
Page 1 of 20
University of Maryland Computer Science CS-TR-5028

University of Maryland Institite for Advanced Computer Studies TR-2013-05

Efficient iterative algorithms for linear stability analysis of
incompressible flows

HOWARD C. ELMAN

Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742, USA

elman@cs.umd.edu

AND

MINGHAO W. ROSTAMI

Department of Mathematical Sciences
Worcester Polytechnic Institute, Worcester, MA 01609, USA

mwu@wpi,edu

Linear stability analysis of a dynamical system entails finding the rightmost eigenvalue for a series of
eigenvalue problems. For large-scale systems, it is known that conventional iterative eigenvalue solvers
are not reliable for computing this eigenvalue. A more robust method recently developed in Elman &
Wu (2012) and Meerbergen & Spence (2010), Lyapunov inverse iteraiton, involves solving large-scale
Lyapunov equations, which in turn requires the solution of large, sparse linear systems analogous to
those arising from solving the underlying partial differential equations. This study explores the efficient
implementation of Lyapunov inverse iteration when it is used for linear stability analysis of incompress-
ible flows. Efficiencies are obtained from effective solution strategies for the Lyapunov equations and for
the underlying partial differential equations. Existing solution strategies are tested and compared, and a
modified version of a Lyapunov solver is proposed that achieves significant savings in computational cost.

1. Introduction

In this paper, we will discuss efficient computational algorithms for linear stability analysis of a large-scale
dynamical system of the form

Mut = f(u,α), (1.1)

where M ∈ Rn×n is called the mass matrix and is large and sparse, u ∈ Rn is the state variable (velocity,
pressure, temperature, etc.), and α is a physical parameter. Such a dynamical system arises from spatial
discretization of two- or three-dimensional partial differential equations (PDEs).

Linear stability analysis is a standard approach to studying the sensitivity of a steady state u of (1.1)
to small perturbations: roughly speaking, if all small perturbations introduced to u will eventually die out,
then u is stable; and if some of them will grow with time, then u is considered unstable. We are especially
interested in identifying the critical point (uc,αc) at which u changes from being stable to unstable. The
linear stability of u is determined by the rightmost eigenvalue (i.e., the eigenvalue with algebraically largest
real part) of a generalized eigenvalue problem

J(u,α)x= µMx, (1.2)

where J(u,α) = ∂f
∂u (u,α) is the Jacobian matrix, which is often large, sparse, and in general, nonsymmetric.

2 of 20

If the rightmost eigenvalue of (1.2) has negative real part, then u is stable; otherwise, it is unstable. At the
critical point (uc,αc), the rightmost eigenvalue of (1.2) has real part zero.

Consequently, (uc,αc) can be located by monitoring the rightmost eigenvalue of (1.2) along a path of
stable steady states. Commonly used iterative eigenvalue solvers such as Arnoldi’s method and its variants
(see Stewart (2001)) work well when a small set of eigenvalues of (1.2) near a given point σ ∈ C (called the
“shift”) are sought. Thus, a good estimate for the rightmost eigenvalue of (1.2) would be an ideal choice
for σ. Unfortunately, such an estimate is usually not available. In practice, it is common to choose σ = 0,
that is, to compute a number of eigenvalues of (1.2) closest to zero hoping that the rightmost one is among
them. One major disadvantage of this strategy lies in its lack of robustness: a rightmost eigenvalue with
large imaginary part may not be found.

Recently, a more robust method for computing the rightmost eigenvalue of (1.2) has been developed in
Elman & Wu (2012). This method finds the rightmost eigenvalue of (1.2) by introducing a new eigenvalue
problem in the form of a Lyapunov equation and computing its eigenvalue with smallest modulus. A brief
description of this method is as follows. Let A = J(u0,α0) where (u0,α0) is any point in the stable regime.
In addition, let µ1 denote the rightmost eigenvalue of Ax = µMx and x1 (with ‖x‖2 = 1) the eigenvector
associated with it. It was shown in Elman & Wu (2012) and Meerbergen & Vandebril (2012) that if M is
nonsingular, then the eigenvalue with smallest modulus of

SZ+ZST +λ(2SZST) = 0 (1.3)

where S = A−1M is −12 (µ1+µ1). Moreover, under the generic assumptions that µ1 is simple and that
except for µ1, no other eigenvalue of Ax= µMx has the same real part as µ1, there is a unique (up to a scalar
multiplier), real and symmetric “eigenvector” of (1.3) associated with −12 (µ1+µ1) given by x1x∗1+x1x

T
1 .

This eigenvector is of rank 1 if µ1 is real or rank 2 otherwise. As a result, it can be represented efficiently
using its truncated eigenvalue decomposition VDVT , where the matrix V consists of one or two orthonormal
columns that form a basis for span{x1,x1}.

The observation above suggests the following approach to finding the rightmost eigenvalue of Ax =
µMx: first solve (1.3) for its eigenvalue with smallest modulus and the associated eigenvector, and then solve
the small eigenvalue problem (VTAV)y= µ(VTMV)y. The advantage of this strategy is that unlike for the
rightmost eigenvalue, there are many robust methods for computing an eigenvalue with smallest modulus,
in particular, inverse iteration (also known as inverse power method, see Stewart (2001)). In Elman & Wu
(2012), a variant of inverse iteration referred to as Lyapunov inverse iteration was used. This algorithm
was first proposed in Meerbergen & Spence (2010) for eigenvalue problems similar in structure to (1.3); the
methodology was developed to take advantage of the special low-rank structure of the “eigenvector” Z of
(1.3).

Applying Lyapunov inverse iteration to (1.3) requires solving a large-scale Lyapunov equation

SY+YST = PCPT (1.4)

at each step, where P ∈ Rn×r with r = 1 or 2 (see Elman & Wu (2012)). Hence, the implementation of
Lyapunov inverse iteration depends on solving (1.4) efficiently. The solution to (1.4) often has low-rank
approximation (see Antoulas et al. (2001); Grasedyck (2004); Kressner & Tobler (2010); Penzl (2000)), and
iterative methods for computing such an approximation (see, for instance, Druskin & Simoncini (2011);
Saad (1990); Simoncini (2007)) entail matrix-vector products with matrices that are rational functions of
S, which in turn require solving large, sparse linear systems. For large-scale discretization of the PDEs,
practical implementations entail the use of preconditioned iterative methods for performing these solves.
Our aim in this work is to explore the effectiveness of several solution algorithms for the linear systems

3 of 20

arising from Lyapunov inverse iteration, and, more importantly, to develop a way to reduce the costs of these
solves.

The rest of this paper is organized as follows. In section 2, we review two iterative Lyapunov solvers:
the standard Krylov subspace method developed in Saad (1990) and the rational Krylov subspace method
developed in Druskin & Simoncini (2011), both of which have been used in Elman & Wu (2012). In
particular, we introduce the types of linear systems that need to be solved in the implementation of these two
methods. In section 3, we first review and test the iterative methods developed for these systems arising from
incompressible Navier-Stokes equations. Then we incorporate these methods into the Lyapunov solvers,
which are tested on several examples considered. Based on the numerical results, we propose in section 4 a
modified version of the rational Krylov subspace method and demonstrate that it achieves significant savings
in computational cost. In section 5, justification for this modification is provided. Some concluding remarks
are given in section 6.

2. Review of iterative Lyapunov solvers

In this section, we review two Lyapunov solvers that can be used for Lyapunov inverse iteration, see Elman
& Wu (2012): the standard Krylov subspace method (Jaimoukha & Kasenally (1994); Saad (1990)) and
the rational Krylov subspace method (RKSM) (Druskin et al. (2011); Druskin & Simoncini (2011)). Both
methods construct a low-rank approximate solution to (1.4) of the form VmXmV

T
m, where the columns of

Vm form an orthonormal basis for a small subspace of Rn and Xm is the solution to a small Lyapunov
equation that can be solved using direct methods (Bartels & Stewart (1972); Hammarling (1982)). Let the
residual associated with (1.4) be

R= S
(
VmXmV

T
m

)
+
(
VmXmV

T
m

)
ST −PCPT . (2.1)

The small Lyapunov equation is obtained by imposing a Galerkin condition of the form trace
(
RZT

)
= 0,

where Z is any matrix of the form VmQV
T
m.

In Elman & Wu (2012), a real, symmetric and rank-1 matrix Z(0) = v0v
T
0 was chosen to be the starting

guess of the target eigenvector of (1.3) where v0 is a random vector with unit norm in Rn . As a result, the
right-hand side of the Lyapunov equation (1.4) that needs to be solved in the first step of Lyapunov inverse
iteration is −2SZ(0)ST =−2Sv0v

T
0S
T , i.e., P is a single vector with unit norm. As the algorithm proceeds,

in subsequent iterations, the rank of the right-hand side of (1.4) may change to 2, in which case P will have
two orthonormal columns. For simplicity, in the rest of this paper, we focus on the solution of the first
Lyapunov equation, which has a rank-1 right-hand side. It is straightforward to generalize the algorithms
presented here to the case where P has multiple columns.

In the standard Krylov subspace method, a Krylov subspace that we are familiar with,

Km(S,P) = span
{
P,SP,S2P, . . . ,Sm−1P

}
,

is built. This method is outlined in Algorithm 2.1.

Algorithm 2.1 The standard Krylov subspace method for (1.4)
1. Given a tolerance τ. Let v1 = V1 = P.
2. Form= 1,2, · · ·

2.1. w= Svm.
For i= 1, . . . ,m
hi,m← vTi w;

4 of 20

w←w−vihi,m.
2.2. Solve the small Lyapunov equation

HmXm+XmH
T
m =

(
VTmP

)
C
(
VTmP

)T
where Hm = VTmSVm.

2.3. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
2.4. If the residual norm ‖R‖F < τ, then stop.
2.5. Else, Vm+1← [Vm,vm+1].

In Algorithm 2.1, the matrix Hm = Vm
TSVm is available at no cost since it is simply the upper Hes-

senberg matrix
[
hi,j

]m
i,j=1

. As shown in Jaimoukha & Kasenally (1994), the residual norm ‖R‖F of (1.4)
can be computed cheaply as well. At each step of Algorithm 2.1, the matrix-vector product Svm is formed.
Since S= A−1M where A is the Jacobian matrix, computing Svm entails one solve of the linear system

Ax= b (2.2)

where b = Mvm. This is precisely the kind of linear system that needs to be solved in the computation of
the steady-state solution for (1.1).

The rational Krylov subspace method (RKSM) was originally developed in Ruhe (1984, 1994) for the
computation of the interior eigenvalues of S. This method constructs a subspace

Km(S,P,s) = span

{
P,(S− s1I)

−1P,(S− s2I)
−1(S− s1I)

−1P, . . . ,
m−1

∏
j=1

(S− sm−jI)
−1P

}
,

where s =
{
sj
}m−1

j=1
∈ Cm−1 is a set of shifts that need to be selected by some means. The utility of this

method for solving large-scale Lyapunov equations has recently been investigated in Druskin & Simoncini
(2011). An algorithmic description reads as follows:

Algorithm 2.2 The rational Krylov subspace method for (1.4)
1. Given a tolerance τ and a shift s1. Let v1 = V1 = P.
2. Form= 1,2, · · ·

2.1. w= (S− smI)
−1vm.

For i= 1, . . . ,m
hi,m← vTi w;
w←w−vihi,m.

2.2. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
2.3. Compute Tm = VTmSVm and solve the small Lyapunov equation

TmXm+XmT
T
m =

(
VTmP

)
C
(
VTmP

)T
.

2.4. If ‖R‖F < τ, then stop.
2.5. Else, Vm+1← [Vm,vm+1] and compute the next shift sm+1.

In Druskin et al. (2010) (for symmetric S) and Druskin & Simoncini (2011) (for general S), adaptive
and parameter-free approaches for generating the shifts s were proposed. Both approaches require some
knowledge of the spectrum of S. In Druskin & Simoncini (2011), the first shift s1 is chosen to be a rough

5 of 20

estimate of either −Remin(θ) or −Remax(θ), where Remin(θ) and Remax(θ) denote the minimum and
maximum real parts of the eigenvalues of S, respectively. (Since we assume A to be the Jacobian matrix
evaluated at any stable point (u0,α0), the eigenvalues of S all lie in the left half of the complex plane, i.e.,

0 > Remax(θ)>Remin(θ).) Let I = [−Remax(θ),−Remin(θ)] and
{
θ̂j

}m
j=1

denote the eigenvalues of

Tm, which will be updated at each iteration of Algorithm 2.2 and reflect the most recent information on the
spectrum of S. Each subsequent shift sm+1 is then chosen as follows:

sm+1 = arg
(

maxs∈I 1
|rm(s)|

)
, where rm(s) =

∏
m
j=1

(
s− θ̂j

)
∏
m
j=1

(
s− sj

) . (2.3)

Once
{
θ̂j

}m
j=1

are known, this selection process only involves sampling the rational function rm(s) on the

interval I , which is cheap. By Proposition 4.2 of Druskin & Simoncini (2011), the residual norm ‖R‖F of
this method is also easy to compute.

We now look into the linear systems that arise from Algorithm 2.2 when it is applied to (1.4). Since

(S− smI)
−1 =

(
A−1M− smA−1A

)−1
= (M− smA)−1A, (2.4)

computing (S− smI)
−1vm entails the solution of a linear system of the form

(M− sA)x= b (2.5)

where s > 0 and b = Avm. The structure of (2.5) is exactly like that of the linear systems that need to be
solved in the computation of a fully implicit iteration for a transient solution to (1.1), where s plays the role
of the time step ∆t.

Unlike in the standard Krylov subspace method, extra work is required to obtain the matrix Tm =
VTmSVm in step 2 of Algorithm 2.2. Computing it naively requires m matrix-vector products with S, i.e.,
m solves with A. A more efficient way of generating this matrix was proposed in Ruhe (1994) (see also
Proposition 4.1 of Druskin & Simoncini (2011)) which only requires knowing Svm+1, or equivalently, one
solve of (2.2) where b= Mvm+1.

To sum up, when applied to (1.4), each iteration of the standard Krylov subspace method requires one
solve of (2.2) in order to compute a new Krylov vector, whereas each iteration of RKSM requires one solve of
(2.5) to compute a new Krylov vector and an additional solve of (2.2) to construct the matrix Tm =VTmSVm.

3. Numerical results

In the previous section, we have shown that solving the Lyapunov equation (1.4) arising from Lyapunov
inverse iteration requires multiple solves of the linear systems (2.2) and/or (2.5), which are essentially the
types of equations that arise in solving steady or transient PDEs. Therefore, iterative solution methods
developed for such PDEs can be applied directly in Lyapunov inverse iteration. These strategies often involve
designing efficient preconditioners that approximate the discrete versions of certain differential operators.

The dynamical system (1.1) that we consider in this study is the spatial discretization of the Navier-
Stokes equations modeling incompressible flows,

ut−ν∇
2u+u ·∇u+∇p= 0

∇ ·u= 0
(3.1)

6 of 20

subject to appropriate boundary conditions, where u, p, ν denote the velocity, pressure and kinematic vis-
cosity, respectively. In order to examine the performance of Lyapunov solvers with iterative linear solves,
we proceed in two steps: review some preconditioners developed for (3.1) and test them on (2.2) and (2.5),
and then integrate these solution techniques into the Lyapunov solvers described in the previous section and
apply them to (1.4) arising from Lyapunov inverse iteration.

3.1 Iterative solves of the linear systems

The matrices A and M arising from div-stable mixed finite element discretization of (3.1) have the block
structure

A =

[
F BT

B 0

]
and M =

[
−G 0
0 0

]
. (3.2)

The matrix blocks F∈Rnu×nu , B∈Rnp×nu andG∈Rnu×nu are all sparse, wherenu+np=n andnp<
nu. G is the velocity mass matrix, B is the matrix representation of the discrete divergence operator, and
F resembles the matrix representation of the discrete convection-diffusion operator. (The precise definition
of F can be found in Elman et al. (2005).) Since a nonsingular mass matrix is required (see Elman & Wu
(2012)), in the actual computation, we use instead a modified mass matrix[

−G ηBT

ηB 0

]
where η=−0.01. The rightmost eigenvalue of Ax= µMx remain unchanged when this new mass matrix is
used (see Cliffe et al. (1994)).

Preconditioners for (2.2) of the form

P =

[
PF BT

0 −PS

]
(3.3)

were developed in Elman et al. (2005) and Elman (2005), where PF is a preconditioner for F and PS is a
preconditioner for the (dense) Schur complement BF−1BT . In (3.3), we can choose PF to be F itself and
apply its inverse using a multigrid process (see Elman et al. (2005)). The main issue in designing P is the
choice of PS.

In Elman et al. (2005), two effective preconditioning strategies for the Schur complement were de-
scribed: the pressure convection-diffusion preconditioner (PCD) and the least-squares commutator precondi-
tioner (LSC). They are derived by approximately minimizing the discrete version of a commutator of certain
differential operators using two different heuristics (see Elman et al. (2005)). The pressure convection-
diffusion preconditioner is defined to be

ApF
−1
p Gp

where Ap and Fp are discrete Laplacian and convection-diffusion operators in the pressure space, respec-
tively, and Gp is the pressure mass matrix. The least-squares commutator preconditioner is defined to be(

BĜ−1BT
)(
BĜ−1FĜ−1BT

)−1(
BĜ−1BT

)
where Ĝ is the diagonal matrix whose entries are taken from the diagonal of G.

The coefficient matrix M− sA of (2.5) has the block structure[
−(sF+G) (η− s)BT

(η− s)B 0

]

7 of 20

similar to that of A, and the pressure convection-diffusion preconditioner and the least-squares commutator
preconditioner can be derived in an analogous manner for its Schur complement −(η−s)2B(sF+G)−1BT .
They are

−(η− s)2Ap(sFp+Gp)
−1Gp (3.4)

and
−(η− s)2

(
BĜ−1BT

)(
BĜ−1(sF+G)Ĝ−1BT

)−1(
BĜ−1BT

)
, (3.5)

respectively. The shift s in RKSM varies from one iteration to another. An important feature of both
preconditioners is that they do not require any extra work to construct as s changes.

We will explore both these preconditioning strategies, using improved variants of them developed to
account for boundary effects; see Elman & Tuminaro (2009) for details of these improvements.

Also, the description above is for “ideal” versions of these methods. As described, their main computa-
tional costs are for linear system solves with F or sF+G (where F resembles a convection-diffusion operator
on the velocity space and G is a velocity mass matrix), Ap or BĜ−1BT (pressure Poisson operators) and
Gp (a pressure mass matrix). These subsidiary systems could be solved efficiently using multigrid for F
or sF+G and for Ap, but it is actually more effective to replace accurate solutions with approximate ones
obtained, for example, by applying a single step of multigrid to the systems (see Elman et al. (2005)). In the
results described below, PF is defined using one V-cycle of algebraic multigrid (AMG) (implemented in the
IFISS software package, see Elman et al. (2007)); the pressure Poisson solves are also replaced by a single
V-cycle of AMG.1 The pressure mass matrix is replaced by its diagonal approximation.

We investigate the utility of these preconditioning strategies for solving (2.2) and (2.5). The iterative
linear solver we use for the preconditioned systems is GMRES. Recall from section 2 that we need to solve
an instance of (2.2) in each iteration of both Algorithms 2.1 and 2.2 and an additional instance of (2.5)
in each iteration of Algorithm 2.2. The right-hand side b in (2.2) and (2.5) and the shift in (2.5) vary
from one iteration to another. In this subsection, as a simple first test, we take b to be a constant vector
with unit norm whose entries all equal to n−0.5 and consider five representative values of the shift, i.e.,
s= 10−3,10−2,10−1,1,10. The stopping criteria for GMRES are

‖Ax−b‖2 < 10
−10 · ‖b‖2 (3.6)

for (2.2) and
‖(M− sA)x−b‖2 < 10

−10 · ‖b‖2 (3.7)

for (2.5).
The following four examples are considered in this section, where (3.1) is discretized using Q2-Q1

mixed finite elements:

• 2D flow over an obstacle (32×128 mesh, n= 9512) at RE= 200 and RE= 350, and

• 2D driven-cavity flow (64×64 mesh, n= 9539) at RE= 2000 and RE= 4000.

Here, RE denotes the Reynolds number ULν , where U is the maximum magnitude of velocity on the inflow
and L is a characteristic length scale for the domain. (In these tests, L= 2 andU= 1 for the obstacle problem,
so that RE = 2

ν , and L = 1, U = 1, RE = 1
ν for the cavity problem.) In all four examples, n ≈ 10,000.

Stability analysis of these two flows has been considered in previous work (Elman et al. (2012); Elman &
Wu (2012)), and their streamlines are depicted in Figure 1. The critical Reynolds number is about 370 for
the flow over an obstacle and approximately 8000 for the driven-cavity flow (see Elman et al. (2012)).

1On the velocity space, AMG is actually applied to the system with coefficient matrix F̂ or sF̂+G, where F̂ is the block convection-
diffusion operator that would be obtained from a Picard linearization of the Navier-Stokes operator; see Elman et al. (2005) for details.

8 of 20

FIG. 1: The streamlines of driven-cavity flow (at RE= 4000) and flow over an obstacle
(at RE= 350)

Figures 2 and 3 display the performance of the two preconditioners for solving (2.2) and (2.5) arising
from these four examples. In each subplot, the residual norms ‖Ax−b‖2 and ‖(M−sA)x−b‖2 are plotted
against the number of preconditioned GMRES steps. The number next to each curve indicates the value of
the shift s. The curves labeled with “∞” correspond to (2.2) since formally, (2.2) can be viewed as (2.5)
with s=∞.

The performance of GMRES for these representative shifts shows that the smaller the shift s is, the
easier it is to solve (2.5). This is because the smaller s is, the better both preconditioners (3.4) and (3.5)
approximate the Schur complement −(η− s)2B(sF+G)−1BT . The number of GMRES steps needed by
(2.2) shows the limit of how expensive solving (2.5) can get as s increases. It can also be seen that the
performance of LSC is almost always stronger than that of PCD in these tests, and in the sequel we restrict
our attention to LSC. The conclusions reached below for LSC would also apply in a qualitative sense to
PCD.

From Figures 2 and 3, we can also observe that as the Reynolds number grows, when either precondi-
tioner is used, (2.2) and (2.5) with a large shift become increasingly difficult to solve.

3.2 Lyapunov solvers with iterative linear solves

We next consider the performance of the full Lyapunov solvers when the linear solution methods described
in section 3.1 are integrated into the implementation.

We again consider the following four examples: flow over an obstacle at RE = 200 and RE = 350 and
driven-cavity flow at RE= 2000 and RE= 4000. The stopping criteria are

‖R‖F < 10−6 · ‖C‖F (3.8)

for the Lyapunov solve (outer iteration) and (3.6), (3.7) for the linear solves (inner iteration). All the linear
systems arising from the Lyapunov solvers will be solved using GMRES in conjunction with the LSC pre-
conditioner described in section 3.1. In addition, as in the previous numerical experiments, the subsidiary
linear systems arising from the application of P−1 to a vector are solved approximately using one multigrid
V-cycle.

We first consider RKSM, which is shown in Algorithm 2.2. Recall that one solve of (2.2) and one solve
of (2.5) are needed at each iteration. The results of Algorithm 2.2 are shown in Figures 4 and 5, in which we
plot both the number of GMRES steps (inner iterations) and the shift s for each iteration of RKSM (outer
iteration).

In each of Figures 4a, 4c, 5a and 5c, there are two curves representing respectively the number of
GMRES steps needed for solving (2.2) (denoted by ‘×’) and that for (2.5) (denoted by ‘◦’) as Algorithm 2.2
proceeds. As can be seen from these four figures, the number of GMRES steps needed for (2.2) is nearly a

9 of 20

0 20 40 60 80 100 120 140
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

 ||
(M

−
sA

)x
−

b|
| 2

10−3
10−2

10−1 1 10 ∞

(a) PCD (Obstacle, RE= 200)

0 20 40 60 80 100 120
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES Iteration

||(
M

−
sA

)x
−

b|
| 2

10−3

10−2 10−1 1 10 ∞

(b) LSC (Obstacle, RE= 200)

0 50 100 150 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

||(
M

−
sA

)x
−

b|
| 2

10−310−2 10−1 1 10 ∞

(c) PCD (Obstacle, RE= 350)

0 50 100 150 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

||(
M

−
sA

)x
−

b|
| 2

10−2

10−1 1
10−3 10 ∞

(d) LSC (Obstacle, RE= 350)

FIG. 2: The performance of the pressure convection-diffusion (PCD) preconditioner and the
least-squares commutator (LSC) preconditioner in flow over an obstacle

constant as the outer iteration advances. This constant is about 110 for RE = 200, 170 for RE = 350, 360
for RE = 2000 and 560 for RE = 4000, as given by the rightmost curve in Figures 2b, 2d, 3b and 3d. On
the other hand, from the same set of figures, we can see that the number of GMRES steps required to solve
(2.5) is quite oscillatory and can change drastically from one iteration to the next. The pattern of oscillation
matches perfectly with that of the shift, which is depicted in Figures 4b, 4d, 5b and 5d (denoted by ‘�’). The
bigger the shift is, the more GMRES steps are needed to solve (2.5). This behavior is again expected from
the numerical experiments in the previous section. In many outer iterations, the number of GMRES steps
required to solve (2.5) is significantly smaller than that needed by (2.2). In fact, in all four cases considered
here, approximately 75% of all the GMRES steps taken to solve (1.4) are devoted to the solution of (2.2).

Next, we perform a similar test for the standard Krylov subspace method (Algorithm 2.1). Recall from
section 2 that one solve of (2.2) is needed at each iteration of Algorithm 2.1. We continue to use (3.6) as

10 of 20

0 100 200 300 400
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

||(
M

−
sA

)x
−

b|
| 2

10−2

10−110−3 1 10 ∞

(a) PCD (Cavity, RE= 2000)

0 100 200 300 400
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

||(
M

−
sA

)x
−

b|
| 2

10−3

10−2

10−1 1 10 ∞

(b) LSC (Cavity, RE= 2000)

0 100 200 300 400 500 600 700
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

||(
M

−
sA

)x
−

b|
| 2

10−3

10−2

10−1 1 10 ∞

(c) PCD (Cavity, RE= 4000)

0 100 200 300 400 500 600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

 ||
(M

−
sA

)x
−

b|
| 2

10−3

10−2

10−1 1 10 ∞

(d) LSC (Cavity, RE= 4000)

FIG. 3: The performance of the pressure convection-diffusion (PCD) preconditioner and the
least-squares commutator (LSC) preconditioner in driven-cavity flow

the stopping criterion for the linear solve (2.2) and (3.8) as the stopping criterion for the Lyapunov solve.
The results of Algorithm 2.1 applied to the same set of examples are shown in Figure 6, in which each curve
corresponds to one example and displays the number of GMRES iterations required to solve (2.2). This
figure shows that the number of GMRES steps needed to solve (2.2) is roughly the same in each iteration
of Algorithm 2.1, as observed for RKSM in Figures 4 and 5. Moreover, comparison between Figure 6 and
Figures 4, 5 shows that to solve (1.4) to the same order of accuracy, the standard Krylov subspace method
needs a subspace more than twice as large as that needed by RKSM.

In Figure 7, we plot the residual norm ‖R‖F associated with (1.4) against the total number of GMRES
steps required by both Lyapunov solvers. As displayed in Figure 7, in all four examples we consider,
to compute an approximate solution of (1.4) that satisfies (3.8), RKSM is much more efficient, requiring
approximately half as many GMRES steps as the standard Krylov subspace method. There are two reasons

11 of 20

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(a) inner iteration counts (Obstacle, RE= 200)

0 5 10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

10
1

RKSM (outer) step

sh
ift

(b) shifts (Obstacle, RE= 200)

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(c) inner iteration counts (Obstacle, RE= 350)

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

10
1

RKSM (outer) step

sh
ift

(d) shifts (Obstacle, RE= 350)

FIG. 4: Inner iteration counts and shifts of RKSM applied to flow over an obstacle (×: the number
of GMRES steps needed for solving (2.2), ◦: the number of GMRES steps needed for

solving (2.5), �: the shift in (2.5))

for this: first, RKSM requires a much smaller Krylov subspace, and second, although an extra solve of (2.5)
is needed per iteration of RKSM, it is on average much cheaper to solve this problem than to solve (2.2).

4. Modified rational Krylov subspace method

As shown in section 3, the cost of RKSM applied to (1.4) is dominated by that of solving the linear system
(2.2). If the solution of (2.2) can somehow be avoided without harming the convergence rate of RKSM, then
the efficiency of this method will increase significantly. In this section, we propose a modified version of
RKSM for (1.4) that achieves this goal.

Recall from section 2 that when RKSM is applied to (1.4), the linear system (2.5) arises from computing

12 of 20

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(a) inner iteration counts (Cavity, RE= 2000)

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

RKSM (outer) step

sh
ift

(b) shifts (Cavity, RE= 2000)

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(c) inner iteration counts (Cavity, RE= 4000)

0 20 40 60 80 100 120 140 160
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

RKSM (outer) step

sh
ift

(d) shifts (Cavity, RE= 4000)

FIG. 5: Inner iteration counts and shifts of RKSM applied to driven-cavity flow (×: the number
of GMRES steps needed for solving (2.2), ◦: the number of GMRES steps needed for

solving (2.5), �: the shift in (2.5))

a new Krylov vector and the linear system (2.2) arises from the computation of the matrix Tm = VTSV. Tm
is needed in the construction of the approximate solution VmXmVTm of (1.4), and its eigenvalues are used
to generate the next shift sm+1. However, it is not necessary to compute an approximate solution to (1.4) at
each step of Algorithm 2.2; moreover, we only need the eigenvalues of Tm in (2.3), not Tm itself.

Thus, we can reduce the number of solves by not computing Tm at every step. We propose using the
eigenvalues of Tm =

(
VTmAVm

)−1 (
VTmMVm

)
in (2.3) to generate the shift, instead of those of Tm. The

reason is twofold: first, constructing Tm only requires matrix-vector products with A and M; second, the
eigenvalues of Tm approximate those of Tm well. The latter assertion is supported by numerical evidence
given below and in section 5.

Consider again (1.4) arising from driven-cavity flow at RE= 2000. We compute the eigenvalues of both

13 of 20

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

standard Krylov method (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

Cavity, RE = 4000

Cavity, RE = 2000

Obstacle, RE = 350

Obstacle, RE = 200

FIG. 6: Inner iteration counts of the standard Krylov subspace method applied to all four examples
(×: the number of GMRES steps needed for solving (2.2))

Tm and Tm as Algorithm 2.2 proceeds. For m = 25,50,75,100, the spectra of Tm and Tm are plotted in
Figure 8, in which the crosses denote the eigenvalues of Tm and the circles represent the eigenvalues of Tm.
(Note that a logarithmic scale is used on the real axis for a clearer display of the eigenvalues.) As shown in
Figure 8, the eigenvalues of Tm indeed approximate those of Tm well, especially for largerm. This suggests
that replacing the eigenvalues of Tm with those of Tm in the computation of the new shift will not affect the
asymptotic convergence rate of RKSM.

The variant of RKSM with this modification is outlined in Algorithm 4.1. In the modified algorithm,
we compute Tm and check the convergence of the Lyapunov solve only when the iteration count m is an
integer multiple of a prescribed integer k. (When k = 1, this is simply Algorithm 2.2.) Consequently, (2.2)
appears only in those iterations. In the iterations where Tm is not computed, we continue using the approach
proposed in Druskin & Simoncini (2011) to choose the next shift; the only change is to use the eigenvalues
of Tm instead of those of Tm in (2.3). The computation of Tm entails only two matrix-vector products Avm
and Mvm at each iteration. In fact, only the matrix-vector product Mvm is needed since according to (2.4),
Avm is the right-hand side of (2.5) and has to be computed anyway. Thus, the cost of constructing Tm is
negligible.

Algorithm 4.1 The modified rational Krylov subspace method for (1.4)
1. Given a tolerance τ, a shift s1 and an integer k > 1. Let v1 = V1 = P.
2. Form= 1,2, · · ·

2.1. w= (S− smI)
−1vm.

For i= 1, . . . ,m
hi,m← vTi w;
w←w−vihi,m.

2.2. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
2.3. If mod(m,k) = 0

2.3.1. compute Tm = VTmSVm and solve the small Lyapunov equation

14 of 20

0 5000 10000 15000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM

(a) Obstacle, RE= 200

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM

(b) Obstacle, RE= 350

0 2 4 6 8 10

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM

(c) Cavity, RE= 2000

0 0.5 1 1.5 2

x 10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM

(d) Cavity, RE= 4000

FIG. 7: Comparison of the total number of GMRES iterations required by the standard Krylov
subspace method and RKSM

TmXm+XmT
T
m =

(
VTmP

)
C
(
VTmP

)T
;

2.3.2. if ‖R‖F < τ, then stop.
2.4. Else, compute Tm =

(
VTmAVm

)−1 (
VTmMVm

)
.

2.5. Vm+1← [Vm,vm+1] and compute the next shift sm+1.

We apply Algorithm 4.1 (with k= 5) to the four examples considered in the previous section and display
the numerical results in Figure 9. We continue to use the stopping criteria (3.6), (3.7) for the inner iterations
and (3.8) for the outer iterations. In Figure 9, the crosses and the circles again denote the numbers of
preconditioned GMRES steps required to solve (2.2) and (2.5), respectively. Since we only compute Svm+1

15 of 20

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(a)m= 25

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(b)m= 50

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(c)m= 75

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(d)m= 100

FIG. 8: The eigenvalues of Tm (crosses) and Tm (circles)

every k = 5 iterations, as seen in Figure 9, the number of GMRES iterations taken to solve (2.2) is simply
zero in many iterations of Algorithm 4.1. By comparing Figures 4, 5 and 9, we also observe that for the
same example, the sizes of the Krylov subspaces built by Algorithm 2.2 and that built by Algorithm 4.1 are
almost the same. (A slight increase (less than k) in the size of the Krylov subspace can be observed when
Algorithm 4.1 is used instead of Algorithm 2.2. This is due to the fact that in Algorithm 4.1, we only check
convergence every k iterations and, therefore, the algorithm may not terminate even if (3.8) has already been
met.) This implies that the shifts generated using the eigenvalues of Tm are essentially of the same quality
as those generated using the eigenvalues of Tm.

We also compare the total number of GMRES steps required by Algorithms 2.1, 2.2 and 4.1 (with k= 5
or k= 10) for solving (1.4). In Figure 10, the residual norm of (1.4) is again plotted against the total number
of GMRES steps needed by the Lyapunov solvers. These residual curves show that Algorithm 4.1 converges
much more rapidly than Algorithm 2.2. In order to produce an approximate solution that satisfies (3.8),

16 of 20

Algorithm 4.1 (with k = 5) takes about 50% fewer GMRES steps. We can further improve the efficiency
of Algorithm 4.1 by increasing k to 10, though as shown in Figure 10, such improvement is much less
pronounced. This is because when k = 5, the dominant cost of Algorithm 4.1 has already become the
solution of (2.5), which cannot be made any cheaper by increasing k.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

modified RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(a) Obstacle, RE= 200

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

modified RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns
(b) Obstacle, RE= 350

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

modified RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(c) Cavity, RE= 2000

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

modified RKSM (outer) step

nu
m

be
r

of
 G

M
R

E
S

 (
in

ne
r)

 it
er

at
io

ns

(d) Cavity, RE= 4000

FIG. 9: Inner iteration counts of the modified RKSM with k= 5

5. Further analysis of Tm and Tm

The modified RKSM (Algorithm 4.1) proposed in section 4 is based on the hypothesis that the eigenvalues
of Tm = (VTmAVm)−1(VTmMVm) approximate those of Tm = VTmSVm = VTm(A−1M)Vm well. In this
section, we analyze the relation between Tm and Tm and provide more numerical evidence to support this
hypothesis.

As shown in Ruhe (1994) (also see the proof of Proposition 4.2 of Druskin & Simoncini (2011)), the

17 of 20

0 2000 4000 6000 8000 10000 12000 14000 16000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM
modified RKSM (k=5)
modified RKSM (k=10)

(a) Obstacle, RE= 200

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM
modified RKSM (k=5)
modified RKSM (k=10)

(b) Obstacle, RE= 350

0 2 4 6 8 10

x 10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM
modified RKSM (k=5)
modified RKSM (k=10)

(c) Cavity, RE= 2000

0 0.5 1 1.5 2

x 10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of GMRES iterations

||R
|| F

standard Krylov
RKSM
modified RKSM (k=5)
modified RKSM (k=10)

(d) Cavity, RE= 4000

FIG. 10: Comparison of the total number of GMRES iterations required by the standard Krylov
subspace method, RKSM and modified RKSM

rational Krylov subspace method computes the Arnoldi decomposition

SVm = VmTm+vm+1hm+1,me
T
mDmH

−1
m −(I−VmV

T
m)Svm+1hm+1,me

T
mH

−1
m (5.1)

at each iteration, where em is the last column of them×m identity matrix,Dm = diag({s1, s2, . . . , sm}) is
the diagonal matrix that holds all the previous shifts, and I is the n×n identity matrix. The definitions of
Vm, Hm, Tm, hm+1,m and vm+1 can be found in Algorithm 2.2.

THEOREM 5.1 Tm = Tm+Em where Em has m−1 zeros eigenvalues. The single nonzero eigenvalue of
Em is

ρm = hm+1,me
T
mH

−1
m (VTmAVm)−1VTmA(I−VmV

T
m)(smI−S)vm+1,

18 of 20

and the corresponding eigenvector is

ψm = (VTmAVm)−1VTmA(I−VmV
T
m)(smI−S)vm+1.

Proof. Left multiply both sides of (5.1) by VTmA:

VTmMVm =(VTmAVm)Tm+VTmAvm+1hm+1,me
T
mDmH

−1
m

−VTmA(I−VmV
T
m)Svm+1hm+1,me

T
mH

−1
m .

(5.2)

Then left multiply both sides of (5.2) by (VTmAVm)−1:

Tm =Tm+(VTmAVm)−1VTmAvm+1hm+1,me
T
mDmH

−1
m

−(VTmAVm)−1VTmA(I−VmV
T
m)Svm+1hm+1,me

T
mH

−1
m .

(5.3)

Since eTmDm = sme
T
m and vm+1 is orthogonal to the columns of Vm, the difference between Tm and Tm

is
Em = hm+1,m(VTmAVm)−1VTmA(I−VmV

T
m)(smI−S)vm+1e

T
mH

−1
m .

It is easy to check that Em hasm−1 zero eigenvalues whose eigenvectors are given by
{
ψj =Hmej

}m−1

j=1
,

and the single nonzero eigenvalue ρm whose corresponding eigenvector is ψm. �
Thus, Tm differs from Tm by a matrix of rank one. We have seen that the eigenvalues of theses two

matrices are very close to each other. In Table 1, we also report the “relative error” ‖Em‖2/‖Tm‖2 for
several different values of m and each of the four examples considered in Sections 3 and 4. It can be seen
that these errors are small, giving further indication that Tm is close to Tm.

Table 1: ‖Em‖2/‖Tm‖2

m
Obstacle Obstacle Cavity Cavity
RE= 200 RE= 350 RE= 2000 RE= 4000

25 0.25732 0.25663 0.03824 0.01553
50 0.14088 0.10365 0.03453 0.02342
75 0.05734 0.08111 0.02904 0.01784
100 0.04143 0.05611 0.01797 0.02037

6. Conclusions

In this paper, we explore the performance of standard Krylov subspace method and rational Krylov subspace
method with iterative linear solves. Different preconditioners are tested and compared on the linear systems
arising from the two Lyapunov solvers. These systems can be divided into two categories: ones with structure
identical to those that arise in the computation of steady states of a system of PDEs, and ones with structure
like those arising from transient PDEs. We observe that the cost of solving the linear systems of the first
type dominates the total cost of rational Krylov subspace method. In light of this observation, we modify
this method in such a way that solution of the first type of linear systems can mostly be avoided. The
modification is simple yet effective, leading to significant savings in computational cost without degrading
the convergence of the Lyapunov solver.

19 of 20

Funding

This work was supported in part by the U. S. Department of Energy under grant DE-SC0009301 and by the
U. S. National Science Foundation under grant DMS1115317.

REFERENCES

ANTOULAS, A. C., SORENSEN, D. C. & ZHOU, Y. (2001) On the decay of Hankel singular values and related issues.
Technical Report 01-09. Houston: Department of Computational and Applied Mathematics, Rice University.
Available from http://www.caam.rice.edu/˜sorensen/Tech_Reports.html.

BARTELS, R. H. & STEWART, G. W. (1972) Algorithm 432: solution of the matrix equation AX+XB= C. Comm. of
the ACM, 15, 820–826.

CLIFFE, K. A., GARRATT, T. J. & SPENCE, A. (1994) Eigenvalues of block matrices arising from problems in fluid
mechanics. SIAM J. Matrix Anal. Appl., 15, 1310–1318.

DRUSKIN, V., LIEBERMAN, C. & ZASLAVSKY, M. (2010) On adaptive choice of shifts in rational Krylov subspace
reduction of evolutionary problems. SIAM J. Sci. Comput., 32, 2485–2496.

DRUSKIN, V., KNIZHNERMAN, L. & SIMONCINI, V. (2011) Analysis of the rational Krylov subspace and ADI methods
for solving the Lyapunov equation. SIAM J. Numer. Anal., 49, 1875–1898.

DRUSKIN, V. & SIMONCINI, V. (2011) Adaptive rational Krylov subspaces for large-scale dynamical systems. Systems
Control Lett., 60, 546–560.

ELMAN, H., SILVESTER, D. & WATHEN, A. (2005) Finite Elements and Fast Iterative Solvers. Oxford: Oxford
University Press.

ELMAN, H. C. (2005) Preconditioning strategies for models of incompressible flow. J. Sci. Comput., 25, 347–366.
ELMAN, H. C., RAMAGE, A. & SILVESTER, D. J. (2007) Algorithm 866: IFISS, a Matlab toolbox for modelling

incompressible flow. ACM Transactions on Mathematical Software, 33, 14:1–14:18.
ELMAN, H. C., MEERBERGEN, K., SPENCE, A. & WU, M. (2012) Lyapunov inverse iteration for identifying Hopf

bifurcations in models of incompressible flow. SIAM J. Sci. Comput., 34, A1584–A1606.
ELMAN, H. C. & TUMINARO, R. S. (2009) Boundary conditions in approximate commutator preconditioners for the

Navier-Stokes equations. Electron. Trans. Numer. Anal., 35, 257–280.
ELMAN, H. C. & WU, M. (2012) Lyapunov inverse iteration for computing a few rightmost eigenvalues of large

generalized eigenvalue problems. Technical Report TR-5009. College Park: University of Maryland Department
of Computer Science. To appear in SIAM J. Matrix Anal. Appl.

GRASEDYCK, L. (2004) Low-rank solutions of the Sylvester equation. Numer. Linear Algebra Appl., 11, 371–389.
HAMMARLING, S. J. (1982) Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J.

Numerical. Anal., 2, 303–323.
JAIMOUKHA, I. M. & KASENALLY, E. M. (1994) Krylov subspace methods for solving large Lyapunov equations.

SIAM J. Numer. Anal., 31, 227–251.
KRESSNER, D. & TOBLER, C. (2010) Low-rank tensor Krylov subspace methods for parameterized linear systems.

Technical Report 2010-16. Zurich: ETH. Available from http://www.math.ethz.ch/˜kressner/.
MEERBERGEN, K. & SPENCE, A. (2010) Inverse iteration for purely imaginary eigenvalues with application to the

detection of Hopf bifurcation in large scale problems. SIAM J. Matrix Anal. Appl., 31, 1982–1999.
MEERBERGEN, K. & VANDEBRIL, R. (2012) A reflection on the implicitly restarted Arnoldi method for computing

eigenvalues near a vertical line. Linear Algebra Appl., 436, 2828–2844.
PENZL, T. (2000) Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Systems Control

Lett., 40, 139–144.
RUHE, A. (1984) Rational Krylov sequence methods for eigenvalue computation. Lin. Alg. Appl., 58, 391–405.
RUHE, A. (1994) The rational Krylov algorithm for nonsymmetric eignevalue problems. III: complex shifts for real

matrices. BIT , 34, 165–176.

20 of 20

SAAD, Y. (1990) Numerical solution of large Lyapunov equations. Signal Processing, Scattering, Operator Theory,
and Numerical Methods (M. A. Kaashoek, J. H. van Schuppen & A. C. Ran eds). Proceedings of the International
Symposium MTN-89, vol. III. Boston: Birkhauser, pp. 503–511.

SIMONCINI, V. (2007) A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci.
Comput., 29, 1268–1288.

STEWART, G. W. (2001) Matrix Algorithms Volume II: Eigensystems. Philadelphia: SIAM.

