy]

=
Pr [O(At) = Busy|At = 0,Λt, Xt+1 = m] Pr [Xt+1 = m|At = 0,Λt]

Pr [O(At) = Busy|At = 0,Λt]

=
[pF1[m = 0] + (1− pM)1[m ̸= 0]] Γm∑K
m=0 [pF1[m = 0] + (1− pM)1[m ̸= 0]] Γm

. (6.10)

(b) Under the action (1): The SU chooses to transmit. An (ACK/NACK) feedback

is sent from the SU receiver to the SU transmitter over a dedicated control channel at
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the end of the slot. The possible observations in this case are (ACK, Busy), (ACK,

Idle), (NACK, Busy) and (NACK, Idle). The (ACK/NACK) feedback is observed

at the end of slot t, while the “Busy” or “Idle” outcome is observed after sensing in

slot t+1. The belief is then updated. The probabilities of these observations under

action (At = 1) are given by

Pr [(ACK,Busy)|Λt] = Λt(0) [λ(1− pM) + (1− λ)pF ] ,

Pr [(NACK,Busy)|Λt] = (1− pM)

[
K−1∑
m=1

Λt(m)

]
+Λt(K) [λ(1− pM) + (1− λ)pF ] ,

Pr [(ACK, Idle)|Λt] = Λt(0) [λpM + (1− λ)(1− pF )] ,

Pr [(NACK, Idle)|Λt] = pM

[
K−1∑
m=1

Λt(m)

]
+Λt(K) [λpM + (1− λ)(1− pF )] . (6.11)

The belief is updated as follows.

(i) If O(At) = (ACK, Busy):

Λt+1(m) = Pr [Xt+1 = m|At = 1,Λt, O(At) = (ACK,Busy)]

=
[(1− pM)1[m = 1] + pF1[m = 0]] [λ1[m = 1] + (1− λ)1[m = 0]]

pF (1− λ) + λ(1− pM)
.

(6.12)

(ii) If O(At) = (NACK, Busy):

Λt+1(m) = Pr [Xt+1 = m|At = 1,Λt, O(At) = (NACK,Busy)]

=
[(1− pM)1[m ̸= 0] + pF1[m = 0]]Ψm∑K
m=0 [pF1[m = 0] + (1− pM)1[m ̸= 0]]Ψm

, (6.13)
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where Ψm =
∑K−1

i=1 Λt(i)1[m = i+ 1] + 1[m = 0]Λt(K)(1− λ) + 1[m = 1]Λt(K)λ.

(iii) If O(At) = (ACK, Idle):

Λt+1(m) = Pr [Xt+1 = m|At = 1,Λt, O(At) = (ACK,Idle)]

=
[pM1[m = 1] + (1− pF )1[m = 0]] [λ1[m = 1] + (1− λ)1[m = 0]]

(1− pF )(1− λ) + λpM
.

(6.14)

(iv) If O(At) = (NACK, Idle):

Λt+1(m) = Pr [Xt+1 = m|At = 1,Λt, O(At) = (NACK,Idle)]

=
[pM1[m ̸= 0] + (1− pF )1[m = 0]]Ψm∑K
m=0 [(1− pF )1[m = 0] + pM1[m ̸= 0]]Ψm

. (6.15)

6.4.2.6 Policy

The SU policy is a mapping from the belief space to the action space {0, 1}.

The optimal policy maximizes the expected discounted reward and is given by

π∗ = argmax
π

Eπ

[
∞∑
t=1

ξtR (Xt, At) |Λ1

]
, (6.16)

where ξ is the discount factor (ξ < 1), which describes the importance of the future

reward relative to the immediate reward, and Λ1 is the initial belief vector, which

is set to the stationary distribution of the chain.

Let V (Λt) denote the value function, which is defined as the maximum ex-

pected reward that can be incurred starting from time slot t given belief Λt. The

value function must satisfy the Bellman equation in dynamic programming for all t

V (Λt) = max
At∈{0,1}

RAt(Λt) + ξ
∑
O(At)

Pr [O(At)|Λt]V (Φ(Λt|At, O(At)))

 , (6.17)
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whereRAt(Λt) is the expected immediate reward in slot t under action At, O(At) rep-

resents the observation under action At and the function Φ(Λt|At, O(At)) represents

the belief update under action At and observations O(At). For action At ∈ {0, 1},

RAt(Λt) is given by

R0(Λt) = wrP,1(1−Λt(0)) and R1(Λt) = (1− w)rS,1Λt(0), (6.18)

where Λt(0) is the first component of the belief vector Λt, which represents the belief

that the PU state is idle.
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Figure 6.7: Throughput of the POMDP

optimal policy (smaller pM , larger pF ).

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

PU throughput (r
P
) (packets/slot)

S
U

 th
ro

ug
hp

ut
 (

r S
) 

(p
ac

ke
ts

/s
lo

t)

POMDP Results, p
M

 = 0.2, p
F
 = 0.2618, n = 10 samples

 

 

Coding block size (K) = 1
Coding block size (K) = 2
Coding block size (K) = 3

Figure 6.8: Throughput of the POMDP
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POMDPs with discretized belief space are PSPACE-hard problems [101]. Here,

we limit ourselves to small values of K and compute the optimal policy using the

value iteration algorithm applied to a discrete finite uniform grid in the belief space4.

4Although many POMDP solvers are available, we developed our own solver tailored to the

specific needs of our problem such as (i) the belief is updated based on observations depending on

two different states of the PU (the ACK/NACK in a slot and the sensing outcome in the following

slot), and (ii) we compute the average PU and SU throughputs rather than the expected reward.
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Once the optimal SU transmission policy is computed, we run a system simulation

to compute the PU and SU throughputs. We consider the suboptimal greedy policy

which requires less complexity in Section 6.4.3.

In Figs. 6.7 and 6.8, we vary the PU protection weight parameter w ∈ [0, 1]

and show the relationship between the SU throughput, rS, and PU throughput,

rP , jointly achieved under the POMDP formulation for fixed channel utilization

u = 0.5 and discount factor ξ = 0.9. For the same value of rP , the SU throughput

rS increases with coding block size K. For rS to reach its maximum possible value

0.5, the PU throughput rP must drop to zero when K = 1, while for K = 2 or

K = 3 the PU can still sustain a non-zero throughput rP with rS = 0.5. This can

be explained as follows. For u = 0.5 and K = 1 (λ = 0.5), the busy/idle states

of the PU spectrum form an i.i.d. sequence and hence the spectrum cannot be

predicted at the SU. For this case, three possible transmission strategies at the SU

are as follows. The first strategy is to transmit in all slots irrespective of the PU

and this corresponds to rS = 1 − u = 0.5 and rP = 0 due to continuous collisions.

The second strategy is to trust its sensing outcome in each slot and this corresponds

to rS = (1 − u) (1− pF ) and rP = u (1− pM) and is given by the breaking point

on the curve of K = 1. The third strategy is to remain silent at all slots and

corresponds rP = u = 0.5 and rS = 0. By time sharing between the first and second

strategies or between the second and third strategies, the points on the linear parts

on the curve of K = 1 in Fig. 6.7 and 6.8 can be achieved. On the other hand,

increasing K to 2 or 3 introduces more correlation (hence more memory) to the

PU states and hence the Markov chain becomes more amenable to be tracked at
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the SU facing the sensing errors. For the SU to achieve the maximum throughput

rS = 1 − u, it can keep transmitting until receiving a collision. Then, it remains

silent for the following K−1 slots since the PU will be busy in these slots and hence

SU packets, if transmitted, would be lost by collisions. This corresponds to PU

throughput rP =
(
K−1
K

)
u. This strategy converges to the optimal throughput pair

(rP = u, rS = 1− u) as K → ∞. For rS < 1− u, this same strategy is used at the

SU while also remaining silent over more slots based on the tracking outcome. This

provides the PU with more collision-free slots leading to a higher value of rP and

justifies our earlier claim that the optimal policy guarantees at least K − 1 collision

free PU transmissions during each PU busy period.

Figure 6.9 shows how to choose the weight w defined in the reward function of

the POMDP formulation to provide some level of protection to the PU. For a given

target PU throughput, the corresponding weight w can be found from Fig. 6.9 and

this weight is used in computing the optimal access policy at the SU.

6.4.3 Tracking Phase - Single PU - Greedy Policy

Although it is possible to find the optimal policy for the POMDP as in Section

6.4.2, this requires high complexity and is not generally feasible for real time pro-

cessing or for energy limited nodes. In this part, we discuss the suboptimal greedy

policy and show that its performance is close to that achieved by the POMDP with

much less complexity.

The greedy policy aims at finding the action that maximizes the expected immediate
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reward in a slot without taking into account the effect of that action on the future

reward. Hence, from Eq. (6.18), the greedy policy can be found to be:

AGreedy
t =


0, if Λt(0) ≤ wrP,1

wrP,1+(1−w)rS,1
,

1, otherwise.

(6.19)

Clearly, the greedy policy is a threshold policy on the probability that the PU is

idle Λt(0), which is easy to implement. Figure 6.10 shows the performance of the

greedy policy for various values of K.
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0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PU throughput (r
P
) (packets/slot)

S
U

 th
ro

ug
hp

ut
 (

r S
) 

(p
ac

ke
ts

/s
lo

t)

 

 

Block size (K) = 1
Block size (K) = 2   
Block size (K) = 3
Block size (K) = 4
Block size (K) = 5
Block size (K) = 6
Block size (K) = 10

Figure 6.10: Throughput performance of

the greedy policy.

6.4.4 Tracking Phase - Multiple PUs

In this section, we generalize the model to the case of multiple primary channels

that evolve independently. At the beginning of every slot, the SU chooses a channel

to sense and possibly access depending on the sensing outcome. Unlike the case of a

single PU where the PU was protected by choosing the weight w to guarantee some

PU throughput, in this case, the PUs are protected by guaranteeing a maximum
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collision probability p
(i)
C to the ith PU, i ∈ M = {1, 2, ...,M}. As in [34], this can be

achieved by choosing a spectrum sensor operating point at the SU with misdetection

probability pM = mini{p(i)C }. The SU then transmits with rate rS,1 only if the channel

is sensed to be idle. In general, this choice of sensor operating point is a conservative

choice since the ith PU will experience an effective collision probability less than

p
(i)
C , and hence achieves a throughput that is larger than ui(1 − p

(i)
C ), where ui is

the channel utilization of the ith PU. At the end of each slot, the belief is updated

given the sensing outcome and possible SU receiver feedback (ACK/NACK). At

the beginning of the following slot, the SU chooses a channel to sense, then the

Markov chains of the PUs make a transition, and then the sensing outcome of the

chosen channel becomes available to the SU. If the channel is sensed as idle, the

SU transmits while it remains silent if it is sensed to be busy. If the SU transmits,

it receives a feedback (ACK/NACK) from its receiver. The belief is then updated

based on the observations and the cycle repeats. Clearly, three possible observations

are possible at the end of a slot based on which the belief is updated: (Busy), (Idle,

ACK) and (Idle, NACK). We assume coordination between the SU-TX and SU-

RX where in each slot the SU-TX informs the SU-RX of the channel it chooses to

sense through a dedicated control channel. For ease of exposition, we subsequently

assume symmetric system where all the PU Markov chains are identical (evolving

independently as in Fig. 6.2 with same λ) and the collision constraint is the same

for all i (equal to pC). The asymmetric case can be similarly handled.

Let X i
t be the true state of the ith PU channel in slot t, and M = {1, 2, ...,M} be

the set of PUs in the system. The action taken by the SU at the beginning of slot
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t is At ∈ M, where At = i means that the SU chooses to sense the ith channel for

possible opportunistic access. We proceed to define the parameters of the POMDP

formulation.

6.4.4.1 Belief Vector

Let Λ
(i)
t , with i ∈ M, be the belief vector of the state of the ith PU’s channel

at the end of slot t, where Λ
(i)
t (m) is the probability that the ith PU’s Markov chain

is in state m at the end of slot t given all the previous actions and observations,

where m ∈ {0, 1, ..., K}. Also define Λt =
[
Λ

(1)
t ;Λ

(2)
t ; ...;Λ

(M)
t

]
.

6.4.4.2 Observations

Under action At = j, the three possible observations on the jth channel are

(Busy), (Idle, ACK) and (Idle, NACK).

Pr [Busy|Λt]=
[
Λ

(j)
t (0)+Λ

(j)
t (K)

]
[λ(1− pM) + (1− λ)pF ]+ (1− pM)

[
K−1∑
m=1

Λ
(j)
t (m)

]
,

(6.20)

Pr [(Idle,ACK)|Λt] =
[
Λ

(j)
t (0) +Λ

(j)
t (K)

]
(1− λ)(1− pF ), (6.21)

Pr [(Idle,NACK)|Λt] = pM

[
K−1∑
m=1

Λ
(j)
t (m) + λΛ

(j)
t (0) + λΛ

(j)
t (K)

]
. (6.22)
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6.4.4.3 Belief Update

Under action At = j, the belief is updated as follows:

For r ̸= j:

Λ
(r)
t+1(0) = (1− λ)

[
Λ

(r)
t (0) +Λ

(r)
t (K)

]
, (6.23)

Λ
(r)
t+1(1) = λ

[
Λ

(r)
t (0) +Λ

(r)
t (K)

]
, (6.24)

Λ
(r)
t+1(m) = Λ

(r)
t (m− 1),m = 2, 3, ..., K. (6.25)

For r = j:

• Under observation O(At) = Busy, the belief is updated according to

Λ
(r)
t+1(m) =

[pF1[m = 0] + (1− pM)1[m ̸= 0]] Γm∑K
m=0 [pF1[m = 0] + (1− pM)1[m ̸= 0]] Γm

, (6.26)

where Γm is as given by Eq. (6.9).

• Under observation O(At) = (Idle,ACK), the belief is updated according to

Λ
(r)
t+1(m) = 1[m = 0]. (6.27)

• Under observation O(At) = (Idle,NACK), the belief is updated according to

Λ
(r)
t+1(m) =

1[m ̸= 0]Γm∑K
m=1 1[m ̸= 0]Γm

. (6.28)

In this case, the belief vector is of dimension M(K + 1)× 1. Obtaining the optimal

POMDP solution is computationally prohibitive. We proceed by comparing the

optimal solution for K = 1 with the greedy solutions for K > 1 and show that

using the suboptimal greedy policy ensures gains with larger K compared with the

optimal solution for K = 1.
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6.4.4.4 Reward

Assuming a collision channel, the SU collects a reward of rS,1 only if the

chosen channel is idle and sensed to be idle (no false alarm). The reward under

action At = j ∈ M is given by

R
(
X

(1)
t , X

(2)
t , ..., X

(M)
t , At = j

)
=


rS,1, if X

(j)
t = 0, no false alarm

0, otherwise.

, (6.29)

The expected immediate reward under action At = j is given by

Rj (Λt) = rS,1(1− λ)(1− pF )
(
Λ

(j)
t (0) +Λ

(j)
t (K)

)
(6.30)

6.4.4.5 Greedy Policy

Choose channel s to sense, where

s = argmax
q∈M

[
Λ

(q)
t (0) +Λ

(q)
t (K)

]
(1− λ)(1− pF )rS,1 (6.31)

In the numerical results, we consider the case with M = 3. All the other

parameter values are as before, and the channel utilization is fixed to u = 0.5

for each of the three PUs. By the symmetry of the system, it is clear that the PUs

achieve equal throughputs. From Fig. 6.11 and Fig. 6.12, we can see that the greedy

policy achieves throughput gain for K > 1 for both the SU and the PU compared

with the optimal solution for K = 1. This is due to the more predictability of the

PU channels for higher K.
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Figure 6.11: SU throughput vs. target

collision probability, M = 3 PUs.
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Figure 6.12: PU throughput vs. target

collision probability, M = 3 PUs.

6.5 Sensing network-coded spectrum with real radio measurements

Next, we validate our spectrum sensing results with actual radio measure-

ments. In the hardware experiments, wireless tests are executed in the 2.462 GHz

channel with 10dBm transmission power and 256 Kbps rate. We use two config-

urable RF front-ends (RouterStation Pro from Ubiquiti) as the PU transmitter and

receiver. The PU transmitter sends packets over the air to the PU receiver according

to the Markov chain in Fig. 6.2. We use USRP N210 as the software-defined-radio

platform that acts as the SU that detects the idle slots of the PU in a synchronous

slotted system. Although the Gaussian power profiles used through the chapter is

commonly used since it occurs in narrowband channels with Rayleigh fading, we

aim in this part at testing our proposed algorithms on real spectrum power profile

obtained via measurements. In fact, it has been observed that in the indoor exper-

iment setup, and for the devices used, the signal profile is not Gaussian. However,

161



it has been shown that even for the real measurements, a larger block size K is

beneficial for both the PU and the SU.

For the throughput maximization problem, the SU receives physical RF signals and

runs an energy detector implemented on the GNU Radio, and passes the channel

sensing results to the tracking algorithm. In these testbed experiments, the dis-

tribution of the measured power at the SU transmitter does not match Gaussian

characteristics and hence the energy threshold values τ (Eq. (6.2)) previously used

in simulations, based on Gaussian assumptions, cannot be directly used. In Fig.

6.13, we plot the empirical misdetection probability pM obtained by applying en-

ergy detector with n = 10 sensing samples to the measured data as a function of

the corresponding threshold. For a given target misdetection probability pM , the

SU can choose the energy threshold accordingly.
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Figure 6.13: Misdetection probability pM vs.

the energy threshold for the experiment data.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability (p
F
)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
1−

p M
)

 

 

n = 5 samples
n = 10 samples
n = 30 samples
n = 50 samples
n = 70 samples

Figure 6.14: ROC curves for the real radio exper-

iment measurements.

Figure 6.14 shows the relationship between the detection probability and the

false alarm probability for different numbers of sensing samples n. In testbed exper-
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iments, the noise variance was measured to be σ2 = −68.7887 dBm and the average

received power is −68.2286 dBm leading to an SNR= 0.561 dB. From Fig. 6.13, we

can see that for n = 10 sensing samples per slot and target misdetection probability

pM = 0.2, the corresponding energy threshold τ is 1.285 × 10−7. The correspond-

ing false alarm probability is pF = 0.4905, which is obtained from Fig. 6.14. We

only observe the spectrum predictability gain since we fix the channel utilization to

u = 0.5.
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Figure 6.15: Estimated parameter λ̂ vs. N

under real measurements.
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Figure 6.16: Throughput of the POMDP

optimal policy under real measurements.

Figure 6.15 shows the performance of the Baum-Welch algorithm when applied

to the measured data. We see that although a higher K leads to a better estimate

for the same number of observed slots, none of the estimated values exactly matches

the true value of λ after 400 slots. However, for practical purposes, 150 observation

slots lead to a fairly accurate estimate. Figure 6.16 shows the performance of the

POMDP optimal policy with measured data. It is clear that as K increases, for the

same rP , the SU can achieve higher throughput rS due to the spectrum predictability
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gain and this supports the use of network coding for better throughput performance

of both PU and SU.

6.6 Summary and Conclusions

We showed how the SU can leverage the structure of the idle/busy periods

on the PU spectrum with network-coded transmissions. We considered perfect PU

channels without any spectrum availability gain due to network coding, but even

in this case the SU can largely benefit from improved spectrum predictability due

to the structure induced by network coding on the PUs’ channels. We applied

the CUSUM and Viterbi algorithms for the SU to minimize the time to detect

an idle slot. Although a larger coding block size leads to better predictability of

the PU channel state, the long busy periods involved in block transmission may

limit the performance gain depending on the desired level of PU protection. When

the SU’s objective is to maximize the throughput, the problem is formulated as a

POMDP for tracking the PUs’ spectrum state evolution. We first considered the

optimal POMDP policy in the case of a single PU channel and then considered the

suboptimal low-complexity greedy policy. It was shown that increasing the coding

block size is always beneficial for the SU throughput. Similar conclusions were shown

for the case of multiple PUs where we showed that the greedy policy with block sizes

K ≥ 2 outperforms the optimal policy with K = 1, i.e., with no network-coding.

Finally, we verified these results with real radio measurements obtained by actual

radio transmissions over the air.
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Chapter 7: Conclusions

In this dissertation, we studied cognitive wireless networks from a cross-layer

(PHY/MAC) perspective. We showed that by accounting for the interactions be-

tween the layers, significant performance enhancements can be achieved. We studied

both cases of unicasting and multicasting networks. Modern transmission techniques

such as cooperative communications and network coding have been investigated in

cognitive environments.

We first considered a random access system where the nodes adjust their MAC

layer access probabilities according to their decentralized channel state information

(CSI) obtained at the PHY layer (transmission control). From a stable through-

put point of view, for a collision channel, it was shown that if the channels tend

to be in the bad states, then random access with transmission control outperforms

orthogonal access since the decentralized CSI allows the users to avoid transmission

when their channels are bad and hence reducing contention between the users. By

further enhancement of the PHY layer by using sophisticated receivers with MPR

capability, this restriction is alleviated and random access with transmission control

always outperforms orthogonal access. In the latter case, the optimal transmission

policy at the users is to transmit whenever backlogged. We then studied the effect
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of such cross-layer approach on the average delay performance for the case of statis-

tically symmetric users and channels over a collision channel. It was shown that for

the same average arrival rates to the users, transmission control leads to a smaller

average delay compared to the case with no transmission control. Hence, although

acquiring channel state information for time varying channels requires more com-

plexity, it renders the distributed random access protocol better than orthogonal

access.

Next, we studied a cognitive wireless network where a set of secondary users

(SUs) opportunistically accesses the spectrum licensed to a primary user (PU). We

showed that unavoidable sensing errors at the PHY layer can lead to detrimental

effects on the stable throughput of the PU due to the interference involved. In

order to mitigate such negative effects, we proposed a cross-layer cooperative scheme

between the SUs and the PU, where all the SUs that were able to decode a PU’s

unsuccessful packet collaboratively forward that packet in the next idle slots using

distributed orthogonal space-time block code. It was shown that this protocol has

the property that the gain in PU throughput by relaying increases as the number of

SUs with whom the PU shares the spectrum increases. Furthermore, it was shown

that the SUs can also benefit from relaying. The PU benefits by having spatial

diversity to his transmissions, while the SUs benefit by helping the PU to empty

his queue and hence having access to a higher fraction of idle slots. Hence, relaying

can be an incentive for the PUs to share their resources with more SUs leading to

an overall increase in the spectral efficiency, as targeted in cognitive networks.

Motivated by the observation that schemes based on sensing are conservative
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since they waste the transmission opportunities when the primary transmitter is

busy while the channel between the secondary transmitter and primary receiver

(cross-channel) is in deep fade, we proposed and analyzed several access schemes

that exploit the knowledge of the cross channel statistics for maximizing the SU

stable throughput subject to some protection metric to the PU. In particular, we

compared between a scheme with no sensing where the sensing duration is exploited

for data transmission and a scheme where the secondary user senses the channel and

randomizes his transmissions at all slots. We showed that if the PU and SU receivers

cannot successfully decode transmissions in presence of interference, then the scheme

with sensing is preferred; while if the receivers can handle the interference, then no

sensing is better as it provides the SU with more data transmission duration and

hence more throughput. This means that using sophisticated receivers that can

handle transmissions in presence of interference alleviates the need for complex SU

transmitters with high sensing performance. This is preferred for instance if the SU

destination is an eNodeB capable of handling high complexity.

We then turned our attention to the case of multicasting networks where net-

work coding comes naturally into the picture. We first explored the problem of

relay assisted multicasting. The relay is a cognitive node that assists the source in

multicasting its traffic only whenever the source is idle and hence, avoiding allocat-

ing any explicit resources to the relay. The relay is also capable of using network

coding on the packets he has in queue. It was shown that if the channel from the

relay to the destinations is better on average than the channel between the source

and the destinations, then cognitive relaying is beneficial. Furthermore, network
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coding at the relay can lead to further enhancements as the number of destina-

tions gets larger. Hence, at the expense of complexity due to network coding and

adding a relay node, significant throughput gains can be achieved. This can be ap-

plied, for instance, to downlink broadcast channels such as the Multicast-broadcast

single-frequency network (MBSFN) in the 4G-LTE systems.

Finally, we studied how an SU can leverage the shaping effects of network cod-

ing when applied to a PU spectrum. We first studied these effects in two different

objectives: (i) quickest detection of an idle slot and (ii) throughput maximization.

For quickest detection, it was shown that network coding is not necessary benefi-

cial from a quickest detection perspective since it might take the PU’s spectrum a

longtime to switch to the idle state. We studied both cases of unknown spectrum

dynamics at the SU using the CUSUM algorithm and the known spectrum dynam-

ics using Viterbi algorithm. For throughput maximization, it was shown that the

structure induced on the PU spectrum facilitates learning the spectrum dynamics

at the SU. Furthermore, the shaping effects lead to better tracking of the PU spec-

trum dynamics by exploiting the side information about the PU spectrum dynamics

for mitigating the sensing errors at the PHY layer. Our analytical and simulation

results are supported by real-time signal measurements in an SDR testbed. The

conclusion of that part is that using network coding at the PU not only possibly

leads to a higher PU throughput but also, if properly exploited at an SU, leads to

higher SU throughput. This highlights the importance of using network coding in

practical multicasting systems.
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