
 ABSTRACT

Title of dissertation: INSTITUTIONAL LOGICS, INDIE SOFTWARE
DEVELOPERS AND PLATFORM
GOVERNANCE

Yixin Qiu, Doctor of Philosophy, 2013

Dissertation directed by Professor Anandasivam Gopal
Professor Il-Horn Hann

Department of Decision, Operations &
Information Technologies, R.H.Smith School of
Business

This two-essay dissertation aims to study institutional logics in the context of

Apple’s independent third-party software developers. In essay 1, I investigate the

embedded agency aspect of the institutional logics theory. It builds on the premise that

logics constrain preferences, interests and behaviors of individuals and organizations,

thereby determining the appropriate and legitimate decisions and actions of actors. In

the meantime, most social actors operate in fields characterized by multiple

institutional logics where contradictions exist, allowing individuals and organizations

with opportunities for negotiation and change through exploitation or management of

these contradictions. I specifically study two competing institutional logics:

professional and market logics when they are experienced simultaneously by

independent iOS app entrepreneurs. Using participant observation and semi-structured

interviews, I delineate the ways in which logic tension is reconciled through

mechanisms of logic synthesis in three entrepreneurial areas –app ideation, app

execution and app marketing, and conditions which facilitate or inhibit logic synthesis.

In essay 2, I study the emergence and evolution of field-level logics in the

context of Apple’s desktop developers –Mac indies. Following the cultural

emergence model of field-level logics in Thornton et al. (2012), and the argument that

“field-level logics are both embedded in societal-level logics and subject to field-level

processes that generate distinct forms of instantiation, variation, and combination of

societal logics” (p148), I particularly examine the relationship between resource

environment and the emergence and evolution of field-level logics. Taking advantage

of a critical change in developers’ resource environment –Apple’s opening of the iOS

App Store and subsequently the Mac App Store, and hence its governance model

shifting from mainly a technological platform to a platform that includes a market

exchange place, I identify developers’logics before and after the change, namely, the

software ecosystem logic and platform ecosystem logic. Two ideal types are

constructed for the logics along elemental categories, and a content analysis

demonstrates the logic shift pattern as resource environments change. A further

analysis of the two logics suggests that the software ecosystem logic and platform

ecosystem logic are in contestation at this early stage of institutional change.

INSTITUTIONAL LOGICS, INDIE SOFTWARE DEVELOPERS AND
PLATFORM GOVERNANCE

by

Yixin Qiu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:

Professor Anandasivam Gopal, Co-Chair
Professor Il-Horn Hann, Co-Chair
Professor Ritu Agarwal
Professor Brent Goldfarb
Professor Erve Chambers (Dean’s Representative)

 ©Copyright by

 Yixin Qiu

 2013

ii

Dedicated to my parents: Qianzheng Gu, Yong’an Qiu and my husband Tao Shen.

iii

ACKNOWLEDGMENTS

This dissertation would not have been possible without many people’s

contribution and support. My deepest gratitude is to my co-advisers: Dr. Anand Gopal

and Dr. Il-Horn Hann. It has been a unique and unforgettable experience of

conducting a study on institutional logic using qualitative interpretive methodology

with two economists. I am truly indebted and thankful to them for having faith in my

work, and pushing me to think deep on the theoretical front. They have urged me to

document the methodology more systematically and organize the writing in a more

structured way. I have been very fortunate to work with Anand and Il-Horn. Dr. Ritu

Agarwal has been one of the best academic role models I have ever known. Her

constructive criticism on my conceptual framework has been enormously thought-

provoking. I would also like to thank Dr. Kislaya Prasad for his time in advising the

weekly IS student presentation series. I have benefited a great deal from his comments

on my work. I am grateful to Dr. Brent Goldfarb for a great class and his interest in

my work. His class on entrepreneurship is one of my favorite in the doctoral program.

I have forever learned to keep a critical mind in evaluating the causal inference in any

academic research. Brent’s work on Dot Com Era and technology commercialization

has been great inspirations in my study on app entrepreneurs. I am also immensely

appreciative of Dr. Erve Chambers for his guidance since I was in the Applied

Anthropology program. It is his class and books that introduce me to the world of

culture and fieldwork, which I have continued to use till this day in carrying out my

dissertation research. I wish Erve all the best after his retirement.

I would also like to thank other professors who have been crucial in making

my graduate study experience unforgettable. First and foremost is Dr. Kate Stewart. I

am thankful to her for recruiting me to the doctoral program in the Smith School, for

iv

which my life is forever changed. I am indebted to Dr. Kay Bartol for invaluable

intellectual stimuli during the research meetings. I am grateful to Dr. Siva

Viswanathan for pushing me to work harder on my research and presentation skills,

and to Dr. Samer Faraj for his class, which introduced me to the world of IS research.

I am extremely grateful to the fellow PhD students in the Smith School, many

of whom have become professors in top-tier universities. I would like to especially

thank Jie Mein Goh for her time in listening to my struggle and frustrations during the

dissertation process and offering her insights, Sherae Daniel for her encouragement,

Sri Kudaravalli for his help in polishing my research ideas, and Jiban Khuntia for the

many memorable conversations we have had. I am also grateful for the weekly IS

student presentation series, from which my research has received tremendously

helpful feedback.

I am thankful to all the app developers who have agreed to my interview

request, the MoDevDC meet-up group organized by Pete Erickson, where I conducted

most of my field observations, and ZerionSoftware, for providing me with an

internship opportunity from which I gained invaluable experience for my research.

Last but not the least, this dissertation would not have been possible without

the support of my family: my parents, in-laws and my husband, Tao Shen. Their love,

care and tolerance have helped me overcome constant frustrations during my research

and the writing process.

v

TABLE OF CONTENTS

Essay 1: On Synthesizing Professional and Market Logics in Nascent
Entrepreneurship: A Study of iOS App Entrepreneurs … … … … … … … … … … … … ..1

Essay 2: From invisible hand to visible hand: platform governance and
institutional logic of independent Mac developers, 2001-2012… … … … … … … … ...49

1

Essay1: On Synthesizing Professional and Market Logics in Nascent
Entrepreneurship: A Study of iOS App Entrepreneurs

Abstract

Research in institutional logics indicates that professional and market logics are two
competing institutional logics which often lead to conflict due to differences in their
key attributes such as sources of legitimacy, norms and definitions of success. In this
paper, we study how these conflicting logics are experienced simultaneously by
independent application (app) developer entrepreneurs on the Apple App Store.
Subsequently, we investigate how these app entrepreneurs resolve these conflicts
through a process of logic reconciliation that we term logic synthesis. Using a
practice-based qualitative approach, we identify the logic anchors for a set of app
developers on three entrepreneurial areas –app ideation, app execution and app
marketing. Subsequently, we identify the key processes by which app developers find
ways to resolve the conflict between market and professional logic within these
entrepreneurial areas so that they may achieve a balance between the two logics at the
level of the entrepreneurial area, i.e., achieving logic synthesis. Since synthesis does
not occur in isolation, we also identify and discuss a key set of factors that hinder or
encourage the process of synthesis. Using a set of interviews and field work
methodology, we provide a nuanced model of logic anchoring and synthesis in the
context of the nascent entrepreneur on the App Store, thereby contributing to the
literature on institutional logics, platform ecosystems and nascent entrepreneurship.

Keywords: independent application developers; institutional logic; qualitative
research; nascent entrepreneurship; platform ecosystems

2

1. Introduction

The software development industry has undergone many transformational

changes in the last decade as platforms and customer needs have evolved. The latest

transformation in this industry is the emergence and growth of the app economy,

characterized by small applications that are developed specifically to be implemented

on mobile or hand-held platforms and sold through virtual retail platforms

(MacMillan, Burrows and Ante 2009, Wasserman 2010), the most popular of which is

the Apple App Store. The App Store has been credited with revolutionizing the mobile

apps consumption and production market by “democratizing” digital innovation

(Boudreau 2012, Yoo et al. 2010). Specifically, the App Store has allowed

independent software developers (“indie” developers) to enter the marketplace for

apps by providing access to customers that were previously available only to larger

and more established firms. In effect, the introduction of the App Store has allowed

nascent app entrepreneurs who have identified the needs of niche segments to directly

reap the benefits of their innovative activity.

Nascent entrepreneurs are defined as those individuals who decide to commit

their own time and resources to founding a new firm in the form of a start-up (Wagner

2007). This represents conception, the first stage of a four-stage entrepreneurial

process, of which the other stages are gestation, infancy and adolescence. Using this

definition, many of the indie developers who offer apps on the App Store are nascent

entrepreneurs since their firms are usually founded by 1-2 persons. These indie

developers perform all the activities related to software engineering, including

software design and development, quality assurance and security in order to meet App

Store’s criteria for quality and functionality. At the same time, they are also

responsible for strategically positioning their apps in the marketplace, reacting to

3

competition and marketing their apps effectively. In effect, app entrepreneurs are

required to handle the business practices needed to be competitive in the marketplace

as well as the software engineering aspects of application design and development. It

is often the case that the market demands are in conflict with the statutes of software

development and design principles for such indie developers. Indeed, this conflict is

enshrined in the ideal type construction of professional and market logic proposed

within the institutional logics perspective (Thornton 2002, 2004, Thornton, Ocasio

and Lounsbury 2012). A natural question arises –if such conflicts from contrasting

logics are systematic in the environment that these app entrepreneurs operate in, how

then do they resolve these conflicts on an ongoing basis? This central question forms

the focus of this paper.

The theory of institutional logic builds on the premise that society consists of a

set of interdependent and yet contradictory institutional logics and is rooted in seminal

work by Friedland and Alford (1991), followed by Thornton and her colleagues (1999,

2002, 2004, 2005, 2012). These logics include logic of the family, community,

religion, state, market, profession and corporation. These logics dictate actions and

decisions that are considered legitimate and rational, depending on the context of a

particular institutional order. Understanding these logics is important because of the

two levels of influence they wield on social actors (firms, individuals or collectives).

First, logics constrain preferences, interests and behaviors of individuals and

organizations, thereby determining the appropriate and legitimate decisions and

actions of actors. Second, most social actors operate in fields characterized by

multiple institutional logics where contradictions exist (Dunn and Jones 2010, Yeow

and Faraj 2011), allowing individuals and organizations with opportunities for

negotiation and change through exploitation or management of these contradictions.

4

Building on this literature, in this paper we focus on the dynamics between logic

of the profession and logic of the market in particular, and examine how they both

shape and are appropriated by indie app developers on the Apple App Store. On one

hand, app developers follow the professional logic rooted in software engineering

principle as well as the accepted norm of user-directed innovation in the software

profession (Von Hippel 1986). The focus here is on developing apps that meet their

own needs and provide the most elegant or satisfying engineering solutions,

regardless of cost or revenue implications (Wasserman 2010). On the other hand, the

logic of the market within the App Store requires developers to be highly responsive

to the platform owner’s control in the market place and the extremely competitive and

volatile market environment, wherein the focus is on adaptation to platform policies,

first-mover advantages, operational efficiency, and an emphasis on customer needs.

Clearly, these two competing logics experienced by individual nascent entrepreneurs

on the App Store create “conflicting pressures on their cognitive and behavioral

capacities” (Thornton et al. 2012, p. 57), which need to be reconciled in a systematic

manner (Jain, George and Maltarich 2009, Eikhof and Haunschild 2007, Tschang

2007).

Our study delineates the antecedents and the processes by which this logic

reconciliation is achieved. We build on the argument that particular circumstances

experienced by individuals will trigger different goals and schemas and shape their

behaviors (Thornton et al. 2002, Ross and Nisbett 1991). Our work here also answers

the call issued by Thornton et al. (2012) for more research at the individual-

institutional-field levels. To that end, we conduct a qualitative study of app developers

in the Mid-Atlantic region and address the following research objectives. First, we

identify what attributes constitute professional and market logic for app developers

5

and how these logics are manifested in app developers’ specific entrepreneurial

practices. Second, we identify factors that influence the manner in which app

developers reconcile conflicting logics as part of their working process. Finally, we

identify the specific processes that app developers use in managing logic conflict.

From our qualitative data, we are able to provide a richer and more comprehensive

model of logic conflict and reconciliation carried out by app developers on the fast-

moving, competitive App Store.

Our study contributes to the institutional logics literature in three significant ways.

First, we delineate specific attributes of the professional and market logic in the

context of App entrepreneurs. The conceptualization of market logic here is

particularly interesting. Because the App Store market is created and governed by

Apple as the platform owner, the instantiation of market logic and its implications for

legitimacy and strategic behavior by app developers differs considerably from

descriptions of market logic seen in the literature where there is no such central

controlling figure (Thornton 2001, 2002, 2004). Thus, our description of market logic

is a marked departure from extant literature and is rooted in contexts where software

platforms dominate (Parker and van Alstyne 2008).

A second contribution of our work is to identify contexts where professional logic

is not sacrificed in favor of market logic. Most of the extant literature on dynamics

between professional and market logic emphasizes the notion that in the presence of

conflict, professional logic tends to lose out to market logic. However, it is possible

that some agents sacrifice elements of market logic in favor of professional logic in

order to attain success. In the App Store context, we observe that both logics influence

individual practices, and that conflict is reconciled in both directions. We term this

“logic synthesis”, a more balanced view of interaction between market and

6

professional logic that does not start with the bias of one-directional movement from

professional to market logic yet allows a more expansive discussion of antecedents of

logic reconciliation. Our study also advances theorizing on the microfoundations of

institutional logics (Thornton et al. 2012) by describing how the presence of multiple

logics trigger and enable individual behaviors and practices on the App Store.

Finally, our work contributes to the literature on nascent entrepreneurs

(Davidsson and Honig 2003, Baron and Ensley 2006) by studying a growing area of

nascent entrepreneurship, i.e., app entrepreneurs. Through our qualitative approach,

we identify three major types of tasks that app entrepreneurs engage in, and provide a

more nuanced analysis of how logic synthesis strategies are developed for each of

these tasks as these entrepreneurs move from conception to gestation and infancy

(Wagner 2007). We start with a review of the relevant theoretical arguments in

professional and market logic in the next section.

2. Theoretical Background –Conflicts between Professional and Market logic
and Logic Synthesis

Institutional logic is broadly defined in the literature as “the socially constructed,

historical patterns of material practices, assumptions, values, beliefs, and rules by

which individuals produce and reproduce their material subsistence, organize time

and space, and provide meaning to their social reality” (Thornton and Ocasio, 1999, p.

804). In other words, institutional logics provide acceptable and legitimate guidelines

for behavior for entities within societal, organizational or individual contexts. The

literature has examined varying competing logics such as the logic of religion,

corporation and market, which act on individuals or groups depending on the context.

Logics are characterized by a set of factors such as the sources of legitimacy, signals

of authority and the existence of unifying norms, each of these help identify the

specific logic (Thornton 2004). In this paper, we specifically address the competing

7

logics that manifest in the context that we study –professional and market logics, and

their conflicts.

Conflict between professional and market logic has been examined in the

literature at societal, organizational and individual levels. At the societal level, prior

work has used a typology of logic ideal types to describe how factors such as sources

of legitimacy, authority, identity, norms, strategy and economic systems vary between

market and professional logics (Thornton 2004, Thornton et al. 2012). At the

organizational level, Thornton (2001, 2002) argues that professional logic emphasizes

personal capitalism with a focus on factors such as personal reputation, personal

networks and organic growth. Alternatively, the market logic here revolves around

market capitalism, where market position, corporate structure, acquisition growth and

capital committed to market return are emphasized. Different firms may choose

different elements within these contrasting logics but in many cases, the industry

tends toward market logic as the dominant logic over time (Thornton 2002).

At the individual or small group level, these logics are individually manifested in

professions that use economic value as legitimizing factors versus professions that use

alternative (often artistic) values as legitimizing factors. Conflict is driven more by

organizational and individual identity and less by alternative forms of capitalism. For

example, Bourdieu’s (1990) theories of artistic and economic logic in practice contend

that “the economic logic of practice is followed when individual benefits are gained

from exchanging goods and services via markets, such as product markets, capital

markets or labor markets. In comparison, artistic logic of practice is marked by the

desire to produce art for art’s sake, where art is an abstract quality that surfaces in

specific aesthetics or individual reactions by the recipient, and needs no external

legitimization” (Bourdieu 1990, Eikhof and Haunschild 2007, p. 526). Because of the

8

contradictions embedded in these two contrasting logics, interactions between

individuals subscribing to one of these two logics tend to engender conflict. In

documenting the 1996 Atlanta Symphony Orchestra Strike, Glynn (2000) shows how

musicians embrace artistic creativity and excellence as symbols of success, while

management and the Board consider financial return as success, leading to conflict. In

a different context, Nag, Corley and Gioia (2007) examine the attempt by a high-tech

R&D organization to transform into a market-oriented organization by grafting new,

non-technological knowledge. Extant knowledge in the firm is driven by scientists

and engineers possessing a pure technology-push mentality focused on developing

cutting-edge technology, often without an obvious commercial application. In contrast,

the new knowledge that was grafted in the organization is represented by executives

who take a market-pull orientation and aim to make the organization market-driven

and customer focused, thereby creating conflict in the firm.

When conflicting logics are experienced by the same individual, negotiations

between the two logics undergo a more intricate process. In the microfoundations

model of institutional logics, Thornton et al. (2012) argue that “humans have multiple,

loosely coupled, and often contradictory social identities and goals. Specific social

situations and interactions shape which social identities and goals get triggered. And

individuals learn multiple contrasting and often contradictory institutional logics

through social interactions and socialization”(p. 80). Applying this argument to the

dynamics between professional and market logic suggests that when both logics are

available and accessible to individuals, the logic that is more salient depends on the

immediate situational characteristics. Furthermore, how individuals deal with the

inherent conflict between professional and market logic is affected by social

interactions with others and the socialization that follows. The literature shows that

9

professionals indeed vary in the degrees to which they are susceptible to making

changes induced by the market logic. For some, professional identities and norms are

more salient even though adapting to the market logic could bring in monetary

benefits. For example, Stern (2004) shows how scientists pay a compensating

differential to participate in science. Studies on open source software suggest that

many developers contribute to writing software out of intrinsic instead of extrinsic

motivations (Roberts, Hann and Slaughter 2006, Shah 2006). Alternatively, other

professionals choose to reconcile the two logics to reach a logic balance (Lampel,

Lant and Shamsie 2000, Tschang 2007). This is especially observable when

professionals establish business based on their domain knowledge and expertise, or

when they experience career transitions. Their role identity may change as skills,

behaviors, and patterns of interaction adapt to meet the demands of the new role (Jain

et al. 2009, Ebaugh 1988, Louis 1980).

Professionals reconcile competing logics through different methods. One method

involves revising their beliefs and behaviors, sometimes involuntarily. For instance,

Eikhof et al. (2007) document how German theatre artists invest extensive effort in

strategic networking (a market logic strategy) to ensure positions in future plays as a

response to idiosyncratic and subjective staffing decisions by stage managers. While

gaining job security, artists compromise part of their artistic passion for economic

benefits. A second method involves not significantly compromising on professional

logic but acquiring elements of market logic to achieve balance. Nag et al. (2007)

show that rather than adopting practices championed by business development and

marketing professionals, R&D engineers and scientists adapted a previous technology

problem into a market problem they could solve. However, they preserved their

professional identity while addressing the logic conflicts through modified

10

professional knowledge practice. Finally, collaboration to acquire market logic can

also accomplish logic reconciliation. Jain et al. (2009) show that professors involved

in technology transfer activity delegate commercialization activity to those who

possess related skills while preserving cherished values associated with being an

academic.

Taking this argument one step further, we also find some evidence for when

market logic is compromised in favor of professional logic. Voronov and De Clercq

(2007) study the Ontario wine industry where success could be driven by both

commercial strategy and a degree of artistic and authentic appeal. The authors find

that in many cases, the dominant logic is one emphasizing artistic authenticity while

concealing their practices on the commercial aspects of the business. Many vineyard

owners sacrifice market logic to gain professional logic under some circumstances.1 A

similar fluidity of identity and logics was observed in Elsbach and Flynn’s study

(2008) of toy designers in a large US corporation, where most designers defined their

creative approach as being “flexible” rather than being excessively market-driven.

These arguments imply that it is likely that professionals in fields with a strong

market and engineering logic may use two approaches to logic balance: one where

professional logic will be sacrificed in pursuit of market logic, and the other where

professional logic will still dominate but may have elements of market logic grafted

on. As it is possible for professionals within the same profession to have diverse

identities, similarly it is conceivable that logic balance may be achieved from either

end-point of the continuum, which is a significant deviation from extant literature.

Building on these arguments, we propose a working definition of logic synthesis for

achieving logic balance. We propose: For logic synthesis to occur, it is necessary to

1 The paper positions these contrasts under the framework of Bourdieu’s (1993) “field of large-scale
production” (FLP) versus “field of restricted production” (FRP).

11

concurrently consider both logics of the profession and of the market. The process of

logic synthesis can occur from either focal logic in an individual facing logic tension.

Logic synthesis therefore involves focal logic compromise, opposite logic extension,

or both, such that a balancing point can be found where the best proportion of the two

logics is achieved for the individual in the specific context.

3. Research Methods

Given the limited theory pertaining to app entrepreneurs’ motivations, strategies

and processes available in the literature, we chose to study logic synthesis through an

inductive, ethnographic study, with a focus on entrepreneurs’ actual practices

(Orlikowski 2000, Schultze and Orlikowski 2004, Levina and Vaast 2005, Levina and

Vaast 2008). Inductive studies are especially useful for developing theoretical insights

when research focuses on areas that extant theory does not address well (Ozcan and

Eisenhardt 2009). The ethnographic approach is especially effective in grasping the

culture of an emerging group of population in an open-ended manner. It is therefore a

good fit for the research questions at hand.

We restrict our sample to include developers who have published at least one app

on the App Store. Since we are interested in nascent entrepreneurs, we focus only on

those who build bootstrapped ventures with no external financing support. This can

include either full-time or part-time businesses. We exclude hobbyists who publish

apps on the App Store only for fun and not for revenue-generating purpose. Since the

thresholds to publishing an app on the App Store are low, entrepreneurs with

heterogeneous technical backgrounds and logics are present. The potential to attract

entrepreneurs identifying with both professional and market logics concurrently

makes the mobile app industry well-suited to studying logic synthesis in a cross-

12

sectional manner, as opposed to prior work that studies logic shift over time in a focal

industry (Thornton 2002).

Data collection for the study began in November 2009 from multiple data

sources: field and online observations, semi-structured interviews as well as

participant observation for triangulation. Over 90 hours of field observations were

conducted in the 2009-2011 time-period. In addition, the first author attended multiple

Mac and iOS developers’ meet-ups and events for mobile entrepreneurs in the Middle

Atlantic Region. During these visits detailed field notes were taken on developer

presentations and interactions. The meet-ups provided a rich understanding of the

ecosystem around the app developer community in addition to access to specific app

entrepreneurs who were then identified as potential interview candidates. In total, 26

face to face semi-structured interviews were conducted with 19 app entrepreneurs.

Each interview, lasting between 1 to 2 hours, was recorded and transcribed. Extensive

memos were taken during the transcribing process. Resources such as company

websites, blogs, user forums and Facebook fan pages of the 19 entrepreneurs were

examined for triangulation. Theoretical sampling (Glaser and Strauss 1967) was used

when choosing new participants in order to maximize variant instances of the two

logics and synthesis practices. The first author also conducted participant observation

through a 10-month internship at an iOS mobile software company. Through day-to-

day work activities and interactions, a deeper understanding of the lifecycle of a

mobile app and the decision-making process of developers was gained. This

experience was used to validate internal and face validity of the model developed

(Adler and Adler 1987). Table 1 provides an overview of all collected data.

Our analytic approach followed an iterative process of theory development and

analysis. The analysis consisted of three steps: first, we identified major areas that an

13

app entrepreneur needs to make decisions on during the development and marketing

of an app. After drawing up a list of identified practices, we condensed the set of

entrepreneurial activities into three stages that echo extant literature: app ideation, app

execution and app marketing. Given that app development is a form of new product

development, the first two stages are consistent with the rational plan perspective of

the new product development process, which maintains that “a product that is well

planned, implemented, and supported by senior management will be a success”

(Brown and Eisenhardt 1995, p. 348). These two stages are also consistent with the

literature on where interactions between the two logics occur (Voronov et al. 2007,

Baron et al. 2006, Tschang 2007, Nag et al. 2007, Lampel et al. 2000, Glynn 2000)

which shows that logic conflict occurs especially during period of conceiving a new

idea and the stage of delivering a product, a service or a performance. Additionally,

the literature has addressed the need for specific forms of marketing practices in the

context of software products (O’Mahony and Bechky 2008, Meeteren 2008) that

warrants the inclusion of app marketing as the third stage of entrepreneurial activity.

We discuss these three stages in detail later in the paper.

During the second stage of the analysis, our goal was to identify factors that

shape professional and market logic for indie developers, based on information

provided by the developers during the interviews. As part of this stage of analysis, we

aimed to identify the dominant logic anchor for each developer on the three

entrepreneurial stages identified above. Thornton et al. (2012) argued that individuals

have multiple and often contradictory goals and therefore can dynamically access

conflicting logics according to specific situations. Building on this argument, we do

not presuppose that developers will display the same dominant logic anchor across all

three entrepreneurial stages but allow these to differ, thereby departing from the strict

14

ideal-type approach observed in the logics literature (Thornton 2002, 2004). Thus our

unit of analysis is the entrepreneurial practice rather than the individual. We

iteratively identified the logic anchor and the corresponding practices through careful

cross-developer and cross-entrepreneurial activity analysis, as well as an examination

of similarities and differences in logics and practices (Miles and Huberman 1991).

In the third phase of analysis, we coded app entrepreneurs’ logic synthesis.

Whenever entrepreneurs conveyed a sense of change, shift, integration and

compromise related to either of the two logics, we coded these as synthesis practices.

We also concurrently developed working hypotheses about factors that drive or inhibit

logic synthesis in any given situation. We constantly compared the emerging themes

and hypotheses in subsequent data collection, analysis and extant literatures.

Gradually, our codes reached a level of saturation where they were mutually exclusive

and comprehensive (Miles and Huberman 1991). At the conclusion of the analysis, we

arrived at the theoretical model, shown in Figure 1, incorporating the three

entrepreneurial stages of activity, the two competing logics and synthesis practices.

We discuss these findings in more detail next.

4. Findings

We first describe the general environment shaping professional and market

logic for indie app entrepreneurs. Then we discuss the two logics enacted by app

entrepreneurs within the three entrepreneurial areas. The structure and examples of

this discussion are shown in Table 2. Next, we discuss the factors that inhibit logic

synthesis. Lastly, we describe in detail the factors that promote logic synthesis in

addition to specific processes of synthesis observed in our fieldwork and interviews.

15

4.1. Factors Shaping Professional and Market Logic for Indie App

Entrepreneurs

The manifestation of professional logic in the indie app community is driven by

factors similar to those observed in the software engineering profession. These

include a focus on user-led innovation, training in software engineering principles and

an emphasis on peer recognition. Software developers like to tinker and work on

hobby projects at their spare time, similar to user innovators in open source

communities who enjoy the freedom and creativity inherent in picking their own

projects to work on (Von Hippel 1986, Shah 2006). Working on their own projects

enables developers to avoid time pressures present in organizational projects where

task deadlines exist and “shortcuts” may be adopted (Austin 2001). While personal

interest determines what the developer chooses to work on, software engineering

training dictates how the developer goes about writing this software. The IEEE

Computer Society’s Software Engineering Body of Knowledge defines software

engineering as the “application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software” (Abran, Moore, Bourque

and Dupuis 2004:1-1). In addition, a focus on quality metrics, such as performance,

capability, usability, and reliability (Kekre, Krishnan and Srinivasan 1995) become

integral to professional logic. When consumer-oriented software is developed, issues

related to software aesthetics (how the application looks, feels and sounds) (Garvin

1987) as well as user interface design become crucial, and hence relevant to

professional logic, particularly for developers on the App Store since Apple is known

for its emphasis on app graphics. Finally, an important element of professional logic is

legitimacy that accrues from the peer community. Like many professional groups,

such as editors and artists, where peer recognition and approval denote achievement

16

and status (Thornton 2002, Elsbach et al. 2008), the developer community values

meritocracy and status attainment through community recognition (O’Mahony et al.

2008, Stewart and Gosain 2006).

In comparison to professional logic, factors shaping market logic for indie app

entrepreneurs stem from two sources - fundamentals of market-based economies as

well as App Store-specific market conditions. The fundamental elements of market

logic in most market-based economies include developing customer and market

knowledge, a focus on solving customer problems (Nag et al. 2007, Baron et al. 2006),

understanding and managing budgets and financials (Glynn 2000, Nag et al. 2007),

generating positive cash flow and operating within acceptable levels of risk (Baron et

al. 2006).

The more profound impact on market logic here however, comes from the App

Store environment. In a marketplace with around 700,000 apps (AppShopper,

accessed October 2012), indie developers face tremendous competition on the market.

Furthermore, the additional level of control exerted by Apple as the platform owner

strongly influences market logic. Like owners of other software platforms, Apple

develops the operating system and provides the software development kit (SDK) and

APIs for third-party developers. What is different about Apple is that it also owns the

exclusive distribution channel: the App Store. Thus, as a gate keeper, Apple

determines which apps can be sold through its review process. While reviewing is

intended primarily for quality assurance, at times it is also enacted for political

reasons, leading to the process being perceived as inconsistent and nontransparent2. In

direct contrast to the negative fallout from the review process, the platform-designed

top charts and promotion features on the App Store help boost apps’ sales

2 http://techcrunch.com/2009/07/27/apple-is-growing-rotten-to-the-core-and-its-likely-atts-fault/

17

tremendously. Thus, app entrepreneurs enacting market logic are acutely aware of

these App Store-specific levers and actively incorporate them in their entrepreneurial

decisions, described next.

4.2. Professional and Market Logic Practices within Entrepreneurial Areas

App Ideation: Personal Needs vs. Mass Market Needs

App developers’ practices and selected quotes in accord with professional and

market logics in the three entrepreneurial areas are presented in Table 2. In the app

ideation phase of the entrepreneurial process, developers make decisions on the types

of applications to be developed and features to be included. A recurring theme from

developers who identify with professional logic is the choice to write software that

fulfills their own needs or relates to their own passion. In our interviews,

entrepreneurs state that when they work on familiar domains or on apps they

personally need, they tend to use the app more often and constantly improve it.

Specifically, developers design the user interface they are satisfied with, create the

flow of the app that best matches their use habits and also improve the innate

engineering quality of the software by finding and fixing bugs since they interact with

the apps frequently.

In contrast to serving personal needs, strategies aligned with market logic focus

on developing apps with a mass market appeal. The rationale is that these apps are

more likely to achieve wide adoption and subsequently climb onto top charts, which

feed more downloads. App developers influenced by market logic also spend

considerable time keeping track of the top-chart apps and researching current apps on

the platform; using this information to drive the choices of apps they develop. Some

developers would also practice “copycatting,” i.e., learning from and mimicking

existing hit apps. On the App Store, it is common to see “cheats” and “walkthroughs”

18

for top-ranking games, and apps with deceivingly similar names and content to hit

apps. These strategies clearly conflict with professional logic, which stresses personal

needs as a source of ideation and therefore might not result in apps that appeal to the

mass market. In addition, further conflict arises when professional logic emphasizes

personal use and continuous improvement while market logic is characterized by

ideation driven by customer and market trends, which may not necessarily lead to

continuous quality improvement. Thus, these two contrasting logics in app ideation

each offer some benefits to nascent app entrepreneurs but conflict by emphasizing

vastly different elements.

App Execution: Pursuit of Quality vs. Pursuit of Efficiency

The second stage of activity, app execution, is concerned with development

effort on app release, maintenance, updates and app portfolio strategy. Developers

anchoring on professional logic set high engineering standards before shipping apps.

Participant DC stated:

“Our standards are pretty high. We believe in having well thought out, well
tested apps with excellent ease of use and good documentation. An app is ready to
ship when it is feature complete, well tested, and has no known serious bugs.”

While software training institutionalizes the engineering aspect of the software,

Apple’s platform characteristics and culture concurrently influence developers’

decisions on software design. Apple provides design guidelines for 3rd-party app

developers and recognizes well-designed software with their annual design awards.

Developers also look up to Apple products for design inspiration. These principles

also influence software decisions, as described by developer NS:

“When we release an app, we say, it’s gotta have a beautiful user interface, it’s
gotta be intuitive, and it’s gotta be crisp. When someone looks at it, they have to say
“this looks nice”. You also have to look at what Apple produces, and just say is this
something Apple would release, does this look good enough to be an Apple product.”

19

Although quality is the focus of attention for developers influenced by

professional logic, those identifying with market logic embrace the idea of efficiency

and time to market. When fighting for visibility on the App Store is extremely

challenging, many developers engage in quick development and try every means to

claim a spot in a new platform or a less crowded app category. The rapid rate of

change on the platform provides many opportunities for the agile developer to

exercise a “rush” strategy. For instance, the introduction of the iPad allowed

entrepreneurs the chance to quickly port existing apps to the new platform, even if the

design of the app was better suited to the mobile phone and not the tablet.

Furthermore, the unpredictability of app sales on the App Store nurtures the practice

of excessive experimentation as a strategy; this involves frequent app launch and

limiting the level of effort on each app launched. As a consequence, these apps could

suffer from low reliability and usability. With regard to design, instead of creating

graphics or user interface with attention to detail, which follows professional logic,

market logic-influenced developers tend to purchase stock images for app icons and

make do with crude aesthetics and UI design.

These app execution level strategies again highlight the tension between

practices aligned with the two logics. While professional logic suggests polished app

design and development as well as continual quality improvement, the uncertainty of

sales on the App Store could easily render this practice costly and unrewarding. On

the other hand, market logic execution suggests many quick apps, jettisoning apps that

get no traction in the marketplace and quick updates, each of which saves valuable

developer time and effort. These strategies however tend to fall short on core software

engineering standards as well as Apple’s design guidelines for third-party developers.

20

App Marketing: Organic Word of Mouth vs. Hit and Consumer-Oriented Marketing

Within the third stage, app marketing, developers make strategic decisions that

concern spreading awareness of developed apps as well as focusing effort on

supporting and communicating with end-users. Developers influenced by professional

logic value peer recognition, i.e., they endorse each other’s apps through social media

channels such as blogs and Twitter, with a focus on word of mouth to enhance

awareness. In the meet-up group where many of our observations were conducted, the

organizer makes an effort to create a culture of supporting indie app developers.

Developers demo new apps in face to face meetings and make announcements on

mailing lists about new releases. Developers enacting professional logic also tend to

extend such peer-acceptance marketing strategy to the seller-consumer relationship.

Assuming that end users have the ability to discover a good product on their own,

developers believe that customer acquisition will automatically follow. This leads to a

relatively passive marketing approach. Developers thus rely on organic product

discovery, and refrain from initiating communication with end users unless specific

support needs arise. They also resist the idea of consumer marketing ideologically,

interpreting it as superficial compared to more tangible work like programming and

coding. Participant NS provided this viewpoint:

“My experiences have led me to believe that most of the time marketing is not
helpful to a company. It feels all gimmicky to me, and maybe it’s just as a developer,
I’m susceptible to those things more than other people, but I notice gimmicks, like I
can see all this person did is tweet this contest again where they were giving out a
Macbook Air, great. Another person flooding my stream on Twitter of content I don’t
care about. We’re trying not to be gimmicky, and we try to just produce an awesome
product that hopefully people will love, and that’s like our philosophy.”

Contrary to organic word of mouth and passive user communication, developers

influenced by market logic value market recognition, i.e., they make full use of

platform policies in ensuring app visibility. Essentially, the objective here is to

21

introduce an app and achieve a “hit”, i.e., obtaining visibility through the top charts

within the first few days, and extending the app’s top chart lifetime. In order to

achieve this, developers aggressively use competitive pricing, versioning and

advertising to start with. Subsequently, they release a stream of constant updates to

the apps to encourage positive customer reviews. Finally, they try to increase the

discoverability of the app through techniques such as in-app advertising, App Store

Search Engine Optimization and cross-app promotions.

Another significant component of the approach used by market logic-based

developers here is to actively communicate and establish rapport with users,

overcoming challenges posed by design of the platform. Our interviewees stated that

Apple’s governance mechanisms tend to limit direct access to consumers who

download the apps, i.e., developers are not provided with user information such as

email addresses. In addition, end-users in general lack knowledge about the

relationships between third-party developers, the platform and additional service

providers. Thus, it is not uncommon for app developers to receive negative reviews of

their apps that are, in fact, due to issues with the operating system or other service

providers. Recognizing this and realizing that direct communication with end-users

may remedy user confusion and enhance trust, entrepreneurs have creatively found

ways to circumvent the platform’s governance. These include directing consumers

from the app description to their websites, social networking sites and influential

blogs. Developers are also active participants in user forums, responding to and

providing support to consumers directly. A positive outcome of such open

communication is that relationships between developers and consumers reach a value

co-creation stage (Nambisan and Baron 2007, Di Gangi and Wasko 2009) wherein

22

consumers suggest feature updates, evaluate such updates and even issue clarificatory

information on behalf of the developer to other consumers.

For these marketing level strategies, the tension between the two logics is clear

in terms of the ideology espoused by developers who subscribe to differing logics as

well as the effects of these activities on eventual app downloads. The “organic word

of mouth” approach observed within professional logic might not be sufficient in

pushing apps to App Store top charts, which is critical for app sales. On the other hand,

the “hit” marketing approach does not provide the developers with adequate

legitimacy in the developer community. Consumer-oriented marketing is not popular

among developers who value peer opinions, thereby leading to further conflict for

developers who may try to balance the two approaches.

4.3. Logic Synthesis –Practices and Strategies

In this section, we move from describing logic practices to the process by which

synthesis occurs. Recall that we proposed a broad definition of synthesis in the theory

section. Here, we refine that definition. We propose that for logic synthesis to occur in

the App Store context, either or both of the following conditions are met: first, app

entrepreneurs are willing to engage in tasks they did not think were necessary or did

not identify strongly to start with; second, entrepreneurs give up partly on activities

that they identified strongly with. Synthesis, as per our arguments, occurs from both

focal logics. For developers focused on professional logic, synthesis occurs in two

ways. First, when concessions are made on practices consistent with the professional

logic. Second, when elements of market logic are grafted onto existing practices. In

both these cases, the developer is viewed to move to a more hybrid position with

respect to the focal logics. A similar set of moves characterize synthesis for

developers enacting market logic. We will discuss how developers synthesize

23

conflicting logics in the three entrepreneurial areas using this working definition.

However, not all developers perceive the need to manage logic conflict in equal

measure, so before delving into synthesis practices, we first delineate factors that

drive or inhibit app developers’ synthesis practices.

4.3.1. Antecedents of indie app developers’ logic synthesis

Factors Inhibiting Logic Synthesis

We first discuss factors that inhibit logic synthesis, since these prevent eventual

balance across logics, which is arguably important for success on the App Store. The

literature indicates that strong identification with professional beliefs and norms

inhibit reconciliation (Glynn 2000, Nag et al. 2007). In addition, our analysis

uncovers that relational capital from the Mac developer community and developers’

labor market status also tend to curb synthesis.

The first factor that inhibits synthesis is the extent to which the developer is

invested in his or her focal logic, leading to disagreement or disapproval for the

opposing logic. Developers thus become less likely to compromise on the focal logic

and/or integrate components from the opposite logic. This effect is particularly strong

in app execution. For instance, developers with strong logics in product substance and

quality see no value in compromise. “Releasing an app with just a couple of

wallpapers?” - developer TM was dismissive of a wallpaper app, which cost 99 cents

without much substantive content or originality. In contrast, market-logic focused

developers in app execution do not understand why some developers invest effort in

one single app. Developer DS responded:

“I think there are a lot of people are more design purist, or engineering purist.
Their goal is to make something beautiful, or make something cool, like technically,
the code is really cool inside the way they do it. My goal in this is not like aesthetic,
my goal is to make a living and support my family and support my employees’ family

24

on the apps we make, so that changes our priorities, that’s why we release things so
quickly, we write simpler apps. It’s not just developing for developing’s sake” (DS).

Beliefs in focal logic also prevent developers from synthesis in app marketing.

Developers who strongly believe in product quality and peer-marketing dislike the

quick development cycle and the hit marketing strategy on the App Store. As

developer JV stated:

“I don’t want to have anything to do with it. I don’t think it’s common, not even
possible to make 3 or 4 apps a year. I don’t want to be dependent on the hits; you have
to have shorter cycle. Hopefully you will make a good hit out of every cycle. If I take a
year to develop an app, if it’s not a hit, then I’m screwed.”

Developer NS similarly opposed the idea of frequent feature update, a part of the

hit marketing strategy, in favor of organic word of mouth based on substantial feature

changes:

“I wanna be able to provide the features that people talk about. So on QB, a new
version is coming up, ‘oh did you see QB added Skype’, ‘no I didn’t see that, it’s great,
I use Skype all the time’, so that’s part of the philosophy. And the other part of the
philosophy is the burden of updating is on the user really. And if they see your app
coming up every week, they’ll be like, ‘what’s the point, why is it coming up every
week or two?’ like nothing is changing.”

On the other hand, developers believing in market recognition and in-App Store

marketing do not understand why some developers would market apps among other

app developers. Participant JS shared his opinion:

“I’ve noticed people buy advertising on sites like iPhoneDevSDK. I never
understood that, unless you’re making a product that’s oriented towards developers. I
don’t see a lot of value in doing promotion of the applications to the developer
community itself. Developers more than anybody are keenly aware of what’s out there
on the App Store, what’s doing well and what’s not. So I think it’s way more important
to be promoting a product to consumers than to developers.”

The second factor that inhibits logic synthesis is iOS developers’ relational

capital in the Mac developer community; the effect of this factor is most salient in app

execution and app marketing. The Mac and iOS shares the foundation of the operating

25

system, so many Mac developers write iOS apps, too. The Mac indie software market

is still largely dominated by personal capitalism, an instantiation of professional logic

(Thornton 2001), where personal networks and personal relationship are valued in the

business process (Meeteren 2008). Therefore, although it is advisable for Mac

developers to compromise a little on product quality and adopt App Store-specific

marketing techniques, they can afford not to. This is because the effort in pursing

superior product design and quality is paid back with status in the Mac indie

community rather than on the App Store. Tapping the mature network of this

community is potentially rewarded with financial returns on iOS apps, as Developer

RR indicated:

“The first thing I did is that I announced it in the Chicago C4 Conference in
front of about 200 people. One of the tech bloggers for the Mac Space John Gruber
was at this conference, he saw it, he linked it to his site, just from this guy, and at this
weekend, I got 2000 hits for my site. So I think there are two different ways, there’s I
want to build a bunch of buzz about my app, trying to get in the top 10 of the App
Store, and ride that wave out. And there’s another that no, I'm going to focus my
attention in building a good quality product. The idea is that if you focus on building
something that’s tight, that’s quality, that has a good crafted experience, all you need
to do is get one of these people in these big sites to use it, love it, and then write about
it. And in that sense you’re not propositioning people, and they are doing it for you.”

The final factor that inhibits synthesis reflects the growing opportunities in the

labor market for app developers. The App Store environment allows many software

developers to create apps on a part-time basis, while still maintaining full-time

positions in software development, similar to the open source model (Roberts et al.

2006). The rapid growth of the app economy, combined with the relatively high levels

of glamour attached to the mobile platforms, has enhanced the status of visible and

successful app developers significantly. These factors have created significant app

consulting opportunities for app developers, especially nascent entrepreneurs who

26

have boot-strapped their own firms. These potential opportunities for consulting tend

to dampen the need to synthesize conflicting logics, especially for developers enacting

professional logic in app marketing. Developer JR, who was occupied with consulting

work, lacked the time in improving communication with end users about his popular

app WZ and stated:

“Now on the App Store it only shows the reviews for the current version. So for
developers you really have to stay on top of that. WZ, last time I checked, there are 2
reviews for the current version. People are disgruntled because it lacks something
that it doesn’t claim to have. So people see those 2 reviews and it really impacts the
downloads. If I were a better businessman, I would be pushing out a new update as
soon as possible to get those bad reviews off, I would be doing everything in my
power to get some reviews. I need to get those two off that page, I need to manage
that. I’m not, and it’s a problem”.

Factors Facilitating Logic Synthesis

With regard to factors facilitating logic reconciliation, the literature identifies the

effect of entrepreneurial pressures and the desire to achieve economic success (Jain et

al. 2009, Eikhof et al. 2007, Tschang 2007). In addition, our analysis reveals that

entrepreneurial learning and knowledge acquisition need from community also

enhance synthesis. Entrepreneurial learning addresses entrepreneurs’ adaptations in

beliefs, practices and routines incrementally in response to feedback about outcomes

over time (Levitt and March 1988, Huber 1991). Entrepreneurs acquire knowledge

through direct experience –trial-and-error experimentation, or learning by doing

process. Our fieldwork suggests that app entrepreneurs develop learning through

interactions with the market, the platform and end-users, which induces synthesis.

Community knowledge acquisition need denotes the communal knowledge-sharing

characteristics of app entrepreneurs, viewing software developers as a community of

practice (Brown and Duguid 1991), which again induces synthesis. In the next section,

27

we embed these factors in the discussion of logic synthesis across the three

entrepreneurial areas. Our discussion follows the relationships shown in Figure 1.

4.3.2. The Effective Mechanisms of Synthesis

Synthesis in App Ideation: Inner / Outer Evaluations & “Eating Your Own Dog

Food”

In the app ideation phase, logic tension manifests around whether developers

release apps fulfilling personal needs or addressing market needs. Logic synthesis, by

our definition occurs from both focal logics. For professional-logic driven developers,

entrepreneurial pressure and entrepreneurial learning push them towards logic

synthesis in app ideation, through the form of “inner” and “outer” evaluations.

Market-logic driven developers synthesize, alternatively, through “eating your own

dog food”.

Inner evaluation is for idea selection, either by being self-analytical or through

peer critiquing. In doing so, synthesizing developers give up their preferred views on

design and engineering quality while reducing the potential risk of developing apps

with no market appeal. Entrepreneurial pressures forced developer TM to think twice

what to develop before starting the project:

“I think everyone has ideas. You need to be able to filter out your own ideas. I
had A LOT OF ideas. And I look at them and I go, wait a minute, that one wouldn’t
have mass appeal, why would I do that. I mean I’ve definitely thought and definitely
heard of ideas that I thought were good ideas, but you know, would a lot of people buy
it, if I say no, then I just don’t think it’s really worth the effort.”(TM)

Developer JN’s first two apps did not gain as much traction as he had expected.

He recognized that this may be due to his lone-ideation approach. This learning

experience made him change his strategy to incorporate collective wisdom for future

apps:

“For my next app, I’m going to get a couple of people, I think you can fool
yourself about what’s the best way to do things if you’re the only one deciding that.

28

And if other people think your ideas aren’t great enough to wanna work on them, they
probably aren’t that great. In any case, they’re not gonna put in the extra hour.
Examined by more than one peer advice will be really helpful.”

Outer evaluation synthesis consists of leveraging users’ input through testing

before releasing the app to the general public. Engaging users early on also requires

developers to modify the software if needed, leading to changes in the execution plans.

However, user feedback at this stage can improve software usability and gain

customer loyalty from early adopters. Developer RR shared this viewpoint:

“Testing is really the counterbalance between developer’s needs and consumers’.
Think about who you wanna sell it to, and get it in front of those people as soon as
possible, because you won’t be able to guess what they want, they will always surprise
you. You want this, gotta be this way. They will tell you the other way....feedback is the
key.”

For developers enacting market logic on the other hand, entrepreneurial pressure

drives synthesis. Several participants emphasized that while it is critical for an app to

address a market need, it is also important to build something that they like or find

useful. This synthesis is an instance of grafting elements from professional logic.

Doing so leads to systematic use of the app by the developer himself (similar to a

user), which allows bug and usability fixes early to improve quality. Developers refer

to this as “eating your own dog food”, as stated below:

“We’re doing a Calendar replacement. I’m using this as my main app for
calendar, obviously looking for bugs and stuff, but I’m kind of living out the bugs so
that my customers eventually don’t have to.” (KY)

Synthesis in App Execution: Emotional Detachment with Own Technology &
Increased Emphasis on Design

In the app execution phase, developers face the conflict of emphasizing their

business based on efficiency or quality. Following our two-way synthesis definition,

we found that developers anchoring on professional logic synthesize through

29

detaching emotions with their own technology, and those anchoring on market logic

achieve synthesis through increasing attention on app design.

Entrepreneurial pressure and entrepreneurial learning motivate developers

identifying with professional logic to synthesize, and this synthesis is manifested in

app development, app release and app update decisions. During app development,

synthesis occurs around developers’ decisions to build apps from ground up versus

leveraging existing technologies. The latter option helps increase development

efficiency, allowing developers to achieve synthesis through grafting elements from

market logic. Developer TM learned the lesson on his very first app. He wrote the

building blocks of the app all by himself when he could have saved effort and time

using frameworks provided by Apple. In some cases, writing every aspect of an app

from scratch is short-term efficient since adopting new APIs or functionality requires

mastering new material. However, not leveraging well-maintained and widely adopted

technologies can incur high in-house maintenance costs later on. Logic synthesis here

indicates that the entrepreneur relinquish the “not-invented-here” mentality and

leverage technologies from the larger developer community to achieve business

efficiency.

During the software release stage, developers face the question of when to stop

development and publish the app on the market. Professional logic would suggest that

the app be published when it is polished and of high quality. However, this logic

ignores the financial cost of working on the software beyond the optimal point of

release. This question is common in product development contexts, where there may

be differences between manufacturing and marketing on product release dates

(Tatikonda and Montoya-Weiss 2001). In the App Store context, synthesis occurs

30

when developers opt to forego new features in order to ship the app sooner, as stated

by developer NL below:

“Like the WM application, it was pretty much done, and I was just working on
supporting rotations, trying this way, this way, it doesn’t rotate correctly. I spent like 2
weeks working on it. At the end, I'm like, you know we had to cut out rotation …I
wanna ship things that are good, but sometimes you have to see the forest through the
tree. Sometimes you focus so much on this one little thing, and then you look back and
you just spent thousands of dollars trying to get this little one thing right. So maybe
think bigger, more strategically.”

While NL’s synthesis in cutting features was driven by entrepreneurial pressure,

developer SJ was driven by learning from a trademark dispute he had on an earlier

app. The dispute was finally settled with SJ selling his app name, but the incident took

6 months to resolve. Recognizing the potential risks of losing the app name and being

dragged into a trademark dispute again, for the next app, SJ decided to leave behind

features that were not as important and get the app on the market fast:

“Basically the first person who has it in commerce, they are the first person who
gets the name. And if somebody names their app PP tomorrow and I hadn’t put it out,
and also I gotta change my name and everything. So, and again it’s all because of the
trademark experience I had with MQ, and so I was like, you know what, I gotta put it
out. It doesn’t matter what it looks like. I just gotta get the name. So what I did, I
ripped off all the voice-over stuff, and there are some screens, they didn’t look so good
going out, but they didn’t need to be there, so I ripped out whatever didn’t look good,
just to kind of put it out, and people loved it.”

In addition to software development and release, synthesis also takes place

during software update decisions. Here, synthesis generally indicates a “move-on”

attitude, wherein developers opt to stop enhancing an existing app with limited market

demand, even though professional logic would suggest these improvements.

Developer JN shared his experience:

“I spent a lot of time to get network work properly after the initial release,
because now people can compete head to head, and it’s something people will like.
And it was really difficult... so I spent A LOT of time getting it to work right, and it
works really well, but almost no pump in sales, something I thought people are going

31

to appreciate, they don’t really appreciate that much...was very large time investment
for very little return.”

Developers identifying with market logic also engage in synthesis practices in

app execution, although for different reasons: their experience with platform policy

changes and user interactions. Specifically, they move away from the “rush” strategy

and invest resources in product design, detailed UI and the aesthetics of the app, most

of which would not be necessary under pure market logic. Developer TM’s original

strategy “was to release as fast as you can, and update as fast as you can.” He stated

that “If I had a few bugs, I’d just send it up there; I would cut corners and constantly

add features.” However, in November 2009, Apple changed a key policy on the App

Store: it began to only allow the first version of the app to appear on the release chart3

instead of every new version. This change put crudely engineered apps at risk since

user response to the first version became more critical than ever for apps’ subsequent

performance. Interviewees in this study could not emphasize enough that post-policy

change, their apps only got one shot at being viewed on the new-release chart. For

market-logic driven developers, the new policy necessitated a process of synthesis, as

indicated by developer TM: “I do more initial develop; you need to spend more time,

polish it up, test it, market it, appropriately.” Whereas previously the goal was

constant appearance among consumers, now TM aims at making a splash on the

initial launch. Placing emphasis on design has its own positive impact on app

download, achieved through platform featuring:

“I mean everything Apple features is something that has a lot of polish on it.
They go above and beyond the bare minimum. And I’ve produced apps at bare
minimum, and they never get featured. And then this GB was the first game ever
featured of mine. I had a lot of games, but this is the first time I actually spent all my
time on polish, making it pretty, adding in dancing, the glowing balls are dancing to

3http://www.iphonedevsdk.com/forum/business-legal-app-store/32936-dark-tidings-updates-may-not-
appear-release-date-list-anymore.html

32

music; that’s not necessary, that’s just the polish that people like. And I think that’s
what Apple looks for.” (TM)

Besides platform influence, end-user interactions are another source of learning

that motivates developers solely focused on business outcomes to consider software

quality, design and aesthetics, thereby enabling synthesis. Developer KR’s recording

app is popular thanks to its mass market appeal and powerful features. However, the

design of the icon and user interface attracted a number of user complaints. As a result,

KR decided to give the app a new look:

“I did everything one my own. Now that I’m making more money, I think I’m
gonna hire a graphic artist to clean up the user interface, change all the graphics and
design better icons. I’ve got several reviews saying that the user interface is kind of
clunky.”

To some extent, the App Store environment itself is dialectic. On one hand,

competition and sales unpredictability prevent app developers from investing in too

much polish. On the other hand, the platform and its users reward effort on apps’

aesthetics and design. Therefore, a broad synthesis strategy at least for app

development and app release, is to make “simple yet polished apps”(developer TM),

or “a fully-polished product that doesn’t include all of the features you expect to

include in the product eventually”(developer JS).

Synthesis in App Marketing: Peer Partnership, Niche Marketing & Peer
Community Contribution

In the app marketing stage, developers face the tension of whether to count on

organic word of mouth for marketing or adopt the “hit” and consumer-oriented

marketing strategy. Again, as synthesis occurs from two directions, our fieldwork and

interviews uncovered that professional logic-driven developers synthesize through

engaging peer partnership and niche marketing, and market logic-driven developers

synthesize through peer community contribution.

33

For professional-logic oriented developers, entrepreneurial pressure highlights

the importance of within-App Store marketing to achieve visibility and sales. One

synthesis strategy employed is partnership with peers who have popular apps on the

App Store. In doing so, developers still rely on support from the developer

community –an instantiation of logic of the profession, however, the partnership

allows their product to reach the mass market on the App Store, which is in accord

with logic of the market:

“One of the things we partner with FS company who has a significant presence
in the market place is they have a network of head-to-head play games, so by
partnering with them, we can sort of use their existing distribution network, and their
network of players, as long as the game is of similar quality, and meets the interests of
their customer base, we should be able to be successful, should be able to step on
their foundation.” (DC)

Synthesis in app marketing is influenced by entrepreneurial learning as well.

Developers whose apps compete in content with Apple’s native apps face legitimacy

issues among both the developer community and the general consumer base. App

Store legitimacy becomes particularly problematic among peers who identify strongly

with Apple’s culture, or those who view stepping on the platform’s turf as risky

behavior. Developer RH wrote a music play-list app intended to replace native

functionality of Apple’s iPod. This move led to dissenting voices in the developer

community, suggesting that the developer “doesn’t get the platform”and that “You

don’t redesign Apple’s stuff.”When sharing the app with his developer peers, RH did

not receive the support he expected. Peer recommendation turned out not to be a

viable marketing tool in this case. Based on this experience, RH decided to target his

app to hardcore music fans only. Even though the niche marketing reduced the sales

potential, the app received very positive reviews on the App Store. In general, while

the platform encourages open innovation, the professional logic-driven developer is

reminded that there are limits to openness, especially in garnering support from peers

34

who identify strongly with the platform. An alternative consumer-oriented niche

marketing strategy is preferred here.

Market-logic driven developers engage in synthesis during app marketing

through peer community contribution. This allows developers to integrate peer

recognition and feedback with their logic’s emphasis on market recognition. Software

development as a profession relies on teams and communities of practice (Faraj and

Sproull 2000, Von Krogh et al. 2003, Crowston et al. 2006) for knowledge sharing

due to the range of technologies involved and the pace of technological advancement.

Several participants in our study mentioned that the indie work style does not allow

colleagues to exchange knowledge on a regular basis, therefore joining a peer

community and accessing peer knowledge becomes particularly critical for business

success. A good example of this type of synthesis is Developer DS, who pursues a hit-

oriented marketing strategy by focusing on App Store rankings and in-store visibility.

In the meantime, he contributes extensively to the iOS community locally and

virtually. He holds “Office Hours” to invite local developers to join his office space to

chat about work and documents his iOS development and business experience on his

blog. Thus, DS does not compromise on market logic in marketing but extends his

practices in accord with professional logic. Although DS’s philosophy on app

marketing differs considerably from his peers, he earns positive word of mouth for his

contribution to the community, thereby increasing his marketing effectiveness.

5. Discussion and Conclusion

How do nascent app entrepreneurs address the conflicts they experience from

trying to balance their professional practices as software developers, on one hand, and

the need to effectively manage a competitive marketplace, on the other? How are

these conflicts dealt with in different entrepreneurial areas? These questions formed

35

the basis for the analysis we present in this paper. The conflict between professional

and market logics has been studied in the literature over time, as the institutional

discourse shifts (Thornton 2002, 2004), or between social actors with different group

and organizational identities (Glynn 2000, Nag et al. 2007). In our context, we study

how these conflicts are contemporaneously managed within the same app

entrepreneur via the concept and process of logic synthesis. Through a qualitative

study, we develop a deeper understanding of how both logics can occupy an app

entrepreneur’s decision portfolio and compete for the entrepreneur’s attention. We

show the different mechanisms of and conditions for the two-way logic synthesis. Our

work thus contributes to the literature on the relationship between individuals and

institutional logic, as well as nascent entrepreneurship.

Two broad sets of factors shape the professional and market logic guiding

decisions and strategies for indie app entrepreneurs. They are 1) software developers’

professional training, their interest in tinkering and the nature of community of

practice, as well as 2) Apple’s new organizing form as both a technological platform

and an exclusive distribution channel. Since both of these logics act on the same indie

app developers, the setting allows us to investigate these unfolding dynamics of logic

synthesis at a level of granularity that is rare in the institutional logics literature.

Our study identified three entrepreneurial areas in which logics get expressed:

app ideation, execution and marketing. We find that practices in accord with

professional logic include “ideating” new apps through personal needs and passions,

pursuing high engineering standards and employing peer recommendation to market

their apps. Practices in accord with market logic, on the other hand, entail reacting to

mass-market needs and trends, following an efficiency-oriented strategy as well as a

hit and consumer-oriented marketing strategy. Our findings suggest that the tension is

36

stronger in app execution and app marketing than in app ideation for app developers

because of the markedly different meanings attached to app quality and variety of

ways in which an app may be discovered, sought or marketed on the App Store. While

app ideation is important, the market-oriented activities such as marketing and

development provide more observable instances of logic conflict that need synthesis.

We observe that most developers have a starting logic: that of professional or

market, in all three entrepreneurial areas at the inception of writing apps for the App

Store. Then depending on specific circumstances the entrepreneur experiences, some

aspects of the logic portfolio become more salient than others, and thus s/he can

synthesize in one area but not others or in none at all. Although engaging in logic

synthesis would be ideal for all entrepreneurs, we do not claim it happens in all

circumstances, nor do we observe this in our fieldwork. We found that three hurdles

are present for logic synthesis: beliefs in focal logic, relational capital from Mac

developer community and indie developers’ labor market status. In contrast, three

other factors: entrepreneurial pressure, entrepreneurial learning, and knowledge

acquisition need in community of practice facilitate logic synthesis. These synthesis

drivers, to some extent, echo the socialization mechanism necessary for individuals to

learn multiple contrasting and often contradictory institutional logics (Thornton et al.

2012). Entrepreneurial pressure and entrepreneurial learning are especially relevant to

socialization, because they serve as two conduits that help developers understand and

familiarize the different requirement and characteristics of the App Store market place,

the platform culture and software engineering principles. Without this constant

pressure to achieve success or to learn from the marketplace, most entrepreneurs

would find it very hard to operate in the fast-moving App Store environment. Thus,

these two factors are of particular importance to app developers.

37

The concept of logic synthesis proposed in our study entails either or both of

focal logic compromise and opposite logic grafting. We extend the literature by

identifying practices of two-way logic anchoring and synthesis, whereas extant

literature tends to mostly recognize reconciliation only from professional to market

logic. Our findings suggest that for indie app developers, the key to success on the

App Store is to constantly consider strategies congruent with both the professional

and market logic and synthesize from both directions. Besides, since conditions on the

App Store constantly change either due to changing competition or platform policy

changes, different entrepreneurial activities can become salient at different times,

which shape developers’ goals and actions. This suggests that indie app developers

need to engage in logic synthesis in a dynamic, rather than static fashion, in order to

remain relevant and stay competitive.

Synthesis practices carried out by developers in our study are informative to other

entrepreneurs who are considering entry into the competitive app economy. While low

entry barriers and the lure of “hits” increases competition, our results suggest that a

balanced and dynamic approach to both institutional logics on the App Store is a

better position for success. Findings from our research also have implications for

nascent entrepreneurs in other professional arenas building businesses around a

central platform. Examples include photographers selling photos through

istockphoto.com and artists selling craftwork on etsy.com. While the professional

logic and market logic vary for each of these markets, the underlying relationship

between the two logics and logic synthesis strategies identified in this research can

provide a framework for studying professions beyond software development.

Our work also points to several directions for future work in this context. When

we delineated entrepreneurial learning as a driving force for developers’ synthesis

38

practices, we did not include learning from peers as one aspect. Social interactions

with other developers could be an important influence on developers’ decisions and

formation of synthesis practices, which we aim to incorporate in future research. We

have argued for the value of logic synthesis but whether this is true across Apple’s

App Store, or indeed on any mobile platform, i.e., the Android, is an empirical

question. It is also possible that one of the antecedents to synthesis is competition –

competitive categories on the platform likely will incentivize synthesis compared to

categories with lesser competition. While our codes did not address this directly in our

study, competition remains a potent driver of entrepreneurial behavior. It is often

assumed that larger firms active in the marketplace have resolved logic conflict by

empowering market logic (Thornton 2002); however, is this necessarily true in

environments where there is a powerful gate-keeper such as Apple? Our focus here is

on nascent entrepreneurs but there are several large corporations also competing on

the App Store. How does existing research on logic conflict translate to these firms on

platforms? There are many such questions that can be addressed on mobile

technology platforms and it is our hope that our work will contribute to and spark off

more interest in the topic of institutional logics in the technology platforms context.

39

References

Abran, A., J. W. Moore, P. Bourque, R. Dupuis. 2004. Guide to the Software

Engineering Body of Knowledge. SWEBOK. IEEE Computer Society Press

Adler, P. A., P. Adler. 1987. Membership Roles in Field Research. Sage. Thousand

Oaks, CA

Austin, R. D. 2001. The effects of time pressure on quality in software development:

An agency model. Inform. Systems Res. 12(2) 195-207.

Baron, R. A., M. D. Ensley. 2006. Opportunity recognition as the detection of

meaningful patterns: Evidence from comparisons of novice and experienced

entrepreneurs. Management Sci. 52(9) 1331-1344.

Boudreau, K. 2012. Let a thousand flowers bloom? An early look at large numbers of

software app developers and patterns of innovation. Organ. Sci. 23(5) 1409-1427.

Boudreau, K. 2010. Open platform strategies and innovation: Granting access vs.

devolving control. Management Sci. 56(10) 1849-1872.

Bourdieu, P. 1990. The Logic of Practice. Polity Press, Cambridge, UK.

Bourdieu, P. 1993. The Field of Cultural Production. Columbia University Press,

New York, NY.

Bourdieu, P. 1996. The Rules of Art: Genesis and Structure of the Literary Field,

trans. Susan Emanuel. Polity Press, Cambridge, UK.

Brown, J. S., P. Duguid. 1991. Organizational learning and communities-of-practice:

Toward a unified view of working, learning, and innovation. Organ. Sci. 2(1) 40-

57.

Brown, J. S., P. Duguid. 2001. Knowledge and organization: a social-practice

perspective. Organ. Sci. 12(2) 198-213.

40

Brown, S. L., K. M. Eisenhardt. 1995. Product development: Past research, present

findings, and future directions. Acad. Management Rev. 20(2) 343-378.

Crowston, K., K. Wei, Q. Li, J. Howison. 2006. Core and periphery in Free/Libre and

Open Source software team communications. Proc. 39th Hawai’i International

Conference on System Science, Poipu, Kauai, HI, USA.

Cyert, R. M., J. G. March. 1992. A Behavioral Theory of the Firm, 2nd edition,

Blackwell, Cambridge, UK.

Davidsson P., B. Honig. 2003. The role of social and human capital among nascent

entrepreneurs. J. Business Venturing 18(3) 301-331.

Dunn, M. B., C. Jones. 2010. Institutional logics and institutional pluralism: the

contestation of care and science logics in medical education, 1967-2005. Admin.

Sci. Quart. 55(1) 114-149.

Ebaugh, H. R. F., 1988. Becoming An Ex. University of Chicago Press, Chicago.

Eikhof, D. R., A. Haunschild. 2007. For art’s sake! Artistic and economic logics in

creative production. J. Organ. Behavior 28(5) 523-538

Elsbach, K. D., F. J. Flynn. 2008. Issues of identity in collaborations among creative

professionals: a study of toy designers. Working paper. UC Davis.

Faraj, S., L. Sproull. 2000. Coordinating expertise in software development teams.

Management Sci. 46(12) 1554-1568.

Freidson, E. 2001. Professionalism: The Third Logic. University of Chicago Press,

Chicago, IL.

Friedland, R., R. R. Alford. 1991. Bringing society back in: Symbols, practices, and

institutional contradictions. W. W. Powell, P. J. DiMaggio, eds. The New

Institutionalism in Organizational Analysis, University of Chicago Press,

Chicago, IL, 232-263.

41

Garvin, D.A. 1987. Competing on the eight dimensions of quality. Harvard Business

Rev. November-December 101-109.

Glaser, B., A. Strauss. 1967. The Discovery of Grounded Theory: Strategies of

Qualitative Research. Wiedenfield and Nicholson, London.

Glynn, M. A. 2000. When cymbals become symbols: Conflict over organizational

identity within a symphony orchestra. Organ. Sci. 11(3) 285-298

Huber, G. P. 1991. Organizational learning: the contributing processes and the

literatures. Organ. Sci. 2(1) 88-115.

Jain, S., G. George, M. Maltarich. 2009. Academics or entrepreneurs? Investigating

role identity modification of university scientists involved in commercialization

activity. Res. Policy 38(6) 922-935.

Kekre, S., M. S. Krishnan, K. Srinivasan. 1995. Drivers of customer satisfaction for

software products: Implications for design and service support. Management Sci.

41(9) 1456-1470.

Lampel, J., T. Lant, J. Shamsie. 2000. Balancing act: learning from organizing

practices in cultural industries. Organ. Sci. 11(3) 263-269.

Levina N., E. Vaast. 2005. The emergence of boundary spanning competence in

practice: Implications for implementation and use of information systems. MIS

Quart. 29 (2) 335-363.

Levina N., E. Vaast. 2008. Innovating or doing as told? Status differences and

overlapping boundaries in offshore collaboration. MIS Quart. 32(2) 307-332.

Levitt, B., J. G. March. 1988. Organizational Learning. Ann. Rev. Sociol. (14) 319-

340.

Louis, M., 1980. Surprise and sense making: What newcomers experience in entering

unfamiliar organizational settings. Admin. Sci. Quart. 25(2) 226–251.

42

MacMillan, D., P. Burrows, S. E. Ante 2009. Inside the app economy. Bloomberg

Businessweek October 22, 2009.

Meeteren, M. V. 2008. Indie fever: the genesis, culture and economy of a community

of independent software developers on the Macintosh OS X platform. Bachelor

thesis. Human geography, University of Amsterdam.

Miles, M., A. M. Huberman. 1991. Qualitative Data Analysis, 2nd edition, Sage,

Beverly Hills, CA.

Nag, R., K. G. Corley, D. A. Gioia. 2007. The intersection of organizational identity,

knowledge, and practice: attempting strategic change via knowledge grafting.

Acad. Management J. 50(4) 821-847.

O’Mahony, S., B. A. Bechky. 2008. Boundary organizations: enabling collaboration

among unexpected allies. Admin. Sci. Quart. 53(3) 422-459.

Orlikowski, W. J. 2000. Using technology and constituting structures: a practice lens

for studying technology in organizations. Organ. Sci. 11(4) 404-428.

Ozcan, P., K. M. Eisenhardt. 2009. Origin of alliance portfolios: entrepreneurs,

network strategies, and firm performance. Acad. Management J. 52(2) 246-279.

Roberts, J. A., I.-H. Hann, S. A. Slaughter. 2006. Understanding the motivations,

participation, and performance of open source software developers: a longitudinal

of the Apache projects. Management Sci. 52(7) 984-999.

Ross, L., R. E. Nisbett. 1991. The Person and the Situation. McGraw-Hill, New York,

NY.

Schultze, U., W. J. Orlikowski. 2004. A practice perspective on technology-mediated

network relations: the use of Internet-based self-serve technologies. Inform.

Systems Res. 15(1) 87-106.

43

Shah, S. K. 2006. Motivation, governance, and the viability of hybrid forms in open

source software development. Management Sci. 52(7) 1000–1014.

Srinivasan, A., F. Suarez. 2010. First mover advantages in hyper-dynamic

environments: a study of the iPhone ecosystem. Presented at Acad. Management

Conf. August 6-11, Montreal, Canada

Stern, S. 2004. Do Scientists Pay to Be Scientists? Management Sci. 50(6) 835-853

Stewart K., S. Gosain. 2006. The impact of ideology on effectiveness in open source

software development teams. MIS Quart. 30(2) 291-314.

Tatikonda, M. V., M. M. Montoya-Weiss. 2001. Integrating operations and marketing

perspectives of product innovation: the influence of organizational process factors

and capabilities on development performance. Management Sci. 47(1) 151-172

Thornton, P.H., W. Ocasio, M. Lounsbury. 2012. The Institutional Logics

Perspective: a New Approach to Culture, Structure and Process, Oxford

University Press, USA.

Thornton, P. H., W. Ocasio. 2008. Institutional Logics. Greenwood, R., C. Oliver, R.

Suddaby, K. Sahlin-Andersson, eds. The Sage Handbook of Organizational

Institutionalism. Sage Publications Ltd., 99-129

Thornton, P. H., C. Jones, K. Kury. 2005. Institutional logics and institutional change

in organizations: transformation in accounting, architecture, and publishing. C.

Jones, P. H. Thornton, eds. Transformation in Cultural Industries (Research in the

Sociology of Organizations) Emerald Group Publishing Limited, 23 125-170

Thornton, P. H. 2004. Markets from Culture: Institutional Logics and Organizational

Decisions in Higher Education Publishing. Stanford University Press, Stanford,

CA.

44

Thornton, P. H. 2002. The rise of the corporation in a craft industry: conflict and

conformity in institutional logics. Acad. Management J. 45(1) 81-101

Thornton, P. H., W. Ocasio. 1999. Institutional logics and the historical contingency

of power in organizations: Executive succession in the higher education

publishing industry, 1958–1990. American J. Sociol. 105(3) 801–843.

Thornton, P. H. 2001. Personal versus market logics of control: a historically

contingent theory of the risk of acquisition. Organ. Sci. 12(3) 294-311.

Tschang, F. T. 2007. Balancing the tensions between rationalization and creativity in

the video games industry. Organ. Sci. 18(6) 989-1005.

Von Hippel, E. 1986. Lead users: a source of novel product concepts. Management

Sci. 32(7) 791–805.

Von Krogh, G., S. Spaeth, K. R. Lakhani. 2003. Community, joining, and

specialization in open source software innovation: a case study. Res. Policy 32(7)

1217-1241.

Voronov, M., D. De Clercq. 2007. When art and commerce unite: from separate

worlds to blurry boundaries and impression management. Working paper. Brock

University.

Wagner, J. 2007. What a difference a Y makes-female and male nascent entrepreneurs

in Germany. Small Business Economics. 28(1) 1-21.

Wasserman, T. 2010. Software Engineering Issues for Mobile Application

Development. Proc. FSE/SDP Workshop on Future of Software Engineering

Research, ACM, New York, NY, 397-400.

Yeow, A., S. Faraj. 2011. Microprocesses of healthcare technology implementation

under competing institutional logics. 32nd Internat. Conf. Inform. Systems (ICIS),

Assoc. Inform. Systems, Shanghai, China

45

Yoo, Y., K. J. Lyytinen, R. J. Boland Jr., N. Berente. 2010. The next wave of digital

innovation: Opportunities and challenges: A report on the research workshop

“Digital Challenges in Innovation Research.” Working paper, Temple University,

Philadelphia. http://ssrn.com/abstract=1622170.

Table 1 Data Sources
Data source Description
Field observations 29 visits to multiple meet-ups of Mac and iOS

developers and events for mobile entrepreneurs in the
Middle Atlantic Region, totaling over 90 hours

Interviews 26 semi-structured face to face interviews and
multiple informal chats with 19 iOS indie app
entrepreneurs who have released at least 1 app on the
App Store

Online resources Company websites, blogs, user forum, Facebook fan
pages of the 19 entrepreneurs

Participant observation 10-month internship at a small mobile app company;
working on tasks related to market research,
marketing and technology support

46

Table 2 Professional and Market Logic Practices of iOS App Entrepreneurs

Entrepreneurial
areas

Practices of
professional logic

Examples Practices of market
logic

Examples

App ideation Building
apps reflecting
personal needs and
passion

“There is this one person says that not
everybody is gonna design your way,
maybe you should survey how different
designers do work, you should come up
with some mixture of process. I say no. I
feel that to build a quality product, I have
to build something that I wanna use, and I
love using it…”(RR)

“That application was developed by me
and for me, and that has been
tremendously successful. Caz that’s my
way I bicycle, I use it all the time,
interval, music, for the intensity I want, so
it’s fulfilling a need.” (JB)

 Addressing
mass market needs

 Following
market trend

“We had a good number of downloads from
our alarm clock app, because people want
that vs. some niche little app, that maybe can
get big traction, but it’s harder to determine if
that’s the case” (KY).

“For NT, it came from the fact that I saw the
MT being number 1 for quite a while, so I
wanted to create a knockoff. The idea was I
wanted to look for something that’s really
high in the charts and really easy to
implement (KR).

App execution Pursuing
engineering and
design quality

“I consider myself as an engineer.
Engineers are trained in a much more
systematic way to produce code and solve
problems. I’ve had a couple of encounters
with people that I consider to be coders
and not engineers. It sounds a little bit
elitist, but it’s just a matter of training.”
(JN)

 Time to
market

 Excessive
experimentation

“There’s not that many iPad apps now, there’s
still a rush to get what’s called universal apps
or ipad apps, so you can get visibility again”
(TM)

“So if we launch something and it doesn’t do
great, I will just move on. These are just like
we spend a week or we spend 4 days on
something. If it doesn’t take off, it’s fine, I
learned to build something new that I didn’t
know how to build before, I’ll try the next
thing” (DS).

47

App marketing Peer
recommendation

 Passive
consumer
marketing

“The biggest thing that I do is I write
official blog entries to make it convey that
there are serious developers behind this,
so anybody that does come to the website,
it looks like a professional website.” (JR)

 In-store, in-
app, hit-oriented
marketing

 Winning
over users from
the platform

“We found the most effective approaches are
the approaches that are directly actionable by
users, where they could click and download
the app” (JS).

“Once you build an app, it kind of turns into
a monster. It’s popular. It’s your baby until
you release it. And it’s the world that decides
what you should do with it. And if they want
something, you gotta put it in there” (TM).

Synthesis from
professional logic to
market logic

Factors driving
logic synthesis

Entrepreneurial
pressure

Learning from market

Figure 1 Independent iOS App Entrepreneurs’ Two

48

Synthesis from
professional logic to
market logic

Synthesis from
market logic to

professional logic

App Entrepreneurs’ Two-way Logic Synthesis

Entrepreneurial
pressure

Learning from platform
and end-users

Knowledge acquisition
need from community
of practice

Factors driving
logic synthesis

49

Essay 2: From invisible hand to visible hand: platform governance and institutional
logic of independent Mac developers, 2001-2012

Abstract

In the research of institutional logics, field-level logics have continuously gained interests
among institutional scholars. A cultural emergence model of field-level logics was
proposed in the latest development of the institutional logics perspective (Thornton,
Ocasio and Lounsbury 2012). This study aims to validate a section of the model: the
relationship between resource environment and emergence and evolution of field-level
logics, and do so in the context of Apple’s desktop developers –Mac indies. I examine a
critical platform governance change from Apple –its opening of the iOS App Store and
subsequently the Mac App Store, and hence its role shifting from mainly a technological
platform to a platform that includes a market exchange place, and dissect the content of
Mac developers’ institutional logic before and after the change in resource environments.
Through a qualitative interpretive study, and a combination of narrative and content
analysis, I show that a software ecosystem logic prevailed for Mac developers prior to the
opening of the App Store, and a platform ecosystem logic emerged after that. For
software developers, two layers of resource environments are present –platform
governance and developers’own economy. Together, they influence software developers’
institutional logic through both material practices and symbolic meanings. Two ideal
types are constructed for the logics along elemental categories, and a content analysis
demonstrates the logic shift pattern as resource environments change. A further analysis
of the two logics suggests that the software ecosystem logic and platform ecosystem logic
are in contestation at this early stage of institutional change. This study has implications
for research in institutional logics and platform governance.

Keywords: field-level institutional logics; resource environment; platform governance;
independent software developers; qualitative research; ideal types

50

Introduction

During the past two decades, the institutional logic theory has undergone substantial

theoretical and empirical development. Originally established in the seminal work by

Friedland and Alford (1991), it has been a great tool in responding to the critique on the

neo-institutional theory by DiMaggio and Powell (1983, 1991). The criticism on the latter

is that the main concept of the theory: institutional isomorphism and organizational

homogeneity “proffers a rather monolithic or unitary concept of the environment and the

legitimacy of institutional myths, and with this an implicit overtone of the legitimacy of

conformity to change”(Townley 1997: 262). Institutional logic perspective in contrast,

argues that institutional environments are pluralistic, and the society is composed of a set

of interdependent and yet contradictory interinstitutional logics, each with differing belief

systems and sources of rationality (Friedland and Alford 1991). Broadly conceptualized

as the “socially constructed organizing principles that shape individual preferences and

organizational interests as well as the repertoire of behaviors by which interests and

preferences are attained”(Friedland and Alford 1991: 232), institutional logic has been

instrumental in explaining the heterogeneity in organizational decisions and routines

(Thornton and Ocasio 1999, Thornton 2002, 2004, Lounsbury 2002, 2007), contestation

and resistance behavior at organizational and individual levels (Townley 1997, 2002,

Reay and Hinings 2005, Marquis and Lounsbury 2007, Qiu, Gopal and Hann 2012), and

change and evolution of organizational fields (Nigam and Ocasio 2010, van Gestel and

Hillebrand 2011).

Following the characteristic of nested multi-levelness of the theory, Thornton and

colleagues developed the concept of institutional logic at the level of the industry or field

51

(Thornton and Ocasio 1999, 2008, Thornton 2002, 2004). In the recent advancement,

Thornton, Ocasio and Lounsbury (2012) articulate a cultural emergence model of

formation of field-level institutional logics, and explicate the mechanisms through which

cross-level effects operate. Taking a linguistic approach, the model illustrates how

societal level and external logics as well as resource environment form field-level logics

through shaping both the material practices and symbolic representations in the field.

While the theoretical relationships and processes are documented in the model, more

empirical studies are needed for model validation. In addition to logic emergence, the

model also theorizes the change and evolution of the field-level institutional logic, and

the authors urge that great care must be exercised in future research in expressing what

aspects of the field-level practices are changing and how changing practices reflect

changing symbolic meanings and institutional logic (Thornton et al. 2012: p169).

The objective of this study is to particularly investigate the effect of resource

environment on the emergence and change of field-level institutional logic in the field of

consumer software industry, and particularly of Apple’s desktop platform and its

independent third-party developers. Resource environment, according to Thornton et al.

(2012) can include market and other forms of governance, such as governments,

corporations, and information networks (p157). Scholars have identified that market

conditions such as consumer demand and resource competition (Thornton 2002, Rao

1998), and public regulatory practices such as state or provincial public policies (Reay

and Hinings 2005, 2009, Townley 1997, 2002), and professional associations

(Greenwood, Suddaby and Hinings 2002) are forms of resource environment, which

provides opportunities for the emergence of new institutional logics. Although literature

52

has implied that resource environment can constitute multiple forms or events for an

institutional field (e.g. Hoffman 1999); in the field of software industry there is a

hierarchical relationship between different parts of the resource environments, and an

understanding of that can provide us with better knowledge about formation and change

of field-level institutional logics.

Third-party developers are software platform’s external innovative assets, who build

complementary applications based on platform’s core technologies (Tiwana, Konsynski

and Bush 2010, Gawer 2010). Together the collection of the platform, third-party

developers, their complementary creations for the platform, and the users formulate the

ecosystem around a given platform (Tiwana et al. 2010, Gawer 2010, Cusumano 2010).

Most software platforms exercise governance and control over developers (Linux being

an exception) to various degrees through technological and non-technological means

(Tiwana et al. 2010). Thus, the platform constitutes key resource environment for

developers. At the same time, developers operate in a free market and create their own

economy together with other market participants. This market is influenced by the

platform, in terms of its installed base and customer characteristics; however it is still a

self-contained economy with its own internal coherence. The market conditions therefore

form the second part of the resource environment for developers. How then do resource

environments lead to the emergence of field-level logic of independent Mac developers?

This is the first research question I intend to answer in this study. In addition to

formulation of institutional logics, literature has documented the effect of change in

resource environments, such as environmental jolts, shocks, or critical events on

institutional change (Nigam et al. 2010, Sine and David 2003, Hoffman 1999). For third-

53

party developers, changes in their resource environment include direct ones from the

platform, such as platform governance change, as well as indirect ones, which are

affected by the platform governance change and occur in developers’ own economy. So

the second research question I intend to explore is: how do changes in resource

environments impact third-party developers’ institutional logic? For the study, I examine

a critical platform governance change from Apple –its opening of the iOS App Store and

subsequently the Mac App Store, and hence its role shifting from mainly a technological

platform to a platform that includes a market exchange place, and dissect the content of

Mac developers’ institutional logic before and after the change in resource environments.

Regarding the outcome of field-level institutional logic change, literature has illustrated

various forms of change based on their direction and extent (Thornton et al. 2012), such

as settlement of a new dominant logic (Thornton 2002, Rao, Monin, and Durand 2003),

stable co-existence of competing logics (Dunn and Jones 2010, Reay and Hinings 2009,

Purdy and Grey 2009, Lounsbury 2007), or ongoing logic change (van Gestel et al. 2011).

What is under-explored is the relationship between resource environment and logic

change outcome. Therefore, the third research question this study intends to answer is

what the dynamics are between the incumbent logic and the new logic of third-party Mac

developers and how resource environments impact such dynamics.

Leveraging online archival data sources and combining narrative and content

analysis (Nigam and Ocasio 2010), I trace the logic formulation and evolution for

independent Mac developers, or Mac indies as called by themselves. Usually composed

of one or two people, these micro-sized software firms write apps for Apple’s desktop

computer platform and sell them directly to customers mainly through the Internet. The

54

findings reveal that a software ecosystem logic prevailed for Mac developers prior to the

opening of the App Store. During that time, Apple as resource environment provides the

hardware and operating system technologies as well as development tools and design

guidelines to developers. It also conveys a sense of coolness and the innovative spirit, and

infuses an artistic pride in software and personal computers. Resource environment

within developers’ own economy comprises the Internet as a distribution channel,

proliferation of infrastructure service providers and software technologies, and a

customer base mainly composed of power users and Mac enthusiasts. This resource

environment not only facilitates Mac indies to run viable software business, it also helps

developers to build a strong identity of independence. Together, these resource

environments shape the software ecosystem logic of Mac indie developers. After Apple

changed governance mechanism by entering the software distribution domain in addition

to being a technology platform, a different logic: platform ecosystem logic emerged. New

rules and regulations from Apple ensue, and these send a strong message of control and

bureaucracy to Mac indie developers. The governance change has also brought about new

market dynamics and different profiles of fellow developers and end users; hence it

changes the economic conditions that developers previously have operated in. The

change in the market conditions serves as a catalyst for developers to redefine their

software valuation and relationship with the platform. All these changes in the resource

environments thus help create a new type of institutional logic for developers. A further

analysis of the two logics suggests that the software ecosystem logic and platform

ecosystem logic are in contestation at this early stage of institutional change, and the

55

organizational learning practices from one of the resource environments –the platform,

reinforces this contestation for Mac developers.

This research first of all deepens our understanding about the emergence and

evolution of institutional logics in the field of consumer software industry through

examining the cross-level processes. Secondly, I illustrate in detail the characteristics and

effect of resource environments in a field with structure different than what has been

traditionally studied as an institutional field –the resource environments in the software

industry exhibit a hierarchical and two-layer characteristic. Thirdly, I identify the

temporal logic shift pattern evidenced in the changing field-level practices and symbolic

meanings through a content analysis. This research also contributes to the software

platform governance and software ecosystem literature by emphasizing the role of third-

party developers in the software ecosystem. Through an institutional field

conceptualization, I identify and explicate the material practices and symbolic

representation of platform governance and third-party developers. I aim to construct

software developers as institutional actors, who do not just write compatible software for

a platform, but in fact constantly interpret and make meanings of governance

mechanisms from the platform, which explains their subsequent practices and strategies.

This study hence adds a symbolic and cultural lens to the software platform governance

literature, which currently is mainly composed of perspectives on architecture-modular

design (Baldwin and Clark 2000, Baldwin and Woodard 2009), economic explanations

(Katz and Shapiro, Rochet and Tirole 2003, 2006, Parker and Van Alstyne 2005, 2012,

Eisenmann, Parker and Van Alstyne 2009), and organizational considerations (Gawer and

Henderson 2007, Cusumano and Gawer 2002). Apple’s context is unique for the research

56

questions in the study. In recent years, the consumer IT industry witnesses a growing

number of platforms adopting the “App Store” model, such as in software (mobile and

desktop), social networking, web browsers and e-publishing. I aim to use Apple’s

ecosystem as a starting point to study the impact of platform’s governance of technology

and market distribution on third-party developers.

The paper proceeds as follows. First, I review literature on field-level logic

emergence and evolution, followed by literature on software platform governance. Then I

describe the methodology used for the study. In the findings section, I first present a

narrative on developers’ institutional logics before and after the change in resource

environment; then I show the changing pattern of the two logics from results of a content

analysis; and lastly I illustrate the dynamics between the two logics. The study concludes

with discussions and implications.

Theoretical background

Emergence of field-level institutional logics

Building on the seminal work by Friedland and Alford (1991), Thornton and Ocasio

(1999) define institutional logic as “the socially constructed, historical patterns of cultural

symbols and material practices, including assumptions, values, and beliefs, by which

individuals and organizations provide meaning to their daily activity, organize time and

space, and reproduce their lives and experiences.” (P804). The meta-theory of

institutional logic is that “to understand individual and organizational behavior, it must be

located in a social and institutional context, and this institutional context both regularizes

behavior and provides opportunity for agency and change” (Thornton and Ocasio 2008:

102). This meta-theory allows institutional logic to develop at multiple levels, just as

57

Friedland and Alford wrote in the original piece: “An adequate social theory must work at

three levels of analysis –individuals competing and negotiating, organizations in conflict

and coordination, and institutions in contradiction and interdependency (1991: 240).

Over the years, Thornton and her colleagues have developed institutional logic at the

level of industry or field (e.g. Thornton et al. 1999, Thornton 2002, 2004). They argue for

the effect of societal-level logic on the formation of field logic by positing that “field-

level logics are both embedded in societal-level logics and subject to field-level processes

that generate distinct forms of instantiation, variation, and combination of societal logics”

(Thornton et al. 2012: p148). For instance, the fiduciary logic in public accounting is a

hybridization of logic of the profession and religion; the aesthetic logic in architecture is

a hybrid of professional and market logic, and the editorial logic in higher-education

publishing is a variant of professional logic (Thornton, Jones and Kury 2005). These

field-level logics are instantiations of societal-level logics, and the specific historical,

cultural and material contingencies in the field lead to field-specific variations in

practices (Thornton 2012: p149).

In a recent development of cultural emergence model on field-level logics, Thornton

et al. (2012) delineate the mechanisms through which cross-level effects operate.

Building on the premise that institutional logics are both symbolic and material

(Friedland and Alford 1991), they expand it by taking a linguistic turn to explain the

construction of field-level logics. Because institutional logics reflect cognitive, normative

and material forces (Thornton et al. 2012), they are embodied in the vocabularies and

communication of members of social groups (Loewenstein and Ocasio 2009). As

narratives create new systems of categories that link category labels to field-level

58

organizing practices (Thornton et al. 2012:159), or change meanings of existing

categories (Ruef 1999), distinct institutional logics emerge. Their model is included in

Figure 1a in the appendix, and a brief summary of the constructs and the processes in the

model is as follows. The authors argue that societal logics, or external logics, defined as

“the institutional logics developed in other institutional fields”, are building blocks for

the formation of field-level institutional logics. Providing both opportunities and

constraints for field-level practices, resource environment affects emergence of field-

level institutional logics through material forces, as well as cognitive, cultural and

political factors. Vocabularies of practice, defined as “systems of labeled categories used

by members of a social collective to make sense of and construct organizing practices”,

provide a critical linchpin which brings together symbolic representations, in the form of

theories, frames and narratives and practices in formulating field-level institutional logics

(Thornton et al. 2012: 150-161). Relationships particularly examined in the current study

are presented in Figure 1b.

Field level institutional logic change

In addition to logic emergence, institutional logic change at industry or field level has

continued to be of interest to institutional logic scholars. According to the cultural

emergence model by Thornton et al. (2012), evolution and change in institutional logics

can result from exogenous changes in societal and external logics, changes in the

resource environment, and internal contradictions between symbolic representations and

material practices in institutional fields (p161-162). In examining financial intermediaries

in the U.S., Lounsbury (2002) documented that the stable regulatory logic established in

the 1930s was replaced by the market logic due to a deregulation act in 1980. He argued

59

that this industry-level logic shift may be better viewed as an outcome of the general

cultural shift from a regulatory to a market logic that unfolded gradually over the period

since midcentury (p257). This example shows the effect of changes in both societal level

logic and resource environments on the shift of field-level logics. New government

policies are often theorized as a form of changing resource environment and they not only

affect field level logics through material changes in regulatory act, but also symbolic

representation reflected in their underlying logics. For instance, researchers document

responses from universities and museums to a new government policy of business and

performance measure (Townley 1997, 2002), and physicians’ responses to provincial

government’s structural change to the healthcare system in Alberta (Reay and Hinings

2005, 2009). These new policies challenge the incumbent logics with their distinct

symbolic meanings and rationalities and bring forth new status in field-level logics.

Changes in resource environments are also manifested in occurrence of critical events,

which trigger field level logic change. Hoffman (1999) demonstrate that a series of

disruptive events, such as the publication of Silent Spring of 1962, beginning of the Earth

Day and formation of the EPA in 1970, and the discovery of Ozone hole in 1985, etc., led

to the emergence of environmentalist logics in the U.S. chemical industry. Glynn and

Lounsbury (2005) show that the 1996 Atlanta Symphony Orchestra musicians’strike

resulted in an increased attention to the market logic, reflected in critics’reviews, in

addition to the aesthetic logic, which previously had dominated the symphony practices.

As well, Nigam et al. (2010) illustrate how environmental sensemaking of the event of

President Clinton’s healthcare reform initiative in 1993-1994 led to the emergence of a

60

new logic of managed care, which replaced previous logics of physician authority and

managed competition model.

Besides exogenous shocks, internal contradiction is another source that catalysts

field-level logic change. In a series of studies on the integration of a new organizational

form in a mature institutional field –professional accounting, it was found that the big

five accounting firms, which have privileged access to resources and practices, are able to

initiate institutional logic change (a shift from a professional logic to a corporate logic)

from the center of an institutional field, and the legitimacy was gained through contested

arguments and languages, which expose the underlying contradictions inherent in

professionalism (Suddaby and Greenwood 2005, Greenwood and Suddaby 2006).

Regarding the various forms of field-level institutional logic change, Thornton et al.

(2012) categorize them into transformational change and developmental change based on

the direction and extent of change. What is particularly relevant to the current study is

logic contestation and co-existence of competing logics. Townley (1997, 2002) illustrate

that universities and museums reject certain aspects of the business planning and

performance measure because the rationalities and logics implied in the two sets of

practices are in conflict. Marquis and Lounsbury (2007) document that the community

banking and national banking logics were competing from the very beginning of the U.S.

banking industry, and the community logic resisted to be engulfed by national banking

logic when a regulatory policy allowed for national banks’acquisition of smaller, local

banks. Besides contestation, competing logics can also peacefully co-exist. Purdy and

Gray (2009) identify that diverse institutional practices co-exist as emerging field

develops within a 22-year period through mechanisms such as transformation, grafting,

61

bridging and exit. Reay et al. (2009) demonstrate that physicians and government agency

employees in the Alberta healthcare field are able to manage the conflict through the

development of collaborative relationships. Dunn and Jones (2010) also suggest logic

pluralism by revealing that in the field of medical education, logics of care and science

are supported by distinct groups and interests and they co-exist and fluctuate over time.

Structure of software industry and third-party developers’ resource environment

Because the focus of this study is institutional logic in the field of consumer software

industry, here I review literature related to developers’ resource environment. Third-party

software developers’ resource environment is highly tied to the structure of the software

industry. A typical two-sided market, software platform aims to bring both sides:

developers and users on board, partly using optimal pricing mechanisms, and grow the

ecosystem through two-sided network externalities (Rochet and Tirole 2003, 2006,

Cusumano et al. 2002, Iansiti and Levien 2004, Cusumano 2010, Gawer 2010).

Developers are complementors to the platform –they are neither platform’s employees

nor their component suppliers through arms-length contracts. Developers depend on a

platform’s services such as Software Development Kit (SDK) and Application

Programming Interface (APIs) in order to obtain access to the hardware and operating

system and write complementary application or services (Evans and Schmalensee 2007,

Ghazawneh and Henfridsson 2011). These services form the foundation for a platform’s

technology-based governance over third-party developers, a classic consideration of

which is the level of intellectual property openness of the platform (West 2003, Boudreau

2010, Eisenmann et al. 2009). As a result, software platform constitutes the first

component of third-party developers’ resource environment. Aside from technological

62

reliance on the platform, third-party developers operate in a free market with typical

economic conditions, where strategic behaviors are desired. Boudreau (2012)

demonstrates that increased number of developers tend to reduce innovation incentives in

the PDA market, hence an evidence of the crowding-out effect in a competitive market.

Through a study of enterprise software industry, Huang, Ceccagnoli, Forman and Wu

(2013) show that third-party developers with a greater stock of formal intellectual

property rights (such as patents and copyrights), and those with stronger downstream

capabilities (as measured by trademarks and consulting services) are more likely to

protect themselves against the threat of platform expropriation. In studying relationship

between first mover advantage and environmental characteristics in the iPhone app

market, Srinivasan and Suarez (2009) discover that early entrants outperform late entrants,

and entry timing is more important in higher growth rate genres and for incumbent rather

than new developers. These findings suggest that there is a second component of third-

party developers’ resource environment, which is formed by developers’ economic

environment. Furthermore, these two parts of resource environment are interconnected –

platform policies and its market performance such as installed base can influence third-

party developers’ market dynamics, competitor types, and customer base. Therefore, it

would be more precise to say that developers operate in a semiautonomous economy. To

the best of my knowledge, no studies have discussed the effect of platform governance

and developers’ own economy at the same time, thus identifying these would be a

contribution of this research.

The platform-developer relationship warrants a little more discussion. On the one

hand, developers are a platform’s external innovation assets and are governed through

63

technological design and pricing mechanisms. On the other hand, because software

platforms are private companies, they tend to engage in certain strategic actions and exert

rules and regulations over developers, which are “distorted away from pure value

creation in the ecosystem, and towards actions that lead to higher platform profits”

(Boudreau and Hagiu 2009: 170). In other words, platforms’ priorities are to protect their

own interests, secure their competitive positions or protect interests of end users, and they

can be in conflict with developers’ interests and goals. First and foremost, platforms have

incentives to enter developers’market (Gawer and Henderson 2007) or fold third-party

innovation into the platform (Parker and Van Alstyne 2012). If the platform releases a

similar application with a third-party offering and bundles it with the operating system,

users can obtain it for free and thus do not have to purchase it from the third-party

developer. Secondly, platforms restrict developers’ access to the platform for quality

assurance purpose. This approach is most commonly seen in the video game industry.

Expansion of size on the developer side can result in congestion and crowding (Boudreau

2012), and consumers’search cost can increase due to information asymmetry between

consumers and developers. In order to reduce consumers’ search cost, platforms thus

engage in centralized “quality certification”via prescreening developers (Boudreau et al.

2009, Gallagher and Park 2002, Evans et al. 2007). These screening policies usually only

grant certain elite game development shops opportunities to write video console games.

Besides developer prescreening, platforms also screen products and decide whether or not

they are qualified for release. Apple’s app review policy on the iOS App Store is the best

example and its inconsistency and lack of transparency attracts much outcry from the

developer community (Bergvall-Kåreborn, Howcroft and Chincholle 2010). Lastly,

64

platform’s regulation is also manifested in restrictions on user-complementor interaction.

Direct interactions between complementors and end users not through the platform can

harm platform’s economic interests (Rochet et al. 2003, 2006), or affect the effectiveness

of the idiosyncratic activities the platform is designed to perform. This approach is

adopted mostly by platforms who are market exchange owners; it is relevant for the

discussion here because the platform governance change observed in this study is a

software platform also taking on the role as a market exchange owner. Boudreau et al.

(2009) show that TopCoder, a vendor for competition-based software outsourcing,

prohibits interactions between developers and final customers to ensure that the software

development in the contest be a sequential and planned process. It is worth noting that

platforms’ rules and regulations described above resemble behavior control mechanisms

in the organizational control theory (Kirsch 1996, 1997), where behavior control means

that “specific rules and procedures are articulated, which, if followed, will lead to desired

outcomes” (Kirsch 1997: 217). However, as Tiwana et al. (2010) suggest, “the

relationship between platform owners and third-party developers is not the classical

principal-agent relationship (i.e., the platform owner does not hire developers to do a task

specified by the former), as assumed in the control theory. It is plausible that the role of

control mechanisms then is one of coordination rather than mitigating agency hazards, as

control theorists widely assume” (p680). As will be shown later, platforms’ strategic

actions, especially their rules and regulations help explain the dynamics between

incumbent and new logics for third-party developers.

65

Methodology

Research context

In order to examine questions regarding third-party developers’ institutional logic

and the impact of their resource environment on the logic, I chose to study independent

developers of Apple’s desktop platform: Mac indies during the 2001 to 2012 time span.

2001 marked the year when Mac OS X, Apple’s new operating system4 was introduced to

the world after founder Steve Jobs returned to Apple. The time also coincided with the

dot-com bust, which left many software developers unemployed, but also a relatively

mature online payment infrastructure grown during the Internet bubble. The availability

of a cool new technology, free development tools5, and an online distribution channel

sparked a wave of entrepreneurship where small or individual developers form business

writing Mac apps and selling them through the Internet (Meeteren 2008). As I will show

in detail in the findings section, over the years, these Mac indie developers formed an

institutional logic based on their professional conduct, and relationship with the platform

and the market. Up until March 2008, Apple had mainly governed third-party developers

with its role as a technology platform. A change occurred on March 6, 2008. With the

announcement of the iPhone SDK, Apple also announced the App Store, the exclusive

distribution channel for the iPhone apps, and later the iPad apps (hence the iOS App

Store). In October 2010, Apple announced the Mac App Store (MAS), a market place

with identical design features as the iOS App Store, but for Mac applications. A major

difference between policies regarding the two stores is that the MAS is not the exclusive

4 Mac OS X is based on NeXTSTEP, the operating system from Steve Job’s company: NeXT, founded in
1985 after he was forced out of Apple.
5 Before OS X, becoming an Apple software developer required an investment of around 1,100 dollars on
third party software like Codewarrier (Meeteren 2008:23)

66

distribution channel for developers as the iOS App Store. With Apple extending its

governance terrain to the market place in addition to technologies, the incumbent Mac

indie developers had to cope with many changes. Besides, a new group of Mac

developers appeared, many of whom come from iOS development. Over time, a new

logic emerged.

Data and analysis

Table 1 illustrates the data sources and analytical process. Following the argument

that narrative and vocabularies reflect the underlying process for the emergence and

change of institutional logic (Thornton et al. 2012), and based on the role of historical

research in analyzing field-level institutional logics (e.g., Thornton and Ocasio 1999,

Thornton 2002, Lounsbury 2002, 2007, Marquis and Lounsbury 2007), I rely on publicly

available online data sources of the Mac indie community, iOS-turned Mac developers,

sources on Apple’s culture and policies, and existing studies on Mac and iOS developers

for this research. While most data sources cover the period between 2004 and 2012, an

ethnographic study on Mac indies by Meeteren (2008)6 and an oral history project on

Mac culture provide data between 2001 and 2004. I use qualitative approach with an

interpretive philosophy (Klein and Myers 1999) to derive Mac indies’ institutional logics.

Because institutional logic is concerned with social actors’practices and meaning system,

an interpretivism epistemology fits perfectly because it is to “understand how members of

a social group, through their participation in social processes, enact their particular

realities and endow them with meaning, and to show how these meanings, beliefs and

intentions of the members help to constitute their social action” (Orlikowski and Baroudi

1991:13). Furthermore, I follow Nigam et al. (2010) by combining a narrative and

6 Although this is an undergraduate thesis, this study is widely recognized among the Mac indie community.

67

content analysis in studying the research questions. Specifically, I derive ideal types of

developers’ institutional logics before and after platform’s governance change, explicate

characteristics of developers’ resource environment, use content analysis to quantitatively

show the logic shift pattern over time, and analyze the relationship between the societal-

level logics to elucidate the dynamics between the two logics at the field level. In the

following section, I detail the process of ideal type construction and content analysis.

Dynamics between the two logics will be illustrated in the findings section.

Ideal types, established by Max Weber (1904), is a typological construct for theory

building and modeling (Doty and Glick 1994). According to Weber (1904), ideal types

are “formed by the one-sided accentuation of one or more points of view and by the

synthesis of a great many diffuse, discrete, more or less present and occasionally absent

concrete individual phenomena, which are arranged according to those one-sidedly

emphasized viewpoints into a unified analytical construct” (Via Coser, 1977:223-224).

Ideal types are the commonly used formal analytic models to compare empirical

observations across institutional order; therefore, they are best developed at least in pairs,

if not multiple characterizations (Thornton et al. 2008: 119). As mentioned in the theory

section, the societies are organized by cultural subsystems or interinstitutional orders

(Friedland et al. 1991), and each of the institutional orders or logics is composed of

elemental categories, which represent the cultural symbols and material practices

particular to that order. The elemental categories are established social-science concepts,

some of which are derived from Weber (1922/1978). In explicating the cultural

emergence model of field-level institutional logics, Thornton et al. (2012) maintain that

the key constructs in the model, such as symbolic representations, practices, and

68

vocabularies of practice are all categorical elements of institutional logics (150). For the

current study, I use ideal types to construct field-level logics, and incorporate the key

constructs in the cultural emergence model through discussions of the elemental

categories. Table 2a illustrates the interinstitutional system ideal types developed initially

in Thornton and Ocasio (1999), then extended in Thornton (2004), Thornton et al. (2005),

and Thornton et al. (2012). Table 2b shows an example of ideal types of field-level logic

in architecture (Thornton et al. 2005: 144). It is worth noting that “the elemental

categories on the vertical Y-axis are not exhaustive and can vary in terms of which ones

are most salient to the researcher’s questions and research context” (Thornton et al. 2012:

59).

I draw on data sources related to incumbent Mac developers, Mac culture and

existing research on Mac developers (e.g. Meeteren 2008) to construct ideal types for the

logic prior to platform’s governance change. To construct ideal types for the new logic, I

examine data sources related to incumbent Mac developers’ changes, iOS-turned Mac

developers, and existing studies on iOS developers (e.g., Qiu et al. 2012, Meeteren 2009,

Bergvall-Kåreborn et al. 2010). The assumption is that Mac developers’ new institutional

logic is composed of iOS-turned Mac developers’ practices and belief systems, as well as

incumbent Mac developers’ changes in practices and belief systems in response to both

the iOS App Store and the Mac App Store (MAS). This assumption is grounded in the

following observations. First and foremost, the two App Stores share design attributes

from the platform and their impact on the customer base. Second, the iOS-turned Mac

developers would inadvertently carry their practices from the iOS App Store to the MAS,

and thus influence the market dynamics and other players, including the incumbent Mac

69

developers. Thirdly, incumbent Mac developers have obtained direct or indirect

experiences with the iOS App Store, so they would anchor their perceptions about and

actions on the MAS based on previous knowledge. Lastly, media or opinion leaders, who

observe Apple as a whole, tend to formulate predictions of the new store based on the old,

and their conjectures would influence developers’ subsequent actions.

My first step was coding one of the data sources –discussions topics on the major

Mac indie listserv: MacSB on Yahoo! Groups. I traced the discussion from its inception:

1/29/2004 to 12/31/2012, the end of my data collection, in a 9-year span. I divided

listserv threads into 3 time periods in accord with Apple’s governance change to examine

the temporal shift in developers’ attention and discussions. The first phase is from

1/29/2004 till 3/5/2008, the second phase is from 3/6/2008, when the iOS App Store was

announced, till 10/19/2010; and the third-phase is between 10/20/2010, when the Mac

App Store was announced, and 12/31/2012. I expect developers’ logic change to appear

in phase 2, and blossom in phase 3. Due to the high number of total messages on the

listserv (close to 20,000)7, I coded the first message in a given thread and used that to

represent the subject discussed in that thread. This assumption is justified by the hidden

profile theory, which suggests that members of a discussion session tend to be biased on

the information initially shared in the dialogue (Stasser 1992). I also tried to mitigate the

limitation of this assumption with the large number of threads coded. After removing off-

topic threads such as occasional technical discussions and trolls, threads with no or only

one reply or activity organizing threads, I coded in total 1,264 threads. This number is

7 This number might not be big in terms of number of messages per month. However, it is worth noting that
this is a business-oriented discussion list for Mac developers. Lists with technical focus have much more
traffic in comparison. I also checked other non-technical discussion list, such as the UI-design group, and
the traffic is a lot less than this business-oriented list.

70

comparable to that in existing literature which uses listserv as data source (c.f.

Orlikowski and Yates, 1994, Kuk 2006, Kudaravalli and Faraj 2008)8.

To map the comprehensiveness of the elemental categories in ideal types, and to

explicate characteristics of the resource environment of Mac developers’ institutional

logic, I adopt the stakeholder perspective (Donaldson and Preston 1995, Jones and Wicks

1999, Agle, Mitchell and Sonnenfeld 1999) as a general coding framework to identify

developers’ practices and interpretations in relation to their stakeholders. A much cited

definition of stakeholders is “those groups without whose support the organization would

cease to exist”(Stanford Research Institute (SRI) 1963, quoted in Donaldson and Preston

1995: 72). My use of the stakeholder perspective is mainly at the descriptive and

empirical level, which suits exploration of the new areas (Donaldson et al. 1995: 70-71),

such as my case. I also went a step further to analyzing the focal organizational entity

itself –developers’ own identity and practices. Together, five categories emerged. Three

of them are related to developers’ stakeholders: the platform, customers and infrastructure

service providers. The rest two are market competition and developers’ entrepreneurial

strategies, and developers’ identity and routine tasks. Figure 1 shows the stakeholder

coding framework.

I combined the deductive and inductive coding approach in analyzing the listserv

threads. For the deductive part, I relied on the platform governance literature and

ethnography about Mac indies by Meeteren (2008) to code developers’relationship with

the platform and developers’ identity and drew on studies on iOS app developers (Qiu et

al. 2012, Meeteren 2009, Bergvall-Kåreborn et al. 2010) to guide my coding on the new

logic. I also allowed themes to emerge during the coding process. To start off coding, I

8 The average number of messages coded in these studies is around 1000.

71

sampled about 800 threads across three phases to construct a coding scheme. To explicate

the emergence of new logic, I used themes generated in the 1st phase as a baseline, and

then carefully compared the meaning of developers’ messages in phase 2 and 3 with the

existing themes. Following previous literature (e.g., Ruef 1999, Reay and Hinings 2005),

which maintains that the new logic can reflect in the changing meaning of an existing

theme or in a new theme, I formed a coding rule where any new meanings attached to the

existing themes or brand new themes were classified as the new institutional logic

attributed to the platform governance change. For instance, theme “platform’s entry into

developers’ turf”means “market and product clash” before platform’s change, while it

means “distribution channel clash” afterwards. By the same token, theme “platform’s

rules and regulations”mainly indicates legal rules before the change, and it means

administrative and technical rules afterwards. The original expectation was that the

incumbent logic would consist of 100% of discussion topics in phase 1, and the new logic

would start to appear in phase 2. However, while comparing the findings about the iOS

app developers with Mac developers’ practices in phase 1, I found that two forms of

practices which belong to the new logic: “frequent app launch to gain visibility”and

“aggregating sales from small apps”were already present in phase 1. This is because, as

will be discussed in details in the findings section, one characteristic of the new logic is

that the centralized distribution channel and platform’s store design and policies

incentivize developers to adopt a form of “hit”-oriented strategy. Prior to Apple’s App

Store, there are several third-party app aggregators, such as Version Tracker and

MacUpdate where developers list their apps. While they are not run by the platform, they

induce similar hit-oriented behaviors from developers. Therefore, for the two themes, and

72

only these two themes in the category “market competition and developers’

entrepreneurial strategies”: “app portfolio strategy” and “frequent releasing strategy”,

their meaning underwent change even prior to the platform governance change. These

two themes mean “app diversification” and “marketing coordination or obtaining

feedback” respectively in the incumbent logic. It is worth pointing out that not all themes

change meaning after the platform change strikes, and not all App Store-related

discussions fall under the new logic. In addition, the original logic continued to exist in

phase 2 and 3. This is because developers were either discussing apps released in their

traditional outlets, or they were still following the original logic even for App Store apps.

An example would be the theme “platform choice” in the market and strategy category.

Regardless of which distribution channel a developer adopts, s/he always needs to

consider the issue of targeting just one platform or more. Based on the characteristics of

the logics, the logic before the platform governance change was named “software

ecosystem logic”, and the one after the change was named “platform ecosystem logic”.

Regarding the coding process, I followed Strauss and Corbin’s approach (1998). I

first used open coding to generate properties and dimensions of themes through

constantly comparing the existing themes with information in the new threads. This was

followed by an axial coding process to extract the sub-themes, namely the condition,

interaction, cause and consequences of themes. Last step was selective coding, which

includes integrating and refining themes, subthemes and their positions in each of the five

categories. Extensive memos were taken and assisted the coding process. After the first

round was completed, I discussed the coding scheme with the research team, clarified

different interpretations and adjusted the scheme. Then, I recoded all threads one more

73

time. The coding scheme continued to evolve until all threads were coded. To validate the

coding framework, inter-coder reliability test was performed. A research assistant coded

10% of the threads in each of the three phases. 15 threads were used for training in each

phase and disagreement in the interpretation was discussed. Some coding differences

were due to the specific knowledge about the Mac business or software development.

Cohen’s kappa was used to calculate level of agreement, because it takes into account the

agreement occurring by chance (Viera and Garrett 2005). The final Cohen’s kappa is 0.75,

which indicates good agreement and above the threshold of 0.70 suggested for content

analysis (Neuendorf 2002, Krippendorff 2004). A complete coding scheme is included in

Table 11 in the Appendix.

To triangulate the listserv data, I also drew on supplemental online archival sources.

Snowball and theoretical sampling were used to obtain these data (Miles and Huberman

1994, Strauss and Corbin 1998). I started with blog posts mentioned in the listserv

discussions, blogs by established Mac or iOS developers in the community, and well-

known industry press, and then expanded data sources from there. Theoretical sampling

was also used. For instance, I selected blog posts from developers who differ in opinions,

strategies and performances on the Mac App Store. In addition, I searched data based on

critical issues about platform’s policies which stirred heated debate among the developer

community and the press, such as Apple’s issuance of the App Store review guidelines,

Apple’s changing policies towards Adobe Flash, and Apple’s policies of Sandboxing and

Gatekeeper. Data searching process ended when no new information emerged. This

search resulted in 77 pieces of text composed of developer blog posts, industry press

articles from MacWorld, macstories, Engadget and The Verge; oral history narratives on

74

Mac culture from Folklore.org –a project dedicated to the development of the original

Macintosh, Apple’s official iOS and Mac App Store review guidelines, transcripts of

developers’ pod casts and presentations from the now deceased C4 conference for Mac

indies. Most of these data are to make up for the listserv data in the relatively short time

span in phase 3, among which ten pieces of texts are on iOS-turned Mac developers’

strategies on the Mac App Store. In the meantime, nine pieces of texts are about Mac

developers’ reactions to Apple’s iOS policies, hence for phase 2; and 13 pieces of texts

are for phase 1. These texts were coded using the same coding scheme derived from the

listserv discussion, and only one new theme emerged: “platform organizational learning”,

characterized by developers’ reflections on the resemblance between Apple’s App Stores

with its music store: the iTunes. This led me to collect additional six pieces of texts on

Apple’s iTunes, including one academic study, one press article, two press interviews

with Steve Jobs, and two YouTube videos of Steve Jobs’ presentations about the iTunes.

Finally, I mapped themes developed from the listserv discussion and supplemental texts,

and existing studies on Mac and iOS developers to the elemental categories to construct

the ideal types. Table 11 provides detailed explanation of the mapping process.

In addition to ideal type construction, I also used coding results from the listserv

discussions to quantitatively demonstrate developers’ temporal shift in logics. Due to data

availability, while multiple sources about incumbent Mac developers, iOS-turned Mac

developers and existing studies were used to construct the ideal types of the two logics,

only listserv discussions were used to quantitatively capture Mac developers’ logic shift

over time. Therefore in the content analysis, the new logic (platform ecosystem logic)

only reflects incumbent Mac developers’ change, and does not include practices and

75

belief systems of iOS-turned Mac developers. As mentioned earlier, based on the

stakeholder coding framework, I derived five broad categories of developers’ stakeholder

relationship and their identity and practices. I examine developers’ logic shift in two

aspects: change of distribution of two logics in each category over time, and change of

percentage of each category over time. For each phase in each of the five categories, I

calculated frequency of each theme through aggregating lower-level themes for the two

logics. Then, I calculated the percentage score for the two logics in each phase. Then for

instance if in phase 2 of any given category, the frequency for software ecosystem logic

was 40, and that for platform ecosystem logic was 10, then software ecosystem logic

constituted 80% of developers’ discussion topics in phase 2 for this category, and

platform ecosystem logic constituted 20%. Over time from phase 1 to phase 3, I thus

observed the changing distribution between the two logics for any given category due to

platform’s governance change. I also calculated the percentage score of each category in

each phase. For example, if 100 instances were coded for each of the 5 categories in

phase 1, then each category equally constituted 20% of developers’discussion topics in

phase 1. Over time, the percentage score revealed the changing pattern of developers’

attention on their stakeholder relationship as well as their identity and strategies because

of platform’s governance change.

Findings

Findings are presented in three parts. First I delineate two ideal types of Mac indies’

institutional logics before and after platform’s governance change and their relationships

with the resource environment. Secondly, I corroborate the logic change with results from

76

the content analysis. Thirdly, I analyze the status of the two logics by elucidating their

relationship at the societal level.

Ideal types of Mac developers’ institutional logics

Table 3 presents the ideal types of two logics. As noted in the methods section,

Thornton et al. (2012) maintain that the elemental categories for ideal types of the

institutional logic reflect the key constructs in the cultural emergence model. Among the

elemental categories in the current study, except for “basis of attention”, which entails

mostly material practices, the other categories contain both material practices and

symbolic meanings. Figure 3 shows the resource environment for the two logics and how

the platform part of the resource environment influences developers’ economy part of the

resource environment. I integrate discussion of the resource environment with discussion

of the institutional logic. In the end of the description of each logic, relationship between

resource environment and institutional will be again summarized.

Individual developers started to write and disseminate their software almost three

decades ago. Developers distributed their software as “shareware”, initially through dial-

up bulletin boards or via disks given away with computer magazines, and later via the

Internet. Users can try a piece of software free of charge, and then send a check to

developers to purchase a registration license of the full version of the software (The

Economist 2004). However, making a living out of shareware was hardly attainable under

a rudimentary distribution and payment system (Takeyama 1994). Despite that, writing

commercial applications and selling directly to users have long been dreams for many

individual developers. This dream was made possible at the turn of the 21st century,

thanks to a maturing e-commerce and online payment infrastructure. Among the many

77

homebrew developers of various platforms, those writing applications for Mac, Apple’s

desktop computers, grew into a significant number.

Gradually from 2001 to 2008, a software ecosystem logic was formed for Mac indies.

This logic is a hybridized mix of the professional and market logic, and is guided by the

personal and market capitalism. The market logic here is characterized by indie

developers’ specialist position in the market through exploitation of periphery of the

resource space. The resource partitioning theory posits that as the level of concentration

in a market rises, generalist firms tend to become larger and more general and exploit

resources available at the market center –the more generic consumer demand or

mainstream taste preferences of consumers. This leaves resources located outside the

generalist target areas for specialist firms. These firms, which tend to be small in scale,

can exploit periphery of the resource space –the niche markets, without directly

competing with the larger generalists (Carroll 1985, Carroll and Swaminathan 2000,

Swaminathan 2001). Among third-party Mac software companies, Mac indies are the

specialist firms. They are shy of marketing and distribution resources necessary to reach

mass market users as a generalist firm does, but they produce niche software and exploit

periphery of the customer base. In contrast, companies like Microsoft and Adobe,

including platform Apple itself produce generalist software, which target center of the

market. Specialist firms’ scale limitation however is remedied by platform’s governance

change, as will be discussed later.

Under the software ecosystem logic, developers’ identity is characterized by their

awareness of being third-party complementors to a platform, and their value on

independence as a business owner. A popular analogy among the Mac indie community is

78

that they are the “sharecropper” to Apple. Developers’app sales are highly reliant on

platform’s market share and installed base, and they face the risk of platform entering

their product turf some day9. If product competition with the platform does occur,

developers would produce a power user version of Apple’s app in order to avoid market

clash (Meeteren 2008). This essentially drives developers to further target periphery of

the market, which tends to consist of hard-core Mac users, consumers with specialized

needs or developers themselves. Mac indie’s identity is at the same time strongly defined

by the independence aspect. Developers cherish the autonomy of being their own boss,

having a big say over the business, and resisting the bureaucracy of working for a

“BigCo”. They normally bootstrap the business without taking external funding, and

command the freedom in choosing the kind of technology for writing apps. Sources of

legitimacy come from quality of apps, reputation of developers and platform recognition.

Mac indie’s emphasis on quality is highly influenced by platform Apple’s meticulous

attention to detail on aesthetics and user interface design. Such artistic pursuit was passed

down from the design philosophy of the original Macintosh. As Andy Hertzfeld, one of

the original Macintosh team members recalled, “The Macintosh was driven by artistic

values, oblivious to competition, where the goal was to be transcendently brilliant and

insanely great. We wanted the Macintosh to be a technical and artistic tour-de-force that

pushed the state of the art in every conceivable dimension.”Customers are also an

important force in shaping app quality. Developers convey that Mac users are more likely

to search for and purchase third-party software from smaller developers than those of

other platforms. Mac users, like developers themselves, tend to be immersed in the

9 The Watson history was a famous anecdote among indie community. Watson was software which was
built to complement a piece of Apple’s software. Shortly after Watson won an Apple Design Award in 2002,
Apple released a new version of Sherlock that incorporated many of Watson’s features (Meeteren 2008: 60).

79

cultural meanings of Mac experience and have a sense of taste (Meeteren 2008). Their

high bar for quality thus pushes developers to hone in the app experience even further.

Moreover, Mac software-related media outlets endorse quality apps through ratings,

reviews and awards. In the Mac community, famous developers are frequently quoted and

their success stories are widely shared. Some earned their reputation from being former

NeXT consultants and Apple employees. Others became popular because of their

craftsmanship in apps and leadership in the community. Developers’ tight-knit

community and being consumers of each others’ products enhance the reputation system.

Legitimacy also comes from platform’s recognition. Apple hands out the Apple Design

Awards (ADA) at yearly developer conference: WWDC and winning ADA significantly

boosts the amount of peer recognition in the community (Meeteren 2008). Additionally,

Apple used to dedicate a webpage to listing third-party apps, and being featured there is

deemed great honor, not to mention the associated sales bump. For Mac indies, the

authority includes their skills and capabilities in producing apps with high engineering

and design qualities, as well as the level of market acceptance towards an app. As a

community of practice (Brown and Duguid 2001), developers form norms regarding how

members should behave during the socializing process. Following the principle of

reciprocity, a developer earns credit in the community by helping others that later can be

“exchanged”if he or she needs help (Meeteren 2008). Mac indies pay particular attention

to the etiquette in dealing with competitors in public. Developers have a general

consensus that their products are differentiating and not competing with each other. If

they need to list feature comparison with a competing product, they make sure to be

considerate of the counterpart and act in good faith and good taste. Competition on price

80

incentives is not encouraged and direct product imitation is frowned upon (Meeteren

2008). When indies set out to start the business, their mission is to do something they

love, keep the business sustainable and increase sales. To do so, they focus their attention

on resolving entrepreneurial challenges, implementing infrastructure services best suited

for the business and adapting to platform’s system progress and technology change.

Piracy is unavoidable in the software industry. Indies have mixed feelings towards their

apps being cracked –they are upset and angry and yet feel flattered at the same time.

Developers differ in dealing with piracy –some design better licensing schemes to reduce

the likelihood of future piracy; others choose to stop the cat-and-mouse chasing and try to

educate end-users and turn them into paying customers. Besides piracy, Mac indies face

many additional entrepreneurial challenges. For example, developers need to make

decisions on multi-platform or cross-platform development, revenue models, strategies

on pricing, product portfolio and product releasing. Among others, marketing and PR is

one of the most critical issue developers face. While “echo-chamber” marketing through

developer and press endorsement create word of mouth effect among developer

themselves or power users (Meeteren 2008), reaching a wider audience requires standard

marketing techniques such as advertising, price promotions, branding and tools

connecting with customers. While Internet is indie developers’ major distribution channel,

they also leverage other distribution options. For instance, developers distribute apps

through physical CDs, offer site licenses or family packs, sell through retail stores,

collaborate with resellers, and participate in magazine promotions or bundled sales

promotions. Under the software ecosystem logic, not only do developers need to make

decisions directly related to their business strategies, but they are also accountable for

81

their relationship with stakeholders, namely, customers, infrastructure providers and the

platform. Small company size allows Mac indies to add a personal touch in tech support.

Customers would receive a support email signed with developers’ name rather than name

of a company division. In the meantime, developers also try to balance the personal and

professional side of the business. To make support more efficient, they streamline the

process with various support tools and issue tracking systems. Indie business relies

heavily on market service providers, such as app aggregators, e-commerce and payment

providers, hosting services, update and publishing service providers. Under the software

ecosystem logic, developers’ attention towards Apple is mainly centered around the

impact of platform’s system change and upgrade on third-party development. For

instance, developers need to decide between backward compatibility to support

customers of old operating systems and embracing the new OS to leverage more platform

features. The biggest technical change developers encountered during the observation

period was Apple’s switching from IBM PowerPC chips to Intel chips in 200510. This

caused huge uproar among the developer community: developers were concerned that

Mac would lose its character and become just like any mass-consumed Wintel machines.

A bigger impact however, was that developers had to convert their code to be compatible

with the new system throughout the transition period. Under the software ecosystem logic,

basis of strategy is an organic growth model. Developers write apps targeting serious

customers for long-term use. They maintain an average price range of $20 to $50 per

piece of software, because developers attach great importance on price as it represents the

10 The official reason for Apple to switch to Intel was power consumption. PowerPC was not able to
provide the level of performance per watt that Apple needed for its light systems, such as notebooks and
small form factor desktops, but Intel was. (Steve Jobs’ key note speech at 2005 WWDC:
http://news.cnet.com/Apples-Intel-switch-Jobs-keynote-transcript---page-3/2100-1047_3-5748045-
3.html?tag=st.next)

82

value of their work. After the first version of an app is released, developers continue to

fix bugs and enhance features to both strengthen the existing customer base and cultivate

new ones. Under software logic, platform-developer coordination is conducted through

both informal and formal mechanisms. Developers convey that Apple’s development

environment is more stable and has created more productive programming environment

for developers compared to Windows. Besides, Apple’s original innovativeness culture is

influential to third-party developers so that they love to be creative with the Mac. Again

as Andy Hertzfeld recalled, “the best thing about the Apple II was the spirit of its

creation. It was not conceived or designed as a product in the usual sense; it was just

Steve Wozniak trying to impress himself and his friends. Most of the early Apple

employees were their own ideal customers… Its unique spirit was picked up and echoed

back by third party developers, who sprung out of nowhere with innovative applications.”

In addition to such cultural and affective properties, Apple connects employees and

executives with developers through the evangelism team (Meeteren 2008). In the

meantime, Apple also maintains a membership-based, formal developer relationship

program (Apple Developer Connection, or ADC) accessible to everyone. And it regulates

developers through legal tools, enforcing rules on use of platform trademark and

administering NDA.

The above ideal-type attributes of software ecosystem logic demonstrate that both

societal-level professional and market logic are in effect here. Mac indie developers need

to solve engineering and design problems, and their reputation system and platform

coordination mechanisms reward apps with high quality. In the meantime, developers

target specialist market and need to resolve entrepreneurial challenges. Under software

83

ecosystem logic, Apple as resource environment provides the hardware, operating system,

development tools and design guidelines to developers. It also influences developers with

its innovative spirit and artistic pride in software design. Resource environment within

developers’ own economy comprises the Internet as a distribution channel, proliferation

of infrastructure service providers and software technologies. Developers’customer base

is mainly composed of those who have the need for and knowledge about specialized

third-party software, such as power users, Mac enthusiasts or other developers. This

resource environment not only facilitates Mac indies to run viable software business, it

also helps developers to build a strong identity of independence. It is worth noting that

developers’customer base is partially influenced by the potential threat of platform

entering third-party developers’product market, which indicates that the platform

component of the resource environment influences the developers’ economy component

of the resource environment. Under software ecosystem logic, platform’s impact on third-

party developers’market dynamics, such as market competition, and their market

strategies is minimal, if not none.

A change in developers’ resource environment occurred on March 6, 2008. Along

with the announcement of the iPhone SDK (software development kit), Apple also

introduced the App Store, the exclusive market place to distribute the iPhone and later the

iPad apps. This platform’s governance change marked the beginning of Apple as a

technology platform entering the domain of software distribution, enacting the role as a

market exchange owner. It also harbingered a different developers’logic –platform

ecosystem logic to arise. On October 20, 2010, Apple announced the Mac App Store

(MAS), a same market place as the iOS App Store, but for desktop applications, and the

84

MAS is not the exclusive channel. As noted in the methods section, the platform

ecosystem logic is analyzed through an integration of developers’practices and symbolic

constructions built around both the iOS App Store and the Mac App Store.

The platform ecosystem logic is a hybridization of corporate and market logic, and it

is guided by the managerial and market capitalism. Here the corporate logic stems from

platform’s technical and administrative policies for developers. The market logic is

characterized by indie developers’ generalist position on the market, and this is strongly

influenced by the design and attributes of a platform-controlled market place. Platform

Apple has in three ways assisted Mac indie developers in taking on the role as a

generalist without actually being one –indie developers are still of small-scale, but they

are able to leverage center of the resource space as generalist firms do with the help of

the platform. First, the App Store has legitimized and popularized software consumption

through increasing average consumers’ knowledge about and demand for software.

Shopping for software is no longer an activity only for power users; it becomes a mass

market phenomenon. An experienced developer shared his observation: “I was just

amazed by how popular it was, people just loved apps. I've been in software forever, and

I've never seen, the kind of response to software, which is really weird.”And because

these new users are mostly average users, they tend to have mainstream preferences for

apps as opposed to geeky ones. Therefore they form center of the resource space which

appeals to generalists. Secondly, the App Store creates a mass distribution channel for

developers to reach a much larger user base that they were not able to in the past –the

App Store essentially solves the scale issue critical for a firm to function as a generalist.

85

Thirdly, the App Store design, especially its top charts feature, incentivizes developers to

write mass-appeal apps and target center of the market space.

Under this logic, developers’ identity is that of subordinate third-party developer

entrepreneur. Apple as an exchange place owner created administrative and technical

rules that developers need to adhere to. From App Store developer enrollment status to

app review process, Mac indies experienced unprecedented organizational bureaucracy in

releasing an app to the market. Apple performs “centralized quality certification” (Hagiu

2009) through a review process. However, unlike game console companies, who filter out

developers before a game is created, Apple rejects apps after they are created. And as

Apple itself is learning, their review guidelines were long time missing, and the

inconsistency in the review results is frequently reported. Even after the guidelines were

published, they were subject to change. This led to much frustration among developers;

they feel that they cannot trust the platform and are losing control over their apps and

even their business. Furthermore, developers need to abide by Apple’s technology

requirement for producing apps, be it programming languages or APIs. Many Mac indie’s

existing applications cannot be sold through the App Store simply because they will

violate the guidelines. Developers expressed their chagrin in listserv discussions about

their increased dependency on the platform:

“For Indies this is really bad news, as we are forced into the Mac App Store and its
dictatorship rules: content censorship, technology lock-in and revenue sharing.”

“Is this worth it? Nimble development has always been something I've taken pride in,
but the App Store process is the very antithesis of nimble. It's slow, bureaucratic, and
opaque. And for what? Is the sales increase worth it?”

“So, the big question is, will you see RA applications in the Mac App Store? Right
now, we don’t know. With Apple’s onerous guidelines, most of our applications would not
be approved. Even if they would be, however, are the benefits good enough to give up
being a truly independent software developer?”

86

Under platform logic, developers’ legitimacy is derived from App Store chart ranking,

platform recognition and end users’ reviews and ratings. Design of the App Store layout

makes various app charts and Apple’s featuring sections particularly salient and

accessible. Users tend to correlate higher app ranking with better app quality, and

developers would also show respect to those who have apps with high rankings. Apple’s

featuring lists act as platform’s official endorsement and significantly increase legitimacy

of featured apps. User rating and reviews are a form of “decentralized quality

certification” (Hagiu 2009), and higher user evaluation adds considerable credibility on

an app for potential buyers. Sources of authority stem from platform’s review and end

user interests. On the App Store, every app goes through a review process before being

published, and as alluded to earlier, Apple employs its power in deciding app

qualifications. Developers convey a sense of fear about Apple’s potential disapproval of

apps, and they frequently exchange information with each other about the “suitability” of

an app before submission. The other source for authority is end user interests. On the

scale with consumers and developers on each side, Apple as a platform tilts the scale

towards consumers. Many of Apple’s policies are designed to protect user experience and

security, but they do not always benefit developers. For instance, Apple’s App Store

review guidelines have detailed items on banning apps related to personal attacks, with

objectionable content and pornography, and those offending religion, culture, and

ethnicity. This is certainly commendable act from a user’s standpoint, but Apple

reviewers’subjectivity and inconsistency often results in unfairness, and thus hurts

developers’interest. Apple recently implemented two policies to protect end user security.

While the sandboxing policy has caused much turmoil among the developer community

87

because many have to relinquish certain app features or withdraw apps from the Mac App

Store, the Gatekeeper policy keeps end users safe without upsetting developers. Under

platform ecosystem logic, basis of norms is developers’ self-interest and dependency on

the platform. Developers tend to behave as if their goal is mainly to exploit profits from

the App Store market, and Apple is seen more as an authoritative boss instead of a

platform providing core technologies. Developers’ mission is to build competitive

position of apps on top charts, and write apps to be favored by the platform. Some

developers deliberately update apps according to platform’s OS upgrade cycle with a

hope that their apps, which show off the latest platform technology, will be featured on

the App Store. Under platform ecosystem logic, developers’ basis of attention is standing

out from competition, embracing the mass app users, and adapting to platform’s changing

technological and administrative policies. On the App Store, competition stays much

closer to each other than on the web. Not only are apps organized according to categories,

similar apps appear together after a user’s search. Therefore developers need to design

app graphics and descriptions to quickly grab user’s attention. As noted earlier, the App

Store has attracted a large number of users who have never made software purchase part

of their lives, but it also brings new challenges to developers in tech support. Unlike

power users who are familiar with third-party software experience, these new users

exhibit certain “immature”behaviors. For instance, they would complain about features

that developers do not claim to have or blame developers for issues they are not liable for,

etc. Learning to interact with average users is thus a new task for developers. Besides

close competition and average user support, platform’s changing policies also keep

developers preoccupied. The Mac App Store removed much flexibility that developers

88

had enjoyed in app transactions with users on their web stores: the App Store licensing

scheme makes sharing review and testing copies less easy; a commonly used time-limited

demo approach by Mac indies is forbidden on the App Store; paid upgrades are not

allowed on the App Store; user information is hidden from developers, so reaching

customers is not straightforward. To accommodate these changes, developers employ

technical methods to address the licensing and app monetization challenges. They try to

use in-app purchase through modular app design or new app release to solve the no-paid-

upgrade issue, but they both have limitations. Developers also attempt to communicate

with users through app description or sway them onto their web stores, although the latter

bears the risk of app rejection. Besides, maintaining two customer bases and two app

builds for the App Store and the web store adds burden to developers. Under the platform

ecosystem logic, developers’ basis of strategy is “hit” growth (Qiu et al. 2012). The “hit”

here means striking app charts and constant new app releases. This is again mainly

associated with design of the App Store and platform’s review process. Because ranking

on top charts gives apps legitimacy and increases visibility, and sales volume determines

chart position, developers tend to lower app prices and engage in pre-release buzz

marketing in order to climb onto the chart during the initial launch. Writing apps with

mass-appeal and modeling after or even mimicking store-trending apps is frequently

pursued on the App Store, because this increases the chance for apps to hit the charts. The

“hit”growth strategy is also related to platform’s review process. Since Apple evaluates

apps after they are created, in order to minimize the risks of app rejection, developers

release smaller-scale apps and save development cost. Consequently, developers diversify

app portfolio with many small apps and accumulate profits from each of them. Having an

89

assortment of apps also taps into the new user group, who tend to be casual app

consumers and view apps more like a form of entertainment rather than utility. Under the

platform ecosystem logic, platform coordinates with developers mainly through formal

mechanisms, namely, a pricing structure composed of membership fees and app royalty,

and the technological, administrative and financial rules and regulations. Mac developers

conveyed that the previously informal and personal exchange with Apple and Apple

employees is disappearing. A seasoned Mac indie developer expressed his hope for a

better communication on the App Store: “I’m hoping to see the Mac App Store developer

experience evolve to encompass the needs of established Mac developers when it comes

to providing the best possible service to our customers; having official channels so that

developers can contact empowered App Store staff for customer-service issue escalation

and resolution would be a great step.”

The above ideal-type attributes of platform ecosystem logic exhibit the effect of

societal-level corporate and market logics. The corporate logic is manifested in

developers’ increased reliance on the platform for technology and business needs. The

market logic is reflected in developers’ opportunities and incentives to function as a

generalist company –in adoption of a “hit” strategy and embracing the mass users. Under

platform ecosystem logic, Apple as the resource environment provides extensive rules

and regulations on app qualification, licensing, monetization and versioning. These send

a strong message of control and bureaucracy to Mac indie developers. Platform’s entry

into developers’ distribution channel significantly alters the other part of developers’

resource environment –the market economy in which developers operate. Through

bringing in large number of new users and developers, and a store design which favors

90

frequent new app release, shorter development cycle and lower pricing, Apple creates a

platform-controlled market environment, which denotes a very different kind of

competition dynamics. These changes in the resource environment serve as a catalyst for

incumbent Mac developers to redefine valuation of their software and labor, and their

relationship with the platform.

Logic evolution of incumbent Mac indie developers: a stakeholder view

In the previous section, I illustrate and contrast the ideal types of software ecosystem

logic and platform ecosystem logic along the elemental categories before and after

change in the resource environment: namely, platform’s governance change and the

subsequent change in developers’ economy. As noted earlier, Mac developers’ platform

ecosystem logic is composed of iOS-turned Mac developers’ practices and belief systems,

and incumbent Mac developers’ changes in practices and belief systems in response to

both the iOS App Store and the Mac App Store (MAS). In this section, I only focus on the

incumbent Mac developers, and demonstrate how their logics shifted in a temporal

structure using results of the content analysis based on Mac developers’ listserv

discussion. As explained in the methods section, I divided the listserv discussion into

three phases. While instances of platform ecosystem logic are already present in phase 1,

they began to take shape in phase 2 and flourish in phase 3. Recall that a stakeholder

perspective was adopted in the listserv threads coding. This approach allows me to

observe which part of software logic changed meaning and morphed into platform logic

due to platform’s governance change, and which part did not. In Table 4 through Table 8,

themes are shown on developers’ relationship to three stakeholders: customers, the

platform, and infrastructure providers, as well as their own entrepreneurial strategies,

91

identity and routines. These themes are aggregated to top two levels from the original

coding scheme in Table 11. Highlighted in yellow are the ones which changed meaning

or whose sub-theme(s) changed meaning. It is worth noting that certain category and

themes did not take on meanings of platform ecosystem logic. For instance, meanings

remained the same for themes in the category “developers’ relationship with

infrastructure providers”. This is because platform Apple acts as a competitor to these

services –it takes over their functionality with the App Store, rather than changing the

way these services work. In addition, theme “3rd-party developers as modular to a system”

as part of developers’relationship with platform and “creation of an app other than

coding” as part of developers’business operational routines were not affected by

platform’s governance change either. Note that the kind of governance change I examine

is platform’s entry into the marketplace domain. Hence, its impact is most salient in

business-related themes, and less likely to occur on technology-related themes, albeit

they also reflect developers’ business decisions.

Table 9 shows the changing pattern of each of the five categories over time. With

platform’s governance change, developers’discussion topics related to the platform and

customers have increased significantly. This is mainly because platform’s new review

process, manifested in the sub-theme “Platform’s rules and regulations” under

“Platform’s coordination with developers”, and platform’s policies on apps’ versioning,

upgrade and licensing, reflected in the theme “Versioning and upgrade”and “Licensing”

attracted much of developers’ attention. In contrast, developers’discussions on

infrastructure providers have reduced dramatically. This is not surprising, given most of

the functionality is replaced with the App Store itself and developers’ dependency on

92

them is decreasing. Developers’ attention on entrepreneurial strategies, their identity and

business routines have roughly remained the same. An interesting observation is that

from phase 1 to phase 3, developers’discussions on market environment and

entrepreneurial strategies, as well as their identity and routines consistently exceeded

those on other categories. It indicates that how to compete on the market, how to appraise

oneself and behave in a community, and how to operate the business has always been

developers’ top focus. The third-place changed from infrastructure service-related

discussions in phase 1 to platform relationship in phase 3. It suggests that as the platform

is involved in third-party applications’distribution, developers’attention towards the

platform increased substantially.

Table 10 exhibits the changing distribution of software and platform logics over time

in five categories. Except for relationship with infrastructure providers, which does not

entail platform logic, other categories all witness a migration in discussion topics from

software logic to platform logic due to platform’s governance change. Interestingly, in

categories on relationship with the platform and customers, platform logic-related

discussion significantly surpassed that on software logic and became dominant in

developers’discussion in phase 3. In contrast, software logic still prevailed in phase 3 for

developers’ discussion on market and strategies as well as their identity and business

routines. To explain the latter phenomenon, let us recall that software logic in phase 2 and

3 is composed of two types of discussions: issues related with developers’traditional

distribution channel: the web store, or same set of issues also applicable to App Store

apps. Percentage distribution among themes in these two categories in phase 3

particularly suggests that “entrepreneurial decisions”, together with developers’

93

operational routines, including “creation of apps other than coding” and “small business

operations”, are what developers focus on the most regarding the web-store distribution

issues. They are also less sensitive to platform governance change and are more likely to

share in practices under two distinct distribution channels. The means across all

categories shows that in phase 3, software ecosystem logic consists of close to 60% of

developers’ entire listserv discussions, and platform ecosystem logic a little over than

40%. This suggests that the two logics co-exist with each other.

Dynamics between software ecosystem logic and platform ecosystem logic and

platform’s organizational learning

In previous two sections, I contrast ideal types of software ecosystem logic and

platform ecosystem logic, and show that they co-exist through an analysis of incumbent

Mac developers’ listserv discussion. In this section, I argue that the two field-level logics

are competing with each other by elucidating the conflicting points between their

societal-level logic components. This analysis is based on the premise of the institutional

logic theory that the interinstitutional logics in the society are interdependent and yet

contradictory, each with differing belief systems and sources of rationality (Friedland and

Alford 1991). Figure 4 provides a visual representation of the logic conflict. As discussed

earlier, software ecosystem logic consists of professional logic and specialist market logic,

and platform ecosystem logic comprises corporate logic and generalist market logic. I

discuss their relationship according to the two dimensions of the platform ecosystem

logic, as distinguished by the red and blue boxes in Figure 4. The first conflict between

professional and corporate logic is manifested in developers’autonomy in making

engineering and design decisions vs. platform’s control in these aspects. Professional

94

logic implies that Mac developers enjoy the freedom in using the kind of technology in

writing apps, deciding how their programs behave and interact with other technology

after installation or upon running, and tweaking native user interface elements, to name

just a few. Corporate logic limits much of this freedom in that Apple as the platform

exerts stringent control on these fronts through App Store review guidelines (Frakes,

2010). What are business decisions to a platform is interpreted by developers as “politics”.

Developers, who always like to resolve technical problems and “get things to work”, can

accept that the platform has certain technical incompetence, but they are extremely

frustrated by the administrative control or “politics” which they have no ways to fix.

The other conflict between professional and corporate logic resides in developers’

professional orientation vs. platform’s consumer orientation. Apple’s sandboxing policy

is the major trigger behind this conflict. Starting from June 1, 2012, when the operating

system Mountain Lion was released, Apple mandated that new and significantly updated

apps submitted to Apple’s Mac App Store must implement sandboxing. Sandboxing

refers to “compartmentalizing what data and features a specific app is granted access to;

apps each can metaphorically play exclusively in their own sandbox, accessing only that

data which Apple has granted that app entitlements to see”(Friedman 2012). Sandboxing

is intended to enhance security, protecting Mac users from malware and poorly designed

apps (Weatherhead 2012). This policy is consistent with Apple’s increasingly emphasized

position as a consumer product company. Late CEO Steve Jobs described the company

identity at Apple’s 4th-quarter earnings conference in 2010 by saying: “We’re a very

high-volume consumer-electronics manufacturer. Consumer-electronics companies sell

stuff to consumers. Consumers, well, consume. Once they’ve chosen their platform, they

95

predictably follow its guidance”(Myslewski 2010). This stance and its related policies

contrast sharply with many Mac developers’identity as a power user and doer. Andy

Ihnatko (2011) from the Macworld was concerned that sandboxing risks eroding the

Mac’s identity. He strongly opined that “Mac users are doers, not consumers. The Mac

must never, ever become a consumer product like the iPad, saddled with artificial

limitations in the name of safety, reliability, and tidiness.”Sandboxing restricts what a

program can do with the system, thus also limits how much a user can do with their Mac.

Developers’ concern is that “the end result may be more safety for the average user, but at

the cost of freedom –and advanced capabilities –for professional users” (Mogull 2012).

Moreover, for power users or other developer customers, sandboxing policy deprives

them with trust and confidence towards the Mac App Store as a market place to shop for

apps. This is because certain apps they purchased before can no longer be updated, and

hence caused them to lose software investments (Rentzsch and Pontious 2012).

Regarding the conflict between specialist market logic and corporate logic, it is

reflected in developers’autonomy in determining customer-facing and market positioning

strategies vs. Apple’s control in them. As noted earlier, outside of the Mac App Store,

developers are free to set up trial and demo for their apps, be it time-limited or feature-

limited. They can charge for the upgrade to support continuous development, and design

the licensing scheme for copy sharing, such as beta testing or app reviewing. The Mac

App Store review guidelines explicitly prohibit all these flexibilities. In addition, while

developers can acquire customer information for targeted marketing and troubleshooting

with apps sold through their web stores, Apple makes user information hidden with apps

sold on the App Store, and thus makes developer-user communication much more

96

difficult. Furthermore, outside of the App Store, developers have the autonomy in

designing marketing messages and positioning itself in relation to competition, be it other

developers or the platform itself. However, Apple removes these rights from developers

by including the following clauses in the review guidelines among others: “apps with

metadata that mentions the name of any other computer platform will be rejected”; “apps

that look similar to Apple Products or apps bundled on the Mac, including the Finder,

iChat, iTunes, and Dashboard will be rejected”(Frakes 2010). Apple also disallows

developers to mention the web-store version of the app in the MAS app description

(Rentzsch et al. 2012), which essentially reduces users’chance of findings apps in

alternative channels.

Now let us examine the second dimension of the platform ecosystem logic: generalist

market logic. Its conflict with the professional logic is manifested in the different

emphasis on app legitimacy. It is app quality as recognized by fellow developers, the

platform and the users that the professional logic focuses on, whereas it is app ranking

and users’reviews and ratings that the market logic underscores. With regard to conflict

between specialist market logic and generalist market logic, it is demonstrated in the

distinct approach on growth strategy. Under a specialist market logic, developers favors

organic growth, while under a generalist market logic, developers turn to hit growth.

Compared with the level of conflict between generalist market logic and software

ecosystem logic (the blue box in Figure 4), that between corporate logic and software

ecosystem logic (the red box in Figure 4) is stronger for incumbent Mac developers and

users. This is because the pressure from corporate logic is drastically different from the

conventional way that Mac development is done, and it challenges developers’

97

independence identity and their identification with the Mac and Apple in the old days.

People lament that “the Mac App Store, for all intents and purposes, will bring an end to

the rogue, piratical culture that Jobs once championed11”(Myslewski 2010).

Developers respond to the change of Mac development and Apple in different ways.

Some embrace the idea. It is almost unanimously agreed among developers that the Mac

App Store brings better purchasing and maintenance experience for end users, not to

mention the access to nearly all Mac users for indie developers. Developers report sales

jump with the Mac App Store. Regarding platform’s tightened control mechanisms, some

developers surrender. For instance, in order to meet sandboxing requirement, developers

have to re-architect their apps or castrate features to continue to publish on the MAS,

although they state that doing so costs time and effort, sacrifices user experience and

damages developer reputation (Haslam 2012). Others resist. Some developers maintain a

relatively high price range for apps sold on the Mac App Store, refusing a “race to the

bottom” pricing strategy, therefore challenging the generalist market logic. Some

developers consider leaving the MAS and only releasing apps in the traditional channel:

their websites. Yet others propose a “pro” version of the App Store or open a community-

organized distribution channel as an alternative. Not only developers withdraw writing

apps for the MAS, developer customers and power users abandon app consumption from

there, too. Marco Arment, an influential iOS developer and a power user of Mac, warned

that “the Mac App Store is in significant danger of becoming an irrelevant, low-traffic

flea market where buyers rarely venture for serious purchases”(Arment 2012). Similarly,

Neven Mrgan, designer at a well-known Mac indie shop: Panic, was also concerned about

the future of the MAS: “the loss of casual users to iOS, and the loss of non-casual apps

11 “Why join the navy if you can be a pirate?” –Steve Jobs 1983.

98

on the (Mac) App Store— and it starts to look like a problem” (Mrgan 2012). A collective

sentiment among the incumbent Mac indie community towards policies such as

sandboxing is that “it will create a lose-lose-lose situation for Apple, the developers and

the users”(Haslam, 2012). Yet others, frustrated by the whole process, even decided to

quit Mac development completely or transition to Linux. Developers shared the following

sentiment on the listserv discussions:

“With the announcement of the Mac App Store, Apple has broken any lingering hope
I had for one day succeeding at indie Mac development. Being treated as a responsible
adult, innovating without restriction, connecting directly with customers, and being able
to fix my mistakes quickly — the things I cherished most about my job at CT — are being
gradually replaced by a “submission” process.”

“I’ve been a Mac developer for many years now. Over the years I’ve seen countless
technologies pass by. I’ve enjoyed seeing Apple in good times, and I’ve been with them in
bad times. I’ve seen people at Apple come and I’ve seen them leave. And I’ve stayed
because I love what I’m doing. But it’s getting harder to love Apple. It’s not only the
constant NDA’s. I’m tired of filing bug reports that don’t get fixed for months or years for
things that I could probably have fixed myself over a few days. I had moved completely to
Cocoa at the time but I can understand how the Carbon developers felt after basically
being left in the cold over a night. The slow response to the DigiNotar incident. HFS+
corruptions. WWDC. Section 3.3.1. App Store. I want out of it.”

In addition to identifying the conflict between the software ecosystem logic and

platform ecosystem logic, the data revealed that organizational learning (Levitt and

March 1988, Huber 1991) of one of developers’ resource environments: the platform

exacerbates these conflicts for incumbent Mac developers. For platform Apple, this

organizational learning comprises of two parts: continuous adoption of a centralized

distribution channel and learning by doing. The former led to a misfit between platform’s

governance model and third-party developers’conventional practices. The latter caused

great uncertainty among developers and users, and reduced their motivation in using the

platform. If we were to trace the origin of the current Mac App Store, it is a carbon copy

of the iOS App Store, and the iOS App Store is adapted from Apple’s iTunes music

99

store12. Although the iOS App Store also attracts many complaints from developers due to

Apple’s rules and associated market dynamics, “its restrictions work for the most part,

because the platform has grown around them. They mostly don’t get in the way”(Marco

Arment, in Friedman 2012). However, it became an issue when Apple was aiming to use

the iOS App Store model, minimally changed, for the Mac App Store (Frakes 2010).

Marco once again opined that “the App Store policies are being retrofitted into a well-

established environment that they’re fairly incompatible with”(in Friedman 2012). In

addition to grafting a new model to an existing market, platform’s learning by doing also

deepens the logic conflict for Mac developers. Apple adjusts policies based on feedback

from the market over time. While learning is common for any type of organization, the

consequence of a platform’s learning could be damaging for third-party complementors.

Apple’s learning by doing means that the timing of their many policies towards

developers is after the fact, i.e., Apple pulls apps after they are published, or requires

apps to be modified architecturally after they are completed. Such policy changes of

Apple result in developers’waste in development and marketing effort, or users’loss in

software investment, not to mention Apple is known for changing policies without

informing its developers. All these have led to great uncertainty among developers and

power users, and caused people to lose trust in the platform.

12 Following Sprigman (2006), I illustrate the shared attributes between the iTunes music store and the iOS
App Store as follows. First, in both cases, Apple dominates one side of the two-sided networks –the
hardware sales market, and uses this to negotiate terms with content providers (in iTunes, it is the Big 4
music label companies, and in the iOS App Store, it is developers). Second, both stores create a “des-
intermediation”model, which directly connects consumers with content. Third, Apple adopts the same
30/70 revenue split model with content providers. Fourth, the iOS App Store adopts the “top charts”and
“hit”feature from the iTunes store. For one thing, the iTunes “re-empowers”singles (du Lac 2006), but it
also reinforces the “hit”mentality for both the music industry and consumers. This is extended to the iOS
App Store for software production and consumption. Developers refer to this as “pop software”model
(Rentzsch et al. 2012).

100

Discussion and conclusion

This study set out to investigate the relationship between resource environments and

field-level logic in the context of independent software developers of Apple’s desktop

platform (Mac indies). Following the cultural emergence model of field-level logics in

Thornton et al. (2012), I attempt to answer three research questions: how do resource

environments lead to the emergence of field-level logic of independent Mac developers?

How do changes in resource environments impact third-party developers’ institutional

logic? And what are the dynamics between the incumbent logic and the new logic of

third-party Mac developers and how do resource environments impact such dynamics?

The findings reveal that two layers of resource environments are present for third-party

developers given the structure of platform-oriented software industry: the platform

governance pattern and developers’own economy. Both of them influence developers’

logic through material practices and symbolic meanings. In addition, developers’

economic environment is also affected by platform’s governance. Exploiting a critical

change of the resource environment –Apple extending the role from a technology

platform to a market exchange owner, and through a narrative and content analysis, I

show that a software ecosystem logic prevailed prior to the change, while a new logic:

platform ecosystem logic emerged afterwards. Constructing the ideal types of the two

logics via a stakeholder perspective, I demonstrate that these two field-level logics are

both combinations of societal-level logics, and are also subject to the distinct processes of

the software industry. Software ecosystem logic is a hybrid of professional and market

logic, and platform ecosystem logic is a hybridization of corporate and market logic. As

the platform expands its governance territory and tightens its rules and regulations over

101

developers, developers’practices towards and interpretations of platform’s role and their

own economic environment change as well. These changes are manifested in the

elemental categories of the ideal types of the two logics. A content analysis of incumbent

Mac indies’ discussion also illustrates the temporal logic shift pattern evidenced in the

changing field-level practices and symbolic meanings. Furthermore, a discussion of

societal-level logics’ conflict shows that Mac indies’incumbent and new logics are still in

contestation with each other at this stage. Moreover, platform as part of the resource

environments intensifies such contestation due to its organizational learning process.

This study contributes to the institutional logic theory mainly through a validation of

the theoretical model of field level logics in Thornton et al. (2012). I specifically

explicate the role of resource environments and societal level logics on the formation and

dynamics of field-level logics. In accord with the dual view of institutional logic theory, I

illustrate both the material and symbolic aspect of Mac indie’s logic through analyzing

the discourse of developers and trade press. This study also contributes to the literature on

software platform governance by emphasizing the role of developers in the ecosystem. I

position developers as institutional actors, who interpret and make meanings of

platform’s governance mechanisms and their change. This adds a fresh perspective on the

extant platform ecosystem literature, which tends to focus on the platform itself, or

merely treat developers as an ancillary component in the platform ecosystem competition.

In this study I examine one platform and hence am able to integrate discussion of

platform governance together with developers’ reactions and interpretations. This study

also contributes to the emerging literature on platform’s non-pricing governance

mechanisms (e.g. Boudreau and Hagiu 2009, Hagiu 2009), by systematically

102

demonstrating the rules and regulations of a technology platform-turned market exchange

owner. For Apple, certain non-technology policies are to secure its role as a market

exchange owner. In the meantime, it also issues technology-related policies not for

technology’s sake; rather, they are designed to protect the interests of one side of the two-

sided networks –consumers’, although these policies can hurt interests of developers, the

other critical part in a two-sided network. This also reveals another trade-off for

platforms –the balance between consumers’ interests and developers’ interests, in

addition to the classic trade-off frequently discussed in the literature –that between value

creation and value appropriation when considering platform’s technology openness.

This study has several practical implications. It indicates that it is crucial for a

platform to develop better understanding about third-party developers, especially about

where they come from. For Apple, they face the risk of losing incumbent Mac indie

developers on the Mac App Store because its technology policies inconvenience this

group of developers. Apple can try to find a midpoint which can both protect users’

interests and accommodate developers’ needs. For a technology platform transitioning to

becoming a market exchange owner, it is also critical to spend more energy in designing

better store experience to facilitate buyer-seller transaction. For instance, lack of direct

communication between developers and users has been complained about by developers

for a long time. Apple could design mechanisms to enhance such communication

experience while retaining its control as a platform. This study can also help further

developers’ understanding about their own practices and meaning system. Cultural

anthropologists argue that “many of the cultural ideas and standards for interpretation

which guide the ways in which people ascribe meaning are not well understood by the

103

people who use them… One of the great contributions of the cultural perspective has been

to uncover the more tacit dimensions of human thought and to demonstrate how these

hidden grammars of meaning help shape our lives” (Chambers 1985: p5). While this

study is not ethnography per se, it does expose the underlying meaning system of

developers, which might not be obvious to developers themselves.

This study has several limitations. First is regarding the causality inference of

developers’discussion topic shift in the content analysis. I suggest that the shift in

developers’practices and meaning system is due to platform’s governance change; and

yet the method used for the content analysis cannot rule out alternative explanations. For

instance, discussion topics could be related to the type of people who post messages, the

list guidelines enforced by the list moderator, the auto-correlation among threads topics,

etc. However, the goal of the content analysis is not to argue for causality; rather, it is to

demonstrate a general trend in the changing pattern of the two logics. Secondly, I only

coded the first message in a thread and this could leave out certain dynamics within a

given thread. This is less of an issue for the ideal type construction, because of the use of

supplemental data sources. However, this could potentially influence the results of the

content analysis, although I try to mitigate this limitation with the large number of

threads coded.

This study suggests several directions for future research. First of all, given unique

attributes of each platform and their governance mechanisms, it would be interesting to

examine the resource environment in other software platforms or technology platforms

which also incorporate a distribution channel in their governance model, and the impact

of the resource environment on third-party developers’institutional logic. For instance,

104

Google and Microsoft, while both adopt a similar “app store”approach, have policies

which differ significantly from each other and from Apple. The implications that these

governance policies have on developers’economy, and consequently their practices and

meaning systems would be interesting to study. Secondly, in this study we focus on

small-scale independent third-party developers because of characteristics of Apple, for

whom indie developers constitute a major component of the third-party developer base.

For platforms such as Microsoft, their developers exhibit different firm size and scope

compared with Mac indies. How these developers’institutional logic emerges and

changes in relation to their resource environment would also be interesting to examine.

Last but not the least, it is argued that “the conceptual scheme of the ideal types offers a

guide for developing hypotheses about the effects of institutional change on the attributes

likely to affect the dependent variables of interest”(Thornton 2004: 25). Thus, the ideal

types derived in this study can potentially be developed into hypotheses about Mac indie

developers and demonstrate that the effect on dependent variables of interest is

institutionally contingent.

105

Figure 1a. Cultural emergence model of field-level institutional logics in Thornton,
Ocasio and Lounsbury (2012: 151)

Figure 1b. Relationships examined in the current study

Resource
environment

Material + symbolic
characteristics

Field-level logics

Material + symbolic
characteristics &
influence from
societal logics

106

Table 1. Data sources and analytical process

Data sources and analytical
process

Explanations

1. Time frame of interest on Mac
indies’ institutional logic

2001-2012

2. General data sources Publicly available online data sources; existing
studies on Mac indies and iOS developers.
Most data sources cover 2004 to 2012; an
ethnographic study on Mac indies by Meeteren
(2008) and an oral history project on Mac
culture provide data between 2001 and 2004

3. General analytical approach Qualitative study with interpretive philosophy;
combination of narrative (ideal types of
institutional logic) and content analysis
(shifting pattern of institutional logic);
analyzing the relationship between the
societal-level logics to elucidate the dynamics
between the two logics at the field level

4. Ideal type construction of institutional logics and characteristics of resource
environment

4.1. Elemental categories of ideal
types

From existing institutional logic studies

4.2. Data sources for the incumbent
logic

Data sources on incumbent Mac developers,
Mac culture and existing research on Mac
indies (e.g. Meeteren 2008)

4.3. Data sources for the new logic Data sources on incumbent Mac developers’
changes, iOS-turned Mac developers, and
existing studies on iOS developers

4.4. Qualitative coding: started with
discussion topic of MacSB on
Yahoo! Group

Divided listserv threads into 3 time periods in
accord with Apple’s governance change

4.4.1. General coding
framework

Used stakeholder perspective to map the
comprehensiveness of the elemental categories
and to explicate characteristics of the resource
environment; 5 categories emerged

4.4.2. Combination of deductive
and inductive coding approach

Relevant literature: platform governance, Mac
indies and iOS developers

4.4.3. Guiding principle of logic
change coding

Used themes generated in the 1st phase as a
baseline; any new meanings attached to the
existing themes or brand new themes were
classified as the new institutional logic
attributed to the platform governance change.
Two themes related to new logic also present
in phase 1

4.4.4. Coding approach Followed Strauss and Corbin’s approach

107

(1998): open coding, axial coding and selective
coding. Extensive memos taken during coding
process

4.4.5. Inter-coder reliability Cohen’s kappa is 0.75
4.4.6. Complete coding scheme
generated

Table 11

4.5. Qualitative coding:
continued with supplemental online
archival sources

Used snowball and theoretical sampling to
obtain 77 pieces of text

4.5.1. Coding of supplemental
online archival sources

Used same coding scheme from the listserv
discussion

4.5.2. New theme emerged:
“platform organizational
learning”

Obtained additional 6 pieces of text on Apple’s
iTunes

4.6. Mapping coding scheme
and existing studies with elemental
categories of ideal types

Elemental categories for a changed theme do
not have to be the same

5. Content analysis Used results from listserv discussion coding to
quantitatively show incumbent Mac
developers’ temporal shift in logics

5.1. Change of distribution of two
logics in each category over time

Percentage score calculated

5.2. Change of percentage of each
category over time

Percentage score calculated

108

Table 2a. “Revised Interinstitutional System Ideal Types”in Thornton, Ocasio and Lounsbury (2012: 73)

Y-Axis: X-Axis: Institutional Orders
Categories Family 1 Community 2 Religion 3 State 4 Market 5 Profession 6 Corporation

7
Root Metaphor 1 Family as firm Common

boundary
Temple as bank State as

redistributio
n mechanism

Transaction Profession as
relational
network

Corporation
as
hierarchy

Sources of
Legitimacy 2

Unconditional
loyalty

Unity of will
Belief in trust
& reciprocity

Importance of
faith &
sacredness in
economy &
society

Democratic
participation

Share price Personal
expertise

Market
position
of firm

Sources of
Authority 3

Patriarchal
domination

Commitment to
community
values &
ideology

Priesthood
charisma

Bureaucratic
domination

Shareholder
activism

Professional
association

Board of
directors
Top
managem
ent

Sources of
Identity 4

Family
reputation

Emotional
connection
Ego-
satisfaction
& reputation

Association with
deities

Social &
economic
class

Faceless Association with
quality of
craft
Personal
reputation

Bureaucratic
roles

Basis of Norms 5 Membership in
a household

Group
membership

Membership in
congregation

Citizenship in
nation

Self-interest Membership in
guild &
association

Employment
in firm

Basis of
Attention 6

Status in
household

Personal
investment
in group

Relation to
supernatural

Status of
interest
group

Status in
market

Status in
profession

Status in
hierarchy

Basis of Strategy
7

Increase family
honor

Increase status
& honor of
members &
practices

Increase
religious
symbolism of
natural
events

Increase
community
good

Increase
efficiency
profit

Increase
personal
reputation

Increase size
&
diversifica
tion of
firm

Informal Control Family politics Visibility of Worship of Backroom Industry Celebrity Organization

109

Mechanisms
8

actions calling politics analysts professionals culture

Economic System
9

Family
capitalism

Cooperative
capitalism

Occidental
capitalism

Welfare
capitalism

Market
capitalism

Personal
capitalism

Managerial
capitalism

110

Table 2b. “Ideal types of institutional logics in architecture”in Thornton, Jones and Kury
(2005: 144)

111

Figure 2. Stakeholder-view as a general coding framework. This figure depicts how
resource environment affects developers’ relationship with their stakeholders and their
own identities and practices. In oval shapes are developers’ relationships with
stakeholders; in rectangles are developers’ identities and practices.

Third-party developers’
relationship with platform

Third-party developers’
market environment and
entrepreneurial decisions

Third-party developers’
identity and routines Resource

environment &
its change

Third-party developers’
relationship with
infrastructure service
providers

Third-party developers’
relationship with
customers

112

Table 3.

Two ideal types of Mac developers’ institutional logics

Characteristics Software ecosystem logic Platform ecosystem logic
Societal-level logics Market (specialist) and

Profession
 Market (generalist) and

corporation
Economic system Market capitalism and personal

capitalism
 Market capitalism and

managerial capitalism
Sources of identity Independent third-party

developer entrepreneur
 Subordinate third-party

developer entrepreneur
Sources of legitimacy Quality of apps

 Reputation of developer
 Platform recognition via awards

 Chart ranking of apps
 Platform recognition via

featuring
 End users’ reviews and ratings

Sources of authority Software engineering and design
prowess

 Market acceptance

 Platform’s review process
 End user interests

Basis of norms Membership in community of
practice

 Self-interest
 Dependency on the platform

Basis of mission Build sustainable business
 Increase sales

 Build competitive position of
apps

 Build apps to be favored by
the platform

Basis of attention Resolve entrepreneurial
challenges

 Implement infrastructure best
suited for the business

 Adapt to platform’s system
progress and technology change

 Stand out in competition
 Embrace the mass app users
 Adapt to platform’s changing

technological and
administrative policies

Basis of strategy Organic growth “Hit” growth
Platform-developer
coordination

 Productive programming
environment

 Culture and affective
attractiveness of the platform

 Platform’s formal and informal
relationship with developers

 Legal rules

 Pricing
 Platform rules and regulations

113

Figure 3. The material and symbolic aspects of resource environment in two institutional logics of Mac developers. There are two
layers of resource environment in each logic. Platform influences the customer base of developers’ economy in software ecosystem
logic, and it influences the entire developers’ economy in the platform ecosystem logic.

Resource environment in software ecosystem
logic

Platform Developers’ economy

Material Symbolic

 Hardware
 Operating system
 Development

tools and design
guidelines

 Innovative spirit
 Artistic pride in

software design

Material Symbolic

 Power users as customers
 Internet as distribution

channel
 Proliferation of

infrastructure service
providers and software
technologies

 Sense of
independence

114

Figure 3. (Cont’d)

Platform Developers’ economy

Material Symbolic

 Rules and regulations
on app qualification,
licensing, monetization
and versioning

 Sense of control
and bureaucracy

Material Symbolic

 New users and fellow
developers

 Market place design
which favors
frequent new app
release, shorter
development cycle
and lower pricing

 Redefining valuation
of software and labor

 Re-evaluating
relationship with the
platform

Resource environment in platform ecosystem
logic

115

Table 4. Coding on “relationship with customers”

Percentage of customer
incidents in each phase PHASE 1

b
11.35%

c
PHASE 2 13.06%

PHASE
3 16.67%

Software logic Software logic Platform logic Software logic Platform logic
COUNT % COUNT % COUNT % COUNT % COUNT %

Total coding incidents
of customer per phase

per logic 88
d

100.00% 57 85.07%
g

10 14.93%
g

6 18.75% 26 81.25%
Themes

Versioning and
upgrade 25 28.41%

e
8 14.04% 3 30.00% 1 16.67% 18 69.23%

 Trial / Demo
a

22 88.00%
f

6 75.00% 1 33.33% 1 100.00% 6 33.33%
 Upgrade 2 8.00% 1 12.50% 2 66.67% 0 0.00% 4 22.22%
 Versioning 1 4.00% 1 12.50% 0 0.00%
 Multi-channel
management 0 0.00% 8 44.44%

h

User licensing 28 31.82% 17 29.82% 3 30.00% 0 0.00% 2 7.69%

Tech support 35 39.77% 32 56.14% 4 40.00% 5 83.33% 6 23.08%
 Support challenges
and approach 5 14.29% 9 28.13% 2 50.00% 4 80.00% 4 66.67%
 Handling difficult
customers 8 22.86% 3 9.38% 2 50.00% 1 20.00% 2 33.33%
 Handling refund 6 17.14% 4 12.50% 0 0.00%
 Tools for support or
feedback 16 45.71% 16 50.00% 0 0.00%

a Highlighted in yellow are the themes whose meaning changed in the platform ecosystem logic compared to the software
ecosystem logic.
b Phase 1: prior to announcement of iOS App Store; phase 2: after announcement of iOS App Store and prior to announcement
of Mac App Store; phase 3: after announcement of Mac App Store

116

c In phase 1, 11.35% of developers’ total discussions on the listserv is on relationship with customers.
d “COUNT”denotes number of incidents coded. In phase 1, 88 incidents were about relationship with customers
e Among all discussions on relationship with customers, 28.41% are about “versioning and upgrade”
f Among all “versioning and upgrade” codes, 88.00% are on “Trial / demo”
g In phase 2, 85.07% of all discussions on relationship with customers reflect software ecosystem logic, and 14.93% reflect
platform ecosystem logic
h “Multi-channel management” is a brand new sub-theme for platform ecosystem logic; it consists of 44.44% of “versioning
and upgrade” in phase 3

117

Table 5. Coding on “relationship with platform Apple”

Percentage of platform
incidents in each phase PHASE 1 11.35% PHASE 2 11.31% PHASE 3 21.35%

Software logic Software logic Platform logic Software logic Platform logic
COUNT % COUNT % COUNT % COUNT % COUNT %

Total coding incidents of
platform per phase per

logic 88 100.00% 43 74.14% 15 25.86% 10 24.39% 31 75.61%
Themes

3rd-party developers as
modular to a system 29 32.95% 12 27.91% 0.00% 6 60.00% 0.00%

 Developers’ decisions on
OS compatibility or choice
of development machines 18 62.07% 7 58.33% 0.00% 6 100.00% 0.00%
 Impact of platform
technology transition on
devs 11 37.93% 2 16.67% 0.00% 0 0.00% 0.00%
 Impact of platform’s
clone machine on devs 0 0.00% 1 8.33% 0.00% 0 0.00% 0.00%
 Impact of platform’s UI
or technology design on
devs 0 0.00% 2 16.67% 0.00% 0 0.00% 0.00%

Strategic relationship
between platform and 3rd-
party developers 27 30.68% 19 44.19% 7 46.67% 2 20.00% 5 16.13%
 Platform’s entry into
developers’ turf 6 22.22% 1 5.26% 2 28.57% 0 0.00% 2 40.00%

 Developers’ reliance on
platform’s installed base 11 40.74% 5 26.32% 5 71.43% 0 0.00% 0 0.00%
 Platform assisting
developers’ marketing 10 37.04% 13 68.42% 0 0.00% 2 100.00% 3 60.00%

Platform’s coordination
with developers 32 36.36% 12 27.91% 8 53.33% 2 20.00% 26 83.87%

118

 Platform’s formal
developer relationship
program 13 40.63% 4 33.33% 0.00% 0 0.00% 0.00%
 Platform’s rules and
regulations 11 34.38% 5 41.67% 8 100.00% 0 0.00% 26 100.00%
 Platform’s cultural
influence on developers 8 25.00% 3 25.00% 0.00% 2 100.00% 0.00%

119

Table 6. Coding on “relationship with infrastructure service providers”

Percentage of infrastructure
incidents in each phase PHASE 1 13.68% PHASE 2 11.89% PHASE 3 6.77%

Software logic Software logic Platform logic Software logic Platform logic
COUNT % COUNT % COUNT % COUNT % COUNT %

Total coding incidents of
infrastructure per phase per

logic 106 100.00% 60 100.00% N/A N/A 12 100.00% N/A N/A
Themes

App aggregators 20 18.87% 10 16.67% N/A N/A 5 41.67% N/A N/A

Payment or e-commerce
services 67 63.21% 39 65.00% N/A N/A 4 33.33% N/A N/A

Hosting services 13 12.26% 7 11.67% N/A N/A 3 25.00% N/A N/A

Auto update services 5 4.72% 4 6.67% N/A N/A 0 0.00% N/A N/A

Software publishing services 1 0.94% 0 0.00% N/A N/A 0 0.00% N/A N/A

120

Table 7. Coding on “market competition / indie business strategies”

Percentage of market /
strategy incidents in each
phase PHASE 1 34.45% PHASE 2 37.04% PHASE 3 30.73%

Software logic Software logic Platform logic Software logic Platform logic
COUNT % COUNT % COUNT % COUNT % COUNT % COUNT %

Total coding incidents of
market / strategy per

phase per logic 262 98.13% 5 1.87% 183 96.32% 7 3.68% 43 72.88% 16 27.12%
Themes

External environment 38 14.50% 17 9.29% 3 42.86% 2 4.65% 2 12.50%
 Dealing with piracy 26 68.42% 0 0.00% 14 82.35% 0 0.00% 2 100.00% 1 50.00%
 Product, platform
competition and competitors 9 23.68% 0 0.00% 3 17.65% 2 66.67% 0 0.00% 0 0.00%
 Core customer base
identification 3 7.89% 0 0.00% 0 0.00% 1 33.33% 0 0.00% 1 50.00%

Entrepreneurial decisions 224 85.50% 5 100.00% 166 90.71% 4 57.14% 41 95.35% 14 87.50%
 Platform choice (multi-
homing) 8 3.57% 6 3.61% 3 7.32%
 Revenue and licensing
model choice 15 6.70% 0 0.00% 0 0.00%
 Pricing strategy 30 13.39% 0 0.00% 13 7.83% 3 75.00% 1 2.44% 8 57.14%
 App product strategy 15 6.70% 3 60.00% 14 8.43% 1 25.00% 0 0.00% 1 7.14%
 App releasing strategy 14 6.25% 2 40.00% 3 1.81% 0 0.00% 0 0.00% 1 7.14%
 Marketing and PR
strategy 117 52.23% 0 0.00% 102 61.45% 0 0.00% 33 80.49% 4 28.57%
 Business expansion or
discontinuance, alternative
entrepreneurial options 25 11.16% 28 16.87% 4 9.76%

121

Table 8. Coding on “developers’ identity and business routines”

Percentage of identity / routine
incidents in each phase PHASE 1 29.16% PHASE 2 26.90% PHASE 3 25.00%

Software logic Software logic Platform logic Software logic Platform logic
COUNT % COUNT % COUNT % COUNT % COUNT %

Total coding incidents of identity
/ routine per phase per logic 226 100.00% 130 94.20% 8 5.80% 34 70.83% 14 29.17%

Themes
Identity of an indie app
entrepreneur 108 47.79% 43 33.08% 4 50.00% 7 20.59% 9 64.29%
 Individual-level identity 45 41.67% 23 53.49% 2 50.00% 2 28.57% 6 66.67%
 Collective identity in a
community of practice 63 58.33% 20 46.51% 2 50.00% 5 71.43% 3 33.33%

Creation of apps other than
coding 53 23.45% 36 27.69% 11 32.35%
 Documentation or technical
writing resources 10 18.87% 6 16.67% 0 0.00%
 App build choice 8 15.09% 2 5.56% 1 9.09%
 Beta testing resources 8 15.09% 7 19.44% 3 27.27%
 Aesthetic touch of the app or
website 19 35.85% 16 44.44% 6 54.55%
 User experience consideration
in app design 8 15.09% 5 13.89% 1 9.09%

Small business operation 65 28.76% 51 39.23% 4 50.00% 16 47.06% 5 35.71%
 Financial operations 21 32.31% 16 31.37% 2 50.00% 5 31.25% 1 20.00%
 Legal issues 31 47.69% 24 47.06% 2 50.00% 9 56.25% 4 80.00%
 Administrative process 13 20.00% 11 21.57% 2 12.50%

122

Table 9. Changing pattern of each stakeholder category over time. Phase 1: prior to announcement of iOS App Store; Phase 2:
after announcement of iOS App Store and prior to announcement of Mac App Store; Phase 3: after announcement of Mac App
Store

Categories PHASE 1 PHASE 2 PHASE 3

Percentage of platform
incidents 11.35% 11.31% 21.35%

Percentage of customer
incidents 11.35% 13.06% 16.67%

Percentage of infrastructure
incidents 13.68% 11.70% 6.25%

Percentage of market /
strategy incidents 34.45% 37.04% 30.73%

Percentage of identity /
routine incidents 29.16% 26.90% 25.00%

Total 99.99% 100.01% 100.00%

123

Table 10. Changing distribution of software and platform logics in each stakeholder category over time

PHASE 1 PHASE 2 PHASE 3
Software logic Platform logic Software logic Platform logic Software logic Platform logic

Categories COUNT % COUNT % COUNT % COUNT % COUNT % COUNT %
Developers’
relationship
with platform 88 100.00% 0 0.00% 43 74.14% 15 25.86% 10 24.39% 31 75.61%

Developers’
relationship
with
customers 88 100.00% 0 0.00% 57 85.07% 10 14.93% 6 18.75% 26 81.25%

Developers’
relationship
with
infrastructure
providers 106 100.00% 0 0.00% 60 100.00% 0 0.00% 12 100.00% 0 0.00%

Developers’
market
environment
and strategies 262 98.13% 5 1.87% 183 96.32% 7 3.68% 43 72.88% 16 27.12%

Developers’
identity and
routines 226 100.00% 0 0.00% 130 94.20% 8 3.16% 34 70.83% 14 29.17%

Mean 99.63% 0.37% 89.95% 9.53% 57.37% 42.63%

124

Figure 4. Conflict between software ecosystem logic and platform ecosystem logic for
incumbent Mac developers and influence from platform organizational learning

Software ecosystem logic

Platform ecosystem
logic

Professional logic Specialist market logic

Corporate logic

Conflict in autonomy vs.
control in engineering and
design decisions

Conflict in profession
orientation vs. consumption
orientation

Conflict in autonomy vs.
control in customer-
facing and market
positioning strategies

Generalist market logic

Conflict in app legitimacy:
quality vs. ranking

Conflict in growth
strategy: organic growth
vs. hit growth

Platform organizational learning
 Continuous adoption of a

centralized distribution channel
 Learning by doing

125

Table 11. Coding scheme developed from the MacSB listserv and applied in
supplemental data sources to capture developers’ institutional logics before and after
platform’s governance change. Highlighted in yellow are the themes whose meaning
changed or whose sub-themes’meaning changed in the platform ecosystem logic
compared to the software ecosystem logic. New meanings are included in the “platform
ecosystem logic” column. Theme “Multi-channel management” only appeared in the
platform ecosystem logic. Highlighted in blue are the elemental categories of the ideal
types –this indicates the mapping between themes developed according to the
stakeholder framework and elemental categories of the ideal types. It is worth noting that
when a theme of software ecosystem logic changed meaning in the platform ecosystem
logic, its corresponding elemental category of the ideal types could change, too. For
instance, for the sub-theme “Technical requirement adherence” under “Platform’s
coordination with developers”, it belongs to the elemental category “Platform-developer
coordination”in the software ecosystem logic, and “Sources of authority” in the platform
ecosystem logic.

Software ecosystem logic Platform ecosystem
logic

Relationship with platform Apple
1. 3rd-party development as modular component to a

system (Basis of attention)
a. Developers’ decisions on OS compatibility or

choice of development machines
b. Impact of platform technology transition on

developers
c. Impact of platform’s clone machines on

developers
d. Impact of platform’s UI or technology (OS)

design on developers
2. Strategic relationship between platform and 3rd-party

devs
a. Platform’s entry into developers’ turf: product

market clash (Sources of identity)
Distribution channel
clash (Sources of
identity)

b. Developers’ reliance on platform’s installed base
(relevant discussions on platform hardware
market share and desktop platform competition)
(Sources of identity)

Within-platform
competition
(traditional Mac
platform competing
for the up-and-coming
mobile platform of the
company) (Sources of
identity)

c. Platform assisting developers’ marketing: devs Platform featuring on

126

listing apps on Apple download.com; Apple
employee relationship marketing (Sources of
legitimacy)

the App Store
(Sources of
legitimacy)

3. Platform’s coordination with developers
a. Platform’s formal developer relationship

program: ADC (Apple Developer Connection),
WWDC and platform’s privileged developer
relationship program: ADA (Platform-developer
coordination)

b. Platform’s rules and regulations (Platform-
developer coordination)

i. Legal aspect related to the platform: use
of platform’s graphic assets / Apple’s
trademark in developer’s app; Apple’s
NDA

App Store
membership
enrollment and
approval status
(Platform-developer
coordination)

ii. Technical requirement adherence App Store review
guidelines (Sources of
authority)

c. Platform’s cultural influence on developers:
definition of a good product by Mac standards;
impact of platform design philosophy on 3rd-
party’s design in icon, UI, and websites
(Sources of legitimacy)

Market or competition / indie business strategies

1. External environment
a. Piracy concerns / issue / overcome strategies

(reaction: upset to happy; strategy: blocking to
not bother) (Basis of attention)

Piracy falls under
platform’s
responsibility
(Platform-developer
coordination)

b. Product, platform competition or competitor
type (Basis of attention)

New devs tend to not
aim for high quality in
app; competitors
cheating, writing
negative reviews
(Basis of strategy)

c. Core customer base identification (who are they:
power users or average users) (Economic
system)

Leisure users, viewing
apps more like a form
of entertainment rather
than utility (Economic
system; Basis of
strategy)

2. Entrepreneurial decisions (Basis of attention)

127

a. Platform choice (multi-homing): web vs. native
debate; cross-platform development

b. Revenue / licensing model choice (source code:
open vs. closed source; payment options:
commercial vs. free; voluntary pay (donation
ware) vs. pay-after-trial (shareware))

i. OSS and free vs. commercialized /
shareware OSS

ii. Closed source free vs. closed source
commercial / shareware

iii. Shareware vs. donationware vs. freeware
c. Pricing strategy (Basis of strategy) i. Low pricing related

to top charts and store
trend; (Basis of
strategy)
ii. Strong Price
elasticity (Basis of
strategy)

i. General question about determining
price on an app

ii. Pricing related to perceived customer
reaction

iii. Pricing related to support cost
iv. Upgrade pricing
v. Pricing based on competition

vi. Price related to the macro-economy, i.e.,
inflation

d. App product strategy (Basis of strategy)
i. App market identification

ii. App portfolio strategy (product
diversification)

App portfolio
strategy (aggregate
sales of small apps)
(Basis of strategy)

iii. Degree of synthesis
1. Synthesis in ideation
2. Synthesis in execution

e. App releasing strategy (Basis of strategy)
i. Optimal release timing

ii. Releasing drama creation (buzz first or
product first; secrecy or openness with
the press)

iii. Frequent releasing strategy (for
marketing coordination or obtaining
feedback)

Frequent releasing
strategy (to obtain
eye-balling and
visibility on
download sites)

128

(Basis of strategy)
f. Marketing and PR strategy i. Strategies on

ranking, charting;
attracting more
and positive user
reviews;
competing for user
attention (Basis of
legitimacy)

i. General marketing approach or questions
ii. Word of mouth marketing: PR services /

PR release strategies & Review site /
bloggers / “High-status dev”/ MUG
(Mac user group) / user reviews

iii. Online advertising
iv. Relationship building with customers;

social networking sites
v. Affiliate marketing & advertising

revenue
vi. Price promotions / discounts

vii. Branding / product or company image
building

1. General branding
2. Product-centric or company-

centric marketing
3. Naming: naming the app,

company, domain, or version
viii. Marketing tools in connecting with

customers
1. Customer info management /

CRM
2. Virtual telephone service
3. Teasing feature
4. Blogging software
5. Screencaster service
6. Email marketing tools
7. SEO & Web analytics

ix. Distribution channel options (options
contrasting to the App Store model;
questions / pros and cons): i.e., physical
CD; site licenses / family pack; retail
store; MacWorld Expo; resellers;
magazine; bundled sales (i.e., MacZot)

g. Business expansion or discontinuance,
alternative business options for indie

i. Business acquisition

129

ii. Localization and internationalization
iii. Selling business or apps
iv. Product or old version discontinue
v. Indie contract work or consulting

vi. Custom development for client

Relationship with customers (Basis of attention)
1. Shareware versioning

a. Trial / Demo: time limited vs. feature limited;
Pros and Cons about design issue

Trial mode change:
no time-limited demo
(Basis of attention)

b. Upgrade: design of upgrade policy Upgrade process
change: no paid
upgrades (Basis of
attention)

c. Software versioning
Multi-channel
management (Basis
of attention)

2. User licensing; licensing scheme design; market
segment validation; product activation; distributing
testing / reviewer copies

Licensing scheme
changed: sharing
testing / reviewer
copies becomes less
easy (Basis of
attention)

3. Tech support
a. Indie developers’ support challenges and

approach (support norm / philosophy;
challenges including factors uncontrollable by
devs)

The challenge
became blocked
direct communication
with users, so
developers had to
come up with
alternative ways for
support (Basis of
attention)

b. Handling difficult customers (dealing with
negative user reviews)

“Immature”user
behavior (Basis of
attention)

c. Handling refund
d. Tools for user support or feedback

i. Tools in general
ii. Bug / support / crash / feature request /

report tracking system
iii. Forum tools
iv. Mailinglist management service

130

Relationship with infrastructure service providers (Basis of
attention)

1. App aggregators (i.e., MacUpdate, Version Tracker,
Apple download, CNET download; Bodega)

2. Payment, e-commerce or licensing services providers
(i.e., Kagi, eSellerate, Paypal; AquaticPrime, etc.)

3. Hosting services (including email service / server)
4. Auto update services: Sparkle
5. Software publishing services

Developers’ identity and business routines
1. Identity of an indie app entrepreneur

a. Individual-level identity
i. Independence: bootstrapping business

instead of taking external funds;
independence from working for others;
independence from a large corporation
or large player in the industry; freedom
in choosing the kind of technology to
use; regarding the term “sharecropper”,
it means the potential risk of “product
clashing” with platform offerings
(Sources of identity)

Decreased level of
independence:
welcoming the idea
of App Store or
resisting it; regarding
the term
“sharecropper”, it
means developers
need to follow the
technical and
administrative rules
and regulations from
the platform (Sources
of identity)

ii. Life-work balance / sustainability / day
job-indie balance (Basis of mission)

iii. Norms or ethics of being an indie or a
software developer (Basis of norms)

iv. Going indie (how to start out) / new
product announcement / achievement
announcement (Basis of mission)

b. Collective identity (Basis of norms)
i. Developer-collaboration / Co-op effort

in marketing and product or business
assessment

Organizing MAS
alternative (Sources
of identity)

ii. Knowledge resource or information
sharing

iii. Etiquette in treating competitors in the
Mac business world

iv. Sales pattern sharing / analysis to
stimulate discussions on the list

App Store sales
pattern analysis:
comparing with the
web store sales (Basis

131

of attention)
2. Creation of the app itself other than the coding part

(Sources of legitimacy)
a. Documentation or technical writing resources
b. App build choice: i.e., DiskImage or Zip
c. Beta testing resources
d. Aesthetic touch of the app / website

i. Designer or design software choice
ii. Audio engineer

iii. Website building and management tools
e. User experience design

3. Small business operation (Basis of attention)
a. Financial operations i. Depending on

platform for
disbursement /
payment
(Platform-
developer
coordination)

i. Cost of ISV / financial matters
ii. Insurance: health insurance / property

insurance
iii. Product tax-related or banking issues
iv. Accounting software / accountant /

payroll software
b. Legal issues i. Requirement

from authority
higher than the
platform (i.e.,
U.S.
government)
(Platform-
developer
coordination)

ii. iTunes Connect
account
(Platform-
developer
coordination)

i. General legal inquiry (copyright;
incorporation)

ii. Business structure / entity (incorporation
/ LLC / sole proprietorship)

iii. Business liability
1. Product liability insurance /

merchant account

132

2. Liability in promotion activities
3. EULA / legalese / privacy policy
4. Backup strategy / code escrow

iv. Existing or potential legal dispute:
Trademark / app (company) naming
collision / copyright / clone; legal fight

v. OSS licensing (using or licensing under
OSS licenses)

vi. Potential legal conflict between day job
and moonlighting job

c. Administrative process
i. Formalizing business process (i.e.,

checklist, formal business plan,
certification)

ii. Personnel structure
iii. Project management tools / time tracking

tools / within-company communication
tool

133

References

Arment, Marco. 2012. The Mac App Store’s future of irrelevance. July 26, 2012.

http://www.marco.org/2012/07/26/mac-app-store-future

Baldwin, C. Y. and K. B. Clark, 2000, Design rules: The power of modularity. Cambridge,

MA MIT Press.

Baldwin, C. Y. and C. J. Woodard, 2009, The architecture of platforms: A unified view. In

A. Gawer (ed.) Platforms, markets and innovation. Cheltenham, UK and

Northampton, MA, US: Edward Elgar.

Bergvall-Kåreborn, Birgitta; Howcroft, Debra; and Chincholle, Didier. 2010. Outsourcing

creative work: a study of mobile application development. ICIS 2010 Proceedings.

Paper 23.

Boudreau, K. 2012. Let a thousand flowers bloom? An early look at large numbers of

software app developers and patterns of innovation. Organization Science, 23(5),

pp.1409-1427.

Boudreau, K. 2010. Open platform strategies and innovation: Granting access vs.

devolving control. Management Sci. 56(10) 1849-1872.

Carroll, G.R. 1985. Concentration and specialization: dynamics of niche width in

populations of organizations. American Journal of Sociology, 90: 1262-1283

Carroll. G. and Swaminathan, A. 2000. “Why the Microbrewery Movement?

Organizational Dynamics of Resource Partitioning in the US Brewing Industry.”

American Journal of Sociology, 106:715-762.

134

Chambers, E. 1985. Applied Anthropology: A Practical Guide. Prentice Hall, Inc.,

Englewood Cliffs, New Jersey. Reprinted in 1989 by Waveland Press, Prospect

Heights, Illinois.

Coser, Lewis A. 1977. Masters of sociological thought: Ideas in historical and social

context. Harcourt Brace Jovanovich (New York). 2nd edition

Cusumano, M. 2010. Technology strategy and management the evolution of platform

thinking. Communications of the ACM 53 (1) 32-34.

DiMaggio, P., and W. Powell. 1983. The iron cage revisited: institutional isomorphism

and collective rationality in organizational fields. American Sociological Review.

48, 147-160.

DiMaggio, P., and W. Powell. 1991. The iron cage revisited: institutional isomorphism

and collective rationality in organizational fields in The new institutionalism in

organizational analysis. W. Powell and P. DiMaggio (eds.), 63-82. Chicago:

University of Chicago Press.

DiMaggio, Paul and Mullen, Ann L. 2000. Enacting community in progressive America:

Civic rituals in national music week, 1924. Poetics (27), p135-162.

du Lac, J. Freedom. 2006. Downloads Make Singles a Hit Again. The Washington Post.

February 8, 2006. http://www.washingtonpost.com/wp-

dyn/content/article/2006/02/07/AR2006020702051_pf.html

Thomas R. Eisenmann, Geoffrey Parker, Marshall Van Alstyne 2009. Opening Platforms:

How, When and Why? In Gawer, Annabelle (ed.), Platforms, Markets and

Innovation, Edward Elgar: Cheltenham, UK.

135

Evans, David S., Richard Schmalensee. 2007. Industrial organization of markets with

two-sided platforms. Competition Policy International 3(1) 151–179.

Frakes, Dan. 2010. The Mac App Store: The devil will be in the details. Oct 23, 2010.

Macworld.

http://www.macworld.com/article/1155120/mac_app_store_devil_in_the_details.h

tml

Friedman, Lex. 2012. Sandboxing deadline arrives: What it means for Apple, developers,

and you. Macworld.com. Jun 1, 2012.

http://www.macworld.com/article/1167055/sandboxing_deadline_arrives_what_it

_means_for_apple_developers_and_you.html

Gallaugher, J.M., Y. M. Wang. 2002. Understanding network effects in software markets:

Evidence from Web server pricing. MIS Quart. 26(4), 303–327.

Garud, R., Jain, S., & Kumaraswamy, A. 2002. Institutional entrepreneurship in the

sponsorship of common technological standards: The case of Sun Microsystems

and Java. Academy of Management Journal, 45: 196 –214.

Gawer, Annabelle (ed.). 2009. Platforms, Markets and Innovation, Edward Elgar:

Cheltenham, UK.

Cusumano, M.A. and Annabelle Gawer. 2002. The elements of platform leadership.

Sloan management review. Spring, 51-58.

Gawer, A. 2010. Towards a general theory of technological platforms. DRUID conference

presentation. Imperial College London Business School, June 16 - 18, 2010

Ghazawneh Ahmad & Henfridsson Ola. 2011. Micro-strategizing in platform ecosystems:

a multiple case study. ICIS proceedings.

136

Ghazawneh Ahmad & Henfridsson Ola. 2010. Governing third-party development

through platform boundary resources. ICIS proceedings.

Glynn, Mary Ann and Michael Lounsbury. 2005. ‘From the Critics’ Corner: Logic

Blending, Discursive Change and Authencity in a Cultural Production System,’

Journal of Management Studies 42 (5): 1031–1055.

Greenwood, Royston, and Roy Suddaby. 2006. ‘Institutional Entrepreneurship in Mature

Fields: The Big Five Accounting Firms,’ Academy of Management Journal 49 (1):

27–48.

Hagiu, Andrei. 2007. "Merchant or Two-Sided Platform." Review of Network Economics

6, no. 2.

Hagiu, Andrei. 2009. Multi-Sided Platforms: From Microfoundations to Design and

Expansion Strategies. Harvard Business School Working Paper, No. 09–115.

Hamburger, Ellis. 2012. on July 27, 2012. Sandbox of frustration: Apple’s walled garden

closes in on Mac developers. The Verge.

http://www.theverge.com/2012/7/27/3186875/mac-app-store-sandboxing-

frustration-mountain-lion

Haslam, Karen. 2012. Macworld UK. Sandboxing will “disadvantage Mac users,” say

developers. May 29,

2012.http://www.macworld.com/article/1166997/sandboxing_will_disadvantage_

mac_users_say_developers.html

Haveman, Heather A., and Hayagreeva Rao. 1997. ‘Structuring a Theory of Moral

Sentiments: Institutional and Organizational Coevolution in the Early Thrift

Industry,’ American Journal of Sociology 102 (6): 1606–1651.

137

Hertzfeld, Andy. The Macintosh Spirit. Folklore.org.

http://folklore.org/StoryView.py?project=Macintosh&story=The_Macintosh_Spiri

t.txt&topic=Apple%20Spirit&sortOrder=Sort%20by%20Date

Hertzfeld, Andy. The Apple Spirit.Folklore.org.

http://folklore.org/StoryView.py?project=Macintosh&story=The_Apple_Spirit.txt

&topic=Apple%20Spirit&sortOrder=Sort%20by%20Date&detail=medium

Hoffman, Andrew J. 1999. Institutional Evolution and Change: Environmentalism and

the U.S. Chemical Industry. The Academy of Management Journal, 42(4), pp.

351-371

Huang, Peng; Ceccagnoli, Marco; Forman, Chris and Wu, D.J. 2013. Appropriability

mechanisms and the platform partnership decision: evidence from enterprise

software. Management Science, 59(1), pp. 102-121.

Huber, G. P. 1991. Organizational learning: the contributing processes and the literatures.

Organ. Sci. 2(1) 88-115.

Iansiti , M. and R . Levien, 2004. The keystone advantage: What the new dynamics of

business ecosystems mean for strategy, innovation, and sustainability. Boston,

MA: Harvard University Press.

Ihnatko, Andy. Oct 2, 2011. App sandboxing risks eroding the Mac’s identity. Macworld.

http://www.macworld.com/article/1162504/app_sandboxing_risks_eroding_the_

macs_identity.html

Katz, Michael L. & Shapiro, C. 1994. System competition and network effects. The

Journal of Economic Perspectives, Vol. 8, No. 2, pp. 93-115

138

Kirsch, L. J. 1996. The management of complex tasks in organizations: Controlling the

systems development process. Organization Science. 7(1) 1–21.

Kirsch, L.J. 1997. Portfolios of Control Modes and IS Project Management. Information

Systems Research, 8(3), 215-239.

Kitchener, Martin. 2002. ‘Mobilizing the Logic of Managerialism in Professional Fields:

The Case of Academic Health Centers Mergers,’ Organization Studies 23 (3):

391–420.

Klein, Heinz K. and Michael D. Myers. 1999. A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly, 23

(1), 67-93.

Krippendorff, K. 2004.Content Analysis: An Introduction to Its Methodology. Sage.

Thousand Oaks, CA.

Kudaravalli, Srinivas and Samer Faraj. 2008. The structure of collaboration in electronic

network. Journal of the Association for Information Systems, 9(10/11), pp.706-

726.

Kuk, George. 2006. Strategic interaction and knowledge sharing in the KDE developer

mailing list. Management Science. 52(7), pp. 1031-1042.

Levitt, B., J. G. March. 1988. Organizational Learning. Annual Review of Sociology. (14)

319-340.

Lounsbury, M. 2007. A tale of two cities: competing logics and practice variation in the

professionalizing of mutual funds. Academy of Management Journal, 50(2),

p.289-307.

139

Lounsbury, Michael. 2002. ‘Institutional Transformation and Status Mobility: The

Professionalization of the Field of Finance,’ Academy of Management Journal 45:

255–266.

Marquis, C. Lounsbury, M. 2007. Vive La Resistance: competing logics and the

consolidation of U.S. community banking. Academy of Management Journal,

50(4), p. 799-820.

Meeteren, M. van. 2008. Indie fever: the genesis, culture and economy of a community of

independent software developers on the Macintosh OS X platform. Bachelor

thesis. Human geography, University of Amsterdam.

Meeteren, M. van. 2009. “Indie”desktop versus iPhone software development: A

comparison of cultural value chains. Working paper.

Miles, M., A. M. Huberman. 1991. Qualitative Data Analysis, 2nd edition, Sage, Beverly

Hills, CA.

Mogull, Rich. 2012. Answering Questions about Sandboxing, Gatekeeper, and the Mac

App Store. TidBits. 25 Jun 2012. http://tidbits.com/article/13071

Mrgan, Neven. 2012. The Mac App Store’s future. July 26 2012.

http://mrgan.tumblr.com/post/28058883006/the-mac-app-stores-future

Myslewski. Rik. 2010. Apple posts $20bn+ quarter. 18th October 2010. The Register.

http://www.theregister.co.uk/2010/10/18/apple_q4_2010/

Neuendorf, K. 2002.The Content Analysis Guide book. Sage, New York.

Orlikowski, Wanda J. and Baroudi, Jack J. 1991. “Studying Information Technology in

Organizations: Research Approaches and Assumptions,” Information Systems

Research, 2(1), p1-28.

140

Parker G, Van Alstyne MW. 2012. Innovation, openness, and platform control. Working

paper, Tulane University, New Orleans. http://ssrn.com/abstract=1079712.

Parker, Geoffrey G., Van Alstyne, Marshall W. 2005. Two-Sided Network Effects: A

Theory of Information Product Design. Management Science, 51 (10), pp. 1494-

1504.

Purdy and Gray. 2009. Conflicting logics, mechanism of diffusion, and multilevel

dynamics in emerging institutional fields. Academy of Management Journal.

52(2), 355-380

Qiu, Y., Gopal, A. and Hann, I. 2012. On synthesizing professional and market logics in

nascent entrepreneurship: a study of iOS app entrepreneurs. Working paper. R. H.

Smith School of Business, University of Maryland, College Park.

Rao, Hayagreeva, Philippe Monin, and Rodolphe Durand. 2003. ‘Institutional Change in

Toque Ville: Nouvelle Cuisine as an Identity Movement in French Gastronomy,’

American Journal of Sociology 108(4), 795–843.

Rao, Hayagreeva. 1998. “Caveat Emptor: The Construction of Nonprofit Consumer

Watchdog Organizations.” American Journal of Sociology 103:912–61.

Reay, Trish, and C. R. Hinings. 2005. The Recomposition of an Organizational Field:

Health Care in Alberta, Organization Studies 26 (3): 351–384.

Reay, T., and Hinings, C. R. 2009. Managing the rivalry of competing institutional logics,

Organization Studies (30:6), pp 629-652.

Rentzsch, Wolf and Pontious, Andrew. 2012. Edge Cases. Podcast, show #3. June 20,

2012. http://www.edgecasesshow.com/003-sandboxing-day.html

141

Rochet, J.C., J.Tirole. 2003. Platform competition in two-sided markets. J. Eur. Econom.

Assoc. 1(4)990–1029.

Rochet, Jean-Charles, Jean Tirole. 2006. Two-sided markets: A progress report. The

RAND Journal of Economics 37(3) 645–667.

Ruef, Martin. 1999. Social ontology and the dynamics of organizational forms: creating

market actors in the healthcare field, 1966-94. Social Forces, 77: 1405-34.

Rudmark, Daniel and Ghazawneh, Ahmad. 2011. Third-Party Development for Multi-

Contextual Services: On the Mechanisms of Control. Proceedings of European

Conference on Information Systems. Paper 162.

Sine, Wesley D., and David, Robert J. 2003. Environmental jolts, institutional change,

and the creation of entrepreneurial opportunity in the US electric power industry.

32, pp.185-207.

Sprigman, Christopher. 2006. The 99¢question. Journal on Telecommunication & High

Technology Law, vol. 5, pp. 87-124.

Srinivasan, A., F. Suarez. 2010. First mover advantages in hyper-dynamic environments:

a study of the iPhone ecosystem. Presented at Acad. Management Conf. August 6-11,

Montreal, Canada

Strauss, Anselm and Corbin, Juliet, M. 1998. Basics of Qualitative Research: Techniques

and Procedures for Developing Grounded Theory. 2nd Ed. SAGE Publications.

London.

Stasser, G. Information salience and the discovery of hidden profiles by decision making

groups: a ‘thought experiment’, Organizational Behavior and Human Decision

Processes 52 (1), 1992, pp. 156–181.

142

Suddaby, R. & Greenwood, R. 2005. Rhetorical strategies of legitimacy. Administrative

Science Quarterly, 50: 35-67.

Swaminathan, A. 2001. Resource partitioning and the evolution of specialist

organizations: The role of location and identity in the US wine Industry.

Academy of Management Journal. 44: 1169-1185

Takeyama, Lisa. 1994. The shareware industry: some stylized facts and estimates of rates

of return. Economics of innovation and new technology, 3(2), pp.161-174.

The Economist. 2004. Return of the homebrew coder. Mar 11th 2004 |From the print

edition. http://www.economist.com/node/2476892

Thornton, P.H., W. Ocasio, M. Lounsbury. 2012. The Institutional Logics Perspective: a

New Approach to Culture, Structure and Process, Oxford University Press, USA.

Thornton, P. H., W. Ocasio. 2008. Institutional Logics. Greenwood, R., C. Oliver, R.

Suddaby, K. Sahlin-Andersson, eds. The Sage Handbook of Organizational

Institutionalism. Sage Publications Ltd., 99-129

Thornton, P. H., C. Jones, K. Kury. 2005. Institutional logics and institutional change in

organizations: transformation in accounting, architecture, and publishing. C. Jones,

P. H. Thornton, eds. Transformation in Cultural Industries (Research in the

Sociology of Organizations) Emerald Group Publishing Limited, 23 125-170

Thornton, P. H. 2004. Markets from Culture: Institutional Logics and Organizational

Decisions in Higher Education Publishing. Stanford University Press, Stanford,

CA.

Thornton, P. H. 2002. The rise of the corporation in a craft industry: conflict and

conformity in institutional logics. Acad. Management J. 45(1) 81-101

143

Thornton, P. H., W. Ocasio. 1999. Institutional logics and the historical contingency of

power in organizations: Executive succession in the higher education publishing

industry, 1958–1990. American J. Sociol. 105(3) 801–843.

Thornton, P. H. 2001. Personal versus market logics of control: a historically contingent

theory of the risk of acquisition. Organization Science. 12(3) 294-311.

Tiwana, A., Konsynski, B. and Bush, A.A. 2010. Platform evolution: coevolution of

platform architecture, governance, and environmental dynamics. Information

Systems Research, 21(4), PP. 675-687.

Townley, Barbara. 2002. The Role of Competing Rationalities in Institutional Change.

Academy of Management Journal. 45(1), 163-179.

Townley, Barbara. 1997. The institutional logic of performance appraisal. Organization

Studies, 18(2), pp. 261-285.

van Gestel, Nicolette and Hillebrand, Bas. 2011. Explaining Stability and Change: The

Rise and Fall of Logics in Pluralistic Fields. Organization Studies, 32(2), 231-252.

Viera, Anthony J., and Garrett, Joanne M. 2005. Understanding interobserver agreement:

the kappa statistic. Family Medicine, 37(5), pp. 360-363.

Wanda J. Orlikowski and JoAnne Yates. 1994. Genre repertoire: the structuring of

communicative practices in organizations. Administrative Science Quarterly,

39(4), pp.541-574.

Weber, M. (1978). Economy and society: An outline of interpretive sociology. In: G. Roth

& C. Witt ich (Eds). Berkeley, CA: University of California Press (Original work

published 1922).

144

Weatherhead, Gabe. 2012. Litterboxing. June 21, 2012.

http://www.macdrifter.com/2012/06/litter-boxing.html

West, J. 2003. How open is open enough? Melding proprietary and open source platform

strategies. Res. Policy 32 (7) 1259–1285

