
ABSTRACT

Title of Document: OBSERVING AND IMPROVING THE RELIABILITY OF
INTERNET LAST-MILE LINKS

Aaron David Schulman, Doctor of Philosophy, 2013

Directed By: Professor Neil Spring
Department of Computer Science

People rely on having persistent Internet connectivity from their homes and mobile

devices. However, unlike links in the core of the Internet, the links that connect people’s

homes and mobile devices, known as “last-mile” links, are not redundant. As a result, the

reliability of any given link is of paramount concern: when last-mile links fail, people can

be completely disconnected from the Internet.

In addition to lacking redundancy, Internet last-mile links are vulnerable to failure.

Such links can fail because the cables and equipment that make up last-mile links are

exposed to the elements; for example, weather can cause tree limbs to fall on overhead

cables, and flooding can destroy underground equipment. They can also fail, eventually,

because cellular last-mile links can drain a smartphone’s battery if an application tries to

communicate when signal strength is weak.

In this dissertation, I defend the following thesis: By building on existing infrastruc-

ture, it is possible to (1) observe the reliability of Internet last-mile links across different

weather conditions and link types; (2) improve the energy efficiency of cellular Inter-

net last-mile links; and (3) provide an incrementally deployable, energy-efficient Internet

last-mile downlink that is highly resilient to weather-related failures. I defend this thesis

by designing, implementing, and evaluating systems.

First, I study the reliability of last-mile links during weather events. To observe fail-

ures of last-mile links, I develop ThunderPing—a system that monitors a geographically

diverse set of last-mile links without participation from providers or customers. So far,

ThunderPing has collected 4 billion pings from 3.5 million IP addresses over 400 days of

probing from PlanetLab hosts. Because pings may fail to solicit a response even when

a last-mile link has not failed, losses must be analyzed to determine if they constitute

last-mile link failures. Among other challenges I encountered in this project, I found that

determining the connectivity state from noisy pings is similar to finding the edges in a

noisy picture. As such, I use algorithmic edge detection to find when a host transitions

between connectivity states. By matching these connectivity states with weather reports

from weather stations at airports, I observe how weather affects last-mile link failure rate

and failure duration.

Second, I improve the reliability of cellular links by reducing wasted energy. To do so,

I develop Bartendr, a system that predicts when a moving smartphone will experience high

signal strength. A key challenge is to predict high signal strength without consuming more

energy than exploiting it would save. I also develop energy-aware scheduling algorithms

for different application workloads—syncing and streaming—based on these predictions.

I evaluate the scheduling algorithms with a simulation driven by traces obtained during

actual drives.

Third, I design a reliable broadcast system that is inexpensive to deploy to many users

and is energy-efficient to receive. I adapt reliable FM Radio Data System (RDS) broad-

casts to act as an Internet last-mile link. To accomplish this, I design and implement an

over-the-air protocol, receiver software, and a hardware bridge for incremental deploy-

ment. I implement the full end-to-end system, deploy it on a 3 kW commercial FM radio

station in a metropolitan area, and evaluate the loss rate, energy consumption, and syn-

chronization on either a smartphone or on my new hardware bridge. The results indicate

that the full end-to-end system can be reliable, a smartphone receiver can sleep between

desired broadcasts, and two receivers tend to deliver the same broadcast within about

5 ms.

OBSERVING AND IMPROVING THE RELIABILITY OF INTERNET
LAST-MILE LINKS

by

Aaron David Schulman

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Neil Spring, Chair/Advisor
Professor Bobby Bhattarcharjee
Professor Michael Hicks
Professor Prabal Dutta
Professor Mark Shayman

c© Copyright by
Aaron David Schulman

2013

Acknowledgments

I am truly grateful to all those who helped me complete this dissertation. If I neglected to
mention you, I apologize. Please know that I greatly appreciate your support.

Over the course of undergraduate and graduate school, my advisor, Neil Spring, in-
spired me to pursue an academic career doing networking research. Along the way, he
developed my thinking and gave me the skills to succeed in doing such research. Neil
significantly raised my expectations of writing and presentation quality: he helped me re-
alize what I was capable of and gave me a strong set of criteria to evaluate my own work
and that of others. He gave me the confidence to investigate hypotheses that are difficult
to test. He taught me how to create graphs that present data in a novel way, but are still
intuitive and clear. Throughout, Neil was himself willing to learn new skills in order to
work with me on the research problems that I was passionate about.

Ever since I met him when I started graduate school, Dave Levin has been one of my
closest mentors. Any time I had a question, day or night, I knew Dave would eagerly
answer his phone and work through the problem with me. As a collaborator, Dave taught
me skills in every area of graduate school. For example, he taught me how to write
explicitly, diagram beautifully, and cook deliciously.

Bobby Bhattacharjee has been an inspiring collaborator. He taught me the importance
of color selection in my presentations. He also gave me the opportunity to teach embedded
systems design to an amazing group of undergrads.

From the first moment I heard him speak, Prabal Dutta always asked the tough ques-
tions. Prabal gave me the opportunity to spend a year and a half with him and his excellent
students in Michigan learn electrical engineering while spending a year and half of grad-
uate school with my (now) wife. He also introduced me to Thomas Schmid. In the few
months I spent with Thomas, he taught basic electrical engineering skills such as solder-
ing circuit boards and advanced skills such as designing embedded systems.

My wife, Ophira Vishkin, taught me how to be precise and never let me doubt my
ability. Throughout graduate school, she has been a source of serenity and brilliant edit-
ing.

I thank Mark Shayman and Michael Hicks for giving me detailed feedback on this
dissertation. Their comments significantly improved the quality of it.

The Lab1: Randy Baden, Adam Bender, Dave Levin, Cristian Lumezanu, Rob Sher-
wood, Bo Han, and Justin McCann patiently taught me the ropes of being a graduate
student. Everybody knows that I will never forget the lessons they taught me.

The Lab2: Yunus Basagalar, Vassilios Lekakis, Matt Lentz, Youndo Lee, and Ramakr-
ishna Padmanabhan have been great friends and even better collaborators. They provided

ii

support and encouragement during my proposal and defense.
One weekend, Michelle Hugue (Meesh) asked me to drive out from Annapolis to

College Park so she could convince me to go to graduate school for a PhD (rather than a
Master’s). She also told me to email the talented young professor who eventually became
my advisor.

During my summer at Microsoft Research India, my collaborators, Vishnu Navda,
Ramachandran Ramjee, and Venkat Padmanabhan, were great mentors and collaborators.
They gave me the opportunity to do research while learning about Indian culture.

Wyn Bennett taught me how to program in Ms. Jellison’s computer science class
and worked with me on the two science fair projects that whet my appetite for research.
Brandi Adams provided me with excellent writing advice and gave me a reason to play
with microphones. Katrina LaCurts has been a great collaborator and is the world’s best
overseas conference roommate. My friends Dan Noble, Aaron Silverman, Chris Testa,
Josh Handelman, and Patrick Shoemaker always made sure I was enjoying research. I am
continually inspired by their creativity and work ethic.

My parents gave me unconditional support, love, and encouragement. In addition, my
father gave me a passion for learning how things work and my mother taught me how to
speak in front of an audience.

This dissertation was supported by NSF Awards CNS-0917098, CNS-0643443, and
CNS-0626629.

Finally, I would like to explicitly acknowledge the people that I collaborated with on
the work in this dissertation.

Chapter 2: My collaborators were Youndo Lee, Ramakrishna Padmanabhan, and Neil
Spring. Additionally, Patrick Shoemaker and Dave Levin provided helpful discussions.
Also thanks to the anonymous reviewers and our shepherd Fabiàn Bustamante for their
comments.

Chapter 3: My collaborators were Vishnu Navda, Ramachandran Ramjee, Neil Spring,
Pralhad Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan. Ad-
ditionally, our shepherd Prasun Sinha, the anonymous reviewers, and the summer 2009
inters of MSR India provided insightful comments and discussion. I extend my gratitude
to the cab drivers at Microsoft Research India for their assistance with the data collection.

Chapter 4: My collaborators were Dave Levin, Neil Spring. Additionally, Prabal
Dutta and Thomas Schmid provided many useful discussions.

iii

Contents

1 Introduction 1
1.1 Challenges . 4
1.2 Thesis . 6
1.3 Insights . 8
1.4 Contributions . 10

2 Background and Related Work 13
2.1 Observing last-mile link failures . 14

2.1.1 With privileged data . 14
2.1.2 Without privileged data . 15

2.2 Improving the energy efficiency of smartphone communication 17
2.2.1 Radio energy . 17
2.2.2 Processing and positioning energy 22
2.2.3 Energy-efficient cellular data scheduling 23

2.3 Improving reliability with data broadcasting 24
2.3.1 Datacasting systems . 25
2.3.2 Broadcast technologies . 27

2.4 Summary . 30

3 Weather-related Last-mile Link Failures 31
3.1 Measuring the responsiveness of Internet hosts during weather 33

3.1.1 Finding IP addresses subject to weather 33
3.1.2 Pinging (last-mile links) in the rain 36
3.1.3 Potential sources of error . 37

3.2 Inferring link-state from pings . 37
3.2.1 Filtering out intermittent PlanetLab node failures 39
3.2.2 Detecting failures with conditional probabilities 41
3.2.3 Detecting changes in prolonged loss rate 44
3.2.4 Understanding the HOSED state 48

3.3 Weather history and link type . 50
3.3.1 The weather at a host during a ping 50
3.3.2 Identifying the link type of an IP address 51

3.4 Failure rate . 52
3.4.1 UP to DOWN failures . 53
3.4.2 UP to HOSED failures . 57

iv

3.5 Failure duration . 58
3.5.1 Does ThunderPing observe the duration of failures? 58
3.5.2 How long do UP→DOWN failures last? 62

3.6 Summary . 65

4 Energy-aware Cellular Data Scheduling 67
4.1 Motivation . 69

4.1.1 Signal varies by location . 70
4.2 Suitable applications . 72

4.2.1 Synchronization . 72
4.2.2 Streaming . 75

4.3 Architecture . 77
4.3.1 Predicting signal with signal tracks 77
4.3.2 Scheduling sync . 81
4.3.3 Scheduling streaming . 82

4.4 Simulation-based evaluation . 85
4.4.1 Syncing . 86
4.4.2 Streaming . 88

4.5 Related work . 90
4.5.1 Predicting wireless network quality 90
4.5.2 Stability of cellular signals . 91

4.6 Summary . 91

5 Reliable Broadcast Last-mile Link 93
5.1 The reliability of FM RDS metropolitan radio broadcasting 95

5.1.1 FM RDS loss rate is low . 97
5.1.2 Where there are people, there are FM towers 99
5.1.3 Every transmission can be stored 102
5.1.4 FM Receivers are small . 102

5.2 Design and implementation of Abbie . 103
5.2.1 Tower sharing protocol . 104
5.2.2 Over-the-air protocol . 104
5.2.3 RDS-to-LAN bridge . 107
5.2.4 Receiver software . 108

5.3 Applications . 110
5.3.1 Push: DNS cache updates . 110
5.3.2 Anonymous and synchronous: mass reset 112

5.4 Evaluation . 113
5.4.1 Metropolitan deployment . 113
5.4.2 Abbie’s energy consumption on an Android phone 115
5.4.3 Abbie end-to-end synchronization 116
5.4.4 RDS receiver cold boot . 117

5.5 Summary . 117

v

6 Conclusions and Open Questions 119
6.1 Longevity . 121
6.2 Open questions . 123

vi

List of Tables

2.1 Smartphones used for power and throughput measurements 17
2.2 Candidate datacasting systems for an Internet last-mile link 28

3.1 Summary of a small portion of the data collected by ThunderPing 53

4.1 Signal strength and energy consumption while playing a YouTube video . 75

5.1 Abbie prototype receiver locations in the testbed deployment 114

vii

List of Figures

2.1 Signal strength affects power consumption 19
2.2 Signal strength affects throughput . 20
2.3 Cellular radio tail energy . 21
2.4 Smartphone wakeup and suspend energy 22

3.1 Example of an XML weather alert . 34
3.2 Average loss rate and “dodgy” PlanetLab node loss rates 39
3.3 Detail view of a period where PlanetLab nodes were declared “dodgy.” . . 40
3.4 The conditional probability of ping loss for each link type 42
3.5 Example of the edge detection algorithm that separates UP and HOSED . 44
3.6 The edge detector’s accuracy of HOSED state detection 46
3.7 Example of the moving average failing to separate UP and HOSED 48
3.8 The distribution of loss rates is related to last-mile link type 49
3.9 The distribution of link types for IP addresses pinged by ThunderPing . . 52
3.10 UP→DOWN failure rate for different weather conditions 53
3.11 Comparison of the number of five-minute intervals that see failures across

multiple ISPs within a US state during a power outage 54
3.12 UP→DOWN failure rate excluding suspected power outages 57
3.13 UP→HOSED failure rate for different weather conditions 57
3.14 Failures and address reassignments in BISMark 63
3.15 Duration DOWN after an UP→DOWN transition 63

4.1 Signal strength varies by location . 70
4.2 Signal strength variations are consistent over 6 drives 71
4.3 Average signal strength and energy for email syncs 73
4.4 Signal strength prediction error for all 25 m steps in six 17 km tracks . . . 79
4.5 Tracks from opposite directions may not align in signal strength 80
4.6 Signal correlation of 25 m steps in all pairs of “from” tracks with “to” tracks 80
4.7 Predicting signal with previous traces can save energy for email syncs . . 86
4.8 Energy savings with signal-based scheduling for data streams 89

5.1 Loss rate of RDS messages from a 3 kW FM transmitter 98
5.2 The FCC FM signal contours and Census county population estimates . . 99
5.3 The number of people covered by each of the FM transmitters in the US . 100
5.4 Abbie system overview . 103
5.5 Abbie package structure . 105

viii

5.6 RDS-to-LAN bridge with integrated antenna 107
5.7 Broadcasting packages to four Abbie RDS-to-LAN bridges 113
5.8 The energy consumption of the Abbie receiver running on a Samsung

Galaxy S smartphone . 115
5.9 The synchronization of two RDS-to-LAN bridges 116
5.10 Time from powered off to receiving first RDS message 117

ix

Chapter 1

Introduction

The Internet links that connect to homes and mobile devices are called last-mile links.

When last-mile links are not available, the effectiveness of government services is un-

dermined, the profits of businesses are diminished, and the flexibility of the workforce

is lost. However, unlike links in the core of the Internet, last-mile links are typically not

redundant. As a result, the reliability of any single link is of paramount concern: when

last-mile links fail, people can be completely disconnected from the Internet.

The more last-mile links fail, the less reliable the applications are that depend on them.

Yet, governments and businesses increasingly assume that people can access the Internet

while they are at home and while they are mobile.

Today, governments rely on last-mile links for emergency communication; in the fu-

ture, they may rely on these links for online voting. To improve citizen safety, the United

States government mandates that home and mobile Internet services provide emergency

systems such as the 9-1-1 [32] phone number and the Television and Radio emergency

1

alert system [31].1,2 The less time last-mile links are available, the higher the chance citi-

zens miss an emergency alert or are caught in an emergency situation without the ability

to contact emergency services. To improve the efficiency and accessibility of voting, gov-

ernments are developing online voting systems [61]. Online voting benefits from voters

being able to cast their ballots while they are at home and mobile. A large enough outage

of last-mile links may even result in a voided election [35].

Businesses use last-mile links to advertise to consumers, to provide consumers with

streaming media services, and to connect with their workers. A more available Internet

connection allows a user to view more ads; conversely, a dead battery or failed link limits

ad views. As a result, the reliability of last-mile links may eventually limit the growth of

Internet ad revenue. In 2012, overall online advertising revenue grew from $31.7 to $36.6

billion, and the percentage of that total from mobile advertising grew even more, from 5%

to 9% [41]. Streaming media businesses also benefit from last-mile link reliability. These

businesses require users to trade off ownership of media for a subscription to stream it; if

consumers cannot access the content when they want it, they may not be willing to make

this trade-off. Finally, as more businesses encourage their employees to telework (work

from home) [96], they shift their reliance from Internet transit links to their employees’

last-mile links.

These observations reveal that last-mile links are increasingly depended upon, but the

stark reality is that they are not reliable. Rather, last-mile links are subject to external

1“Triple play” home Internet services—which also provide telephone and TV—are becoming more
popular [89]. Citizens with triple play depend on their Internet link for both 9-1-1 and emergency alerts.

2The US Wireless Emergency Alert system started in April 2012. The government does not yet require
cellular providers to broadcast emergency alerts. However, all of the major cellular providers voluntarily
broadcast some of the alerts [21].

2

factors that can cause physical failures. last-mile links are made up of multiple tech-

nologies that collectively span approximately one mile of transmission media and sup-

porting equipment between the Internet Service Provider’s (ISP’s) facility and customer’s

premises—failures may occur at virtually any point along the way.

In turn, there are many different sources of failures, both natural and man-made.

Weather can attenuate the signals in outdoor transmission media, which can disable the

link [8, 40, 44, 90]. In the extreme case, weather can even destroy equipment [3]. Com-

municating in poor signal strength can waste the limited energy in a smartphone’s bat-

tery [24, 85]. Fixed last-mile links depend on electric power infrastructure to power

mid-link equipment such as neighborhood media converters and end-link equipment such

as the customer’s modem—power outages can cause any of these pieces of equipment

to fail. ISP technicians can misconfigure software parameters such as modulation rate,

which can lead to link instability [45]. Also, when there is a crowded event smartphone

traffic can exceed mobile link resources, leading to instability and outages [88].

Researchers know that weather-related failures and wasted energy can reduce last-

mile link reliability. However, we do not know the prominence and prevalence of these

harmful effects, nor how to diminish them. If we better understood weather-related fail-

ures, we could work around them by deploying new, more resilient types of links. Sim-

ilarly, a better understanding of energy consumption of mobile links could allow us to

diminish wasted energy by changing how applications use the links.

3

1.1 Challenges

It is challenging to observe the reliability of last-mile links; precise measurement studies

have, to date, required privileged access to data, and making general inferences about

link reliability is complicated by the fact that there are diverse link types deployed across

diverse geographic locations. It is also challenging to lessen or work around link fail-

ures because the diverse types of links are difficult to modify en masse, and new links

are expensive to deploy. Before stating my thesis, I describe these challenges in more

detail, and identify several criteria that I believe must be upheld in order to make general

observations of and improvements to last-mile link reliability.

It is difficult to observe and improve last-mile link reliability without privileged data,

that is, statistics taken directly from last-mile link equipment. Even ISPs themselves

find it difficult to observe the physical properties of their own last-mile links; AT&T, for

instance, only observes some of the physical link properties of their customers once a

week because of resource constraints [45]. Observing last-mile link availability across

multiple ISPs, and controlling when these observations are collected, requires data that

does not come from a privileged source. Fortunately, there exist some popular tools (most

notably ICMP “pings” [73]) that allow those without access to privileged data to remotely

probe some last-mile links.

Unfortunately, observing the physical operation of cellular radios is far more limited

without privileged data. The only physical interface that is available across most phones

is a limited set of statistics: signal strength and the identification number of the associated

cellular tower. Without privileged access, any improvements to cellular reliability must

4

only require that interface and no other control over the radio’s behavior.

The diversity of last-mile link types, and the relative age of their deployments, make

it difficult to observe when a link fails. There is no standard loss rate for all deployed

link types; some link types exhibit a persistent, low loss rate, while, for others, switch-

ing to a lossy state indicates a failure. These differences arise from the diversity in the

transmission media and equipment that comprise last-mile links. For example, some last-

mile links are built on repurposed transmission media (e.g., telephone subscriber loops

and CATV cables); others have dedicated transmission media (e.g., Fiber To The Home,

fixed terrestrial wireless, and satellite links). Any general conclusions about last-mile link

reliability must be based on data from a variety of link types.

Environmental conditions vary significantly across different locations. Weather is

clearly location-dependent; snow is far less likely in Texas than in Alaska. Operators

therefore protect their transmission media and equipment in a manner that considers the

weather conditions in their area. For instance, in cold regions, operators commonly de-

ploy snow protection systems such as antenna heaters and falling ice shields. As a result,

the same kind of weather event in two different areas may have profoundly different ef-

fects on last-mile link reliability. Any general conclusions about last-mile link reliability

must include observations from a variety of locations.

Deployment density can also vary across different locations. Cellular ISPs do not

place their cellular towers equidistant from one another: they densely deploy in cities and

sparsely in rural areas [69]. Improvements to reliability should account for variations in

deployment density.

A natural means of improving reliability is to add redundancy. However, it is chal-

5

lenging to deploy new last-mile links; simply put, new links are expensive. There is a

history of ISPs going bankrupt, or giving up, as they try to deploy new last-mile links.

One of the earliest cellular last-mile ISPs, Metricom’s Ricochet, went into bankruptcy

during their deployment phase [12]. Recently, large deployments of Fiber-To-The-Home

(FTTH) last-mile links have encountered deployment problems: Verizon’s FiOS FTTH

deployment took six years and they stopped deploying to new cities in 2010 due to fi-

nancial constraints, leaving one third of their telephone service area without fiber [93].

Therefore, improving the reliability of last-mile links should not require deploying ex-

pensive links.

In summary, making general observations about last-mile link reliability should re-

quire no privileged data, and such observations should cover a large number of links that

span a variety of link types and locations. Also, improving last-mile link reliability should

not require modifying existing infrastructure or deploying new, expensive links.

1.2 Thesis

In this dissertation, I observe and improve the reliability of Internet last-mile links by

building on existing infrastructure. Specifically, I build off of unmodified transmission

media and equipment, and I collect data only from public measurement infrastructure.

Operating under these constraints, my system that infers last-mile link failures is inde-

pendent of link technology and network topology; my improvements to cellular energy

consumption are independent of network technology and smartphone device; and my sys-

tem that provides exceptional reliability does not require the deployment of new last-mile

links.

6

I defend the following thesis: By building on existing infrastructure, it is possible to

(1) observe the reliability of Internet last-mile links across different weather conditions

and link types; (2) improve the energy efficiency of cellular Internet last-mile links; and

(3) provide an incrementally deployable, energy-efficient Internet last-mile downlink that

is highly resilient to weather-related failures.

I study two sources of last-mile link failures in particular—weather and wasted energy—

and three types of last-mile links—fixed, cellular mobile, and VHF broadcast.

Weather can cause fixed last-mile transmission media to fail [84]. For example, early

telephone and Community Antenna Television (CATV) engineering documents describe

how to avoid moisture in wires because it impedes signal propagation [44, 90]. Also, rain

attenuates satellite signals above 10 GHz [40]. Finally, point-to-point wireless links can

experience multipath fading due to objects moving in the wind [8].

Mobile links are less susceptible to link failures since a mobile user could move if

necessary. However, they are subject to another, more insidious, reliability constraint:

mobile last-mile links drain smartphone batteries when signal strength is low, limiting the

availability of the phone for future communication [24, 85]. Communication that could

be delayed until the signal strength improves, instead unnecessarily wastes energy.

Such sensitivity to environmental factors is not endemic to all last-mile links. Metropolitan-

scale radio broadcast is resilient to weather and consumes little energy, but it must be

adapted to function as an Internet last-mile link. The Very High Frequency (VHF) radio

transmission medium propagates well and is not significantly affected by weather. Al-

though lightning strikes between the transmitter and receiver adds noise to VHF signals,

this effect is mitigated by using FM (Frequency Modulation) [58]. Also, VHF broad-

7

casts can be received by even the most energy restricted receivers, such as hand crank

radios [47]. The robustness of metropolitan scale radio broadcasting is evidenced by the

US government’s choice of approximately 1000 VHF FM broadcast transmitters to make

up NOAA’s Weather Radio service [64]. NOAA Weather Radio transmissions have to be

receivable during weather, even when there is a power outage and a citizen does not have

fresh batteries.

In summary, I focus my study on failures that arise due to weather and wasted energy

because I believe that they are unavoidable; weather and limited battery capacity will

always threaten the reliability of last-mile links. I study three broad classes of last-mile

links: fixed and cellular mobile links because they constitute nearly all Internet last-mile

links, and VHF broadcast because its reliability is unlike that of any existing Internet

last-mile link.

1.3 Insights

My general insight that allows me to defend my thesis is that the availability of every last-

mile link is associated with the availability of the last-mile links that physically surround

them. At a basic level, last-mile links in the same neighborhood share the same link

through a Cable Modem Termination System (CMTS) or Digital Subscriber Line Access

Multiplxer (DSLAM). At a deeper level, proximal last-mile links are also subjected to

the same environmental effects, even if they are provided by different ISPs. For instance,

when it rains in a city, the rain may affect all of the last-mile links in the city. In defending

my thesis, I focus on three spatial relationships of last-mile links: fixed last-mile links

affected by the same weather system, a mobile device’s set of neighboring cellular towers,

8

and radio broadcast receivers covered by the same transmitter.

Weather events affect many fixed last-mile links. Weather systems range in size.

They can cover an area ranging from as small as a US county (the area that the US issues

weather alerts for [65]) to significant portions of the continental US (e.g., hurricanes).

Instead of doing the impractical—continually observing every last-mile link—I focus my

observations on regions that may experience adverse weather. Within the affected area, I

observe a sample of hosts for all link types and all ISPs that exist in the area.

Surrounding last-mile links affect mobile energy consumption. While moving,

cellular radios handoff to new towers when their signal strength with the current associ-

ated tower drops below a threshold. When the signal strength is low, the energy required

by the radio to communicate is high [24, 85]. This drains the battery faster than when

the signal strength is high. Instead of communicating when the signal strength is low, I

predict when the moving radio will be close to the surrounding towers. Based on these

predictions, I delay communication until the signal strength is high.

Wireless broadcast receivers can increase reliability. Metropolitan-scale reliable

broadcast complements existing fixed and mobile last-mile links; it works when existing

last-mile links fail. When broadcast fails, existing last-mile links can repair the error. FM

broadcasting is a deployed, low-energy, weather-resistant last-mile link. VHF broadcasts,

such as FM radio, are transmitted almost everywhere there are people in the world. When

a receiver is close to the transmitter, they are unlikely to get any messages with errors.

When a receiver is far from the transmitter, it may experience spontaneous errors. Even

if it does, receivers that are near the transmitter can retransmit the correct message to the

far receiver.

9

1.4 Contributions

Based on these insights, I design and implement systems to observe and improve the re-

liability of last-mile links. Specifically, I observe the reliability of fixed links in weather,

observe and improve the reliability of mobile links that are moving between cellular tow-

ers, and increase fixed and mobile reliability by adapting a metropolitan radio broadcast

link to the Internet.

Chapter 2: An introduction to last-mile link reliability. I describe the specific

challenges that each last-mile link technology poses that makes it difficult to observe and

improve the reliability of last-mile links. Additionally, I describe how related work ad-

dresses these challenges.

Chapter 3: ThunderPing, a measurement system and analysis techniques for

observing weather-related last-mile link failures without privileged data from ISPs.

I design and deploy a measurement tool called ThunderPing that measures the respon-

siveness of residential Internet hosts before, during, and after periods of severe weather

forecast by the National Weather Service. ThunderPing uses several PlanetLab [70] hosts

as vantage points to attempt to be resilient to routing faults and firewall filtering. Thun-

derPing collected 4 billion pings from 3.5 million IP addresses over 400 days of probing

from PlanetLab hosts. The size and diversity of this data creates an opportunity to dis-

cover rare pathologies, but also creates substantial challenges in focusing on the last-mile

link despite occasional faults in the broader network.

10

I analyze this ping data to determine when hosts lose connectivity, completely or par-

tially, and categorize these failures by periods of weather ranging from clear skies to

severe storms. Determining the connectivity state from noisy pings is similar to finding

the edges in a noisy picture. As such, I use algorithmic edge detection to find when a host

transitions between connectivity states.

Chapter 4: Bartendr, a system for observing and improving the energy efficiency

of cellular links without modifying cellular hardware, firmware or drivers or accessing

proprietary cellular data. I measure the relationship between signal strength and the en-

ergy consumption of popular applications. Then, I show that past observations of signal

strength progression along a track can effectively predict signal strength in the future.

Finally, I develop energy-aware scheduling algorithms for different workloads—syncing

and streaming—and evaluate these via simulation driven by traces obtained during actual

drives. I perform my experiments on four cellular networks across two large metropolitan

areas, one in India and the other in the US.

Chapter 5: Abbie, a system that adapts an existing radio broadcast last-mile

link to the Internet without modifying the link’s hardware or software. I design and

implement a reliable broadcast primitive over the FM Radio Data System (RDS) that uses

a Distributed Hash Table (DHT) of last resort for retransmission of missed RDS messages,

while simultaneously designing the over-the-air protocol to support low-power, embedded

devices with no Internet connectivity.

I implement a full end-to-end system, deploy it on a 3 kW commercial radio station in

11

a metropolitan area, and evaluate it. I implement two types of receivers: software for an

FM RDS-equipped mobile phone, and a hardware and firmware RDS-to-LAN bridge. To

demonstrate the flexibility of my broadcast Internet last-mile link, I devise a push-based

DNS server that does not require any modifications to the protocol, and I describe a large-

scale device reset that does not require the sender to maintain any state about the devices.

12

Chapter 2

Background and Related Work

In this chapter, I provide background on prior approaches to observing and improving

last-mile link availability. A common theme to most of this prior work is a reliance

on privileged data or a willingness to modify links. I discuss some of the results that

these assumptions have made possible, the limitations these assumptions impose, and the

challenges involved in operating without these assumptions. In particular, I explain how

researchers with some privileged data can observe last-mile link failures. These data may

contain the precise timing and cause of weather-related failures. Also, I describe how

researchers without privileged data can observe failures of core Internet links, but not

last-mile links.

I also provide background on some of the technologies I make use of throughout my

dissertation. In particular, I describe work that improves smartphone communication and

positioning energy consumption. Finally, I review data broadcasting technologies that are

potential candidates for being an Internet last-mile link.

13

2.1 Observing last-mile link failures

Last-mile link failures can be observed either with privileged data, probing out of the net-

work from inside and observing the statistics maintained by the link equipment or without

privileged data, probing into the network from the outside. In this section I describe ap-

proaches to observing last-mile link failures both with and without access to privileged

data.

2.1.1 With privileged data

With privileged data, observers can more easily identify the exact causes of failures, be-

cause they can directly query the state of link equipment. However, it is difficult to obtain

privileged data from the approximately 1,500 ISPs that exist in the U.S. [27]: let alone,

all of the ISPs in the world.

Last-mile link equipment maintains detailed measurement data that can help to di-

rectly to diagnose failures. Generally the only people with access to this data are employ-

ees of the ISP. Although my work does not use these data directly, it is informative to

understand them as a goal for my indirect probing. I introduce these by describing some

of the measurement data recorded by DSL and Cable last-mile link equipment.

In DSL, the central equipment, the DSLAM, tests last-mile links [45] and in Cable,

mid-link transponders test links [4, 14]. Both can observe detailed signal conditions,

such as uplink and downlink signal power and noise margin, as well as basic status, like

whether or not the customer’s modem is powered on. They also report on the state of

supporting equipment such as power supplies and battery backups. In summary, there

is a wealth of detailed information about the status of last-mile link failures, but this

14

information can only be obtained by ISP employees.

There are also systems that test last-mile links without the ISP’s participation, but

with the customer’s permission. Their interfaces for collecting these data are restricted

to only the customers who chose to participate in the collection. By attaching unbiased

measurement devices, such as always-on modified home routers, directly to customer last-

mile links, researchers and governments can directly probe the last-mile link to isolate

the cause of connection failures [83, 92]. They also can observe bandwidth and latency

which are difficult to obtain without customer participation [25]. The main limitation

of these types of measurement is in their limited coverage of providers and link types.

SamKnows [83], a commercial entity, and BisMark [92], an academic research project,

deploy off-the-shelf wireless routers with modified firmware and monitoring software

in homes of volunteers. As of January 2013, SamKnows has deployed about 10,000

devices and BisMark has deployed approximately 300. A European organization, RIPE

NCC, created their own embedded systems that attach to last-mile links over Ethernet

and constantly send pings and traceroutes to well provisioned servers (such as root DNS

servers) [82]. As of June 2013, they have deployed about 3,200 of these systems.

2.1.2 Without privileged data

Without privileged data, failures must be inferred indirectly from probes sent from outside

the ISP’s network. The complicating factor is that a failure observed by one of these

external probes may not have been caused by a failure of the last-mile link being probed,

but rather any of the other links on the path to and from the last-mile link.

The primary option for observing last-mile link failures without privileged data is to

15

send pings [73] from outside the ISP’s networks to a customer’s host. Any Internet host

can send a ping to any other Internet host, however pings can be lost for several reasons,

only one of which is a failure of the last-mile link. Some hosts’ operating systems may

have been configured to ignore pings. Additionally, pings could be lost due to failures of

any other link between the sender and the receiver, congestion of any of those links, or

the host powering off.

Nonetheless, pings have proven to be useful for observing the link properties (e.g.,

bandwidth, loss, latency) of last-mile links and failures of Internet transit links. Dischinger et al. [25]

used pings (and other probes) to observe the bandwidth, latency, and loss of 1,894 last-

mile links from 6 DSL and 5 Cable ISPs, but they do not observe last-mile link failures.

The most related failure observation system to the one I describe in Chapter 3.1 is Trinoc-

ular [75]. Trinocular works by pinging several hosts in a subnet. When all of the hosts in

a subnet fail, they infer this is caused by a failure of the subnet’s transit links. Because

they infer failures from several hosts, they can not find a failure of a single host last-mile

link.

In summary, privileged data from ISPs includes fine-grained failure observations, but

I can not feasibly get access to them; in-home observation systems can indicate the cause

of failures, but they do not have the deployment diversity needed to observe weather-

related failures. Without privileged data, related work also uses pings to observe Internet

link failures, but they are only able to observe link failures that affect many last-mile links.

I observe last-mile links externally, without privileged data. To do so, I design a prob-

ing system, and the analysis of its pings to observe last-mile link failures. In Chapter 3,

16

Provider Country Type Device Precision
Sprint USA EVDO Pre ≥80
Reliance India EVDO EC1260 USB 6
Verizon USA EVDO Omnia ≥80
AT&T USA HSDPA SGH-i907 ≥80

Table 2.1: Sources of measurement data, including different technologies in different
countries. “Precision” represents the number of unique signal strength values the device
reports.

I design a tool and analysis technique to monitor many geographically diverse last-mile

links across different providers in different weather conditions, without privileged data.

2.2 Improving the energy efficiency of smartphone communication

In this section, I identify the energy costs of various features of smartphones. I describe

where energy consumption can be improved and describe some of the related work that

has improved it. These energy features are representative of the current state of smart-

phone technology. For concreteness, I provide power measurements from the Palm Pre

and Samsung Omnia exemplars; I expect their relative values on other smartphones will

be similar. This section comprises two parts: an energy model for the radio and an energy

model of the processor and positioning peripherals.

2.2.1 Radio energy

Communicating with a strong signal reduces the energy cost by cutting both the power

drawn by the cellular radio and the communication time. When the signal is strong the

radio uses less power, for both transmission and reception, although my focus is primarily

on the reception power. A strong signal also makes it feasible to use advanced modulation

schemes that yield higher throughput, thereby cutting the time needed to complete the

communication and potentially allowing the device to sleep (enter a low power mode). I

17

address power and time, in turn.

Intuitively, the energy consumed by cellular communication varies with signal strength,

which changes as the phone moves. However, although the extent to which the cellular

energy consumption increases as signal strength decreases is known by manufacturers, it

is not well understood by researchers. To remedy this, I observed the energy consumption

of mobile phones while they communicate in various signal strengths. Table 2.1 lists the

mobile devices and networks that I measured. These devices expose signal strength in

one of two ways: some provide fine-grained, raw Received Signal Strength Indication

(RSSI), others provide only six coarse signal levels, corresponding to the (0–5) “bars”

displayed on phones. These reported values lack meaningful units and instead serve as a

rough indication of signal strength to users.

Power measurements are typically performed in the lab with an AC powered de-

vice [101, 103]. But, measuring the energy consumption of mobile phones in motion

requires a power measurement apparatus that is both portable and can be connected be-

tween a mobile phone’s battery and the device. My setup consists of a USB oscilloscope

that measures current by observing the voltage drop over a 0.1 Ω precision shunt resistor.

The resistor connects the phone’s power lead to its battery.

One reason the radio draws more current to operate in low signal locations is that the

power amplifier switches to a high power mode to counter the drop in signal strength [19].

This applies for both transmission and reception since the mobile client continuously

reports the received signal strength to the base station, 800 to 1600 times per second

(the base station uses this feedback to choose an appropriate modulation and data rate).

Figure 2.1 depicts the power consumption of various devices while receiving a packet

18

Po
w

er
(m

W
)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-100 -90 -80 -70 -60 -50 -40 -30

Pre

Omnia

 SGH-i907

 40 60 80 99

 EC1260

Signal strength (RSSI)

Figure 2.1: Power consumed by mobile devices report fine- (left) or coarse-grained RSSI
(right). The EVDO devices are measured while driving; the i907 was measured stati-
cally at several locations. The very high i907 power was observed while communicating
indoors.

flood, across various signal strengths. Communication in a poor signal location can result

in a device power draw that is 50% higher than in strong signal locations.

In locations with high signal strength, there is high throughput, and thus communi-

cation takes less time. Specifically, strong signal allows for high modulation rates. For

example, EVDO Rev A uses one of 14 rates ranging from 38 Kbps to 3.1 Mbps depend-

ing on signal strength. Figure 2.2 depicts cumulative distributions of receive throughput

for various signal strengths. The measurements are 2-second (Reliance) and 3-second

(Sprint) samples of throughput while receiving a flood of UDP packets.

The median throughput increases dramatically with signal strength: there is a four-

fold difference in the median throughput between 60 and 99 RSSI for the Reliance net-

work in India and a similar difference appears between -50 and -110 RSSI for the Sprint

network in the US. However, the CDF also shows a wide range of throughputs for each

signal quality bin, likely due to variations in sharing of aggregate cell capacity with other

users. For the device on Sprint’s network, RSSI values are rounded up to the nearest mul-

19

C
D

F

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5

signal
99
80
60
40
20
0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

signal
-50
-60
-70
-80
-90

-100
-110
-120

Throughput Mbit/s

Figure 2.2: Signal strength affects throughput. Throughput over 9 drives on Reliance
Telecom’s EVDO network in Bangalore, India (left) and a 4 hour drive using Sprint’s
EVDO network on US interstate 95 (right).

tiple of ten, i.e., values between -59 and -50 appear as -50, while the device on Reliance’s

network reported only six distinct signal values.

In summary, when the signal is weak, not only does data transfer take longer to com-

plete, but the radio also operates at higher power. These two factors are cumulative, so

the overall energy required to transfer a fixed chunk of data, i.e., energy per bit, can be as

much as six times higher (25% throughput and 150% power) while communicating from

poor signal locations compared to strong signal locations.

Sporadic communication is inefficient. The cellular radio operates in several power

states depending on expected future communication. The radio mostly remains in a low

power state, ready to receive incoming phone calls. At an intermediate power state, the

radio is ready to transmit and receive data packets. Finally, in the highest power state,

the radio is actively transmitting or receiving data. Apart from these states, when the

received signal is very poor, the phone may expend energy continuously while searching

for a tower with strong signal.

20

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9 10

Po
w

er
 (m

W
)

Time (s)

Figure 2.3: The Palm Pre’s tail energy. The Pre initiates an ICMP Ping at 2 s and it
completes at 3 s; the tail continues until 6 s. Following the tail, the baseline power of the
phone is 400 mW with the display dimmed.

The radio remains active in the intermediate power state for a preconfigured timeout

duration after each communication episode, consuming what is known as “tail energy”.

Cellular network providers typically control this timeout value, though some mobile de-

vices use a technique called fast dormancy to reduce the duration [74]. The duration of

this timeout, which ranges from a few seconds to ten seconds or more, is chosen to bal-

ance (1) the cost of signaling that allows a radio to acquire the spectrum resources to

operate in the active state (and the resulting latency and energy costs on the device) and

(2) the wasted spectrum resources due to maintaining a radio unnecessarily in active state.

Figure 2.3 depicts the progression of the Palm Pre’s radio power states when transmit-

ting a short message. A single ICMP ping message is transmitted around 2 s. Prior to 2 s,

the radio remains in a low power state (the phone, dimmed display and radio consume

less than 400 mW). When the ping is initiated, signaling messages are exchanged for re-

source allocation and the radio transitions to the high power state (power drawn goes up

to 2000 mW). The ping is sent and a ping response is received between 2 and 3 s. The

radio then remains in an intermediate power state, ready to transmit and receive further

packets, until about 6 s (power drawn around 1500 mW). Finally, the radio transitions

21

 0

 500

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Po
w

er
 (m

W
)

Time (s)

waking suspending asleep

Figure 2.4: Samsung Omnia’s power consumption during wakeup and suspend.

back to the low power state.

It is this tail energy cost that makes sporadic communication a significant energy

drain on mobile devices. Prior work solves this problem by consolidating periods of

communication and thus reducing the tail energy wasted by sporadic communication [7,

86]. Communicating during strong signal strength can save energy, but it must not make

the communication more sporadic, and thus waste the saved energy as tail energy.

2.2.2 Processing and positioning energy

These findings reveal a promising opportunity that prior work has yet explored: if one

could predict high signal strength then delay tolerant traffic could be sent when the signal

strength is high. One way to predict the signal strength is to predict location, but finding

the location must be precise enough to detect signal strength without consuming more

energy than it saves. In this subsection, I describe the energy consumption of the hardware

needed to predict signal strength: processors and positioning peripherals.

Processors can sleep in a very low power state. The Samsung Omnia uses extremely

little power while sleeping, and when awake it requires approximately 144 mW. Sleep

precludes any activity until the processor is awakened by an interrupt. The focus of ag-

gressive power saving is thus to keep the processor in suspended state for as long as

22

possible.

Unfortunately, the transition between sleep and active states requires more power than

an active processor. I show an example transition on the Omnia in Figure 2.4. The peaks

before and after the awake state represent the energy cost of restoring state and saving

state for peripherals. The energy cost of these transitions is approximately 1 joule to

restore from sleep and 0.5 joules to return to sleep. In short, the processor cannot simply

be duty cycled to save power.

GPS devices can provide precise positioning, but they suffer from high latency to ob-

tain a fix from the satellites and high power to interpret their weak signals. Constandache

et al. report 400 mW baseline power for GPS on a Nokia N95 [18]. GPS energy con-

sumption can be improved by offloading intensive GPS processing to a datacenter [53].

Cellular signal strength provides an alternative approach to positioning [50] with

much lower power requirements. The radio measures signal strength as part of the normal

operation of the phone, for example, to receive incoming phone calls and perform regis-

trations. The radio performs this measurement even while the processor is suspended.

Accelerometer measurements are nearly free, but can only be used when the proces-

sor is powered on. Accelerometer measurements have been previously used for position-

ing [17].

2.2.3 Energy-efficient cellular data scheduling

In Chapter 4, I present Bartendr, a system that schedules cellular communication during

time when signal strength is high. It saves more energy than the scheduling consumes

23

by efficiently predicting future signal strength with previously collected tracks of signal

strength progression.

The proportional fair scheduler [49] used in 3G networks today already uses sig-

nal conditions at the mobile nodes to preferentially schedule nodes with higher signal

strength. Bartendr uses the same principle of channel state-based scheduling but differs

from the proportional fair scheduler in two ways. First, while the proportional fair sched-

uler operates at a fine granularity of milliseconds, Bartendr schedules traffic over time

intervals of tens of seconds to several minutes or more. Thus, while proportional fair is

reactive, relying on continuous feedback of channel state from the mobile nodes, Bartendr

must predict future channel state in order to schedule effectively. Second, proportional

fair is used today only to schedule traffic on the downlink while Bartendr schedules both

uplink and downlink traffic, leveraging a network-based proxy for buffering downlink

traffic.

Approaches like TailEnder [7] and Cool-Tether [86] create energy savings by reducing

the cellular tail overhead; TailEnder performs batching and prefetching for email and web

search applications, respectively, while Cool-Tether performs aggregation for web brows-

ing. In contrast to these approaches, Bartendr takes into account both the tail overhead

and signal strength information for saving energy.

2.3 Improving reliability with data broadcasting

The final contribution of my dissertation demonstrates how to deploy an additional, re-

liable, broadcast Internet last-mile link. Specifically, I develop an end-to-end reliable

broadcast link that is inexpensive to deploy to many hosts and that permits energy-efficient

24

receiving. In this section, I describe various broadcast systems which provide blueprints

for a broadcast Internet last-mile link. Historically, providers tailor data broadcasting

(datacasting) equipment to the requirements of specific applications. For example, data-

casting architectures have been created to provide proprietary devices with stock quotes

and news [60].

2.3.1 Datacasting systems

Broadcasting digital data to a wide area is known as datacasting. Datacasting systems

often transmit digital supplements to analog TV and radio broadcasts. Although they pro-

vide interesting services, datacasting systems have come and gone [22, 79]. Most of them

required proprietary receivers and comprised providers with tight control over the data

that was transmitted. Although some provided Internet-like functionality for example,

delivering web pages, typically the content did not come from arbitrary Internet sources.

Given that a large number of these systems existed, I discuss only a few notable ones.

Televisions. The earliest datacast systems were developed to send closed captioning

along with broadcasts for the hearing impaired. The British Broadcasting Corporation

developed one of the earliest systems in the 1970s called Teletext [9]. Teletext transmis-

sions were pages of text modulated during the TV vertical blanking interval. The content

included news, program guides, and supplemental information about programs. Although

the encoding bitrate was 7 Mbits/s, the low frequency and short duration of the vertical

blanking interval limited the effective bitrate to just tens of Kbits/s [13]. In the 1990s, In-

tel used the vertical blanking interval for their datacast system called Intercast. Intercast

25

broadcast web pages alongside programming to PCs with an Intercast TV tuner card [22].

Video game consoles. Video game console makers built subscription services for dis-

tributing video games via broadcast. Subscribers would rent a receiver cartridge from

their cable company that they would connect to the cable and the console. The cartridge

then received new games and demos from a dedicated cable channel. Examples of these

services include Mattel’s Intellivision PlayCable and Sega’s Sega Channel. Video game

broadcasts were not limited to cable TV: Nintendo Satellaview transmitted games through

Japanease satellite TV providers [43].

Smart objects. Microsoft DirectBand (MSN Direct) [60] was a subscription service that

provided timely content such as news, weather, and gas prices to battery-powered smart

personal objects (typically watches). Microsoft transmitted the data with a proprietary

protocol over leased bandwidth from FM radio stations around the US. The devices in-

cluded a proprietary receiver Integrated Circuit (IC). DirectBand was not limited to only

provided content; eventually they allowed subscribers to send locations to their car navi-

gation devices via this channel. The transmission rate was 12 Kbit/s. The service ended

on January 1, 2012 [59].

In Chapter 5, I adapt an existing, deployed broadcast technology to provide a re-

liable broadcast Internet last-mile link. Learning from the failures of the datacasting

systems described in this section, I design a broadcast system that stands a chance to

last; the receivers are commercially available hardware, and are energy-efficient, so they

26

can be deployed on phones. Also, I show with a measurement study that most of the

transmitters—which are already deployed—cover at least 100,000 people.

2.3.2 Broadcast technologies

Various data broadcast technologies have been used to provide arbitrary data services

such as stock quotes and news headlines (Section 2.3.1), but most of those systems failed.

One that has succeeded in a wide deployment is the FM Radio Data System (RDS). The

advantages of FM RDS in particular are that transmitters are deployed, both the over-the-

air protocol [80] the transmitter control protocol [29] are an open standards, and there are

commercial off the shelf receiver ICs.

To be a reliable broadcast Internet last-mile link, I believe a broadcast technology

should have the following properties: (1) a VHF signal, because VHF is robust to weather,

has extensive coverage, and the antenna size is small enough that receivers can be inte-

grated into devices; (2) the ability to transmit arbitrary data, because like other Internet

links, the broadcast link should be used for many applications (not just MPEG video);

(3) the ability to transmit from arbitrary senders, because like other Internet links many

senders should be able to transmit data to receivers that are interested in their data; (4)

commercially available receivers, because many devices should be able to receive the data

(not just devices authorized to be built with proprietary receivers).

Next I discuss candidate technologies for a radio broadcast Internet last-mile link.

Table 2.2 shows the Internet last-mile link properties of each of the candidate broad-

cast technologies. FM RDS satisfies most of these criteria except for allowing arbitrary

senders to transmit data. In Section 5.2 I describe the additions to FM RDS that enable

27

VHF Arbitrary data Arbitrary senders Commercially available receivers
White spaces X X
Satellite X X
Cellular X
HD Radio/TV X X X
FM RDS X X © X
X= Property of the technology
©= New capability discussed in this dissertation

Table 2.2: Candidate datacasting systems broken down by the features needed for an
Internet last-mile link.

arbitrary senders to share the broadcast transmission.

White spaces. UHF (e.g., 700 MHz) white spaces have two desirable qualities for an

Internet broadcast system. The first is small antennas that can fit inside mobile devices: a

quarter wavelength monopole antenna for 700 MHz is 10.7 cm. The second is significant

bandwidth: UHF TV channels are 6 MHz wide (802.11g channels are 20 MHz).

These advantages come at a cost. UHF signals are attenuated more by buildings than

the lower frequency VHF signals. Also, white space transmitters and receivers are com-

plex because they must avoid primaries (licensed transmitters) [6]. Currently, there are

no mobile commercially available white space receivers.

Satellites. The main advantage of satellites is their coverage: a broadcast can cover a

continent. However, for an Internet broadcast last-mile link, satellite networks are not

as desirable as terrestrial networks. This is due to the weakness of the signal, a problem

often addressed by large antennas with clear line of sight, aimed directly at the satellite.

These cumbersome dish setups would inhibit widespread deployment of a broadcast last-

mile link. There are satellite links that do not require large antennas, such as GPS, but

they limit deployment of a broadcast link because they can not operate indoors.

Adelsbach et al. [2] observe that existing satellite data services can be utilized for

28

broadcast distribution to all receivers in view of a satellite. The complicating factor is, the

receivers must share the private cryptographic keys associated with a designated “broad-

cast” receiver. These keys can be difficult to access and to change because providers store

them in closed satellite receiver hardware.

Cellular. There are several cellular broadcast systems that send audio and video from cell

towers to smartphones. Examples of these protocols are 3GPP’s Multimedia Broadcast

standard and Multicast Services for UMTS MBMS [37]. Cellular broadcast can achieve

high bitrates due to the dense deployment of towers. Beyond audio and video, cellular

towers can also broadcast SMS messages [1]. However, the ability to broadcast an SMS

is restricted to a small number of senders authorized by providers.

Radios. The European Broadcasting Union developed the FM RDS in the 1980s [80].

RDS broadcasts station and content identity shown on radios with displays, and provides

hidden information about alternate stations. The RDS signal resides in an FM radio sub-

carrier and the bit rate is limited to 1.188 Kbit/s. The specification is open and internation-

ally standardized [42]. Today, stations continue to broadcast RDS signals. RDS receivers

are also built into Internet-connected devices such as smartphones (e.g., Motorola’s Droid

X).

Rahmati et al. [78] demonstrate that it is feasible to construct large, repairable mes-

sages out of RDS’s eight byte messages. They also describe some of the higher-layer

challenges in deploying a general data RDS broadcast system on existing FM radio sta-

tions. However, they do not address these challenges. Instead of using a naming sys-

29

tem, Rahmati et al. use application identifier and chunk identifier integers. They present

several classes of applications, including wide-area queries with few responses and the

distribution of agricultural prices.

The RadioDNS [76] standard gives Internet-connected radios a way to look up the IP

address of Internet services for a radio station, based on the RDS broadcast identifier of

a radio station. A demo of RadioDNS shows a receiver switching from FM to Internet

streaming when reception is poor. I take from RadioDNS the expectation that devices

will increasingly embed both FM receivers and Internet connectivity.

Digital radio such as iBiquity HD Radio and European Digital Audio Broadcasting

(DAB) can transmit arbitrary data at bitrates significantly higher than RDS. The primary

limitation of these systems is their deployment: HD radio is used only in the United

States, while DAB deployments are mostly in Europe. Also, the receivers are not as

small, inexpensive, or low power as RDS permits.

2.4 Summary

In this chapter I demonstrated how techniques from prior work do not observe and im-

prove the reliability of Internet last-mile links without modifying transmission media and

equipment or accessing privileged data. Additionally, I provided background on last-mile

link technologies that I make use of throughout the remainder of my dissertation. This in-

cludes my own measurements of smartphone communication energy consumption, which

showed that communication in poor signal locations can result in a device power draw

that is 50% higher than in strong locations. Finally, I described why I chose to use FM

RDS for a reliable broadcast Internet last-mile link.

30

Chapter 3

Weather-related Last-mile Link

Failures

In this chapter, I observe how weather affects the failure rate and failure length of fixed

Internet last-mile links by collecting data only from public measurement infrastructure.

Residential links are vulnerable to all types of weather, including wind, heat, and rain.

This is because residential equipment and wiring are often installed outdoors: wind can

blow trees onto overhead wires, heat can cause equipment to fail, and rain can seep into

deteriorating cables.

Without privileged data (e.g., ISP equipment monitoring data [4, 14, 45] or data

collected from residential routers [82, 83, 92]), it is possible to observe the responsiveness

of the diverse set of last-mile link types, across a variety of geographic locations and

various weather conditions. To observe last-mile link failures without privileged access,

I send pings [73] from outside the ISPs’ networks over their customers’ last-mile links to

their hosts. One difficulty of using pings to observe the diversity of link types, locations,

31

and weather conditions, is that the rate at which pings can be sent is limited either by

server bandwidth or by last-mile ISPs. Because I cannot ping all last-mile links all the

time, I design a system called ThunderPing (Section 3.1) that focuses pings on a sample

of last-mile links in regions that are forecast to experience weather soon. ThunderPing

follows weather alerts from the US National Weather Service (NWS) and pings a sample

of last-mile link IP addresses from ISPs in the affected areas.

I ping conservatively. To avoid ISP complaints and rate limits, I ping a single host

from each server once every eleven minutes. To ensure observed failures are of last-mile

links and not other links on the path from my servers, I ping each last-mile link from ten

different servers. To increase the likelihood that weather is the cause of observed failures,

I ping beginning six hours before the alert begins and to observe time to recovery, I ping

until six hours after it expires.

Pings, unlike privileged data from ISPs and researchers, indirectly observe the last-

mile link. Therefore, I must analyze the pings to determine when lost pings likely indi-

cate a failure of the last-mile link. Since different link types have different loss rates, I

use a link’s long-term loss rate history (on the scale of days) to determine if a sequence

of lost pings indicates the link is completely, rather than partially, unresponsive (Sec-

tion 3.2.2). Some links can fail by becoming partially, rather than completely, unrespon-

sive. To determine when the link is partially responsive, I use an edge detection algorithm

(Section 3.2.3) to find short-term transitions between loss rates (on the scale of minutes).

Since the servers I am using can fail, resulting in lost pings, I exclude time intervals where

many of the links a single server pings appear to fail simultaneously (Section 3.2.1).

Even after I perform these steps to find apparent last-mile link failures in pings, my

32

resulting set of failures may not be caused by weather-induced faults with the last-mile

link, and my resulting set of link recoveries may not be recoveries of the same last-mile

link. To separate weather-induced power failures from weather-induced last-mile link

failures, I first characterize power failures in my data by correlating a known list of power

failures with the number of ISPs that had last-mile links simultaneously fail in my data

(Section 3.4.1). Then, I exclude all failures that appear as power failures, because last-

mile links from several ISPs failed at the same time.

Determining the length of a failure until recovery with pings might be impossible

because the last-mile link might be assigned a new IP address after a failure. I validate

my assumption that I can observe the duration of failures with privileged data. This data

indicates that for many ISPs in many locations, ISPs reassign the same IP address to

last-mile links, even after the link has been disconnected for hours; so I may be able to

observe failure length with pings (Section 3.5.1). In summary, I show how to observe the

failure rate and duration of last-mile link failures without privileged data, and instead by

pinging.

3.1 Measuring the responsiveness of Internet hosts during weather

I developed ThunderPing to observe how adverse weather affects the failure rate and

failure duration of Internet last-mile links. In this section, I describe the design of Thun-

derPing.

3.1.1 Finding IP addresses subject to weather

The first problem to address is to find last-mile link IP addresses in a geographic region

that can be matched to a US National Weather Service alert. I select IP addresses by a scan

33

<title>Severe Weather Statement issued May 12 at 4:46PM CDT
expiring May 12 at 5:15PM CDT by NWS GreenBay
http://www.crh.noaa.gov/grb/</title>

<summary>...A SEVERE THUNDERSTORM WARNING REMAINS IN EFFECT
FOR CENTRAL WAUPACA AND NORTHWESTERN OUTAGAMIE COUNTIES
UNTIL 515 PM CDT... AT 443 PM CDT...NATIONAL WEATHER
SERVICE DOPPLER RADAR INDICATED A SEVERE THUNDERSTORM
CAPABLE OF PRODUCING QUARTER SIZE HAIL...AND DAMAGING
WINDS IN EXCESS OF 60 MPH. THIS STORM WAS LOCATED 7 MILES
NORTH OF NEW LONDON...OR 20 MILES NORTHEAST OF
WAUPACA...MOVING</summary>

<cap:effective>2011-05-12T16:46:00-05:00</cap:effective>
<cap:expires>2011-05-12T17:15:00-05:00</cap:expires>
<cap:urgency>Immediate</cap:urgency>
<cap:severity>Severe</cap:severity>
<cap:certainty>Observed</cap:certainty>
<cap:geocode><valueName>FIPS6</valueName>
<value>055087 055135</value></cap:geocode>
...

Figure 3.1: Example XML entry for a weather alert for two counties in Wisconsin. Some
XML entries omitted for brevity.

of the reverse DNS space, classify each IP address as a last-mile link by DNS suffix (do-

main), and determine their approximate location by the MaxMind GeoIP database [56].

The focused scan of reverse DNS records proceeds as follows. First I choose three

IP addresses, ending in .1, .44, or .133 from every possible /24 block, and query for the

name of each. If any of the three have a name matching an ISP in the DSLReports.com

US ISP list [27], such as comcast.net or verizon.net, I determine all the names of all the

IP addresses in the block and include the addresses with matching names. This approach

is comparable to that used to study Internet last-mile links in prior work [25, 100]. I per-

formed this scan once and I discovered 100,799,297 possible last-mile link IP addresses

in the US.

The US National Weather Service provides an XML feed of the latest severe weather

alerts for regions in the US [65]. An example alert appears in Figure 3.1. The regions un-

34

der alert are listed by FIPS code, which is a numeric code for each county in the US. The

FIPS code for Los Angeles, for example, is 06037. I consider all weather alerts including

“watches,” which indicate conditions conducive to severe weather, and “warnings,” which

indicate that severe weather has been observed.

To map IP addresses to the FIPS codes used in weather alerts requires IP geolocation.

I used MaxMind’s GeoIP [56] database to determine an estimate of the latitude and longi-

tude of each IP address, and the US Census Bureau’s county border data file1 to determine

the FIPS county location for any IP address.

I use MaxMind’s database because of its availability and the potential to determine

the location of every possible last-mile IP address. Researchers have questioned its accu-

racy [71], and have developed probing-based methods for positioning Internet hosts [98,

99] that seem impractical for locating 100 million hosts. Clearly, improved IP geoloca-

tion methods would yield more precision to the location and might lend more accuracy to

my analysis. I expect, however, that precision in geolocation would have limited benefit

because weather alerts are provided on the scale of a county and because weather does

not respect city or county boundaries.

After an alert comes in, I pick 100 IP addresses from every provider and link type

(when embedded in the DNS name) in each FIPS-coded region in the alert. I identify a

provider and link type by the DNS name without numbers (e.g., pool----.sangtx.dsl-w.

verizon.net).
1http://www.census.gov/geo/cob/bdy/co/co00ascii/co99 d00 ascii.zip

35

pool----.sangtx.dsl-w.verizon.net
pool----.sangtx.dsl-w.verizon.net
http://www.census.gov/geo/cob/bdy/co/co00ascii/co99_d00_ascii.zip

3.1.2 Pinging (last-mile links) in the rain

Testing my hypothesis that weather affects the Internet is difficult because weather’s effect

on the connectivity of Internet hosts may be hidden by congestion, outages at the source,

or other network events.

Ping infrequently

Internet measurement traffic has a tendency to generate reports of network abuse from

recipients of unsolicited traffic. I send typical ICMP echo messages with an identifying

payload as infrequently as possible.

I follow the inter-ping interval chosen by Heidemann et al. in their Internet cen-

sus. [38]. They surveyed the occupancy of IP addresses on the Internet on the scale of

tens of minutes, and reported that they could send pings at an interval of 5 minutes with-

out generating any abuse reports. For their surveys, they pinged IP addresses for several

weeks at an 11 minute interval without generating many abuse reports, so I do the same.

Omit needless pings

In addition to sending more pings to determine if a host is down, ThunderPing must cull

the set of observed hosts during a weather alert to include only those that respond to pings.

Otherwise, the pinger would waste time pinging addresses that either are not assigned to a

host or have a host that is not awake for the weather event. I implement a simple timeout:

If after an hour (five pings from each of ten vantage points) a response is not heard from

the host, then it is no longer pinged for that weather alert.

36

One vantage point is not enough

ThunderPing distinguishes between faults in the middle of the Internet and faults at the

endpoint, the observed host, by simultaneously pinging from several vantage points. The

responsiveness of the host is not determined by any individual vantage point, but by agree-

ment between the vantage points. For the experiments in this chapter, I used a dynamic

set of up to ten PlanetLab machines as vantage points. Ten permitted some vantage points

to fail occasionally while still giving each IP address a good chance of demonstrating

availability even during low loss.

3.1.3 Potential sources of error

A source of error for my probing would be when a host appears to have failed, but in

reality, its Dynamic Host Configuration Protocol (DHCP) lease simply ran out and it was

given a new address. From correlating Hotmail identities to IP addresses for one month

of data, Xie et al. [100] report that for SBC, one of the largest DSL providers in the

US, most users retained the same IP address for one to three days. For Comcast, one

of the largest cable providers in the US, they report that 70% of IP addresses do not

change for users within a month-long trace. This stability suggests that the addresses of

responsive hosts will not be reassigned in a way that would suggest failure during weather

events. However, these studies do not make clear whether hosts that fail hold on to their

IP addresses after recovery. I investigate this in Section 3.5.1.

3.2 Inferring link-state from pings

Observing last-mile link failures caused by weather requires measurements of the link’s

state at the same timescale as weather: minutes. In minute-timescale link-state observa-

37

tions, a failure during weather will appear as a transition from a link-state of low loss (UP

) to a state of persistent high loss, where either the link is entirely unresponsive (DOWN)

or partially responsive (HOSED).

I assume that the behavior of ping responses at minute-timescale, and across several

vantage points, reflects the state of the host’s last-mile link. It is challenging to infer link-

state from instantaneous pings because of general loss on the Internet and ambiguity due

to aliasing. For any set of ping responses, there could be several link-states that created

those response patterns. The following are examples of last-mile link-states that will be

misclassified as other states based on minute-timescale sets of pings.

• The last-mile link is responsive (UP), but a few pings are lost due to general Internet

loss, or failure of an individual Internet link (looks like HOSED).

• The last-mile link is unresponsive (DOWN), but due to slow vantage points, Thun-

derPing only sent a few pings during that time (looks like HOSED).

• The last-mile link has a persistent 50% loss rate (HOSED), but due to chance, sev-

eral successful pings occur sequentially (looks like UP).

I contribute a method that attempts to resolve these ambiguities by considering history

of link-state. The goals of this analysis method are two-fold: (1) Discount lost pings due

to faults with the measurement platform (PlanetLab), not fault of the last-mile link, and

(2) only consider a link as DOWN when it is very unlikely that a sequence of failed pings

would occur due to random loss.

I contribute the following analysis components that reduce pings to minute-timescale

link-states while keeping with the goals listed above. In the following sections, I describe

38

0 2000 4000 6000 8000

Time (hours of monitoring)

0.001

0.01

0.1

1

L
o
ss

 r
at

e

planet4.cc.gt.atl.ga.us (11h)

local (29h)

planetlab16.millennium.berkeley.edu (21h)

planetlab3.arizona-gigapop.net (5h)

planetlab3.eecs.umich.edu (136h)

plab2.engr.sjsu.edu (410h)

planetlab7.cs.duke.edu (107h)

planetlab7.csres.utexas.edu (5h)

planetlab3.eecs.northwestern.edu (8h)

planetlab3.cs.uoregon.edu (6h)

planetlab-1.cse.ohio-state.edu (26h)

planetlab6.flux.utah.edu (4h)

planetlab-02.cs.princeton.edu (1h)

planetlab05.cs.washington.edu (25h)

planetlab4.williams.edu (558h)

planet6.cs.ucsb.edu (28h)

salt.planetlab.cs.umd.edu (76h)

planetlab1.cs.umass.edu (3h)

planetlab3.rutgers.edu (20h)

pl2.ucs.indiana.edu (9h)

0

5

10

#
 V

an
ta

g
e

p
o
in

ts

Active

Dodgy

Figure 3.2: Average observed loss rate and excluded “dodgy” PlanetLab node loss rates.
Different PlanetLab hosts become dodgy at different times and with different severity.
Lower graph: Overall loss rate (gray), smoothed loss rate (black), loss rate of dodgy van-
tage points (various heavy lines above 0.05). Upper graph: Concurrently-dodgy vantage
points and total active vantage points; spikes downward are typical of system restarts.

the details of each step:

Section 3.2.1 Discard failed pings that are sent from a temporarily dodgy vantage point.

Section 3.2.2 Compute conditional probabilities of pings. Find failures (DOWN) with

conditional probability based anchors, and expand them.

Section 3.2.3 Find edges in remaining active intervals between continuous lossy (HOSED)

almost no loss (UP).

3.2.1 Filtering out intermittent PlanetLab node failures

I use PlanetLab to provide vantage points for ThunderPing because it provides a reason-

ably diverse platform in terms of geography and commercial network connectivity [91].

This diversity provides the potential to identify and ignore faults that are better identified

as network routing faults or errors that occur at an individual site.

In observing the sequence of successful and failed pings for individual IP addresses,

one feature often repeated: a single PlanetLab vantage point failed repeatedly while the

39

1220 1240 1260 1280

Time (hours of monitoring)

0.01

0.1

L
o

ss
 r

at
e

0
1
2
3

#
V

P

Figure 3.3: Detail view of a period where different PlanetLab nodes were declared
“dodgy.” The periodic spikes in overall loss rate coincide with periodic management ac-
tivity on my coordination machine, and the “dodgy” nodes are ignored relatively briefly.

rest received nearly flawless responses. This would appear to be 10% loss, which is

substantial. This raised the question: is it a problem specific to that vantage point and

destination, such as a routing failure or filtering? Or, is it a broader problem with the

PlanetLab node itself, such as overloading, or filtering at the source? If the repeated loss

is a problem at the PlanetLab host, can I believe that PlanetLab as a whole does not fail

in this way all at once?

In this analysis, I estimate the overall loss rate for each vantage point—out of all pings

it sent to destinations that have responded, what fraction of those pings timed out without

a response—and compare that loss rate to the average of the loss rates of all other active

vantage points. I call a vantage point “dodgy” when its loss rate is greater than twice the

average of the rest and greater than 5%.

Figure 3.2 shows the basic calculation and its effect. The upper graph contains the

number of active vantage points and the number of vantage points classified as “dodgy”

at any time. The lower graph is a representation of the overall loss rate excluding “dodgy”

40

sources, using a log scale to capture both the typical 2% loss and the exceptional loss rate:

gray is the raw loss rate across non-dodgy vantage points and the black line is a smoothed

approximation. The overall loss rate fluctuates but generally approaches 2%. Above this

line are the loss rates of the individual “dodgy” vantage points when so classified.

This error is not limited to PlanetLab: Notice that the figure includes “local,” a non-

PlanetLab machine I pinged from, but which I manually excluded after learning not to

trust its results. The analysis of “dodgy” nodes found this problem with my local node,

as well.

There are three periods on the left half of the graph in which more than two PlanetLab

nodes appear “dodgy.” Unfortunately, this appears to be a result of contention at my

measurement coordinator, consisting of temporary spikes of apparent loss that correlate

with a six-hour period for my measurement log rotation and compression script. One of

these time periods appears in Figure 3.3.

3.2.2 Detecting failures with conditional probabilities

Because the occasional ping may be lost, a single lost ping is not sufficient evidence that

a last-mile link has failed. A subsequent lost ping is not particularly convincing either,

since the probability of a loss, given that a loss just occurred, can in fact be rather high.

Further, for a lossy link a sequence of lost pings is less indicative of failure than for non-

lossy links. In this section, I describe how I use per-IP-address conditional probabilities

to identify when hosts enter a DOWN state with a one-in-a-billion chance of being by

random chance.

The task is to develop a method that provides approximately the same level of cer-

41

0.0001 0.001 0.01 0.1

P(loss | success)

0.0

0.2

0.4

0.6

0.8

1.0

P
(

lo
ss

 |
 l

o
ss

)

Cable

0.0

0.2

0.4

0.6

0.8

1.0

P
(

lo
ss

 |
 l

o
ss

)

DSL WISP

0.0001 0.001 0.01 0.1

P(loss | success)

Satellite

Figure 3.4: The conditional probability of ping loss over all pings (at least 10,000) sent
to a sample of 2,000 IP addresses of each link type (each dot is an IP address). The
conditional probability of a vantage point seeing a lost ping after another lost ping (the
y-axis) is greater than the probability of a lost ping after a successful ping (the log-scale
x-axis), even after removing intervals when a destination is likely DOWN. Averages of
each are indicated by triangles on the axes.

42

tainty that an IP address is DOWN, regardless of how many vantage points are active at

a time or how lossy the last-mile link happens to be. I choose to model each IP address

using two conditional probabilities of loss: one given that the prior ping from the same

vantage point was also lost, the other given that the prior ping from the same vantage

point was successful. I leverage the assumption that a ping will never succeed (receive a

reply) across a failed link, and expect that sufficiently many consecutive lost pings provide

confidence that the destination is unreachable.

Figure 3.4 shows, for a random sample of 2,000 IP addresses thought to be of a given

link type by reverse DNS name, the conditional loss rate given a prior success (the shorter

x-axis with range 0 to 0.5) or loss (y-axis). I omit ping sequences where a more liberal

method declares that the host is down. This ensures that the probability of loss given

a preceding loss is an estimate taken when the host is functioning. Points high along

the y-axis have a high correlated loss rate: for these points, a loss predicts another, even

though the IP address does not appear to be DOWN. Points along the diagonal indicate

an uncorrelated losses that occur regardless of context. High ping loss may be caused by

various factors; these graphs summarize those factors to provide a dot for each of 2,000

IP addresses of each type of link.

In my analysis, I deem a host DOWN when the pattern of lost pings attain a probability

of occurring by random chance below one in a billion. Each vantage point has an oppor-

tunity to contribute one loss given a prior success, with probability typically below 0.01.

It can then contribute only losses given prior losses, typically with probability above 0.2.

For IP addresses that consistently have high loss, these conditional probabilities of loss

are higher and more lost pings in a row are needed to reach the one-in-a-billion threshold.

43

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Ping interval (11 minutes)

σ = 6 thresh

σ = 15 thresh

Ping reply
Ping timeout

UP
HOSED

Blurred loss: f(x), σ = 6
Blurred loss: g(x), σ = 15

Edge detect: abs(f′(x)), σ = 6
Edge detect: abs(g′(x)), σ = 15

Figure 3.5: Determining the boundaries for states of responsiveness for a Speakeasy DSL
customer in Virginia. The edge detection algorithm treats each ping from any vantage
point as 1 or 0 observation (+ and × bottom), then it Gaussian blurs the pings to produce
the blurred loss rate (top). Finally, local maxima (•) above the thresholds (thresh) in the
derivative (middle) of the blurred loss indicate the state boundaries.

Similarly, when few vantage points are active, failed pings only increase the likelihood of

a DOWN using the higher loss-given-loss probability, and thus more pings are needed to

declare the host DOWN.

With the DOWN intervals identified by conditional probabilities, I now turn to sepa-

rating HOSED from UP.

3.2.3 Detecting changes in prolonged loss rate

After identifying the DOWN states, the final challenge is to find the boundaries between

the remaining pings that will be classified as one of two active link states: UP and HOSED.

In essence, the goal is to find the ping that is at the boundary between two different

persistent loss rate regimes. In my preliminary work, I attempted to find these boundaries

with a moving average of loss rate. This approach found approximate boundaries between

some instances of UP and HOSED, but it was sensitive to the loss rate threshold that

defined UP and HOSED (Section 3.2.3).

44

I observe that finding the changes in ping loss rates, without knowing what the loss

rates are, is similar to finding the edges in an image without knowing anything about the

objects in the image. By assigning a 1 to a successful ping and a 0 to a failed ping, and

by placing the pings in a list indexed by the number of pings sent, I can apply the classic

Canny edge detection algorithm [10] on the one-dimensional list of pings. The detected

edges are the boundaries between loss regimes.

Detecting edges

Figure 3.5 demonstrates the edge detector on a Speakeasy DSL customer that transitions

from UP to HOSED then back to UP. Given the array of ping responses described above,

I smooth the responses by convolving with a Gaussian kernel (applying Gaussian blur).

After the blurring, some pings will have fractional values (blurred loss). I then take the

absolute value of the derivative of the smoothed pings (edge detect). The local maxima

of these derivatives indicate the pings when there is a change in the loss rate. To avoid

spurious edges, for each Gaussian kernel σ I select a threshold (thresh) that the local

maxima of the derivative must be greater then to declare an edge. I find HOSED states

consisting of short high-loss rate and longer low-loss rates by simultaneously detecting

edges with a small and large Gaussian kernel σ values.

Parameterization

I perform an experiment to test parameters for the edge detector (σ and the derivative

threshold). Figure 3.6 shows the accuracy of detecting HOSED states with a range of loss

rates and of durations. The edge detector parameters are the σ for the Gaussian kernel

and the threshold of the derivative that a local maximum must reside above to call an

45

 0

 20

 40

 60

 0 0.2 0.4 0.6 0.8 1
#
 o

f
p
in

g
s

Loss rate

σ = 6 thresh = 0.02

Impossible Any 50% 95%

 0

 20

 40

 60

 0 0.2 0.4 0.6 0.8 1

Loss rate

σ = 15 thresh = 0.004

Impossible Any 50% 95%

Figure 3.6: The edge detector’s accuracy of HOSED state detection for a transition from
UP to HOSED then back to UP. I run the edge detector 100 times with random ordering
of the failed pings in the HOSED state.

edge detected. I test the ability of the edge detector to detect an UP →HOSED →UP

transition where I control the length and loss rate of the HOSED state. The HOSED state

must start and end with a failed ping. To test the ability of the detector to detect the edges

I test 100 random permutations of the failed pings that make up the HOSED for each pair

of loss rate and length.

Figure 3.6 shows the results of the experiment for the final set of σ and thresh that

I chose. For each HOSED loss rate [0 - 1] and number of pings [1 - 60] with random

permutations of failed pings. The dots show the percentage [50%, 95%] of the trials

where the edge detector found the start and end ping within five pings from each edge,

as well as the detection of any edge, even if is inaccurate. I also plot small dots to show

the HOSED states where any edge was detected, even if it was not accurate. It is very

important that my edge detector does not fire at all when there is a state that is mostly UP

for a long time, but has either a low persistent loss rate (upper left), or very small clusters

of high loss (lower right). The gray blocked off area of the graph indicates impossible

46

parameterizations: the loss rates that are not possible given that my experiment requires

at least one failed pings at the start and end of the HOSED.

A value of σ = 6 accurately finds short HOSED with greater than 60% loss. σ = 15

finds states with 30% loss rate for shorter lengths. I run two edge detectors with these two

parameters simultaneously. When either of the edge detectors finds an edge, I initially

treat it as true edge. However, for HOSED states longer than 60 pings, the detector has

a high probability of firing more than once within a state. This is acceptable though,

because states can be merged if they contain similar loss rates.

Placing the detected edge

The edge detector detects edges, but as the edges come from a smoothed loss rate, the

edge detector does not necessarily find the exact failed ping at the edge of the state. To

remedy this, for each detected edge, I compute the loss rate for the state that ends with

the edge. If the loss rate is greater than zero, then I move the edge to its closest down

ping. When the edge is the end of a state with 0 loss, then I move the edge forward until

the first successful ping followed by a failed ping. This small edge correction ensures UP

states start and end with a successful ping, and HOSED states start and end with a failed

ping.

Why not use a moving average of loss rate?

Moving averages do not accurately find the edges of HOSED states (changes in loss rate),

because there is no clear loss rate that defines HOSED. In the moving average example

shown in the Figure 3.7, a Speakeasy DSL host enters a prolonged high loss state at ping

interval 4. The windowed loss rate shown as the line hugs the 50% loss rate, but it does

47

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Ping interval (11 minutes)

Ping reply
Ping timeout

UP
HOSED

Window loss rate
 50% loss

Figure 3.7: HOSED states may not exhibit a steady loss rate. So, the detection of a
HOSED state with a moving average may start late and end early as it did in this example.

not cross the 50% threshold until interval 12, well into the HOSED state. The interval also

ends early, with the loss rate dropping slightly below 50%.

3.2.4 Understanding the HOSED state

After detecting the edges between loss rate conditions, I calculate the loss rate of the

pings between the detected edges, and use that loss rate to determine if the link is UP or

HOSED in that interval. I define HOSED as greater than 5% loss rate, what I believe is

unacceptable loss for most applications. If the loss rate is less than 5%, then the state is

UP.

There are two categories of HOSED states that I discovered in this study: HOSED

where loss rate related to link type and HOSED where only one PlanetLab vantage point

receives ping replies can be due to by my PlanetLab vantage points being blacklisted by

a WISP with a honeypot.

Loss rate by link type

Figure 3.8 shows the cumulative distribution of loss rates for HOSED states for the five

primary last-mile link types I study (DSL, Cable, Fiber, WISP, Satellite). The first ob-

48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
Loss rate of HOSED

DSL

Cable

Fiber

WISP

Satellite

Figure 3.8: The distribution of loss rates for long (>50 pings) HOSED states is related to
last-mile link type.

servation is the low loss rate of satellite link HOSED states. For the wired links (DSL,

Cable, and Fiber) and WISPs, 30% of the HOSED states were less than 15% loss rate. In

contrast, 65% of the satellite links’ states were less than 15% loss rate. This may indicate

that satellite link loss rate is all or nothing: either there is very little loss, or the loss rate

is so high that the link would not be classified as HOSED and instead be DOWN.

The second observation is that WISPs have the same distribution as the wired links

for less than 30% loss rate, but above 30% loss there appears to be high loss that is WISP

specific.

The final observation is the prevalence of 95% loss for Fiber and Cable links. I

manually investigated a few of the links that experienced 95% loss, and it appears the

customer is running software that filters or rate limits ping messages because the vantage

point that receives the ping reply is not consistent.

Honeypots

The most surprising HOSED behavior I found is when one vantage point pinging a link

experiences almost no loss (less than 5% loss rate), while all others (up to 9) experience

49

100% loss. My investigation into this behavior revealed most of the IP addresses that

exhibit this behavior belong to a rural WISP that uses a honeypot.

I contacted the WISP’s administrator to determine the cause of this behavior. The

administrator reported that the WISP had several unassigned IP addresses in their subnets

set up as Honeypots. When any traffic comes to these IP addresses, their router blacklists

the source IP address for three days. I observe only one vantage point getting through

when all others are on the blacklist and the working vantage point has not sent a ping to a

Honeypot in three days. It turns out that this behavior is not uncommon, I also discovered

four other smaller WISPs that exhibit the same behavior. I suppose wireless ISPs blacklist

aggressively to preserve their limited bandwidth. These WISPs’ do not skew my results

because I excluded their IP addresses in the other analyses.

3.3 Weather history and link type

3.3.1 The weather at a host during a ping

The NWS and Federal Aviation Administration (FAA) administer approximately 900 Au-

tomated Surface Observing System (ASOS)2 weather stations at airports in the US. These

stations provide hourly weather measurements (primarily for pilots) in METAR format.

Beyond the basic wind, pressure, and rainfall sensors, ASOS stations include a Light

Emitting Diode Weather Indicator (LEDWI) that measures the type (Rain, Hail, Snow)

and density of precipitation. Most stations also have antennas that measure lightning

strikes. There are some weather events that are not detected by the automatic system,

such as Tornados. These less common events are manually recorded by a weather ob-

2http://www.weather.gov/asos/

50

http://www.weather.gov/asos/

server at the airport. The US National Oceanic and Atmospheric Administration (NOAA)

provides yearly archives of the hourly METAR readings from many airports in its In-

tegrated Surface Data3 (ISD). ASOS stations. I do not use the larger network of older

AWOS weather stations because some do not have the LEDWI sensor, which provides

data I consider important.

Of the 24 fields that make up each hour of weather history, this study focuses on

three weather conditions that I believe could cause a link failure: precipitation, wind, and

temperature. The NWS categorizes precipitation precisely; they categorize 12 types of

Rain. In this study I focus only on the type of weather, not its intensity, as the intensity that

an airport experiences at some point in time may not be the same intensity experienced

by the last-mile links outside the airport.

I group precipitation into categories: Rain, Freezing Rain, Drizzle, Snow, Thunder-

storm, Fog, General precipitation, Smoke, Hail, Tornado, Dust, Haze, and Mist. I cate-

gorize wind speed using the Beaufort Wind Scale4. This scale ranks wind speed by its

effects (e.g., “whistling in overhead wires”). Finally, the temperature readings are either:

Hot (greater than 80 ◦F), Mild (between 80 ◦F and 32 ◦F), or Cold (less than 32 ◦F).

3.3.2 Identifying the link type of an IP address

In order to test how the different link types fail during weather, I must identify the IP

addresses’ link types. Figure 3.9 shows the number of IP addresses mapped to each link

type. The different link types may fail differently in weather because of the different

media types (coaxial, fiber, telephone, wireless), frequencies for wireless links, and MAC

3ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
4http://www.spc.noaa.gov/faq/tornado/beaufort.html

51

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
http://www.spc.noaa.gov/faq/tornado/beaufort.html

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

D
SL

Cable

[M
any]

[!Residential]

Cell
Fiber

W
ISP

Satellite

D
ialup

[U
nknow

n]

Pow
er

W
iM

A
X

Ethernet

#
 o

f
IP

 a
d
d
re

ss
es

Figure 3.9: The distribution of link types for IP addresses pinged by ThunderPing.

protocols (retransmissions).

First, I identify the link type of IP addresses by searching for strings in the reverse

DNS name that identify the link type (e.g., cable, dsl, and fiber).

For all of the remaining IP addresses, I determined their link types by manually in-

specting the web sites of the 1,186 ISPs ThunderPing pinged.5 From this manual inspec-

tion, I could determine the link type of 672 ISPs because they listed only one link type on

their web site; all other ISPs listed at least two link types.

3.4 Failure rate

This section presents the results of my study on the effects of weather on residential link

failures. I studied different link types and providers, particularly the largest providers of

each link type. Table 3.1 summarizes how much time each provider spent in each weather

condition as well as the total number of failures I observed, including and excluding

suspected power outages.

The figures that follow show the failure rate in different weather conditions.

Precipitation can be accompanied by wind and high temperatures, but I only selected

5I also found 193 domains I obtained from the dslreports list that were not residential ISPs

52

Cable DSL Satellite Fiber WISP
chtr c’cast cox ameri. cen’tel megapath speak. w’stream verizon wildblue starband verizon daktel drtel skyb. digis airband

Alive 244k 448k 61k 21k 172k 36k 12k 279k 274k 105k 2k 142k 1k 2k 11k 4k 4k
Airports 308 333 138 132 208 285 237 193 302 433 189 155 5 5 22 13 32
UP→DOWN 131k 178k 38k 17k 284k 32k 8k 236k 182k 263k 20k 17k 1k 2k 9k 3k 2k
−power 126k 172k 36k 16k 277k 30k 7k 225k 172k 252k 20k 15k 1k 2k 8k 3k 2k

UP→HOSED 84k 87k 40k 8k 183k 43k 17k 164k 116k 316k 51k 13k 1k 1k 12k 3k 3k
Clear 76.4 54.9 213.6 80.5 111.7 265.4 192.7 74.6 47.1 69.1 358.5 38.3 211.7 102.3 92.0 120.6 150.5
Snow 4.5 2.8 4.1 7.3 5.9 8.5 5.3 2.6 3.0 2.9 28.9 1.5 22.9 7.1 8.8 8.8 2.3
Fog 2.3 1.7 3.9 1.7 2.9 6.8 4.5 1.5 1.3 1.5 16.1 1.1 3.6 1.1 1.6 1.7 3.2
Rain 7.7 6.5 17.7 7.9 10.7 27.7 18.5 7.0 6.3 5.3 36.3 4.6 10.4 2.9 2.4 6.8 11.9
Tstorm 0.7 0.5 2.2 1.0 1.3 2.5 1.9 0.9 0.5 0.6 1.5 0.3 0.8 0.1 0.7 0.5 1.6

Table 3.1: Summary of a small portion of the data collected by ThunderPing. For a
sample of providers, this table shows: the number of IP addresses that are ever seen alive,
the number of airports that the alive IP addresses map to as well as the number of IP
addresses that transition at least once from UP to DOWN and UP to HOSED. The final
five rows are the average time (in hours) ThunderPing pings an IP address during each
weather condition.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Clear Fog Snow Rain ThunderstormU
P

 ➡
 D

O
W

N
 r

at
e

re
la

ti
v

e
to

 t
o

ta
l

ra
te

Cable DSL Satellite Fiber WISP

Charter

Comcast

Cox

Ameritech

Centurytel

Megapath

Speakeasy

Windstream

Verizon

Wildblue

Starband

Verizon

Daktel

Drtel

Skybeam

Digis

Airband

Hot Mild Cold

Temperature

≤ 4 5-7 ≥ 8

Wind speed (Beaufort scale)

Figure 3.10: UP→DOWN failure rate for different weather conditions.

temperature and wind observations that are not accompanied by precipitation to observe

the isolated effect of these conditions.

I compute normalized failure rate per provider as follows. For each provider, I sum

the number of UP to DOWN and UP to HOSED transitions and divide by the time spent

UP in each weather condition. Then, I normalize the failure rates for that provider so I

can compare the failure rate across providers and link types.

3.4.1 UP to DOWN failures

Figure 3.10 shows the normalized rate of UP to DOWN transitions per provider including

suspected power failures for five classes of precipitation (including clear), three categories

of temperature, and three categories of wind speed.

53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#
 o

f
p

in
g

 i
n

te
rv

al
s

 (
d

u
ri

n
g

 a
 r

ep
o

rt
ed

 o
u

ta
g

e)

of ISPs with two-IP-address failures in a US state within a ping interval

Power outage reported
No power outage reported

Figure 3.11: Comparison of the number of five-minute intervals that see failures across
multiple ISPs within a US state during a power outage. Only failures of more than one IP
address in an ISP are counted. The gray bars are shown for each interval The white bar
represents the number of concurrent ISP failures in a randomly chosen comparably sized
state during matching intervals. I consider outages to be a result of power outage when
the number of ISPs with two IP address failures exceeds 4. (Random selection repeated
ten times; error bars omitted because too small for illustration.)

I observe the rate of UP to DOWN transitions in rain is 2× the rate in clear and the

rate in thunderstorms is 4× the rate in clear. Snow does not appear to have a significant

effect on failure rate; except in the case of the two fiber providers in North Dakota, Daktel

experiences more Snow than any other provider in these observations.

Temperature and wind speed also appear to have clear effects on failure rates across

all providers. The failure rate in high temperatures is 2× the failure rate in below freezing

temperatures.

Cable and DSL are particularly affected by wind. Surprisingly, Satellite providers are

not as affected by wind; although they could experience antenna misalignment in high

winds.

54

Finding power outages

Power outages are confounding factors for my analysis: they can be caused by weather,

but they also can appear to be a network outage. At a high level, I expect that power

failures are indifferent to the ISP providing residential service, and that significant power

failures are likely to affect several ISPs at once. In contrast, a network failure would most

likely affect only one ISP at a time, or only a few customers. (Of course, if a WISP uses

a cable modem for backhaul, both could easily fail together.)

I have correlated my failure observations with two power reliability datasets. Most

prominent is the OE-417 data maintained by the Department of Energy.6 These data in-

cludes “electric emergency incidents and disturbances” including instances of vandalism

and weather-related power outages, along with the affected state, time of occurrence, and

number of customers affected. Utility companies record these by hand, and as a result

comprise imprecise locations and rarely represent the precise timing of outages. In par-

ticular, the hundreds of small outages in a severe storm are typically captured in a single

summary record.

Another dataset I considered was generated by scraping the outage reports from a

utility web site (http://pepcotracker.com). Although I can exploit the apparent precision

of the timing data (scrapes were repeated every ten minutes), these data seems to be more

precise about the timing of events, the data set does not cover enough time to provide

reliable conclusions.

Using the OE-417 data, I considered the following question: is there a severity of an

outage across different ISPs large enough to indicate a power outage as the root cause with

6http://www.oe.netl.doe.gov/OE417 annual summary.aspx

55

http://pepcotracker.com
http://www.oe.netl.doe.gov/OE417_annual_summary.aspx

high probability? I experimented with several options to define severity and settled upon

a failure that included at least two IP addresses from each of at least four ISPs. Higher

thresholds (e.g., eight ISP failures) are more exclusively power failures, but include a very

small fraction of all failures; lower thresholds capture a substantial number of non-power-

related failures.

I show an aspect of this analysis in Figure 3.11. Given each five-minute interval within

an OE-417-reported power outage, I choose each state within the outage and report the

number of distinct ISPs that had two IP addresses fail during that interval. This interval

is represented by an entry in a gray bar. To compare, I choose another state which, at the

same time, had approximately (within 20% of) the same number of concurrently-probed

ISPs. I then record the number of ISPs that experience a concurrent two-address failure

with a white bar.

This analysis is particularly conservative. In order to find a comparative “no power

outage” entry, I seek a state where I probe approximately the same number of ISPs, which

suggests that the comparison state may also be undergoing some interesting weather. Fur-

ther, the “power outage reported” intervals may include several in which no “new” power

outages occur and few to no new UP to DOWN transitions occur. This is inherent in the

imprecision of the OE-417 data. As such, I am optimistic that the actual pattern of failures

induced by power outages is even more distinct from other failures.

Excluding power outages

Now that I have identified correlated failures of four providers and two customers per

provider as being suspected power outages, I revisit the UP to DOWN failure rate in each

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Clear Snow Fog Rain ThunderstormU
P

 ➡
 D

O
W

N
 r

at
e

re
la

ti
v

e
to

 t
o

ta
l

ra
te

Cable DSL Satellite Fiber WISP

Charter

Comcast

Cox

Ameritech

Centurytel

Megapath

Speakeasy

Windstream

Verizon

Wildblue

Starband

Verizon

Daktel

Drtel

Skybeam

Digis

Airband

Hot Mild Cold

Temperature

<= 4 5-7 >= 8

Wind speed (Beaufort scale)

Figure 3.12: UP→DOWN failure rate excluding suspected power outages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Clear Fog Snow Rain ThunderstormU
P

 ➡
 H

O
S

E
D

 r
at

e
re

la
ti

v
e

to
 t

o
ta

l
ra

te

Cable DSL Satellite Fiber WISP

Charter

Comcast

Cox

Ameritech

Centurytel

Megapath

Speakeasy

Windstream

Verizon

Wildblue

Starband

Verizon

Daktel

Drtel

Skybeam

Digis

Airband

Hot Mild Cold

Temperature

≤ 4 5-7 ≥ 8

Wind speed (Beaufort scale)

Figure 3.13: UP→HOSED failure rate for different weather conditions.

weather condition excluding these outages.

Figure 3.12 shows the recalculated failure rate without power outages. As expected,

the failure rates decrease for rain and thunderstorms, but they remain higher than in clear

conditions, indicating that thunderstorms and rain may cause link failures as well as power

outages. The failure rates in different temperatures and wind speeds also decrease, but

remain similar to the failure rate include power outages.

3.4.2 UP to HOSED failures

Figure 3.13 shows the prevalence of UP to HOSED transitions in different weather condi-

tions. In rain and thunderstorms: Wildblue satellite and Skybeam WISP have more than

double UP to HOSED transitions in rain and thunderstorms. The UP to HOSED rate in

rain in thunderstorms is also similar.

57

3.5 Failure duration

This section examines how long weather-related failures last. When observing failures

externally, the observed length of failures may be incorrect because of dynamic IP ad-

dress reassignment after the failure. This is because providers assign IP addresses to

last-mile links dynamically, with DHCP. When a last-mile link fails, and subsequently

recovers, the customer’s modem will request an IP address, and the provider may return

a different address than the one assigned before the failure. As such, before I present my

observations of failure length, I defend ThunderPing’s ability to observe failure duration

by investigating the mechanics of DHCP, using BISMark home routers [92] to observe

how providers parameterize DHCP in existing last-mile deployments.

3.5.1 Does ThunderPing observe the duration of failures?

I am interested in observing the duration of outages with ThunderPing, but can only do

so if the host I see fail returns with the same IP address. In this section, I estimate the

likelihood of retaining an IP address during outage. On one hand, DHCP includes several

features to keep addresses stable. On the other hand, one might suspect that residential

ISPs intentionally inject churn into address assignment to manage their addresses or to

discourage customers from running servers.

In this section, I discuss the DHCP RFC [26] mechanisms and recommendations for

IP address reassignment. Since DHCP servers and ISPs do not necessarily implement the

recommendations, I also study some residential hosts to observe how often hosts keep the

same IP address after a failure.

58

DHCP mechanisms

DHCP includes mechanisms that help clients keep the same IP address, both in the stan-

dard [26] and in common implementations [15, 51]. The DHCP RFC specifies a lease

for an IP address. A lease is a promise that the client can use an address for at least a

specified amount of time. If the client fails and recovers before the lease expires, it will

retain the same address. If the DHCP server does not renew a lease, it may provide a new

address after the old one expires.

What happens, though, when there is a power or link failure and the lease expires

during the failure? Section 1 of the DHCP RFC rules states that a server should reissue

the same IP address to a client whenever possible.

In practice, DHCP servers use grace periods to ensure that expired leases are reissued

to the same client. Even after the lease for an address expires, the DHCP server will not

reassign the address to a different client until the grace period also expires. The grace

period parameter, like the lease duration, is configurable by the ISP and their durations

vary. For instance, Cisco Network Registrar, the DHCP server software for many large

ISPs such as Comcast [15], has a default grace period of five minutes and the Windows

DHCP server has a default grace period of four hours. The Internet Systems Consortium

DHCP server, the oldest and most prominent Open Source DHCP server [51], has an

infinite grace period. This is not the case for some implementations, like the basic Cisco

DHCP server included in IOS which immediately forgets about leases when they expire.

However, these are mostly minimal implementations and are thus unlikely to be used by

residential Internet providers.

59

DHCP reassignment in practice

Since I do not know how long leases and grace periods last, I observe dynamic IP address

reassignment after a power or link failure in residential links. There are several probing

systems that send generic probes out from the customers’ networks for Internet measure-

ment, such as BISMark [92], Atlas [82], Samknows [83] and DIMES [87]. I look at the

BISMark dataset for my study.

The BISMark dataset comprises reports of the IP addresses assigned to 104 BISMark

gateways measured every ten minutes, between September 1, 2011 and March 30, 2012.

The dataset contains both public and private (RFC 1918) IP addresses. Among the public

addresses, some belong to Georgia Tech; the BISMark researchers reported these to be

addresses used for testing purposes. I am interested only in the persistence of public,

residential IP addresses, so I ignore those that were private or belonged to Georgia Tech.

Of the 104 BISMark gateways, 43 reported at least one residential IP address. The

addresses belonged to a diverse set of ISPs. It is possible that some of these 43 BISMark

gateways did not change IP addresses because they were installed at residences that paid

for static IP addresses. Information about the service plan was not available, but I suspect

static IP addresses to be both unlikely in BISMark and no more likely here than for the

sample of addresses ThunderPing probes.

Despite the small size of the current BISMark dataset, it was the best available. Atlas

does not reveal the public IP addresses for its gateways due to privacy concerns. DIMES

does not reveal the public IP address of its gateways in the public data sets. SamKnows

records the last address for each gateway every month, however, these data are not fine-

60

grained enough for me to determine the effect of short duration (on the order of a few

hours) power outages. Also, Samknows only recorded the first 24 bits of every IP address

once during their FCC study.

I believe that the question of IP address permanence is important, and research initia-

tives like Atlas, RIPE and DIMES would benefit from including source IP address details

as part of their dataset.

IP address reassignment in the BISMark dataset

I analyze the 43 gateways with at least one public IP address from the BISMark dataset to

see how often IP addresses change after a connectivity or power disruption. I also observe

the relationship between the duration that a gateway loses power or connectivity, and IP

address reassignment.

When a gateway fails to report to the central BISMark server, a transition occurs,

with or without change in IP address. Since the measurements were performed every ten

minutes, I expect to observe a duration between reports longer than ten minutes. However,

BISMark researchers reported a measurement scheduling issue that could also cause a

gateway to miss sending a report, meaning that some outages shorter than 25 minutes

may be spurious. I show all the data, but trust only the longer failures to be genuine. I

refer to the duration that a node fails to report as the downtime of a transition.

Figure 3.14 details the downtimes of the 43 gateways and also shows the duration over

which the gateways were measured. In 5,362 of the 5,407 transitions that I recorded, I

observe that a gateway retained its IP address. For 29 of the 43 gateways, the address

never changed. The remaining 14 gateways changed their address at least once, with or

61

without downtime.

Changes in IP addresses for a given gateway could take place for two reasons. First,

the leases of hosts could expire resulting in assignment of new IP addresses which may

or may not be from the same prefix. Second, ISPs could be performing IP address renum-

bering in which case the prefixes of the new IP address are likely to change.

In Figure 3.14, there are a few transitions in the top left of the figure where IP address

changes occur with downtimes less than 25 minutes. Since there is little to no downtime,

this may be due to IP address renumbering. For downtimes greater than 25 minutes but

less than 1000 minutes (top center of the figure), all but one of those IP address transitions

were across prefixes, indicating that there is a high likelihood that these address changes

were triggered by renumbering. For downtimes greater than 1000 minutes (top right of

the figure), I notice address changes both across different prefixes and within the same

prefix; these may well be caused by DHCP lease expiration.

Importantly, I observe that even for gateways for which change in addresses occurred,

in 1,482 of 1,527 total transitions for these gateways, they retained their addresses. Also,

for every gateway that changed addresses for a downtime less than 1000 minutes, there

was at least one occasion when the downtime was greater than 1000 minutes for which

the address did not change. Since failed hosts return with the same IP address in most

cases, I can use ThunderPing to observe the duration of outages.

3.5.2 How long do UP→DOWN failures last?

I now investigate how, when a link fails, the weather conditions at the time of the failure

affect the length of time to recover from the failure. After a failure (UP→DOWN transi-

62

0

5

10

15

20

25

30

35

40

45

0 1 2 34 1 2 34 1 2 34

B
IS

M
ar

k
 g

at
ew

ay

Duration

Observation length

No IP change

Prefix same

Prefix change

Hours Days Weeks

Figure 3.14: Failures and address reassignments in BISMark. Gateways are separated
into two categories: ones that experienced IP address reassignment and ones that retained
addresses throughout the observed duration. Within each category, the gateways are fur-
ther sorted by the maximum experienced downtime. The durations are plotted in log scale
with the base set to 10. Diamonds indicate the total duration for which each probe was
observed. Pluses indicate transitions where a gateway failed to report and retained its IP
address when it reported again. Unfilled circles indicate transitions where the address
changed across different prefixes. Filled circles indicate transitions where the address
changed across the same prefix. The vertical line at 25 minutes on the x-axis delineates
possibly incorrect downtime measurements from correct downtime measurements.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Clear Fog Snow Rain Thunderstorm

D
O

W
N

 d
u

ra
ti

o
n

 r
el

at
iv

e
to

 t
o

ta
l

d
u

ra
ti

o
n

Cable DSL Satellite Fiber WISP

Comcast

Cox

Ameritech

Centurytel

Megapath

Speakeasy

Windstream

Verizon

Wildblue

Starband

Verizon

Daktel

Drtel

Skybeam

Digis

Airband

Airband

Hot Mild Cold

Temperature

≤ 4 5-7 ≥ 8

Wind speed (Beaufort scale)

Figure 3.15: Duration DOWN after an UP→DOWN transition. Relative median failure
duration for different weather conditions.

63

tion), the host remains in the DOWN state until it eventually recovers by entering an UP

state. The duration of the DOWN state defines the duration of the failure.

The experiment is to take all UP→DOWN→UP transitions and categorize the DOWN

states by the weather conditions that the link experienced at the beginning of the failure.

As described in Section 3.4.1, I do not include failures that look like power failures. I

compute the median failure duration per provider and condition.

To compare the durations of failures between providers, I perform the same normaliza-

tion as the failure rate: for each ISP and category of weather (Precipitation, Temperature,

and Wind) I sum all of the median durations and divide them by the total.

Figure 3.15 shows these relative median durations of failures. For precipitation, al-

most all ISPs have similar median failure duration in Clear, Fog, and Rain. Except for

satellite providers that experience about 100% shorter median failures in Rain and Thun-

derstorm. This is consistent with short satellite signal drops caused by clouds and mois-

ture in the air.

The differences are in Snow and Thunderstorms. Median Snow failure durations are

about 50% longer across ISPs than those in Clear. This could be because failures in snow

take a long time for the repair vehicles to travel through the snow to repair the damage.

Median Thunderstorm failure durations are about 50% shorter than Clear. This could be

because of lightning causing transient faults in power, causing equipment such as modems

and possibly power equipment to reset. This would not be captured by my model of power

outages, which requires a large outage where many providers fail at once.

The explanation of time to reach the repair site could also explain why failures in cold

temperatures (where there may be snow or ice on the ground) take about 33% longer to

64

repair than mild or hot conditions. Also, compared to calm wind, when the wind is at

least a 8 on the Beaufort scale, where trees start to break, I observe 50% longer failure

durations. This could be because Beaufort 8 winds are likely to be part of large storms

that take a long time to attend to.

3.6 Summary

In this chapter, I showed that weather conditions affect the failure rate and failure duration

of last-mile links. The observations are extensive: over the course of 400 days, Thunder-

Ping, my last-mile link pinging system, sent 4 billion pings to 3.5 million IPs. I applied

various techniques in order to observe last-mile link failures with data collected only from

public measurement infrastructure. I removed failures of my servers that appeared in the

data as last-mile link failures. I determined failures by link type because ping loss rates

differ across link types. Using an edge detection algorithm, I found states of partial re-

sponsiveness apparently caused by the nature of different transmission media or by ISP

defense systems that blocked my servers. Finally, I determined whether IP reassignment

after failures limits my ability to measure failure duration with pings.

Excluding suspected power outages, I observed the following correlation between

weather and failure rate: compared to Clear, last-mile links appear to fail about 1.5×

more often in Rain, and 2.3× more often in Thunderstorms. Surprisingly, Snow did not

correlate with an increased failure rate over Clear. High temperature showed 1.3× the

mild temperature failure rate, and cold temperature showed 0.7× the mild temperature

failure rate. High winds resulted in 2.5× the failure rate of low wind conditions, but only

for Cable and DSL links.

65

I observed the median failure durations in Clear, Fog and Rain are similar. However,

the median duration in snow failures was about 1.5× the median Clear duration. Surpris-

ingly, the median duration of Thunderstorm failures were shorter, 0.5×, than Clear.

66

Chapter 4

Energy-aware Cellular Data Scheduling

In this chapter, I describe a system that increases the reliability of cellular last-mile links

on smartphones by reducing their wasted energy. One reason smartphones waste energy

is because applications communicate whenever, regardless of how far away the cellular

tower is. In this case, the cellular radio consumes more energy than it would if the smart-

phone were close to a tower. I show how to remedy this problem without modifying the

cellular radio’s proprietary hardware, firmware, or even drivers. The only modification

required is scheduling applications to communicate when the radio operates efficiently.

This means the only OS programming interface that applications will use to control the

radio is the OS timer to suspend and wakeup the smartphone.

This seemingly simple strategy requires predicting when a smartphone will be near

a tower without consuming more energy than scheduling the communication will save.

I show how to predict the efficiency of future communication without using privileged

data, such as the radio’s proprietary statistics (only available to the radio manufacturer

and its partners) or the exact locations of cellular towers (only available to providers). I

67

only require two statistics that are publicly available via the OS’s programming interface

to the radio: signal strength and cell tower identification number.

My system, called Bartendr, shows that it is possible to reduce wasted energy from

cellular communication. Bartendr can be applied to any smartphone because it does not

require modifications to transmission media or equipment and it does not require access

to privileged data.

This chapter makes the following contributions:

First, I show that location alone is not sufficient to predict signal strength because of

the hysteresis built into cellular handoff decisions, which results in affinity to the current

point of attachment [72]. On the other hand, I show that the pattern of variation in signal

strength is quite stable when location is coupled with direction of travel. Bartendr, thus,

leverages the notion of a track [5], e.g., the route from a user’s home to workplace, for its

signal prediction. However, using GPS on the phone for identifying its position on a track

can be prohibitive in terms of energy cost. Bartendr sidesteps this difficulty by represent-

ing a track solely in terms of the identifies of the base stations encountered, together with

the corresponding cellular signal strength values. The device’s current position and future

signal values are identified by matching against the recorded tracks of signal strength,

thereby completely avoiding the need, and hence the energy cost, of determining the de-

vice’s physical location.

Second, I develop energy-aware scheduling algorithms for different application work-

loads. For a syncing workload, where little data is transmitted or received, scheduling is

based on finding intervals in which the signal strength exceeds a threshold. For a stream-

ing workload, on the other hand, I develop a dynamic-programming-based algorithm to

68

find the optimal data download schedule. This algorithm incorporates the predictions of

signal quality, and thereby energy per bit, and also the tail energy cost. Note that in this

chapter I focus on data download, although I believe energy-aware scheduling is equally

applicable to the case of data upload.

Finally, I evaluate Bartendr using extensive simulations based on signal and through-

put measurements obtained during actual drives. My experiments have been performed on

four cellular networks across two large metropolitan areas, Bangalore in India and Wash-

ington, D.C. in the US, and includes 3G networks based on both EVDO and HSDPA. My

evaluation demonstrates energy savings of up to 10% for the email sync application, even

when the sync operation results in no email being downloaded, implying that the energy

savings in this case results only from the lowering of the radio power when the signal is

strong. In contrast, my evaluation shows energy savings of up to 60% for the streaming

application, where energy-aware scheduling helps save energy by both lowering the radio

power used and by cutting the duration of radio activity owing to the higher throughput

enabled by a strong signal.

4.1 Motivation

In this section, I argue, based on measurements, that exploiting variation in signal strength

can yield energy savings. Table 2.1 lists the mobile devices and networks that I measured.

These devices expose signal strength in one of two ways: some provide fine-grained,

raw received signal strength indication (RSSI), others provide only six coarse signal lev-

els, corresponding to the (0–5) “bars” displayed on phones. These reported values lack

meaningful units.

69

-130

-120

-110

-100

-90

-80

-70

-60

-50

 0 20 40 60 80 100 120 140 160
s
ig

n
a

l
s
tr

e
n

g
th

 (
R

S
S

I)

100 meter steps

1 2 3 4 5 6

 0 20 40 60 80 100 120 140 160

1
2
3
4
5
6

d
ri
v
e

s

Figure 4.1: Signal varies by location for 6 drives over 17 km. Colors on top indicate base
station id.

I focus on saving energy for applications that mostly download because these are most

prevalent on mobile devices (e.g., email, news, streaming audio and video). While there

are applications that primarily upload (e.g., photo sharing), I do not discuss these here or

present measurements of the upload power consumption on mobile phones.

I show that signal strength varies in practice, and that this variation is consistent. Also,

I describe how a few typical applications may be sufficiently flexible in scheduling their

communication to match the periods of good signal strength.

4.1.1 Signal varies by location

Cellular signal strength varies depending on location because of the physics of wireless

signal propagation. Signal strength degrades with distance from the base station and is

impeded by obstructions such as trees and buildings. Although the “bars” displayed on

phones have made people aware that cellular signal varies across locations, this variation

needs to be both significant and consistent for signal strength based scheduling to be

effective.

Figure 4.1 plots the signal strength reported by the Palm Pre on each of five drives

70

-130

-120

-110

-100

-90

-80

-70

-60

-50

-130 -120 -110 -100 -90 -80 -70 -60 -50
s
ig

n
a

l
s
tr

e
n

g
th

 (
R

S
S

I)

signal strength (RSSI)

r=0.747
MSE=50.9

Figure 4.2: Signal variations are consistent for 6 drives over 17 km. Signal correlation
for 25 m steps in all drive-pairs. To better illustrate the density of integral signal strength
points, I add random noise of -0.5 to 0.5 RSSI to each pair.

along a 17 km highway path from Washington, DC to College Park, MD collected on

different days. The colored bars above the graph represent which base station the device

is associated with during each track. In presenting these repeated drives of approximately

the same path, I take for granted that humans are creatures of habit and that their paths

are predictable [48]. Figure 4.1 shows graphically that, despite potential changes in hand-

off behavior or environmental effects, recorded traces of signal variation may be able to

predict future signal variation along the same path. A majority of the signal variation

across drives are small (< 5 RSSI) while a few variations are significant, for example,

at the start of drive 5. For this particular drive, unlike the others, the Pre does not keep

a steady association to the base station represented by blue. Instead it switches between

base stations until close to step 15 when it steadily associates with the violet (dark gray)

base station.

For each 25 meter step, I present a scatter plot of signal strength values across all pairs

of drives in Figure 4.2. Perfect linear correlation is represented by the 45-degree line; one

can see that most of the points in the figure are clustered around this line. The overall

71

correlation coefficient is 0.75, which indicates that there is significant linear correlation

of signal strength values across drives. This validates my hypothesis that signal variation

along a path is consistent between drives.

Figure 4.1 shows that the variation of the signal strength along the drive is also signifi-

cant. The highest and lowest strength values are -50 and -120 RSSI and there are frequent

signal strength variations between -90 and -70 RSSI. The cost of communicating at -90

instead of at -70 RSSI entails the use of about 20% additional power (Figure 2.1) and a

median throughput that is 50% lower (Figure 2.2). This results in an energy per bit on

the Pre that is 2.4 times higher at -90 RSSI compared to at -70 RSSI. Thus, if applica-

tions were to preferentially communicate at -70 RSSI instead of at -90 RSSI, the potential

communication energy savings are 60%.

4.2 Suitable applications

The approach to saving energy in Bartendr is to defer communication, where possible,

until the device moves into a location with better signal strength, or conversely, to prefetch

information before the signal degrades. However, not all communication is amenable to

adjustments in timing. I now look at two types of common applications that can make use

of this approach.

4.2.1 Synchronization

The first application class that I consider is background synchronization, where the device

probes a server periodically to check for new mail, updated news, or similar pending mes-

sages. Within each periodic interval, the syncing operation can be scheduled whenever the

signal is strong. Many devices perform this background synchronization whenever pow-

72

 0

 5

 10

 15

 20

-105 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50

e
n
e
rg

y
 (

J
)

signal strength (RSSI)

Figure 4.3: Average signal and energy for 60 SSL email syncs on the Palm Pre. Error
bars represent µ and σ for windows of ±2.5 RSSI. Above -75 RSSI, the sync energy is
consistently low. Below this threshold, the sync energy is higher and variable.

ered on, meaning that even small savings in energy consumption for each background

synchronization operation has the potential to yield large cumulative energy savings.

In order to schedule individual synchronization attempts, I assume that the synchro-

nization interval is flexible. For example, while the application may be configured to

check for new mail every five minutes, I allow each individual sync to be spaced, say,

four or six minutes apart, while ensuring that the average sync interval remains five min-

utes. In my evaluation, I focus on the common case of a sync operation that does not

result in any new data (e.g., email) being fetched. This represents a lower bound on the

potential energy savings. I expect that, by choosing to perform sync more often when the

signal is good, actual data communication (e.g., downloading of emails and attachments),

if any, would also likely happen during periods of good signal, resulting in additional

energy savings.

Figure 4.3 shows the energy consumed for 60 syncs while driving on main roads in

two states in the U.S. (20 in Michigan, 40 in Maryland). The signal shown is the average

73

signal over the sync. The median sync time is 10 seconds, the maximum is 13.2 s and the

minimum is 7.4 s. Although the signal strength during a given sync operation is typically

stable (median variation is 3 RSSI), it can also be highly variable at times (maximum vari-

ation is 22 RSSI). The error bars represent average and standard deviation for ±2.5 RSSI

windows. Nevertheless, in Figure 4.3, I can set a threshold of approximately -75 RSSI,

such that syncs performed when the signal is above the threshold consistently consume

less energy than when below the threshold. The average sync at a location with signal

above -75 requires 75.3% of the energy when the signal is below -75. The decrease in

average sync energy as signal increases matches the power profile of the Pre in Figure 2.1.

Although the differences in energy cost are significant, designing a system to realize

these savings is challenging. In the extreme case, when there are no other applications

executing on the device, the entire device could be asleep in between each sync operation,

so the device must predict when to sync before it goes to sleep, and while it sleeps the

prediction can not be updated. A simple syncing schedule that checks precisely every

five minutes might miss opportunities to sync in strong signal locations, but for those five

minutes, the device uses very little power. Further, any energy expended as part of the

computation to predict where the good signal strength location five minutes in the future

detracts from the potential savings, if any.

The alternative of push-based notification is not necessarily more energy-efficient than

a pull-based approach. Push notification requires the device to be in a (higher-energy)

state where it can receive such notifications and also expend energy to maintain a connec-

tion to the server as the device traverses many cells. In contrast, a pull-based approach

can keep the device in a very low-power suspended state between each sync. Finally,

74

Run Power (mW) Time (s) Energy (J)
-93 RSSI

1 1969 85 167
2 1983 83 164
3 1904 82 156

-73 RSSI
4 1655 86 142
5 1539 68 104
6 1532 187 286
7 1309 85 111
8 1400 76 106
9 1403 71 99

Table 4.1: Even while playing a YouTube video on the Palm Pre, efficient communication
saves significant energy. Energy consumed while playing a one minute YouTube video in
low (-93 RSSI) and high (-73 RSSI) signal.

even in the case of a device that uses push notifications, Bartendr could be used to decide

when to schedule the downloading of large messages, the availability of which is learned

through the push notification mechanism.

4.2.2 Streaming

Streaming applications such as Internet radio and YouTube are another class of appli-

cations that permit flexible communication scheduling, so long as application playout

deadlines are met. Streaming sites typically transmit pre-generated content over HTTP.

In addition, some of these sites throttle the rate at which the data is streamed to the client,

while keeping the client-side buffer non-empty to avoid playout disruptions. I can save

energy for these applications by modulating the traffic stream to match the radio energy

characteristics: downloading more data in good signal conditions and avoiding commu-

nication at poor signal locations. The challenge, however, is to ensure that every packet

is delivered to the client before its playout deadline, to avoid any disruption being experi-

enced by the user.

75

One might question whether the variation in power due to signal strength is significant

relative to the baseline power consumed by display and processor during video playback.

In fact, video playing is an important worst-case example because it exercises the most

energy consuming hardware on the device. To address this question, Table 4.1 presents the

total energy cost of downloading and playing a one minute YouTube clip on the Pre at two

locations with different signal strengths. In general, energy consumed at -93 RSSI is about

50% higher than the energy consumed at -73 RSSI. In other words, communication energy

savings are significant, even while most of the phone’s hardware is active. However, in run

6, energy consumed at -73 RSSI is higher than energy consumed at -93 RSSI, because of

lower bandwidth at -73 RSSI for this experiment (perhaps due to competing users). This

bandwidth variation can pose a significant challenge in delivering the full energy savings

of scheduling at good signal locations.

Given the above findings that indicate cellular power consumption is significant rel-

ative to processor and display power consumption, in later experiments where I evaluate

Bartendr, I will ignore these devices, and focus the measurement solely on the cellular

energy. Doing so also helps me avoid noise due to fluctuations in the energy consumed

by the other components.

Although my focus is on streaming, with its intermediate deadlines for maintaining

uninterrupted playback, bulk transfers could be equally amenable to scheduling. Con-

sider the tasks of uploading photographs and downloading podcasts: although these tasks

should be completed within a reasonable time, a user might appreciate if the transfers also

placed a minimal cost on battery life.

76

4.3 Architecture

In this section, I introduce Bartendr. Bartendr strives for energy efficiency by scheduling

communication during periods of strong signal. To accomplish this, it predicts signal

strength minutes into the future. For example, Bartendr can predict efficient times to

wake up and sync email, and intervals when data should be downloaded. First, I describe

how Bartendr uses prior tracks of signal strength to predict future signal strength. Then,

I compare tracks to alternate methods of signal prediction based on location and history.

Finally, I present algorithms that use the predicted signal strength to efficiently schedule

syncs and streaming media.

4.3.1 Predicting signal with signal tracks

Bartendr predicts signal strength for a phone moving along a path. As I saw in Fig-

ures 4.1 and 4.2, signal strength is consistent at the granularity of 25 and 100 m steps

along a path. This consistency means that Bartendr could, in principle, predict signal

strength along a path using previous signal measurements, captured while traveling along

the same path. Before discussing the challenges involved in accomplishing this, I lay out

my assumptions. I assume that users will, in general, store several of these signal tracks

on their phone, corresponding to the paths that they frequently travel on. I further assume

that Bartendr will be able to infer the current track of the mobile phone. The track could

be identified with high probability using mobility prediction techniques [48].

Predicting signal strength on a signal track requires two steps: finding the current

position of the phone on the track, and predicting the signal in the future starting from

that position. GPS could be used to locate a phone on a track, but doing so would drain

77

considerable energy and would detract from the energy savings sought by Bartendr. In-

stead, Bartendr locates itself on a signal track by finding the measurement in the track

that is closest to its current signal measurement. Signal measurements come at no extra

energy cost because the phone’s cellular protocol needs them for handoff [95]. Of course,

there may be several points on a signal track with the same signal strength, so each signal

strength sample in the track also include a neighbor list: a list of all the phone’s neigh-

boring base stations sorted by signal strength. Bartendr’s current position in the track is

the one that has the most matching neighbors (in order) and the closest signal strength.

While this approach of signal tuple-based matching in Bartendr is similar to that used for

localization in prior work [50], all of the computation in Bartendr is confined to signal

space, without any reference to physical location.

I find that the closest match heuristic works well for Bartendr’s needs, but errors are

possible. The signal strength approaching and leaving a cell may be similar, and the

closest neighbor list might not disambiguate these two positions. Further, if the signal is

not changing often, perhaps in an environment of sparsely populated terrain, the closest

match may be ambiguous. I observed very few occurrences of such errors in my testing.

Once Bartendr determines the phone’s location on the track, it predicts signal strength

minutes into the future. With signal tracks this means simply looking ahead in time from

the current location. Although signal is consistent for locations along a path, the time

to travel to a location along the path is not. For example, if the phone is traveling along

a road it may travel at different speeds or stop at different times. This problem can be

mitigated by constantly updating the phone’s location on the track. For the evaluation

of Bartendr in Section 4.4, Bartendr skips over stops in the signal tracks, although this

78

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800
m

ea
n

ab
so

lu
te

 e
rro

r (
R

SS
I)

time (s)

current signal
signal tracks

Figure 4.4: Average prediction error from all 25 m steps in six 17 km tracks. Signal
tracks predict signal strength with lower error than predicting future signal to be the same
as the current signal. Signal tracks can also be used for long term predictions.

provides minimal benefit.

I now compare Bartendr’s signal track predictor with a simple predictor that only uses

the current observed signal strength, which is averaged over a few seconds, to predict

future signal strength. I choose a position every 25 m on each of the six 17 km tracks

as the starting position for the prediction. Using the two methods, I computed the error

of signal strength predictions up to 800 s in the future. I ran both predictors on all of

the starting positions in all six tracks. I also used all six tracks as previous tracks for the

signal track predictor.

Figure 4.4 shows the average absolute error (y-axis) of all signal predictions 0 s to

800 s in the future (x-axis). Signal appears to vary about 6 RSSI over short intervals

(< 20 s). I find that predicting past 20 s in the future, the signal track based predictor has

lower average error than the current signal based predictor. Signal tracks can also predict

signal strength 800 s in the future without a significant increase in error.

79

-130

-120

-110

-100

-90

-80

-70

-60

-50

 0 20 40 60 80 100 120 140 160
s
ig

n
a

l
s
tr

e
n

g
th

 (
R

S
S

I)

100 meter steps

from 1 from 2 to

 0 20 40 60 80 100 120 140 160

to
from 2
from 1

Figure 4.5: Tracks from opposite directions may not align in signal strength. Two “from”
tracks compared to a representative “to” track from Figure 4.1.

-130

-120

-110

-100

-90

-80

-70

-60

-50

-130 -120 -110 -100 -90 -80 -70 -60 -50

s
ig

n
a

l
s
tr

e
n

g
th

 (
R

S
S

I)

signal strength (RSSI)

r=0.632
MSE=75.6

Figure 4.6: Signal correlation of 25 m steps in all pairs of the two “from” tracks with the
six “to” tracks. The dashed line represents the ideal correlation.

Location alone is not sufficient

One might expect that the precise location of GPS, if made for “free” in terms of energy

cost, would yield better estimates of signal than would be possible with Bartendr’s signal

track predictor. However, my measurements show that signal strength can be significantly

different at a location based on how the device arrived there, for example, the direction

of arrival. Figure 4.5 depicts the average signal strength for each 100 m step of tracks

collected while traveling in opposite directions (“from” and “to”). Compared to signal

strength values over a track when traveling in the same direction (Figure 4.1), it is clear

80

that there is less correlation when traveling in opposite directions. The lower correlation

values of a signal at a location when traveling in opposite directions (Figure 4.6) compared

to traveling in the same direction (Figure 4.2) provides further evidence that location alone

is not sufficient for signal strength prediction.

The identity of the cellular base station that the phone is attached to at a given loca-

tion (color-coded at the top of the graph) does not match at many steps across tracks in

opposite directions. I believe that the hysteresis in the cellular handoff process explains

this effect. A phone switches from its current attached base station only when its received

signal strength dips below the signal strength from the next base station by more than a

threshold [72]. Thus, phones traveling in different directions may be attached to different

base stations at a given location. This observation implies that incorporating direction of

travel with location, i.e., a track [5], is necessary for accurately predicting signal strength

on a path.

4.3.2 Scheduling sync

After locating the device on a stored signal track, I must determine when to schedule the

next sync. Recall that for sync, my goal is to put the processor to sleep for a calculated

interval, so that the phone wakes up when it is at a strong signal location. If the prediction

is incorrect, perhaps because the device traversed a track more quickly or more slowly

than expected, the device may sync in a location of poor signal or attempt to defer for a

few seconds to to catch the good signal if it is soon to come.

I propose two threshold-based techniques to find the location to sync given my current

location in the track, first above threshold and widest above threshold. The threshold used

81

in both techniques represents significant power savings: in Figure 4.3, reasonable thresh-

old values span -76 to -74 RSSI, from which I picked -75 RSSI. The first approach waits

to sync until the first time -75 RSSI is crossed in the stored track; the widest approach

waits (potentially longer) for the time at which the stored track exceeds -75 RSSI for the

widest interval. First could limit prediction mistakes if it is easier to predict near-term

events; widest could limit prediction mistakes if the wide intervals represent easy targets.

Once the future time for sync is predicted by one of these techniques, the device is

suspended to a very low power state until the predicted time. If the user on the track

travels at a speed significantly different from that of the historical tracks, the wakeup

could occur at a different signal strength value compared to prediction, possibly resulting

in diminished energy savings.

4.3.3 Scheduling streaming

I next look at scheduling communication for the streaming application. When streaming,

the device remains powered on and continuously determines position, so that unlike syncs,

errors due to speed variations can be compensated for dynamically.

I now look at how to efficiently schedule a data stream of size S over certain duration

of time T with minimal energy. To make the problem tractable, I divide the input stream

into fixed size chunks of N frames, and time T is divided into slots. A slot is defined

as the period of time where a single frame can be transmitted. Since data rates are not

fixed, each slot can be of variable width depending on the expected datarate at that time.

The power consumed to transmit a frame in a slot is also variable. I use the predicted

signal strengths and median observed throughput values for the scheduling interval T to

82

estimate the slot widths and average power consumption for each slot. Given a predicted

signal` in slot `, I calculate the communication energy as follows:

Signal to Power(signall) ∗ S
N

Signal to Throughput(signall)

The two functions in this expression map a signal value to the corresponding power value

and median throughput value. The mapping is done based on empirical measurements as

described in Section 4.1.

Given N frames and M slots, where N ≤ M , the optimal scheduling problem seeks

to find an assignment for each frame to one of the slots, such that the total energy re-

quired to transmit N frames is the minimum of all possible assignments. One approach

is to greedily schedule the frames in the best N slots which incur the least energy for

communication. However, this approach ignores the cost of tail energy incurred every

time there is a communication. When multiple frames are scheduled in consecutive slots,

the entire batch of frames incur only one tail, as opposed to a tail for each frame if they

are spaced out in time. A greedy approach that ignores the radio tail behavior can be very

inefficient.

Thus, the scheduling algorithm should take into account both the energy required

for communication and the tail energy incurred for the schedule. Let us look at how to

compute the tail energy overhead for a schedule. When there are no frames scheduled for

a certain period of time prior to the current slot, the radio is in an idle state at the beginning

of the slot. If a frame is sent during this slot, the radio switches to its active state, and

remains in the active state for the duration of at least one tail period. However, if a frame

83

is scheduled in a slot when the radio is already in active state due to some transmission

in the prior slots, none or only a fraction of the tail energy needs to be accounted. I

now describe a dynamic programming formulation that computes the minimum energy

schedule given the energy cost of transmission in each slot, accounting for these various

tail overheads.

Let Ek,t be the minimum energy required to transmit k frames in t timeslots. Corre-

sponding to this minimum energy schedule, the variable Lastk,t stores the slot number

where the kth frame is scheduled. Let ESlot` be the sum of the communication energy

required to transmit a frame in slot ` and the incremental tail energy cost, given the trans-

missions that occurred in the previous slots. The dynamic programming algorithm that

computes the minimum energy schedule is as follows:

Initialization
for t = 1 to M do

E0,t = 0
end for

Computing optimal schedules
for k = 1 to N do

for t = k to M do
Ek,t = mint−1`=k−1(Ek−1,` + ESlot`+1)
Lastk,t = ` value for which the previous quantity was minimized

end for
end for

The intuition behind the dynamic programming algorithm is that the minimum en-

ergy to transfer k frames in time t, Ek,t, is simply the minimum of sum of transferring

k − 1 frames in time (k − 1 to t − 1) and the cost of transferring the k′th frame in the

time remaining, including incurred tail costs, if any. Thus, the optimal substructure prop-

erty holds and the solution to the dynamic program is the same as the optimal solution.

84

Additional timing constraints for a frame can be easily incorporated in this algorithm

by restricting the search for minimum value within the arrival and deadline slots for the

frame as follows:

Ek,t = min
Deadline(k)−1
`=Arrival(k)−1(Ek−1,` + ESlot`+1)

The value EN,M is the minimum energy for the predicted schedule, which can be com-

puted by tracing backwards from LastN,M . The order of the above algorithm is O(M2 ×

N).

The algorithm could suffer from two kinds of errors: 1) the speed of the current track

being different from speed of the previous track, and 2) the expected throughput at a slot

being different from the median throughput in the track. Fortunately, since the device

continues to remain powered on for running this application, I can simply re-run the dy-

namic programming algorithm from the point of discrepancy and recompute the optimal

schedule. In my evaluations, this recomputation helped avoid significant deterioration in

energy savings on account of the above errors.

4.4 Simulation-based evaluation

In this section, I simulate Bartendr with the 17 km tracks shown in Figure 4.1. While

driving these tracks I collected the Palm Pre’s signal strength and throughput. I model

the phone’s power with the measurements shown in Figure 2.1. The advantage of using

a simulator is that I can compare the performance of different approaches against each

other as well as compare their performance against an optimal algorithm that has full

knowledge of future signal.

85

 0.7

 0.8

 0.9

 1

 0 60 120 180 240 300

Fr
ac

tio
n

of
 n

ai
ve

 e
ne

rg
y

Forced delay (s)120 240 360 480 600

Prediction window (s)

optimal first widest

Figure 4.7: Based on the Pre’s radio power profile, predicting signal with previous traces
can save energy for email syncs. Median energy for 42 pairs of experiment and training
traces with a maximum ten minute scheduling window. Y-axis starts at my expected best
savings.

4.4.1 Syncing

In this section, I show that the variation of signal is amenable to energy savings by an

optimal algorithm and that the prediction algorithms (first and widest, Section 4.3.2) are

able to approach that optimal reduction. I run the simulation on all pairs of seven 17 km

tracks (training and experiment). Although likely valuable, I do not yet have a scheme for

combining different tracks to form a refined track model.

At every ten second interval of the experiment track, I execute the prediction given

two constraints: the forced delay represents the minimum time that must be slept before

performing a sync, while the prediction window represents the interval of time after the

forced delay where a sync may occur. The decomposition into these two parameters

allows me to model various application-level choices about how to constrain the schedule,

and provides information about how much latitude is required and whether prediction

accuracy degrades with time.

I assume all syncs take a fixed time of 10 seconds (the median observed in Sec-

tion 4.2.1). It is possible that syncs can take more or less time because of latency varia-

tions.

86

Figure 4.7 presents the total sync energy for widest, first, and optimal. It shows the

sync energy for these techniques relative the naive approach (always sync immediately

after the end of the forced delay period, equivalent to a prediction window of zero). Opti-

mal scheduling can provide up to 20% sync energy savings, when it is possible to choose

over prediction windows longer than six minutes. Optimal uses future knowledge of the

current track to make decisions, and will always choose a low-energy period if one is

available. I note from this graph the potential energy savings resulting from increased

flexibility in scheduling communication events.

The widest scheduling approach generally outperforms first, offering up to 10% reduc-

tion in sync energy. I suppose that the advantage of widest is due to short-term variations

in mobility that do not accumulate over long enough intervals. That is, the variations may

cancel each other out.

While these savings are modest, they represent savings for the case where the sync

operation does not result in downloading of any content. Thus, the energy savings are

only due to reduced transmission power from good signal locations and does not benefit

from better data rates available at these locations. When the sync operations result in

downloading of updated content, the higher data rates available at good signal locations

should substantially improve energy savings (see next section on scheduling streaming).

Finally, I expect that the effectiveness of these scheduling approaches could be im-

proved by better aggregation of training data (omitting track 5 seen in Figure 4.1 in par-

ticular alters the results substantially). Further, by explicitly considering variations in

mobility I would have further potential to increase scheduling accuracy.

87

4.4.2 Streaming

I compare the performance of a naive approach to Bartendr’s signal-based scheduling al-

gorithm for the Streaming application through data driven simulations. Again, I use the

data collected from real driving experiments, which consist of signal strength, instanta-

neous throughput and power consumption measurements while receiving TCP streams

over several drives, to drive the custom simulator. I analyze the energy consumed to

download streams of varying bitrates (corresponding to popular audio/video encoding

rates) and varying stream lengths (120 s to 600 s of play length). The bitrates play a role

in how fast the application consumes the downloaded data, and thus impacts the how long

a data frame in the stream can be delayed. The stream length determines the total number

of data frames in the stream that need to be downloaded.

In the naive case, all data frames in the stream are downloaded in one shot from the

beginning of the stream until completion. In the signal-based scheduling algorithm, I plug

in the real signal values from the track. I then map these signal values to median through-

put and power consumption numbers from prior tracks corresponding to the same drive,

which are used in the computation of ESlot` values. For each frame in the input stream,

I also compute the deadline before which it needs to be scheduled for transmission based

on the stream bitrate. I illustrate how the deadlines are calculated through an example.

Consider a 5 min audio stream encoded at 128 Kbps (total size ≈ 5 MB), and assume the

number of data framesN to be 25 (frame size≈ 200 KB). Since the application consumes

data at an average rate of 128 Kbps, at most one data frame is needed every 12 seconds to

ensure that the playout buffer doesn’t run out of data. Thus, in this example the deadlines

88

 0

 0.2

 0.4

 0.6

 0.8

 1

 120 240 360 480 600
Fr

ac
tio

n
of

 n
ai

ve
 e

ne
rg

y

Stream length (s)

64 kbit/s

128 kbit/s

Figure 4.8: Energy savings with signal-based scheduling for 64 and 128Kbps data
streams.

for each consecutive frame occurs every 12 s within the 5 min window. After computing

the deadlines, I then run the dynamic programming algorithm to compute the schedule

for downloading each frame. During the execution of the schedule, if I find that there is a

deviation in the actual and expected throughput, I rerun the dynamic programming algo-

rithm with an updated number of frames to be scheduled in the reminder of the interval

along with their corresponding deadlines.

To implement the signal-based approach, I need to be able to start and stop the stream

download based on the schedule computed by the dynamic programming solution. I

achieved this using a network proxy that starts to download the data from the streaming

server as soon as the client initiates a request. The schedule basically consists of start and

stop times for downloading each frame from the proxy.

I stagger the start to arbitrary times in the tracks and present the average results for

over hundred runs. Figure 4.8 plots the energy savings of the signal-based scheduling

schemes compared to the naive case. As the stream length increases from 120 s to 600 s,

there are more number of data frames that are farther away from the start of the stream.

89

These frames have longer deadlines and provide more opportunities to search for energy-

efficient time slots to download them within their specified deadlines. I see that energy

savings of up to 60% are achievable by scheduling using Bartendr.

4.5 Related work

Several studies have results that are relevant to the Bartendr theme, including: mobile

prediction of wireless network quality, stability of ubiquitous wireless network quality

measurements, scheduling and other approaches for mobile energy savings.

4.5.1 Predicting wireless network quality

The goals of Breadcrumbs [66] closely resemble those of Bartendr: predict network qual-

ity at a physical location, and use this knowledge to make applications use the network

more efficiently. However, the two systems differ in many ways.

Bartendr seeks to provide energy savings on ubiquitous cellular networks, while Bread-

crumbs is tailored to wireless LANs. While Breadcrumbs indexes WiFi bandwidth avail-

ability by GPS location (similar to the work of [77] where location is a key context used

in determining whether to scan for WiFi availability), I find that for cellular networks,

location coupled with direction of arrival is necessary for predicting signal strength, and

thus available bandwidth.

Furthermore, because of the dynamic nature of wireless LANs, Breadcrumbs requires

an energy consuming measurement framework that periodically scans for WiFi bandwidth

availability to predict network quality at a location. Bartendr leverages the fact that cel-

lular signal strength information can be obtained very inexpensively on the mobile (since

the cellular radio must remain on to receive phone calls) to schedule communication at

90

appropriate locations.

4.5.2 Stability of cellular signals

Recent studies have quantified the service-level stability of ubiquitous wireless networks [54,

94]. They found that bandwidth changes over time, even though signal strength measure-

ments remain stable. In the earliest study, Tan et al. discovered that over three weeks,

even though signal strength measurements were stable at a location, network bandwidth

measurements vary by 54% [94]. Later, Liu et al. [54], using more detailed measure-

ments of an EVDO network, found that signal strength and the downlink data rate used

by the provider were highly correlated over long timescales. However, they also noticed

that over about a months time, the rates fluctuate between 500Kbps and 3Mbps at a given

location.

Given this information, can an approach like Bartendr still be effective? First, since I

find that energy efficiency is dependent on signal strength, relative signal strength stabil-

ity and high long term correlation with data rates is certainly helpful. Second, while some

bandwidth availability variation is to be expected on a commercial network with compet-

ing users, applications like email or RSS feeds that I expect to benefit from Bartendr do

not require the maximum throughput of the link.

4.6 Summary

In this chapter, I showed how to increase the reliability of cellular last-mile links by

reducing wasted energy. Energy measurements from an example smartphone showed that

email syncing in high signal strength areas requires on average 75% of the energy required

for email syncing in low strength areas. The measurements also show that streaming a

91

video in high signal strength areas requires on average 50% of the energy required in low

signal strength areas.

I demonstrated that scheduling syncing and streaming for periods of predicted high

signal strength can reduce wasted energy. Simulations based on signal strength traces

obtained while driving show that scheduling syncing for periods of high signal strength

reduces the energy required for syncing by up to 10%. Streaming simulations based on the

same signal strength traces indicate that scheduling streaming reduces the energy required

for streaming by up to 40%. I also demonstrated that reducing wasted energy does not

require modifying the cellular hardware, firmware, or drivers, nor does it require access

to privileged cellular data.

92

Chapter 5

Reliable Broadcast Last-mile Link

In this chapter, I describe how to adapt a widely-deployed, reliable broadcast last-mile

link to the Internet by building off of unmodified transmission media and equipment. This

new link is necessary because existing Internet last-mile links cannot be relied upon to

widely distribute critical data. In previous chapters, I showed that fixed links can fail

during weather (Chapter 3) and mobile links can (eventually) fail due to wasted energy

when their signal strength is low (Chapter 4).

Unlike existing Internet last-mile links, metropolitan VHF radio broadcast systems

are inherently reliable. The reliability of VHF broadcast links comes from their ability

to be received even if a user is moving in and out of buildings and from their resilience

to weather. A single broadcast tower can cover an entire metropolitan area because VHF

signals propagate through buildings [58]. Also, atmospheric noise (e.g., lightning) does

not significantly affect the VHF spectrum [68]. Worldwide use of the VHF spectrum

for critical services such as weather radio, air traffic control, and public safety (e.g., in

the US [33], Europe [28], and India [23]), provides evidence of its ability to propagate

93

through buildings and its lack of interference.

Not only are VHF radio broadcasts inherently reliable, but FM RDS adds even more

reliability. FM provides additional robustness because it filters out the noise that line-of-

sight lightning may cause in the VHF spectrum [58]. The RDS protocol adds even more

robustness: transmissions include 10 error- correcting bits for every 16 data bits.

In Section 2.3.2, I showed that FM RDS has the potential to be an Internet last-mile

downlink. In this chapter, I show how to adapt FM RDS to reliably transmit Internet

traffic without modifying existing RDS transmitters and receivers.

I describe and implement a server that enables multiple Internet senders to transmit

over a single RDS transmitter. This is possible because there is a standard protocol to

control commercially available RDS transmitters: the Universal Encoder Communication

Protocol (UECP) [29].

In order to make RDS a reliable Internet last-mile downlink, I implement a sys-

tem on top of Open Data Access (ODA) [80], RDS’s arbitrary data protocol. My sys-

tem, called Abbie, provides hierarchical energy-efficient schedules for multiple Internet

senders, a receiver-driven Distributed Hash Table (DHT) for last-resort retransmissions,

and lightweight digital signatures for verifying authenticity of transmissions. I also im-

plement and evaluate receiver software that can operate on smartphones, low-power mi-

crocontrollers, and PCs. To demonstrate incremental deployment to residential networks,

I design an RDS-to-LAN bridge that connects over USB to residential routers. In sum-

mary, I show that by adapting the FM RDS system to the Internet, it is possible to create a

reliable Internet last-mile downlink without modifying link transmission media and equip-

ment.

94

I evaluate both the underlying RDS transmission medium and the Abbie system I built

on top of it to the extent possible, using FCC and Census data, benchmarks from hardware

prototype receivers and mobile phones, and real-life deployment on a commercial 3 kW

station sending to my USB prototype devices attached to home routers. (Section 5.4)

5.1 The reliability of FM RDS metropolitan radio broadcasting

I propose Abbie, a broadcast system that is not just best-effort broadcast, it is reliable.

If Abbie receivers miss a message transmitted over radio broadcast, they can obtain re-

transmissions of messages over Internet last-mile links. For the applications that work

well with the deployment of FM RDS transmitters (Section 5.3), this broadcast system

is mostly reliable by its nature. However, to make it completely reliable, I also add a

capability for last-resort retransmissions. According to Chang and Maxemchuk, the prop-

erties I must achieve as a terminating reliable broadcast system are formally defined as

follows [11]:

Validity: If the transmitter broadcasts a message, then all correct receivers must process

the message.

Integrity: Receivers only deliver each message one time, and those messages must have

been broadcast by the transmitter at some point in the past.

Agreement: If a correct receiver processes a message, then all correct receivers must

process that message.

Termination: If the transmitter that broadcasts a message stays up, then all processes

that remain up eventually process that message.

95

This definition of reliable broadcast does not allow for receivers that are correct, but

do not desire the message being broadcast. The reason is that reliable broadcast systems

generally assume they are being implemented for data that all are interested in or for use

by systems that all hosts participate in. Additionally, they assume broadcasts are sent

over unicast links. My goal is to envelop as many devices as possible with the possibility

of obtaining the broadcast messages—no last-mile link is left out. To allow for these re-

ceivers, I slightly modify the definition of validity, agreement, and termination.

Validity: If the transmitter broadcasts a message, then all correct receivers who are in-

terested must deliver the message.

Agreement: If a correct receiver delivers a message, then all correct receivers who are

interested must deliver that message.

Termination: If the process that delivers a message stays up, then all processes that re-

main up and desire the message eventually will deliver that message.

For validity, most receivers will get this property due to the extremely low loss nature

of the FM RDS (Section 5.1.1). However, in the unlikely circumstance that there is a loss,

every broadcast transmission is available in a DHT (Section 5.2.4). The applications that

will use this broadcast system provide content that is relevant to some subset of receivers

covered by the transmitter’s signal. These broadcast towers are located in populated areas

(Section 5.1.2), so almost any location is an option to receive locally relevant content.

Finally, Abbie’s always on USB-to-LAN bridge hardware provides a middle ground for

96

receivers that are not always-on, and yet they still can receive broadcasts without access-

ing the DHT (Section 5.2.3).

For integrity, the transmitter digitally signs every message, and every message in-

cludes a transmitter-assigned sequence number (Section 5.2.2). However, the digital sig-

nature required to verify the signatures cannot be too large, because broadcast links are

severely bandwidth constrained. They also cannot require heavy processing, as some

receivers may be power- and processing-constrained (Section 5.2.3). The properties of

validity and integrity combine to give agreement.

For termination, there is very little cost to store every transmission (Section 5.1.3).

This means that as long as a host is online, it has no reason to delete transmissions that

may even be several years old. Eventually consistent protocols typically require trunca-

tion, but given that the set of intended receivers is not known to Abbie, this is not possible.

In the following subsections, I present observations that provide support for the relia-

bility and wide deployment of the FM RDS broadcasting system.

5.1.1 FM RDS loss rate is low

I tested the RDS reception distance with my prototype receiver (Section 5.2.3) by observ-

ing the RDS message loss rate while driving. I tuned the receiver to a moderate power

3 kW FM station in the middle of the city. (Typical campus radio transmission power

is approximately 10 W; popular radio stations may transmit at 50 kW.) Then I drove on

the main highways around the transmitter. Figure 5.1 shows the observations from this

drive. I computed the RDS loss rate in the following way: RDS messages come in four

16 bit groups, so I consider a message successfully received when all four 16 bit groups

97

estimated 60 dBu

service contour

10 km

20 km

 0 0.2 0.4 0.6 0.8 1

RDS loss rate

Figure 5.1: Loss rate of RDS messages from a 3 kW FM transmitter (+) to my prototype
receiver board. Observed while driving the major highways of a metropolitan area. The
dots show the loss rate computed every 1 km. Forward and return trip separated by 1 km
for clarity.

are received without errors, or when all of the group error protection bits repaired the

errors. RDS error protection can detect one- and two-bit errors in a 16 bit block, as well

as any burst spanning 10 bits or less. It can correct bursts of 5 bits or less. Radio stations

broadcast RDS messages at a fixed rate of 11.4 messages per second [46]. I infer losses

from gaps in the timestamps of received messages.

Figure 5.1 shows that very few messages are lost within a 10 km radius from the

transmitter. Also, at fairly high loss rates, the prototype’s short antenna picks up RDS

messages while close to most of the estimated service contour from the FCC. The FCC

provides geographic service contour estimates for licensed FM transmitters [30]. The

loss measurements are consistent with a BBC RDS propagation study performed in 1987

with a large antenna mounted on a truck [55]. A remaining question is: how are errors

98

200,000 150,000 100,000 50,000 0

Figure 5.2: A map showing the overlapping FCC FM signal contours and Census county
population estimates (shading gradient) for North Dakota. Due to non-uniform horizontal
gain of the antennas, the signal contours are not simply discs. This map indicates that
wherever there are people, there are several overlapping FM transmitters.

dispersed? For 20 hours I recorded RDS messages from a non-mobile receiver that had

a 4.3% average loss rate. The time between errors has a mean of 2.04 and a standard

deviation of 2.85 seconds. This indicates errors are not evenly spaced in time. Even if

there are errors, some entire messages may get through.

The RDS signal is typically mixed in at 5% of the transmitted power of the rest of

the transmission, an imbalance that protects the audio signal from interference from this

extra service. This imbalance means that audio can sometimes be received and played at

the edges of the transmission range where RDS can no longer be decoded.

5.1.2 Where there are people, there are FM towers

One benefit of broadcast is receiver scalability: a single transmission reaches many. I

next try to understand just how many people can receive a transmission and whether there

could be enough recipients to make it cost-effective. To that end, I study the distribution

of people covered by FM stations in the US. Assuming that every person has a receiver

(a modest assumption if FM receivers are mandated in cell phones [63]) I can compute

99

 0

 500

 1000

 1500

 2000

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

F
M

 t
ra

n
sm

it
te

rs

people covered by transmitter’s signal

coverage radius

50%
100%

Figure 5.3: Histogram of the number of people covered (x-axis) by each of the FM
transmitters in the US (y-axis). Computed from the FCC’s estimated signal contours
and population data from the 2009 US Census county population estimates. Most FM
transmitters licensed by the FCC in the US cover at least 100,000 people. When limited
to 50% of the coverage radius (one fourth of the coverage area) the towers cover one
fourth as many people.

the equivalent unicast bandwidth that would be needed to send the message to that many

people.

To estimate the number of people covered by licensed FM transmitters, I intersect

signal coverage data (FCC service contours) with population data. These contours are

based on antenna location, height, and when available, design and orientation. They also

consider topographic features, such as mountains, that may block the signal. The RDS

signal may not extend to the edge of the contour, therefore I also investigate a more

conservative, half radius contour. Figure 5.2 provides an example of what these signal

contours look like.

I estimate the population covered by FM stations based on regional population data

from the US Census Bureau [97]. I intersect the FCC signal contours with the geographic

borders of the population regions (counties). For simplicity, I assume the people in the

population regions are evenly distributed: when a signal covers part of a county I assume

100

the fraction of the population covered is equal to the fraction of the area covered. This as-

sumption likely causes an underestimate of how many people are within range of a tower:

I expect that people are in fact distributed unevenly in counties, with more people closer

to population centers and FM towers, and fewer people farther away, but my analysis

conservatively does not consider this expectation (Figure 5.2).

Figure 5.3 shows a histogram of population covered by every FM station in the US.

According to the full radius contour, most of the 10,075 FM stations in the US cover at

least 100,000 people, and 13% cover more than 1 million people. The coverage distribu-

tion for the half radius contour is a factor of four smaller than the full radius, consistent

with their difference in area. With such large populations covered, the unicast equivalent

bandwidth of FM RDS can be significant. Assuming all 100,000 people have receivers,

and the RDS goodput is 421.8 bps, the effective bandwidth of a broadcast receivers is

42.18 Mbps. For the 43 stations that cover at least 10 million people (New York City

and Los Angles), the effective bandwidth of one RDS stream is 4.22 Gbit/s. Although

one might wonder whether a deployment could possibly include every man, woman, and

child in Los Angeles, there are efforts to mandate FM receivers in cell phones [63] and

according to a 2011 survey of cell companies in the US, there are more cell subscriptions

(322 million) than people (304 million) [20]. I omit stations that appear to serve fewer

than 16 people; they are all in Alaska and reflect how my analysis underestimates the

coverage for large counties with tiny populations.

It should be noted that the FM service contours are an estimate of coverage. For

example, the southeastern corner of the contour from my drive shown earlier in Figure 5.1

shows significantly greater RDS loss rate than the rest of the map. A conversation with

101

the radio station’s engineer revealed the antenna is oriented northwest, and the design

and mount of the antenna makes it less than omni-directional. Also, the altitude drops

off in the southeastern direction, so the antenna is below the strongest vertical gain field

(the strongest is directly parallel to the ground from the antenna). The FCC’s license for

this station does not contain the station’s antenna horizontal gain in each direction. This

investigation reveals a problem with the FCC service contour estimates: they are only as

good as the information about the antenna that the stations provide the FCC.

FM RDS transmitters are pervasive and inexpensive

Transmitting RDS data requires a special-purpose encoder and a generic PC server, con-

nected to each other typically by serial or Ethernet. An encoder typically costs approx-

imately $2,000, making them widely deployed: In 2008, several major US broadcast

companies reported that at least 450 of their stations broadcast RDS [16]. Once the data

are encoded, the RDS signal is mixed with the audio, FM modulated, then transmitted.

5.1.3 Every transmission can be stored

The limited transmission rate of RDS means a receiver can store indiscriminately and

indefinitely. The raw bit rate of RDS is only 1187.5 bits per second; after error correction

and header information, this raw bit rate is significantly reduced. I use the standard RDS

Open Data Application (ODA) framework to embed my data, which leaves 421.8 bps of

goodput for Abbie. A 16 GB MicroSD card can store ten years of continuous broadcasts.

5.1.4 FM Receivers are small

Installing a broadcast receiver in networked devices and embedded systems that are not

traditionally networked, necessitates a receiver IC (Integrated Circuit) that is inexpensive,

102

A

B

C

Senders on
the Internet

Transmitter

A B C

Segments

A B C

Package

Receivers

DHT

Figure 5.4: Abbie system overview

small, and power friendly. Silicon Labs (si47xx) and Philips (SAA6588) provide FM

RDS ICs with these properties. The Silicon Labs si4705 IC is 3 mm2 and requires only a

few external components. The IC consumes only 64 mW while receiving RDS.

It is challenging to design a compact antenna for the FM band (100 MHz). The FM

wavelength is 3 meters. A quarter wavelength antenna, which would allow the antenna

to resonate and collect a stronger signal, would be 75 cm long. This requirement is why

portable FM receivers in smartphones and music players often use the headphone wire as

an antenna. Yu et al. measure the effectiveness of headphone antenna cable lengths to

estimate the range of FM broadcasts [102].

A short monopole antenna with a loading coil can resonate in frequencies with wave-

lengths much longer than the antenna itself. My prototype (Section 5.2.3) features 1/30th

wavelength monopole antenna trace on the PCB. The drawback of a short embedded PCB

antenna is extra board space: There must be space between the components and the an-

tenna.

5.2 Design and implementation of Abbie

Abbie provides a mechanism to share a broadcast link that consists of an over-the-air

protocol, software running at the tower, receiver software, and RDS-to-LAN bridge hard-

103

ware (Figure 5.4). The over-the-air protocol operates within the RDS specification. It

is data efficient, and it supports sleeping for low power receivers. The receiver software

provides an interface for applications, that is platform independent and includes a DHT

for searching for retransmissions of broadcasts.

The protocol I built on top of FM RDS to adapt it to be an Internet last-mile link

operates as follows: The tower transmits schedules that contain hierarchical names that

allow a receiver to subscribe to a provider, or specific content, and this allow energy

inefficient receivers to sleep. The system can be incrementally deployed with an RDS-

to-LAN bridge USB hardware. In the rare case that a receiver fails to demodulate a

transmission, I adapt a DHT to provide a last-resort place to look for retransmissions and

I show that the transmissions can be authenticated with digital signatures, even on low

power processors.

5.2.1 Tower sharing protocol

Installed at the radio station, the Abbie transmitter software runs on an Internet-connected

computer that can send data to the RDS encoder with Ethernet or serial connection. A

sender anywhere on the Internet sends the tower the segment name, and segment that it

would like to transmit. The transmitter can authenticate, authorize, and charge senders,

but this is outside of the scope of this work.

5.2.2 Over-the-air protocol

To allow for low power receivers to sleep, the tower should commit to a schedule of

segments for a short period of time. This commitment is the highest level of framing from

a tower, I call it a package. A package contains a sequence number and schedule which

104

version seqnum package size

(RDS groups)

schedule size

(RDS groups) #cols
#segs

4 32 16 16 4 4

2

col 1 size

...

2

col 2 size col m hashes

[col m, seg 1] [col m, seg n]

8-64 8-64

...

12

seg 1 size

(bytes)

...

12

seg n size

(bytes)

segment 1

...

segment n

0-32760 0-32760

1. Header

2. Hashes

3. Segment sizes

and segments

noaa.temp.fcast

cnn.politics.us

bitcoin.ø.ø

H(noaa)

H(cnn)

H(bitcoin)

H(temp)

H(politics)

H(ø)

H(fcast)

H(us)

H(ø)

25

200

125

Payload

size (bytes)

Hierarchical

data identifier

25

200

125

Header Hashes
Segment sizes

and segments Signature

464

...4. Signature

col 1 hashes

[col 1, seg 1] [col 1, seg n]

8-64 8-64

...

(2
m

bytes) (2
m

bytes)

Figure 5.5: Abbie package structure

maps from hierarchical content names to the time when their data (called segments) will

be broadcast. In a package, after the schedule is the segments advertised in the schedule.

The final data in the package is a signature that binds the package to the tower which

allows receivers to verify future retransmissions of the package.

Framing The beginning of a package, the segments within a package, and the signature

are delimited. This is driven by the principle that a radio’s wake-up time varies and a

receiver should be able to detect the start of the schedule or segment they want to receive.

I use the RDS B group as a delimiter (16 modifiable bits) then I follow it with the data in

RDS A groups (37 modifiable bits).

Naming To allow receivers to know what segments are coming in a package, I must pro-

vide a naming scheme that is expressive, but compact enough to work on low-bandwidth

broadcast links. For expressiveness, Abbie supports hierarchical namespaces. As an ex-

ample, noaa.temp.fcast can be used to represent a temperature forecast message from

NOAA. Abbie imposes no restrictions on the namespace; applications may prefer to use

self-certifying instead of human-readable names.

For conciseness, Abbie constructs SHA256 hashes of each level of the namespace

hierarchy. In my example, noaa.temp.fcast would result in H(noaa), H(temp), and

H(fcast). More specific levels have a lower probability of collision within the higher

105

level since they inherit the specificity of the higher levels. So I propose decreasing hash

size for more specific levels in the name. For example H(noaa) is 8 bytes, H(temp) is 4

bytes, H(fcast) is 2 bytes.

This is similar to naming schemes proposed in information-centric networking [34];

except for compactness I do not include the principal who owns the data; the notion of

requiring data ownership does not directly translate to broadcast, but applications in Abbie

may include sender verification in their payloads. Also, information-centric networking

does not require compactness to the same extent.

Power saving The order of the schedule (Figure 5.5) is such that low power receivers

can shut off in the middle of the schedule, as soon as they determine that the package does

not contain any segments they are interested in. Low power receivers can also turn off

between segments they are subscribed to. The package and schedule sizes appear early in

the schedule header so that, at any point, the receiver can turn off and skip over the rest

of the schedule or the rest of the package. Skipping a small segment or schedule may not

save any energy because of the wake and sleep time and power consumption of the RDS

hardware and the device it is running, but skipping longer segments will save energy.

In the schedule, I represent the segment name hashes with a matrix (Figure 5.5 top

left), where each row is the full name of segment and each column corresponds to a level

in the naming hierarchy. If there are m items and the longest name captures n levels in

the namespace hierarchy, then there is an (m + 1) × (n + 1) matrix, with shorter names

containing null entries. Transmitting the schedule therefore reduces to transmitting this

matrix. I provide an example in Figure 5.5. For ease of exposition, I use an adjacency

106

Figure 5.6: RDS-to-LAN bridge with integrated antenna. The SD card stores all broad-
casts for long term access and retransmission.

matrix representation, but large discrepancies in the sizes of the names (the number of

columns) could merit more compact, sparse matrix representations.

A primary goal with the scheduling format is to allow receivers to identify as early

as possible whether they are interested in the upcoming transmissions, so that, if none

are of interest, they may quickly go to sleep. To this end, the matrix of data names is

delivered column-by-column. Consider the example in Figure 5.5; a receiver who is not

interested in transmissions pertaining to noaa, cnn, or bitcoin has sufficient information

upon receiving the first column to realize it should go to sleep, and to determine when to

wake up to obtain the transmitter’s next schedule.

Verification The tower signs each package. This assists retransmission by allowing re-

ceivers to verify retransmissions they receive were originally sent by the tower. Due to

the throughput constraint signatures need to be as small as possible. Therefore I used the

233-bit Koblitz curve, elliptic curve signatures.

5.2.3 RDS-to-LAN bridge

To realize my vision of a pervasive deployment of Abbie receivers in Internet-connected

devices, I designed the RDS-to-LAN bridge pictured in Figure 5.6. The bridge connects

to a USB port on a PC or OpenWRT home router. The bridge’s microcontroller runs the

107

full receiver software. It even verifies ECC signatures by running OpenECC [67], an ECC

implementation for embedded systems, on its 24 MHz CPU. It also stores the packages

on its on-board MicroSD card. The bridge also forwards every RDS group to the router

so it can multicast them on the LAN to other receivers.

5.2.4 Receiver software

I implemented a receiver in C that runs on the RDS-to-LAN bridge embedded system,

on a mobile phone, and on laptops. My design takes advantage of the continuous stream

nature of broadcasts; a receiver can easily detect that it missed a transmission by observ-

ing a missing sequence number. Receivers without power constraints can participate in

a receiver-driven retransmission system. They receive constantly, store packages locally,

and can serve them to other receivers via a DHT. Receivers with power constraints lis-

ten only when there is a schedule or something interesting in the current schedule. The

receiver can receive broadcasts from a local receiver (as is the case with an FM-enabled

mobile phone) or over LAN multicast from an RDS-to-LAN bridge.

Subscription Applications ask the receiver to subscribe to Abbie segments. The re-

ceiver’s subscription service is a basic TCP server that takes subscriptions as input and

outputs segments to applications. The subscription message is simply the hierarchical

name of the segment, such as dns.google.www and permits wildcards such as dns.*.*.

Recall that each fragment of this name is hashed, and only a prefix of that hash sufficient

to be unique, is transmitted by the tower.

The client application can specify whether it would like the last segment the receiver

stored or the next segment it receives. The last segment is useful when, e.g., a laptop goes

108

to sleep and would like to determine whether it missed any broadcasts when it wakes.

The client application can specify if it wants the segments reliably and in-order. When

a receiver providing a reliable subscription misses a package, the receiver eagerly searches

in the retransmission DHT for another receiver that can provide the missing package.

The process of storing data keyed on a variable-length name hash prefix, then retriev-

ing it by any matching prefix, is comparable to longest-prefix matching in IP routing.

Although I currently store subscriptions and recently received data in simple arrays, one

possible alternative is to develop a more scalable data structure consisting of a hierarchy

of patricia tries [62]. Hash prefixes (as transmitted in the schedule) are represented by

nodes in a top-level trie. Each of these nodes then references a trie for the next level in

the hierarchy. At the top “default” prefix, is a list of all subscribers to messages matching

the name so far and the recent messages for that complete name. With this structure, a

wide variety of received names should be compactly stored and accessed.

Retransmission Although RDS receivers with a strong signal have extremely low loss

rates, some applications may require reliability. Abbie has a DHT-based, receiver-driven

retransmission system. The tower facilitates package retransmissions by broadcasting

a signature for every package, which allows receivers to verify that the tower sent the

package they retrieve from the DHT. The tower also inserts every package it broadcasts

into the DHT, so it is guaranteed to be available even if no receiver is able to insert it into

the DHT.

I modified Chroboczek’s Kademila [57] DHT from BitTorrent to lookup addresses

of other receivers that can retransmit packages, instead of lists of peers downloading a

109

file. The name of a package is the 16 bit RDS station ID (PI code) appended with the

package sequence number. For example, the retransmitters store and the tower signs the

raw RDS groups that make up a package. Within these groups is the schedule header

with the package’s sequence number so a retransmission requester can not be fooled into

thinking that any package signed by the transmitter is the package sequence number they

are looking for.

Some always-on retransmitters with good signal strength are helpful to keep the DHT

populated with every package ever transmitted by a tower. The always-on RDS-to-LAN

bridges may serve this purpose. Though, there has been extensive work in developing

DHTs that are resilient to high amounts of churn [36, 81].

When a client wants a retransmission, it looks up the relevant package in the DHT by

its package name. The node that responds, serves the retransmission from its basic Abbie

TCP server. The a client only stores a package if it can verify the signature.

5.3 Applications

In this section I describe how Abbie can change the way we think about distributed ap-

plications. Broadcast can eliminate the need for adaptive load balancing with short DNS

TTLs. Also, broadcast allows us to reset a large number of hosts without knowing about

them.

5.3.1 Push: DNS cache updates

Large content providers commonly perform load balancing across their servers by set-

ting short TTLs in their authoritative DNS responses. For instance, Google and Akamai

commonly use TTLs of just a few minutes. Such low TTLs provide some assurance that

110

if a provider changes its load balancing strategy—for instance in response to a surge in

demand or a failure—then users will pull updates before long. On the other hand, with

this strategy, a provider p must always set its TTLs to no greater than the amount of time

p would be willing to allow its users to be out of sync. This can result in superfluous

queries and increased network congestion.

When using DNS TTLs in this manner, the trade-off between responsiveness and com-

munication overhead is unavoidable because it is in essence a polling system. Providers

force users to effectively poll their servers in case there is a new load balancing strategy.

Here, I describe a system that I have implemented that uses Abbie to instead push DNS

changes via broadcast. Receivers subscribe to segments from dns.*; to support power-

efficient receiver-side filtering, the names are hierarchical, of the form dns.google.www.

When the router receives such a segment, it checks whether the DNS name matches one

of its client’s subscriptions, and if so, receives and stores the corresponding segments.

Round-robin DNS load balancing allows a resolver to cycle through a list of IP ad-

dresses that map to a domain in order to spread the load to those various servers. To

distributed load while having a single broadcast message, I instead broadcast all of the

IP addresses, resulting in a segment of the form: [DNS name, IP1, . . ., IPn], transmitted

in binary format. Were receivers to simply use this list in a round-robin fashion, there

may be spikes of usage at IP1; after all, the broadcast synchronizes this message across

all receivers in a geographic region. Ideally, each receiver would get its own random

sample of this list, but broadcast messages are equivocation-resilient. While both of these

properties—synchronized and equivocation-resilient communication—are useful in other

applications, they present a minor challenge here. Instead, receivers are expected to per-

111

mute the list before using it.

In my implementation, the router permutes the list of IP addresses, adds it to /etc/hosts,

and sends −HUP to dnsmasq, causing it to locally update to this new state. My router sets

the TTL to zero, keeping most1 clients from caching the responses, and to instead go to its

router each time it wishes to access a given domain, ensuring the most up-to-date entries.

Note that this local polling is precisely what large providers try to do today but in the

wide area; in my setting, if there is any redundant traffic, it is isolated to the user’s home

network.

5.3.2 Anonymous and synchronous: mass reset

Reconfiguring or, in the extreme case, rebooting nodes in a large distributed system can

be challenging. Traditional approaches complicate either the task of the administrator—

operators often must maintain updated contact information like IP addresses or phone

numbers of all of the devices they manage—or the protocol designer—reconfiguring rout-

ing in a network can cause cascading consistency issues.

The inherent properties of broadcast make it nicely suited for supporting large scale re-

configuration. Broadcasts are receiver anonymous, the administrator only needs to know

the frequency that the receivers will be listening on, not the identifiers of the machines

themselves. Further, Broadcast also is an inherent source of synchronization. Resetting a

large number of devices in a metropolitan area can occur within milliseconds. Synchro-

nized reset can also be achieved via multi-unicast with clock synchronization, but in a

sense, broadcast simultaneously provides distribution and synchronization.

1I have observed that some browsers interpret TTL=0 differently; Firefox, for instance, caches for sev-
eral minutes, while Safari does not appear to cache at all.

112

40

24

22

19

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0%

0.6%

11%

28%

R
ec

ei
v

er
 S

N
R

 (
d

B
)

L
o

ss
 r

at
e

Package sequence number

Figure 5.7: Broadcasting 148 packages (x-axis), each 160 bytes, from a 3 kW tower to
four Abbie RDS-to-LAN bridges (y-axis). A black box indicates the package’s signature
verified, a white box indicates either the signature did not verify or there were missing
RDS groups. RDS error correction is disabled. The high SNR receivers capture > 99%
of the packages. The low SNR receivers miss many, but not all, and they only miss three
of the same packages.

This example, along with the DNS example in this section, demonstrates that Abbie

can facilitate protocol design and administration of large-scale distributed systems.

5.4 Evaluation

In this section, I describe my “end-to-end” experiments with a metropolitan area deploy-

ment of four Abbie USB receivers listening to a 3kW tower. The Abbie transmitter in-

terfaces with the station’s Audemat FMB80 RDS encoder via the UECP protocol. The

goals of the experiments are to determine whether messages transit the gateways in iden-

tical time to permit synchronized delivery, and to provide microbenchmarks of the FM

receiver IC’s startup time, which affects the ability to sleep to conserve power.

5.4.1 Metropolitan deployment

I evaluated Abbie end-to-end across a metropolitan area with a 3 kW commercial FM

radio station located in the center of Ann Arbor, Michigan, and four RDS-to-LAN bridges.

The station agreed to let me send Abbie’s RDS messages 50% of the time with their

artist and track title RDS messages occupying the other 50%. Because Abbie transmits

with a different RDS message identifier than the station, it should not interfere, and I am

113

Location SNR Distance from tower
Apartment building 40 0.85 km
Apartment building 24 5.5 km
University building interior 22 2.7 km
Apartment building 19 8.0 km

Table 5.1: Abbie prototype receiver locations in the testbed deployment

not aware of any complaints of radio problems from listeners of the station.

In my end-to-end experiment, I transmitted 148 Abbie packages each containing one

100 byte segment simultaneously to the four receivers and observed if the signatures veri-

fied successfully. Figure 5.7 shows the results. Two receivers are in a high signal strength

area, while two are in a low signal strength area, as shown in Table 5.1. Consistent with

the mobile experiment shown in Figure 5.1, the high signal strength receivers received

over 99% of the packages. The 24 SNR receiver operates on the edge of this high recep-

tion probability region, and it only had errors in one package.

The low SNR receivers lost several packages, but only three of the same packages,

confirming my hypothesis that losses occur independently at receivers. (Those caused by

line-of-sight lightning may be correlated; the weather was calm during this experiment.)

That losses are infrequent for high signal strength is consistent with my low-level RDS bit

error experiment, from Section 5.1.1, that indicated errors are not evenly spaced through-

out the transmission: Even distribution of errors would would cause the receivers to lose

many, if not all, of the packages. This is an encouraging result. It indicates that receivers

in high signal strength areas may have a very low loss rate, and that all receivers in low

signal strength areas do not necessarily lose the same packages.

114

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
o
w

e
r

(m
W

)
Time (s)

Figure 5.8: The energy consumption of the RDS-equipped Samsung Galaxy S while
skipping two packages because their schedule does not match then finally receiving the
short segments at the end. The boxes at the top show the broadcast. Green is the schedule,
blue are the segments and red is signature.

5.4.2 Abbie’s energy consumption on an Android phone

A small number of smartphones already include FM RDS receivers, so I can evaluate

the energy consumption of receiving a desired segment on a device where energy is a

primary concern. To test the energy consumption of Abbie, I ran the receiver software on

a Samsung Galaxy S Android phone. This phone has a built-in si4709 FM receiver IC.

Figure 5.8 shows the power of the phone as it receives a package header (1st green)

and determines determines that the desired segment is not coming in this package. So it

skips over the rest of the package’s segments (1st and 2nd blue) and signature (2nd red).

Then, the smartphone wakes up to receive the next schedule (2nd green). It sees this

schedule contains two desired segments that immediately follow the schedule (2nd and

3rd blue) so it stays awake to receive them.

The phone says awake five seconds longer than it should during the first segment (1st

blue) because the Android operating system does not suspend as aggressively as possible.

The receiver software holds a wake lock when it wants to receive a part of a package and

releases it when it is done. I measured the power consumption of the phone when it sees

115

P
ro

b
ab

li
li

ty

Relative time of arrival (ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Figure 5.9: Measurements of the synchronization of two RDS-to-LAN bridges.

a schedule with two long segments it does not want and one with segments that it does. It

does skip over most of the two segments that it does not care about.

5.4.3 Abbie end-to-end synchronization

One of the advantages of a broadcast system is the inherent synchronization of receivers.

Applications can assume that within a certain period of time when receiver delivers a

message, all other receivers do so as well. However in Abbie there are several factors that

decrease the synchronization of the receivers. These factors include: the synchronizer in

the FM RDS receiver IC, the verification of digital signatures, and the USB bridge to the

residential routers.

I evaluate the end-to-end synchronization of two Abbie RDS-to-LAN bridges. To do

so, I measure the relative time of arrival of an Abbie package received simultaneously by

RDS-to-LAN bridges. The bridges send an Ethernet packet when the package signature

verifies to a laptop running tcpdump (Figure 5.9). For most of the transmissions the

packages arrive within 5 ms of each other. Li et al. [52] observe that there is a small

but unpredictable time between receiving an RDS group and the receiver IC raising an

interrupt.

116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

Time from power-on to receiving first correct RDS message (ms)

Figure 5.10: CDF of time from powered off to receiving first RDS message for the si4705
IC.

5.4.4 RDS receiver cold boot

RDS receiver ICs are not designed for rapid startup. To determine the feasibility of cy-

cling the RDS receiver IC on and off based on schedules, I must measure the time it takes

for the IC I used on the RDS-to-FM bridge to startup and receive the first RDS group. Fig-

ure 5.10 shows the results of this study. Surprisingly, the median startup time is 599 ms.

The longer startup times may be due to failures of the automatic tuning mechanism or the

RDS synchronization.

5.5 Summary

In this chapter, I described adapting FM RDS to become a reliable broadcast Internet last-

mile link by building on FM RDS’s transmission media and equipment. I drove around a

metropolitan area to evaluate the inherent reliability of FM RDS: even with a low power

3 kW transmitter, the there were no losses within a 5 km radius from the transmitter.

I combined FCC service contours and US census estimates to determine the coverage

of deployed FM transmitters in the US: most of the 10,075 FM stations cover at least

100,000 people and 13% cover over 1 million people. I described how receivers can

be small devices, and how they can store all transmissions they receive for a virtually

117

unlimited time which enables receivers to provide their own retransmission system.

I built a system on top of FM RDS to adapt it to be an Internet last-mile link. I also

described DNS and mass reset applications that would benefit from this reliable service

with the parameters.

I evaluated the full end-to-end system on a 3 kW commercial radio station and demon-

strated the reliability of FM RDS transmission when signal strength is high: even when

it is low, failures are not across all receivers. I implemented receiver software, ran it on a

smartphone with a built-in FM RDS receiver, and measured the phone’s power consump-

tion. These results demonstrated that the smartphone can sleep between transmissions that

it does not subscribe to. I sent broadcasts to two receivers to demonstrate that two inde-

pendent receivers running the end-to-end system mostly deliver a message within 5 ms of

each other. Although adapting FM RDS to be an Internet last-mile link required creating

software and some hardware, I did not modify FM RDS’s transmitters and receivers.

118

Chapter 6

Conclusions and Open Questions

In this dissertation, I observed and improved the reliability of Internet last-mile links by

building off of unmodified transmission media and equipment, and collecting data only

from public measurement infrastructure. These restrictions allowed me to make conclu-

sions about general Internet last-mile link reliability, to improve the reliability of existing

last-mile links, and to build a reliable Internet last-mile downlink. I defended the follow-

ing thesis: By building on existing infrastructure, it is possible to (1) observe the reliability

of Internet last-mile links across different weather conditions and link types; (2) improve

the energy efficiency of cellular Internet last-mile links; and (3) provide an incrementally

deployable, energy-efficient Internet last-mile downlink that is highly resilient to weather-

related failures.

Without privileged data from ISPs, I observed the how weather affects the relia-

bility of last-mile links . In Chapter 3, I correlated weather with observations of last-mile

link failures. I observed link failures without privileged data by pinging last-mile links

before, during, and after forcasted weather. Then I showed how to sift through the noisy

119

pings to find probable last-mile link failures. To accomplish this, I introduced a history-

based probabilistic method that can find intervals when a last-mile link is likely failed.

Also, I used an edge-detection algorithm to detect changes in persistent loss rates. To-

gether, these two tools provided an accurate external observation of time and duration of

failures.

Using my observation and analysis tools, I observed failures induced by wind, rain,

thunderstorms and high temperatures, even when I excluded suspected power outages.

My observations characterize small timescale failures (on the order of days); I believe my

techniques could be used to classify longer timescale failures as well.

Without modifying cellular hardware, firmware, or drivers, or accessing propri-

etary cellular data, I improved the reliability of cellular communication by reducing

wasted energy. In the background Chapter 2, I showed how signal strength has a direct

impact on cellular radio energy consumption, which by far dominates the base energy

consumption of mobile devices. Then in Chapter 4, I showed that the variations in cel-

lular signal strength as a user drives around—when coupled with the presence of flexible

applications, such as email syncing, photo sharing, and on-demand streaming—presents

a significant opportunity to save energy. I designed Bartendr, a practical framework for

scheduling application communication to be aligned with periods of good signal. Bar-

tendr addresses a number of challenges and makes novel contributions, including: track-

based, energy-efficient prediction of signal strength and a dynamic programming-based

procedure for computing the optimal communication schedule. My simulations of drives

demonstrated significant energy savings of up to 10% for email sync and up to 60% for

120

on-demand streaming.

Without modifying a widely-deployed broadcast link, I adapted it to provide the

first reliable broadcast Internet last-mile link. In Chapter 5, I described Abbie, a re-

liable data broadcast system designed to simultaneously support diverse applications on

inexpensive hardware, supporting both Internet-connected and energy-limited devices.

Abbie uses FM RDS because of its extremely low loss rate and extensive coverage. These

properties allows Abbie to operate when other Internet last-mile links cannot. I measured

these properties using FCC and Census data. Using FM RDS as the underlying physi-

cal link introduced several technical challenges such as designing a reliable protocol that

could operate at such a low bitrate, and interfacing with existing RDS transmitters and

receivers. I deployed Abbie and measured its energy consumption and delivery probabil-

ity using: a testbed consisting of custom-designed boards, wireless access points, a real

commercial tower, evaluation boards, and mobile phones.

The primary finding underlying all of this work is that the reliability of Internet last-

mile links can be observed and improved across many different link types and sources

of failures without modifying transmission media and equipment or accessing privileged

data.

6.1 Longevity

The findings in this dissertation will have longevity for the following reasons:

So long as transmission media and equipment are exposed to the elements, weather

121

will continue to be a fundamental source of failures for last-mile links. Moreover, rede-

ploying exposed transmission media and equipment is an endeavor so costly and expan-

sive that it is unlikely to ever happen. As such, I believe there will always be a need to

observe Internet last-mile link failures in the presence of weather, which ThunderPing

does at scale. Finally, my techniques for identifying last-mile link failures from pings are

not restricted to weather, and can be applied to other sources of failure.

So long as smartphones have limited battery capacity, and the radio consumes a sig-

nificant portion of this capacity, energy-efficient communication will continue to be an

important factor in improving reliability. Radios are more energy-efficient when they

have high signal strength, and thus determining when best to send delay-tolerant traffic

benefits from being able to predict future signal strengths. Bartendr requires little in-

formation to predict future signal strength (cell IDs and current signal strength), and is

therefore likely to be applicable even as mobile devices and cellular technologies evolve.

Recent work advocates having applications directly inform the radio of their deadlines

and priorities [39]. Even then, there will continue to be a need to predict signal strength

to determine the most energy efficient time to send.

Although FM RDS broadcasting may not last forever, the part of the spectrum it uses,

VHF, is minimally affected by weather (except for line-of-sight lightning), penetrates

walls, and permits compact receiver antennas. As such, VHF is fundamentally one of the

most reliable broadcast transmission media. Abbie demonstrates how to build a broadcast

Internet last-mile link that benefits from the VHF spectrum’s reliability. The contributions

of this thesis suggest rethinking the use of the VHF spectrum as a reliable last-mile link

for arbitrary data from the Internet (though, hopefully with a much higher bitrate than

122

FM RDS). Abbie’s broadcast scheduling and hierarchical naming, which allow receivers

to ignore transmissions they are not interested in, are not bound to VHF in particular, and

could be applied to any broadcast transmission medium.

6.2 Open questions

I now close my dissertation with a few significant open questions that my work raises:

Although with ThunderPing, I can observe weather-related last-mile link failures, an

open question is: can we predict weather-related failures? If so, how would we use

the predictions? An extremely accurate predictor of weather coupled with a precise un-

derstanding of how weather affects any given last-mile link, would make this problem

straightforward. However, weather forecasts themselves are predictions, and ThunderP-

ing only observes the behavior of a sample of last-mile links. It remains to be seen whether

the error in the forecasts and sampling precludes predicting failures for any given last-mile

link. But perhaps even a moderately accurate prediction, could improve the reliability of

some applications. Identifying which applications could benefit from predicting weather

and how they should react to weather forecasts is another potential area to investigate.

Bartendr periodically predicts signal strength in order to find the most energy efficient

periods to communicate. However, because computing these predictions requires the

smartphone to enter and leave a fully active state quickly, I had to trade off between

prediction accuracy and the energy consumed in making the prediction. This raises the

following question: Would it be possible to reduce the energy consumed making the

prediction by entering and leaving a partially active state? Is it possible to run only

one program and only its required peripherals, and would this result in energy savings?

123

Perhaps smartphone operating systems can only suspend and wakeup a few tasks and

peripherals that they are needed for the prediction.

With Abbie, I demonstrated that FM RDS can be adapted to be an Internet last-mile

link, but an important open question is: what assumptions about FM RDS would not carry

over to a broadcast system with a much higher bitrate. FM RDS’s bitrate is sufficient to

provide for interesting applications such as a mass reset, but a higher bitrate would allow

for more senders, and more data-intensive applications. How would the assumptions

about reliability change? How would the receiver energy consumption change? How

would the coverage change? How would the cost of receiver ICs change? Could low

power microcontroller devices keep up with the pace of broadcasts?

124

Bibliography

[1] 3GPP. Technical realization of Cell Broadcast Service (CBS), 2011.

[2] A. Adelsbach, U. Greveler, and S. Löschner. Anonymous data broadcasting by misuse of
satellite ISPs. In Proceedings of the Chaos Communication Congress (CCC), 2005.

[3] D. Aguayo, J. Bicket, S. Biswas, D. S. J. D. Couto, and R. Morris. MIT Roofnet imple-
mentation, 2003.

[4] Alpha Technologies. Installation and technical manual DOCSYS HMS embedded
transponder, 2004.

[5] G. Ananthanarayanan, M. Haridasan, I. Mohomed, D. Terry, and C. A. Thekkath. Star-
Track: A framework for enabling track-based applications. In Proceedings of the ACM
Conference on Mobile Systems, Applications, and Services (MobiSys), 2009.

[6] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh. White space networking
with Wi-Fi like connectivity. In Proceedings of the SIGCOMM Conference on Data Com-
munication, 2009.

[7] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption in
mobile smartphones: A measurement study and implications for network applications. In
Proceedings of the Internet Measurement Conference (IMC), 2009.

[8] H. Bölcskei, A. J. Paulraj, K. V. S. Hari, R. U. Nabar, and W. W. Lu. Fixed broadband
wireless access: State of the art, challenges, and future directions. IEEE Communications
Magazine, 2001.

[9] British Broadcasting Corporation, Independent Broadcasting Authority, and British Radio
Equipment Manufacturers Association. Broadcast Teletext Specification, 1978.

[10] J. Canny. A computational approach to edge detection. In IEEE Pattern Analysis and
Machine Intelligence, 1986.

[11] J.-M. Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM Transactions on
Computer Systems (TOCS), 1984.

[12] B. Charny. Metricom files for bankruptcy protection. CNET, 2001.

125

[13] W. Ciciora, G. Sgrignoli, and W. Thomas. An introduction to Teletext and Viewdata with
comments on compatibility. IEEE Transactions on Consumer Electronics, 1979.

[14] Cisco. GS7000 DOCSYS status monitor transponder installation and operation guide,
2011.

[15] Cisco Systems. Comcast successfully deploys Cisco Network Registrar
for DHCP and DNS services for IPv4 and IPv6. http://blogs.cisco.com/sp/
comcast-successfully-deploys-cisco-network-registrar-for-dhcp-and-dns-services-for-ipv4-and-ipv6/.

[16] ClearChannel. Leading radio broadcasters unite to bring FM song tagging to everyone,
2008.

[17] I. Constandache, R. R. Choudhury, and I. Rhee. Towards mobile phone localization with-
out war-driving. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), 2010.

[18] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox. EnLoc: Energy-
efficient localization for mobile phones. In IEEE INFOCOM Mini-conference, 2009.

[19] S. C. Cripps. RF Power Amplifiers for Wireless Communications. Artech House, 2006.

[20] CTIA - The Wireless Association. Semi-annual wireless industry survey, 2011.

[21] CTIA-The Wireless Association. Wireless emergency alerts on your mobile device. http:
//www.ctia.org/wea.

[22] J. Davis. Intercast dying of neglect. CNET, 1997.

[23] Department of Telecommunications. National frequency allocation table, 2011. Draft.

[24] N. Ding, D. Wagner, X. Chen, Y. C. Hu, and A. Rice. Characterizing and modeling the
impact of wireless signal strength on smartphone battery drain. In Proceedings of the ACM
International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS), 2013.

[25] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characterizing residential
broadband networks. In Proceedings of the Internet Measurement Conference (IMC), 2007.

[26] R. Droms. RFC 2131: Dynamic Host Configuration Protocol, 1997.

[27] dslreports.com. ISP Rolodex. http://www.dslreports.com/isplist?c=us, 2011.

[28] Electronic Communications Committee. The European Table of Frequency Allocations
and Applications in the Frequency Range 8.3 kHz to 3000 GHz, 2013.

[29] European Broadcasting Union / RDS Forum. RDS Universal Encoder Communication
Protocol, 1997.

126

http://blogs.cisco.com/sp/comcast-successfully-deploys-cisco-network-registrar-for-dhcp-and-dns-services-for-ipv4-and-ipv6/
http://blogs.cisco.com/sp/comcast-successfully-deploys-cisco-network-registrar-for-dhcp-and-dns-services-for-ipv4-and-ipv6/
http://www.ctia.org/wea
http://www.ctia.org/wea
http://www.dslreports.com/isplist?c=us

[30] FCC transmitter contour database. http://transition.fcc.gov/ftp/Bureaus/MB/Databases/fm
service contour data.

[31] Federal Communications Commission. Emergency Alert System 2007 TV (including dig-
ital TV) handbook.

[32] Federal Communications Commission. FCC rules and regulations for VoIP 911, 2005.

[33] Federal Communications Commission Office of Engineering and Technology Policy and
Rules Division. FCC Online table of frequency allocations, 2013.

[34] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in content-
oriented architectures. In Proceedings of the ACM SIGCOMM Workshop on Information
Centric Networking (ICN), 2011.

[35] R. Gibson. Elections online: Assessing Internet voting in light of the Arizona Democratic
Party. Political Science Quarterly, 2001.

[36] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed systems. In
Proceedings of the SIGCOMM Conference on Data Communication, 2006.

[37] F. Hartung, U. Horn, J. Huschke, M. Kampmann, T. Lohmar, and M. Lundevall. Delivery
of broadcast services in 3G networks. IEEE Transactions on Broadcasting, 2007.

[38] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, and J. Bannister.
Census and survey of the visible Internet. In Proceedings of the Internet Measurement
Conference (IMC), 2008.

[39] B. D. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin, and D. Watson. Informed mobile
prefetching. In Proceedings of the ACM Conference on Mobile Systems, Applications, and
Services (MobiSys), 2012.

[40] D. Hogg and T.-S. Chu. The role of rain in satellite communications. Proceedings of the
of the IEEE, 1975.

[41] Interactive Advertising Bureau (IAB). Internet advertising revenue report - 2012 full year
results, 2013.

[42] International Electrotechnical Commission (IEC). IEC 62106, 2009.

[43] International Game Developers Association. 2008 - 2009 Casual Games White Paper.

[44] F. B. Jewett. The modern telephone cable. In Proceedings of 26th annual convention of
the American Institute of Electrical Engineers, 1909.

[45] Y. Jin, N. Duffield, A. Gerber, P. Haffner, S. Sen, and Z.-L. Zhang. NEVERMIND, the
problem is already fixed: Proactively detecting and troubleshooting customer DSL prob-
lems. In Proceedings of the International Conference on emerging Networking EXperi-
ments and Technologies (CoNEXT), 2010.

127

http://transition.fcc.gov/ftp/Bureaus/MB/Databases/fm_service_contour_data
http://transition.fcc.gov/ftp/Bureaus/MB/Databases/fm_service_contour_data

[46] D. Kopitz and B. Marks. RDS: The Radio Data System, 1999.

[47] J. Krikke. Sunrise for energy harvesting products. IEEE Pervasive Computing, 2005.

[48] J. Krumm and E. Horvitz. Predestination: Where do you want to go today? IEEE Computer
Magazine, 2007.

[49] H. Kushner and P. Whiting. Convergence of proportional-fair sharing algorithms under
general conditions. IEEE Transactions on Wireless Communications, 2004.

[50] A. LaMarca et al. Place Lab: Device positioning using radio beacons in the wild. In IEEE
Pervasive Computing, 2005.

[51] T. Lemon. ISC’s DHCP distribution. In Proceedings of the USENIX Annual Technical
Conference Freenix Track, 1998.

[52] L. Li, G. Xing, L. Sun, W. Huangfu, R. Zhou, and H. Zhu. Exploiting FM Radio Data
System for adaptive clock calibration in sensor networks. In Proceedings of the ACM
Conference on Mobile Systems, Applications, and Services (MobiSys), 2011.

[53] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F. Loureiro, and Q. Wang. Energy efficient
GPS sensing with cloud offloading. In Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2012.

[54] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang. Experiences in a 3G net-
work: Interplay between the wireless channel and applications. In Proceedings of the ACM
Conference on Mobile Computing and Networking (MobiCom), 2008.

[55] A. Lyner. Experimental Radio Data System (RDS): A survey of reception reliability in the
UK, 1987.

[56] MaxMind, Inc. GeoIP city database. http://www.maxmind.com/app/city, 2011.

[57] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer information system based on
the XOR Metric. In Proceedings of the Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[58] G. N. Mendenhall and R. J. Fry. FM broadcast transmitters. NAB Engineering Handbook,
9th edition, 1999.

[59] Microsoft Corp. MSN Direct. http://www.msndirect.com/.

[60] Microsoft Corp. MSN Direct services overview. http://msdn.microsoft.com/en-us/library/
cc510527.aspx.

[61] J. Mohen and J. Glidden. The case for Internet voting. Communications of the ACM
(CACM), 2001.

[62] D. R. Morrison. PATRICIA—practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM, 15(4):514–534, 1968.

128

http://www.maxmind.com/app/city
http://www.msndirect.com/
http://msdn.microsoft.com/en-us/library/cc510527.aspx
http://msdn.microsoft.com/en-us/library/cc510527.aspx

[63] National Association of Broadcasters. Radio rocks my phone. http://www.
radiorocksmyphone.com.

[64] National Weather Service. NOAA weather radio all hazards. http://www.nws.noaa.gov/
nwr/.

[65] National Weather Service. NWS public alerts in XML/CAP v1.1 and ATOM formats.
http://alerts.weather.gov/.

[66] A. J. Nicholson and B. D. Noble. BreadCrumbs: Forecasting mobile connectivity. In
Proceedings of the ACM Conference on Mobile Computing and Networking (MobiCom),
2008.

[67] OpenECC. An open source library for elliptic curve cryptosystem. http://openecc.org/.

[68] J. D. Parsons. The Mobile Radio Propagation Channel. John Wiley & Sons Ltd, 2000.

[69] C. Peng, S.-B. Lee, S. Lu, H. Luo, and H. Li. Traffic-driven power saving in operational
3G cellular networks. In Proceedings of the ACM Conference on Mobile Computing and
Networking (MobiCom), 2011.

[70] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive
technology into the Internet. In Proceedings of the Workshop on Hot Topics in Networks
(HotNets), 2002.

[71] I. Poese, S. Uhlig, M. A. Kaafa, B. Donnet, and B. Gueye. IP geolocation databases:
Unreliable? In Computer Communication Review (CCR), 2011.

[72] G. P. Pollini. Trends in handover design. IEEE Communications Magazine, 1996.

[73] J. Postel. RFC 792: Internet Control Message Protocol, 1981.

[74] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. TOP: Tail optimiza-
tion protocol for cellular radio resource allocation. In Proceedings of the IEEE Interna-
tional Conference on Network Protocols (ICNP), 2010.

[75] L. Quan, J. Heidemann, and Y. Pradkin. Trinocular: Understanding internet reliability
through adaptive probing. In Proceedings of the SIGCOMM Conference on Data Commu-
nication, 2013.

[76] RadioDNS. http://www.radiodns.org.

[77] A. Rahmati and L. Zhong. Context-for-wireless: Context-sensitive energy-efficient wire-
less data transfer. In Proceedings of the ACM Conference on Mobile Systems, Applications,
and Services (MobiSys), 2007.

[78] A. Rahmati, L. Zhong, V. Vasudevan, J. Wickramasuriya, and D. Stewart. Enabling perva-
sive mobile applications with the FM radio broadcast data system. In Proceedings of the
Workshop on Mobile Computing Systems and Applications (HotMobile), 2010.

129

http://www.radiorocksmyphone.com
http://www.radiorocksmyphone.com
http://www.nws.noaa.gov/nwr/
http://www.nws.noaa.gov/nwr/
http://alerts.weather.gov/
http://openecc.org/
http://www.radiodns.org

[79] B. Ray. Microsoft ditches MSN Direct. The Register, 2009.

[80] RDS Forum. RDS Technical Specification, 2009.

[81] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In Proceed-
ings of the USENIX Annual Technical Conference (ATC), 2004.

[82] RIPE NCC. RIPE Atlas. http://atlas.ripe.net, 2012.

[83] SamKnows. Accurate broadband performance information for consumers, governments
and ISPs. http://www.samknows.com, 2013.

[84] A. Schulman and N. Spring. Pingin’ in the rain. In Proceedings of the Internet Measure-
ment Conference (IMC), 2011.

[85] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C. Grunewald, K. Jain,
and V. N. Padmanabhan. Bartendr: A practical approach to energy-aware cellular data
scheduling. In Proceedings of the ACM Conference on Mobile Computing and Networking
(MobiCom), 2010.

[86] A. Sharma, V. Navda, R. Ramjee, V. Padmanabhan, and E. Belding. Cool-Tether: En-
ergy efficient on-the-fly WiFi hot-spots using mobile phones. In Proceedings of the Inter-
national Conference on emerging Networking EXperiments and Technologies (CoNEXT),
2009.

[87] Y. Shavitt and E. Shir. DIMES: Let the Internet measure itself. Computer Communication
Review (CCR), 2005.

[88] M. Z. Shaq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and J. Wang. A first look at cellular
network performance during crowded events. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2013.

[89] L. Shi, C. Liu, and B. Liu. Network utility maximization for triple-play services. Computer
Communications, 2008.

[90] W. T. Smith and W. L. Roberts. Design and characteristics of coaxial cables for Community
Antenna Television. IEEE Transactions on Communication Technology, 1966.

[91] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using PlanetLab for network research:
Myths, realities, and best practices. ACM SIGOPS Operating Systems Review, 2006.

[92] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè.
Broadband Internet performance: A view from the gateway. In Proceedings of the SIG-
COMM Conference on Data Communication, 2011.

[93] P. Svensson. Verizon winds down expensive FiOS expansion. Associated Press, 2010.

[94] W. L. Tan, F. Lam, and W. C. Lau. An empirical study on 3G network capacity and
performance. In Proceedings of the IEEE Conference on Computer Communications (IN-
FOCOM), 2007.

130

http://atlas.ripe.net
http://www.samknows.com

[95] N. D. Tripathi, J. H. Reed, and H. F. VanLandingham. Handoff in cellular systems. IEEE
Personal Communications, 1998.

[96] United States Office of Personnel Management. Guide to telework in the federal govern-
ment, 2011.

[97] US Census data. http://www.census.gov/popest/data/datasets.html.

[98] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang. Towards street-level
client-independent IP geolocation. In Proceedings of the Symposium on Networked Systems
Design and Implementation (NSDI), 2011.

[99] B. Wong, I. Stoyanov, and E. G. Sirer. Octant: A comprehensive framework for the ge-
olocalization of Internet hosts. In Proceedings of the Symposium on Networked Systems
Design and Implementation (NSDI), 2007.

[100] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wobber. How dynamic are IP
addresses? In Proceedings of the SIGCOMM Conference on Data Communication, 2007.

[101] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope: Application energy metering
framework for android smartphones using kernel activity monitoring. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2012.

[102] H. Yu, A. Rahmati, A. A. Sani, L. Zhong, J. Wickramasuriya, and V. Vasudevan. Data
broadcasting using mobile FM radio: Design, realization and application. In Proceedings
of the International Conference on Ubiquitous Computing (Ubicomp), 2011.

[103] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. Accurate
online power estimation and automatic battery behavior based power model generation for
smartphones. In Proceedings of the IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISS), 2010.

131

http://www.census.gov/popest/data/datasets.html

	Introduction
	Challenges
	Thesis
	Insights
	Contributions

	Background and Related Work
	Observing last-mile link failures
	With privileged data
	Without privileged data

	Improving the energy efficiency of smartphone communication
	Radio energy
	Processing and positioning energy
	Energy-efficient cellular data scheduling

	Improving reliability with data broadcasting
	Datacasting systems
	Broadcast technologies

	Summary

	Weather-related Last-mile Link Failures
	Measuring the responsiveness of Internet hosts during weather
	Finding IP addresses subject to weather
	Pinging (last-mile links) in the rain
	Potential sources of error

	Inferring link-state from pings
	Filtering out intermittent PlanetLab node failures
	Detecting failures with conditional probabilities
	Detecting changes in prolonged loss rate
	Understanding the HOSED state

	Weather history and link type
	The weather at a host during a ping
	Identifying the link type of an IP address

	Failure rate
	UP to DOWN failures
	UP to HOSED failures

	Failure duration
	Does ThunderPing observe the duration of failures?
	How long do UP DOWN failures last?

	Summary

	Energy-aware Cellular Data Scheduling
	Motivation
	Signal varies by location

	Suitable applications
	Synchronization
	Streaming

	Architecture
	Predicting signal with signal tracks
	Scheduling sync
	Scheduling streaming

	Simulation-based evaluation
	Syncing
	Streaming

	Related work
	Predicting wireless network quality
	Stability of cellular signals

	Summary

	Reliable Broadcast Last-mile Link
	The reliability of FM RDS metropolitan radio broadcasting
	FM RDS loss rate is low
	Where there are people, there are FM towers
	Every transmission can be stored
	FM Receivers are small

	Design and implementation of Abbie
	Tower sharing protocol
	Over-the-air protocol
	RDS-to-LAN bridge
	Receiver software

	Applications
	Push: DNS cache updates
	Anonymous and synchronous: mass reset

	Evaluation
	Metropolitan deployment
	Abbie's energy consumption on an Android phone
	Abbie end-to-end synchronization
	RDS receiver cold boot

	Summary

	Conclusions and Open Questions
	Longevity
	Open questions

