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There are a variety of circumstances in which large numbers of people gather and 

must disperse. These include, for example, carnivals, parades, and other situations 

involving entrance to or exit from complex buildings, sport stadiums, commercial 

malls, and other type of facilities. Under these situations, people move on foot, 

commonly, in groups. Other circumstances related to large crowds involve high 

volumes of people waiting at transportation stations, airports, and other types of high 

traffic generation points. In these cases, a myriad of people need to be transported by 

bus, train, or other vehicles. The phenomenon of moving in groups also arises in these 

vehicular traffic scenarios. For example, groups may travel together by carpooling or 

ridesharing as a cost-saving measure. The movement of significant numbers of people 

by automobile also occurs in emergency situations, such as transporting large 

numbers of carless and mobility-impaired persons from the impacted area to shelters 

during evacuation of an urban area. 



  

This dissertation addresses four optimization problems on the design of 

facilities and/or operations to support efficient movement of large numbers of people 

who travel in groups. A variety of modeling approaches, including bi-level and 

nonlinear programming are applied to formulate the identified problems. These 

formulations capture the complexity and diverse characteristics that arise from, for 

example, grouping behavior, interactions in decisions by the system and its users, 

inconvenience constraints for passengers, and interdependence of strategic and 

operational decisions. These models aim to provide: (1) estimates of how individuals 

and groups distribute themselves over the network in crowd situations; (2) an optimal 

configuration of the physical layout to support large crowd movement; (3) an efficient 

fleet resource management tool for ridesharing services; and (4) tools for effective 

regional disaster planning. A variety of solution algorithms, including a meta-

heuristic scheme seeking a pure-strategy Nash equilibrium, a multi-start tabu search 

with sequential quadratic programming procedure, and constraint programming based 

column generation are developed to solve the formulated problems. All developed 

models and solution methodologies were employed on real-world or carefully created 

fictitious examples to demonstrate their effectiveness.  
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Chapter 1  Introduction 

1.1  Introduction and Motivation  

There are a variety of circumstances in which large numbers of people gather and 

must disperse. These include, for example, carnivals, parades, shopping centers or 

markets, inaugurations, rock concerts, football games, and other situations involving 

entrance to or exit from complex buildings, sport stadiums, commercial malls, and 

other type of facilities. Under these situations, people move on foot and en masse. 

Within the crowds, there are groups of people who wish to travel together. For 

example, family members walk beside each other. Friends or colleagues tend to stay 

together and maintain communication with each other while walking.  

Other circumstances related to large crowds involve high volumes of people 

waiting at transportation stations, airports, docks and other types of high traffic 

generation points. In these cases, a myriad of people need to be transported by bus, 

train, van, ship or other vehicles. The phenomenon of moving in groups also arises in 

these vehicular traffic scenarios. For example, a family will travel within the same 

vehicle or larger groups will travel in a bus. In other cases, groups may travel together 

by carpooling or ridesharing as a cost-saving measure.  

The movement of significant numbers of people by automobile also occurs in 

evacuating an urban region due to natural or human-made disaster events, like 

flooding, hurricanes, and industrial or nuclear accidents. To reduce the adverse 

consequences of these disasters on humans, evacuating a large region by automobile, 

which is the most commonly available evacuation mode, is often the most viable 

response action for protecting the affected people. However, urban areas often 
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involve large volumes of carless evacuees and a significant portion of them are 

mobility-impaired. Many of  these carless people require transport from the impacted 

area to safe places, including shelters. The evacuation planning consists of two 

components. First, decide the locations of shelters and assign people the shelters 

(facility design), and second, dispatch available public transit vehicles transport them 

to the shelters (operation design).  

Optimal design of facilities or facility locations and operations that support 

the movement of large numbers of people are critical to public safety and efficiency. 

In addition to the numerous disasters associated with crowding due to poor crowd and 

evacuation management, efficient control and guidance of the movement of large 

numbers of people can provide crucial support toward meeting ingress, egress and 

safety goals. Furthermore, optimal design of efficient and low-cost ridesharing or 

other mechanisms for moving individuals within a single vehicle can alleviate 

congestion on the roadways. In emergency situations, optimal design of shelter 

locations and operations for evacuating large numbers of carless and mobility-

impaired persons are critical components of evacuation planning for a large urban 

area.  

Modeling and decision support for these crowd-related circumstances, 

however, can be difficult, and related optimization problems are likely intractable. 

This intractability is, in part, due to (1) existence of a complex physical environment 

with interdependent passageways, (2) assembly of large numbers of people with 

complicated, collective and heterogeneous behaviors, (3) interdependence and 

interaction between decisions from different people who play different roles in the 
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system (crowd manager vs. system users, operators vs. passengers), and (4) the large-

scale nature of the problem instances with significant demand for service within large 

geographic regions, particularly as it relates to traffic and emergency events.  

This dissertation will provide tools to support the efficient movement of large 

numbers of people under a variety of situations. Specifically, mathematical models of 

pedestrian movements in crowds are developed and optimization tools are proposed 

to control crowd movement and prevent disorder from breaking out. The movement 

of large numbers of people to and from transportation stations (specifically airports) 

through ridesharing services is addressed, supporting the movement of unrelated 

persons in single vehicles. Finally, optimal design of facilities (shelter location and 

allocation) and operations (routes and schedules of paratransit vehicles) in a large-

scale transit-based mass evacuation of an urban area is addressed. 

1.2 Specific Problems Addressed 

The problems addressed in this dissertation arise from diverse, yet increasing 

concerns in facility and/or operations design for efficient movement of large numbers 

of people. This section provides concise statements about each addressed problems. 

The detailed problem descriptions, mathematical formulations and solution 

approaches are given in Chapters 2 through 5. 

 

1.2.1 Pedestrian Route Choice in Crowds 

In large public gatherings, crowds are directed through passageways within the 

facilities. The physical layout of these passageways provides a set of route options 

from which pedestrians can choose for ingress or egress. A pedestrian’s preference 
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for an alternative route depends on the route’s utility and its utility depends both on 

its attributes and the pedestrian’s sensitivity to each such attribute type. In addition, 

some attributes, like travel speed, depend on the choices made by others who 

simultaneously seek passage along the same routes. Moreover, in the context of 

crowd movement, groups must make a concerted effort to move together and not be 

split apart. 

Network optimization-based modeling and solution frameworks are proposed 

for assessing pedestrian response to the physical layout of a venue’s ingress and 

egress routes during large public gatherings. The frameworks involve the modeling 

and solution of a pedestrian assignment problem. These approaches support the 

movement of both individuals and groups. A distinction is made between two broadly 

categorized group types: separable and clustered. The former can be, for example, a 

group of friends/colleagues who have a predilection for staying together, wherein 

each person within the group is free to make his or her own decision in response to 

the physical environment. The latter describes groups that will not be separated, such 

as parent and child. Such group decisions and movements are crucial to developing 

realistic models of pedestrian movement (Hamacher et al., 2011; Qiu and Hu, 2010). 

The effects of separable and clustered group movements on flow distributions 

through the physical layout are studied.  

Two methodologies are proposed to model these effects: a stochastic user 

equilibrium pedestrian assignment (SUE) approach to model separable groups and an 

n-player non-cooperative game seeking a pure-strategy Nash equilibrium to model 

clustered groups. A solution scheme that combines the method of successive averages 
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with group movements is proposed for solving the SUE assignment and a Best 

Response Dynamics-based Tabu Search procedure is proposed for obtaining a pure 

strategy Nash equilibrium for clustered groups. 

Details of model formulations, solution approaches, as well as results of 

numerical experiments conducted to demonstrate the effectiveness of the proposed 

methodologies and investigate the impact of groups on flow efficiency, are provided 

in Chapter 2. 

 

1.2.2 Crowd Management in Large Public Gatherings 

Effective crowd management during large public gatherings is necessary to enable 

pedestrians to have access to and from the venue and to ensure their safety. A number 

of previous studies focus on determining optimal routes for the movement of 

pedestrians through a given physical layout. An alternative management strategy 

might be to reconfigure the physical layout to facilitate pedestrian movement in 

pursuit of a particular goal. Such redesign can both limit pedestrian choice and 

enhance or restrict capacity along routes to facilitate efficient movement and prevent 

crowd crush or other unsafe situations. Changes to the physical layout might be 

achieved through opening or closing gates/doorways, placing or removing barriers or 

changing illumination intensity to coerce pedestrians along certain paths. No prior 

work has suggested such an approach in the context of crowd movement. 

In this dissertation, the problem of reconfiguring the physical layout of the 

facility to support efficient crowd movement, conceptualized as Redesign for 

Efficient Crowd Movement (RECM), is formulated as a bi-level integer program. The 
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upper-level seeks a reconfiguration of the physical layout that will minimize total 

travel time incurred by system users (e.g. evacuees) given utility maximizing route 

decisions that are taken by individuals in response to physical offerings in terms of 

infrastructure at the lower-level. The lower-level formulation seeks a pure-strategy 

Nash equilibrium that fills in grouping behavior in crowds. A Multi-start Tabu Search 

with Sequential Quadratic Programming procedure is proposed for solutions of the bi-

level Mixed Integer Program. This procedure guarantees a locally optimal solution to 

this nonlinear program.  

The details of formulation, numerical experiments on a hypothetical network 

conducted to illustrate the proposed solution methodology and the insights it provides 

are given in Chapter 3. 

 

1.2.3 Optimizing Ridesharing Services for Airport Access  

Airports often have large numbers of departure and arrival passengers that can cause 

congestion on roadways, environmental pollution, and greater difficulty accessing the 

facility. Like traditional public transit, ridesharing can serve more than one passenger 

with one vehicle. Thus, it can aid in limiting the volume of traffic, thereby reducing 

congestion and mitigating environmental impact. Moreover, ridesharing can provide 

higher quality of service than traditional public transit through flexible routes and 

schedules as well as door to door pick-ups and drop-offs. Furthermore, reduced total 

passenger-miles traveled resulting from ridesharing and efficiently designed routes 

can increase profitability of the service provider and aid in diminishing traffic 

congestion along with its negative externalities, including environmental pollution.  
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The Airport Access Ridesharing Problem (AARP) is conceptualized in this 

dissertation. TheAARP seeks to determine a set of routes and schedules that meet 

service quality, resource, labor and vehicle capacity constraints while minimizing 

total cost in terms of vehicular use and total wages in the context of airport 

ridesharing services. The AARP is formulated as a nonlinear, mixed integer program. 

An exact solution approach applying constraint programming within a column 

generation framework, as well as adaptations of two existing heuristics, are proposed 

for its solution. Implementations of the mathematical program and proposed solution 

approaches for three different operational policies are also presented.  

The details of formulation, proposed solution approaches and numerical 

experiments on a real-world case study involving service records for one service day 

of Supreme Airport Shuttle, Inc. out of Washington Dulles International Airport are 

given in Chapter 4. 

 

1.2.4 Facility and Operations Design for Mass Evacuation Planning 

This dissertation addresses the problem of providing safe locations for mobility-

impaired persons in an evacuation and the transportation for these persons from their 

homes to such facilities. To state and local governments, important issues for 

facilities and operations in an mass evacuation planning associated with mobility-

impaired population include: (1) how many and where shelters should be opened to 

this population, (2) to which shelter each mobility-impaired evacuee should be 

assigned, and (3) how to optimally dispatch and route paratransit vehicles to serve 
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this population. No prior analytical models have been proposed in the literature to 

help the government with decision-making on these critical issues. 

To fill this gap, the Sheltering and Paratransit Evacuation Problem (SPEP) is 

studied. The SPEP is formulated as a mixed integer program. The problem consists of 

two interdependent and integrated subproblems: 1) Capacitated Shelter Location-

Allocation Problem (CSLAP) and 2) Multi-depot Pickup and Delivery Problem 

(MPDP). To solve a large-scale instance of the SPEP, a tabu search metaheuristic is 

proposed.  

Details of the problem conceptualization and formulation, as well as the 

proposed tabu search algorithm and numerical experiments on a real-world case study 

involving hurricane evacuation planning for New York City, are given in Chapter 5. 

 

1.3 Contributions 

Address vital aspects in the design of facilities and operations to support the 

movement of large numbers of people. This dissertation seeks to provide tools that 

can be used for: (1) Estimating the distribution of groups and individuals over the 

physical layout network, considering that people move in groups. (2) Redesigning the 

physical layout to facilitate crowd movement in pursuit of a particular goal, 

considering both goals of the system and the users. (3) Optimally and efficiently 

matching passengers to vehicles, and routing and scheduling their trips for an airport 

ridesharing service operation system. (4) Optimally locating and assigning shelters 

and optimally routing and scheduling available paratransit vehicles to support 

mobility-impaired populations in a large-scale regional evacuation. 
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Develop optimization models for these identified problems. Mathematical models are 

proposed and optimization problems are formulated. These models capture the 

complexity and diverse characteristics that arise from, for example, grouping 

behavior, interactions in decisions by the system and its users, inconvenience 

constraints for passengers, and interdependence of strategic and operational decisions. 

A variety of modeling approaches, including bi-level and nonlinear programming are 

applied to formulate the identified problems. These models aim to provide: (1) 

estimates of how individuals and groups distribute themselves over the network in 

crowd situations; (2) an optimal configuration of the physical layout to support large 

crowd movement; (3) an efficient fleet resource management tool for ridesharing 

services; and (4) tools for effective regional disaster planning. 

Provide conceptual framework and specific methodological procedures for solution 

of identified optimization problems. A variety of solution algorithms, including a 

meta-heuristic scheme seeking a pure-strategy Nash equilibrium, a multi-start tabu 

search with sequential quadratic programming procedure, and constraint 

programming based column generation are developed to solve the formulated 

problems. All developed models and solution methodologies were employed on real-

world or carefully created fictitious examples to demonstrate their effectiveness. 

1.4 Dissertation organization 

The remainder of this dissertation is organized into five chapters. Chapter 2 presents 

the modeling and solution frameworks of pedestrian route choice in crowds, while 

Chapters 3 through 5 address the RECM, AARP and SPEP, respectively. Finally, 

conclusions and extensions for future research are given in Chapter 6.  
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Chapter 2  Pedestrian Route Choice in Crowds  

2.1  Introduction 

Large gatherings of people arise for a variety of purposes and may be held in a 

myriad of venues, including for example, complex buildings, transportation stations, 

sports stadiums, commercial malls, and other type of facilities. In such gatherings, 

crowds are directed through passageways within the facilities. The physical layout of 

these passageways provides a set of route options from which pedestrians can choose 

for ingress or egress. The speed with which a pedestrian will move through the 

passageway depends on its physical capacity, the person’s physical well-being, and 

the number of other pedestrians utilizing it at the same time. The time for ingress or 

egress to or from the event depends on the series of choices the pedestrian makes in 

navigating the physical layout and competition with other pedestrians for passageway 

capacities. A pedestrian’s preference for an alternative route depends on the route’s 

utility and its utility depends both on its attributes and the pedestrian’s sensitivity to 

each such attribute type. Moreover, some attributes, like travel speed, are affected by 

the choices made by competing system users. The selection of a route is assumed to 

be rational, meaning that the pedestrian will choose the route with the maximum 

utility based on his/her preference function. The overall problem of estimating which 

routes all travelers will take is known as a traffic assignment problem, and is referred 

to as a Pedestrian Route Choice in Crowds (PRCC) problem in this context.  

The concept of route choice in vehicular traffic flow is well developed. 

Pedestrians, however, have more degrees of freedom in movement and often move en 

masse, or in groups. Such groups arise in vehicular traffic scenarios, but these groups 
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are typically housed within a single vehicle. For example, a family will travel within 

the same car or larger groups will travel in a bus. These groups, thus, will never be 

faced with the possibility of being split apart. Others who seek to access the venue 

together but in different vehicles will often need to be willing to meet at the 

destination. In the context of pedestrian movement, however, groups must make a 

concerted effort to move together and not be split apart. For example, parents will not 

wish to be separated from their children. Thus, while each person within the family is 

an individual (i.e. a unit of flow) and is free to make his or her own decisions in 

response to directives from crowd managers or the physical layout, any effective 

crowd management plan must facilitate the movement of all members of the family as 

a group. That is, the group must be permitted to stay together and accommodations 

must be made to support this group movement. In this chapter, a distinction is made 

between two broadly categorized group types: separable and clustered (Aveni, 1977). 

The former can be, for example, a group of friends/colleagues who have a 

predilection for staying together, but each person within the group is free to make his 

or her own decision in response to the physical environment. It is likely but not 

guaranteed that individuals in this group type will travel together. The latter describes 

groups that will not be separated, such as parent and child. Such group decisions and 

movements are crucial to developing realistic models of pedestrian movement 

(Hamacher et al., 2011; Qiu and Hu, 2010). 

This chapter describes a network optimization-based modeling and solution 

framework for estimating pedestrian flows within a network representation of a 

physical environment. Movements by individuals and groups must be captured in the 
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flows produced by this method. That is, the framework involves the modeling and 

solution of a pedestrian assignment problem.  

Before proceeding to descriptions of these two modeling approaches, traffic 

assignment problem is briefly reviewed, followed by general introduction to utility 

maximization concepts in the context of route choice. 

2.2  Traffic Assignment Problem  

Assignment problems for vehicular traffic have received enormous attention in the 

literature. The majority of traffic assignment models seek user equilibrium (UE) 

solutions, where no traveler can select an alternative path with higher utility by 

unilaterally switching routes (Sheffi, 1985). Deterministic user equilibrium (DUE) 

and stochastic user equilibrium (SUE) models are two common UE approaches. DUE 

assumes that travelers have perfect information on the performance of all alternative 

routes when choosing a route. SUE, on the other hand, presumes that each user makes 

his/her selection of a route based on perceived features of the alternatives. It is 

generally accepted that SUE approaches provide more realistic predictions of traveler 

route choice behavior (Chen and Alfa, 1991). Both modeling approaches assume that 

travelers are homogenous in terms of their preference functions. And both assign 

travelers to paths probabilistically, with higher likelihood of choosing a path with 

higher utility. That is, the frequency of path use can be set by the probability of its 

selection.  

An alternative approach might be to employ a Nash equilibrium based 

methodology. Both pure- and mixed-strategy Nash equilibriums have been considered 

in the context of vehicular traffic assignment (Rosenthal, 1973a, b). In (Rosenthal, 
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1973a, b), players have their own preference functions. Formulations seeking such 

equilibriums involve concepts of non-cooperative games. In these prior works, group 

behavior is not considered and, therefore, the developed models and algorithms for 

traffic assignment cannot be applied directly in the movement of pedestrians where 

group behavior must be considered. One reason for this is that the marginal impact of 

the decision of one flow unit in pedestrian assignment where group behavior is 

modeled must account for the impact of group size.  

Several works in the context of vehicular traffic take the heterogeneity of 

users into consideration. For example, the assignment problem for multiclass user 

traffic networks is considered in (Huang and Li, 2007; Nagurney, 2000). In this 

multiclass user equilibrium problem, each class of travelers (e.g. trucks, buses, 

passenger cars) has an individual preference function and each class makes decisions 

based on path utilities derived from this function. Travelers are assigned to paths 

probabilistically, as in DUE and SUE methods, again with higher likelihood of 

choosing a route with higher utility. Users in the same class will have the same 

probability of selecting route alternatives. Thus, the multiclass user equilibrium 

assignment method does not guarantee that members in the same class will make the 

same decisions.  

While there is a significant body of work existing in the vehicular traffic 

assignment area, these works cannot be directly extended for use in modeling 

clustering (or group) behavior as is required for many pedestrian traffic assignment 

contexts. On the contrary, within the literature on pedestrian modeling, numerous 

works consider group behavior. The majority use simulation and often involve a 
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leader and set of followers (e.g. (Qiu and Hu, 2010)). In an alternative network flow-

based approach, Hamacher et al. (2011) incorporate group movements in solving a 

dynamic quickest cluster flow problem. However, travel times are not flow-dependent 

and thus competition among travelers for limited capacity is not considered. 

In this chapter, the effects of separable and clustered group movements on 

flow distributions through the physical layout are studied. Two methodologies are 

proposed to model these effects: an SUE pedestrian assignment approach to model 

separable groups and an n-player non-cooperative game seeking a pure-strategy Nash 

equilibrium to model clustered groups. In terms of separable groups, all group 

members are assumed to have identical (homogenous) preference functions, but as 

mentioned previously, they behave independently. In terms of clustered groups, all 

members of the same group make the same route decision. Note that the SUE 

pedestrian assignment problem used to model separable groups can be reformulated 

as a game in which a mixed-strategy Nash equilibrium is sought (Devarajan, 1981). 

In this game, each player represents a single pedestrian.  The solution produces the 

probability that each player chooses each strategy (i.e. route), producing the fraction 

of total flow distributed over the network. Numerical experiments were conducted to 

demonstrate the impact of pedestrian route choice under both separable and clustered 

group situations on movement efficiency within the venue’s physical layout.  

2.3 Utility Maximization in Route Choice 

Route choice, sometimes referred to as wayfinding, involves choosing an option from 

a finite set of alternative routes for given origin-destination (O-D) pairs. The concept 

of route choice in vehicular traffic is well developed (Bovy and Stern, 1990). Utility 
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maximization-based discrete choice models are widely used to model route decisions 

by drivers. The basic assumption underlying this model is that a traveler’s preference 

for each alternative route can be described by a utility (or disutility) that is a function 

of the attributes of the alternative routes and sensitivity parameters of the traveler to 

these attributes (Sheffi, 1985). The traveler is assumed to choose the route with 

maximum utility (or minimum disutility).  

In the context of pedestrians, a number of works consider pedestrian route 

choice behavior (Al-Gadhi, 1996; Antonini et al., 2006; Bierlaire and Robin, 2009; 

Hoogendoorn and Bovy, 2004a; Løvås, 1998). A couple of these works employ utility 

maximization-based choice models (Antonini et al., 2006; Bierlaire and Robin, 2009; 

Hoogendoorn and Bovy, 2004a). Pedestrians are very sensitive to route characteristics 

that are related to physical effort, such as walking distance, walking time and the 

exertion involved in climbing stairs or ramps. As discussed in (Daamen et al., 2005; 

Seneviratne and Morrall, 1985), walking distance and time are the most important 

route attributes in pedestrian route choice. Furthermore, in discrete choice models, the 

independence of irrelevant alternatives property is assumed to hold. The concept of 

path size factor proposed in (Ben-Akiva and Bierlaire, 1999) is adopted herein to deal 

with overlap in alternative routes due to the sharing of arcs.  

In the next section, two types of utility functions that incorporate these 

elements (group size, travel distance, travel time and overlap) are proposed for 

separable and clustered groups. The pedestrian route choice problems involving 

separable and clustered groups are formulated as an SUE assignment problem and n-
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player non-cooperative game seeking a pure-strategy Nash equilibrium, respectively. 

Solution methodologies for obtaining flows for each problem class are also provided.  

2.4  Two Proposed Approaches to Determine Pedestrian Routes 

In this section, the pedestrian assignment problems involving separable and clustered 

groups are formulated as an SUE assignment problem and n-player non-cooperative 

game seeking a pure-strategy Nash equilibrium, respectively. Solution methodologies 

for obtaining flows for each problem class are also provided. 

2.4.1  Preliminaries 

The physical layout is represented by a network ( , )G N A , where N  is a set of 

nodes representing locations at which decisions can be taken, and A  is a set of 

directed arcs connecting the nodes. The arcs represent passageways along which 

movement is possible. Let ,O D N be the set of origins and destinations, respectively. 

Each arc a A  has an associated length al , capacity ac , and a nonnegative travel 

time ( , )a a at x c , which is a continuously differentiable and strictly increasing function 

of arc flow ax  and capacity ac . The BPR-based form (Branston, 1976) is adopted: 

0 2( , ) [1 ( ) ]       ,a
a a a a a

a

x
t x c t k a A

c
                                  (2-1) 

where ak  is a coefficient that scales the rate at which congestion increases with time, 

and 
0
at  denotes free-flow travel time. For free-flow speed av , 

0
at  

can be calculated as 

in equation (2-2). 

0 /       .a a at l v a A                                                      (2-2) 
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For specific O-D pair ,w W where W is the set of O-D pairs, there is a set of 

groups of pedestrians ( 1,..., )w wG g G  and set of routes connecting O-D pair w, 

( 1,..., )w wR r R . Let 
g
wS denote the size of group wg G  between pair w.  

Further, let ,  r r
w wf T and 

r
wL  denote the flow, travel time and distance on route 

wr R  for pair w, respectively. According to the route-arc incidence relationships, 

route travel time and distance on route r connecting pair w can be written as in 

equations (2-3) and (2-4), respectively. 

,         ,r r a
w a w w

a A

L l r R w W


                                        (2-3) 

,( ) ( )        ,r r r a
w w a a w w

a A

T f t x r R w W


     ,                             (2-4) 

where
,r a

w equals 1 if route r passes through arc a, and 0 otherwise.  

2.4.2  Pedestrian Assignment with Separable Groups  

An SUE-based assignment formulation in which separable groups can be modeled is 

given in program (P1). The skeleton of the formulation is from (Fisk, 1980). This 

formulation is expanded to address group movements. Thus, group assignment and 

group flow conservation are added as in (P1). 

(P1)                   1 0

1
min     ( ) ln

a

w

x r r
a w w

a A w W r R

Z u ( )d f f
θ

 
  

    
x

x                 (2-5) 

s.t.         
,                ,

w

g r g
w w w

r R

f S g G w W


                             (2-6) 

, ,               , ,

w

g g r r a
a w w w

r R

x f a A g G w W


                    (2-7) 
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w

g
a a

w W g G

x x a A
 

                                              (2-8) 

, 0         , , ,g r
w w wf g G r R w W                                       (2-9) 

where ( )au  is the disutility on arc a, 
,g r

wf  is the flow of group g on route r between 

O-D pair w, and 
g
ax  is the flow of group g on arc a. Objective function (2-5) seeks to 

minimize the perceived disutility subject to flow conservation constraints (2-6)-(2-8). 

Constraints (2-9) restrict path flows to be non-negative. Note that the objective 

function does not have any intuitive economic or behavioral interpretation. It is only a 

mathematical structure that is used to solve the SUE problem. 

Due to its closed form, a logit-based route choice model has been widely 

employed in computing SUE flows. In a logit-bsed route choice model, flows along 

the routes are proportionally assigned to routes according to their corresponding 

utility. The perceived disutility of route r to each individual in group g between O-D 

pair w is given in equation (2-10), 

, , ,     , , ,g r g g r g r
w w w w odU u g G r R w W                      (2-10) 

where 
,g r

wu  denotes the measured disutility of route r to each individual in group g 

between O-D pair w, g is positive scaling parameter indicating disutility perception 

variations between perceived disutility and real disutility (a higher g means a 

smaller variation), and 
,g r

w is a random term presenting the perception errors which 

are assumed to be independent Gumbel distributed with mean zero. 

At SUE equilibrium, the probability of group g choosing route r between pair 

w can be calculated as in equation (2-11): 
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,
,

,

exp( )
     , , .

exp( )

w

g g r
g r w
w w wg g k

w

k R

u
p g G r R w W

u






 
    

 
           (2-11) 

From conservation of flow constraints (2-6), flow associated with group g and 

assigned to route r between O-D pair w,
, ,g r

wf  can be deduced through equation (2-

12). 

, ,       , , .g r g g r
w w w w wf S p g G r R w W                              (2-12) 

Arc flows can be deduced from route flows through equations (2-7) and (2-8). 

From subsection 2.3, the measured disutility, 
, ,g r

wu  is further expressed as in 

equation (2-13). 

, ln( )    , , ,g r g g g
w r r r w wu L T PS g G r R w W                (2-13) 

where , ,g g g   are parameters of walking distance, walking time and path size 

factor of group g, respectively, and represents the preference (sensitivity) of group g 

to these attributes. rPS  is the path size factor of route r proposed by (Ben-Akiva and 

Bierlaire, 1999):  

1
,a

r
r aa r

l
PS

L N

                                                       (2-14) 

where a is index of an element arc of the route, and aN is the number of alternative 

routes that pass through arc a.  

Substituting equations (2-3) and (2-4) into equation (2-13), 

, , ,w wg G r R w W     leads to equation (2-15): 
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, ,

,

[ ( )] ln( )

      ( ) ln( ),

g r g g r a g
w a a a w r

a A

g r a g
a a w r

a A

u l t x PS

u x PS

   

 





   

  




                        (2-15) 

where ( )g
a au x denotes the disutility of group g on arc a, which is a function of arc 

flow, ax . Then the arc disutility ( )a au x in Equation (2-5) can be expressed by: 

( ) ( )              .

w

g g
a a a a

w W g G

u x u x a A
 

                               (2-16) 

2.4.3  Pedestrian Assignment with Clustered Groups  

For clustered groups, the disutility of each route r connecting O-D pair w to group g 

can be expressed as in equation (2-17). 

, ( , ) [ ( )]     , , ,g r g r g g r g r r
w w w w w w w w wS f S L T f g G r R w W                (2-17) 

where , ( )g r
w  represents the disutility of route r for group g with O-D pair w. It is a 

function of group size, g
wS , route distance,

 
r
wL , and walking time, 

r
wT . g and 

g are 

parameters indicating group g's sensitivity to walking distance and time, respectively.  

Let decision variable ,g r
w  equal 1 if group g chooses route r for O-D pair w, 

and 0 otherwise. Flow along route r for O-D pair w, r
wf , is the sum of the sizes of 

groups that choose the route: 

,    ,

w

r g g r
w w w w

g G

f S r R w W


     .                               (2-18) 

From Equations (2-3) and (2-4), for each , , ,w wg G r R w W   equation (2-17) 

can be rewritten as equation (2-19). 
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, , ,

,

, ,

( , ) [ ( )  ] 

                    =  [ ( )]   

                    = ( ) ,       

g r g r g g r a g r a
w w w w a w a a w

a A a A

g g g r a
w a a a w

a A

g a r a
w a w

a r

S f S l t x

S l t x

x

    

  

 

 





   

  



 





                   (2-19) 

where 
, ( )g a

w ax
 
measures the disutility incurred by group g using arc a. 

The assignment of clustered groups to routes can be formulated as in program 

(P2). Program (P2) seeks (objective (2-20)) the set of path flows over all O-D pairs 

with the minimum total disutility (weighted by group size). Derived from equations 

(2-8) and (2-18), constraints (2-21) relate arc flows to path flows, thus, ensuring flow 

conversation. Constraints (2-22) force each group to choose one route. Binary 

restrictions are guaranteed through constraints (2-23). 

(P2)                    
,min     [ ( )]  

w w

g r a
w g a g a a w

w W r R g G a A

S l t x  
   

                      (2-20) 

s.t.         
, ,       

w w

g g r r a
a w w w

w W r R g G

x S a A 
  

                        (2-21) 

, 1          ,

w

g r
w w

r R

g G w W


                                 (2-22) 

, 0 or 1         , ,g r
w w wg G r R w W                      (2-23) 

Program (P2) can be viewed as an n-player, pure-strategy, non-cooperative 

game, where each group is a player, and the possible routes between each O-D pair 

form the strategy space. It must be shown that at least one pure-strategy Nash 

equilibrium for the game modeled as (P2) exists and that the optimal solution to (P2) 

is a pure-strategy Nash equilibrium, i.e. the solution to (P2) is the equilibrium with 
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smallest total disutility. Proof of this is as follows. The proof builds directly on a 

related proof given in (Rosenthal, 1973a, b). 

Theorem: There exists at least one solution to (P2) that achieves a pure-strategy Nash 

equilibrium. Additionally, such an equilibrium is achieved by the optimal solution to 

(P2). 

Proof: Since x=0 is a feasible solution to (P2), a feasible solution to (P2) always exist. 

Let , *{ }g r
w be the optimal solution to (P2), and *{ }ax be the associated link flows. 

Assume that , *{ }g r
w  

does not result in an equilibrium. Then, it must be possible for 

some group wp G  traveling between w along a route 1 wr R  to reduce its disutility 

by switching routes to some other route 2 wr R . By Equation (2-19), 

2 1 1 2

, * , *

( ) ( ) ( ) ( )

( , , ) ( , , )p a p p a
w a a w a a w a a a a

a r a r a r a r

l x S c y l x c y 
     

     .          (2-24) 

Let ,{ }g r
w denote the resulting solution to (P2) given that group p switches 

from route r1 to route r2.  

, *
2

, , *
1

, *

1,  if ,

1, if ,

     otherwise      

g r
w

g r g r
w w

g r
w

g p r r

g p r r



 



   
    



                                     (2-25) 

Link flow
 
{ }ax   is updated accordingly: 

*
2 1

*
1 2

*

, if  and 

, if  and 

,              otherwise

p
a w

p
a a w

a

x S a r a r

x x S a r a r

x

   


    



                                 (2-26) 

Let 1
cr = 1wR r  and 2

cr = 2wR r . Given updated link flows, it can be shown that 
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1 2 1 2

2 1

1 2

,

, *

, *

, *

,

( ) ( )

( ) ( )

( ) ( )

( , , )

( , , )

   ( , , )

   ( , , )

w w

C C
w

w

w

g a
w a a a a

g a
w a a a a

pg a
w a a a aod

g a p
w a a w a a

g a
w

w W r R g G a r

w W g G a r r r r

w W g G a r a r

w W g G a r a r

g G a A

l x c y

l x c y

l x S c y

l x S c y











   

     

    

    

 

 

 

  

  



   

  

  

  


2 1

1 2

* , *

, *

, * ,

( ) ( )

( ) ( )

( , , ) ( , , )

     ( , , )

( , , ) ( , )

w w

w w w w

p a p
a a a a w a a w a a

p a
w a a a a

g a g r g r
w a a a a w w w

w W r R a r a r

a r a r

w W r R g G a A w W r R g G

l x c y l x S c y

l x c y

l x c y S f





 

    

  

      

   

 

  

   



      

 

This contradicts the assumption that , *{ }g r
w  is the optimal solution to (L). || 

 

2.5 Solution Schemes to Determine Chosen Routes 

The solution approaches to programs (P1) and (P2) both begin with the generation of 

an efficient route set (Sheffi, 1985) for each O-D pair. It is presumed, as in (Bovy and 

Stern, 1990), that when faced with a route decision, a traveler selects his/her route 

from a limited choice set. Since complete enumeration of all possible routes is 

impractical and given that most people do not consider all alternatives in making their 

decisions, only the efficient route set is considered. 

2.5.1 Efficient Route Set Definition 

Based on [4], an efficient route is defined as a route passing only through efficient 

arcs, and an efficient arc is defined as follows. For each arc a connecting i to j, if 

r(i)<r(j), for r(k) the shortest distance from the origin to node k, and s(i)>s(j), for s(k) 

the shortest distance from k to the destination, then arc a is efficient (eff(i,j)=1); 
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otherwise, it is inefficient (eff(i,j)=0). The efficient routes,  , between each O-D pair 

w are obtained with a depth-first-search (DFS) on the network of efficient arcs (i.e. 

the subgraph  , where  is the set of efficient arcs). Routes with cycles are not 

generated, because by definition any efficient arc transports travelers to locations that 

are further from the origin and closer to the destination. 

2.5.2 Solution Approach for Program (P1) 

The Method of Successive Averages (MSA) (Sheffi, 1985) has been successfully 

used in solving various stochastic user equilibrium problems. In this chapter, a 

solution scheme that combines the MSA with group movements is proposed for 

solving the SUE assignment. The main procedure of MSA is given below. 

Step 0: Initialization. For each , ,wg G w W   use equations (2-11) and (2-12) to 

perform a logit assignment based on the initial disutility, 
 [0](0),g

au a A  . The result 

of this assignment is a set of route flows 
,  [0]g r

wf , .wr R   Generate initial arc flows

[1], ,ax a A   through equations (2-7) and (2-8) and set iteration count n=1. 

Step 1: Update. According to current arc flows
[ ],n
ax a A  , update the arc disutility, 

 [ ] [ ]( ), , ,g n n
a a wu x a A g G w W    . 

Step 2: Find direction. For each , ,wg G w W   perform a logit assignment based on 

current disutility
 [ ] [ ]( ),g n n

a au x a A  , and find auxiliary arc flow
[ ],n
ad a A  . 

Step 3: Move. Compute new arc flow as 
[ 1] [ ] [ ] [ ](1/ )( ),n n n n
a a a ax x n d x a A      . 
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Step 4: Convergence check. Compute [ ] [ ] [ ] [ ]n n n n
a a a

a A a A

gap d x x
 

   . If

[ ]ngap  , stop; otherwise, n=n+1, = 0.001, and go to step 1. 

2.5.3 Solution Approach for Program (P2) 

To solve program (P2), the Best Response Dynamics-Based Tabu Search procedure 

proposed by (Sureka and Wurman, 2005) for obtaining a pure strategy Nash 

equilibrium in normal form games in the context Combinatorial Auctions is adapted. 
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Figure 2-1 Flowchart of TS Algorithm for Program (P2) 

In solving problem (P2), the best response (choice) is defined as the route 

chosen by a group that minimizes total disutility. This differs from the definition of 

the best response in Sureka and Wurman’s approach, where each player exhaustively 

explores the solution space to find the best response that maximizes each player’s 

payoff. This difference is important, because the use of the total disutility reduces the 
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Step 10- output solution   

Yes

End

Step 1- initialize current solution,     , empty 

tabu list,    , and set Iter=0
0
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0 : new 
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search space, eliminating the need for an exhaustive search. A flowchart of the 

proposed method is provided in Figure 2-1, followed by details of important 

procedural steps. 

1) Initialization  

Randomly generate starting (current) solution 0 , a w wG R W  matrix with elements 

of 0 and 1. According to constraint (2-22) in problem (P2), each row in 0 includes 

only one 1. All other entries are 0. For example, one possible solution to a specific O-

D pair where 4 groups choose 3 routes can be expressed as 

0

1 0 0

1 0 0
   ,

0 0 1

0 0 1



 
 
 
 
 
 

 

representing the selection of route 1 by groups 1 and 2 and route 3 by groups 3 and 4. 

No group chooses route 2. 

Initialize tabu list, T, as empty. The tabu list is a list of matrices representing 

visited solutions. The length of the tabu list, T, is a predefined fixed number (nT=10). 

For each iteration (indicated by Iter), all groups explore route options, choosing the 

best route given the route choices of other groups. 

2) Finding the best route 

Selection of a best route is made once for each group as follows. Randomly choose 

group, g. Let the route chosen by group g in the current solution be gC . The best 

choice of group g, 0( )gB  , under the current solution, 0, can be obtained through 
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exploration of the route choice space of group g. For group 1 in the above example, to 

find 1 0( )B  , the objective function is evaluated for the following 3 solutions. 

1
0

1 0 0

1 0 0

0 0 1

0 0 1



 
 
 
 
 
 

, 2
0

0 1 0

1 0 0

0 0 1

0 0 1



 
 
 
 
 
 

and 3
0

0 0 1

1 0 0

0 0 1

0 0 1



 
 
 
 
 
 

 

If 3
0 is the solution with the minimum total disutility, 1 0( ) 3B   . After exploration 

of the route choice space, if group g cannot find a better solution (i.e. 0( )g gC B  ), 

move to the next group. If it is able to find a better solution (i.e. 0( )g gC B  ), replace 

gC  by 0( )gB 
 
forming new solution new . 

3) Checking tabu 

Check if new is tabu. If yes, choose the route with the next lowest total disutility. If 

not, add the current solution to the tabu list and set the current solution to the new 

solution.  

4) Termination criteria 

If all groups are able to obtain their first choice routes, i.e. 

0( ), , ,g g wC B g G w W     then terminate; otherwise, begin the next iteration. 

While even a locally optimal solution to problem (P2) is not guaranteed, the 

resulting solution will be an equilibrium solution. That is, no group can unilaterally 

switch routes to reduce the total disutility of travel. Numerical experience indicates 

that just a few iterations are required to achieve convergence. 
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2.6 Computational Experiments 

2.6.1  Experimental Design 

The efficiencies and differences between flows generated by modeling and solution 

methodologies designed for separable and clustered group behaviors are investigated 

on an illustrative example network representation of a facility layout. 

 

Figure 2-2 Network Configuration 

The network consists of 14 nodes, 22 arcs and 4 O-D pairs as portrayed in Figure 2-2. 

The capacity of each arc is indicated in the network. With the exception of arcs 4, 12 

and 14, all arcs are assumed to have a length of 100 meters. Arcs 4, 12 and 14 are 200 

meters in length. The free-flow speed is set be 1.42m/s (Thalmann and Musse, 2007) 

and coefficient ak = 0.008 for travel time calculations.  

To explore the effects of separable and clustered groups on flow distributions 

over the network, four grouping scenarios listed in Table 2-1 are considered. Scenario 

1 is an extreme case of scenario 2, where all pedestrians belong to the same group. 

1 2

3 4 5 6

7 8 9 10 11

13 1412

Origin

Origin

Destination

Destination

1

2

5

6

3 4

7

8

9

10 11 12

13

14

15

16

17

18

19

20

21 22

Ca=30

Ca=20

Ca=10



 

 30 

 

Scenario 3 can be viewed as an extreme case of scenario 4, where each group consists 

of only one individual. 

Table 2-1.Experiment Scenarios 

Separable 

groups 

scenario 

1 

All pedestrians are treated as members of one single large group and 

all individuals have the same preference parameters. 

scenario 

2 

All pedestrian can be divided into a finite number of groups composed 

of one or more individuals; preferences between groups are 

heterogeneous, but homogeneous within each group. 

Clustered 

groups 

scenario 

3 

Each pedestrian is viewed as a group and each has his/her own 

preference function. 

scenario 

4 

All pedestrian can be divided into a finite number of groups composed 

of one or more individuals; preferences between groups are 

heterogeneous, but homogeneous within each group; individuals 

within a group will stay together. 

 

Table 2-2 gives the demand information for each O-D pair. For scenarios 2 and 4, it is 

assumed that for each O-D pair there are 20 groups each with group size randomly 

chosen on the interval [1, 40]. The preference parameters for each group in scenario 2 

were generated incrementally, while g  in scenarios 3 and 4 is randomly generated 

between 0 and 1 and 1g g   . Scenarios 1 and 3 have the same total demand 

(indicated in the O-D column in Table 2-2).  In scenario 1, 0.053,g  0.535,g 

3.475,g   and 1.050,g   computed from the average values of similar parameters 

in scenario 2. 

Table 2-2 Demand for Each O-D Pair 

O-D g Sg 
scenario 2 

scenario

4 O-D g Sg 
scenario 2 

scenario 

4 

αg βg γg θg λg χg αg βg γg θg λg χg 

1 
to  

11 

 
(400) 

1 20 0.005 0.05 3.00 0.01 0.5 0.5 

1 
to 

14 

 
(350) 

1 7 0.005 0.05 3.00 0.01 0.4 0.6 

2 23 0.010 0.10 3.05 0.02 0.7 0.3 2 27 0.010 0.10 3.05 0.02 0.3 0.7 

3 29 0.015 0.15 3.10 0.03 0.3 0.7 3 16 0.015 0.15 3.10 0.03 0.6 0.4 

4 23 0.020 0.20 3.15 0.04 0.2 0.8 4 19 0.020 0.20 3.15 0.04 0.6 0.4 

5 19 0.025 0.25 3.20 0.05 0.4 0.6 5 22 0.025 0.25 3.20 0.05 0.3 0.7 

6 25 0.030 0.30 3.25 0.06 0.6 0.4 6 27 0.030 0.30 3.25 0.06 0.1 0.9 

7 21 0.035 0.35 3.30 0.07 0.5 0.5 7 28 0.035 0.35 3.30 0.07 0.6 0.4 

8 40 0.040 0.40 3.35 0.08 0.4 0.6 8 30 0.040 0.40 3.35 0.08 0.1 0.9 
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9 15 0.045 0.45 3.40 0.09 0.7 0.3 9 21 0.045 0.45 3.40 0.09 0.7 0.3 

10 1 0.050 0.50 3.45 0.10 0.7 0.3 10 16 0.050 0.50 3.45 0.10 0.2 0.8 

11 14 0.055 0.55 3.50 0.11 0.3 0.7 11 16 0.055 0.55 3.50 0.11 0.8 0.2 

12 30 0.060 0.60 3.55 0.12 0.3 0.7 12 1 0.060 0.60 3.55 0.12 0.1 0.9 

13 12 0.065 0.65 3.60 0.13 0.6 0.4 13 14 0.065 0.65 3.60 0.13 0.5 0.5 

14 30 0.070 0.70 3.65 0.14 0.7 0.3 14 18 0.070 0.70 3.65 0.14 0.3 0.7 

15 4 0.075 0.75 3.70 0.15 0.5 0.5 15 10 0.075 0.75 3.70 0.15 0.4 0.6 

16 18 0.080 0.80 3.75 0.16 0.8 0.2 16 11 0.080 0.80 3.75 0.16 0.2 0.8 

17 22 0.085 0.85 3.80 0.17 0.2 0.8 17 18 0.085 0.85 3.80 0.17 0.8 0.2 

18 14 0.090 0.90 3.85 0.18 0.6 0.4 18 1 0.090 0.90 3.85 0.18 0.2 0.8 

19 24 0.095 0.95 3.90 0.19 0.2 0.8 19 18 0.095 0.95 3.90 0.19 0.1 0.9 

20 16 0.100 1.00 3.95 0.20 0.3 0.7 20 30 0.100 1.00 3.95 0.20 0.5 0.5 

3 

to 
11 

 

(350) 

1 18 0.005 0.05 3.00 0.01 0.8 0.2 

3 

to 
14 

 

(300) 

1 10 0.005 0.05 3.00 0.01 0.2 0.8 

2 29 0.010 0.10 3.05 0.02 0.8 0.2 2 13 0.010 0.10 3.05 0.02 0.7 0.3 

3 29 0.015 0.15 3.10 0.03 0.8 0.2 3 16 0.015 0.15 3.10 0.03 0.1 0.9 

4 15 0.020 0.20 3.15 0.04 0.2 0.8 4 13 0.020 0.20 3.15 0.04 0.7 0.3 

5 27 0.025 0.25 3.20 0.05 0.4 0.6 5 19 0.025 0.25 3.20 0.05 0.8 0.2 

6 20 0.030 0.30 3.25 0.06 0.4 0.6 6 18 0.030 0.30 3.25 0.06 0.5 0.5 

7 17 0.035 0.35 3.30 0.07 0.3 0.7 7 29 0.035 0.35 3.30 0.07 0.5 0.5 

8 20 0.040 0.40 3.35 0.08 0.1 0.9 8 24 0.040 0.40 3.35 0.08 0.0 1.0 

9 19 0.045 0.45 3.40 0.09 0.6 0.4 9 28 0.045 0.45 3.40 0.09 0.4 0.6 

10 6 0.050 0.50 3.45 0.10 0.2 0.8 10 6 0.050 0.50 3.45 0.10 0.3 0.7 

11 19 0.055 0.55 3.50 0.11 0.6 0.4 11 12 0.055 0.55 3.50 0.11 0.7 0.3 

12 27 0.060 0.60 3.55 0.12 0.5 0.5 12 17 0.060 0.60 3.55 0.12 0.4 0.6 

13 8 0.065 0.65 3.60 0.13 0.2 0.8 13 15 0.065 0.65 3.60 0.13 0.8 0.2 

14 1 0.070 0.70 3.65 0.14 0.3 0.7 14 9 0.070 0.70 3.65 0.14 0.3 0.7 

15 20 0.075 0.75 3.70 0.15 0.6 0.4 15 20 0.075 0.75 3.70 0.15 0.8 0.2 

16 22 0.080 0.80 3.75 0.16 0.2 0.8 16 28 0.080 0.80 3.75 0.16 0.3 0.7 

17 21 0.085 0.85 3.80 0.17 0.8 0.2 17 8 0.085 0.85 3.80 0.17 0.8 0.2 

18 7 0.090 0.90 3.85 0.18 0.2 0.8 18 1 0.090 0.90 3.85 0.18 0.7 0.3 

19 23 0.095 0.95 3.90 0.19 0.3 0.7 19 8 0.095 0.95 3.90 0.19 0.3 0.7 

20 2 0.100 1.00 3.95 0.20 0.1 0.9 20 6 0.100 1.00 3.95 0.20 0.2 0.8 

 

Logit-based SUE assignment is employed for obtaining solutions under 

scenarios 1 and 2, while the Best Response Dynamics-Based Tabu Search procedure 

is used to address the n-player non-cooperative games of scenarios 3 and 4. Results 

are discussed in the next section. 

 

2.6.2 Results and Analysis 

Table 2-3 gives the efficient routes for each O-D pair. 

Table 2-3 Efficient Routes Set for Each O-D Pair 

O-D Index Route O-D  Index Route 

1-11 

1 1→2→5→6→10→11 

1-14 

1 1→2→5→6→10→14 

2 1→2→5→6→11 2 1→2→5→9→10→14 

3 1→2→5→9→10→11 3 1→2→5→9→13→14 

4 1→2→6→10→11 4 1→2→6→10→14 

5 1→2→6→11 5 1→4→5→6→10→14 
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6 1→4→5→6→10→11 6 1→4→5→9→10→14 

7 1→4→5→6→11 7 1→4→5→9→13→14 

8 1→4→5→9→10→11 8 1→4→8→9→10→14 

9 1→4→8→9→10→11 9 1→4→8→9→13→14 

  10 1→4→8→12→13→14 

3-11 

1 3→4→5→6→10→11 

3-14 

1 3→4→5→6→10→14 

2 3→4→5→6→11 2 3→4→5→9→10→14 

3 3→4→5→9→10→11 3 3→4→5→9→13→14 

4 3→4→8→9→10→11 4 3→4→8→9→10→14 

5 3→7→8→9→10→11 5 3→4→8→9→13→14 

  6 3→4→8→12→13→14 

  7 3→7→8→9→10→14 

  8 3→7→8→9→13→14 

  9 3→7→8→12→13→14 

  10 3→7→12→13→14 

 

Table 2-4 shows the arc flows by scenario. Similar arc flow results for separable 

single- (scenario 1) and separable variable-size groups (scenario 2). This is because 

scenario 1 relies on parameters taken from the average of parameter values assigned 

in scenario 2 - each pedestrian in scenario 1 will have identical parameter values. 

Note that the total travel time under the latter scenario (2) is slightly lower than that 

under the former scenario (1). This is because pedestrians in scenario 1 assign the 

same utility to every path. Thus, the lowest utility paths will be highly sought after 

and, therefore, highly congested. The greater variability in parameter settings of 

scenario 2 cause the pedestrians to disperse over a larger number of routes, reducing 

total travel time. A greater difference between arc flows exists between single-

pedestrian groups (scenario 3) and clustered variable-size groups (scenario 4). The 

total travel time under scenario 3 is much lower than that under scenario 4. The 

reason is that individuals in scenario 3 have greater flexibility compared with those in 

scenario 4. 
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Table 2-4 Flows for Scenarios 

 scenario 1 scenario 2 scenario 3 scenario 4
 

Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa Arc xa 

1 342 12 165 1 341 12 165 1 340 12 164 1 357 12 187 

2 408 13 192 2 409 13 191 2 410 13 197 2 393 13 179 

3 217 14 81 3 217 14 81 3 219 14 84 3 243 14 84 

4 124 15 381 4 124 15 380 4 121 15 387 4 114 15 348 

5 378 16 148 5 378 16 148 5 369 16 154 5 387 16 152 

6 272 17 502 6 272 17 501 6 281 17 498 6 263 17 494 

7 449 18 134 7 449 18 134 7 435 18 132 7 459 18 120 

8 337 19 585 8 337 19 585 8 344 19 586 8 321 19 563 

9 411 20 287 9 411 20 287 9 411 20 280 9 436 20 294 

10 255 21 228 10 255 21 229 10 243 21 238 10 266 21 236 

11 370 22 363 11 370 22 363 11 368 22 370 11 363 22 356 

TT 1,268,507 1,268,050 1,271,253 1,275,991 

* ( )a a a

a A

TT x t x


   

Figure 2-3 (a)-(d) shows the distribution of flows by group over route alternatives 

between each O-D pair for the scenario involving separable variable-size groups 

(scenario 2). Consider for example Fig. 2 (d). 10 efficient routes exist for O-D pair 3-

14. Of individuals in group 20, approximately 70% chose Route 10, while only 10% 

of group 1 chose a common route. For group 1, chosen routes are evenly distributed 

over all efficient options. This differs from group 20 in which the majority of 

individuals chose the same route and other routes are chosen by very few individuals. 

This can be attributed to differences in group preference function parameters, i.e. 

individual sensitivity to route attributes. Group 1’s parameters are all very small. 

Thus, route choice is almost random, since individuals are not very sensitive to route 

attributes. Parameter settings for group 20 are more significant, which is also 

reflected in the route decisions.  Also contributing to these differences in route choice 

between groups 1 and 20 is that the value of   for group 1, indicating the level of 

discrepancy between actual and perceived utility, is smaller than for group 20. The 

smaller the value of , the larger the difference between perceived and measured 
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disutilities. Similar patterns in flow distribution over routes can be observed for other 

O-D pairs. 

 
(a) OD 1-11 

 
(b) OD 1-14 

 
(c) OD 3-11 

 
(d) OD 3-14 

Figure 2-3 Distribution of Groups over Routes by O-D Pair for Scenario 2 

 

The distribution of flows for clustered variable-size groups (scenario 4) is 

depicted in Figure 2-4. Although the same group size is used in scenario 4 as in 

scenario 2, each group in Figure 2-4 selects only one route and there is no group that 

can decrease its total incurred disutility by unilaterally switching routes. 

 
(a) OD 1-11  

(b) OD 1-14 
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(c) OD 3-11 

 
(d) OD 3-14 

Figure 2-4 Distribution of Groups over Routes by O-D Pair for Scenario 4 

 

2.7 Conclusions and Extensions 

In this chapter, pedestrian route choice is modeled using a traffic assignment type of 

framework. Methods for estimating the distribution of groups and individuals over 

“efficient” routes for two types of groups, separable and clustered, are proposed. 

These methods employ formulations using logit-based SUE assignment and a pure-

strategy Nash equilibrium game for separable and clustered groups, respectively. 

Solution methodologies for solving problems so formulated involves an MSA with 

groups procedure (for solution to the SUE assignment of separable groups) and a 

meta-heuristic scheme based on best response dynamic and tabu search (to find the 

pure-strategy Nash equilibrium of the game formulated for clustered groups). The 

conceptual framework, and specific models and corresponding solution schemes were 

tested on an illustrative example. The results from the experiments show the 

effectiveness and efficiency of the proposed approaches. 

There are a number of directions in which the proposed models and solution 

approaches might be extended. For example, in this chapter, the parameters are 

assumed to be homogeneous within a group. In reality, however, the parameters 
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associated with each group might follow a distribution over individuals. This 

heterogeneity within each group can be further explored with the proposed models 

and solution schemes. Furthermore, in this chapter, pedestrians make decisions based 

on route-based performance and once a route is selected, it is assumed that each 

pedestrian will follow the route in its entirety. The developed model and solution 

methodology might be extended to address a dynamic pedestrian assignment problem, 

where physical changes in the network and user goals affect the optimality and choice 

of routes. 
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Chapter 3  Crowd Management in Large Public Gatherings 

3.1  Introduction 

Effective management of pedestrian movement during large public gatherings can 

provide crucial support toward meeting pedestrian access and safety goals. As stated 

in Chapter 2, large public gatherings are held in a variety of venues. Poor execution 

of crowd management within these venues can frustrate the people in a crowd by 

thwarting their goals. At the extreme, poor crowd management has caused many 

instances of crowd crush, injuries and fatalities involving high volumes of people in a 

wide array of circumstances, ranging from rock concerts and sales events at stores to 

the offering of free food and clothing. A few specific examples where better crowd 

management may have saved lives include: the 1979 Who concert in Ohio in which 

11 people perished, the 1989 U.K. Hillsborough Stadium sporting event where 96 

deaths may have been prevented, 362 deaths resulting in the 2006 Hajj in Saudi 

Arabia, and the 2010 incident in Northern India where 63 people perished while 

seeking free food and clothing at a temple. In addition, in some circumstances, such 

as in the event of fire, explosion, occurrence of natural or human-induced disaster 

event, or crowd violence, well-designed systems for moving large crowds quickly are 

needed to support quick egress from dangerous situations.  

The majority of works related to crowd management propose methods for 

modeling crowd movements during emergency evacuation. Such models can be used 

to quantify the performance, in terms of measures like evacuation time, of a given 

facility's architectural layout during such an event. These models can be broadly 

categorized as: fluid dynamics-based approaches (Colombo and Rosini, 2005; Hughes, 
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2002), optimization and network flow-based methods (Choi et al., 1988; Fahy, 1994), 

and simulation-based techniques, which include rule-based methods (Blue and Adler, 

2001; Helbing, 1995), agent-based modeling (Shi et al., 2009) and virtual reality 

(Shih et al., 2000). Additional information can be found in (Gwynne et al., 1999; 

Kuligowski and Peacock, 2005; Zheng et al., 2009) Other works, including for 

example (Hoogendoorn and Bovy, 2004b), focus on simulation of pedestrian 

movement under non-emergency situations. Whether created to support analysis in 

emergency or non-emergency situations, techniques described in these works are 

designed for use in evaluation of, for example, architectural designs and other 

elements of the physical layout. They do not provide strategies for managing the 

crowd. 

Techniques have been proposed to support crowd management. In the context 

of pedestrian movement, these techniques determine optimal routes to which 

pedestrians should be guided within an existing physical environment. Route 

guidance is created through network optimization-based methods. Simplistic, static 

methodologies based on minimum cost network flows have been developed, e.g. 

(Yamada, 1996). More sophisticated techniques that capture problem dynamics, time-

dependencies and other problem characteristics have been proposed specifically for 

building evacuation (Cai et al., 2001; Mamada et al., 2003). A variety of objectives 

have been considered, including for example maximizing throughput by a given end 

time (Miller-Hooks and Sorrel, 2008) and maximizing the minimum probability of 

arrival at an exit for any evacuee (Opasanon and Miller-Hooks, 2008). Other works 

have considered the role of real-time information in updating routing instructions 
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(Miller-Hooks and Krauthammer, 2007). Chen and Miller-Hooks (2008) developed a 

dynamic network flow-based model that forces instructions to reflect how shared 

information will be used. A review of optimization techniques proposed for use in 

building and regional evacuation is provided in (Hamacher and Tjandra, 2002). 

Relevant network optimization-based techniques developed for regional evacuation 

are described in (Kimms and Bretschneider, 2011). Unlike the simulation and fluid 

dynamics-based methods that are used in modeling pedestrian movement, 

optimization-based techniques provide strategies for pushing flow through the 

network to achieve system optimal performance.  

Related techniques have been proposed for use in guiding vehicular traffic in 

both emergency and non-emergency circumstances. See, for example, (Kesting et al., 

2008; Liu et al., 2007). Dynamic traffic management approaches, such as ramp 

metering, adaptive speed limits, and provision of real-time information, are widely 

used to support efficient vehicular traffic movement during peak traffic flow. These 

strategies are also used in emergency evacuation scenarios. Although tools developed 

for vehicular evacuation have relevance, there are significant distinctions in behavior 

and degrees of freedom between vehicular and pedestrian modes that make direct 

application of traffic tools insufficient for use in the pedestrian environment. 

Approaches discussed thus far focus on influencing the movement of 

pedestrians through a given physical layout. An alternative might be to reconfigure 

the physical layout to facilitate pedestrian movement in pursuit of a particular goal. 

Such reconfiguration can both limit pedestrian choice and enhance or restrict capacity 

along routes to facilitate efficient movement and prevent crowd crush or other unsafe 
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situations. Changes to the physical layout might be achieved through opening or 

closing gates/doorways, placing or removing barriers or changing illumination 

intensity to coerce pedestrians along certain paths. No prior work has suggested such 

an approach in the context of pedestrian movement; however, reconfiguring 

methodologies, such as the use of contraflow, have been proposed for evacuation by 

automobile. See (Abdelgawad and Abdulhai, 2009) for a review. 

In this chapter, a network optimization-based methodology that seeks the 

optimal reconfiguration of a physical (architectural) layout to support efficient crowd 

movement during large events is proposed. This methodology takes into 

consideration pedestrian response to route offerings as controlled through the 

architectural design. Further, it incorporates findings from the social sciences and 

psychological studies on grouping behavior in crowds (Aveni, 1977; Qiu and Hu, 

2010). That is, the methodology recognizes that families, friends and emergent groups 

will act together, and control strategies that separate such groups will be ineffective. 

This approach seeks a system optimal solution based the crowd manager’s goals; 

however, it explicitly recognizes the utility maximizing behavior of individuals in the 

crowd as is consistent with user equilibrium. In contrast to prior fluid dynamics-based 

techniques that model aggregate pedestrian flows, often requiring extraordinary 

computational effort to solve embedded differential equations, the proposed approach 

captures individual movements and goals with significantly reduced computational 

time. Alternative simulation-based methodologies offer an ability to replicate 

complex behaviors, but do not provide guidance; rather, they support performance 

assessment given chosen guidance mechanisms. The proposed technique builds on 



 

 41 

 

concepts of network optimization, but accounts for behavioral norms often only 

included in computationally expensive simulation-based approaches. 

A bi-level integer program is presented that, at the upper-level, seeks a 

reconfiguration of the physical design that will minimize total travel time incurred by 

system users (e.g. evacuees) given route decisions that are taken by individuals in 

response to physical offerings in terms of the infrastructure at the lower-level. The 

lower-level formulation seeks a pure-strategy Nash equilibrium that respects grouping 

behavior. The general overview and mathematical program is presented in detail in 

section 2. In Section 3, the bi-level program is reformulated as a nonlinear integer 

single-level program for which determination of a globally optimal solution is 

formidable. Thus, a Multi-start Tabu Search with Sequential Quadratic Programming 

(MTS-SQP) procedure is proposed for its solution. This procedure is described in this 

section. Numerical experiments were conducted on a hypothetical example to assess 

this technique. Results of these experiments are given in Section 4. Conclusions and 

directions for future work are discussed in Section 5. 

3.2  Problem Overview 

The general structure of the proposed bi-level program (Stackelberg Leader-Follower 

program) for the problem of reconfiguring physical layout to support efficient crowd 

movement, referred to herein as the Reconfigure for Efficient Crowd Movement 

(RECM) Problem, is depicted in Figure 3-1.  
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Figure 3-1 Overview of the RECM Problem  

The upper-level describes a network design problem whose decision variables 

represent actions in terms of system reconfiguration that the leader (i.e. crowd 

manager) might take to optimize network performance (e.g. minimizing total travel 

time or maximizing throughput). The lower-level is a pure-strategy Nash equilibrium 

pedestrian assignment problem in which the followers (i.e. pedestrians in the crowd) 

are presumed to follow paths that minimize disutility in terms of related path 

characteristics. Solution at the upper-level provides optimal measures for changing 

configuration of the network through, for example, opening or closing 

doorways/gates, changing the capacity of passageways through use of barriers, 

closing or opening new passageways, changing illumination to accentuate a route, 

and removing interactions between persons in the crowd through implementation of 

lanes from the upper-level. Given the network configuration determined in the upper-

level, solution at the lower-level predicts the flow along the passageways assuming 

that pedestrians will choose their paths to minimize disutility. Predictions of network 
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flows from the lower-level provide input to the upper-level problem, creating 

interaction between levels.  

This bi-level approach permits the modeling of objectives of both the crowd 

manager and pedestrians in the crowd. However, the bi-level structure gives priority 

to the upper-level objective, thus, providing suitable designs from the crowd 

manager's perspective while simultaneously recognizing that the individuals in the 

crowd will exploit the configuration so as to achieve their own selfish objectives 

(goals). Prioritization is given to the objective of the crowd manager to encourage 

system efficient designs. The route choice behaviors that follow the goals are 

described mathematically in the behavior model component.  

Details of the bi-level formulation of the RECM Problem are provided next. 

3.3  The Upper-Level Problem 

Consider a network representation of the physical environment, ( )N,A  , where N

is the set of nodes, representing locations at which decisions must be taken in regard 

to movement and A is the set of directed arcs connecting the nodes representing 

passageways along which movement is possible. Let NDO , be the set of origins 

and destinations, respectively. Each arc Aa  has an associated length, la, initial 

capacity, ac , arc flow, ax , potential change in capacity, ay , and nonnegative travel 

time, ( , )a a a at x c y . As discussed in (Schomborg et al., 2011) in the context of 

macroscopic modeling of pedestrian and vehicular traffic, a similar structure for the 

velocity-density fundamental diagram for each can be utilized; only the parameter 
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values will differ. For a fixed value of a ac y , a BPR-based travel time function 

(Branston, 1976) with assumed parameters is adopted: 

0( , ) [1 ( ) ]         ea
a a a a a a

a a

x
t x c y t k a A

c y
     


                  (3-1) 

where ak is a coefficient scaling the rate with which congestion increases travel time, 

e is a parameter. ak  and e would require calibration using data from actual 

observations, and 0

at  
denotes free-flow travel time along link a. For free-flow walking 

speed,
 av , 0

at  can be calculated as: 

0 /          a a at l v a A   .                                             (3-2) 

This approach supports the use of alternative equations that capture the 

relationship between travel time and density. 

Let 1 2( , )a Ax x x xx  be the vector of link flows and 

1 2( , )a Ay y y yy
 
be the change in capacity vector. Capacity expansion for a 

link is limited by physical barriers. For each link, a A , up
ac denotes the upper-limit 

of capacity on link a. A non-negative per unit cost, ab , is imposed for any change 

made to capacity of link a. This unit cost may reflect, for example, resources required 

to open or close the link, or may be the monetary cost of providing additional 

capacity. A budget, B , is imposed to limit such effort or monetary spending. The 

upper-level problem is formulated with this notation as follows. 

(U)                          min  ( , )  ( , )a a a a a

a A

Z x t x c y


  x y                                      (3-3) 

 s.t.              a a

a A

b y B


                                                               (3-4) 
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0a

a A

y


                                                                  (3-5) 

0 , up
a a ac y c a A                                               (3-6) 

Objective function (3-3) seeks an optimal vector y that minimizes the total 

travel time required to ship a given flow x over the network. y obtained from the 

upper-level problem is employed in setting x at the lower-level. Constraint (3-4) 

ensures that incurred costs required for the chosen changes in arc capacities do not 

exceed the budget. The absolute value of ay
 
is used, because ay

 
can take positive or 

negative values. The budget, B, is set sufficiently large to accommodate total changes. 

The total available space is forced to remain fixed through Constraint (3-5). When a 

capacity increase is warranted in one section of the layout, a decrease in capacity 

elsewhere is required, since space is fixed. This constraint can be omitted in 

circumstances in which space is essentially unlimited. Constraints (3-6) guarantee 

that link capacities remain within their lower and upper limits.  

3.4  The Lower-Level Problem 

For a given upper-level design, expressed in terms of design vector y, the lower-level 

is a traffic (pedestrian) assignment problem seeking the vector of link flows x that 

minimizes disutility for all pedestrians. The disutility of each route to each user 

depends on user preference characteristics and the performance attributes on each 

route. The performance on each route further depends on the number of pedestrians 

who choose each passageway. That is, when many pedestrians use a particular 

passageway, travel time along the passageway will increase, rendering it less 

desirable. Additionally, many pedestrians travel in groups and, thus, will seek the 

same route for their groups. The pedestrian assignment problem is modeled as a pure-
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strategy Nash equilibrium assignment problem. The use of the pure-strategy approach 

permits the modeling of this critical grouping behavior. 

3.4.1 Route Choice and Group Behavior 

The process of selecting a route involves choosing an option from a finite set of 

alternative routes with the desired origin and destination. The selection of a route by a 

pedestrian is sometimes referred to as wayfinding (e.g. (Bovy and Stern, 1990)). A 

number of works consider route choice behavior (or wayfinding) in the context of 

crowds (Bierlaire and Robin, 2009; Løvås, 1998). A small portion of these works 

(Antonini et al., 2006; Hoogendoorn and Bovy, 2004b) apply utility maximization 

theory for the purpose of forecasting route decisions. This approach is widely used to 

model route choice for vehicular traffic. A review is provided in (Bovy and Stern, 

1990). The basic assumption underlying these choice models is that a traveler’s 

preference for each potential alternative can be described by a mathematical function 

of the route's utility (or disutility). The utility of a path in a pedestrian network is 

derived from attributes of distance, time, required physical effort, safety, and physical 

appeal, among others. The preference function on those attributes is indivualized. The 

preference function is formulated to capture the relative importance of each attribute 

for the user. Pedestrian sensitivities to such attributes are discussed in (Daamen et al., 

2005; Seneviratne and Morrall, 1985). These works suggest that walking distance and 

time are the most important route attributes in route choice. 

Some attributes, such as travel time, depend on the number of users. In 

general, the greater the number of users choosing a route, the greater its travel time. 

Thus, route choice models are often embedded within a traffic assignment model that 
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seeks an assignment of vehicles to the network based on congestion-dependent route 

utilities so as to achieve a user equilibrium. An equilibrium is reached when no user 

can improve his/her performance in terms of route utilities by unilaterally switching 

routes. The majority of traffic assignment models in the literature seek such user 

equilibrium (UE) solutions. A deterministic user equilibrium (DUE) model presumes 

perfect knowledge of the performance of all alternative routes and all users perceive 

route performance in an identical manner. To provide greater realism, stochastic user 

equilibrium (SUE) models have been suggested in which each user is presumed to 

have only probabilistic information about the route choices and each has his/her own 

utility function regarding route performance (Sheffi, 1985).  

Users in UE approaches (DUE or SUE) are treated either continuously or as 

individuals. No mechanism exists to support group behavior (e.g. desire by a family, 

group of friends/colleagues or emergent groups to travel en masse). Such group 

behavior, however, is common and can have significant impact on crowd movement. 

Even if each member of a group has the same utility function within the employed 

route choice methodology, there is no guarantee that members of the group will be 

assigned to the same path.  

The problem of predicting route choice given the impact of user interactions 

on link performance can be treated as an n-player non-cooperative game in which 

players selfishly choose strategies from their own strategy sets (Haurie and Marcotte, 

1985). The payoff for each player depends on his/her chosen strategy, as well as on 

the strategies chosen by others. The solution of such a game in which there is a finite 

number of players will result in a mixed-strategy Nash equilibrium. In the context of 



 

 48 

 

traffic assignment, travelers correspond to the players in the game. The strategy set is 

composed of the available potential routes from origin to destination. Payoff is gained 

through quality route performance.  

A mixed-strategy Nash equilibrium presumes that decisions taken by each 

player in the n-player game have identical impact on strategy performance. Such an 

approach, therefore, cannot account for the impact of group movements. Thus, an n-

player, pure-strategy Nash equilibrium game (Rosenthal, 1973a, b) is proposed herein 

that can capture the impact of group behavior. When a pure-strategy Nash 

equilibrium is achieved, each player, representing a group composed of one or more 

pedestrians, cannot benefit from unilaterally switching strategies (or routes). 

In applying the concept of pure-strategy Nash equilibrium in this context of 

crowd management, a number of assumptions are required: (1) the crowd consists of 

a finite number of groups, the members of which will travel together; (2) preference 

functions may be heterogeneous across groups, but are homogeneous among 

members of the same group; (3) groups behave rationally, choosing a route that 

minimizes disutility for the group; (4) all groups make their route choice decisions 

simultaneously (Bierlaire and Robin, 2009) and the ultimate choice depends on the 

choice of competing groups; and (5) link disutility is additive. 

3.4.2 Formulation 

For an O-D pair, w W , W the set of O-D pairs, there are ( 1,..., )w wG g G  groups 

of pedestrians and ( 1,..., )w wR r R routes. Let 
g
wS denote the size of group, wg G , 

which can be as small as one. For each w, the disutility of each route r for group g can 

be expressed as: 
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, ( , ) [ ( )]   , , ,g r g r g r r r
w w w w g w g w w w wu S f S L T f g G r R w W                 (3-7) 

where , ( )g r
wu  represents the disutility of route r for group g with O-D pair w. The 

disutility of route r between O-D pair w is a function of group size, g
wS , the 

corresponding route distance,
 

r
wL , and walking time, 

r
wT . Walking time, 

r
wT , is a 

function of the flow on route r, r
wf . g  and

 g are parameters indicating group g's 

sensitivity to walking distance and time, respectively. 

Let lower-level decision variable ,g r
w  equal 1 if group g chooses route r for 

O-D pair w, and 0 otherwise. Flow along route r for O-D pair w, r
wf , is computed 

from the sum of group sizes of groups that choose the route: 

,    ,

w

r g g r
w w w w

g G

f S r R w W


     .                               (3-8) 

From the incidence relationship of links and routes, walking distance and 

walking time on route r between pair w can be further written as in Equations (3-9) 

and (3-10), respectively. 

,         ,r r a
w a w w

a A

L l r R w W


                                   (3-9) 

,( ) ( , )       , ,r r r a
w w a a a a w w

a A

T f t x c y r R w W


                          (3-10) 

where ,r a
w equals 1 if route r passes through link a, and 0 otherwise. Flow on link a,

ax , is given as: 

,              

w

r r a
a w w

w W r R

x f a A
 

     .                          (3-11) 
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From Equations (3-9) and (3-10), for each , , ,w wg G r R w W   Equation (3-

7) can be written as: 

, , ,

,

,

( , ) [ ( , ) ]

                    = [ ( , )]

                    = ( , , )

g r g r g r a r a
w w w w g a w g a a a a w

a A a A

g r a
w g a g a a a a w

a A

g a
w a a a a

a A

u S f S l t x c y

S l t x c y

u l x c y

   

  

 





    

   



 





               (3-12) 

where 
, ( , , )g a

w a a a au l x c y
 
measures the disutility incurred by group g using link a. 

The lower-level problem can, thus, be formulated as binary, nonlinear, integer 

program (L): 

(L)     
,min     [ ( , )]  

w w

g r a
w g a g a a a a w

w W r R g G a A

S l t x c y  
   

                  (3-13) 

s.t.         
, ,       

w w

g g r r a
a w w w

w W r R g G

x S a A 
  

                            (3-14) 

, 1                      ,

w

g r
w w

r R

g G w W


                             (3-15) 

, 0 or 1            , ,g r
w w wg G r R w W                            (3-16) 

Objective function (3-13) seeks the set of path flows over all O-D pairs with 

the minimum total disutility (weighted by group size). Derived from Equations (3-8) 

and (3-11), constraints (3-14) relate link flows to path flows, thus, ensuring flow 

conservation. Constraints (3-15) force each group to choose one route. Binary 

restrictions are guaranteed through constraints (3-16). 

The optimal solution to (L) is a pure-strategy Nash equilibrium attaining the 

smallest total disutility, proof of which is provided in subsection 2.4.3. Note that there 
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might be several pure-strategy Nash equilibria for the game. Problem (L) seeks the 

one with the smallest total disutility.  

3.5  Single-Level Reformulation 

Similar bi-level modeling approaches have been employed in vehicular transport 

network design applications. Chiou (2005) developed a gradient-based methodology 

to obtain the Karush-Kuhn-Tucker (KKT) points required for converting the bi-level 

program to a single mixed integer programming (MIP). Gao et al.(2005) employed a 

generalized Benders decomposition method for a similar problem formulation. A 

similar bi-level mathematical model is used to make decisions related to increasing or 

decreasing link capacities in (Karoonsoontawong and Waller, 2006). Capacity change 

decisions are fed to a simulation model designed to capture traffic dynamics. 

Comparison between solutions obtained by MIP reformulation with heuristic 

approaches is made. While there are similarities between these models and the RECM 

model, these existing solution methodologies cannot be directly applied, in part 

because determination of the KKT conditions associated with (L) are difficult to 

derive due in part to the inclusion of binary decision variables, which are needed for 

the determination of link flows. Thus, an alternative solution methodology is 

proposed herein. 

In the RECM problem, a Stackelberg game is played between the leader 

(crowd manager in (U)) and follower (pedestrians in the crowd in (L)). In essence, the 

game is played out in such a way that the leader chooses a solution for (U) that 

minimizes his/her objective function given that the followers, after observing the 

leader’s actions, will respond rationally and selfishly. Direct solution of this bilevel 
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optimization problem is difficult. However, the RECM problem can be reduced to a 

single-level program in which the lower-level program (L) is incorporated within the 

constraints of (U). This approach of converting a bilevel program to a single-level 

program in this way is described in (Bard, 1998). This single-level form of the RECM 

problem is given by program (SL):   

 (SL)                      min   ( , ) ( , )a a a a a

a A

Z x t x c y


  x y                                 (3-17) 

s.t.          Constraints (3-4), (3-5), and (3-6) 

 ( ) 0       a a ax Lower c y a A                          (3-18) 

Objective function (3-17) seeks vectors x and y that minimize total travel time, 

subject to budget (3-4) and capacity ((3-5) and (3-6)) limitations. Link flows x 

associated with vector y are implicitly derived from the solution of problem (L), 

which is expressed within Lower(  ) in Equation (3-18). Lower(  ) returns solution 

matrix { ,g r
w } . 

3.6 Solution Methodology 

Program (SL) is a nonlinear mixed integer program with nonlinear objective function 

and nonlinear constraints. Solution approaches exist that can guarantee a global 

optimum for nonlinear programs possessing specific characteristics, like convexity, or 

that can be shown to possess certain properties. No solution methodology with 

applicability to program (SL) exists that can guarantee a global optimum. Instead, a 

solution methodology is presented herein that guarantees a locally optimal solution 

and takes advantage of global search strategies to increase the likelihood of finding 

the globally optimal solution. Specifically, the proposed methodology embeds an 
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exact Sequential Quadratic Programming (SQP) procedure within a tabu search 

environment. 

This approach builds on the solution frameworks of two works: (Chelouah 

and Siarry, 2000) and (Chen et al., 2008). Chelouah and Siarry (2000) proposed a 

tabu search-based (Glover and Taillard, 1993) metaheuristic, called the Enhanced 

Continuous Tabu Search (ECTS) algorithm, with the goal of obtaining a global 

optimum for unconstrained optimization problems. Chen et al. (2008) extended 

Chelouah and Siarry's continuous tabu search (CTS) approach for constrained math 

programs. They employ a methodology based on Lagrangian relaxation in which a 

term involving the square of each constraint is included and penalized in the objective 

function. The procedure aims to minimize this term to produce a feasible solution. 

SQP is used to produce such feasible solutions. A multi-start strategy involving 

exploration around a current best solution within concentric hyper-rectangles is 

employed within the diversification stage of the CTS. This procedure produces a set 

of starting points for the SQP, leading to a set of likely feasible solutions. The best 

solution among this set is chosen and the multi-start procedure is repeated.  
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Figure 3-2 Flowchart of the MST-SQP Procedure 

The proposed methodology for solving the RECM problem employs a similar 

framework as in (Chen et al., 2008), involving a multi-start SQP procedure within a 

CTS framework. Moreover, an adaptation of concentric hyper-rectangles structure 

developed in (Teh and Rangaiah, 2003) is embedded within this framework. However, 

instead of relaxing the constraints and seeking a set of feasible solutions from which 

the optimal solution can be obtained, the original constrained math program is solved 

directly by SQP. Additionally, a secondary tabu search methodology is employed 
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within the proposed methodology (during identification and intensification stages) to 

evaluate Lower(  ). This proposed approach is referred to herein as the Multi-start 

Tabu method with SQP (MST-SQP). Figure 3-2 provides a flowchart of the steps of 

the main procedure. Details of its key steps follow. 

3.6.1 Preprocessing and Initialization (Step 1) 

The procedure begins with the generation of an efficient route set (Sheffi, 1985) for 

each O-D pair. It is presumed, as in (Bovy and Stern, 1990), that when faced with a 

route decision, a traveler selects his/her route from a limited choice set. The more 

comprehensive the choice set, the more likely he/she will choose the optimal route 

given his/her goals. Since complete enumeration of all possible routes is impractical 

and given that most people do not consider all alternatives in making their decisions, 

only the efficient route set is considered. Based on Sheffi’s work, an efficient route is 

defined as a route passing only through efficient arcs, and an efficient arc is defined 

as follows. For each arc a connecting i to j, if r(i)<r(j), for r(k) the shortest distance 

from the origin to node k, and s(i)>s(j), for s(k) the shortest distance from k to the 

destination, then arc a is efficient (eff(i,j)=1); otherwise, it is inefficient (eff(i,j)=0). 

The efficient routes, 
wR , between each O-D pair w are obtained with a depth-first-

search (DFS) on the network of efficient arcs (i.e. the subgraph ( )N,A   , where 

A is the set of efficient arcs). Routes with cycles are not generated, because by 

definition any efficient arc transports travelers to locations that are further from the 

origin and closer to the destination. 
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Once the efficient route set is generated, an initial starting point, X0, must be 

chosen. X0 consists of two vectors: link flow x and capacity change y. To produce X0, 

the elements of x and y are chosen randomly given restrictions on their bounds.  

The aspiration, tabu and termination criteria employed herein are adopted 

directly from (Chen et al., 2008). These criteria are summarized for completeness.  

Aspiration criterion 

Any candidate solution that has the best objective value of all discovered solutions 

will become the best solution regardless of its tabu status. 

Tabu list 

A list of solutions, each of which is given by a pair of vectors (x,y), considered in the 

last n iterations (the tabu tenure) of the tabu search procedure is maintained. Thus, an 

explicit memory approach is used. The best found solution obtained thus far will not 

enter the tabu list, unless it is identified twice, until a better solution is found. This 

construction of the tabu list prevents revisiting of solutions within the iterations 

associated with its tabu tenure. A solution may be removed from the tabu list 

prematurely if no neighboring solution of the best solution outperforms the best 

solution. A solution is tabu if 

0     1,2,...,   ,tabu
jX X h j n                                       (3-19) 

where tabu
jX is the j

th
 solution in the tabu list and h0 is defined in equation (3-21) of 

subsection 3.6.3. 

Termination criteria 

When either a predefined maximum number of iterations or a predefined maximum 

number of iterations without improvement is reached, the procedure terminates. 
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Parameter settings 

The tabu parameters were tuned through initial experiments. The best found settings, 

and the settings that will be used in the remainder of the Chapter, are: maximum 

iteration number = 50; maximum number of iterations without improvement = 10; 

number of candidate solution points to be explored = 10; tabu tenure = 20. 

3.6.2 Force Feasibility (Step 2) 

Using X0 obtained from step 1 in Figure 3-2 as the starting point, SQP is employed to 

find the corresponding locally optimal solution X’0 with objective value Z’0 for 

program SL. The best known solution, Xbest, and objective value, Zbest, are set to X’0 

and Z’0, respectively. The SQP algorithm requires evaluation of Lower(  ) within 

Equations (3-18). Details of the process to solve the lower-level problem are 

discussed in subsection 2.5.3. 

3.6.3 Diversification (Step 3) 

 

Figure 3-3 Hyper-rectangles adapted from (Chelouah and Siarry, 2000) 

A diversification strategy generates a set of candidate solutions within the exploration 

space of the current best solution, Xbest. That is, the diversification process involves a 
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multi-start strategy, where a set of candidate solution points, given by array Xcand, are 

randomly generated around the current best solution. The solution space around the 

current solution, as defined in (Chelouah and Siarry, 2000) and (Teh and Rangaiah, 

2003), is partitioned by a set of concentric hyper-rectangles. The structure of hyper-

rectangles around Xbest in two dimensions is illustrated in Figure 3-3. The relationship 

between the radii of concentric hyper-rectangles is expressed as 

12 , 1,2,... 1k k candh h k N                                            (3-20) 

0 0.01 ( ) / 2h UB LB                                                      (3-21) 

where Ncand is number of candidate solutions, h0 is the half-width of the inner-most 

rectangle, and UB and LB are the upper- and lower-bound vectors of X, respectively. 

In exploration of solution points within a vicinity of Xbest, one candidate 

solution is randomly generated within each region enclosed by two adjacent hyper-

rectangles (the innermost region is enclosed only by the inner-most hyper-rectangle). 

3.6.4 Intensification (Step 4) 

The candidate solution points generated in the diversification stage are not guaranteed 

to be feasible for (SL). Thus, they are used as starting points for the SQP algorithm 

through which neighboring feasible solutions are obtained. The intensification 

process seeks a set of such feasible solutions (see Figure 3-4), employing SQP for 

each such starting point. An updated candidate solution array Xcand is generated.  

Intensification starts with selecting the 1
st
 element, X, of Xcand generated in the 

diversification process. If X is tabu, then the process is applied to the next element in 

Xcand. If X is not tabu and it is feasible, X and its objective function value Z, are 

directly added into the new feasible solution set, Xnew, and objective set, Znew, 
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respectively; otherwise, (SL) is solved through SQP using X as the starting point and 

resulting locally optimal solution X’ with corresponding objective value Z’. X’ and Z’ 

will be added into Xnew and Znew, respectively. This process is repeated until all 

elements of Xcand have been investigated. 

After obtaining a new feasible set, Xnew, it is sorted in nondecreasing order 

according to objective values. The best (first) new feasible solution Xnewbest is selected. 

The aspiration criterion is used to update the best known solution. If the aspiration 

criterion is satisfied (i.e. Znewbest< Zbest), then the best known solution Xbest will switch 

to Xnewbest and the best known objective Zbest will change to Znewbest. The previous best 

solution will be placed in the tabu list. Termination criteria will be assessed. If one of 

the termination criteria is met, the procedure stops; otherwise, continue to the next 

iteration. If the aspiration criterion is not satisfied, the subsequent elements in Xnew 

cannot be better than Xnewbest, and the tabu criterion will be checked for all elements in 

Xnew. If any is not tabu, it will be placed in the tabu list. If all of elements in Xnew are 

tabu, the first element in the tabu list will be selected as the best known solution. The 

tabu list aids in preventing the search from being trapped at a local solution. The SQP 

algorithm requires evaluation of Lower(  ) within Equations (3-18). Details of the 

process to solve the lower-level problem are discussed in subsection 2.5.3. 
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Figure 3-4 Flowchart of Intensification Process (Step 4) 

 

3.7  Numerical Experiments 

3.7.1  Experiment Design 

To investigate the efficiency of the proposed model and solution methodology, the 

MTS-SQP procedure with embedded TS algorithm for solution of Lower(  ) is applied 

on a numerical example consisting of 14 nodes, 22 links and 4 O-D pairs, as shown in 

Figure 3-5. The example network is acyclic; however, the methodology supports 

solution in networks with cycles. 
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Figure 3-5 Test Network Configuration 

As indicated in Figure 3-5, some links begin with zero capacity. An increase 

in capacity from zero is akin to opening or constructing the link. Detailed information 

of the network is listed in Table 3-1. The free-flow speed is set to be 1.42m/s 

(Thalmann and Musse, 2007) and coefficient ak = 0.0008 for travel time calculations. 

The total budget B is 1500 cost units. 

Table 3-1 Network Information 

Link al (m) 0
at (s) ac  ab  up

ac
 

Link al (m) 0
at (s) ac  ab  up

ac
 

1 100 70.42 10 3 50 13 100 70.42 10 3 50 

2 100 70.42 20 3 50 14 200 140.85 0 5 50 

3 100 70.42 10 3 50 15 100 70.42 20 3 50 

4 200 140.85 0 5 50 16 100 70.42 10 3 50 

5 100 70.42 20 3 50 17 100 70.42 20 3 50 

6 100 70.42 10 3 50 18 100 70.42 10 3 50 

7 100 70.42 20 3 50 19 100 70.42 20 3 50 

8 100 70.42 20 3 50 20 100 70.42 20 3 50 

9 100 70.42 20 3 50 21 100 70.42 10 3 50 

10 100 70.42 20 3 50 22 100 70.42 10 3 50 

11 100 70.42 20 3 50 23 100 70.42 10 3 50 

12 200 140.85 0 5 50 24 200 140.85 0 5 50 

 

Table 3-2 gives the demand information for each O-D pair. There are 20 

groups of pedestrians for each O-D pair. The group size is uniformly chosen on the 
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interval [1, 30]. Traveling distance sensitivity parameter g is uniformly distributed 

between 0 and 1 and travel time sensitivity parameter 1g g   . 

Table 3-2 Demand for Each O-D Pair 

O-D pair Group Size g (/m) 
g (/s) O-D pair Group Size g (/m) 

g  (/s) 

1-11 

1 10 0.5 0.5 

1-14 

1 7 0.4 0.6 

2 12 0.7 0.3 2 27 0.3 0.7 

3 29 0.3 0.7 3 16 0.6 0.4 

4 23 0.2 0.8 4 19 0.6 0.4 

5 19 0.4 0.6 5 22 0.3 0.7 

6 4 0.6 0.4 6 27 0.1 0.9 

7 10 0.5 0.5 7 28 0.6 0.4 

8 25 0.4 0.6 8 30 0.1 0.9 

9 15 0.7 0.3 9 21 0.7 0.3 

10 1 0.7 0.3 10 16 0.2 0.8 

11 14 0.3 0.7 11 16 0.8 0.2 

12 30 0.3 0.7 12 1 0.1 0.9 

13 12 0.6 0.4 13 14 0.5 0.5 

14 30 0.7 0.3 14 18 0.3 0.7 

15 4 0.5 0.5 15 10 0.4 0.6 

16 18 0.8 0.2 16 11 0.2 0.8 

17 22 0.2 0.8 17 18 0.8 0.2 

18 14 0.6 0.4 18 1 0.2 0.8 

19 13 0.2 0.8 19 4 0.1 0.9 

20 16 0.3 0.7 20 30 0.5 0.5 

2-11 

1 18 0.8 0.2 

2-14 

1 10 0.2 0.8 

2 29 0.8 0.2 2 13 0.7 0.3 

3 29 0.8 0.2 3 16 0.1 0.9 

4 15 0.2 0.8 4 13 0.7 0.3 

5 27 0.4 0.6 5 19 0.8 0.2 

6 7 0.4 0.6 6 18 0.5 0.5 

7 17 0.3 0.7 7 9 0.5 0.5 

8 20 0.1 0.9 8 4 0.0 1.0 

9 19 0.6 0.4 9 28 0.4 0.6 

10 6 0.2 0.8 10 6 0.3 0.7 

11 19 0.6 0.4 11 2 0.7 0.3 

12 27 0.5 0.5 12 17 0.4 0.6 

13 8 0.2 0.8 13 2 0.8 0.2 

14 1 0.3 0.7 14 9 0.3 0.7 

15 20 0.6 0.4 15 20 0.8 0.2 

16 22 0.2 0.8 16 28 0.3 0.7 

17 21 0.8 0.2 17 1 0.8 0.2 

18 7 0.2 0.8 18 3 0.7 0.3 

19 23 0.3 0.7 19 8 0.3 0.7 

20 2 0.1 0.9 20 4 0.2 0.8 
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The proposed MST-SQP procedure with embedded TS algorithm was coded in the 

MATLAB 2010a environment and run on a personal computer with Intel(R) CPU 

3.10GHz and 4.0GB RAM. The procedure takes advantage of an existing SQP tool 

available within the Optimization Toolbox of MATLAB (Coleman et al., 1999). 

3.7.2  Results and Analysis 

Table 3-3 gives the set of 34 efficient routes among the four O-D pairs. Three links 

with no prior capacity are included. The distances required to traverse the routes are 

identical with 500 m. 

Table 3-3 Routes Set for Each O-D Pair 

O-D Index Route O-D  Index Route 

1-11 

1 1→2→5→6→10→11 

1-14 

1 1→2→5→6→10→14 

2* 1→2→5→6→11 2 1→2→5→9→10→14 

3 1→2→5→9→10→11 3 1→2→5→9→13→14 

4* 1→2→6→10→11 4* 1→2→6→10→14 

5* 1→2→6→11 5 1→4→5→6→10→14 

6 1→4→5→6→10→11 6 1→4→5→9→10→14 

7* 1→4→5→6→11 7 1→4→5→9→13→14 

8 1→4→5→9→10→11 8 1→4→8→9→10→14 

9 1→4→8→9→10→11 9 1→4→8→9→13→14 

  10 1→4→8→12→13→14 

3-11 

1 3→4→5→6→10→11 

3-14 

1 3→4→5→6→10→14 

2* 3→4→5→6→11 2 3→4→5→9→10→14 

3 3→4→5→9→10→11 3 3→4→5→9→13→14 

4 3→4→8→9→10→11 4 3→4→8→9→10→14 

5 3→7→8→9→10→11 5 3→4→8→9→13→14 

  6 3→4→8→12→13→14 

  7 3→7→8→9→10→14 

  8 3→7→8→9→13→14 

  9 3→7→8→12→13→14 

  10* 3→7→12→13→14 

* indicates that a link that originally had zero capacity is included within the route 

Assignment Results before Reconfiguration 

Convergence to an equilibrium solution with total disutility of 600,000 is obtained 

after 7 iterations of evaluation of Lower (  ) for the original network design, requiring 

3.84 CPU seconds in total, as shown in Figure 3-6. 



 

 64 

 

 

Figure 3-6 Convergence Process of Lower-Level Solution Algorithm 

 

(a) OD 1-11 

 

(b) OD 1-14 

 

(c) OD 2-11 

 

(d) OD 2-14 

Figure 3-7 Distribution of Groups over Routes by O-D Pair before 

Reconfiguration 

Solution of the lower-level problem is obtained for the existing system configuration. 

Figure 3-7 shows the distribution of groups over the route options between each of 

the O-D pairs. Note that no group is assigned to a route with any link with zero 
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capacity. For example, in Figure 3-7(a), no groups are assigned to routes 2, 4, 5, or 7 

related to O-D pair 1-11. Furthermore, there is no group that can decrease its total 

incurred disutility by unilaterally switching routes. 

Results from Solving the RECM allowing for Reconfiguration 

The MST-SQP solution methodology is applied, where reconfiguration is permitted. 

As shown in Figure 3-8, the procedure terminates after 20 iterations, because no 

improvement in solution value is obtained for more than 10 iterations. The resulting 

solution has a total travel time of 495,240. The disutility at the lower-level is 565,260 

(total disutility before reconfiguration is 600,000 as shown in Figure 3-6). The 

procedure required 1,955 CPU seconds. 

Table 3-4 shows capacity changes needed to minimize total travel time as 

suggested by the solution methodology. As shown in the table, the entire budget 

(1500) need not be used to obtain an improvement in total travel time by 18 percent 

(from 603,730
 
to 495,240 time units). The sum of the capacity changes equals zero, 

indicating that no more space than exists will be used. Those links with larger 

capacity increases also supported larger increases in flows. If capacity limitations are 

relaxed, one would expect the entire budget to be used, and total travel time to 

decrease further.  
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Figure 3-8 Termination of the MST-SQP Solution Algorithm 

Table 3-4. Results before and after Capacity Increase  

Link ax  before redesign 
ay  ax after 

redesign 
ab  Cost 

1 221 15.86 451 3 48 

2 436 -8.00 206 3 24 

3 221 -8.94 19 3 27 

4 0 31.25 432 5 156 

5 376 -6.22 235 3 19 

6 191 9.36 332 3 28 

7 445 -3.72 282 3 11 

8 367 -10.86 159 3 33 

9 397 -6.71 233 3 20 

10 269 -16.02 68 3 48 

11 397 -12.57 165 3 38 

12 0 36.05 500 5 180 

13 191 -1.25 148 3 4 

14 0 13.31 184 5 67 

15 371 -4.54 270 3 14 

16 187 -7.86 37 3 24 

17 533 -6.19 244 3 19 

18 107 -4.63 94 3 14 

19 658 -13.25 158 3 40 

20 272 -5.61 251 3 17 

21 187 2.45 221 3 7 

22 294 8.10 315 3 24 

Total travel time 

( )a a a

a A

x t x


  

before after 
Cost spent 

=860 6.0373×10
5
 4.9524×10

5
 

 

Figure 3-9 pictorializes changes in network configuration, specifically capacity 

allocation and flow patterns, resulting from the application of the solution 

methodology under two initial capacity settings, where the second setting involves 10 
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more units of capacity along each link as compared with the original network. With 

increased capacity, travel times will generally decrease. One can observe dramatic 

changes in capacity and flow after reconfiguration, especially for links with original 

capacities of zero. For the different starting conditions, flow distributions and 

allocation of budget differ as expected. For both starting conditions, increases in 

capacities occur only on links with relatively low capacities. This supports a larger 

dispersion of flow over the network. Flows, thus, follow capacity changes, illustrating 

the interactions between upper- and lower-levels. Flow conservation is respected both 

before and after reconfiguration. 

 

Figure 3-9 Comparison of Capacity Allocation and Flow Distribution 
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3.8  Conclusions and Extensions 

In this chapter, the crowd control problem is formulated as a bi-level program. A 

network design problem and an assignment problem based on pure-strategy Nash 

equilibrium are considered in the upper- and lower-level, respectively. The lower-

level problem incorporates characteristics of crowd grouping behavior. A MST-SQP 

Procedure is proposed for solution of the bi-level program. In the proposed procedure, 

a metaheuristic based on best response dynamic and tabu search methods is proposed 

to identify the pure-strategy Nash equilibrium solution of the lower-level game. The 

model and solution algorithm are tested on a numerical example, results from which 

show the effectiveness and efficiency of the proposed methodology. 

The main contributions of this paper include: a modeling framework that 

simultaneously takes the crowd manager and pedestrian goals into consideration; 

crowd control strategies created from the solution of a network design problem, a 

type of mathematical decision problem; incorporation within a mathematical 

framework of key behavioral rules, including group dynamics, and the desire by 

system users to choose utility maximizing routes; and more generally, a solution 

framework that obviates the need for simulation.  

The proposed modeling approach has practical utility in crowd control. The 

outcome of implementing this methodology is a set of strategies for reconfiguring the 

physical layout to better support likely pedestrian response to the physical offerings. 

It does not attempt to control pedestrian decisions, but instead recognizes that the 

pedestrians will make selfish decisions that support their personal (individual or 
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group) goals. The outcome of the model can be implemented through, for example, 

the placement of portable barriers and barricades, opening and closing of gates, and 

use of other devices such as ropes with posts and signage. 

Proposed model and solution framework might be improved or extended in 

several directions. First, additional experiments are required to assess the utility of the 

proposed methodology on larger problem instances. The procedure guarantees a local 

optimal solution and employs heuristic steps in seeking a global optimum. This 

modeling framework permits alternative solution approaches, such as linear 

approximation, that may be useful in addressing large problem instances. 

Alternatively, large problem instances can be addressed by replacing the SQP 

approach of the MST-SQP procedure with a heuristic. However, such an approach 

will not guarantee even local optimality.  

In addition, it is assumed that all pedestrians within a group have the same 

preference function including parameter settings and that pedestrians within a group 

always stay together as they move on the network. These assumptions were used to 

investigate the maximum marginal impact of group size. Such assumptions can be 

relaxed to model other type of grouping behaviors. For example, within the proposed 

framework, one might model separable groups, where pedestrians within a group are 

allowed to split. In this case, instead of seeking a pure strategy Nash equilibrium, the 

objective of the lower-level problem will seek a mixed strategy Nash equilibrium and 

a UE or SUE based assignment can be sought in the solution of the lower-level 

problem. Additionally, the heterogeneity of preference parameters of pedestrians 

within a group can be further explored within the proposed framework. The 

heterogeneous preference parameters and attributes of routes that affect route choice 

might be estimated using a survery-based approach (Daamen et al., 2005; Seneviratne 

and Morrall, 1985).  

Moreover, one might extend the developed model and solution methodology 

to address a dynamic crowd control problem, where the physical environment 

changes dynamically and pedestrians make decisions on splitting or grouping at each 

node according to dynamically updated utilities. In dynamic settings, a more 
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sophisticated travel time function would be necessary to capture pedestrian dynamics 

at intersections as well as the impacts of bi-directional flows.  

Finally, pedestrians are assumed to move on a network representation of a 

facility. One might explore the interdependencies in space restrictions between 

abutting or adjoining links of the network, this might be modeled within the proposed 

framework through the addition of constraints in (U). One might also extend the 

proposed framework to model movements of pedestrians over a continuous space by 

including heading direction and neighborhood density in the utility function. This 

would, however, require longer computational time to solve the lower-level. 
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Chapter 4 Optimizing Ridesharing Services for Airport 

Access 

4.1  Introduction 

This chapter addresses the problem of optimally routing and scheduling airport 

shuttle vehicles that offer pickup and dropoff services to customers through 

ridesharing. This work was motivated by a need for tools to support efficient resource 

management at Supreme Airport Shuttle, Inc. This company provides ridesharing 

services to customers travelling to/from two major airports in the Washington, D.C. 

area. In its outbound operations, they have a fleet of vehicles used to pick up 

customers from the airport’s arrival doors and drop them at customer-chosen 

destinations. The vehicles also provide inbound services in which they pick up 

customers at multiple origins outside the airport and drop them at the airport’s 

departure doors. Customers request services by phone, online or at a kiosk in the 

airport or hotel. Each request includes information on the number of passengers, 

pickup location and time, and (or) dropoff location and time. A single request can be 

for a one-way trip (outbound or inbound) or a round trip (outbound and inbound). 

Each request results in a trip from the arrival door of the airport to the trip’s 

destination or from the trip’s origin to the departure door of the airport. Thus, requests 

can be made in advance or may arise dynamically on the same day of service. One or 

more trips are served by one vehicle through a route, which is defined by a circuit that 

is travelled by a vehicle starting from and ending at the holding lot in the airport. 

Each vehicle may have multiple routes during a shift.  
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Figure 4-1 Illustration of One Vehicle Route 

 

Reduced total passenger-miles traveled resulting from ridesharing and 

efficiently designed routes can increase profitability of the service provider and aid in 

diminishing traffic congestion and related negative externalities, including 

environmental pollution. Thus, an optimization model is proposed for the problem of 

determining a set of routes and schedules that meet service quality, resource, labor 

and vehicle capacity constraints while minimizing total cost in terms of vehicular use 

and total wages in the context of airport ridesharing services. This problem, which is 

a version of the Dial-A-Ride Problem (DARP), is called the Airport Access 

Ridesharing Problem (AARP) here.  

The AARP is considered under three different operational policies illustrated 

in Figure 4-1. Policy 1 handles outbound and inbound trips separately, assigning 

different sets of vehicles to each. This policy is under consideration, because in 

current operations demand for outbound service far outweighs the demand for 

inbound service. Policy 2 handles outbound and inbound trips simultaneously, 
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permitting a single vehicle to drop off outbound and pick up inbound customers at all 

points along the route. Under Policy 3, all outbound trips must be dropped off before 

the same vehicle starts picking up inbound trips. This last policy gives preference to 

outbound customers, the majority of the company’s actual customers. While one can 

show that Policy 2 will always produce the most efficient routes for the operator, 

other policies must be considered under certain contractual agreements or passenger 

service policies. 

The AARP is a difficult combinatorial optimization problem; the number of 

possible solutions for it grows exponentially with increasing problem size. Even 

obtaining a single feasible solution by hand can be quite challenging. Yet, efficient 

use of limited resources is key to providing profitable, quality service that, by 

contract, meets service level agreement requirements. Thus, for real-world problem 

instances, tools to support the identification of feasible and optimal or near-optimal 

solutions can be crucial. An exact solution algorithm and two heuristics are proposed 

to solve the AARP. The exact solution applies a Constraint Programming based 

Column Generation (CPCG) approach (Junker et al., 1999). The first heuristic is a 

variant of the sequential insertion heuristic proposed by Jaw (Jaw et al., 1986) for a 

related dial-a-ride problem (DARP). The second is adapted from Solomon’s work on 

the Vehicle Routing Problem with Time Windows (Solomon, 1987). Performance of 

the proposed heuristics is compared in a case study involving data from one day’s 

operation of the Supreme Airport Shuttle fleet at one airport. The solution approaches 

were implemented and adapted to the three operational polices. Results from runs of 
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the algorithms are analyzed and compared based on a variety of performance 

measures. 

Related works from the literature are reviewed in Section 4.2. Notation and 

problem formulations for the three polices are introduced in Section 4.3, followed by 

the description of the proposed solution approaches in Section 4.4. In Section 4.5, 

results of numerical experiments conducted on the real-world case study are provided. 

Finally, conclusions and extensions are discussed in Section 4.6. 

 

4.2 Related Literature 

The AARP shares several characteristics of a variety of established optimization 

problems. First, the AARP is related to the Vehicle Routing Problem with Time 

Windows (VRPTW) (Kolen et al., 1987), which is an extension of the traditional 

Capacitated Vehicle Routing Problem (CVRP) (Dantzig and Ramser, 1959). In the 

VRPTW, a vehicle must arrive within given time window at each customer. Where 

soft time window constraints are permitted, a penalty for early or late arrival may be 

incurred. In this case, the total costs for routing and scheduling include not only the 

travel distance and time costs, but also the penalty costs. For comprehensive reviews 

of optimization algorithms for VRPTW, the reader is referred to (Braysy and 

Gendreau, 2005a, b; Desrochers et al., 1992; Prescott-Gagnon et al., 2009). The 

AARP similarly has time windows; however, these constraints are hard. Thus, any 

solution that violates these constraints is infeasible. The AARP differs from the 

VRPTW by also including maximum ride time constraints needed to control the time 

spent by each passenger traveling in the vehicle, as well as maximum shift durations. 
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Moreover, customer stops are paired in the AARP, since each customer has a pair of 

pickup and dropoff locations, and the pickup must be completed before the dropoff. 

This creates additional precedence constraints. Such pairing and precedence of 

customers are captured in a generalization of the VRPTW, the Pickup and Delivery 

Problem with Time Windows (PDPTW) (Dumas et al., 1991).  

As in the AARP, in the PDPTW the origin of each request must precede its 

destination on each vehicle tour, and both locations must be visited by the same 

vehicle. Among the PDPTWs in the literature, those that address the DARP (Jaw et 

al., 1986) are most relevant. Comprehensive surveys of optimization algorithms on 

the PDPTW are provided in (Wallace, 1978) and (Cordeau and Laporte, 2007), and 

on the DARP in (Parragh et al., 2008b) and (Berbeglia et al., 2007). The DARP 

involves passenger transportation between paired pickup and delivery points and 

takes user inconvenience into account. The AARP can be viewed as a special case of 

the DARP with one-to-many and many-to-one operations. See (Gribkovskaia and 

Laporte, 2008) for a discussion of this variant for a single vehicle. The AARP with 

Policy 1 or 2 can be treated as a PDPTW; however, operational Policy 3 requires that 

inbound movements cannot begin until outbound movements are complete. This 

variant does not appear to have been addressed previously.  

The Vehicle Routing Problem with Backhauls and Time Windows 

(VRPBTW), another variant of the VRPTW, specifically captures the one-to-many 

and many-to-one characteristics of the AARP. The VRPBTW involves linehaul and 

backhaul operations. In the linehaul operations, the loading of goods onto a vehicle is 

completed at one or more depots, and goods are transported to one or more 
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destinations. In backhaul operations, once linehaul operations are complete (or 

partially complete), goods are loaded at the linehaul destinations or other convenient 

locations, and transported to the depot, the destination of the backhaul deliveries. A 

comprehensive survey of algorithms and applications for the VRPB, including the 

VRPBTW, is given in (Parragh et al., 2008a). Following the classification scheme in 

(Parragh et al., 2008a), the AARP using Policy 1 can be viewed as two separated 

DARPs, one addressing the outbound trips and the other the inbound trips. The 

AARP using Policy 2 can be defined as a Vehicle Routing Problem with 

Simultaneous Delivery and Pickup and Time Windows (VRPSDPTW). The AARP 

using Policy 3 can be classified as a Vehicle Routing Problem with Clustered 

Backhauls and Time Windows (VRPCBTW). The VRPCBTW does not deal with 

pairing and precedence of service points, a crucial characteristic of the AARP. 

Limited works in the literature address the specifics of the VRPBTW and its 

VRPSBTW and VRPCBTW variants. The VRPBTW has been formulated as a mixed 

integer linear program, but only relatively small instances can be solved to optimality. 

An exact solution approach for the VRPSBTW is presented in (Angelelli and Mansini, 

2002). Specifically, a column generation framework is proposed in which the 

problem is decomposed into a Master Problem (MP) and Subproblem (SP). The MP 

is formulated as a set covering problem and branch-and-price is proposed for solution 

of the SP. Solution of the SP supplies a feasible route for inclusion in the set of 

possible routes considered in the MP. The largest instance solved to optimality had 20 

customers. Yano et al. (1987) formulated the VRPCBTW as a set partitioning 

problem. They proposed an exact solution method based on branch-and-bound to 
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generate optimal tours, each with a maximum of four linehaul and four backhaul 

customers. For the same problem with possibly more than four customers, Gelinas et 

al. (1995) proposed an exact algorithm based on column generation for solving a 

similar set partitioning formulation of the VRPCBTW. The algorithm found optimal 

solutions for problems with up to 100 customers.  

While promising, exact solution methods cannot be applied to typical 

problems of a size seen in real-world operations. Thus, numerous works have 

proposed heuristics for these problems. The majority of these heuristics include 

construction and improvement schemes based on classical greedy methods. More 

powerful methods have been proposed based on metaheuristics. For example, 

Dethloff (2001) proposed an extension of the cheapest insertion heuristic for the 

VRPSBTW. Thangiah et al. (1996) proposed a heuristic for solution of the 

VRPCBTW. In the construction phase, the insertion procedure of (Kontoravdis and 

Bard, 1995) proposed for the VRPTW is used to obtain initial solutions. Then, the 

initial solutions are improved through the application of λ-interchanges and 2-opt* 

exchanges in the improvement phase. Duhamel et al. (1997) uses an insertion 

procedure proposed in (Solomon, 1987) for initial solution construction, but proposed 

a tabu search heuristic for the improvement phase. An augmented objective function 

for the VRPCBTW is presented by Zhong and  Cole (2005), where violations of time 

windows, capacity and linehaul-backhaul precedence constraints are penalized. The 

cluster-first route-second method is used for initial route construction and intra- and 

inter-route operators are described for use in improving the tours. Metaheuristics, 
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such as Tabu Search (Duhamel et al., 1997), genetic algorithms (Tasan and Gen, 2012) 

and ant colony optimization (Paraphantakul et al., 2012), have also been proposed. 

In the next section, a general formulation is presented that can be used to 

solve all three variants of the AARP. This formulation combines aspects of 

previously proposed formulations for the PDPTW and VRPBTW. It fills the need for 

a formulation of a PDPTW with linehaul and backhaul operations or the VRPCBTW 

with additional pairing and precedence constraints, i.e. AARP with Policy 3. The 

proposed formulation does not rely on a complete enumeration of the feasible tours, 

which is a requirement of the set partitioning formulation of the VRPCBTW and set 

covering approach for the VRPSBTW. The formulation given next includes 

additional constraints specific to an application involving passengers as opposed to 

cargo, including maximum passenger ride times and restrictions on idling with 

passengers onboard.  

 

4.3 Problem Formulation 

In this section, the AARP is formulated. The formulation is preceded by the 

introduction of notation. Additional adaptations needed for different operational 

policy implementations are given.  

Notation 

On  number of outbound trips/requests 

In  number of inbound trips/requests 

OP  set of outbound pickup nodes located at the arrival door, {1,..., }O OP n  

IP  set of inbound pickup nodes, { 1, , }I O O IP n n n     
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OD  set of outbound dropoff nodes, { 1,...,2 }O O I O ID n n n n     

ID  set of inbound dropoff nodes located at the departure door,

{2 1,...,2 2 }I O I O ID n n n n     

P  set of all pickup nodes, O IP P P   

D  set of all pickup nodes, O ID D D   

V  set of available vehicles 

iq  demand/supply at node i; for pickup nodes, 0,iq i P   ; for dropoff nodes, 

0,iq i D   ; for the holding lot, 0 2 2 1 0
O In nq q    . 

ie  earliest service time at node i, i.e. the start of the time window 

il  latest service time at node i, i.e. the end of the time window 

is  service duration or dwell at node i 

v
ijc  cost to travel from node i to node j with vehicle v 

v
ijt  travel time from node i to node j with vehicle v 

vQ  capacity of vehicle v 

vT  shift duration of vehicle/route v 

iR  maximum ride time of request i 

 

Decision Variables 

1,  if arc( , ) is traversed by vehicle 

0,  otherwise                                       

v
ij

i j v
x


 


 

v
iL  load of vehicle v when depature node i 

v
iA  arrival time of vehicle v at node i 

v
iB  time of beginning service of vehicle v at node i 
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With this notation, the AARP problem can be modeled on a digraph 

( , )G N A , where N is the set of all nodes, {0,2 2 1}O IN P D n n     and A is 

the set of directed arcs, {( , ) : , , 2 2 1, 0, }O IA i j i j N i n n j i j       . 

 

4.3.1 The General AARP Formulation 

The general formulation of the AARP builds on the existing formulations for the 

VRPBTW (Parragh et al., 2008a) and PDPTW (Ropke and Cordeau, 2009).  

( , )

min    ( )v v v v v
ij ij w j j

v V i j A v V j P

c x C B A
   

       (4-1) 

                 s.t.                
:( , )

1                     ,v
ij

v V j i j A

x i P
 

     (4-2) 

                           ,

:( , ) :( , )

0      , ,
O I

v v
ij n n i j

j i j A j i j A

x x i P v V 

 

       (4-3) 

             0

:(0, )

1                            ,v
j

j j A

x v V


    (4-4) 

                             
:( , ) :( , )

0               , ,v v
ji ij

j i j A j i j A

x x i P D v V
 

        (4-5) 

,2 2 1

:( ,2 2 1)

1            ,
O I

o I

v
i n n

i i n n A

x v V 

  

    (4-6) 

(1 ) (1 )             ( , ) , ,v v v v v
ij j i i ij ijM x B B s t M x i j A v V             (4-7) 

                    (1 ) (1 )           ( , ) , ,v v v v v
ij j i ij ijM x A A t M x i j A v V           (4-8) 

                                          0 2 2 1= =0            ,
O I

v v
n nL L v V     (4-9) 

                     

(1 ) (1 )               ( , ) , ,v v v v
ij j i j ijM x L L q M x i j A v V           

(4-10) 

                (1 )            , ,          v
i ie A M y i N v V       (4-11) 

( )              , ,v
i iL q M y i N v V        (4-12) 

                    max(0, ) min( , )     , ,v v v
i i iq L Q Q q i N v V       (4-13) 

              max( , )                   , ,v v
i i i ie A B l i N v V      (4-14) 

              ,            , ,
O I O I

v v v
i i n n i n n iB t B i P v V         (4-15) 
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     2 2 1 0                        ,
O I

v v v
n nB B T v V       (4-16) 

               ( )                    , ,
O I

v v
n n i i i iB B s R i P v V         (4-17) 

              {0,1}                                  ( , ) , .v
ijx i j A v V     (4-18) 

 

The objective function (4-1) minimizes total routing cost. wC  is unit cost of 

vehicle waiting. The cost 
v
ijc  in the function is expressed in equation (4-19), which 

includes costs related to vehicle travel distance and time.  

                                         * *v v
ij d ij t ijc C d C t  ,                                (4-19) 

where dC , and tC  are unit costs of vehicle travel distance and travel time, 

respectively. ijd is the distance between node i and j.  

Constraints (4-2) and (4-3) ensure that every node is visited exactly once and 

pickup and dropoff nodes associated with a particular request are visited by the same 

vehicle, respectively. Each route starts and ends at a holding lot as required in 

Constraints (4-4) and (4-6), respectively. Constraints (4-5) enforce flow conservation. 

Constraints (4-7)-(3-8) and (4-9)-(4-10) guarantee consistency between time and load 

variables. Constraints (4-11) and (4-12) ensure that a vehicle does not idle while 

carrying passengers. Capacity and time window constraints are imposed by 

inequalities (4-13) and (4-14), respectively. Constraints (4-15) force the pickup node 

to be visited before the dropoff node for each request. The maximum route duration is 

restricted in Constraints (4-16). The passenger maximum ride time constraints are 

specified in inequalities (4-17), followed by integrality constraints expressed by 

Constraints (4-18). Constraints (4-2), (4-4)-(4-6), (4-13) and (4-15) are used in both 

formulations of (Parragh et al., 2008a) and (Ropke and Cordeau, 2009). Constraints 
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(4-7), (3-9) and (4-15) are included in the formulation given in (Parragh et al., 2008a), 

while constraints (4-3) and (3-14) are included in the formulation of (Ropke and 

Cordeau, 2009). Constraints (4-8), (4-10) - (4-12) and (4-16)-(4-17) are unique to the 

AARP. Note that if all vehicles are identical, superscript v in , ,v v v
ij ijc t Q and vT  can be 

eliminated for the AARP formulation. 

The formulation is designed to be general and directly applicable for Policy 2. 

Small adaptations are required for the application of Policies 1 and 3 as described 

next. 

 

4.3.2 Adaptation for Policy 1 

To apply the formulation where Policy 1 is implemented, the problem can be posed as 

two separate DARPs, one for outbound trips and the other for inbound trips. To 

specify the DARP for outbound trips, the AARP formulation can be applied by 

presetting certain variables. Specifically, 0,I I In P D     for the outbound 

problem and 0,O O On P D     for the inbound problem.  

 

4.3.3 Adaptation for Policy 3 

For the AARP under Policy 3, additional constraints (4-20) are required to ensure that 

each vehicle drops off its outbound passengers before picking up its inbound 

passengers. This can be implemented by restricting arcs between inbound and 

outbound customer location nodes. That is, no arc can exist in a route directly 

connecting any inbound pickup location to an outbound dropoff location. This 
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precludes any tour from allowing a sequence in which an inbound request is served 

before all outbound dropoffs are completed. 

                                        0               , ,v
ij I O Ox i P j P D v V                        (4-20) 

The AARP is difficult to solve directly, since the number of decision variables 

increases exponentially with increasing problem size (number of nodes to be visited). 

The proposed formulation was implemented directly in the IBM IOG CPLEX 

package on a personal computer with Intel(R) CPU 3.10GHz and 4.0GB RAM. The 

required computational time was exceptionally long. In a reduced version of the 

problem instance with only 10 outbound trips and 10 available vehicles, the solution 

was obtained after more than 6 hours, which is unacceptable in practice. Thus, in the 

next section, an alternative exact solution method is proposed. 

 

4.4  Exact Solution Method 

A CPCG solution methodology is proposed for exact solution of the AARP. A 

column generation mechanism is employed wherein the AARP is decomposed into a 

master problem (MP) and a subproblem (SP).  A restricted linear relaxation of the MP 

(LMP) is solved and optimal dual variables associated with the requests served 

Constraints (26) are set in solving the SP. Solution of the SP is obtained through a 

constraint programming (CP) methodology. An overview of the proposed CPCG is 

provided in Figure 4-2. 
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Figure 4-2 Flowchart of Exact Solution Method 

 

The procedure starts by feeding the LMP, modeled as a set covering problem, 

with a feasible solution consisting of a set of vehicles, each of which serves one 

request. The SP is a constrained shortest path problem. Solution of the SP produces a 

route with negative reduced cost. This route is added to the route set (or column set) 

used in the next iteration in which solution of the LMP is repeated. This process 

terminates when solution of the SP does not produce a route that is not already 

included in the column pool with negative reduced cost. With the final column pool 

Initial feasible solution with n columns, one 

vehicle for each request

Linear Relaxed Master Problem
Set Covering

Solved by Linear Programming

A new route with negative 

reduced cost ?

Add generated route into 

feasible route set

Yes

No

Heuristic Reassemble 

Procedure

Obtain dual values for all requests

Sub-Problem
Constrained Shortest Path Problem

Solved by Constraint Programming

Integer Master Problem
Set Partitioning

Solved by Integer Programming

Final 

solution
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(route set), the integer MP, a set partitioning problem, is solved. The route obtained 

from solution of the integer MP is reassembled through a proposed heuristic 

procedure to generate the final solution. Details associated with the MP, SP and 

heuristic reassemble procedure are provided next. 

 

4.4.1 Master Problem 

Assume that all vehicles are identical and let  denote the set of feasible routes 

satisfying constraints (4-3)-(4-17). For each route, ,r let rc be the cost of the 

route and ira be a binary constant indicating whether or not a node i P is visited by 

route r. Let ry be a binary variable equal to 1 if route r is selected, and 0 

otherwise. The AARP can be reformulated as the following set partitioning problem 

(MP-SPP). 

(MP-SPP)             min   r r

r

c y



  (4-21) 

s.t  1               ir r

r

a y i P



    (4-22) 

{0,1}                  ry r    (4-23) 

The objective (4-21) minimizes the cost of the chosen routes. Constraints (4-22) 

ensure that every request is served once.  

It is impractical to explicitly enumerate all feasible routes in  . Instead, as is 

typical, only a subset    is considered. This subset is expanded iteratively by 

adding a route with negative reduced cost through solution of the SP. The reduced 

cost of a route is expressed by equation (4-24). 
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,       ,( , )
ˆ

,           \ ,( , )

ij i

ij
ij

c i P i j A
c

c i N P i j A

   
 

  

 (4-24) 

where i is the dual value associate with the i
th

 constraint (4-22). The MP is given 

next. 

 

(LMP)             min   r r

r

c y


           (4-25) 

s.t.  1               ir r

r

a y i P


    (4-26) 

0                  ry r     (4-27) 

This relaxation allows every request to be served more than once rather than only 

once. Constraints (4-27) relax integrality constraints. 

 

4.4.2 Sub-problem 

The SP formulation is given next. 

(SP) 
( , )

min    ( )ij ij w j j

i j A v V j P

rc x C B A
  

      (4-28) 

s.t.             Constraints (4-3)-(4-17).  

  

4.4.3 Constraint Programming for Sub-Problem 

In the CP approach, each decision variable has a domain. For example, in the SP, the 

domain of each arc, ijx , is {0,1} . Similarly, the domain of load Li is 0,  1,  , Q . 

Initially, the search space contains all combinations of the values in the domains of all 

decision variables. To avoid exploring the entire search space, CP first removes 
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inconsistent values from the domains of the variables involved in each constraint. 

Then a search strategy (depth first, width first or multi-start) is applied to guide the 

search for a solution within the reduced search space. The search process can be 

viewed as traversing a tree, where the root is the starting point, a leaf node is a 

combination of values in the reduced search space and each branch represents a move 

(branching) within the search. A solution is a set of value assignments to the decision 

variables such that each variable is assigned to exactly one value from its domain. 

Together these values satisfy all constraints and minimize the objective function. 

Each leaf node is evaluated to determine if it will produce a feasible solution. 

Two measures are suggested for speeding up the process of finding a feasible 

solution: 1) eliminate ineligible decision variable settings from the initial search space, 

wherein those decisions that include starting from the end depot, ending at the starting 

depot, selfloops, or that would violate Constraints (4-13) - (4-15) are excluded, and 2) 

set branching limits for the route generation process. As mentioned in (Irnich and 

Desaulniers, 2005), in the context of column generation, optimality of the SP is only 

necessary to prove that no negative reduced cost routes exist in the last iteration, and 

feasible solutions to the SP are sufficient for preceding iterations. Thus, a lower 

branching limit (10
6
) is used for these nonfinal iterations, while higher branching 

limits (10
8
) are applied in the last iteration. 

 

4.4.4 Heuristic Reassembly Procedure 

The optimal solution to the LMP is obtained when there are no remaining routes with 

negative reduced cost to the SP. Unfortunately, this solution is not always integer-
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valued. A branching scheme was proposed in (Dumas et al., 1991) to address this 

issue through adding additional arc flow constraints to the SP and resolving it. This 

process is repeated for each branching decision taken in the MP. The following 

observations are made: 

(1) The MP starts with a feasible solution in which one vehicle serves one request; 

(2) Each iteration generates a single unique route; 

(3) The newly generated routes that are selected by solution of the MP-SPP are 

always a subset of the newly generated routes that are selected by solution of 

the set covering problem. 

(4) The solution to the MP-SPP always includes one or more initial feasible 

routes. 

 

Since solution from MP-SPP provides useful information, the following 

heuristic applies.  

Step 1. Calculate the value of V = route cost/number of request served for each route 

selected by the MP-SPP.  

Step 2. Select the route r with maximum V. Try to extract the first unvisited request 

on route r and insert it into the best feasible position on one of the other routes, r’. If 

this decreases the total cost, update r and r’, and go to Step 1. Otherwise, mark this 

request as visited and move to the next request in r, if all requests in r have been 

visited, stop. 

Step 3. Repeat Step 1 

 

4.5 Heuristic Solution Approaches 

Two heuristics proposed in the literature were modified for solution of the AARP.  

An overview of each is given first, followed by the modifications required to address 

the three variants of the AARP. 
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4.5.1 Jaw’s Heuristic  

The first heuristic considered for solution to the AARP is the sequential insertion 

procedure originally proposed by Jaw (Jaw et al., 1986) for the DARP problem. The 

algorithm processes each request in an unrouted request list (URL) in sequence, and 

assigns each request to a vehicle until the URL is exhausted. The main steps of Jaw’s 

sequential insertion procedure are summarized as follows. 

Step 1: Sort URL by the requested pickup times in increasing order. Create a route 

from the depot and back to the depot. Set r =1. 

Step 2: Select the first unrouted request u from URL. Find all feasible insertion 

positions within all existing routes, 1 to r.  

(i) If a feasible insertion position is found, assign the request u to the 

route r* with minimum insertion cost, and update route r*.  

(ii) If no feasible insertion position exists, create a new route from the 

depot to request u, and add a return to the depot. Set r = r+1.  

Delete u from URL. 

Step 3: Repeat step 2 until URL is empty. 

The additional insertion cost to route r of inserting request u is calculated as 

the difference between the total cost of route r after the insertion minus its cost before 

the insertion. This is expressed in (4-29). 

                                               

, ,r r

r r
ij ij

i j new i j old

c c

 

  ,                                             (4-29) 

where 
rnew denotes route r after insertion of request u and 

rold denotes route r 

before insertion of request u.  
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4.5.2 Solomon’s Insertion I1 Heuristic 

The second heuristic considered here, Insertion I1, was proposed by Solomon 

(Solomon, 1987) for the VRPTW. Insertion I1 constructs routes one at a time. For the 

first created route, a tour is developed from the depot to a “seed” request, which 

returns to the depot. Remaining requests are considered for insertion in the route. The 

cost of insertion of all remaining unrouted requests is computed. The request with the 

minimum insertion cost that can be feasibly inserted is selected. Insertion of 

additional requests is considered until no remaining unrouted request can be feasibly 

inserted. A new route is then created. The process is repeated until all requests have 

been included in a tour. At each iteration in which a new route is created, the 

remaining unrouted request with the minimum value of 0 (1 )i id l    , 0≤ ≤1, 

Oi D for outbound trips and Ii P for inbound trips is selected as the seed. Trips 

that are far from the depot and have an earlier deadline are, thus, favored in choosing 

the request. 

The main steps of Insertion I1 can now be summarized: 

 

Step 1: Initialize r = 0. 

Step 2: Set r = r+1. Select the ‘seed’ request u* with the minimum value of 

0i id l   from URL for inclusion in route r. Add u* to route r and delete it 

from URL. If URL is empty, stop. 

Step 3: For each remaining unrouted request u in URL, find the feasible insertion 

position in route r, if a feasible insertion exists, that minimizes the additional 

insertion cost (equation (21)).  
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(i) If a feasible insertion exists, select request u* with the minimum 

additional insertion cost (equation (21)), and insert this request at its best 

feasible insertion position in route r. Update route r, and delete u* from 

URL.  

(ii) If there is no feasible insertion of any unrouted request in route r, go to 

step 2.  

Step 4: Repeat step 3 until URL is empty. 

 The two heuristics are quite similar, but differ in one fundamental aspect 

relating to the choice of a feasible insertion position for the unrouted requests. In 

Jaw’s heuristic, for each selected unrouted request u, its best insertion position within 

all constructed routes is evaluated and the insertion is made accordingly. When a 

request cannot be feasibly inserted in any existing route, a new route is constructed. 

The request is inserted in the new route. The next unrouted request from a list that 

was not yet tested will be considered for inclusion in this expanded set of constructed 

routes. In Insertion I1 this evaluation is conducted over only the most recently 

constructed route. The list of unrouted requests must be considered and any possible 

insertions must be made in that route before considering insertion in another route.  

Both heuristics as described can be used directly on the AARP with Policies 1 

and 2. For Policy 3, however, feasibility is further restricted by outbound and inbound 

trip separation requirements. Both heuristics can be adapted to deal with this 

additional constraint. Specifically, modifications are made when choosing the best 

feasible insertion position for each unrouted request: if the selected unrouted request 

u is an outbound trip, its dropoff location must be inserted before the pickup of the 

first inbound trip, given that there are inbound trips in the current route. Likewise, if 

the unrouted request u is an inbound trip, its pickup location must be inserted after the 
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dropoff location of the last outbound trip, assuming there is an outbound trip in the 

current route.  

 

4.5.3 Checking Solution Feasibility 

Both heuristics ensure that the problem constraints associated with time windows, 

precedence and pairing, maximum ride time, shift duration for drivers and vehicle 

capacities are satisfied during the insertion process. An insertion of a request in a 

route is feasible only if it does not lead to violation of any of these constraints by 

inclusion of this request. Moreover, its inclusion should not create other violations of 

these constraints for other requests already included in the route. The implementation 

of these constraints during this process is important and is described next.  

Time Window Constraints. Time window feasibility is maintained in a route if the 

insertion of a new request does not push the vehicle arrival time at any node i past its 

latest service time li. While a vehicle without a passenger onboard is permitted to 

arrive at a pickup node earlier than its earliest service time ei, thus incurring an 

additional waiting cost, no vehicle is permitted to idle while carrying passengers. The 

procedure proposed in (Jaw et al., 1986) is applied for the calculations of earliest 

service time, ei, and latest service time, li.  

To ensure that time window constraints are met, we must check that ei and li 

fall within each request’s time window for each i in the route and for requests 

considered for inclusion. 

Precedence and Pairing Constraints. For any insertion of a new request, precedence 

and pairing constraints are ensured by simultaneously inserting both the pickup and 
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dropoff locations associated with a single request within the route. The pickup 

location must precede the dropoff location. 

Maximum Ride Time Constraints. For each considered insertion of a request, the 

insertion must not cause a violation in constraints (4-17), whether directly for the 

request or for other requests already inserted in the route. The maximum ride time Ri 

is a function of direct (shortest path) ride time DRTi. Herein, a piecewise linear 

function (4-30) is applied: 

                                           

3 , if 30        

2 , if 30 60

30,  if 60   

i i

i i i

i i

DRT DRT

R DRT DRT

DRT DRT

 


   
  

                                 (4-30) 

Shift Duration Limit for Drivers. Any insertion of a new request cannot extend the 

route duration over the shift duration limit for a driver as expressed by constraints (4-

16). Thus, shift duration must be assessed for each insertion of a request. 

Vehicle Capacity Constraints. Any insertion of a new request must adhere to 

capacity constraints (4-13). Thus, no insertion is made if its inclusion will cause the 

vehicle to exceed its capacity. This must be assessed at each potential insertion 

location, because the number of requests handled at any point in time changes over 

the route duration. 

 

4.6 Numerical Experiments 

4.6.1 Experiment Design 

To investigate the efficiency of the proposed solution approach, the solution methods 

are tested on a real-world problem instance. The test case involves service records for 

one service day in January of 2012 out of Washington Dulles International Airport 
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(IAD). It includes 164 outbound requests involving 212 passengers and 22 inbound 

requests involving 41 passengers. For each request, detailed information, including 

desired pickup time, number of passengers, latitude and longitude of pickup and 

dropoff locations, and assigned vehicle index are also included. All requests were 

served by a fleet of identical vehicles. Figure 4-3 shows the partial distributions of the 

requested pickup (inbound) and dropoff (outbound) locations. The service area covers 

Maryland, District of Columbia, Virginia and Pennsylvania. Distances and travel 

times between pairs of customer locations were calculated through the OD Cost 

Matrix Tool in the Network Analyst toolbox of ArcGIS. The travel time is computed 

based on the shortest distance and speed limits.  

 

Figure 4-3 Distributions of Pickup and Dropoff Locations 

Parameters of the model and the algorithms are presented in Table 4-1. The 

solution methods were implemented in Visual C++ 2010 and run on a personal 
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computer with Intel(R) CPU 3.10GHz and 4.0GB RAM. The subproblem of proposed 

exact solution method was solved by the C++ Concert Technology of CP (Constraint 

Programming) solver in the IBM-ILOG CPLEX. 

Table 4-1 Parameters of Proposed Model and Algorithms 

Parameters Explanation Values 

Ct Unit cost of time 0.54 $/min 

Cd Unit cost of distance 0.72 $/mile 

Cw Unit cost of vehicle waiting time 0.23 $/min 

Q Vehicle capacity 7 passengers 

V Maximum fleet size 30 

s Identical service time 3 minutes 

T Shift duration 10 hours 

α, β Weight parameters α=0.8, β=0.2 

TW Pre-specified maximum deviation from desired time 45 minutes 

 

4.6.2 Algorithm Performance 

The CPCG approach was tested on cases with 10, 20 and 30 requests under the most 

general policy, Policy 2. Computational time increases exponentially with increasing 

number of customers. Thus, solution of problem instances with significantly more 

than 30 customers is precluded. The results are compared with those obtained through 

the adapted Jaw’s algorithm in Table 4-2. The numbers in parentheses are outbound 

and inbound requests, respectively. Results show that the maximum gap between the 

exact solution and the adapted Jaw’s algorithm is approximately 7% (with 20 

requests), but the computational time is around 1/1200 of that of CPCG. 

Table 4-2 Comparison of Results from CPCG and Adapted Jaw’s Algorithm 

 
CPCG Adapted Jaw’s Algorithm 

Number of 

Requests 
10(7+3) 20(14+6) 30(22+8) 10(7+3) 20(14+6) 30(22+8) 

Total Cost 314.9 581.1 839.6 314.9 625.0 853.4 

Vehicle Use 2 2 4 2 3 4 

Computation

al Time(s) 
360. 5 2040.2 8940.3 0.7 3.5 7.6 
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4.6.3 Policy Performance 

Computational results obtained by applying the two heuristics for each of the three 

operational policies are shown in Table 4-3. From Table 4-3, two significant 

conclusions can be reached. First, Jaw’s heuristic outperforms Insertion I1. For all 

three policies, the computation time required by Jaw’s heuristic is only between 14 

and 25% of that required by Insertion I1. The longer computation time of Insertion I1 

can be explained by the requirement of assessing the insertion of every unrouted 

request when each route is constructed. For each of the three operational policies, the 

total cost of the routes built through Jaw’s heuristic is below that developed by 

Insertion I1. This may be due to the ‘seed’ selection process of Insertion I1, where the 

furthest unrouted request is selected for inclusion. The long distance to this request 

may lead to longer empty vehicle miles, and thus, longer route duration and total cost. 

Moreover, for each of the three operational policies, the routes built through Jaw’s 

heuristic have higher utility factors (higher average occupancy, lower passenger miles 

and higher average utilization) than those from I1. 

 

Table 4-3 Performance Comparisons of Two Heuristics 

Performance 

Measures 

Policy 1 Policy 2 Policy 3 

Jaw's Solomon's 
Jaw's 

Solomon'

s 
Jaw's 

Solomon'

s Outbd Inbd Total Outd Inbd Total 

Number of 

Vehicles  
17 4 21 17 4 21 17 19 20 21 

Total Idle Time1 1051 159 1211 856 255 1110 929 1430 1201 1603 

Total  DH1Time2 0 215 215 0 350 350 52 18 151 49 

Total  DH1Mile3 0 200 200 0 327 327 49 17 141 46 

Total  DH2Time4 933 0 933 1151 0 1151 562 1029 723 1161 

Total  DH2Mile5 871 0 871 1074 0 1074 524 961 674 1083 
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Total  EDTime6 1696 516 2213 2223 548 2771 1537 1802 1861 2141 

Total EDMile7 1583 482 2065 2075 511 2586 1434 1682 1737 1998 

Total  LDTime8 3082 586 3668 2798 590 3388 3669 3424 3690 3599 

Total  LDMile9 2877 547 3424 2611 550 3162 3424 3195 3444 3359 

Route Duration 6883 1414 8298 6947 1557 8505 7319 7877 7953 8615 

Average 

Occupancy 
1.5 1.1 1.3 1.2 0.8 1.0 1.6 1.3 1.4 1.1 

Average  

Passenger Mile 
25.9 25.6 25.7 26.9 30.5 28.7 24.7 25.7 25.3 25.8 

Average 

Utilization
10

 
7.6 6.1 7.3 6.9 6.1 6.7 9.0 7.5 7.7 7.1 

Total Cost 6034 1372 7406 6282 1437 7719 6523 6662 7005 7325 

CPU Seconds 27.1 173.1 37.4 274.8 28.6 116.0 
1Sum of all waiting times incurred by a vehicle along its route (min); 2Empty driving time from depot to the first 

pickup (min); 3Empty driving distance from depot to the first pickup (mile); 4Empty driving time from last dropoff 

to the ending depot (min); 5Empty driving distance from last dropoff to the ending depot (mile); 6Driving time 

without passengers on board (min); 7Driving distance without passengers on board (mile); 8Driving time with one 

or more passengers on board (min); 9Driving distance with one or more passengers on board (mile); 10Total 

LDTime/(24*Number of Vehicles). 

 

Second, both heuristics reveal that Policy 2 will provide the best performance 

in terms of number of needed vehicles, idle time, empty/loaded driving time or miles 

traveled, and total cost, Policy 3 the second best performance, and Policy 1 the worst 

performance. That Policy 2 provides the best performance is not surprising and can be 

shown theoretically, because it is the least constrained of the three variants. From run 

results of Jaw’s heuristic, Policy 2 requires the fewest vehicles, lowest idle time, 

lowest empty vehicle miles, and lowest total cost of the three policies. Accordingly, 

Policy 2 has the highest vehicle utilization rate of the three. The vehicle utilization 

rate of Policy 3 is significantly above that of Policy 1, but below that of Policy 2. This 

difference in vehicle utilization rate is caused by requirements for ordering outbound 

and inbound operations with Policies 1 and 3. 

To assess the value of this optimization-based approach, solutions obtained 

from the heuristics were compared against manually derived routes used to deploy the 

vehicle fleet on the date of the case study. In actual operations on the date of service, 
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Policy 2 was employed. From records maintained for this date, 37 vehicles were 

employed. Stringing the vehicle routes together where feasible would permit 

completion by as few as 28 vehicles. Many of the routes did not comply with 

maximum ride time constraints and several violated constraints that prohibit waiting 

with a passenger onboard. Of course, violations were addressed during actual 

operations. By comparison, results from the proposed heuristic for the AARP under 

Policy 2 required only 17 vehicles to serve the same requests. This is an 

approximately 60% improvement in vehicle utilization 

 

4.7 Conclusions and Future Work 

In this Chapter, the AARP is formulated as a nonlinear integer program. Three 

implementations corresponding to three different operational policies under 

consideration in practice are investigated. Exact and heuristic solution procedures are 

proposed. The performance of the proposed solution approaches is compared in a 

case study involving data from one day’s operation of an actual service provider. 

Exact solution could not be obtained for the full-version of the case study, but exact 

solution was obtained for a reduced version with 30 customer requests. In a 

comparison to the exact solution, results of the adapted Jaw’s algorithm were within 7% 

of the exact solution, and required only 1/1200 the computation time. In the original 

case study, the adapted Jaw’s algorithm outperformed the second proposed heuristic. 

Thus, the heuristic is an effective and efficient approach for addressing the AARP, 

yielding significantly better results than routes and schedules determined manually. 
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The proposed methodologies also have applicability to other routing and 

scheduling applications involving ‘one-to-many-to-one’ operations. Mail service is 

one example. In these services delivery of mail from a local distributor to a set of 

destinations and collection of mail from a set of origins for return to the local 

distributor is required. Other possible applications arise in reverse logistics operations, 

such as the delivery of full bottles and collection of empty ones between a 

manufacture and retailers. The reverse logistics problem is simpler than the airport 

shuttle and mail services applications, because the goods to be transported are 

identical. Thus, every unit to be picked up can equally satisfy customer demand.  

While the heuristics described herein provide good results with low 

computational effort, more sophisticated heuristics may provide improved solutions. 

Both described heuristics are construction heuristics. Thus, constructed routes can be 

improved through the application of improvement operators, such as λ-interchange, 2-

opt* exchange, trip exchange and trip reinsertion. A cluster-first route-second 

methodology may also address this myopic nature. Clustering can be based on both 

temporal and spatial characteristics of the pickup and dropoff locations. The author is 

currently investigating these and other improvements. 

In a dynamic setting, new requests may be received on short notice while 

some vehicles are en route. The operator must quickly insert these new requests 

within previously constructed routes and schedules. In the airport operations of the 

case study, most inbound requests are known in advance, but almost all outbound 

trips arise dynamically. A fast algorithm to find a good feasible insertion for the new 

requests is required. The author is working to extend the developed model and 
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solution methodologies for use in such a dynamic setting that considers not only 

dynamic requests, but also uncertainty in travel and service times. 
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Chapter 5 Sheltering and Paratransit Operations for 

Mobility-Impaired Populations Evacuation 

5.1 Introduction 

Populations in urban areas are vulnerable to disaster, whether due to natural, 

accidental or malicious causes. Evacuation is often the most viable response action to 

reduce the adverse consequences to affected populations in these circumstances. 

Moreover, shelters play a critical role in many evacuation situations, providing safe, 

temporary housing to affected individuals. They are often located at schools, 

municipal buildings, places of worship and other places that are easily accessed via 

public or private transportation by the general population. Individuals may shelter 

until the disaster impact has subsided or be further evacuated from the impacted area.  

While in most urban areas the majority of evacuees will use an automobile to 

evacuate the area or seek shelter, not all people in risk-prone areas will own or have 

access to personal vehicles during an evacuation. According to the U.S. Census, 

greater than 30% of all households in several metropolitan cities, including New York, 

Washington, D.C., Baltimore, Philadelphia, Boston, Chicago, and San Francisco, are 

carless (U.S. Census Bureau, 2010). These carless people, and perhaps others seeking 

to shelter at an official shelter location, depend on public transit. However, there are 

significant numbers of people with low-mobility who cannot access a fixed route 

public transit system. According to the U.S. Census (U.S. Census Bureau, 2010), 2.8% 

of households had at least one mobility-impaired member in 2010. Furthermore, as 

the population ages, increasing numbers of people will have mobility restrictions. 
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Most of these individuals would not be able to drive even if they had access to 

personal vehicles. In this chapter, those who cannot neither drive nor access public 

transit and would require mobility assistance during evacuation are referred to as 

mobility-impaired persons. 

The mobility-impaired population requires a greater level of assistance than 

does the general population when sheltering. For example, wheelchair access must be 

provided, medical assistance might be required and specialized personnel and 

equipment may be needed. The mobility-impaired often rely on specialized 

equipment or medical assistance. In an emergency evacuation, it may be necessary to 

transport such persons to shelters in which such equipment and assistance are 

provided. As specially trained personnel and require equipment are limited resources, 

it would be beneficial to concentrate sheltering efforts for this population at a subset 

of the potential shelters designed for the general population. 

Regardless of the number and location of shelters with facilities to support the 

needs of the mobility-impaired, door-to-door service is required, since these 

individuals would find it difficult or impossible to access the general public transit 

stops. Vehicles attending to these individuals should also be equipped to transport 

wheelchairs and other medical or mobility equipment. Thus, paratransit vehicles 

could be an efficient, if not the only, solution. These paratransit services can be 

provided by local paratransit operators who have existing contracts with their local 

governments, have appropriate vehicle fleets within their own holding lots, and are 

acquainted with the needs of this population. Such contracts are maintained as part of 
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a solution needed to ensure that all Americans have access to public transit as 

required by the Americans with Disability Act. 

This chapter proposes optimization-based techniques for optimally deploying 

such a fleet of paratransit vehicles to assist the mobility-impaired population in 

evacuating from their homes or other chosen locations to a set of selected, specially 

equipped shelters. Specifically, the problem of choosing the subset of shelters at 

which to house the mobility-impaired population during the disaster event, assigning 

the mobility-impaired evacuees to the selected shelters based on their home locations 

and simultaneously designing a set of vehicle routes to minimize total costs is 

formulated as a mixed integer program. Total costs include the fixed cost of operating 

shelters that can support this mobility-impaired population and operational costs of 

transporting these individuals to their assigned shelters. This problem is referred to 

herein as the Sheltering and Paratransit Evacuation Problem (SPEP).  

The SPEP captures many practical considerations through its constraints. 

Assignments of individuals to shelters are made with attention to the distance that 

each individual would need to travel and shelter capacity limitations for serving this 

population. In addition, the problem formulation accounts for the number of vehicles 

available to provide services, the relative location of holding lots, vehicle seating and 

equipment capacities, maximum driving distances, and the maximum time any 

passenger spends on board. Moreover, the SPEP ensures that no intermediate stops 

are made at shelters where only a portion of the passengers disembark. A solution that 

allows only a portion of the passengers in a single vehicle to reach safety, forcing 

other passengers to incur additional risk while continuing onward to a second shelter, 
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would not be palatable. Finally, vehicles (and drivers) may be expected to perform 

multiple tours each with potentially different shelter destinations. 

The SPEP can be viewed as a location-allocation problem, where the location-

allocation results influence the optimal transport tours. The influence of the location-

allocation decisions on optimal tour construction is illustrated in Figure 5-1, where 

three different tours are constructed for a specific vehicle with capacity of 7 from a 

given holding lot under different shelter location-allocations. In Figure 5-1(a), only 

one shelter S is open and all pickups are assigned to it, while in Figure 5-1(b) and (c) 

two shelters S1 and S2 are open instead.  In Figure 5-1(b) pickups a through f are 

assigned to shelter S1 and g, h and i are assigned to shelter S2. In Figure 5-1(c), 

customer pickup location c is assigned to shelter S2. Comparison of Figure 5-1(a) and 

(b) indicates that the change in shelter location might affect the tours dramatically. 

Even with the same location decisions in Figure 5-1(b) and (c), a minor change in 

allocation decisions can lead to substantial changes in the optimal tours. 

 

Figure 5-1 Illustration of One Vehicle Route with Different Assignments 
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This need to simultaneously tackle both location-allocation and routing 

decisions renders the SPEP a difficult combinatorial problem. Even if these problems 

are solved sequentially, exact solution of practical problem instances can be quite 

challenging. Thus, in this chapter, a sequential technique in which the location-

allocation problem is solved first and the routing problem second, and a tabu search 

metaheuristic in which these problems are nested, are proposed. The nested structure 

captures the interactions between the two problem elements. The proposed 

approaches are applied on a case study involving large-scale evacuation of New York 

City (NYC). They are aimed at supporting local governments in planning for and 

carrying out an emergency evacuation of its residents with mobility impairments. 

 

5.2 Related Literature 

Public transit-based movement of carless people to shelters in an evacuation has 

received increasing attention in the literature over the last decade. This is in part due 

to increased awareness of the extra risks faced by carless people during emergency 

evacuation as became evident in Hurricanes Katrina and Rita in 2005 (Litman, 2006; 

Renne et al., 2008; TRB, 2008).  

Several works have addressed the use of transit in evacuation. Margulis et al. 

(2006) developed a deterministic decision-support model for bus dispatching to 

maximize the number to egress in hurricane evacuation. This model assumes that 

evacuees are assembled at their closest pickup points and the locations of shelters are 

known. With a similar assumption of predetermined pickup and shelter locations, 

Sayyady and Eksioglu (2010) proposed a mixed integer linear program to optimize 
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transit routing plans with the objective of minimizing total evacuation time for no-

notice evacuation. In their work, transit vehicles are only allowed to perform one trip. 

Abdelgawad and Abdulhai (2010) and Bish (2011) formulated this transit-based 

evacuation problem as types of vehicle routing problems. The objectives of both 

models are to transport evacuees from preset pickup locations to known shelter 

locations in the minimal amount of time by efficiently routing and scheduling a fleet 

of buses from a set of bus yards. Both works propose heuristic solution concepts. 

More recently, Kulshretha et al. (2012) proposed a mixed integer linear program to 

determine the optimal pickup locations for evacuees to assemble. They 

simultaneously consider the allocation of available buses to transport the assembled 

evacuees between the pickup locations and specified shelters. While these works are 

related in that they assign pickup locations to shelters, they do not capture many of 

the elements of the SPEP (need for simultaneous routing, assignment and shelter 

location decisions), or they focus on aspects of an evacuation that are not relevant 

(selection of pickup locations at which evacuees will assemble). 

The studies on public transit-based evacuation assume that the locations of 

shelters are known and fixed. Instead, they focus on designing a set of pickup 

locations where evacuees assemble to await transit services. Such assembly points 

cannot serve the mobility-impaired population given their mobility restrictions. 

It seems that only one prior study in the literature has proposed tools to aid in 

decisions regarding the location of shelters for transit-based evacuation. Song et al. 

(2009) formulated this transit-based shelter location and evacuation problem in the 

context of hurricanes as a location-routing problem (LRP) with uncertain demand. 



 

 107 

 

The LRP is used to determine optimal shelter locations and transit routes with the 

objective of minimizing total evacuation time. Shelter locations are chosen from a 

pool of potential locations based on their distances from the pickup locations 

assuming all pickup locations are assigned to their nearest open shelter. Only the 

transportation cost is considered in the objective and each bus is restricted to a single 

route per shelter. Thus, the authors did not explore the interrelations between the 

location-allocation problem and the routing problem.  

The general LRP has received significant attention over past decades. 

Applications are primarily related to logistics. See (Nagy and Salhi, 2007) for a 

review of both models and solution methods for LRPs. Traditional LRP models 

determine where to locate facilities and how to distribute or collect goods to or from 

customers through simultaneously solving a joint location and routing problem. The 

SPEP differs from the LRP in several important ways. The SPEP involves two types 

of facilities: the holding lots for paratransit vehicles (depots) and shelters. The LRP 

has only depots from which vehicles start out and to which they return once the goods 

are distributed or collected. Additionally, the SPEP has several additional constraints, 

such as that evacuees should not spend an unreasonable amount of time onboard 

while additional pickups are made. The operating patterns of these two classes of 

problems also differ. Specifically, in the LRP, each vehicle is restricted to serve only 

one depot, while in the SPEP each vehicle is allowed to perform multiple tours for 

multiple shelters. 

SPEP also has commonality  with other ridesharing problems, including the 

Dial-A-Ride Problem (DARP) (see (Cordeau and Laporte, 2007) for a review of 
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DARP). Like SPEP, DARP is characterized by pairing and precedence constraints, 

such that for each request the origin must precede the destination and both locations 

must be visited by the same vehicle, and user inconvenience constraints, such as a 

maximum ride time limitation. A primary concern in DARP, however, is time 

windows for pickup and delivery of customers. The routing aspects of SPEP are 

similar, with some exceptions: (1) pickups assigned to the same shelter share an 

identical destination; (2) customers do not choose their time windows and instead are 

expected to be ready for the vehicle when it arrives; and (3) customers with different 

shelter destinations must be transported on different vehicles. Additionally, shelter 

destinations are chosen for the evacuees in the SPEP in coordination with routing 

decisions; whereas, customer destinations in DARP are set by the customers. Finally, 

the SPEP is a multi-depot type of ridesharing problem, since resources from multiple 

companies’ fleets will be drawn upon.  

Thus, it appears that no previous work has proposed optimization tools to 

support sheltering and routing decisions for the mobility-impaired population in an 

evacuation. This chapter seeks to fill this gap. 

5.3 Mathematical Formulation 

The SPEP is formulation next. Before proceeding to the formulation, notation is 

introduced. 

5.3.1 Notation 

w Number of paratranist holding lots 

{1,..., }H w  Set of paratranist holding lots 

hV  Number of vehicles at holding lot h H  
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{1,..., }, h

h H

K V V V


    Set of all vehicles in all holding lots 

n  Number of pickup nodes 

 1,...,P w w n    Set of pickup nodes 

( , )p w
i iq q  Number of persons and wheelchairs at pickup node 

i P   

is  Service time at pickup node i P  

R  Maximum onboard time for each client 

dim  Distance of pickup node i P  to its nearest shelter 

tm  Maximum onboard time for all passengers 

  Deviation parameter for the assigned distance to 
idm  

m The number of potential shelters 

{ 1,..., }S w n w n m      Set of potential shelters 

sF  Fixed opening cost of shelter s S  

sQ  Capacity of shelter s S  

C  Capacity of vehicle 

D  Maximum driving distance for each vehicle 

ijd  Distance from node { }i P S H   to node

{ }j P S H    

ijt  Travel time from node { }i P S H    to node 

{ }j P S H    

dC  Unit cost of driving distance for all vehicles 

M Arbitrary large number 

5.3.2 Decision Variables 

1,  if shelter  is open                    

0,  otherwise                                       
s

s S
y


 


 

1,  if pickup  is assinged to shelter  and is transported by vehicle                      

0,  otherwise                                                                                     

k
is

i P s S k K
z

  


                                           




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1,  if arc( , )  is traversed by vehicle 

0,  otherwise                                               

k
ij

i j k K
x


 


 

k
iL  Load of vehicle k K  after visiting node i H P S    

 

Furthermore, some auxiliary decision variables are needed for the vehicle routing. 

1,  if vehicle  comes from depot          

0,  otherwise                                                          
kh

k K h H
u

 
 


 

k
ijT trip duration of vehicle ,k K starting from node i  and ending at node j  

5.3.3 Formulation 

Given the above notation, the SPEP can be defined on a digraph ),,( ANG   where N 

is the set of nodes, ,N H P S    and A is the set of directed arcs 

{( , ) : , }A i j i j N   connecting the nodes. 

min     k
SPEP s s d ij ij

s S k K i N j N

C F y C d x
   

       (5-1) 

              Subject to            1 ,k
is

k K s S

z i P
 

    (5-2) 

( 2 )   ,p w k
i i is s s

k K i P

q q z Q y s S
 

        (5-3) 

,k
is is di

k K s S

d z m i P
 

      (5-4) 
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,kh h

k K

u V h H


    (5-9) 

(1 ) (1 ) , , , ,k k k k
ij is js ijM x z z M x i P j P k K s S              (5-10) 

1 (1 ) , , ,k k
is isz M x i P s S k K         (5-11) 

0    , ,k
iL i H S k K      (5-12) 

(1 ) 2 (1 ) , , ,k k p w k
ij j j j ijM x L q q M x j P i N k K               (5-13) 

, ,k k
j ij

i N

L C x j P k K


      (5-14) 

,k
ij ij

i P S j P S

d x D k K
   

      (5-15) 

,,,0 KkNjSHiT k
ij   (5-16) 

(1 ) (1 ) , , ,k k k k k
ij ij ij ij jq ij

q N

M x T t x T M x i P j P k K


               (5-17) 

, , ,k k
ij ijT M x i N j N k K       (5-18) 

, , ,k
ij tT m i P j N k K      (5-19) 

\

1    , 2 | |,k
ij

k K i P j N P

x P P P
   

       (5-20) 

, , , {0,1}, , , ,  , , , , .k k k k
s ps ij kh i ijy z x u L T R h H p P i N j N s S         (5-21) 

 

Objective function (5-1) minimizes the sum of fixed and operational costs. 

Constraints (5-2) ensure that each pickup node is assigned to exactly one shelter. By 

Constraints (5-3) pickup nodes are assigned only to those shelters that are open and 

capacities of open shelters are not exceeded. Constraints (5-4) force that, for each 

pickup node, the assigned shelter is within  times the distance to its nearest shelter. 

Each customer is served exactly once by Constraints (5-5). Flow conservation is 

expressed in Constraints (5-6). Constraints (5-7) and (5-8) ensure that each vehicle is 

used at most once, while Constraints (5-9) force the number of vehicles that come 
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from each holding lot do not exceed the number of available vehicles in it. 

Constraints (5-10) and (5-11) ensure that clients travel toward their assigned shelters 

without stopping intermediately at other shelters. Constraints (5-12) ensure vehicles 

are empty when leaving a holding lot and after each tour to a shelter. Constraints (5-

13) express that vehicle load when leaving a pickup node increases by the number of 

passengers and wheelchairs loaded. It is assumed that one person occupies one seat 

and one wheelchair two seats within each vehicle. Constraints (5-14) guarantee that 

vehicle load does not exceed its capacity. Constraints (5-15) define that the distance 

that each vehicle travels from its first pickup to its last dropoff location is restricted to 

a maximum distance limit. Constraints (5-16) reset the incurred trip duration of each 

vehicle to zeros every time this vehicle leaves a holding lot or shelter. Constraints (5-

17) and (5-18) express that the trip duration of each vehicle increases when it traverse 

the nodes. Constraints (5-19) ensure that trip duration is lower than the passenger 

maximum onboard time. Subtours are eliminated in Constraints (5-20). Finally, 

binary and integrality of the decision variables are stated in Constraints (5-21). 

The formulation involves O(|K|∙|N|
2
) binary decision variables, O(|K|∙|N|

2
) 

integer decision variables, and O(2
|N|

-2
|P|

) constraints. Only very small-scale instances 

can be solved exactly. The most recent exact solution method is proposed by (Akca et 

al., 2008). The authors formulated a traditional location routing and scheduling 

problem, which is comparable in complexity to the SPEP, as a set-partitioning 

problem and proposed a column generation framework with two-phase pricing in the 

subproblem. To deal with large instances, they also proposed two heuristic pricing 

algorithms to solve the subproblem. The largest instances involve 5 facilities and 40 
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customers requiring 8 CPU hours computing time. Thus, the practical SPEP instance 

is solved by two heuristic strategies described in the next section. 

5.4 Solving the SPEP 

Although not directly applicable to solving the SPEP, the heuristics proposed for 

traditional LRPs with a size seen in real-world operations provide inspiration for the 

proposed solution strategies. Three solution strategies for LRPs were described in 

(Nagy and Salhi, 1996): sequential, interactive, and nested methods. Sequential 

methods are often ‘locate first and route second’ type heuristics, where the location 

problem is solved first and the routing problem second. Without consideration for the 

interrelations between the two problems, they usually obtain low-quality solutions 

(Laporte et al., 1988). Interactive methods treat the location and routing problems 

equally and iterate between the two problems until a stopping criterion is met. For 

example, Tuzun and Burke (1999) and Wu et al., (2002) proposed tabu search and 

simulated annealing solution methods, respectively, to solve traditional LRPs. 

Although these methods can provide better solutions than the sequential methods, 

these interactive methods cannot explore the neighborhood space extensively due to 

the equal treatment of the two problems. Instead of treating the location and routing 

problems as equal, (Nagy and Salhi, 1996) proposed a hierarchical structure for the 

LRP, where the location problem is solved in the main problem and the routing 

problem as a ‘subproblem’ to it. Based on this hierarchical structure, (Gündüz, 2011) 

proposed a tabu search algorithm to solve a combined location problem and muti-

depot vehicle routing problem with time windows. Results show that the nested 

methods outperform the other two solution methods. 
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In this section, a sequential solution strategy and a nested tabu search strategy 

applying the hierarchical structure proposed in (Nagy and Salhi, 1996) are described 

for solution of the SPEP. The sequential strategy provides an initial solution from 

which the proposed nested tabu search strategy starts. Both strategies rely on 

decomposing the problem into subproblems. Thus, before describing the two solution 

strategies, descriptions of these subproblems and proposed solution approaches for 

each are given. 

5.4.1 Subproblems 

The SPEP can be decomposed into two interrelated subproblems: (1) the Capacitated 

Shelter Location-Allocation Problem (CSLAP) and (2) the Multi-depot Dial-A-Ride 

Problem (MDARP). These two subproblems will later be solved in a sequential 

solution strategy and iteratively in the nested tabu search strategy. 

 

Capacitated Shelter Location-Allocation Problem (CSLAP) 

By defining new binary decision variables , ,k
is is

k K

z z i P s S


    , the CSLAP can 

now be formulated as: 

min     CSLAP s s d is is

s S i P s S

C F y C d z
  

       (5-22) 

                subject to            1 ,is

s S

z i P


    (5-23) 

( 2 )   p w
i i is s s

i P

q q z Q y s S


        (5-24) 

,
iis is d

s S

d z m i P


      (5-25) 
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, {0,1}   , ,s isy z i p s S k K      (5-26) 

 

Objective function (5-22) minimizes the sum of fixed and assignment costs. 

The assignment cost is calculated through the direct distance between the pickup 

location and the associated evacuees’ assigned shelter. This direct distance is an 

approximation to the actual transportation distance. Constraints (5-23), (5-24) and (5-

25) play the same roles as (5-1), (5-2) and (5-3) play in the SPEP formulation, 

respectively. The binary decision variables are stated in Constraints (5-26).  

The CSLAP can be solved exactly through a commercial solver. Two 

solutions can be obtained: 0 ,y which indicates whether or not each shelter s S is 

open, and 0 ,z which indicates if a passenger i P has been assigned to shelter s S . 

 

Multi-Depot Dial-A-Ride Problem (MDARP) 

With 0z  from CSLAP, the MDARP can be formulated as:  

min     k
MDARP d ij ij

k K i N j N

C C d x
  

    (5-27) 

                                  subject to            Constraints (5-5)-(5-20)  

, {0,1}, , , Z ,  , , , , .k k k
ij kh i ijx u L T h H p P i N j N s S         (5-28) 

 

The MDARP is a difficult problem, since its corresponding single-depot 

DARP is NP-hard. Thus, a cheapest insertion heuristic adapted from (Jaw et al., 1986) 

is proposed to solve it. This algorithm first builds optimal routes for all pickup-shelter 

location pairs, and then assigns the built routes to vehicles in holding lots. The 
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objective of this assignment is to minimize total route costs subject to limitations on 

the number of available vehicles in each holding lot.  

The main steps of the cheapest insertion heuristic can be summarized as: 

Cheapest Insertion Heuristic for the MDARP 

Step a: Copy each pickup and shelter pairs obtained from the CSLAP into the 

unrouted request list URL). 

Step b: Create an empty route. Set r =1. 

Step c: Select the first unrouted pair (p, s) from URL. Find all feasible insertions 

within all existing routes, 1 to r.  

(iii) If a feasible insertion is found, insert (p, s) to the route r* with 

minimum insertion cost, and update route r*.  

(iv) If no feasible insertion exists, create a new empty route and insert (p, 

s) in it. Set r = r+1. 

Step d: Repeat step c until URL is empty. 

Step e: Add each depot to the starting and ending point of each route, calculate 

updated route cost matrix. 

Step f: Assign routes to holding lots according to updated route cost matrix. 

 

Potential Feasible Insertions 

Due to Constraints (5-10) and (5-11) that prevent routes stopping at intermediate 

shelters while en route to another destination shelter, the potential feasible insertions 

of pickup-shelter pair, (p, s), on route, r, in the step c can be confined to three 

categories: 

(1) Insert (p, s) at the beginning of route r. 

(2) Insert (p, s) immediately after each shelter, if there any shelter already exists 

on route, r.  

(3) Insert p immediately before s and each of the pickup nodes before s until 

reach another shelter or the beginning of the route, if shelter s already exists 

on route, r.  

Feasibility Checking 

An insertion of a pickup-shelter pair needs to ensure that the constraints associated 

with the vehicle capacity constraints (5-14), maximum driving distance limit for 

drivers (5-15) and passenger maximum onboard time (5-19) are satisfied during the 



 

 117 

 

insertion process. An insertion of a pickup-shelter pair in a route is feasible only if it 

does not lead to violation of any of these constraints by inclusion of this pair. 

Moreover, its inclusion should not create other violations of these constraints for 

other nodes already included in the route. 

5.4.2 Sequential Solution Strategy 

The sequential solution strategy involves solving the CSLAP first and the MDARP 

second. Figure 5-2 depicts this sequential solution process, where the opening cost 

from CSLAP and transportation cost from MDARP are the fixed and operational 

costs in objective function (5-1), respectively.  

 

Figure 5-2 Sequential Solution Process 

 

5.4.3 Nested Tabu Search Strategy 

Improvements to the shelter location and evacuee routing solutions can be obtained 

by explicitly recognizing their interconnections in the solution strategy. For this 

purpose, a nested tabu search strategy is proposed in which the interactions between 
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the CSLAP and the MDARP are explicitly considered. Figure 5-3 provides the 

overall framework of this strategy.  

 

Figure 5-3 Flowchart of Proposed Tabu Search Algorithm 

 

The procedure begins with generation of an initial solution through a 

sequential solution strategy, and setting the best solution to the obtained initial 

solution. Candidate solutions around the current best solution are generated in the 

diversification step. An identification and intensification procedure is employed to 

filter out infeasible generated candidates and calculate total costs for the feasible ones. 

No

Step 2- Diversification: generate candidate solutions, 

Ycand, within the exploration region of ybest. 

Step 4- Sort Ynew according to 

corresponding cost in non-decreasing 

order, select the first point ynewbest.  
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satisfied?

Step 6- update best known 

solution, ybest, and total cost, Cbest 
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Step 7- tabu?No
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Step 1-Initialization: Using sequential strategy 
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Step 3- Identification and Intensification: for each 
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The best generated feasible solution will be assessed to see if it meets the aspiration 

criterion. If the aspiration criterion is satisfied, the best solution and tabu list will be 

updated and termination criteria will be assessed. If one of the termination criteria is 

met, the procedure stops; otherwise, it continues to the next iteration. If the aspiration 

criterion is not satisfied, tabu criteria will be checked for other generated feasible 

solutions, since they cannot be better than the selected best feasible solution. If any of 

them is not tabu, it will be placed in the tabu list. If all of them are tabu, the first 

element in the tabu list will be selected as the best solution. As in other tabu search 

procedures, the tabu list aids in preventing the search from being trapped at a local 

solution.  

The aspiration, tabu list and termination criteria applied herein are 

summarized next. 

Aspiration criterion 

Any feasible candidate solution that has the best total cost of all discovered 

solutions will become the best solution regardless of its tabu status. 

Tabu list 

Two tabu lists are applied within the overall procedure. Both employ a 

complete memory approach. One is named tabuList and maintains a list of solutions, 

considered in the last L iterations (the tabu tenure) of the search procedure. This list 

prevents revisiting of solutions within the iterations associated with the tabu tenure. A 

solution may be removed from the list prematurely if no neighboring candidate 

solution of the best solution outperforms this best solution. The second tabu list is 

called infeasibleList, where the infeasible candidate solutions generated in the 
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diversification step are maintained permanently during the entire search procedure. 

This list is used to filter out infeasible candidate solutions in steps 2 and 3. 

Termination criteria 

The procedure terminates when either a predefined maximum number of 

iterations (ItMax) or a predefined maximum number of iterations without 

improvement (NoMax) is reached.  

Details of the steps of diversification as well as identification and 

intensification are given next. 

 

Step 2-Diversification 

In this step, a diversification strategy is applied to generate a set of candidate 

solutions Ycand, a set of solutions vectors, within the neighborhood space of the best 

solution, ybest. The candidate solutions are generated through adapted exploration 

moves ‘drop’, ‘add’ and ‘switch’, originally introduced by (Kuehn and Hamburger, 

1963). Before introducing the adapted exploration moves, a neighborhood relation 

between two shelters is defined based on the definition from (Nagy and Salhi, 1996): 

Given constraints (5-4) or (5-28), which enforce that each client cannot be 

sent to shelters that are beyond   times the distance to the nearest shelter, a concept 

of neighboring shelters is defined below and illustrated in Figure 5-4.  

Neighboring Shelters: Two shelters 1s  and 2s  are neighbors if and only if at least 

one pickup node p exists, such that 1s  and 2s  are the first and second nearest 

shelters to p, respectively, and if 
2 1( , ) ( , )p s p sd d  , then 1 2( )s Nb s and 2 1( )s Nb s , 

where ( )Nb s denotes a set of neighboring shelters of shelter s. 
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Figure 5-4 Illustration of Neighboring Shelters 

 

Based on the definition of neighboring shelters, Ycand can be generated through the 

following steps. 

For each opened shelter ,s S  and each closed shelter ( )s Nb s : 

Drop - setting best ( ) 0s y , if resulting solution is not tabu, add it into 

Ycand ; 

Add - setting best ( ) 1s y , if resulting solution is not tabu, add it into Ycand; 

Switch - setting best ( ) 0s y and best ( ) 1s y , if resulting solution is not 

tabu, add it into Ycand. 

 

Step 3-Identification and Intensification 

Candidate solutions generated in the diversification step are not guaranteed to be 

adhering to Constraints (5-4). Those solutions that are not feasible need to be filtered 

out. However, whether or not a candidate solution is feasible cannot be known until 

the CSLAP is solved. In fact, for any set of location variables, ,y the optimal 

assignment ( )z y can be obtained by solving the associated Capacitated Shelter 

Assignment Problem (CSAP), which is defined as: 
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min     ( )CSLAP s s d is is

s S i P s S

C F y C d z
  

     y  (5-29) 

                                  Subject to            ( 2 )   p w
i i is s s

i P

q q z Q y s S


        (5-30) 

Constraints (5-26) and (5-28)  

{0,1}   , ,isz i p s S k K      (5-31) 

Thus, given a generated candidate solution, instead of solving the CSLAP, its 

corresponding CSAP problem is solved to filter out the infeasible candidate solutions.  

Figure 5-5 depicts the identification and intensification processes. The 

processes start with selecting the 1
st
 element, y, of Ycand generated in the 

diversification process. If y is in the tabuList or infeasibleList, then the next element 

in Ycand will be selected. If y is not tabu, y will be used as input to CSAP(y). If it is 

infeasible, put it into the infeasibleList and move to the next element in Ycand; 

otherwise, the MDARP will be solved with the assignment results from CSLAP(y) 

and the total cost CSPEP(y) will be calculated. y and CSPEP(y) will be added into the 

new feasible solution set Ynew and total cost set CSPEP(Ynew), respectively. This 

process is repeated until all elements of Ycand have been investigated. The new 

feasible set, Ynew, will be sorted in nondecreasing order according to CSPEP(Ynew) and 

the best (first) one will be selected for aspiration checking in the next step. 
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Figure 5-5 Flowchart of Identification and Intensification Process 

 

5.5 Numerical Experiments 

5.5.1 Experimental design 

To investigate the efficiency of the proposed solution approach, proposed solution 

strategies are tested on a real-world case study. The case study involves an assumed 

hurricane evacuation in New York City, one of the many hurricane vulnerable areas 

along the coastline of the United States. The evacuation scenario is shown in Figure 

5-6 and involves evacuating mobility-impaired individuals from 588 pickup locations 
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(round nodes) within the hurricane evacuation zone (shaded area) to 238 potential 

shelters (triangles) through the paratransit vehicles affiliated with 39 paratransit 

depots (squares). The data on potential shelters, including location and capacity, as 

well as the hurricane evacuation zones, was obtained from a technical report from the 

US Army Corps of Engineers (FEMA and USACE, 2009).  

The information on paratransit vehicles comes from the NYC data website 

(Weir, 2013), which includes information from 161 companies, including the depot 

locations and number of affiliated vehicles. Only 39 companies with more than 15 

paratransit vehicles are considered.  Each vehicle is assumed to have a capacity of 

seven spaces with each person occupying one space and each wheelchair two spaces. 

To preserve privacy issues, data on real pickup locations were not available. The 588 

pickup locations were thus chosen as the centroids of census tracts in U.S. Census 

2010. In reality, the needed pickup information for the mobility-impaired can be 

obtained information gathered through registration for paratransit services during 

ordinary circumstances. Random numbers were generated to determine with equal 

odds whether each location contained one or two evacuees awaiting assitance from 

each pickup location. Similarly, each passenger was assigned a wheelchair with 

probability 0.5. The fixed opening cost of each shelter is assumed to be proportional 

to the shelter’s capacity. 
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Figure 5-6 NYC Hurricane Evacuation 

 

Both the sequential and nested tabu search solution strategies were applied. 

Results of the two strategies are compared. Parameters used in the proposed model 

and solution algorithm are presented in Table 5-1. The tabu tenure of the tabuList was 

tuned from 10 to 80 iterations in increments of 5. A setting of 15 iterations was found 

to have the best performance in terms of convergence and best solution found. 

Table 5-1 Parameters of Proposed Model and Algorithm 

Parameters Explanation Values 

Cd Unit cost of travel distance of vehicle 1.52 $/mile 

C Identical vehicle capacity 7 spaces 

s Identical service time 3 minutes 

D Maximum driving distance(excluding deadhead distance) 320 miles 

R Maximum passenger onboard time 2 hours 

L Tabu tenure 15 

ItMax Maximum iterations 500 

NoMax Maximum non-improvement iterations 30 
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The proposed solution strategies were implemented in Visual C++ 2010 and 

run on a personal computer with Intel(R) CPU 3.10GHz and 4.0GB RAM. The C++ 

Concert Technology of CPLEX in the IBM-ILOG CPLEX 12.51 was applied to solve 

the CSLAP and CSAP problems.  

5.5.2 Results Analysis 

Figure 5-7 shows the convergence process of the proposed nested tabu search strategy 

with 5  . The procedure terminates after 70 iterations, because no improvement in 

solution value was obtained after 30 iterations. The resulting solution has a total cost 

of $5,688 compared with an initial total cost of $5,974 obtained from the sequential 

solution strategy, thus producing a relative improvement of approximately 5%. 

 

Figure 5-7 Convergence Process of Tabu Search Algorithm 

 

To further explore the difference between the solutions obtained from the 

sequential and nested tabu search solution strategies, the initial and final open shelters 

and corresponding fixed opening costs are listed in Table 5-2. Although the total 

fixed opening costs are fairly close (only $2 difference), there are 6 different shelters, 

marked by a star symbol, between the two solutions. Table 5-2 shows that two 
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expensive shelters (761 and 768) in the initial solution are not sufficiently equipped to 

support the mobility-impaired, and instead four cheaper locations (630, 659, 772 and 

774) are open to them in the final solution. The difference indicates the ‘myopic’ of 

the sequential solution strategy, where an approximation of operational cost (the cost 

of direct distances from pickups to assigned shelters) is considered in the CSLAP. 

However, taking the actual operational cost into account, the final shelter location 

decisions are quite different. Fixed and operational costs are further explored in Table 

5-3. 

Table 5-2 Comparisons of Shelter Locations 

 
Initial Shelter Location Final Shelter Location 

# Notation Fixed Open Cost($) Notation Fixed Open Cost($) 

1 629 220 629 220 

2 632 195 630* 65 

3 639 340 632 195 

4 640 50 639 340 

5 651 61 640 50 

6 673 146 651 61 

7 677 82 659* 63 

8 698 50 673 146 

9 700 58 677 82 

10 704 74 698 50 

11 727 71 700 58 

12 742 96 704 74 

13 752 94 727 71 

14 761* 90 742 96 

15 765 94 752 94 

16 766 87 765 94 

17 767 78 766 87 

18 768* 138 767 78 

19 769 59 769 59 

20 775 77 772* 52 

21 778 98 774* 50 

22 832 62 775 77 

23 839 40 778 98 

24 842 90 832 62 
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25 848 481 839 40 

26 852 83 842 90 

27 856 52 848 481 

28 
  

852 83 

29 
  

856 52 

Opening Cost ($)  3066  3068 

 

Table 5-3 shows the initial (sequential solution strategy) and final cost results 

(nested tabu search strategy) for different ƞ values. The ‘∆’ columns give the relative 

improvement (decrease) from the initial results. For both initial and final results, it is 

not surprising that total cost decreases with increasing value of ƞ, because a lager 

value of ƞ infers more relaxed constraints. For both initial and final results, with 

increasing value of ƞ, the ratio of fixed cost to total cost decreases, while the ratio of 

operational cost to total cost increases. This is reasonable. A lower value of ƞ means 

more shelters should be opened inferring shorter distances to travel, while a higher 

value of ƞ means fewer shelters or farther but cheaper shelters can be opened, which 

usually means longer travel distances will be incurred, and thus higher operational 

(transportation) costs will exist. For all ƞ values, compared to initial results, fixed 

costs increase, operational costs decrease and the total cost decreases in the final 

results (from the nested procedure). This indicates the benefit of considering 

operational costs in the CSLAP. The CPU time increases with the increasing value of 

ƞ, however, even for the instance with ƞ=10, the computational time is still acceptable 

for the application. 

Table 5-3 Cost Results with Different ƞ Values 
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ƞ=2 5707 2572 8279 5826 2390 8216 2.09 -7.10 -0.77 38 0:58:20 

ƞ=3 4504 2641 7146 4582 2360 6942 1.73 -10.67 -2.85 52 1:06:35 

ƞ=5 3066 2908 5975 3068 2620 5688 0.07 -9.92 -4.80 70 1:26:46 

ƞ=7 1990 3198 5188 2019 2770 4789 1.46 -13.40 -7.70 87 1:57:22 

ƞ=10 1875 3163 5038 1928 2704 4632 2.83 -14.52 -8.06 108 2:33:49 

 

Figure 5-8 shows the final route set generated by the MDARP with ƞ=5. 

There are total 15 routes performed by 15 vehicles from 11 holding lots. The numbers 

next to the holding lots in Figure 5-8 denote the assigned holding lot. Figure 5-8 

shows that no built route violates the maximum driving distance constraint. Other 

constraints, such as vehicle capacity and maximum onboard time constraints, were 

also checked for each route. 

 

Figure 5-8 Final Route Set with ƞ=5 

 

Holding Lot

Pickup

Shelter
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5.6 Conclusions and Extensions 

In this chapter, the problem of sheltering and paratransit operations for evacuation of 

populations with mobility impairments during disaster is addressed. An optimization 

problem, the SPEP, is formulated as a mixed integer program. Sequential and nested 

tabu search solution strategies are proposed. The former decomposes the problem into 

two subproblems: 1) a capacitated shelter location-allocation problem and 2) a multi-

depot dial-a-ride problem (DARP). The latter approach explicitly considers the 

interconnection between optimal location, assignment and routing decisions. The 

proposed solution strategies were tested on a case study involving NYC. The results 

obtained indicate that the proposed nested tabu search strategy is efficient and 

effective for addressing the SPEP, and yields better results than the sequential 

solution method.  

A primary outcome of the developed model and solution methodologies is the 

selection of shelters that can, once identified, be adequately prepared to support an 

evacuation. These developments have additional tactical and operational utilities. Pre-

disaster, forecasts specific to a given impending hazard may be available, affecting 

the potential utility of shelter locations. Thus, in this tactical phase, a subset of the 

equipped shelters may be open, and the CSLAP model can be applied to re-allocate 

and route the evacuees using these services for this smaller set of destinations. 

Similarly, in an evacuation arising post-disaster event, this routing and allocation 

component of the decision problem can be resolved once knowledge of the viability 

of the shelter locations and/or roadways is determined. If the original locations are to 

be operated, the allocation of evacuees to the shelters may be maintained and only the 
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routing decisions may be reassessed in response to information about roadway 

closures or other conditions affecting the predetermined routes. This latter problem 

can be addressed by solving an MDARP. 

This study addresses emergency evacuation with notice as is the case in 

situations involving hurricanes; however, for no-notice emergency evacuations, an 

alternative objective function in which the number of pickups that can be completed 

in a fixed amount of time is maximized or the time required to complete the pickups 

is minimized given a fixed fleet might be appropriate. Additionally, emergency 

situations are inherently uncertain. For example, travel times, shelter capacities, 

demand for assistance and even available resources may be affected by the disaster 

and a priori knowledge of quantities may be precluded. Thus, it could be beneficial to 

account for such uncertainties within the proposed model.  Also, as some disasters 

evolve over time, it may become necessary to evacuate the shelters, sending the 

evacuees even further from the affected area. That is, a two-stage evacuation might be 

required. One could explore the possibility of applying the proposed model and 

solution methodologies to each stage. 



 

 132 

 

Chapter 6  Conclusions and Extensions 

6.1  Conclusions 

Motivated by increasing concerns about the safety and efficiency in the movement of 

large numbers of people in crowd-related circumstances, this dissertation 

conceptualizes and addresses four important optimization problems regarding facility 

and/or operational design to support efficient people movement: the Pedestrian Route 

Choice in Crowds (PRCC) problem, the Redesign for Efficient Crowd Movement 

(RECM) problem, the Airport Access Ridesharing Problem (AARP), and the 

Sheltering and Paratransit Evacuation Problem (SPEP). These problems are aimed at 

identifying opportunities to support accurate prediction of crowd movements over a 

facility layout, optimal reconfiguration of the facility layout for large crowd 

management, efficient routing and scheduling for ridesharing vehicles, and optimal 

shelter location-allocation and paratransit vehicle routing for effective regional 

evacuation planning of the mobility-impaired.  

This dissertation addressed complex and diverse characteristics, not 

previously conceived in the literature. The PRCC problem incorporates grouping 

behavior described in social science and psychological studies within a network 

optimization-based framework with the aim of estimating the distribution of groups 

(separable and clustered) and individuals over efficient routes through a facility 

layout. The RECM problem simultaneously takes the goal of crowd manager and 

pedestrian route choice behavior into consideration for redesigning the physical 

layout to facilitate crowd movement. The AARP combines several characteristics 

from other related problems, such as time windows, pairing and precedence, and 
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linehaul and backhaul operations, as well as user inconvenience constraints. The 

SPEP explores the interdependence and integration of the facility design (shelter 

location-allocation) and paratransit operations in evacuation planning for mobility-

impaired populations.  

The focus of this dissertation is to formulate and provide algorithmic solution 

approaches (exact and approximate) to tackle these complex problems with their 

diverse characteristics. The PRCC problem employs formulations of logit-based SUE 

assignment and n-player non-cooperative game for separable and clustered groups, 

respectively. A procedure of Method of Successive Averages (MSA) with groups and 

a metaheuristic scheme based on best response dynamic and tabu search were 

proposed for solving the formulated problems. The RECM is formulated as a bi-level 

mixed integer program, where the upper-level is a network design problem and the 

lower-level is a pure-strategy Nash equilibrium assignment problem. A Multi-start 

Tabu Search with Sequential Quadratic Programming (MTS-SQP) procedure is 

proposed for its solution. The AARP problem is formulated as a nonlinear, mixed 

integer program. An exact solution approach applying Constraint Programming based 

Column Generation (CPCG) and two insertion algorithms adapted from existing 

heuristics are proposed for its solution. The SPEP is formulated as a mixed integer 

program. To solve large-scale instances of the SPEP, a tabu search metaheuristic is 

proposed. This approach is based on decomposition of the entire problem into two 

interdependent subproblems. The mathematical formulations aim to provide precise 

definitions of the identified problems and permit quantitative analysis of real-world 

problem instances. 
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Numerical experiments were conducted on carefully created fictitious 

examples for buildings and other facilities, an actual day of ridesharing service 

records out of Washington Dulles International Airport and a real-world based case 

study of hurricane evacuation in New York City. Results of numerical experiments 

demonstrate the effectiveness and efficiency of the proposed methodologies. Results 

from these experiments show that the proposed exact solution algorithms can solve 

small- and moderate-size problems to optimality or near-optimality with reasonable 

computational time; whereas, the proposed approximate algorithm can tackle large-

scale problem instances with good approximation to optimal or near optimal solutions.   

6.2 Extensions 

This dissertation can be extended in several directions. 

The PRCC problem 

In the proposed models and solution approaches, the parameters of the disutility 

function for a group (separable or clustered) are assumed to be homogeneous. In 

reality, however, the parameters associated with each group may vary by individual. 

Additionally, the disutility function only considers distance and travel time. In reality, 

other factors, such as safety, might also play a role in route choice, especially during 

emergency events. The heterogeneity within each group and additional factors in the 

disutility function can be further explored with the proposed models and solution 

schemes.  

Furthermore, only grouping behavior is considered in the proposed models. 

Other collective behaviors, such as splitting, flocking and following might be 

incorporated in the proposed models. Moreover, the proposed models assume that 
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pedestrians make decisions based on route-based performance. Once a route is 

selected, it is assumed that each pedestrian will follow the route in its entirety. The 

developed model and solution methodology might be extended to address a dynamic 

pedestrian route choice problem, where the physical environment changes 

dynamically and people would make decisions on splitting, flocking or following at 

each node en route according to current dynamic goals (utilities).  

Finally, the pure- and mixed-strategy Nash equilibriums considered in the 

proposed models and solution approaches might be applicable in other areas. For 

example, the SUE assignment for separable groups might be applicable for vehicular 

traffic assignment that follows the mixed-strategy Nash equilibrium (Wardrop’s 

principle). The n-player non-cooperative game that seeks pure-strategy Nash 

equilibrium for clustered groups might be applicable for other applications involving 

pure strategy interactions of several decision makers, such as auction markets. 

 

The RECM problem 

The RECM problem is formulated as a bi-level program. Due to the equilibrium 

constraints embedded in the formulation structure, the RECM is NP-hard. A MTS-

SQP is proposed for solution of mid-size problem instances. The procedure 

guarantees a local optimal solution through SQP and employs multi-start strategy to 

increase the chances of obtaining a global optimum.  

For large problem instances, one might consider replacing the SQP approach 

in the MST-SQP procedure with a heuristic. However, such a heuristic will not 

guarantee even local optimality. Another useful alternative for addressing large 
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problem instances might be to apply linear approximations of the equilibrium 

constraints in the lower-level problem. This modeling framework permits both 

alternatives.  

Additionally, a BPR-based travel time function is applied in the proposed 

model. A more sophisticated travel time function, however, would be necessary to 

capture pedestrian dynamics and intersections and impacts of bi-directional flows. 

Moreover, the link capacities in proposed model are assumed continuous, but the 

model framework allows both discrete and continuous link capacities. If discrete link 

capacities are introduced, the SQP should be replaced by a mixed integer program 

solver. Furthermore, within the framework, one might relax the constraint that total 

capacity is fixed and explore the interdependencies in space restrictions between 

adjacent links through the addition of constraints in each link upper limit.  

Finally, although the proposed model and solution approach aims for practical 

utility in crowd control, it also has potential applicability in vehicular traffic control 

by omitting grouping behavior constraints in the lower-level problem. In vehicular 

traffic control, the outcome of the model can be implemented through, for example, 

opening and closing of lanes, ramp metering, adaptive speed limits, and provision of 

real-time information through signage or other devices.  

 

The AARP 

The AARP is conceptualized and formulated as a mixed integer nonlinear program. 

An exact solution approach (CPCG) and two heuristics adapted from Jaw’s sequential 

insertion heuristic (Jaw et al., 1986) and Solomon’s Insertion I1 (Solomon, 1987) are 
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proposed for its solution. In the CPCG, a constraint programing (CP) is applied for 

the solution of the subproblem (SP) that is a constrained shortest path problem. To 

obtain an integer solution in the master problem (MP) and avoid a time-consuming 

branching process, a heuristic reassemble process is proposed. Numerical 

experiments show that this exact solution approach can guarantee near optimal 

solutions (within 5% to the lower bound) with reasonable computational time for a 

reduced version of the case study. Observations indicate that 98% computational time 

is spent on solving the SP. A future extension may consider a more sophisticated 

branching scheme in the MP that would obviate the need for resolving the SP. 

Additionally, instead of using CP, the proposed exact solution framework permits an 

alternative solution approach for the SP, such as a dynamic label setting algorithm or 

heuristic approach. However, the efficiency of these approaches depends on their 

effectiveness in identifying and discarding paths that are not useful to the MP, given 

applicable dominance rules. 

Results of the adapted Jaw’s algorithm provide good approximations to the 

exact solution (within 7%), but require significantly less computational time (1/1200). 

The gap between these results, however, might be higher for larger problem instances. 

The myopic nature of the proposed heuristics might be improved in several directions. 

For example, the constructed routes can be improved through the application of 

improvement operators, such as λ-interchange, 2-opt* exchange, trip exchange and 

trip reinsertion. A cluster-first route-second strategy may also address this myopic 

nature.  
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In addition to these extensions related to algorithm improvement, the 

developed model and solution methodologies might be applied in a dynamic 

framework that considers not only dynamic requests, but also uncertainty in travel 

and service times. Finally, the proposed methodologies also have potential 

applicability to other routing and scheduling applications involving ‘one-to-many-to-

one’ operations, such as mail service and reverse logistics operations.  

 

The SPEP problem 

The SPEP is formulated as a mixed integer problem. Due to the included multi-depot 

pickup and delivery problem, the SPEP is shown to be NP-hard.  A tabu search 

strategy with innovative diversification, identification and intensification procedures 

is proposed to solve large instances of the SPEP. 

The objective function in the proposed model seeks to minimize total cost. 

While suitable for emergency evacuation situations in which there is advanced notice, 

such as in a hurricane, for the no-notice emergency evacuations, an alternative 

objective function, minimizing time to handle all pickups with a fixed fleet, might be 

considered.  

Additionally, the proposed model and solution approach might be extended to 

include uncertainty in various factors as may arise in emergency evacuations. These 

uncertainties may be related to demand, as well as shelters and disaster characteristics. 

For example, the impact of the disaster event may not be known with certainty and 

evolution of the disaster impact over time and space may induce a second evacuation 

from the shelters to locations further from the disaster region. The proposed model 



 

 139 

 

and solution methodology might be applied for each stage in such a multi-stage 

evacuation.   

Finally, one might relax the farthest assigned shelter and other user 

inconvenience constraints in the proposed model for other location-routing 

applications that do not include these constraints. One would need to recognize that 

the required computational time may increase with such omissions as was shown in 

the numerical experiments. 
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