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Abstract
In a number of problems in computational physics, a finite sum of kernel functions centered at N

particle locations located in a box in three dimensions must be extended by imposing periodic boundary
conditions on box boundaries. Even though the finite sum can be efficiently computed via fast summa-
tion algorithms, such as the fast multipole method (FMM), the periodized extension is usually treated
via a different algorithm, Ewald summation, accelerated via the fast Fourier transform (FFT). A differ-
ent approach to compute this periodized sum just using a blackbox finite fast summation algorithm is
presented in this paper. The method splits the periodized sum in to two parts. The first, comprising
the contribution of all points outside a large sphere enclosing the box, and some of its neighbors, is
approximated inside the box by a collection of kernel functions (“sources”) placed on the surface of the
sphere or using an expansion in terms of spectrally convergent local basis functions. The second part,
comprising the part inside the sphere, and including the box and its immediate neighborhood, is treated
via available summation algorithms. The coefficients of the sources are determined by least squares
collocation of the periodicity condition of the total potential, imposed on a circumspherical surface for
the box. While the method is presented in general, details are worked out for the case of evaluating
electrostatic potentials and forces. Results show that when used with the FMM, the periodized sum can
be computed to any specified accuracy, at a cost that is twice that of the free-space FMM with the same
accuracy. Several technical details and efficient algorithms for auxiliary computations are provided, as
are numerical comparisons.
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1 Introduction

Many problems in physics, chemistry and materials science lead to a free-space finite “particle” sum of N
functions, K, centered at locations xi ∈ Ω0 ⊂ R3, where Ω0 is a rectangular box d1 × d2 × d3 centered at
the origin of the reference frame

φ̃ (y) =

N∑
i=1

qiK (y − xi) . (1)

For evaluation at N locations y, this sum has a quadratic cost. There are efficient and arbitrarily accurate
approximation algorithms for this summation (e.g., the fast multipole method, FMM [6]).

Often, an extension to this sum for φ̃ must be computed in which periodic boundary conditions are
enforced on box boundaries, resulting in the potential φ. This can be evaluated by replacing the sum (1)
with the infinite sum

φ (y) =
∑
p

N∑
i=1

qiK (y − xi + p) , p ∈ P =
{

(i1d1, i2d2, i3d3) : (i1, i2, i3) ∈ Z3
}
. (2)

For some functions K, such as those representing the field of an electrostatic charge, this infinite sum may
be divergent or conditionally convergent. In this case certain side conditions may be needed to compute
a physically relevant sum. Usually such infinite sums are performed using Fourier-transform based Ewald
summation [1], which is accelerated via the FFT. This method is described briefly in Appendix C. Account-
ing for all pairwise interactions the method can achieve O(N logN) complexity, for N particles in the box
Ω0 which is periodically replicated over the full space [2, 3]. Because of the technique used for grid-to-
particle interpolation these methods are usually low-order. A high-order accurate Gaussian interpolation
based Ewald summation algorithm was recently presented in [4, 5].

A criticism of FMM algorithms has been that they are relatively harder to implement, combining the
need for efficient data structures, careful analysis and computation of special functions, and mixed memory
access patterns. Nevertheless, several open-source and commercial packages implementing the FMM for
standard kernels in free space have become available. The FMM is not often used in practice to compute
periodic sums, even though several methods to handle periodic boundary conditions using extensions to the
basic FMM have been proposed, starting from the first publication of the algorithm [6, 7, 8, 9, 10, 11, 12,
13]. One issue with these extensions is that, compared to the basic FMM for the summation of free-space
functions, they are more expensive and may require a more complicated algorithm (data structures and more
complex functions, e.g., periodic Green’s functions). Analysis of the FMM and its plane-wave variant,
which is better-suited tor large N and parallel architectures than the smooth particle mesh Ewald algorithm,
is presented in [14]. However, all these methods require constructing a new and different algorithm – a
periodic variant, for which efficient implementations are not in general available.

Special purpose hardware such as graphics processors or heterogeneous CPU/GPU architectures also
allow the fast computation of finite sums, either via brute force summation [15], or via the mapping of the
FMM onto these architectures [16, 17, 18, 19]. Yokota et al. [19] favorably compare a large scale FMM-
based vortex element computations with a direct numerical simulation via periodic pseudospectral methods.
Their simulations could have been faster and more accurate – the FMM was executed on a finite system
composed of 33 images, which while not being truly periodic also makes using the FMM significantly more
expensive.

The problem this paper seeks to address is: Given a black-box fast summation algorithm (FSA) the user
has for computing finite sums with a given kernel K (y − xi), is it possible to compute the same sum with
periodic boundary conditions without any modification of the FSA? We provide a positive answer to this
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question. Our algorithm has the same cost as the FSA, and can be computed to any user specified accuracy
ε, and does not use the FFT. The basic idea of the method is to divide the sum (2) in to two parts. One part
computes a finite sum of particles that lie within a sphere centered at the box. This is computed using the
available FSA. The other part, is an approximation of the field within the box due to all particles outside
the sphere. The field due to these sources can be represented within the box in terms of local expansions.
Such local expansions have also been proposed in other attempts to extend the FMM to periodic systems,
but are there derived by explicit translation of multipole expansions from outside the box of interest into
it. In our method, we propose to determine the coefficients directly from the periodicity conditions on
the potential, which results in solution of a relatively small overdetermined function-fitting problem, easily
solved via standard algorithms – e.g., rank-revealing QR decomposition. This step is in the spirit of the
“kernel-independent” FMM methods [23, 24]. The computational overhead of our method is of the order of
the cost of the finite FMM for the non-periodic (free space) problem with N particles in a box, and overall
the periodic sum is computable for about twice the cost of the finite sum.

We present this “periodization” approach in a general setting, but focus computational examples on the
evaluation of the electrostatic potential φ and its gradient ∇φ at M evaluation points yj ∈ Ω0 ⊂ R3 due to
N charged particles of charge qi placed in Ω0, and subject to periodic boundary conditions on ∂Ω0. This
reduces to computing the infinite, conditionally convergent, sum (1), with kernel function K:

K (y − x) =
1

|y − x|
, y 6= x; K (y − x) = 0, y = x,

N∑
i=1

qi = 0. (3)

and the net charge in each box being zero. Of course, in practical applications, such as in molecular dynam-
ics, there will be other computations in addition to the one discussed here, to stabilize the overall computa-
tions. This paper does not consider these, focusing on the electrostatic sum at a single time step.

The periodization method could be easily applied to other kernels for which a “fast summation algo-
rithm” (FSA) is available. As long as the periodic sum makes sense, and if the kernel K can be expanded
over some local basis the method should work. Conditions similar to the charge neutrality in (3) may be
necessary. The proposed method can also be applied for 2D problems, though we present it in 3D. Also, the
periodic extension of the computational domain (box) may be performed only along one or two coordinates,
for which Ewald summation may have problems.

2 Proposed method

2.1 Periodization

The box on which the periodic sum is to be computed is denoted Ω0. Let S0 be a ball of radius R0 centered
at the center of the box Ω0 and containing it. Let Sb be another ball with the same center and radiusRb > R0

(see Fig. 1). We denote as Ωb a finite region which includes the ball Sb (the minimal Ωb is the ball Sb). We
decompose the infinite sum as

φ (y) = φnear (y)+φfar (y) , φnear (y) =
∑

xj∈Ωb

qjK (y − xj) , φfar (y) =
∑

xj /∈Ωb

qjK (y − xj) , (4)

where φnear (y) is to be computed using the FSA (assumed to be the FMM in the sequel) to the specified
accuracy ε while φfar (y) is computed by some other method at least to the same accuracy. The sources in
the infinite domain are indexed as xj = xi − p, qj = qi for appropriate vectors p ∈ P (see Eq. (2)).

To apply the FMM to the kernel function K (y) it should be possible to approximate it via a convergent
series over a set of local basis functions {Rt (y)}. This means that for any source point xj /∈ Ωb we have
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Figure 1: The particle sum (2) in the box Ω0, subject to periodic boundary conditions on the box boundary,
is to be computed to a specified accuracy ε. The boundary condition can be enforced by the image method,
which results in an infinite set of copies of the box Ω0. The proposed method divides the sum into a near-field
component in Ωb and a far-field sum.

the factorization

K (y − xj) =

P∑
t=1

Bt (xj)Rt (y) + ε
(P )
j , |xj | > Rb, |y| < R0, (5)

where P is the number of terms retained in the infinite series, Bt (xj) are the expansion coefficients, and
ε
(P )
j is the truncation error depending on |xj | and R0. The basis functions can be some standard choices, or,

as in the kernel independent FMM [24], can be taken to be a collection of kernel functions, centered outside
the region of approximation

Rt (y) = K
(
y − x

(s)
t

)
,
∣∣∣x(s)
t

∣∣∣ > Rb, (6)

where x
(s)
t are a collection of sources located outside ball Sb. This method has the flavor of “equivalent-

source” methods. Since the function K depends only on the distance between its argument, it is a “radial
basis function”, or RBF [21]. While any approximation scheme may be used, the use of kernel K as RBF
is dictated by the fact that this kernel satisfies the underlying equation (e.g. the Laplace equation), so the
approximation to the field via the sum of such RBFs also satisfies the equation (if it is linear and space
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invariant). Substituting Eq. (5) into the expression for φfar (y) from Eq. (4), we obtain

φfar (y) =
P∑
t=1

CtRt (y) + ε(P ), (7)

Ct =
∑

xj /∈Ωb

qjBt (xj) , ε(P ) =
∑

xj /∈Ωb

qjε
(P )
j .

A necessary condition for our method is convergence of both infinite sums Ct and ε(P ). The problem of
computation of φfar (y) has been reduced to that of determination of P fitting coefficients Ct. These can be
determined via least-squares collocation as follows. Consider a set of L > P check points, Y(c) ⊂ S0\Ω0.
A point y(c)

l ∈ Y(c) has two properties:first,
∣∣∣y(c)
l

∣∣∣ < R0, and, second, that there exists p ∈P such that point

ỹ
(c)
l = y

(c)
l + p ∈ S0 (see Fig. 1). This means that

φ
(
y

(c)
l

)
= φ

(
ỹ

(c)
l

)
, l = 1, ..., L. (8)

In terms of decomposition (4) and representation of the far field (7) this system can be rewritten as

P∑
t=1

AltCt = fl + ε
(P )
l , l = 1, ..., L, (9)

Alt = Rt

(
y

(c)
l

)
−Rt

(
ỹ

(c)
l

)
, fl = φnear

(
ỹ

(c)
l

)
− φnear

(
y

(c)
l

)
where

∣∣∣ε(P )
l

∣∣∣ =
∣∣∣ε(P )

(
ỹ

(c)
l

)
− ε(P )

(
y

(c)
l

)∣∣∣ 6 2 maxy∈S0

∣∣ε(P ) (y)
∣∣ . We have L linear equations in P

unknowns C1, ..., CP . As we are not constrained with the size of the set of the set points, L > P can be
selected to provide a substantial oversampling, so minimization of functional

F (C1, ..., CP ) =
L∑
l=1

(
P∑
t=1

AltCt − fl

)2

, (10)

should take care about the “noise” introduced into the approximation due to ε(P )
l . The least square mini-

mization procedure is well known and formally it results in solution

C = A†f , A† =
(
ATA

)−1
AT , (11)

where C = {Ct} and f = {fl} are organized as column vectors of size P and L, respectively and A† is
the P × L matrix, which is the pseudoinverse of A, and superscript T denotes transposition. Note that
this notation is formal, and is not the way the least-squares problem is solved in practice. Rather a stable
algorithm such as the rank-revealing QR decomposition [28] is used.

The known coefficients C allow computation of φfar (y) and can be added to the φnear obtained via
the FSA. However, some technical details need to be specified. In the next section we provide analysis and
details for the important case of the Coulombic kernel (2).

A similar collocation of kernel based RBF expansions at a relatively small amount of the check points
is also used in the “kernel independent” FMM [23] with basis functions (6). There, the collocation is at the
level of the boxes in the FMM octree data structure, and fitting takes the place of expansions and translations.
Here, we collocate the differences of the overall solution at a set of check points y(c)

l and at their periodic
images ỹ(c)

l , at the level of the overall domain to determine the expansion coefficients for φfar.
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Figure 2: The check point distributions over the surface of a unit sphere for p = 16:random distribution
(L = 3p2 points), the Gauss spherical grid (L = 2p2 − p), and the Thomson points (L = p2).

2.2 Check point set

Selection of an optimal set of check points Y(c) ⊂ S0\Ω0 is not trivial. A good check point set should yield
a well conditioned solution, and sample the solution well spatially. A simple way which does not yield such
a well conditioned set is to select the points y

(c)
l ∈ Y(c) on the boundary of box Ω0. This is because the

corresponding periodic point ỹ(c)
l will then also be located on the box boundary on the face opposite to y

(c)
l .

In this case the distances from the box center to y
(c)
l and to ỹ

(c)
l will be the same, so both points will be

located on a sphere of radius r(c)
l . If the basis is based on spherical functions, then several of these will take

the same value for symmetrical points on the sphere, and the fitting equations may be rank deficient.
To avoid this degeneracy, the set Y(c) was chosen from points on the surface of ball S0. Three distri-

butions were tried (see Fig. (2): i) random uniformly distributed points, ii) Gaussian nodes (zeros of the
Legendre polynomial along θ, Pp (cos θ), see [29]) and equispaced with respect to ϕ), and, iii) the almost
uniform distribution of points over the sphere obtained by solving the so-called Thomson problem of the
equilibrium position of mutually repelling electrons constrained to be on the surface of the sphere [30], see
[31]. Methods ii) and iii) show better results than the random distribution, as shown in Section 3. Further,
we fond that using the Thomson points for the interpolation in Eq. 6 provides good accuracy.

2.3 Periodization algorithm

The algorithm has two parts. In a first preliminary set-up step, denoted “set”, the check points are deter-
mined, and the matrix decompositions necessary to compute the least squares fit with the matrix A in Eq.
(11) are precomputed. In simulations where the domain Ω0 is fixed and the particles move, as in molecular
dynamics, this matrix does not change, and the cost of the “set” step is amortized over the entire simula-
tion. The second part of the algorithm, denoted “get,” computates the right hand side and solution of the
fitting equations via an inexpensive step such as backsubstitution. The accuracy depends on the choice of
basis functions, and the parameters P ,L, and Rb. In the next section we provide both a theoretical and an
empirical study for the case of the Coulombic kernel (Green’s function of Laplace’s equation).

6



2.3.1 Algorithm “set”

1. Set the circumsphere radius R0 = 1
2

√
d2

1 + d2
2 + d2

3. Based on the required accuracy determine Rb,
P , and L > P .

2. Generate L check points distributed over the surface of the ball S0, y(c)
l ∈ ∂S0, l = 1, ..., L. Denote

this point set as Yc1.

3. For each point y(c)
l =

(
y

(c)
l1 , y

(c)
l2 , y

(c)
l3

)
, l = 1, ..., L, find a point ỹ(c)

l ∈ S0, such that two Carte-

sian coordinates of ỹ(c)
l are the same as those of the respective coordinates of y(c)

l , while the other

coordinate, ỹ(c)
lk is shifted by dk with respect to y(c)

lk . Denote Yc2 =
{
ỹ

(c)
l

}
.

4. Form the L × P fitting matrix A = {Alt}, Alt = Rt

(
y

(c)
l

)
− Rt

(
ỹ

(c)
l

)
, l = 1, ..., L, t = 1, ..., P,

where Rt (y) are the basis functions at the checkpoints.

5. Compute matrix decomposition of A necessary to solve the least squares problem.

6. (optional) Precompute other parameters which do not depend on the source distribution. If the sum-
mation needs certain auxiliary computations to ensure convergence, do those steps. For the Coulomb
kernels this may involve computation of the integrals of the basis functions over the box Ω0.

2.3.2 Algorithm “get”

1. Periodically extend the source box Ω0 to cover the ball Sb of radius Rb. The newly generated sources
and charges will have coordinatesXp = {xi + p} for the values of the periodization vector p1, ...,pb
from set P (see Eq. (2)) and charges Qp = {qi} . Denote the set of all sources as Xb = X0 ∪Xp1 ∪
... ∪Xpb

. These constitute Ωb.

2. Find the set of Nb sources Xnear by removing sources from the set Xb that are outside the sphere Sb,
and satisfy |xj | > Rb (Xnear = {x ∈Xb : |x| 6 Rb}) .

3. Using the FSA compute φnear for a given set of evaluation points Y0 = {yj} , j = 1, ...,M residing
in Ω0 and belonging to sets Yc1 and Yc2, i.e. for points from the set Y = {y ∈Y0 ∪ Yc1 ∪ Yc2} . If
gradient computations are needed, compute∇φnear at yj ∈ Y0.

4. Form the right hand side of the periodization equation f = {fl} , fl = φnear

(
ỹ

(c)
l

)
− φnear

(
y

(c)
l

)
,

l = 1, ..., L, organized in a column vector.

5. Using the matrix decompositions in the “set” step solve the fitting equations for the P expansion
coefficients C = (C1, ..., CP )T . This step can formally be written as C = A†f .

6. (optional) Compute the constant shift or other modification of the far field potential, if needed.

7. Evaluate φfar (yj), and if gradient computation is needed,∇φfar (yj), at yj ∈ Y0.

8. Get the periodized solution of the problem, φ (yj) = φnear (yj)+φfar (yj) , yj ∈ Y0, and if gradient
computation is needed,∇φ (yj) = ∇φnear (yj) +∇φfar (yj) , yj ∈ Y0.

Remark 1 In molecular dynamics and other N-body simulations the source and evaluation points are the
same, so Y0 = X0.
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Remark 2 In Step 5 for the Laplacian kernel and spherical basis functions C = (C2, ..., CP )T . In this case
optional Step 6 provides C1 (see Eqs (35)-(38)). Otherwise set C1 = 0.

Remark 3 Step 2 reduces Ωb to the ball Sb, which is not necessary, but is efficient.

2.3.3 Complexity

Evaluation of the kernel at a single point requires O(1) operations. So, O(P ) operations are needed to
evaluate all basis functions. The complexity, O(P ), is also achieved when basis functions at a point can be
computed recursively (as for the spherical basis functions). With L = O(P ) we can estimate the complexity
of the “set” part of the algorithm as

C(set) = O(1) +O (P ) +O(P ) +O (P ) +O
(
P 3
)

+
[
O(P 5/2)

]
= O

(
P 3
)
, (12)

where we assumed that computation of the matrix decomposition (e.g., via QR) O
(
P 3
)

operations, as
P ∼ L. The term in the square brackets is the cost of the optional step for the Laplace kernel and spherical
basis functions, using the method presented in Appendix A.

For the “get” part of the algorithm, assuming that Nb = O(N) and P � N we have

C(get) = O(N)+O(N)+C(FSA)+O (P )+O(P 2)+[O (N)]+O (PN)+O(N) = O (PN)+C(FSA), (13)

where C(FSA) is the cost of the finite summation algorithm and the cost of the optional step of the algorithm
is put in the square brackets (see Appendix B for this step for the Laplacian kernel). This cost for the brute
force summation is O(N2), while if the FMM is used as the FSA it can be estimated as follows.

In the FMM, generation of the data structure for M ∼ N points is O(Nlmax) which for deep trees,
lmax = O(logN), results in formal O(N logN) complexity. However, in practice the depth of the trees in
three dimensions is relatively small (e.g. lmax < 10) for sizes N < 107 and even at larger lmax this cost is
much smaller than the cost of the run part of the FMM. Moreover, the translation time in the FMM usually
dominates over the time of generation and evaluation of expansions of complexity O(PFMMN), where
PFMM is the size of the expansions in the FMM. For optimal lmax the FMM using O

(
P 2α
FMM

)
methods

for translations in three dimensions scale as O(PαFMMN) or O(PαFMMN), where 1
2 6 α 6 3

4 for well
studied kernels such as those for the Laplace and Helmholtz equations (in the latter case additional logβ N ,
β > 0 factors appear in the algorithm complexity , which we drop in the present estimate). Optimized kernel
independent FMM has complexity O(PFMMN). This can be summarized as

C(get) = O (PαFMMN) +O (PN) ,
1

2
6 α 6 1. (14)

Note that for the Laplacian kernel in three dimensions truncation numbers p = P 1/2 and pFMM =

P
1/2
FMM should increase as O(logN) for a fixed absolute L∞-norm error (see error bounds below), while

they are constant for the relative L2-norm errors.

3 Laplacian kernel

A fundamental feature of the Laplace equation that any constant is a solution. Thus, one of the basis
functions is a constant (say, R1 (y) ≡ 1). Moreover, any constant satisfies periodic boundary conditions,
and so this part of the solution cannot be determined, as R1 (y) belongs to the null-space of the Laplacian
operator. System (9) also shows that Al1 = R1

(
y

(c)
l

)
− R1

(
ỹ

(c)
l

)
= 0 for any l, so for any L > P the
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rank of matrix A cannot exceed L − 1, in which case the coefficient C1 can be arbitrary. To remove this
rank deficiency of A we can simply remove the constant basis function from consideration, formulate the
problem as the problem of determination of coefficientsCt for t = 2, ..., L and then add an arbitrary constant
C1 to the solution. Indeed, in many cases the value of the potential is not important, as only differences and
gradients determine physical quantities such as the electric field, velocities, forces, etc. For comparison with
the FFT-based Poisson equation solutions however, it is desirable to obtain C1, in which case an additional
condition, zero period average, needs to be imposed. These will be discussed in a separate subsection. Here
we just mention that many other equations have the same problem (e.g. the biharmonic equation) and the
null-space of some equations, such as the Helmholtz equation, may have larger dimension, and an analysis
similar to the one for the Laplace equation presented here would be needed.

3.1 Spherical basis functions

While the basis functions can be simply selected according to Eq. (6), we instead consider the closely related
polynomial basis, in which case we can establish error bounds. In spherical coordinates (r, θ, ϕ) related to
the Cartesian coordinates via

x = r sin θ cosϕ, x = r sin θ sinϕ, z = r cos θ, (15)

the local and multipole solutions of the Laplace equation in 3D can be represented as

Rmn (r) = αmn r
nY m

n (θ, ϕ), Smn (r) = βmn r
−n−1Y m

n (θ, ϕ), n = 0, 1, . . . , m = −n, ..., n. (16)

Here Rmn (r) are the regular (local) spherical basis functions and Smn (r) the singular (or multipole) spher-
ical basis functions; αmn and βmn are normalization constants which can be selected by convenience, and
Y m
n (θ, ϕ) are the orthonormal spherical harmonics:

Y m
n (θ, ϕ) = Nm

n P
|m|
n (µ)eimϕ, µ = cos θ, (17)

Nm
n = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

, n = 0, 1, 2, ..., m = −n, ..., n,

where P |m|n (µ) are the associated Legendre functions [29]. We will use the definition of the associated
Legendre function Pmn (µ) that is consistent with the value on the cut (−1, 1) of the hypergeometric function
Pmn (z) (see Abramowitz & Stegun, [29]). These functions can be obtained from the Legendre polynomials
Pn (µ) via the Rodrigues’ formula

Pmn (µ) = (−1)m
(
1− µ2

)m/2 dm

dµm
Pn (µ) , Pn (µ) =

1

2nn!

dn

dµn
(
µ2 − 1

)n
. (18)

Straightforward computation of these basis functions involves several relatively costly operations with spe-
cial functions and use of the spherical coordinates. Further, as defined above, these functions are complex,
which is an unnecessary expense for real valued computations. In [16] real basis functions were defined as

R̃mn =

{
Re {Rmn } , m > 0
Im {Rmn } , m < 0

, S̃mn =

{
Re {Smn } , m > 0
Im {Smn } , m < 0

, (19)

with Rmn and Smn defined via Eq. (16) are

αmn = (−1)n

√
4π

(2n+ 1) (n−m)!(n+m)!
, βmn =

√
4π (n−m)!(n+m)!

2n+ 1
, (20)

n = 0, 1, ...., m = −n, ..., n.
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Only local basis functions are needed here, and can be computed via an efficient recursive process, without
spherical coordinates,

R̃0
0 = 1, R̃1

1 = −1

2
x, R̃−1

1 =
1

2
y, (21)

R̃
|m|
|m| = −

(
xR̃
|m|−1
|m|−1 + yR̃

−|m|+1
|m|−1

)
2 |m|

, R̃
−|m|
|m| =

(
yR̃
|m|−1
|m|−1 − xR̃

−|m|+1
|m|−1

)
2 |m|

, |m| = 2, 3, ....

R̃m|m|+1 = −zR̃m|m|, m = 0,±1, ....,

R̃mn = −
(2n− 1)zR̃mn−1 + r2R̃mn−2

(n− |m|) (n+ |m|)
, n = |m|+ 2, ...., m = −n, ..., n.

While this basis is good for the FMM, the matrix A for fitting φfar was found to be poorly conditioned,
because the functions decay strongly. We fix this problem using the following renormalized basis

R̂mn =
√

(n−m)!(n+m)!R̃mn , n = 0, 1, ...., m = −n, ..., n. (22)

This basis can be obtained in the same manner as
{
R̃mn

}
was from the complex basis Rmn , where αmn =

(−1)n
√

4π/ (2n+ 1). Complex basis functions Rmn with a similar normalization αmn (without the factor
(−1)n) were used in [33]. Note further that p-truncated expansion of a harmonic function φfar over basis
(22) can be written as

φfar (y) =

p−1∑
n=0

n∑
m=−n

Ĉmn R̂
m
n (y) =

P∑
t=1

CtRt (y) , Ct = Ĉmn , Rt (y) = R̂mn (y) , P = p2,

t = (n+ 1)2 − (n−m), n = 0, 1, ...., p− 1, m = −n, ..., n. (23)

The latter form of the sum, where stacking of coefficients is used, is consistent with (7). The gradient of the
potential is needed to compute the force. This can be computed as

∇φfar (y) =

p−1∑
n=1

n∑
m=−n

Êmn R̂
m
n (y) =

P∑
t=2

EtRt (y) , (24)

where Êmn are vectors in R3. In [35] one can find relations between the potential and gradient coefficients.

3.2 Error bounds

For the Laplacian kernel K, Eq. (2), p-truncated expansions (5) over the basis {Rmn }, Eq. (16), has a
well-known error bound∣∣∣ε(P )

j

∣∣∣ < 1

|xj | −R0

(
R0

|xj |

)p
, p = P 1/2. (25)

The expansion error (7) due to all sources located in R3\Ωb then can be bounded as∣∣∣ε(P )
∣∣∣ <

max |qi|
Rb −R0

∑
xj /∈Ωb

(
R0

|xj |

)p
6

max |qi|
Rb −R0

∑
xj∈R3/Ωb

(
R0

|xj |

)p
(26)

6
max |qi|
Rb −R0

∫
R3/Ωb

n (x)

(
R0

r

)p
dV,

n (x) =
∑

xj∈R3/Ωb

δ (x− xj) , r = |x| .
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Here we introduced the the number density n (x), which for integral estimates can be replaced with a
constant density n0 = N/V0, where V0 is the volume of box Ω0, V0 = d1d2d3. In this case the integral can
be evaluated as∫

R3/Ωb

n (x)

(
R0

r

)p
dV ∼ 4πn0

∫ ∞
Rb

(
R0

r

)p
r2dr =

4πn0R
3
b

p− 3
λ−p, λ =

Rb
R0
. (27)

Hence, we have an approximate error bound∣∣∣ε(P )
∣∣∣ . 4πn0R

3
b

Rb −R0

max |qi|
p− 3

λ−p. (28)

For a cubic domain we have d1 = d2 = d3 = d, R0 = 1
2d
√

3, Rb = λR0, and we get∣∣∣ε(P )
∣∣∣ . 3πN max |qi|

d

1

(λ− 1) (p− 3)λp−3 . (29)

The actual error achieved in practice is expected to be much smaller than this estimate since it neglects
cancellation effects due to the total charge neutrality. Also in the above equation one can set d = 1 to obtain
a non-dimensional measure of the absolute error (since the Laplace equation is scale independent).

3.3 Optimization when using the FMM

There are three free parameters, p, pFMM , and λ, which can be selected to optimize algorithm performance.
Assuming that the number of charges, their intensities and distribution as well as the domain Ω0 are fixed,
and computations performed with some prescribed tolerance, ε, the optimization problem can be formulated
as

εP (p, λ) = ε, εFMM (pFMM , λ) = ε, C(get) (p, pFMM , λ)→ min, (30)

where εP and εFMM are the error bounds for the periodization and the FMM respectively, whileC(get) is the
cost of the “get” step. In practice these functions should be determined experimentally, using the qualitative
theoretical estimates provided below for guidance.

We set the parameter pFMM by the prescribed accuracy ε, and approximate εP (p, λ) as

εP (p, λ) = BPλ
−p, p =

ln (BP /ε)

lnλ
, (31)

whereBP is some constant. The number of evaluation points isMb = N+2L, while the number of sources
to be summed are Nb = O

(
λ3N

)
. For a perfectly optimized FMM, in which the cost of translations and

direct summations dominates the cost of other procedures, the complexity is proportional to the geometric
mean of the number of sources and evaluation points. Assuming L ∼ 2p2 the cost can be estimated as

C(FMM) = O
(
p2α
FMM

√
NbMb

)
= O

(
p2α
FMMNλ

3/2

(
1 +

4p2

N

)1/2
)

= AFMM p2α
FMMNλ

3/2

(
1 +

4

N

ln2 (BP /ε)

ln2 λ

)1/2

.
1

2
< α < 1, (32)

where AFMM is some constant. Of course, for N � p2 the second term in the parentheses can be dropped.
However, for λ → 1, we may have p2 ∼ N , and as soon as the complexity is a product of the decreasing
and increasing functions, some minimum is expected. Our tests show that the cost of the FMM is the major
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contributor to the overall cost of the algorithm. Taking the derivative of C(FMM) with respect to λ and
setting it to zero, we obtain λopt from the solution of the cubic equation,

2x3 − x2 −A = 0, x =
1

lnλopt
, A =

N

4 ln2 (BP /ε)
. (33)

At very large N (A� 1) we have

λopt ∼ exp

[(
A

2

)−1/3
]

= exp

[(
N

8 ln2 (BP /ε)

)−1/3
]
, (34)

which shows that at large N optimal λ should be shifted towards the limit λ = 1.

3.4 Constant shift in potential

Several methods can be proposed to determine coefficient C1 if it is needed. In particular because we choose
to compare our results with the Ewald summation method, we need it. Of course, the simplest case is that
when the potential value, φ0, is prescribed or known at some point y0, in which case

C1 = φ0 − φnear (y0)−
P∑
t=2

CtRt (y0) . (35)

Note then that the Fourier based methods for periodization of Green’s function produce solution with
some mean of the potential φmean (since the zero mode of the Fourier transform is zeroed). This particular
solution corresponds to

〈φ〉Ω0
=

1

V0

∫
Ω0

φ (y) dV (y) = φmean. (36)

In this case for consistency we should set

C1 = φmean −
1

V0

∫
Ω0

φnear (y) dV (y)−
P∑
t=2

CtR
(0)
t , R

(0)
t =

1

V0

∫
Ω0

Rt (y) dV (y) . (37)

As shown in Appendix C, the Ewald summation produces φmean = 0, and we do the same for our method.
Integrals R(0)

t can be computed relatively easy, since Rt (y) are polynomials in the Cartesian coordinates
of y of degree which does not exceed p − 1, for which case exact quadratures exist. In fact, for a given
box size ratio (e.g. for cube) these can be precomputed, scaled and used independently of particular source
distribution (see Appendix A). The first integral can be represented as a sum

1

V0

∫
Ω0

φnear (y) dV (y) =
∑

xj∈Ωb

qjΦ0 (xj) , Φ0 (x) =
1

V0

∫
Ω0

K (y − x) dV (y) . (38)

In Appendix B we provide analytical expressions for functions Φ0 (x). Despite their unwieldiness, their
computation for a given x is O(1). Overall it is a O (N) procedure to compute the sum and constant C1,
which is consistent with the overall complexity of the method. There also exist symmetries for periodic
location of sources, which can be used to accelerate these computations, if this becomes an issue. Note also
that results of Appendix B can be applied for computation of integrals representing the far field (37) in the
case when the RBF, Eq. (6), is used.
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4 Numerical tests

To check the accuracy and performance of the method we conducted several numerical tests. There are very
few known analytical solutions, so for comparison we also implemented and tested a simple version of the
Ewald summation method as an alternative method (see Appendix C).

4.1 Small size tests

As validation, we performed tests with different number of sources in the box. First, we conducted a
small size test, with a cubic domain Ω0 and eight sources of charges qi = ±1 located at the vertices, so
that neighboring sources have opposite charges and the infinite domain forms a regular equispaced grid.
Physically this corresponds to crystal structures, such as formed by molecules NaCl. As the reference for
accuracy tests we computed the Madelung constant for this crystal [34],

MaNa = −MaCl = φ (yNa) = RNaCl

∑
p

N∑
i=1

qiK (yNa − xi + p) (39)

=
∞∑

j,k,l=−∞,
j2+k2+l2 6=0

(−1)j+k+l

(j2 + k2 + l2)2 = −1.74756459463318219...,

where yNa is the location of Na atom and RNaCl is the distance between the closest neighbor atoms (in the
tests we used d1 = d2 = d3 = 1, in which case RNaCl = 0.5). We also computed this constant using the
Ewald summation and compared spatial distributions of the potential. As the measures of the relative errors
we used

εM =

∣∣∣∣∣Ma(comp)

Ma(true)
− 1

∣∣∣∣∣ , ε2 =

∥∥∥φ(Present) − φ(Ewald)
∥∥∥

2∥∥∥φ(Ewald)
∥∥∥

2

, ‖φ‖2 =

√√√√ 1

M

M∑
i=1

φ2 (yi), (40)

where yi ∈ Ω0 are the receivers located on the grid used for the Ewald summation.
For the high accuracy test, we selected a 44× 44× 44 grid, ξ = 12, and the sampling neighborhood for

each source Nr = 20 for the Ewald method (see Appendix C). This setting provides εM ≈ 10−14 (i.e. 14
digits of the Madelung constant). High accuracy test for the present method was performed with p = 35,
Rb = 1.5

(
λ = Rb/R0 =

√
3
)
, which resullts in errors εM ≈ 6 · 10−14 and ε2 ≈ 9 · 10−13. For the middle

accuracy test we used 24× 24× 24 grid, ξ = 10, and the sampling neighborhood for each source Nr = 10,
in which case the Ewald method results in εMa ≈ 6 · 10−9. In our method we used p = 16, Rb = 1.5,
which produced errors εM ≈ 7 ·10−8 and ε2 ≈ 10−6. These tests show that errors εM and ε2 are related and
the former one approximately one order of magnitude smaller than the latter. So in the following accuracy
tests we measured only εM for our method, which is independent of the Ewald summation routine. These
computations were performed for the check points y(c)

l distributed on the Gauss spherical grid.
Figure 3 shows the dependence of εM computed for 651 values of parameters λ = Rb/R0 and p control-

ling the accuracy. The chart on the right shows that the computational errors are consistent with theoretical
error bound εth = Cε (R0/Rb)

p. For very small values of εth the computational errors are affected by the
double precision roundoff errors. This shows that the parameters can be set to achieve the required accuracy.

Table 1 shows some results of the tests with different distributions of the check points. Here for the case
of random distributions for any set size we performed 100 runs and the maximum error is reported. It is
seen that the lowest errors were achieved using the Thomson point distributions. The number of such points
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Figure 3: The relative error, εM , in computations of the Madelung constant for NaCl crystal using the present
method (colors). The chart on the graph compares the theoretical computational error, εth = Cε (R0/Rb)

p

with the actual error for all data points used to plot the chart on the left. Ideally, the graph on the right should
be a straight line (shown). Constant Cε was set as εM/εth for p = 10 and λ = Rb/R0 = 1.5.

Table 1: Error εM for different check point distributions at λ = Rb/R0 =
√

3.

p Gauss sph. grid T(256) T(400) Rand.L = 2p2 Rand.L = 3p2 Rand.L = 5p2

8 4.85(-6) 3.87(-6) 3.90(-6) 3.39(-5) 2.21(-5) 1.92-(5)
12 1.17(-7) 4.60(-8) 6.28(-8) 1.53(-6) 1.04(-6) 5.10(-7)
16 7.16(-8) 3.43(-7) 2.74(-8) 6.26(-7) 3.50(-7) 1.85(-7)

should be not less than p2 − 1, which is necessary (but not sufficient) condition for the use of the present
method. When the number of check points approaches p2− 1 the accuracy of the method deteriorates. Con-
clusion here is that if a database of the Thomson points or some analogous method of deterministic uniform
distribution of the check points exsist, then that method is recommended. In fact, the Gauss spherical grid
also provides good results (the order of the error is the same). This grid is easy to generate for any p, and
that is why this was used in the tests. The error for random distributions is about one order of magnitude
larger than that for the Gauss spherical grid or for the Thomson points. It slowly decays with the growing
oversampling. Perhaps, there is no reason to use random sets, which anyway show strong dependence of the
error on p and also can be used if needed.

We also performed the accuracy test for different basis functions (RBF, Eq. (6)), where 256 Thomson
sampling sources x(s)

t were located on ball Sb, while the check points were the same as for the last line of
Table 1 (p = 16). In this case we obtained εM ≈ 1.32 · 10−7, which is approximately two times larger than
the error when using the spherical basis functions.

4.2 Large scale tests

The large scale tests were conducted for systems withN up to 223 ∼ 107, for whichO(N logN) summation
algorithms are needed. The main purpose of these tests is to check the performance and scaling of the present
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algorithm. The reported wall clock times were measured on an Intel QX6780 (2.8 GHz) 4 core PC with 8
GB RAM and averaged over ten runs of the same case.

We used a well-tested standard version of the FMM for the Laplacian kernel in three dimensions, where
all translations are performed with O

(
p3
FMM

)
complexity using the rotation-coaxial translation-back ro-

tation (RCR) algorithm. The code implements a standard multipole-to-local translation stencil with the
maximum 189 neighborhood (see details in [36]). The code was parallelized for 4 core CPU machine using
OpenMP with parallelization efficiency close to 100%. While faster versions of the FMM were available to
the researchers (say utilizing graphics processors, [16]), the version used for the tests was selected to provide
consistent scaling of different algorithm parts, as the periodization algorithm was implemented on multicore
CPUs. For the tests we treated the FMM as a black box FSA and used it “as is” without any modifications.

First we ran accuracy tests, when the charges have random intensity, ±1, and zero total sum and are
located inside a unit cube at regularly spaced grid points (subgrids of 60 × 60 × 60 grid). The potential
at charge locations (reference solution) was computed with high accuracy using the Ewald method (grid
60 × 60 × 60, ξ = 15, Nr = 24). The present method with p = 40 and pFMM = 30 for this case showed
error ε2 ≈ 1.2 · 10−10. Further performance tests were conducted with lower tolerance to ensure that the
error of the reference solution does not affect error and optimization studies. In all cases the Gauss spherical
grid (L = 2p2 − p) was used for the check points.
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Figure 4: Comparison of periodic solutions at the median plane z = 0, obtained by different methods for
30×30×30 sources of random intensity qi = ±1 in a unit box. The top row shows respectively the periodic
solution obtain by the Ewald method, the non-periodic solution, and the difference between the former and
latter potentials. The bottom row shows the periodic solution obtained by the method proposed in this paper,
and its near and far field components for λ = 1.1. Computations performed with p = 80, pFMM = 16.

Figure 4 illustrates distribution of potentials generated by 27,000 charges in a box computed by two
different methods sampled on 60× 60× 60 grid. It is seen that periodic solutions obtained using the Ewald
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method and present method are almost the same (ε2 < 5 · 10−7), while substantially different from the
non-periodic solution (the free field generated by the same sources). This also shows that accounting for
the near field (sources in Ωb) substantially improves the non-periodic solution, but the far field component
is still of magnitude comparable with the near field. This far field is smooth and its addition to the near field
results in an accurate periodic solution.

Table 2: Performance for different λ for tolerance εtol,2 = 5 · 10−7 at N = 27, 000, pFMM = 16.

λ pmin T (get),s T
(get)
(no mean),s T (FMM),s Nb N + 2L T (set),s

1.1 80 2.81 2.64 2.03 97,780 52,440 150
1.2 44 1.95 1.73 1.58 126,744 34,656 5.31
1.3 34 2.03 1.78 1.66 161,072 31,556 1.27
1.5 24 2.21 1.77 1.69 247,742 29,256 0.29
1.7 19 2.53 1.98 1.90 360,640 28,406 0.13

As the theory predicts existence of an optimal value of parameter λ for a given tolerance we conducted
tests to determine this value experimentally. Tables 2 and 3 display the results of these tests. Here we
computed potential alone (no gradient computations). The difference between the cases shown in the tables
is in the number of charges (27,000 and 216,000, respectively). In these tests pFMM = 16, which provided
the relative L2-norm error of the FMM itself smaller than tolerance εtol,2. Since the truncation number
p changes discretely, there is the minimal integer p = pmin at which ε2 < ε2,tol, where ε2 is defined by
Eq. (40). This p is slightly depends on N and is shown in the tables. The periodization algorithm was
executed with this p. The tables also show the number of sources, Nb, and the total number of evaluation
points, N + 2L. These numbers provide data of the size of the problem solved by the FMM. It is seen
that the FMM execution time is a non-monotonic function of λ, as at the increasing λ we have increasing
Nb = O

(
Nλ3

)
and decreasing L ∼ 2p2

min. As the theoretical complexity of the optimized FMM is
proportional to

√
Nb (N + 2L) there can be a minimum of this function, which, indeed, is realized in

experiments shown in Table 2. This is not the case for data from Table 3, but the explanation can be
that optimization of the FMM (the maximum depth of the octree) changes discretely, so the performance
depends on the source and receiver distribution. It is also noticeable that despite of substantial change of Nb

the FMM time does not change significantly. Finally, the time of the “set” part of the algorithm increases
dramatically at large p (as p6). However, for a given p and computational domain the pseudoniverse matrix
can be precomputed and stored independently on the number of charges and their distribution. So this should
not be considered as a limiting factor. These tests bring us to conclusion that practical optimal λ are in the
range ∼ 1.2− 1.5. Smaller or larger λ can be also used based on particular problems and other issues (e.g.
memory complexity).

Effect of the basis functions on the algorithm performance is shown in Table 4. As in the small size tests
256 Thomson points were selected as the centers of the RBFs. Comparison of the performance obtained
using the RBFs vs the spherical basis functions, show that the latter choice is beneficial in terms of the
accuracy, while the speed is approximately the same. Nonetheless, the errors for both bases are of the same
order, while the RBF implementation is slightly simpler.

Figure 5 illustrates scaling of the algorithm with the problem size. In this testN sources were distributed
randomly in the unit box and both φ (with zero mean) and ∇φ were computed at the source locations.
Here only the time for the “get” part is displayed. For comparison we also plotted the wall clock time
for solution of the same non-periodic problem, where the FMM with the same pFMM was used. (The
discussion of GPU times is below). While for the non-periodic case the FMM is scaled approximately as
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Table 3: Performance for different λ for tolerance εtol,2 = 5 · 10−7 at N = 216, 000, pFMM = 16.

λ pmin T (get),s T
(get)
(no mean),s T (FMM),s Nb N + 2L T (set),s

1.1 80 15.7 14.6 11.5 782,131 241,440 150
1.2 44 12.6 11.2 10.2 1,015,037 223,656 5.31
1.3 34 12.8 11.1 10.3 1,291,247 220,556 1.27
1.5 25 15.0 12.3 11.7 1,983,665 218,450 0.32
1.7 19 18.7 14.7 14.1 2,887,393 217,406 0.13

Table 4: Performance for different basis functions at λ = 1.5, p = 16, pFMM = 12.

N Basis ε2 T (get),s T
(get)
(no mean),s T (set),s

27,000 Spherical 1.3(-5) 1.67 1.30 0.08
RBF 2.6(-5) 1.74 1.35 0.06

216,000 Spherical 1.6(-5) 12.3 9.57 0.08
RBF 2.6(-5) 12.7 9.95 0.06

O(N) (with some smallN logN addition due to data structures), the present algorithm is scaled sublinearly
at small N , while it approaches the same scaling as the regular FMM. Qualitatively this can be explained by
O
(√

Nb (N + 2L)
)

scaling of the FMM as it used in the present algorithm for periodization. So the ratio
of the FMM time in the present algorithm and the FMM for non-periodic problem can be estimated as

T
(per)
FMM

T
(non)
FMM

∼
√
Nb (N + 2L)

N
∼

(
π
√

3

2
λ3

)1/2(
1 +

2L (λ)

N

)1/2

. (41)

This ratio for different λ along with the experimentally measured time ratio of the “get” part of the
algorithm and the FMM for non-periodic problem is plotted in Fig. 6. It is seen that qualitatively this
explains the observed results, and at relatively small N the wall clock time of the present algorithm requires
is several times larger than the time of non-periodic FMM. At larger times the ratio should come to an
asymptotic limit depending on λ. While the theory predicts that λ = 1.1 limit should be smaller than
λ = 1.3 limit, we found that in the range of experiments they are approximately the same (time ratio about
2). So one can say that the periodization overhead at large N is approximately the same as the run time
of the FMM for the non-periodic problem. The reason why the experimental data deviate from Eq. (41) is
that, first, there are someO(N), O(PN), andO(P 2) overheads in the periodization algorithm, and, second,
that the optimization of the FMM can be done only discretely (changing the number of the levels of the
octree). Indeed, we checked the profiling of the FMM for both cases, and found that while this algorithm
is performing at its minimum time for a given distribution and pFMM , the parts of the FMM related to
translations and direct summation were not balanced perfectly (several times difference).

Finally we note that it is not an easy task to compare the absolute performance of the present meth-
ods with the smooth particle mesh Ewald (SPME) and other algorithms for periodic summation due to a
difference in implementation, accuracy, what is actually computed (potential and gradient), hardware, etc.
However, some comparison with that approaches can be done using published data [14] comparing perfor-
mance of the SPME and FMM-type PWA implementation for clusters, for relatively small size problems
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Figure 5: Wall clock times of the present algorithm with the FMM as FSA for λ = 1.3, p = 34 (filled
squares), and with brute-force 4 core CPU summation (filled triangles), and Tesla C2050 GPU summation
(filled circles), for a periodic system replicating distribution of N random sources in a unit cube (potential
and gradient computations, Laplacian kernel in three dimensions). The corresponding empty squares, tri-
angles and circles, connected by a solid line show performance of the particular FSA for the non-periodic
problem with the same source distribution in the unit cube and the same truncation number pFMM = 16.
The dashed lines continue the trendlines to indicate performance, if memory resources had not been ex-
ceeded. The quadratic scaling of the brute-force summation, and the linear scaling for the FMM are seen.
Brute force GPU sums for this case are faster till about N ' 40, 000.

(N = 104 and N = 105). The absolute figures indicate that the wall clock time of the present algorithm
for these sizes is of the same order as the reported times for those methods, while we are able to perform
computations with larger problem sizes on relatively modest hardware.

4.3 Using graphics processing units (GPUs) for summation

GPUs are often used to accelerate molecular dynamics simulations where periodization may be required.
We implemented the “get” part of the algorithm completely on the GPU. Using “brute-force” summation on
the GPU and on a multicore CPU as the FSA, we did the same performance tests as for the FMM, see Fig.
5. The ”set” part can be executed on CPU and transferred to the GPU. All parts of the algorithm are highly
parallelizable and so while the scaling of the algorithm is quadratic, it is up to two orders of magnitude faster
than the multicore CPU version.

Our tests reveal that at large truncation numbers p (typically p & 30) single precision GPU compu-
tations cannot be used for spherical basis function evaluation due to loss of precision in least-squares so-
lution. Double-precision computations provide accurate results with L2-norm relative errors of the order
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Figure 6: The ratio of the solution times of the periodic and non-periodic problems using the FMM for the
cases shown in Fig. 5. The dotted and the dashed curves show theoretical estimate of the FMM time ratio
for λ = 1.1 and λ = 1.3, respectively, according to Eq. (41).

10−13−10−15 in potential and gradient computations compared to the double precision CPU computations.
Accordingly Fig. 5, only shows double precision times. High performance implementation of the brute-
force summation is described in [16] and was used in the present tests with single and double precision, and
run on a single NVIDIA Tesla C2050 card. The CPU wall clock times used for comparisons were measured
for algorithm parallelized for 4 core PC described before.

Fig. 5 shows the results of tests. It is seen that despite the asymptotic quadratic scaling of the algorithm
the GPU implementation can be faster or comparable in speed with the FMM running on CPU at pFMM =
16 for problems of size N . 105. The ratio of times for solution of periodic and non-periodic problems for

brute force computations at large N tends to theoretical limit T (per)
brute/T

(non)
brute = π

√
3
4λ

3, which for λ = 1.3

used for illustrations is about 6 times. Of course, this ratio can be reduced by decreasing λ. However, in the
range N . 105 reduction of λ below 1.1 does not benefit the overall performance due to increase of the size
of the expansion and reduction of the performance of evaluation of the far field on the GPU, where the local
memory is substantially smaller than the CPU cache. One of the advantages of brute force double precision
GPU computing for problems of relatively small size (N . 105) is that besides the roundoff errors the
accuracy is controlled only by parameters p and λ, while for the FSA=FMM the error is controlled also by
pFMM . For efficient FMM implementations on GPU this number is usually small [16] while the efficiency
of the FMM on GPU for high accuracy simulations is a subject for a separate study.

5 Conclusion

We have presented a kernel-independent method for the periodization of finite sums. The technique was
presented in a general setting, and then applied to the particular case of the Laplacian kernel using different
expansion bases. Tests showed that the method can be tuned to compute periodic sums with arbitrary
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prescribed accuracy. In the case of use of the FMM as the fast summation algorithm the complexity of the
method at large N is the same as the FMM. The computational time for large N (in tests up to N = 223)
is about twice that for the finite box sum using the FMM. Similar results are seen for GPU based FSA,
though here the scaling is quadratic, and the largest problem size that can be reasonably treated is about 105.
The ease of implementation of the periodization method, its performance, and capability to “retrofit” any
available black box FSA without any modification makes it practical. This method may also be valuable on
distributed architectures on which communication costs of an algorithm are as important as computational
complexity. FMM-based approaches are known to be much more communication efficient than FFT-based
approaches for solution of the same large problems on distributed architectures. Additional speedups of the
method can be achieved by specialization of the FMM – these were specifically avoided in this paper to
demonstrate the ability to use a blackbox sum algorithm, and should be investigated if the method is to be
used in a “production” environment. Application to other kernels should be straightforward, though details
will have to be worked out for them.
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A Box integrals of the basis functions

Basis functions Rmn (y) are homogeneous polynomials of degree n (sums of monomials xn1yn2zn3 , n1 +
n2 + n3 = 1). We can compute the integrals as

R
(0)
t =

1

V0

∫
Ω0

Rt (y) dV (y) =
1

d1d2d3

∫ d1/2

−d1/2

∫ d2/2

−d2/2

∫ d3/2

−d3/2
Rt (x, y, z) dxdydz (42)

=
1

8

Nq∑
i=1

Nq∑
j=1

Nq∑
k=1

wiwjwkRt

(
1

2
d1xi,

1

2
d2xj ,

1

2
d3xk

)
,

where wi and xi are the standard weights and abscissas of the Gauss quadrature of order Nq [29]. Since this
integration is exact for polynomials of degree n < 2Nq and the maximum degree of the polynomials in the
sum is p− 1, the choice

Nq =

[
p− 1

2

]
+ 1, p = P 1/2, (43)

provides an exact result. For evaluation of all P required coefficients R̂m(0)
n the computational cost of this

procedure is O
(
P 5/2

)
. Note that faster methods may be proposed for computation of this step. However,

this is not crucial, as this integration is performed in the “set” part of the algorithm, which overall cost is
O
(
P 3
)
, and this cost is amortized over the rest of the algorithm.
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B Mean computations

To compute the integral (38) for the kernel (2), we first apply the Gauss divergence theorem to reduce the
volume integral to a surface integral:

Φ0 (x) =
1

V0

∫
Ω0

dV (y)

|y − x|
=

1

2V0

∫
Ω0

∇y ·
(

y − x

|y − x|

)
dV (y) =

1

2V0

∫
∂Ω0

n · (y − x)

|y − x|
dS (y) , (44)

where n is the outward normal to Ω0. This result is valid for an arbitrary point x including when x is located
in Ω0 or on its boundary ∂Ω0. This can be checked by consideration of ε-vicinities of singularities, which
are integrable. The surface integral can be decomposed into integrals over the box faces, Sk, k = 1, ..., 6.

Φ0 (x) =
1

2V0

6∑
k=1

∫
Sk

nk · (y − x)

|y − x|
dS (y) = − 1

2V0

6∑
k=1

(nk · xk)Lk (xk) , (45)

Lk (xk) =

∫
Sk

dS (yk)

|yk − xk|
, yk = y − yk0, xk = x− yk0,

where nk and yk0 are the normal and the center of the kth face, while yk and xk are coordinates in the
reference frame with the origin at the kth face center. The surface integral then can be reduced to the
contour integral using, e.g. the Gauss divergence theorem in the plane of a particular face. Indeed, consider
function

Fk (rk) = rkfk (rk;hk) , fk (rk;hk) =
ρk − hk
r2
k

, ρk =
√
r2
k + h2

k (= |yk − xk|) , (46)

rk = yk − x′k, x′k = xk − nkhk, hk = nk · xk.

The 2D divergence of this function in the plane of the kth face is 1/ρk. So

Lk (xk) =

∫
Sk

∇̃rk · Fk (rk) dS (rk) =

∫
Ck

n′k · Fk (rk) dl (rk) , (47)

where n′k is the outer normal to the contour Ck = ∂Ωk. This integral can be decomposed into four integrals
over the face edges. So

Lk (xk) =
4∑
j=1

Ikj (xk) , Ikj (xk) =

∫
Ckj

n′kj · rk
ρk − hk
r2
k

dl. (48)

The latter integrals can be found analytically. Indeed, consider for the jth edge a local right hand oriented
reference frame centered at its endpoint ykj0 from which integration starts, and unit basis vectors i′kjx
directed along the integration path, i′kjy = nk and i′kjz = n′kj = i′kjx × i′kjy. Denoting coordinates of x in
this reference frame as

xkj = (xk − ykj0) · i′kjx, ykj = (xk − ykj0) · i′kjy, zkj = (xk − ykj0) · i′kjz, (49)

we obtain

Ikj (xk) = −zkj
∫ lkj−xkj

−xkj
f (rkj ; |ykj |) dx = H (lkj − xkj , |ykj | , zkj)−H (−xkj , |ykj | , zkj) , (50)

where r2
kj = x2 + z2

kj , lkj is the length of edge Ckj , and H (x, y, z) is the primitive,

H (x, y, z) = −z
∫
f (r; |y|) dx, f (r; y) =

ρ− |y|
r2

, r2 = x2 + z2, ρ =
√
r2 + y2, (51)
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which can be computed analytically as

H (x, y, z) = |y|
(

arctan
x

z
− arctan

|y|x
zρ

)
− z ln |ρ+ x|+ C (y, z) . (52)

The integration constant C (y, z) can be selected arbitrarily to eliminate possible singularities. Particularly
for y 6= 0, z = 0 one can setH = 0. The above formulae are sufficient for numerical implementation, which
in the simplest form can program the primitive (52) and implement the above decompositions. There exist
some box symmetries (e.g. all local coordinates are nothing but permuted and shifted original Cartesian
coordinates), which can be exploited to achieve better performance.

C Ewald summation

The Ewald summation method is based on decomposition of kernel (2)

K (y − x) = K1 (y − x; ξ) +K2 (y − x; ξ) , (53)

K1 (y − x; ξ) =
erfc (ξ |y − x|)
|y − x|

, y 6= x; K1 (0; ξ) = − 2ξ√
π
,

K2 (y − x; ξ) =
erf (ξ |y − x|)
|y − x|

, ∀y,x ∈ R3,

(
K2 (0; ξ) =

2ξ√
π

)
,

which is exact for any value of parameter ξ, since by definition of the error function, erf(x), and the com-
plimentary error function, erfc(x), we have erf(x) +erfc(x) = 1 and the value of K1 (0;ξ) is set due to by
definition K (0) = 0. So for the total potential (2) we have

φ (y) = φ1 (y) + φ2 (y) , φ1 (y) =
∑
p

N∑
i=1

qiK1 (y − xi + p; ξ) ,

φ2 (y) =
∑
p

N∑
i=1

qiK2 (y − xi + p; ξ) . (54)

Both functions φ1 (y) and φ2 (y) are periodic.
Due to fast decay of erfc(x) computation of φ1 (y) for y ∈ Ω0 can be done only using the sources in

some neighborhood of Ω0, namely in Ω1 ⊃ Ω0 such that the minimum distance, a, between the points on
the boundaries ∂Ω0 and ∂Ω1 is much larger than 1/ξ. Hence, this can be computed directly by evaluation
of a finite sum with a controllable error as

φ1 (y) =
∑

xj∈Ω1(ξ)

qjK1 (y − xj ; ξ) +O
(
e−ξ

2a2
)
. (55)

For computation of φ2 (y) one can notice that K2 is a solution of the Poisson equation

∇2K2 (y − x; ξ) = −4πδξ (y − x) , δξ (y − x) =
ξ3

π3/2
e−ξ

2|y−x|2 , (56)

where δξ (y − x) is a compactly supported function, which turns to the Dirac delta-function as ξ → ∞.
Periodic solution of the Poisson equation can be obtained via the FFT. For this purpose, we grid the domain
Ω0 and select ξ in a way that ξ � 1/h, and ξ � 1/max (d1, d2, d3) (an optimal setting can be found from
analysis of the error bounds), where h is the minimum spatial step of the grid. This enables sampling of
δξ (y − x) for source x = xi at several grid points around xi. The number of these grid points determines
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the accuracy of the method (at optimal settings), so we introduce additional parameter Nr, so δξ (y) is
sampled in a box (2Nr + 1)× (2Nr + 1)× (2Nr + 1). We also take care about the points xi located near
the boundary of Ω0 by periodization (so we construct a periodic function δ(p)

ξ (y − x)). Further, we apply
the forward 3D FFT to

f2 (y) = ∇2φ2 (y) = −4π

N∑
i=1

qiδ
(p)
ξ (y − xi) , (57)

and zero the harmonic of the Fourier image f∗2 (k) corresponding to the wavenumber k = 0. The inverse 3D
FFT of φ∗2 (k) = −k−2f∗2 (k), produces the required solution φ2 (y) with zero mean at grid points. Note
then that solution obtained in this way has the following mean

φmean (ξ) = 〈φ (y)〉Ω0
=

1

V0

∑
xj∈Ω1(ξ)

qj

∫
Ω0

K1 (y − xj ;ξ) dV ≈ 0. (58)

The zero mean here is due to the compact support of the kernel K1 and charge neutrality. This mean can be
computed using decomposition K1 (y − xj ;ξ) = K (y − xj ; ξ) −K2 (y − xj ; ξ), where the integral with
the first kernel can be computed analytically (see Appendix B), while the integral with the second kernel is
regular and can be computed using, say, the trapezoidal rule (in the FFT-based method the space is gridded).
To avoid interpolation errors, in the numerical tests where we compared our method for accuracy with the
Ewald summation method, we used only cases when the source and evaluation points are located at the grid
nodes.
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