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Computer vision-based methods are proposed for extraction and measurement

of flow structures of interest in schlieren video. As schlieren data has increased with

faster frame rates, we are faced with thousands of images to analyze. This presents

an opportunity to study global flow structures over time that may not be evident

from surface measurements. A degree of automation is desirable to extract flow

structures and features to give information on their behavior through the sequence.

Using an interdisciplinary approach, the analysis of large schlieren data is recast

as a computer vision problem. The double-cone schlieren sequence is used as a

testbed for the methodology; it is unique in that it contains 5,000 images, complex

phenomena, and is feature rich.

Oblique structures such as shock waves and shear layers are common in schlieren

images. A vision-based methodology is used to provide an estimate of oblique struc-

ture angles through the unsteady sequence. The methodology has been applied to

a complex flowfield with multiple shocks. A converged detection success rate be-



tween 94% and 97% for these structures is obtained. The modified curvature scale

space is used to define features at salient points on shock contours. A challenge in

developing methods for feature extraction in schlieren images is the reconciliation of

existing techniques with features of interest to an aerodynamicist. Domain-specific

knowledge of physics must therefore be incorporated into the definition and detec-

tion phases. Known location and physically possible structure representations form

a knowledge base that provides a unique feature definition and extraction. Model

tip location and the motion of a shock intersection across several thousand frames

are identified, localized, and tracked.

Images are parsed into physically meaningful labels using segmentation. Using

this representation, it is shown that in the double-cone flowfield, the dominant

unsteady motion is associated with large scale random events within the aft-cone

bow shock. Small scale organized motion is associated with the shock-separated

flow on the fore-cone surface. We show that computer vision is a natural and useful

extension to the evaluation of schlieren data, and that segmentation has the potential

to permit new large scale measurements of flow motion.
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Chapter 1: Introduction

1.1 Motivation

The ability to capture schlieren data sets at higher frame rates has increased

rapidly throughout the past decade. This study utilizes an optical data set sampled

at 10 kHz continuously for 0.5 seconds. Studies have employed techniques that sam-

ple a small number of frames at in the MHz range [1–3]. Ultra high-speed cameras

such as the Shimadzu HPV-2 camera are capable of imaging in this range for 100

consecutive frames. Other commercially available devices, for instance Vision Re-

search’s Phantom v1610 camera, can acquire images at resolutions of 384 x 384 at a

rate of 72.9 kHz, until the camera memory is full. Application of high-speed imaging

techniques in wind tunnel facilities with long run times are producing increasingly

larger data sets. These data may contain tens of thousands of images, a quantity

that will only increase with continued scientific camera development. Large optical

data sets offer the potential for insight into phenomena of the global flowfield that

traditional surface measurements may not, particularly in unsteady aerodynamics.

Beyond human inference, there exist few methods to extract and quantify

the information these data sets contain. Existing methods for interpretation of

these sequences differ substantially, and require a high degree of supervision and
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user interaction (some examples are provided in section 1.4). Most importantly,

researchers are not currently maximizing the ability to understand all of the in-

formation in these data sets, because there is too much information to process.

Current methods of analysis do not extract the richness of information that the

data may contain. To fully interpret and understand these data, new analysis tools

from outside the fluid mechanics community must be introduced and incorporated.

Techniques developed for computer vision offer a framework for information extrac-

tion and maximizing data interpretation. This work proposes an interdisciplinary

approach to the analysis and understanding of large schlieren data sets by recasting

the sequence understanding as a computer vision problem.

With only a handful of images, there is no need to automate the measurement

of flow structures. Once images of unsteady phenomena number in the thousands,

manual data extraction methods are no longer viable. For large data sets, a degree

of automation is desirable for analysis. Given a long sequence of images from which

extraction and description of features is required, methods developed in computer

vision can be useful for automating and assisting the inference process. Settles [4]

suggests that with the advancement of image processing (computer vision), “...can

we do ‘character recognition’ to reveal specific features of a schlieren object?” The

present research is a step in this direction: the application of computer vision algo-

rithms to a 5,000 frame schlieren sequence.

For this work, a schlieren data set with several thousand frames characterized

by noise and small resolution, is used as a testbed for the methodology. The unsteady

double-cone data sequence is used in this research for several reasons: the data set is
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unique in that it consists of over 5,000 frames, the sequence contains multiple coupled

complex flow phenomena, the images have contrast sufficient for many features

allowing interpretation by the eye, and a high degree of unsteadiness is observed.

These factors make this data set ideal for use as a testbed for the development and

application of computer vision-based measurements for schlieren sequences.

1.2 Objectives and Scope

Computer vision techniques are proposed as a new means of analysis for un-

derstanding schlieren data. The approach here is an interdisciplinary effort merging

the fields of Computer Vision and flow visualization analysis. Our main goal is to

extend present analysis capabilities, establishing a vision-based analysis framework.

This can remove non- repeatability associated with human analysis and to reduce

human subjectivity of measurement. To accomplish these goals, the schlieren data

analysis task is recast as a computer vision problem. It must be determined which

methods and algorithms from computer vision are best suited for analysis of these

data. Computer vision techniques must be adapted for their application in areas

where image structure knowledge is required for interpretation (schlieren, radar and

medical imaging, etc.) Computer vision cannot fully replace the expert. Computer

vision or image understanding can, however, be used as a tool to quantitatively

describe what a viewer can infer and observe from examining a sequence. Vision-

based methods can assist the human, while providing automation and an engineering

estimate that does not suffer from human measurement unrepeatability.
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The first step of the analysis is to reduce the image content to physically

meaningful representations. Flow image measurements are given in terms in pixels,

yet the images are more usefully interpreted as objects or regions that correspond to

large scale flow phenomena of interest. The process of converting images into labeled

regions is termed segmentation. From these segmented representations, it is later

investigated if the segments themselves that correspond directly to a measurement

of flow unsteadiness, can provide new quantitative information.

Linear or near-linear structures in compressible flows include shock waves,

contact surfaces, and shear layers are ubiquitous in many schlieren and shadowgraph

sequences. The first objective of this work is to develop a vision-based approach for

a robust and automated means to extract linear features in the sequence. The goal

is a means of reliable extraction of unsteady angle measurements of linear shock

waves and shear layers in the double-cone sequence. A rule-based classifier for

extraction and measurement of oblique structure angles is constructed using vision

methods that enforce physical knowledge of aerodynamics in the sequence. Known

location and likely bounds are used to assist structure identification. In addition

to the schlieren sequence in this research, the approach outlined here provides a

framework to analyze common flows where unsteady shock, contact surface and

shear layer motion are dominant features.

Curved and intersecting shock wave structures are also dominant features in

schlieren and shadowgraph imagery. Interest points on shock structures include

triple points, infliection points, and intersections whose motions can provide insight

into unsteady flow mechanisms. For example, regions of inflection can identify the
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maximum forward point on a curved or bow shock, which can help characterize

standoff distance and shock strength. All of these are phenomena that can be

identified in some way by changes or inflections of shock curvature. The second

major portion of this work is the application of feature detection algorithms from

computer vision to measure large scale “features” which can be defined by shock

contours. The features of interest here are the motions of a sharp model tip, and a

shock intersection point. These salient features are defined, localized, and tracked

through the sequence using fused feature identification algorithms. A general feature

detection framework is presented that, by design, captures structures of interest

based on curvature properties that physically define shock features. A framework

has been developed based on the Curvature Scale Space (CSS) representation that

can be applied to a wide class of schlieren images when shock contours can be

isolated.

This research focuses on large scale unsteady global flow structures as opposed

to velocimetry or measurement of density etc. Each of the flow structures examined

are large scale phenomena common in many schlieren data sets. Instances where

linear shock, shear layer, bowshock or shock intersection identification are important

factors to identity in unsteady flows include: the engine start and unstart processes,

hysteresis in shock reflection patterns, shock-wave/boundary-layer interactions, etc.

With this in mind, vision-based methods are introduced in a manner such that the

algorithms may be generally applied to a wide range of problems, and to higher

quality and resolution data sets.
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1.3 Organization of the Dissertation

The remainder of this Chapter provides a review of current image analysis

methods for schlieren and shadowgraph images. Concepts important in computer

vision are also briefly discussed; elaboration and additional concepts that are task-

specific are introduced where needed. A brief discussion of double-cone flows, the

double-cone schlieren sequence, and a description of the facility where it was acquired

are presented in Chapter 2. Previous findings of the flowfield are also discussed.

Chapter 3 deals with pre-processing and labeling of the image sequence. Shock

contour extraction and a means of measuring oblique structures are dealt with in

Chapter 4. A method of providing shock motion histories of the data sequence is

presented. Feature extraction is developed to identify, localize and track structures

of interest on the shock contours in Chapter 5. Chapter 6 presents an analysis of

information deduced from the flowfield using results from previous chapters. The

dissertation concludes with a summary of the findings, a discussion of the impact

of the methodologies applied and developed here, and suggestions for future work.

1.4 Previous Work

Schlieren imaging is typically used for qualitative analysis by the observer.

Fluid structures are readily detected by the human eye as discontinuities in image

gradients. The visualization of density gradients provides a means to interpret the

flow physics that these images contain. This is an example of “expert knowledge”;
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image content has no meaning without knowledge of the scene. Quantitative meth-

ods, on the other hand, typically focus on density and velocity profile information to

understand smaller scale flow information, not global aspects such as shock motion.

A general overview of these quantitative techniques is discussed in reference [4].

While schlieren and shadowgraphy are well-established techniques, advances to the

techniques continue to occur (e.g. references [5] and [6]) in image acquisition and

quantitative analysis, in part due to recent developments in modern cameras, optics,

and computational capabilities.

1.4.1 Image Scanning Methods

Common methods to determine shock standoff distances, shock location, or

shock angles involve line scanning of a row intensity trace across a location where a

shock is known to exist [7–9]. Intensity traces of schlieren images are among the most

common methods to determine shock information. Kastengren, Dutton and Elliott

[7] developed a method to measure recompression shock unsteadiness in bluff body

wakes, illustrated in Figure 1.1. To determine the recompression shock boundary

in supersonic flow imaged using planar laser scattering, images were first divided

into 16 vertical strips, 16 pixels in width each to reduce resolution. The pixel strips

were averaged, resulting in 16 averaged image columns through the shock boundary

(shown in Figure 1.1a). To determine the shock boundary location, each vertical

strip was scanned for the largest difference in averaged intensity; this point, shown

in Figure 1.1b, was defined as the shock location. Shock angles were determined
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from linking four adjacent boundary points used to define slope. This method of

down-sampling the image destroys, rather than preserves, image structure. The

averaging filter similarly distorts image structure.

(a) Averaging process. (b) Intensity trace.

Figure 1.1: Typical line scanning boundary detection method from reference [7].

Bruce and Babinksy [8] studied the location of an oscillating normal shock in

a duct. Shock location was determined, again, using a line scanning method. The

line scanning method is illustrated in Figure 1.2, which shows the normal shock, a

streamwise intensity trace, and the determined position throughout the test time. A

similar technique was employed by Timmerman et al. [9] to determine shock position

and angles in shadowgraphy images.

Line scanning methods, discussed above, are in fact a zeroth order approxi-

mation to edge detection, a computer vision technique. In such methods, locations

of gradient change alone are considered, not flow features or definitions. Therefore,

properties of the flow such as shocks or shear layers are not extracted. Intensity

changes in schlieren images can be caused by a multitude of factors; line scanning

methods therefore do not provide a firm definition of a fluid structure. These meth-
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Figure 1.2: Line scanning to determine shock location from Bruce and Babinsky [8].

ods offer insight into the intensity variations of images, not the flow physics that

the images contain, although the two are generally related. A tempting approach

is to use edge maps, or intensity trace locations to measure shock angles by scan-

ning image lines for two edge points, and calculating an angle. These methods may

be faced with the following problems: incompleteness and streaking of edge maps,

shock motion that pitches outside of the region being scanned, and the fact that the

gross structure contained in an individual frame may change substantially within

the sequence.

1.4.2 Image Processing-Based Methods

Beloki Perurena et al. determined water jet boundary penetration height and

width in a Mach 6 crossflow by direct thresholding of the images [10]. Probability

density functions of image intensities were used to infer information on mixing of the

water jet with the freestream air. Kouchi et al. [11] developed a method to determine
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the jet boundary in a supersonic cross flow based on the Sobel [12] operator. This

method was recommended as a general boundary detection method, later used and

further clarified in reference [13]. One hundred consecutive schlieren images were

acquired at 250 kHz framing rate. Contrast adjustments were made to each image to

standardize the intensity. “Fluctuation” images highlighted the boundary structure.

Adjusted and fluctuating images are shown in Figure 1.3a. A gradient image was

calculated using the Sobel operator, which was thresholded to create a binary image.

Small objects corresponding to “noise” were removed. Morphology was used to fill

the binary images to provide a jet boundary in each image. Figure 1.3b shows the

binary image and the detected boundary overlaid on the schlieren image. The Sobel

operator performs poorly in textured regions and is therefore an undesirable method

for determining image gradients and boundaries in particular. Morphology is simply

an operation that fills holes in a binary image by enforcing a structuring element;

consideration of grouping and segmentation rules such as spatial proximity and

object or gradient similarity are not modeled. Such methods therefore typically give

poor segmentation results as they cannot guarantee accurate boundary detection.

1.4.3 Methods Towards Computer Vision

Estruch et al. [14] developed a method to measure shock unsteadiness using

“background” subtraction (not to be confused with the computer vision term) of

a tare image from the test sequence, followed by edge detection using the Canny

[15] algorithm on a shock-wave/boundary-layer interaction schlieren sequence. The
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(a) Standardized and fluctuating image. (b) Binary image and boundary

Figure 1.3: Boundary detection method using Sobel and morphology operations
from Kouchi et al. [11].

technique was later employed to study shock motion in front of a protuberance at

high Mach numbers [16]. Point tracking on the edge map was used as a means

of shock tracking, and a frequency analysis was performed directly on the edge

map. Figure 1.4 shows the schlieren images with marked “tracking points” alongside

the point motion history through the test time. Although this method gives a

motion estimate, the direct correspondence of a shock to an edge point was assumed.

Additionally, properties such as shock inclination angle were not extracted.

Efforts to develop software for wind tunnel schlieren image analysis at the High

Enthalpy Shock Tunnel Göttingen [17] have recognized the need for automation

and information extraction from large imaging data sets. Shock standoff distance

from a cylinder, shock angle measurement, and model displacement tracking were

performed using the Hough Transform [18,19] (a technique also used in the present

research) and its variants through consecutive frames. The measured shock angle in

a scramjet combustor is shown in Figure 1.5. The schlieren image (Figure 1.5a) is
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(a) Schlieren image with marked tracking
points.

(b) Shock location through sequence.

Figure 1.4: Method of determining shock locations using edge maps from reference
[14].

converted into the gradient image shown in Figure 1.5b. The “inlet shock” (labeled

in Figure 1.5c) is then fitted using the Hough transform. The results compared well

against traditional pressure instrumentation measurements. However, the extraction

required significant user involvement. This and the lack of a firm definition can

contribute to feature subjectivity, and, without a classifier, feature extraction can

be limited to specific data sequences.

1.4.4 Tracking in Sequences

While feature tracking methodologies are common in such applications as au-

tonomous vehicle navigation, three-dimensional modeling from videos, and video

alignment, there is little information found on using these techniques for schlieren

image data. Optical flow [20] based methods have been applied for schlieren image

analysis e.g. [21, 22], but are outside the scope of this research. Jonassen, Settles,

and Tronosky [23] used commercial PIV (Particle Image Velocimetry) software and

hardware to measure velocities in schlieren images where turbulent structures in the
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(a) Schlieren image of scramjet model.

(b) Gradient image.

(c) Detected oblique shock.

Figure 1.5: Oblique Shock detection method from reference [17].

images were used in place of flow seeding particles. Hargather et al. [24] improved

this method using custom software to perform correlations, accounting for size of

turbulent structures for matching and an the addition of an LED light source. Veloc-

ity measurements were performed in a boundary-layer using focused and standard

schlieren in addition to shadowgraphy. Average velocity profiles compared well to

pitot surveys.
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Laurence and Hornung [25] measured the displacement of models in images al-

lowing force and moment data to be determined. A semi-automated routine selected

edges detected by the Sobel operator which corresponded to the model in each frame.

Simple geometries were fit using least squares; more complex geometries required

a non-linear fitting with a cross-sectional geometry assumed. This gave trajectory

information of the center of mass and pitching moment from which accelerations

and forces were inferred. The technique was improved [26] by employing the Canny

edge detector and sub-pixel localization. A more stringent fitting criterion was used

for more complex geometries. Laurence [27] modified the technique to detect visible

portions of edges in instances where model bodies are obscured or unknown using

a method termed “edge-tracking”. These methods appear limited to solid bodies

under rigid motion.

1.5 Concepts from Vision

The computer vision field focuses on the interpretation of images and video.

Vision, or image understanding, deviates from image processing in that its goal is to

extract features from an image or sequence to understand the phenomena contained

in the image. Image understanding involves analysis, description and abstraction of

information from images or sequences that are meaningful descriptions relevant to

the scene, and is specific to analytical goals and task-dependent. Items crucial to the

successful application of vision include: the means by which images are interpreted,

the understanding process, the role of noise, and the concept of scale.
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A final concern is the validity of computer vision for the interpretation of

schlieren images. No matter how complex a technique may seem, it is largely based

on two mathematical principles: gradient similarity, and spatial proximity. These

are among the cues that assist experts in making inferences from schlieren data.

1.5.1 Image Interpretation and Understanding

Humans interpret images using visual evidence (i.e. image quality, intensity

values, and spatial relations) and expert or domain knowledge, the latter playing

a much more important role than the former. For example, schlieren, MRI, ultra-

sound, and many medical images have several common factors. These include low

dynamic range or low SNR (Signal to Noise Ratio) images, illusory contours (those

which are perceived rather than actual, as shown in Figure 1.7), weak or ambigu-

ous structure boundaries, and required training or knowledge is necessary for their

analyses. In such imagery, interpretations are based much less on image evidence

and rely more heavily on scene knowledge; they are best left to interpretation by

their respective experts.

Knowledge of how images are interpreted by the human vision system is

paramount to implementation of any successful image understanding task. Im-

age content has no meaning without knowledge of the scene. Perceptual grouping

mechanisms of the human vision system seem to be based on factors which include

proximity, similarity, symmetry, continuity, closure, and common fate, among other

factors. Through use of of these grouping mechanisms, known as Gestalt principles
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(e.g. reference [28]), humans are able to establish and interpret scenes from images.

An MRI scan is shown in Figure 1.6 from reference [29]. Background is largely

indiscernible from foreground. To the untrained eye, little more than noise is visible.

However, trained technicians were able to make decisions to delineate a physical

boundary based on expert knowledge. Two separate interpretations of the image

are shown in Figures 1.6b and 1.6c. Information about pertinent features can be

retrieved, although, such information is not always based on image information,

but rely more on expert knowledge. This figure also illustrates the need for expert

consensus in certain instances [29]. Engineers, without appropriate training, for

example, would not be capable of this interpretation. Likewise, only with knowledge

of fluid mechanics can a schlieren sequence be analyzed. This is the role knowledge

and domain specific information play in bounding the problem.

(a) MRI (b) Expert 1 inter-
pretation.

(c) Expert 2 inter-
pretation.

Figure 1.6: Expert knowledge: Medical image interpretation [29].
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The role of prior knowledge is illustrated in the optical illusions in Figure 1.7.

Both the triangle and the circle are observed and appear brighter than their sur-

roundings, yet neither shape is present: the percieved contours are illusory. The

contour completion, due to many factors, can be explained due to strong priors

associated with knowledge of geometry. Shapes can be perceived due to evidence

that suggests them. Similar phenomena can occur when interpreting schlieren im-

ages. The observer may see a completed shock wave, yet there is often not enough

evidence in the image to support this. Here, the engineer’s prior knowledge con-

sists of conservation laws. For example, a bow shock in front of a cylinder must be

continuous, and is completed when viewing, although it may be broken upon closer

inspection. This effect can limit what can be interpreted in an image sequence.

(a) Kanizsa’s triangle. (b) Ehrenstein’s circle.

Figure 1.7: Examples of illusory contours believed to be completed with prior knowl-
edge of geometry.

The incorporation and representation of knowledge is required for machine

interpretation of images, the “image understanding” portion of this work. Knowl-

edge is incorporated whenever possible in this work to assist the machine in making

inferences. In this research, a “bottom-up” image understanding control strategy is
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generally applied (e.g. [29]). Generally, the strategy controls the representations of

the image data. The data is first pre-processed and labeled, or segmented. Further

data partitioning is achieved by the application of descriptors. Finally, descriptors

can sometimes be checked against a known definition, for example, that supplied by

a knowledge base.

1.5.2 The Role of Noise

From an analysis perspective, signal refers to the regions in the image from

which information is desired and can be extracted; noise may defined for all intents

and purposes as structure or areas in the image or sequence which are either unde-

sirable, need not, or cannot be examined (e.g. Forsythe and Ponce [30]). Qualitative

analysis of “noisy” or low SNR images by an observer suggests the utility of image

enhancement techniques such as histogram equalization, contrast stretching, and

unsharp masking [31]. These techniques may yield results which can be more pleas-

ing visually, yet two problems can be created. First, enhancement can introduce

false structures by emphasizing high frequency components, amplifying noise, while

denoising can remove critical information on the same scale as important features

in the image. Secondly, the resulting images may complicate algorithmic grouping

and analysis due to the same false artifact creation and true artifact removal men-

tioned. When noise is indiscernible from structure at intensity and scale, with large

temporal variance, denoising should be kept to a minimum if done at all.
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Slight noise can interfere with or make impossible tasks relating to edge and

object detection. Blurring or denoising can be a trade off with signal preservation

and loss of structure. Figure 1.8 from reference [32] shows row-wise a ramp image

followed by its first and second derivative images. Below each image is a horizontal

intensity trace. From the first column, random Gaussian noise of increasing standard

deviation corrupts the original image. Note that the addition of noise imperceptible

to the human renders the second derivative indistinguishable from white noise. Once

the level of noise or degradation is detectable in the image by the naked eye, as in the

bottom row of Figure 1.8, differentiation becomes unreliable as a means to determine

salient structure of the image. The second and third columns in the bottom row are

directly equivalent to edge detection using the Sobel filter, and enhancement using

unsharp masking, respectively.
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Figure 1.8: Corruption of a step image with Gaussian noise and its derivatives [32].
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1.5.3 The Role of Scale

Just as flow structures can exist at different scales, so can their representation

in images. Existence at scale, and persistence through scale space play a crucial role

in many vision algorithms. When information is ambiguous, consistency through

scale can provide a means of structure or measurement confirmation. Therefore,

where possible, a consistent scale representation is sought for each measurement

objective in this research. Scale space representations used in image understand-

ing include wavelets, image pyramids, and the use of Gaussian functions and their

derivatives with scale parameter σ. Detailed discussions on scale space are given

in references [33] and [34]. Burt and Adelson [35] introduced the image pyramid

structure wherein an image is convolved with a Gaussian function and decimated.

The repeated process creates a coarse to fine series of images decimated in a manner

which preserves structure. Pyramid structures are used in numerous vision applica-

tions where a multiscale view is required.

Kalias and Narasimha [36] used image scales to infer physical scales. Wavelet

transforms at different scales were performed on images of laminar and turbulent

mixing layers to infer and clarify structure and organization, some of which was not

evident in the original images. Figure 1.9 shows an image of the turbulent mixing

layer. Wavelet transforms thresholded at a small coefficient illustrate the small scale

homogeneous structure, while a larger threshold reveals the roller structures.
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(a) Original image.

(b) Small scale wavelet thresholding.

(c) Large scale wavelet thresholding.

Figure 1.9: Mixing layer scales visualized with the wavelet transform [36].
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Chapter 2: Double-Cone Flows and Schlieren Data

2.1 Introduction

The double-cone schlieren data sequence used in this research was provided

by Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9.

This chapter gives a brief overview of double-cone flows and significant findings of

numerical studies and the issues that they have identified. An overview of the Tunnel

9 facility and the experiments performed by Coblish et al. [37] that generated the

schlieren sequence follow. The schlieren sequence is discussed in order to establish

the flow structures whose extraction and measurement is the scope of the current

study. The focus of this research is on the application and development of computer

vision techniques for schlieren analysis. The sequence used here is largely illustrative

in purpose as discussed in section 1.1 and selected due to uniqueness in feature

complexity and size.

Due to the complex and coupled viscous interactions that occur in the double-

cone flows, this geometry was originally selected by the aerospace community to

assist in the validation of high fidelity simulations of hypersonic flows with separa-

tion and shock interactions [38]. Due to its role in validation of simulations, many

studies have focused on the numerical aspects, and simulations have been performed
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at low Reynolds numbers to ensure steady laminar flow. Under certain flow condi-

tions, difficulties are still encountered in predicting separation zone lengths and peak

heating [39]. A recent review of previous experimental and computational studies

on this geometry under various flow conditions is provided in reference [40].

2.2 The Double-Cone Flowfield and Previous Findings

The hypervelocity flow about the 25-55◦ double-cone model is shown in Figure

2.1 from reference [41]. The angle of the first cone is chosen such that an attached

shock forms at the fore-cone tip. The angle of the second is large enough to ensure a

detached bow shock. Flow behind the bow shock can be wholly or partially subsonic.

These two shocks intersect to establish a complex flowfield in which shock-shock

interaction and viscous interactions are coupled. The attached shock intersects with

the detached shock, forming a shock-shock interaction. A transmitted shock emits

from the intersection point and impinges on the cone surface causing a large adverse

pressure gradient. The transmitted shock causes severe aerothermal loading at the

point of impingement. A supersonic jet propagates from the point of impact along

the length of the aft-cone. The adverse pressure gradient in the region of the cone

junction causes flow separation upstream on the fore-cone surface. A shear-layer and

contact surface originate from the point of separation. The separation zone in turn

affects the interaction, developing a complex feedback mechanism. This feedback

mechanism changes the pattern of the interaction.
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Figure 2.1: Double-cone flowfield schematic from [41].

Druguet, Candler, and Nompelis [42] showed that due to the complexity of the

double-cone flowfield, accurate predictions are extremely sensitive to the numeric

schemes used and require careful grid studies. Of note is that even for low Reynolds

number flows (e.g. 130 x 103 1/m), due to the sensitivity of the interaction feedback

mechanisms, simulations must be carried out to at least 100 characteristic time

scales to reach steady state, “if a steady state exists.” The characteristic time scale

was defined as the time a particle moving at the freestream velocity takes to travel

the length of the double-cone model. The location of the shock interaction is crucial

to resolve correctly during simulations, as it establishes the flowfield interaction

pattern [41,42]. Additionally, it was shown that hypervelocity double-cone flow can

serve as an important benchmark case to evaluate the suitability of computational

methods for hypersonic flows with separation and shock interactions.
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Pressure and heat transfer rates on the double-cone surface in Figure 2.1 from

Nompelis’ work [41] compare experimental results with those from a blind simula-

tion. Freestream conditions for the experiment were M = 9.59 with a unit Reynolds

number of 130.9 x 103 1/m (39.9 x 103 1/ft). The low Reynolds number ensures

laminar flow on the cone surface. These surface quantities from Nompelis’ blind

comparisons reveal further information on the flowfield physics, and indicate some

of the numerical difficulties associated with prediction. The surface pressure in Fig-

ure 2.2a remains low where the fore-cone flow is attached. Pressure rises at the

point of separation, and remains constant in the separated region. The sharp peak

indicates the location of the transmitted shock impingement. The supersonic jet

on the aft-cone surface in Figure 2.1 is evidenced by the compressions and expan-

sions downstream of the impingement point. Nompelis states that the disagreement

with experiment in the supersonic jet region is due to the inexact location of the

intersection (triple) point, which alters the flow structure. Heat transfer rates are

shown in Figure 2.2b, showing a significant over-prediction of heating rate on the

fore-cone, and a peak heating rate at the point of shock impingement. The sharp

drop and region of constant heat transfer rate indicate the point of separation and

recirculation zone respectively. The embedded jet causes oscillations in heat transfer

on the aft-cone surface.

Nompelis, Candler, and Holden [43] discovered the reason for the disagreement

between the experimental and predicted heat transfer rate on the fore-cone. They

postulated that vibrational freezing in the facility nozzle throat, if present, would

lower the heat transfer rate to the model surface, as this quantity scales approx-
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(a) Surface pressure distribution.

(b) Surface heat transfer distribution.

Figure 2.2: Numerical and experimental pressure and heat transfer distributions on
the double-cone surface from Nompelis [41].
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imately with ρ∞u3
∞. Heat transfer rate would therefore be more sensitive to the

reduced freestream total enthalpy than surface pressure. Simulations verified the

assumption of freezing at the facility nozzle throat conditions, reducing the heat

transfer rate to the model surface. They also observed that, when, accommodations

for slip and allowances for slight freestream non-uniformity were made, the com-

puted heat transfer rate at the model surface was brought into agreement to within

the experimental measurement uncertainty. It was also discovered that freestream

non-uniformity reduced the size of the separation zone, bringing it to closer agree-

ment with the experiment.

2.3 Hypervelocity Wind Tunnel 9

AEDC Tunnel 9 is a unique hypervelocity blow down facility capable of pro-

ducing run times on the order of seconds, much greater than traditional impulse

type facilities [44]. Tunnel 9’s operational envelope is shown in Figure 2.3; it is

capable of simulation at Mach numbers of 7, 8, 10 and 14. Flight duplication is

achieved at Mach 7. Pure nitrogen is used as the working fluid. Plenum pressures

and temperatures are capable of up to 26 kpsi (186 MPa) and 3040◦ F (1888 K),

respectively. Shown in Figure 2.4, the test section has a 5 ft. (1.52 m) diameter

and is 12 ft. (3.66 m) long; capable of testing full-scale models. The test article

mounting system is capable of pitching a 200 lb (91 kg) model through angles of

attack between -5◦ and 45◦, and at rates up to 80◦ per second.
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Figure 2.3: Tunnel 9 operational envelope.

Figure 2.4: Tunnel 9 test section.
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To produce hypervelocity conditions, a fixed volume of nitrogen test gas is

pressurized and heated in a vertical heating element, separated from a driver gas

section and the nozzle by a pair of diaphragms. The nozzle and test section are

evacuated to pressure values near 1 mm Hg. Diaphragms are burst once the test gas

reaches desired pressure and temperature conditions. Cold nitrogen from the driver

section acts as a piston, pushing the hot test gas into the test section in a manner

that maintains constant test conditions. The period of usable test time occurs when

the flow maintains a constant freestream Reynolds number.

2.4 Tunnel 9 Double-Cone Experiment

This section details the findings of Coblish et al. [37], whose experiment pro-

vided the optical data set used in this research. The double-cone configuration was

tested at AEDC Hypervelocity Wind Tunnel 9 at a nominal Mach number of 14 at

varying Reynolds numbers. Figure 2.5 illustrates the double-cone test article dimen-

sions, and shows the model installed in the tunnel test section. The test article has

a fore-cone angle of 25◦ and an aft-cone angle of 55◦. The total length of the model

is 6.051 in. (15.37 cm). The largest diameters of the fore and aft-cone sections mea-

sure 3.381 in. (8.588 cm) and 10.309 in. (26.185 cm), respectively. The model was

instrumented with Kulite pressure transducers and Type-E thermocouples. All data

was sampled at 500 Hz and passed through a 30 Hz low-pass filter prior to the data

acquisition system. Unfortunately, this did not allow for high-speed measurement

of the surface quantities. Schlieren video was also taken for each run (discussed in
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the following section). Unit Reynolds number test conditions were 1.31 x 106, 0.479

x 106, 0.0983 x 106, and 0.0682 x 106 1/ft (4.30, 1.57, 0.323, and 0.234 x 106 1/m).

At the two highest Reynolds numbers tested, CFD was not able to obtain a con-

verged solution. Researchers therefore concluded that the flow would be unsteady

in these cases. However, all pre-test CFD at the lower Reynolds converged without

difficulty, suggesting that as in all previous validation studies, the flow would be

steady at these Reynolds numbers.

Figure 2.5: The double-cone schematic and model installed in the test section from
[37].

Motivated by Nompelis et al. [43], who showed that vibrational freezing in the

nozzle was responsible for previous discrepancies in the fore-cone heat transfer rate,

experiments were conducted to measure the degree of vibrational non-equilibrium

in the tunnel core freestream. M. Smith and Coblish [45] performed non-intrusive

freestream measurements of vibrational temperature upstream of the double-cone

model. Results showed that the Tunnel 9 Mach 14 nozzle operating conditions are

at equilibrium within measurement uncertainty. Prior to testing, calculations were

performed to assess the effects of non-equilibrium, slip effects, and freestream non-
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uniformity. Computations showed that these effects were negligible. All simulations

were therefore conducted with a uniform freestream at equilibrium conditions.

When compared with experimental results, the fore-cone heat flux was not

over-predicted as it had been in all previous computational efforts. Additionally,

computations appeared to have severely over-predicted the peak heating rate on

the aft-cone surface associated with impingement of the transmitted shock from the

interaction point. In stark contrast to previous findings, Coblish et al. observed

significant flowfield unsteadiness, even at low Reynolds numbers. Temporal changes

were evident from both pressure coefficient and heat flux data from the surface

instrumentation. Frequency analysis, however, could not be performed due to lack

of high-speed surface instrumentation and due to filtering prior to the data recording

system. Significant unsteadiness was also evidenced from viewing the schlieren data

at all Reynolds numbers. Coblish et al. [37] report in more detail the experiment

and analysis of traditional surface instrumentation and comparison with numerical

simulations.

In light of the unsteadiness observed ruing the test time, Coblish et al. con-

ducted time-accurate CFD studies at the two highest unit Reynolds numbers tested,

as initial CFD results were unable to obtain a converged solution for these condi-

tions. Results from the unsteady CFD analysis from [37] are shown in Figure 2.6,

and experimental measurements are also shown. These results, from Run 2890, cor-

respond to a freestream Mach number of 13.603, and a unit Reynolds number of 1.31

x 106 1/ft. (4.30 x 106 1/m), the highest Reynolds number used in the experiments.

Time accurate pressure coefficient and Stanton number computational results on
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the double-cone surface are shown in Figures 2.6a and 2.6b, respectively. Both plots

show that the separation shock foot experiences considerable motion, as evidenced

by the pressure rise and heat flux decrease at approximately 1.5 in. from the model

tip in Figures 2.6a and 2.6b, respectively. This unsteady shock foot motion is in-

dicative of the “breathing” motion found in turbulent shock-wave/boundary-layer

interactions. The supersonic jet on the aft-cone surface appears to be unsteady as

well. Figure 2.6 also shows that the location and value of maximum aerothermal

loading changes, which Coblish et al. noted was random. This indicates that the

point of impingement of the transmitted shock on the aft-cone surface undergoes

considerable motion, suggesting that the point of shock interaction is moving during

the test time. The effect of the unsteadiness on heat transfer rates is summarized in

Figure 2.7 from [37]. Time-averaged unsteady CFD results are shown with experi-

mental measurement. The effect of the unsteadiness seems to broaden the region of

peak heating, and over time, reduces its magnitude.
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(a) Surface pressure distribution.

(b) Surface heat transfer distribution.

Figure 2.6: Unsteady CFD results from Coblish et al. [37].
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Figure 2.7: Time averaged computational results from Coblish et al. [37].

2.5 The Double-Cone High-Speed Schlieren Sequence

High-speed schlieren was acquired at 10 kHz for the two large Reynolds num-

bers tested. For these cases, the 312 x 416 resolution was used image the entire flow-

field, capturing the double-cone flow about both sides of the model’s line of symme-

try. This resulted in insufficient spatial resolution of the fluid structures. The laser

illumination source malfunctioned prior to the low Reynolds number test conditions.

Therefore, the low Reynolds number (and hence low density) test schlieren videos

were acquired at 500 Hz. This rendered only a single optical data set, originally

scheduled as merely a data repeatability run, with temporal and spatial resolution

sufficient for further analysis using computer vision methods. This data set consisted

of only the upper plane of symmetry, effectively doubling the spatial resolution of

the initial image sequences.
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The freestream conditions for the data set from the experiment performed

in [37] had a nominal Mach number of 14 with a Reynolds number of 1.31 x 106

1/ft (4.30 x 106 1/m). Images were collected at the maximum framing rate of the

Redlake model HG-100K camera of 10 kHz at an 8-bit resolution. Illumination was

provided by a copper-vapor laser model LS-50 from Oxford Lasers. The laser has

low coherence with a 25 ns pulse time and was triggered by the camera configured

to operate at a continuous pulse rate of 10 kHz. This provided nearly instantaneous

flowfield imaging, giving a Nyquist frequency of 5 kHz.

Although the nominal test time for this run was on the order of one second, the

laser power source failed midway through the run. Viewing both the sequence, and

the average intensity of the image during the test time allowed for clear identification

of the failure point. From the sequence of 10,000 images of the potentially usable

test time, only 5,000 were acquired before the laser failure.

Two consecutive images from the sequence of 5,000 and their absolute differ-

ence are shown in Figure 2.8, starting from the nominally steady-state run time

to. To achieve the 10 kHz frame rate of the Redlake camera, images were acquired

at a lower spatial resolution than the maximum allowed by the camera. Each im-

age is 312 x 416 pixels, with flow structures of interest existing on a much smaller

scale. Each pixel is 2 mm x 2 mm in the physical plane. The 10 kHz frame rate

also necessitated a short exposure time, requiring the schlieren system to have high

sensitivity. These factors resulted in images with low SNR, exhibiting a high degree

of laser speckle, with temporally non-uniform illumination. In addition, freestream

turbulence can be indistinguishable from speckle, and both exist on similar scales
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as flow features of interest. The difference image (inverted for clarity) in Figure

2.8c shows the motion difference between frames. This difference is due both to the

laser pulse and structure motion. White represents constancy; black represents the

regions of most change between frames. The freestream area is the region of most

change, misleading due to the fact that it does not correspond to an accurately cap-

tured timescale. Figure 2.8c also shows that the most textured regions (feature rich)

of the images do not correspond to structures of interest in this study. These regions

are the most rapidly changing in the data set, and therefore the strongest candi-

dates for “features”. The largest challenge to any computer vision-based analysis

method is sensitivity to illumination. The laser light source used in the double-cone

data sequence has up to a 20% illumination variation between frames, typical of

pulsed laser light sources. Also, the inclusion of freestream schlieres may occlude

flow structures of interest in the three-dimensional optical path of integration.

From inspection of the image in Figures 2.8a and 2.8b, most of the structures

shown in the flowfield sketch in Figure 2.1 are evident. The point of shock inter-

section and the separated flow region are clearly discernible. Above the separation

zone, the oblique shock and contact surfaces are well imaged and distinct. The point

of shock impingement appears obscured, although the diamond pattern associated

with the supersonic jet is visible. The separation point on the fore-cone is seen, al-

though the structure is blurred and difficult to make out, as is the attached conical

shock. The bow shock on the aft-cone is sharp and distinct from the freestream

and shocked flow regions, with evidence of curvature. The fore-cone attached shock

is perhaps the most poorly resolved artifact of the flowfield, and unfortunately the
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only structure for which an analytical solution is attainable. The “missing” attached

conical shock and the point at which it intersects the separation shock may be ob-

scured for several reasons. These may include factors such as a potential optical

misalignment or structure occlusion by the optical path of integration through the

boundary-layer at the optical window. It may also be partially due to the fact that

at such a large freestream Mach number, oblique structures and shock layers are

sufficiently steepened that they are close to the surface angle.

(a) I (to) (b) I (to + 1)

(c) |I (to + 1)− I (to) |

Figure 2.8: Two consecutive images and their absolute difference.
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Chapter 3: Flow Isolation Using Segmentation

3.1 Motivation

A general bottom-up image understanding strategy requires the implementa-

tion of multiple sequential processing steps. The first steps in the understanding

process involve any pre- processing of the image and its segmentation, or labeling

into useful parts that correspond to information desired for the understanding task.

Segmentations are later used to describe objects or for feature recognition, or in

some cases can be results whose properties describe important information in and

of themselves in the analysis tasks. The results of the segmentation in this chap-

ter will be used to identify specific features in subsequent chapters through parallel

and hierarchical understanding implementations, and be used as a measurement to

provide information about the unsteady flowfield directly.

Two images from the test sequence are shown in Figure 3.1. Inspection of

Figure 3.1 suggests that the most useful segmentation scheme for this particular

problem would be to classify the freestream, the shocked flowfield region, and the

model respectively. Only a small portion of the images shown in Figure 3.1 is

of interest to the present study. Here we are concerned with the shocked flow

region contained between the freestream and the model surface, and all else can be
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considered noise. A bottom-up schematic of the image interpretation useful to the

expert is shown in Figure 3.2, corresponding to the desired segmentation scheme.

(a) Image I (to) (b) Image I (to + 1)

Figure 3.1: Consecutive images from the sequence.

Figure 3.2: Schematic of image interpretation.

The labeling of each schlieren image, or segmentation of the images into mean-

ingful groups representing the freestream, flowfield, and body allows for the follow-

ing: 1) we are interested only in the flowfield region itself; it can be isolated, 2) the

flowfield itself can serve as a measurement of the unsteadiness; the area of the three-

dimensional flowfield projected onto the schlieren image is directly proportional to

the global unsteadiness, and finally, 3) a labeled representation of physical structure
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allows for rule-based searching and classification of other desired flow structures,

such as the shock wave, shear layer, and intersection points.

This chapter encompasses pre-processing of the sequence followed by a manual

segmentation of the double-cone model. Segmentation methods relevant to schlieren

images are discussed. Heuristic measures are incorporated into an algorithm that

results in a physically meaningful segmentation of the double-cone flowfield. The

segmentation results are then evaluated.

3.2 Segmentation

Segmentation is the assignment of label to regions of interest. The world is

perceived in terms of objects, or parts of a whole, not pixels; the goal of segmentation

is to convert the latter to the former. This allows the conversion of images in Figure

3.1 into the format shown in Figure 3.2. Once grouped into meaningful objects,

these partitions isolate of regions for analysis, and allow for Cartesian descriptors

of the segments. Segmentation of images into partitions that are meaningful to

humans is difficult, as discussed in the introduction. Ideally, segmentation allows

for a meaningful description of the information contained in the image. The concepts

of foreground and background have clear desirable partition schemes in most natural

images and scenes. Here the segmentation schemes must also be meaningful to the

expert, that is, they must be useful from an analysis perspective. In this case, the

physical world is governed by fluid mechanics structures, i.e. shear layer, shock

wave, separation region, shock structure and body model.
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Decisions on a desired segmentation scheme must be made on a case-by-case

basis, depending on schlieren image content, and desired measurement outcomes.

The object partitioning here is an example based on the test data sequence proper-

ties, although the segmentation methodology is largely general. Methods of segmen-

tation or partitioning are numerous and can involve techniques based on threshold-

ing, statistical data-clustering and graph theory. The focus here is limited to graph

theoretic partitioning since these methods tend to incorporate a global approach to

segmentation which is in line with the Gestalt theory of perception and human vi-

sion [28] (discussed in section 1.5.1), by incorporation of both feature similarity and

spatial closeness. This is advantageous over methods such as thresholding which

only incorporate intensity similarity, and therefore do not correspond to models of

human vision.

3.3 Region Preserving Diffusion-Based Filtering

All image understanding tasks in this research involve the extraction of infor-

mation from images dominated by white noise spatially and temporally, from which

unsteady structures of interest must be identified, isolated and described. Blur is

needed to reduce noise which can make tasks such as object detection difficult if

not impossible. However, in many cases structures in the image can be on the order

of noise or less. In the schlieren images shown in Figure 3.1, image evidence is not

sufficient to provide strong boundaries between the freestream, flowfield, and body:

neither in the individual images nor from frame to frame. For the analysis of im-
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ages with low SNR to detect structures that exist at small scale and resolution, the

best denoising scheme can be no denoising at all. Denoising, as in image enhance-

ment, can remove true image artifacts and potentially create false structure. This

does not mean that certain edge-preserving schemes cannot lead to intermediate

representations of the image that can be useful for referencing as a marker image.

To encourage the desired segmentation scheme shown in Figure 3.2, the images

must be pre-grouped so that affinities between and dissimilarities across structures

are more pronounced for assistance in higher-level grouping. A global visual im-

pression of a noisy image can be used as a pre-processing step for higher-level tasks

such segmentation, which is performed in the following sections. Smoothing with a

Gaussian kernel is a common technique for pre-processing images to remove small

detail. The kernel is edge preserving in that no new maxima are produced, but it

blurs across boundaries by spreading the influence of an edge region. Statistical

rank filtering processes can be undesirable for similar reasons.

A filtering scheme is desired which blurs within boundaries but not across

them, encouraging similarity between like regions and enhancing dissimilarities

across them. A method that provides this effect is the bilateral filter [46], which

denoises while strongly preserving edges, and may be considered a member of the

class of diffusion- based methods. Diffusion-based schemes are preferable for edge-

preserving denoising and grouping for low SNR images over non region preserving

methods, such as smoothing or rank filtering. Non-linear diffusion for image segmen-

tation and denoising based on Fick’s law of diffusion was first proposed by Perona

and Malik [47]. An overview of diffusion-based techniques is given in Weickert [48].
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The bilateral filter introduced by Tomasi and Manduchi [46] allows a single

pass non-iterative scheme while providing comparable results to PDE diffusion-based

methods. The bilateral filter employs a Gaussian kernel both on the domain and

range of an image. The effect is a strong edge preserving diffusion effect. The

bilateral filter response IBF [I (p)] at an image pixel p is given below as a function

of spatial distance between points p and q, and their difference in intensity values

IBF [I (p)] =
1

Wp

�

q∈Np

exp

�
−�q− p�2

2σ2
D

�
exp

�
− |I (q)− I (p) |2

2σ2
R

�
I (q) . (3.1)

The response is normalized by a weight Wp, which is the product of the exponentials

unscaled by the intensity value at pixel q,

Wp =
�

q∈Np

exp

�
−�q− p�2

2σ2
D

�
exp

�
− |I (q)− I (p) |2

2σ2
R

�
. (3.2)

The first grouped term in Equation 3.1 represents the spatial filter response, while

the second term represents the intensity response, over a neighborhood Np about

pixel p. Domain and range scale parameters are given by σD and σR respectively.

The range scale σR acts a weighting scale to the traditional domain filter σD.

Figure 3.3 presented below from reference [46] shows the effects of edge preser-

vation on a step corrupted with Gaussian noise (first column). The second column

shows the response of the filter placed at the bright side (right) of discontinuity, the

bright values of the images are therefore smoothed together, whereas the dark region
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to the left of the discontinuity only weakly contributes to the filtering of the bright

values on the right of the edge. The converse holds when the filter is centered in

the dark portion of the image. The filtered image is shown in the rightmost portion

of the figure. Note the edge preservation quality, whereas a typical Gaussian blur

would have introduced a ramping effect, the diffusion filter has preserved the edge

almost completely with the added intensity weighting parameter.

(a) step image (b) filter response (c) filtered image

Figure 3.3: Bilateral filter response on a step edge [46].

A sample result of applying the bilateral filter to two randomly selected images

in the sequence shown in Figure 3.4 with grouping scales σD and σR of 4 and

0.1 respectively with a kernel support width of (3σD + 1) is shown in Figures 3.4c

and 3.4d. The filter has accomplished the following: the regions of “flow” and

“freestream” are much more distinguishable to the human eye with a stronger visible

partition across the main shock in a manner which strongly preserves and enhances

the edge; regions now have more meaningful boundaries in an individual image and

are more similar in frame-to-frame comparisons of the sequence, as compared with

their unfiltered counterparts in Figures 3.4a and 3.4b. This is in stark contrast to the

non-region preserving Gaussian filtered in Figure 3.5 where the region delineating

boundaries have been obscured, which is equivalent to a bilateral filter with range
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scale σR = 0; at the increased spatial scale alone provided by σD, much information

has been lost. The freestream region in Figure 3.5 is much darker than in Figure

3.4d; as their is no range exclusion from the neighboring dark regions closer to the

model. Although any of the diffusion-based schemes discussed in this section are

viable techniques for edge-preserving denoising and grouping for low SNR schlieren

images, the bilateral filtered images were visually preferable to those grouped using

traditional diffusion-based methods.

3.4 Manual Segmentation of the Model

As the boundary between the model and the flowfield is largely obscured due

to density gradients on most of the upper surface, the contour is ambiguous. The

boundary of the model is visible in all images, but it is blurred with the flow struc-

tures near the surface walls. This makes the perception of the delineating contour

illusory rather than actual. For this reason, the model must be segmented manu-

ally. Segmentation schemes cannot delineate a missing boundary. The model must

be segmented manually, under the assumption that it is stationary. Model motion

is sometimes observed in Tunnel 9, however this occurs at low frequencies (on the

order of 10-15 Hz or less), and was not observed by the human eye in this data set

(more robust motion estimations are considered later). In addition, the symmetry of

the model should ensure stability. Model and camera motion can never be ruled out

entirely. It is assumed that that the camera is level with the model, and that any

relative motion between the two is negligible in comparison to gross flow motion.
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Figure 3.5: Non-region preserving Gaussian filtering for image I (to + 4960), σD = 4

In order to manually segment the test article, an approximate estimate of

its motion relative to the flowfield is required. Many methods exist to separate

foreground and background regions in image sequence, the simplest of which is the

threshold based. The model motion estimate was performed by approximating a

motion energy image Idiff through the sequence using a semi-thresholded cumulative

difference image given by

Idiff ≈
tmax�

t=to+1

|� I| ≥ T, (3.3)

where |�I| is the absolute difference of the current image t referenced from the first

frame in the sequence, summed over the number of images in the usable test time

tmax. The value T was experimentally selected such that the main flowfield struc-

tures would be discernible from freestream region sensitivities caused by turbulent

eddies and non-uniform illumination due to the laser. The cumulative difference
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image of 5,000 frames is shown in Figure 3.6. From this image, it was determined

that the model is still with regard to gross shock structure. Based on this evidence,

a model segment was manually constructed that was added to the labeled image

resulting from the higher-level segmentation performed in the next section. This

approach for separating the test article may be applied to any stationary physical

structure contained in a schlieren sequence, such as a tunnel wall or optical window

boundary.

Figure 3.6: Motion energy approximation image.

3.5 The Image as a Graph: Graph Terminology

Image partitioning using graph-theoretic techniques have been established as

powerful segmentation methods [49–51], and have seen wide spread use in. A graph

G (N,E) is defined as a set of vertices or nodes n ∈ N connected by a set of

edges e ∈ E. A weight ω is assigned to each edge connecting two arbitrary nodes,
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representing a cost function. To construct a graph from an image, each pixel becomes

a node, and edge weights are constructed from one or more affinities such as: the

spatial distance, a function of the intensity difference, or a relationship based on

textures between pixels. References [49,50] provided a detailed description of graph

theory as it relates to image analysis. An NxM image will have NM = |N| nodes.

An image graph has the advantageous property of being undirected, i.e. there exists

no preferred direction between nodes in which the edge cost function would change.

The image graph is also symmetric; that is, if node ni is adjacent to node nj, with

associated edge weight eninj , then node nj is adjacent to node ni with the same edge

or weight value. Finally, image graphs are often locally connected, which lead to

block diagonal representations that are often sparse. Figure 3.7 illustrates a simple

undirected weighted graph with nine nodes, showing node, edge and weight labels.

Nodes 1 and 2 are labeled ni and nj, with the connecting edge weight denoted by

ωij. Numbers next to the edges represent the cost between adjacent nodes.

Figure 3.7: Example of a weighted undirected graph.
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The partitioning of a graph into two segments S and S̄ assigns a binary labeling

x (characteristic vector) for each pixel (graph vertex ni) in an image such that its

value is unity if it belongs to a segment S ⊂ N, and zero otherwise (it belongs to

the set complement),

x =






1 if ni ∈ S.

0 if ni ∈ S̄.

, (3.4)

where S∪ S̄ = |N| and S∩ S̄ = {∅}. Each graph edge connecting any two nodes has

an associated weight, which is generally an appropriate measure of affinity between

nodes ni and nj. This is a generalized adjacency list between all nodes ni and nj,

ωninj = exp
�
−αI

�
Ini − Inj

�2�
, (3.5)

where αI is a weighting parameter of the selected feature affinity, here (node indexed)

intensity. The degree dni of a node ni for a weighted undirected graph is defined in

Equation 3.6 as the sum of all edge weights or total connectedness leaving node ni,

dni =
�

eninj

ω
�
eninj

�
∀eninj ∈ E. (3.6)

The degree matrix and the weight matrix are used to define the graph Lapla-

cian. The Laplacian of a graph is defined as the connectedness dni of node ni minus

the weighting function between locally connected edges ωninj , is defined below in

Equation 3.7
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Lninj =






dni if i = j,

−ωninj if eninj ∈ E,

0 otherwise.

. (3.7)

The Laplacian therefore characterizes the graph with a feature affinity measure

through ωninj and a spatial measure of Euclidean distance between features through

dni . The matrix isNxN and positive semi-definite, symmetric, and sparse for locally

connected graphs.

3.6 Graph Cut Segmentation

Standard graph partitioning algorithms used for image segmentation include

the min-cut/max-flow algorithms [49], and spectral methods, most notably the nor-

malized cut of Shi and Malik [50]. The minimum cut partitions the graph along the

weakest connection between groups, which can lead to small isolated segments that

may not correspond to a desirable grouping. The normalized cut algorithm forms

partitions by maximizing an affinity within groups while simultaneously minimizing

associations across groups, using the Fielder value for the partition, requiring long

computational times and can become unstable. An alternative to these methods

which favors large partitions and offers an increase in speed by reducing the label-

ing problem to a linear system is the isoperimetric graph cut developed by Grady

and Schwartz [51].
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Figures 3.8 and 3.9 from reference [50] help to visualize the graph partitioning

problem. The data cluster in Figure 3.8 show the minimum cut, which can favor

small isolated segments through partitioning along the weakest edges. The vertical

line in the figure labeled “better cut” is the normalized graph cut developed by

Shi and Malik, which in this case yields an improved segmentation. Shi and Malik

demonstrate the normalized cut algorithm in Figure 3.9 on a synthetic image. Three

segments are seen in the noisy image in Figure 3.9a; the recursive normalized cut

has isolated the segments shown in Figures 3.9b, 3.9c, and 3.9d.

!"#$%&'( #$" '")!"*#+#,%* -.,#".,+ /'"& ,* !%'# %0 #$"! +."
1+'"& %* 2%-+2 3.%3".#,"' %0 #$" ).+3$4 5"-+/'" 3".-"3#/+2
).%/3,*) ,' +1%/# "6#.+-#,*) #$" )2%1+2 ,!3."'',%*' %0 +
'-"*"( +' 7" '+7 "+.2,".( #$,' 3+.#,#,%*,*) -.,#".,%* %0#"*
0+22' '$%.# %0 #$,' !+,* )%+24

8* #$,' 3+3".( 7" 3.%3%'" + *"7 ).+3$9#$"%."#,- -.,#".,%*
0%. !"+'/.,*) #$" )%%&*"'' %0 +* ,!+)" 3+.#,#,%*:#$"
!"#$%&'()* +,-4 ;" ,*#.%&/-" +*& </'#,0= #$,' -.,#".,%* ,*
>"-#,%* ?4 @$" !,*,!,A+#,%* %0 #$,' -.,#".,%* -+* 1"
0%.!/2+#"& +' + )"*".+2,A"& ",)"*B+2/" 3.%12"!4 @$"
",)"*B"-#%.' -+* 1" /'"& #% -%*'#./-# )%%& 3+.#,#,%*' %0
#$" ,!+)" +*& #$" 3.%-"'' -+* 1" -%*#,*/"& ."-/.',B"2= +'
&"',."& C>"-#,%* ?4DE4 >"-#,%* F ),B"' + &"#+,2"& "632+*+#,%*
%0 #$" '#"3' %0 %/. ).%/3,*) +2)%.,#$!4 8* >"-#,%* G( 7"
'$%7 "63".,!"*#+2 ."'/2#'4 @$" 0%.!/2+#,%* +*& !,*,!,A+9
#,%* %0 #$" *%.!+2,A"& -/# -.,#".,%* &.+7' %* + 1%&= %0
."'/2#' 0.%! #$" 0,"2& %0 '3"-#.+2 ).+3$ #$"%.= C>"-#,%* HE4
I"2+#,%*'$,3 #% 7%.J ,* -%!3/#". B,',%* ,' &,'-/''"& ,*
>"-#,%* K +*& -%!3+.,'%* 7,#$ ."2+#"& ",)"*B"-#%. 1+'"&
'")!"*#+#,%* !"#$%&' ,' ."3."'"*#"& ,* >"-#,%* K4D4 ;"
-%*-2/&" ,* >"-#,%* L4

@$" !+,* ."'/2#' ,* #$,' 3+3". 7"." 0,.'# 3."'"*#"& ,* M?NO4

! "#$%&'(" )* "#)&+ &)#,','$('("

P ).+3$ ! ! ""!## -+* 1" 3+.#,#,%*"& ,*#% #7% &,'<%,*#
'"#'( "!#( " $# ! $ ( " %# ! &( 1= ',!32= ."!%B,*) "&)"'
-%**"-#,*) #$" #7% 3+.#'4 @$" &")."" %0 &,'',!,2+.,#=
1"#7""* #$"'" #7% 3,"-"' -+* 1" -%!3/#"& +' #%#+2 7",)$#
%0 #$" "&)"' #$+# $+B" 1""* ."!%B"&4 8* ).+3$ #$"%."#,-
2+*)/+)"( ,# ,' -+22"& #$" +,-Q

%&'""!## !
!

&'"!('#
)"&! (#* "!#

@$" %3#,!+2 1,3+.#,#,%*,*) %0 + ).+3$ ,' #$" %*" #$+#
!,*,!,A"' #$,' +,- B+2/"4 P2#$%/)$ #$"." +." +* "63%*"*#,+2
*/!1". %0 '/-$ 3+.#,#,%*'( 0,*&,*) #$" $'!'$,$ +,- %0 +
).+3$ ,' + 7"229'#/&,"& 3.%12"! +*& #$"." "6,'# "00,-,"*#
+2)%.,#$!' 0%. '%2B,*) ,#4

;/ +*& R"+$= M?HO 3.%3%'"& + -2/'#".,*) !"#$%& 1+'"&
%* #$,' !,*,!/! -/# -.,#".,%*4 8* 3+.#,-/2+.( #$"= '""J #%
3+.#,#,%* + ).+3$ ,*#% J9'/1).+3$' '/-$ #$+# #$" !+6,!/!
-/# +-.%'' #$" '/1).%/3' ,' !,*,!,A"&4 @$,' 3.%12"! -+* 1"
"00,-,"*#2= '%2B"& 1= ."-/.',B"2= 0,*&,*) #$" !,*,!/! -/#'
#$+# 1,'"-# #$" "6,'#,*) '")!"*#'4 P' '$%7* ,* ;/ +*&
R"+$=S' 7%.J( #$,' )2%1+22= %3#,!+2 -.,#".,%* -+* 1" /'"& #%
3.%&/-" )%%& '")!"*#+#,%* %* '%!" %0 #$" ,!+)"'4

T%7"B".( +' ;/ +*& R"+$= +2'% *%#,-"& ,* #$",. 7%.J(
#$" !,*,!/! -/# -.,#".,+ 0+B%.' -/##,*) '!+22 '"#' %0
,'%2+#"& *%&"' ,* #$" ).+3$4 @$,' ,' *%# '/.3.,',*) ',*-"
#$" -/# &"0,*"& ,* CDE ,*-."+'"' 7,#$ #$" */!1". %0 "&)"'
)%,*) +-.%'' #$" #7% 3+.#,#,%*"& 3+.#'4 U,)4 D ,22/'#.+#"' %*"
'/-$ -+'"4 P''/!,*) #$" "&)" 7",)$#' +." ,*B".'"2=
3.%3%.#,%*+2 #% #$" &,'#+*-" 1"#7""* #$" #7% *%&"'( 7"
'"" #$" -/# #$+# 3+.#,#,%*' %/# *%&" +! %. +" 7,22 $+B" + B".=
'!+22 B+2/"4 8* 0+-#( +*= -/# #$+# 3+.#,#,%*' %/# ,*&,B,&/+2
*%&"' %* #$" .,)$# $+20 7,22 $+B" '!+22". -/# B+2/" #$+* #$"
-/# #$+# 3+.#,#,%*' #$" *%&"' ,*#% #$" 2"0# +*& .,)$# $+2B"'4

@% +B%,& #$,' /**+#/.+2 1,+' 0%. 3+.#,#,%*,*) %/# '!+22
'"#' %0 3%,*#'( 7" 3.%3%'" + *"7 !"+'/." %0 &,'+''%-,+#,%*

1"#7""* #7% ).%/3'4 8*'#"+& %0 2%%J,*) +# #$" B+2/" %0 #%#+2
"&)" 7",)$# -%**"-#,*) #$" #7% 3+.#,#,%*'( %/. !"+'/."
-%!3/#"' #$" -/# -%'# +' + 0.+-#,%* %0 #$" #%#+2 "&)"
-%**"-#,%*' #% +22 #$" *%&"' ,* #$" ).+3$4 ;" -+22 #$,'
&,'+''%-,+#,%* !"+'/." #$" !"#$%&'()* +,- C.+,-EQ

,%&'""!## ! %&'""!##
-../%""! $ #

( %&'""!##
-../%"#! $ #

! ""#

7$"." -../%""! $ # !
"

&'"!''$ )"&! '# ,' #$" #%#+2 -%**"-#,%*

0.%! *%&"' ,* P #% +22 *%&"' ,* #$" ).+3$ +*& -../%"#! $ # ,'
',!,2+.2= &"0,*"&4 ;,#$ #$,' &"0,*,#,%* %0 #$" &,'+''%-,+#,%*

1"#7""* #$" ).%/3'( #$" -/# #$+# 3+.#,#,%*' %/# '!+22

,'%2+#"& 3%,*#' 7,22 *% 2%*)". $+B" '!+22 .+,- B+2/"( ',*-"

#$" +,- B+2/" 7,22 +2!%'# -".#+,*2= 1" + 2+.)" 3".-"*#+)" %0

#$" #%#+2 -%**"-#,%* 0.%! #$+# '!+22 '"# #% +22 %#$". *%&"'4 8*

#$" -+'" ,22/'#.+#"& ,* U,)4 D( 7" '"" #$+# #$" %&'! B+2/"

+-.%'' *%&" +! 7,22 1" DNN 3".-"*# %0 #$" #%#+2 -%**"-#,%*

0.%! #$+# *%&"4
8* #$" '+!" '3,.,#( 7" -+* &"0,*" + !"+'/." 0%. #%#+2

*%.!+2,A"& +''%-,+#,%* 7,#$,* ).%/3' 0%. + ),B"* 3+.#,#,%*Q

,-../%""!## ! -../%""!"#
-../%""! $ #

( -../%"#!##
-../%"#! $ #

! "##

7$"." -../%""!"# +*& -../%"#!## +." #%#+2 7",)$#' %0
"&)"' -%**"-#,*) *%&"' 7,#$,* " +*& #( ."'3"-#,B"2=4 ;"
'"" +)+,* #$,' ,' +* /*1,+'"& !"+'/."( 7$,-$ ."02"-#' $%7
#,)$#2= %* +B".+)" *%&"' 7,#$,* #$" ).%/3 +." -%**"-#"& #%
"+-$ %#$".4

P*%#$". ,!3%.#+*# 3.%3".#= %0 #$,' &"0,*,#,%* %0 +''%-,+9
#,%* +*& &,'+''%-,+#,%* %0 + 3+.#,#,%* ,' #$+# #$"= +."
*+#/.+22= ."2+#"&Q

,%&'""!## ! %&'""!##
-../%""! $ # (

%&'""!##
-../%"#! $ #

! -../%""! $ # ) -../%""!"#
-../%""! $ #

( -../%"#! $ # ) -../%"#!##
-../%"#! $ #

! ") -../%""!"#
-../%""! $ # (

-../%"#!##
-../%"#! $ #

# $

! "),-../%""!##*

T"*-"( #$" #7% 3+.#,#,%* -.,#".,+ #$+# 7" '""J ,* %/.
).%/3,*) +2)%.,#$!( !,*,!,A,*) #$" &,'+''%-,+#,%* 1"#7""*
#$" ).%/3' +*& !+6,!,A,*) #$" +''%-,+#,%* 7,#$,* #$"

!"# $%& '$(#)* %+,'$(#-.& /01! $%& #'$2. !.2'.%1$1#+% 334

5678 98 $ :;<= >?=@= A6B6ACA :CD 76E=< ; F;G H;@D6D6IB8Figure 3.8: Graph partitioning illustrated on a cluster from [50].

Figure 3.10 shows a partition of the graph in Figure 3.7. The graph has

been partitioned (cut) into two disjoint regions S1 and S2 that comprise G by the

minimization of a function; here the minimum cost. The minimum cut is represented

by the dashed line in Figure 3.10 and given by the minimum possible sum of broken

edges to segment the graph.

The isoperimetric graph partitioning method minimizes a perimeter of a seg-

ment over a maximal area on a graph. This algorithm is well suited for the seg-
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(a) Synthetic image.
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(b) Partition 1.
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(d) Partition 3.

Figure 3.9: The normalized cut performed on a synthetic image. [50].

mentation scheme in Figure 3.2, in that large segments (freestream and shocked

flow regions) are typically produced. The desired segmentation of images could

be considered an under-segmentation (which is desired here), and the isoperimetric

problem is appropriate for this by definition. A summary of the isoperimetric graph

partitioning algorithm from reference Grady and Schwartz [51] is presented here.

The isoperimetric constant of a region S ⊂ G (segment) of a graph is based

on the Cheeger constant of a manifold, and given by the minimum of the region

boundary divided by the total volume of the region S

hG = min
S

|∂S|
V olS

. (3.8)

The area of a region boundary |∂S|of a set S is defined the sum of the edge weights

on the boundary ∂S which is the set of edges in the graph that have a single graph
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Figure 3.10: Illustration of the minimum graph cut.

node in the set. Defined in below in Equation 3.9 for a weighted graph

|∂S| =
�

eninj∈|∂S|

ω
�
eninj

�
. (3.9)

For a weighted undirected graph, the above can be rewritten in terms of the graph

Laplacian in Equation 3.7 as

|∂S| = xT
Lx. (3.10)

The volume V olS of a graph region S is defined as the sum of all node degrees in

the segment, which is a measurement of the total connectedness of a region S on

the graph, which is a measure of total connectivity of the set S.

V olS =
�

ni∈S

dni . (3.11)
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In terms of the degree matrix and the indicator vector, this can be written as

V ols = xT
d. (3.12)

Using the definitions given by Equations 3.5 and 3.6, the isoperimetric constant in

Equation 3.8 is written in terms of the label vector in Equation 3.4 and the graph

Laplacian given by Equation 3.7 as

hG = min
x

xTLx

xTd
. (3.13)

A solution of hG in Equation 3.13 is accomplished by minimizing a cost function

which is reduced to the linear system

Lx = d. (3.14)

The Laplacian matrix in 3.14 is singular; to overcome this problem, Grady

and Schwartz remove the row and column of L corresponding to the node with the

degree of largest connectivity, or the “ground node”, along with the corresponding

entries in x and d allowing the system to be solved. Grady and Schwartz [51] present

in detail the conversion of Equation 3.14 into the nonsingular system below in terms

of the reduced Laplacian

Loxo = do. (3.15)
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Grady [52] shows that the solution to the isoperimetric problem using Equa-

tion 3.15 is the “combinatorial equivalent” to solving the equivalent circuit and

minimizing its power with specified current sources and a ground node needed to

uniquely solve for potentials.

This system is relaxed to solve xo in the modified Equation 3.4 for real values.

To convert this into a graph partition, the real values must be thresholded back to bi-

nary values to create the graph partitions. A threshold, or cut value αc is chosen such

that S contains the nodes corresponding to xi > αc and the complement S̄ contains

the nodes that meet the criterion xi ≤ αc. The cut value αc is selected from x such

that the minimum value of 3.13 is obtained. This yields a two class segmentation.

The partitioning is continued recursively on each segment until the isoperimetric

value of each segment has exceeded a minimum specified value corresponding to the

largest allowable isoperimetric ratio that defines a quality segmentation.

3.6.1 Determining a Physically Meaningful Flow Partition

An arbitrary partitioning which is desirable to an aerodynamicist is not easily

obtained; segmentations that are physically meaningful are not often based on image

evidence, but on the interpretation of the particular image by the expert. This is

true for images in general and for this particular data sequence. In this case, the

desired segmentation scheme is to assign labels to the freestream, the flowfield, and

the test article as shown in Figure 3.2.
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Prior to the diffusion filtering of the images, there was little affinity between

aerodynamically meaningful regions in either textures or intensities, which inhibits

grouping algorithmically. The use of the bilateral filter for a pre-segmentation step

partially assures that the graph cut will segment along the outer-shock structure by

visually enhancing the boundary along the shock, increasing the measure of similar-

ity within these regions and decreasing similarity across them as evident from Figure

3.4. This does not, however, ensure that the desired partition will occur. In certain

images, the region downstream of the aft-cone (the expansion region) is visibly the

brightest and most dissimilar region, and therefore the most likely candidate for a

single partition. In most images this is not the case; the desired partition along the

shock is the most visible region delimiter. Due to the expansion fan region discussed

previously, the recursive method of partitioning is used as multiple partitions may

be required to isolate the freestream from the shocked flowfield.

To evaluate whether the completed segmentation has isolated the freestream

as desired, a form of “prior knowledge” was incorporated. The exact shape of the

shocked flow between the freestream and the model is unknown; therefore their

are no rules or observations that can be used to formally construct a knowledge

base for an understanding model in this particular case. However, heuristics can

be incorporated to ensure the desired partitioning has occurred. With an unknown

number of segments, we require that the freestream region is a single segment, while

any other pixels are allowed to belong to any number of segments, subject to the

constraint that they are not part of the freestream.
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Heuristic measures may be employed based on knowledge of certain static

regions in the image which must be inclusive or exclusive of certain regions. The

image was segmented until at least 2 partitions were obtained. After the partition

was performed, the upper left corner po was labeled freestream. Several additional

points P were randomly selected closer to the shock surface; these pixels in must

also be labeled freestream. The lower right hand corner of the image will always

contain the model; this point was labeled qo. Several randomly selected points

moving toward the outer-shock were placed in Q. The points in Q are allowed to

take on any label other than the freestream. In a sense this is a prescription of

foreground and background priors required to initialize the segmentation scheme in

many interactive algorithms, after the fact. Inclusive and exclusives points P and

Q overlaid on two images and their respective segmentation boundaries are shown

in Figure 3.11 at time instances (to + 107), (to + 1682), and (to + 4590), which were

selected due to the number of segments produced. Figure 3.11 shows the diffused

images used for segmentation, below are the segmented images with 4, 5 and 6

segmented regions respectively. Points P in all cases are located in the freestream

segment. The points Q which must be exclusive of the freestream each take on

multiple labels, and have an arbitrary label other than the freestream. Note that

sets of points P and Q are static and do not change during the sequence; these

were experimentally selected and visual evaluation of the results indicate that this

heuristic demonstrated in Figure 3.11 works well through the sequence irrespective

of the number of segments returned form the partitioning scheme.
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3.6.2 Flow Segmentation Algorithm

The algorithm for determining a physically meaningful image scheme is given

in Algorithm 1. Inputs are the diffused image IBF and the raw image I, and labeled

body image Ibody. The parameters required for the isoperimetric segmentation algo-

rithm are the intensity affinity weighting parameter αI = 100 and the recursion stop

parameter stop = 1e−5. The points P and Q are selected manually and remain the

same for the sequence. Image graphs are constructed using 8-connectivity of each

pixel (small world topological view). Segmentations are performed directly on the

diffused image using the Graph Analysis Toolbox developed by Grady [52,53], par-

titioning the input images into N ≥ 2 segments. If a segmentation is not achieved

(trivial solution), the image is set aside. To evaluate a meaningful segmentation,

points P are checked that should be contained in the freestream segment and labeled

fs. Points Q must have any label l other than fs. If these criterion are not met, a

segmentation failure is identified. Following this, all points in the labeled region con-

taining P are labeled fs, a point having any other label is labeled flowfield, or ff ,

creating a two-class image irrespective of the number of segments originally found.

A modified version of the unfiltered image IM is also calculated, with the freestream

region mapped to white; partitions were performed directly on the diffused image

IBF , although segments were mapped back to the unfiltered images I. Finally, the

manually segmented body image is mapped onto the two-class image creating the

three-class labeled image IL consisting of the freestream, flowfield, and model.
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Algorithm 1: Determining a physically meaningful segmentation.
Input: I Raw Image

IBF diffused image
P points for freestream inclusion
Q points for freestream exclusion
Lbody labeled body image
αI intensity affinity weight
hG isoperimetric, or stop bound

Output: IL the three-class image labeled fs, ff , and body

IM modified raw image with freestream region removed
for i = [to, . . . tf ] do

Perform isoperimetric cut on IBF giving N segments;
if N < 2 then // segmentation failure

fail[i] = true;
continue to next i;

end
// Ensure the segmentation is physically meaningful

Label upper left pixel as freestream, IL [po] = fs ;
Ensure all points ∈ P also have label IL [P] = fs ;
if IL [P] �= fs∀p ∈ P then // segmentation failure

fail[i] = true;
continue to next i;

end
Label a known body point arbitrarily, IL [qo] = l ;
Check that the points in Q have any label other than fs, IL [Q] �= fs ;
if IL [Q] = fs∃q ∈ Q then // segmentation failure

fail[i] = true;
continue to next i;

end
// Create the Labeled Image

Relabel the image such that such that all pixels in the segment containing
points P are labeled fs ;
Map all other segments to the flowfield, IL [xi �= fs] = ff ;
Map the manually segmented model image Lbody to the partition, giving
the three-class labeled image IL ;
// Create the Image with freestream removed

Map all points in the raw image I labeled freestream in the labeled image
to white IL [xi = fs] = 1 giving the modified image with freestream
removed IM ;
return IL, IM ;

end
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3.7 Segmentation Results

Each successfully segmented image from the sequence consisted of between 2

and 6 partitions, with 2 and 3 segments being the most common. All but three of

the 5,000 images were segmented successfully using the Algorithm outlined in the

previous section. Raw images at selected time steps in the sequence and their labeled

counterparts are shown in Figure 3.12. These results are indicative of segmentations

obtained throughout the sequence. Visual inspection of the labeled imagesIL with

respect to their raw counterparts I indicates a performance of the partitioning algo-

rithm as desired. Figure 3.13 displays two random images from the sequence in their

original form and with the freestream segment removed and mapped to white in the

corresponding images IM . These enlarged images visually illustrate the accuracy of

the cut along the outer-shock structure, and show that segmentation and removal

can be done in place of background subtraction and regional noise removal.

Three segmentation failures from a sequence of 5,000 were detected automat-

ically using the method of known points to be included in and excluded from the

freestream region in Algorithm 1. These failures are shown against their raw image

counterparts in Figure 3.14. These Figures illustrate that in all cases the freestream

segment had merged with the flowfield, demonstrating that a simple segmentation

scheme does not always produce meaningful results; and that failures may be de-

tected reliably and in an automated fashion. To correct the improperly labeled

images, the isoperimetric cut parameters were fine-tuned and successful results were

evaluated manually.
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3.7.1 Segmentation Accuracy

It is infeasible to individually examine all segmented images to judge their

accuracy for large data sets. The inspection of images at different time steps through

the sequence displayed in Figure 3.12, and the fact that the segmentation scheme

devised in Algorithm 1 was able to detect any obviously poor labeling schemes lend a

measure of trust to the methodology. There are additional statistical measures and

graph properties that can be employed to measure the accuracy of the segmentation

scheme. Treating the area of the segment as a variable with unknown behavior, the

observation of that variable over time should exhibit some distribution over time.

If the variable is binned into unique values, outliers from the distribution can be

defined and selected for manual inspection. Small world 8-connected graphs were

used to perform the image partitioning in the previous section. For a sensitivity

study, Algorithm 1 was run again with a larger connectivity of radius-3 using the

same intensity affinity αI and stop criterion hG. This significantly increases the

number of entries in the graph Laplacian and the computational time, segmentation

results were evaluated visually and remain similar to those obtained using the smaller

connectivity.

A histogram of flowfield segment areas is given in Figure 3.15 showing an ap-

proximately Gaussian distribution of the flow partition for each graph-connectivity

of the flowfield segment. Nearly 1,000 discrete area values were obtained for both the

8-connected and radius-three connected graphs; although the histogram displayed

below has fewer divisions for clarity. Distribution properties of the segments are
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given in Table 3.1. The near normality of the distributions as evidenced by values

of skewness and kurtosis in Table 3.1 allows detection of outliers using the 3σ event

rule. Of the 5,000 observations, only 15 images gave flowfield partitions that could

be considered statistical outliers. These three-class image partitions of these statisti-

cal outliers were visually evaluated against their raw counterparts. Each outlier was

visually judged to be an acceptable partitioning scheme and these labeled images

were retained. Figure 3.16 shows the % difference between the flowfield segment

area with graph- connectivity which is nearly negligible. From human observa-

tion of selected results, the fact that little difference exists in the flowfield segment

results with graph-connectivity along with a successful means of identifying poor

segmentation results, it can be concluded that the segmentation algorithm performs

accurately and as desired. Partitioning using the 8- connected topology were visu-

ally preferable over the radially connected results, and will be used for all further

results.

(a) Histogram of 8-connected graph (b) Histogram of radius 3 connected graph

Figure 3.15: Histogram distribution of flowfield segment area with graph connectiv-
ity.
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Table 3.1: Flowfield segment distributions for each graph-connectivity [pixles].

connectivity µ σ
µ3

σ3
µ4

σ4 failures outliers bins

8-connected 11482 211 .0483 3.110 3 15 984
radius 3 11490 209 .0731 3.081 - 15 970

Figure 3.16: Convergence of flowfield segment area with graph connectivity.

3.7.2 The Importance of the Labeled Image

The three-class labeling scheme is shown in Figure 3.17. The labeled image IL

is given in Figure 3.17b, with the freestream segment shown in black, the flowfield

in white and the body in gray. Figures 3.17c and 3.17d show the segmented regions

of the freestream and flowfield respectively. The flowfield segment in Figure 3.17d

can serve as a measurement of the flow unsteadiness and motion patterns, directly,

as it its projection on the image is directly proportional to the unsteadiness of the

69



flowfield. This has been partially illustrated in the previous section and will be

performed to a greater extent in a later chapter. Also, structures of interest such

as the separation shock and the contact surface are embedded within the flowfield

labeled region. Use of image labels will provide a region to search for these structures

and a means of identifying them in the following chapters.

(a) Raw image I (to) (b) The three-class labeled image L (to)

(c) Freestream labeled region (d) Flow labeled region

Figure 3.17: Image labeling scheme and segmentations for image I (to).
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Chapter 4: Extracting Oblique Structures and Outer Contours

4.1 Motivation

The segmentation results from the previous chapter gives region labels to gross

structure, which allow for Cartesian and statistical descriptors of the regions them-

selves; and a means to navigate through the image and enforce physical laws during

search for smaller scale structures such as the separation shock. Edge detection is

a technique better suited to identify smaller level details of boundaries and gradi-

ent changes in the image and sequence. In conjunction with the labeled images,

edge images and the structures which can be generated from them can be used to

represent the outer-shock structure and fluid structures within region labels.

This chapter focuses on representations of shock and flow structure using edge

maps. A motion history map of the isolated complete outer-shock structure will

be constructed using edge maps. The separation shock and the contact surface

will be isolated and measured using linear segment detection. A knowledge base

from physical laws and observation of the sequence will be employed to assist the

measurement and classification process. An employment of a bottom-up image

understanding approach is required; each task is illustrated in Figure 4.1.
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Figure 4.1: Shock structure image understanding schematic.

4.2 Edge Detection

Edge detection is the identification of object boundaries in images based on

image gradients, which ideally correspond to features in the image. An edge image

is a binary representation of an image which conveys information relevant to objects

and their boundaries in the image. An edge map represents a simplification of an

image into its most primitive content and can be considered a segmentation. Edges

are classified as predominant changes in intensity gradient values; as such, their role

in schlieren image analysis where flow structure is represented by changes in the

density gradient is inherently applicable and valuable. It is rarely the case where

boundaries or objects of interest (shock waves and flow features in the present case)

are represented clearly by gradient similarity, or even discernible from image noise.

This is particularly true in low SNR images such as flowfield and medical imaging.

A previous section of this work discusses the ambiguity between the image noise
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versus flow structure, and the role that differentiation plays in noise enhancement

(see Figure 1.8). Edge detection in and of itself therefore remains a non-trivial task.

Classical edge finding techniques involve a masking approach to determine im-

age gradients through approximation of first derivatives include the Roberts, Prewitt

and Sobel edge detection methods [12], or through location of the zero-crossings of

second derivatives [54]. These methods may suffer from poor localization and accu-

racy, produce thick edge responses, and can enhance noise and result in streaking

and contour loss. In addition, some methods prefer certain angle orientations.

The Canny edge detection algorithm [15, 55] (or optimal edge detector) has

largely replaced the above approaches as the method of choice for boundary de-

tection, and is used at numerous stages for the identification of flow structures in

this work. The Canny edge detector is based on the formalization of the following

requirements of an ideal edge detection: a low error rate (high probability of detec-

tion with low false positives), proper localization (proximity of edge points to the

true edge), and a single response criterion [15]. Through optimizing a detector for

a step edge corrupted with Gaussian noise, Canny shows that the simplest function

with which to detect step that most closely meets the above requirements is the

derivative of the Gaussian function.

Canny’s algorithm typically employs a Gaussian smoothing step on the image

I on the image to suppress noise and remove high frequency content, given by

Iσ = g (σI , x, y)� I, (4.1)
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where the separable Gaussian kernel is defined

g (σI , x, y) =
1

2πσ2
I

exp

�
−x2 + y2

2σ2
I

�
. (4.2)

Smoothing operations are typically done in each direction using the separated filters

from Equation 4.2. Equation 4.1 accounts for a scale representation of the image

at integration scale parameter σI ; the smoothed image is now a function of scale.

Marr and Hildreth [54] state why the Gaussian smoothing kernel is optimal. It

guarantees that no new maxima are created during smoothing, and it is the only

filter that simultaneously localizes in both the spatial and frequency domains.

Gradients are calculated convolving directional derivatives with the image

∂I

∂x
= Iσ �

∂g

∂x
(4.3)

∂I

∂y
= Iσ �

∂g

∂y
(4.4)

where the Gaussian derivatives are computed using separability. The function used

to calculate the term Ix is given below in equation 4.5 (similarly for Iy), where an

additional differentiation scale parameter has been introduced. Typically, integra-

tion and differentiation scales are the same and will be referred to as σc to represent

the scale of the Canny edge detector.

∂g

∂x
=

−x√
2πσ3

c

exp

�
− x2

2σ2
c

�
. (4.5)
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The magnitude of the image gradient and its direction of change are calculated from

�∇I� =

��
∂I

∂x

�2

+

�
∂I

∂y

�2

(4.6)

and

θ∇I = arctan

�
Iy
Ix

�
. (4.7)

Many classical edge detectors threshold the gradient magnitude image and

employ morphological thinning to produce an edge image. Canny introduced non-

maximal suppression of the gradient magnitude image to apply the single response

criterion. Equations 4.6 and 4.7 allow a search for the largest gradient in the direc-

tion of change. Values of the gradient magnitude image in Equation 4.6 are retained

for potential edge assignment if they are maximal along the direction of the gradi-

ent using Equations 4.6 and 4.7. The value is followed by searching in the direction

perpendicular to the gradient, giving the maximum edge response in the direction

perpendicular to the edge. All other pixels are set to zero. Wide ridges around the

local extrema, typical of gradient magnitude images, are therefore removed.

Many edge detectors employ a single threshold on the gradient magnitude of

the image, which can lead to both thick and spurious responses which are more

likely to be streaked or broken. This is somewhat alleviated with Canny’s use of

dual thresholding. The remaining elements of the gradient magnitude contains thin

lines whose values are maximal within the direction of the gradient, all of which

are edge candidates. The edge map is completed using dual thresholding on the
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remaining ridges in the gradient map. Hysteresis thresholding declares values in the

gradient image greater than a high threshold TH as true edges. Weak edges above

a low threshold TL and below TH are labeled true edges if they are 8-connected

to a strong edge. This process is recursive and completes the edge map, retaining

completed contours from the non-maximally suppressed gradient image. Many weak

or spurious responses that can be considered nuisance edges, are eliminated and weak

responses that are likely to correspond to a true edge are retained.

4.2.1 Limitations and Noise

The ambiguity of the gradient direction at a corner for any edge detection

method may result in the representation of sharp corners as curved corners, and the

detector may fail here. Edge maps will nearly always display the stair-casing effect,

which results in some degree of discontinuity and aliasing. In addition the only

true lines in a discrete representation are determined by 8-connectivity, oriented at

0◦, 45◦ and 90◦. This is due to the finite number of pixels available to represent

boundaries at a small scale, and may be alleviated somewhat with sub-pixel edge

localization. Sub-pixel representation is not considered here, as an edge image is

not the final result, rather a means to assist in feature description and detection.

Also, the use of the Gaussian kernel in Equations 4.2 and 4.5 adds scale space

to the detection method. Not only do spurious responses need to be eliminated by

dual thresholding, but the proper Canny scale-space parameter σc at which desired

structure is represented must be selected. The scale at which the object of interest
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occurs can change based on the size and shape of the structure (i.e. coarse to fine

scale). Due to these considerations, experiments must be conducted and evaluated

by the expert to determine meaningful edges which correspond to shocks.

4.2.2 Representation of Shock Structure with Edge Maps

Ascertaining the edge images which best represents the underlying shock struc-

ture is subject to the visual interpretation of the data by the aerodynamicist. The

uncertainty principle identified by Canny in determining the ideal edge detector

states an inversely proportional trade-off between localization and accuracy (detec-

tion of true edges) of the detector as a function of scale σc. Both a study of scale

and hysteresis thresholding must be conducted to form the best shock structure in

the image sequence; these factors are crucial to ensure proper representation. Edge

detection was performed directly on the raw images. Image enhancement or denois-

ing was avoided, as this can lead to removal of true image structure and the creation

of false artifacts, as per the discussion in the introduction.

Experiments with edge images for three increasing detection scales σc of 1,

1.5, and 3 with naive hysteresis thresholding for image I (to) are shown in Figure

4.2. The top row of Figures illustrate the edge maps Ie (inverted for clarity). The

bottom row is the overlay of the edge image on the raw image I, used to judge the

accuracy of the edge response for flow structure representation. As scale parameter

σc is increased, certain flow features become more visually apparent (for example

the transmitted roughly oblique shock) as fewer false responses are detected. With
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increased scale, some features become aliased or blurred (the triple point near the

bow shock). The model tip becomes rounded at increased scale. At fine scale,

the edge maps contain spurious responses to information in the freestream. In this

case, freestream structure is not of interest and may therefore be considered noise.

All images in figure 4.2 are acceptable edge images; however some contain both

physically irrelevant details and poor representation of actual shock features.

Hysteresis thresholding was varied at fixed scales in order to eliminate physi-

cally uninteresting and spurious results while retaining the most salient shock fea-

tures. Figure 4.3 shows the best thresholding results obtained (evaluated visually)

at the same scales used in Figure 4.2. The same trend exists as in the previous figure:

with increasing scale from left to right, spurious responses are reduced as localization

becomes poorer. Weak edges have been removed, clarifying global structure, but

along with them went actual structure. Note the complete lack of body information.

It may be argued that this is a poor edge image, but an edge image is not of interest

here; a shock image is desired. The triple point is best represented at a scale of

σc = 1, becoming rounded and aliased at larger scale space representations. The

same may be said of the transmitted shock. The contact surface however, although

shorter at a larger scale, appears less jagged. Due to the uncertainty principal, the

best localization is achieved at the smallest scale of σc = 1, this is also the scale

most be susceptible to noise. Since this scale appears to give the best structural

representation of the fluid mechanics, it is selected for further analysis.
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4.2.3 Variation Through the Sequence

Figures 4.2 and 4.3 illustrated the existence of edges at mathematically dif-

fering levels of noise and scale. The small scale detection results (σc = 1) yield

the most appropriate representations of shock structure; although they contains the

most false responses, as expected from the uncertainty principle. However, due to

non-uniform illumination from the laser, and the changing orientations of the shocks

through the test time; selection of hysteresis threshold parameters must be evaluated

at several images to ensure that shocks can be well defined through the sequence.

Experiments on hysteresis at several time instances are shown in Figure 4.4.

Edge maps Ie were obtained using a scale parameter of σc = 1. Each row in Figure

4.4 shows the same image, columns contain edge maps at different hysteresis thresh-

old parameters T = [TL, TH ]. The leftmost column has the lowest values of high

and low threshold, therefore retains the most information. Both threshold values

increase from left to right. Noise is difficult to discern from structure, particularly in

the region between the model and the outer-shock. Noticeable is a small structure

in the upper left corner of the edge maps; also evident in the raw images I and is

likely a marking on the optical access window or mirror. In the middle column,

considerable flow structure information has been lost between the aft- cone bow

shock and the body surface. In the final column in Figure 4.4, a significant portion

of the bow shock is missing in some images, and the contact surface is incomplete.

These figures demonstrate that consistent flow representation using edge detection

is difficult through the sequence; parameters that yield near complete information
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retainment for many images may produce poor edge maps for certain images. This

may be due to a number of factors, including non-uniform illumination or the partial

occlusion of flow structure with a freestream schliere. In all of the edge maps the

body surface is not evident; this is due to its contour being illusory and not image

gradient based. This issue was addressed with the creation of a labeled body image

in the previous chapter. From the experiments conducted in the section, in order to

best represent the shock structures while considering the effects of the uncertainty

principle, all edge images are constructed using a scale value σc = 1 and hysteresis

thresholding values of TL = 0.0 and TH = 0.35 unless otherwise stated.
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(a) Ie (to), T = 0, 0.35 (b) Ie (to), T = 0.2, 0.5 (c) Ie (to), T = 0, 0.7

(d) Ie (to + 1000) (e) Ie (to + 1000) (f) Ie (to + 1000)

(g) Ie (to + 1500) (h) Ie (to + 1500) (i) Ie (to + 1500)

(j) Ie (to + 4500) (k) Ie (to + 4500) (l) Ie (to + 4500)

Figure 4.4: Representations edge maps at constant scale σc = 1 with hysteresis
through the run sequence.
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4.3 Isolation of the Outer-Shock

Edge maps of the global images (those shown in Figure 4.4) contain not only

global and local flow structure information, but also spurious responses to strong

gradients. To capture the isolated path history of the outer-shock, much of the

information in the edge maps must be removed. Edge images were converted into

contour images in order to remove small isolated fragments. Contours were extracted

from the edge image and labeled using a portion of the corner detection algorithm

developed by He and Yung [56,57]. Contour extraction from edge images preserves a

more global impression of continuous edge structures. A kernel with scale parameter

σc = 1 and aperture width of 9 was used to construct all edge maps. Contours were

retained subject to a minimum arc length requirement smin scaled with the image

perimeter. Short contours that may not correspond to true structure were removed

(in this case 40 pixels). This can remove small and disconnected edges such as those

responding to strong schlieres in the freestream, and turbulent structures within the

bow shock region.

To isolate the outer-shock structure, contour images were scanned with three

horizontal rays. If all rays intersected a single contour, this contour was retained and

a successful isolation is declared. If a single unique contour remained, it was assumed

that the outer-shock was represented as an unbroken structure in the edge space.

A successful isolation is shown in Figure 4.5. Spurious responses and fine detail

that correspond to features other than the outer-shock in the edge map in Figure

4.5a, have been removed; these structures have labels other than the outer-shock
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structure. Figure 4.6 illustrates a detected outer contour that is not representative

of the shock structure. In this case, three contours were uniquely identified during

row scanning process. Broken contours are due to reasons discussed earlier and may

include nonuniform illumination or a freestream schliere in the integration path.

(a) Edge image Ie (to). (b) Isolated outer-shock contour Ic (to).

Figure 4.5: Determining a usable contour from an edge map. Fine detail and fea-
tures other than the outer-shock have been removed from the edge map.

(a) Edge image Ie (to + 3365). (b) Isolated outer-shock contour Ic (to + 3365).

Figure 4.6: An unsuccessful contour isolation. Outer-shock is broken and consists
of three contours.
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4.3.1 Outer-Shock Motion History

Out of the sequence of 5,001 images, 4,487 (89.7%) were succesfully isolated

with a scale of σc = 1. For the remaining 511 images, multiple contours were

returned from the ray tracing step. The process was restarted at a larger scale of

σc = 1.5. This brought the total number of images where the outer-shock structure

could be isolated to 4,912. Beyond the edge detection scale of 1.5, edges drifted from

the outer-shock in the raw image. The remaining 89 images were isolated for manual

measurement. Images which met this criterion were summed over the sequence to

create a motion history of the global outer-shock structure.

The resulting summation of unbroken isolated outer contours is shown in Fig-

ure 4.7, a binary image that illustrates the path history of the complete outer-shock

structure. A pixel is labeled black if the outer-shock has occupied that location dur-

ing the sequence, and white otherwise. Significant motion and shape change of the

upper bow shock is evident from the thickness of the region. The region containing

the separation shock seems to indicate small pitching motion of the shock; how-

ever the motion history also includes any translation and length change if present.

This illustration of unsteady behavior was evident from viewing the raw image se-

quence; and a computational solution did not converge to a steady state for the test

conditions [37]. The knot structure near the fore-cone tip in Figure 4.7 is not rep-

resentative of shock motion. The edge maps were unable to detect the full attached

conical shock on the fore-cone tip, due to insufficient image evidence (gradients) in

this region. This can be seen by the human eye on close examination of Figure 3.1
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Figure 4.7: Motion history of isolated outer-shock structure

4.3.2 Instances of False Shock Structure

During the summation of the isolated contours, several false representations

of shock structure were evident from visual inspection of Figure 4.7. False contours

accounted for 15 out of the 4,912 contours which were successfully isolated, and were

removed from the motion history shown in Figure 4.7. Examples of false contours

are shown in Figure 4.8. The shock intersection structure is represented by a loop in

Figures 4.8a and 4.8b. The upper portion of the bow shock turns back toward itself

in Figure 4.8c. In Figure 4.8d, a sharp corner protrudes from the middle portion of

the shock structure. In all instances in Figure 4.8, the outer-shock representation

violates conservation of mass. These representations may be due to a freestream

schliere which partially occludes the true shock shape, or image gradients of flow

structures downstream of the shock that are larger than the outer-shock.
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(a) False shock intersect Ic (to+). (b) False shock intersect Ic (to+).

(c) False upper bow shock Ic (to+). (d) False shock structure Ic (to+).

Figure 4.8: Contour images Ic indicating false structure.

4.4 Line Fitting

Once an edge map of an image has been constructed, the edge points must

be assembled into more useful representations of aerodynamic interest, such as lines

representing shock waves, from which desirable physical properties can be extracted.

Cues from computational studies of the double-cone [41], as well as visual inspection

of the schlieren images themselves suggest that both the transmitted separation

shock and the contact surface may be well characterized by linear segments. A

slight deviation from linearity is observable at close scrutiny in certain individual
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frames; however, any apparent curvature is at such a small scale in the image that it

appears indiscernible from noise associated with discrete representation of a digital

image. It is assumed that these structures can be appropriately modeled as linear.

Techniques for line detection and fitting edge pixels include least squares fit-

ting, M-estimators, and random sample concencus (RANSAC) [58], among others.

These methods are best suited when the line is well defined, or when the points

the line contains are known a priori. When searching for a line that may undergo

translation or pitching, or at a scale where line endpoints are difficult to discern,

the Hough transform [18,19] provides a better estimate for the impression of a line.

4.4.1 The Hough Transform

The Hough transform is a statistical binning method used to cluster collinear

or near collinear nearby points into the most likely linear fit. Binary edge maps,

for reasons discussed in section 4.2.2 rarely characterize even the most simple linear

segment. The Hough transform is a means to link broken or even mis-characterized

pixel segments into meaningful lines. The transform fits binary image points to the

normal representation of a line. A point (x, y) in the image axis plane is transformed

to a parameter space (r, θ) given by

x cos (θ) + y sin (θ) = r, (4.8)

where the angle is bound by θ ∈ [−π/2, π/2] and the normal distance from the
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origin is bound by r ∈ [−D,D], where D is the diagonal of the image. Equation

4.4.1 allows for the representation of vertical and horizontal segments. Collinear

points in the image plane will fit a line given by 4.4.1, with constant r and θ.

The Hough transform technique is illustrated in Figure 4.9 from reference [32].

Two points (xi, yi) and (xj, yj) are collinear in the the image plane in Figure 4.9a.

The two points share the same perpendicular distance from the line to the image

origin r, and are both inclined at the same angle θ, and described by the same normal

representation in Equation 4.4.1. In the rθ parameter space plane in Figure 4.9b,

all possible lines passing through a given non-background point are represented

as sinusoids. Each sinusoid in the parameter space represents all possible lines

through a fixed point in the image plane, given by Equation 4.4.1. The two sinusoids

shown are all lines going through points (xi, yi) and (xj, yj). Each point in the

parameter space plane represents a line in the image plane. The point where the

two sinusoids intersect at
�
r
�
, θ

��
represents the straight line in Figure 4.9a. Figure

4.9c shows the discretization of the rθ space into a two-dimensional accumulator

bin. For each intersection point in Figure 4.9b, the corresponding accumulator cell

in the transform plane is incremented. Each vote in the accumulator represents

a corresponding line in the image. The accumulator cells with the highest counts

(peaks in the transform space) represent the line with the most number of collinear

points, and therefore the most statistically likely and dominant lines in the image.

After the transform space has been discretized, non-maximal suppression is

performed on the accumulator array H (∆r,∆θ). Peaks in the resulting operation

represent potential line candidates in the image.
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(a) Image plane. (b) Transform space. (c) Accumulator grid.

Figure 4.9: The Hough transform parameter space [32].

4.4.2 Grid Sensitivity Studies

Difficulties associated with Hough transform peak detection include the role

of noise in the image, and the proper grid size selection of the binning parameters

[∆r,∆θ]. Transform parameters must be determined through experimentation. If

the transform grid of the rθ plane is too coarse, the line resulting line is largely

useless, as points well outside of the desired line will be included in the voting plane.

If the plane is too fine, the collinearity of points will be artificially decreased. Proper

discretization is non-trivial: lines in the image plane may be clustered together on

a coarse grid, and too fine a grid will be unable to capture a jagged line (a likely

representation for many line segments), restricting the definition of near collinear

points. A fine grid will also collect votes for meaningless edge fragments. A study

of the rθ accumulator space is necessary to see how fine a scale the lines can be

reliably detected. Accuracy of collinearity is directly determined by grid sizing.

For computational simplicity and the incorporation of domain knowledge, only the

corner Region Of Interest (ROI) will be searched for linear segments that represent
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the shock wave and the contact surface. Figure 4.10 shows the corner region of the

image at instance (to + 1500) without pre-processing, and its edge image (inverted

for clarity). The ROI images in Figure 4.10 are 88 x 128 pixels.

(a) Raw image I (to + 1500). (b) ROI edge map Ie (to + 1500).

Figure 4.10: Corner ROI of image I (to + 1500).

Grid sensitivity studies are performed on the binary image in Figure 4.10b.

Three transform resolution spaces are tested with the following [∆r,∆θ] resolutions:

[2, 2◦], [2, .125◦] and [1, .125◦]; the transform bins are plotted in Figures 4.11a, 4.11b

and 4.11c respectively. Each sinusoid in these Figures represent all linear fits through

a given point in the edge map in Figure 4.10b. Dark values indicate large vote counts

for a line fit. High accumulator bin counts indicate a larger the number of collinear

points on the line corresponding to Equation 4.4.1 at the (r�, θ�) locations in Figure

4.11. Note that θ is plotted with respect to the transform axis. Scale is decreasing

from left to right in Figure 4.11; the coarsest accumulation grid is in Figure 4.11a

where the peaks in the transform are more closely grouped. At the finest scale in

Figure 4.11c, the intersection of sinusoids are the clearest, although the fine division

shows a looser grouping of the transform peaks. This suggests that single lines
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corresponding to the peaks in Figure 4.11a are subdivided into finer segments in

Figure 4.11c.

The four largest peaks in the transform planes in Figure 4.11 were found after

non-maximal suppression of the grid, and are listed in Table 4.1; listing the vote,

inclination θ� (with respect to lab reference) and perpendicular distance to origin r�

for their respective transform grid plots above. The separation shock and contact

surface angles in Figure 4.10b measure approximately 36◦ and 31◦ respectively;

similar values are seen in some of the tables. The strongest line persists through

cases I and II in Tables 4.1a and 4.1b, within the ∆θ discretization differences, and

has the same r� and number of votes. However, at the finest scale in Table 4.1c,

this line does not appear to have been captured. Instead, the strongest peak in

Table 4.1c seems to correspond to the second strongest peak in Tables 4.1a and

4.1b, although it has received considerably less votes. The variation in detected

peaks with grid sensitivity suggest that a better method to assure feature capture

than a single grid would be to compare multiple grids.
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4.5 Detecting Shock Wave and Contact Surface Angles

To ensure a shock wave is or shear layer is extracted as opposed to a random

edge segment, insight into why a particular representation is chosen must be built

on image evidence and physical knowledge. For example, the oblique shock is best

represented as a straight line segment, of some specific length, it is unlikely or

physically impossible to take on certain angle values, and must lie in a certain

region of the flow. It is known in this case of this specific sequence that the shock

wave must be above the contact surface, which in turn must be above the body.

This would be an acceptable classification if we knew that only these lines could be

detected in each image in the sequence, or that multiple line segments would not be

returned to represent each line.

To differentiate linear segments from nuisance lines, and shock waves from

contact surfaces, a classifier must be built to make sure the extracted line is the

flow structure of interest. This can be done by extracting all linear segments which

are potential candidates for these flow features, and applying physical rules which

these segments must obey before they can be classified as a shock wave or a random

segment. A scale-space representation must be selected that accurately constructs

edge maps which correspond to the flow structure in the images. Linear segments

are then extracted from these edge maps using the Hough Transform technique.

Finally, a rule-based classification scheme is developed based on observations from

the particular sequence. An enforcement of physical rules using the segmentation

scheme is employed.
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4.5.1 Scale Selection for Shock Representation

Arbitrary edge detection on a schlieren image will not lead to a useful repre-

sentation of shock structure. Ensuring that the detected edges correspond to flow

structure requires both a proper scale selection, knowledge of fluid mechanics, and

evaluation by the researcher. Scale selection is a trade-off between localization and

accuracy, and proper selection is non- trivial. To find the appropriate scale for the

edge map, a raw primal sketch, similar to that employed by Marr and Hildreth [54]

was used. Multiple representations of the flow structure are potentially available;

built from the raw image or the diffused image, each available at a different scale.

Two raw primal sketches are shown in Figure 4.12: Figure 4.12c presents a

combined representation of scale σc = 1 of the raw image shown in Figure 4.12a and

its diffused counterpart in Figure 4.12b; Figure 4.12d shows edge maps built from a

raw image using the Canny scale representation at two scales σc = 1, and 2 (a single

octave). Black pixels represent the logical AND operation between representations;

gray pixels denote the logical OR of detected edges. The separation shock at first

glance seems to overlap well. However, the ambiguity of the endpoints of the shock

has grouped pixels to shocks on either side of the structure and aliased them to-

gether at a larger scale. Considerable difference is evident between representations,

the shock becoming curved and aliased at larger scale, while the contact surface is

entirely different. Although the diffused image has better grouped the image glob-

ally, the composite sketches do not exactly coincide. The trade-off between accuracy

and localization is a factor in many vision implementations. In this case, it is best
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to choose the smallest scale at which the desired structure is represented. Although

noise is more prevalent at the smaller scale, better localization is attained. The raw

image ROI is therefore used for all edge maps. For the edge images shown in this

research, a Gaussian kernel of unit scale with support width of 9 was used.

(a) Unfiltered image I. (b) Diffused image IBF .

(c) Primal sketch of σc = 1 of raw and dif-
fused.

(d) Primal sketch of single octave raw image.

Figure 4.12: Scale selection and raw primal sketches for Corner ROI I (to).

4.5.2 Knowledge Representation for Structure Definitions

Methods for edge detection and extraction of lines in an image have been

shown. Expert knowledge must be explicitly incorporated into the a detection al-

gorithm to ensure that a separation shock can be distinguished from the contact
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surface, and each from fragments or nuisance lines. Physical knowledge can be

represented as machine instructions, allowing the algorithm to differentiate between

features and be more likely to return the desired line segment. The separation shock

and the contact surface are drawn in Figure 4.13a, its corresponding labeled region,

which can be used to enforce a knowledge base is shown in Figure 4.13b.

(a) Raw image ROI I (to + 1500). (b) Labeled image ROI IL (to + 1500).

Figure 4.13: Illustration of knowledge base incorporation.

To develop the classification schemes, both observations of the sequence and

expert knowledge need to be incorporated into the decision-making process. Both

the separation shock and contact surface are visibly dominant lines in the edge

images. Throughout the sequence, it is physically impossible for the angle of the

separation shock to go above or below certain upper or lower bounds (θu and θl);

likewise for the contact surface. For a line to be a shock wave, it must be immediately

below the freestream region and immediately above the flowfield, a rule which can be

enforced by the segmentation shown in Figure 4.13b. Similarly, the contact surface

must be below the shock and therefore must be labeled both above and below by

the flowfield. The image coordinate system is used here, a right hand coordinate
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system with the origin in the upper left hand corner of the image. The following

statements can therefore form the knowledge base, which is later incorporated into

the detection algorithm:

1. Both structures may be approximated by a line.

2. Both structures are among the most dominant and longest lines in the ROI.

3. Angles are constrained; they are unlikely to take on values outside θ ∈ [θl, θu].

4. Known location: a point several pixels above the shock wave will be labeled

freestream; pixels immediately above and below the contact surface must be

labeled flowfield.

5. Structures should be the longest remaining line after constraints applied.

4.5.3 Algorithm for Measuring Oblique Features

The algorithm used to extract and measure the separation shock βs and contact

surface θcs angles is listed in Algorithm 2; this is a bottom-up image understanding

model as depicted in Figure 4.1. When measuring the angle of the line, it is assumed

that the camera array is aligned with the model axis, providing the datum. Each

feature is considered separately. Potential failures of the algorithm are listed in

the order in which they may be encountered. If at any point in the sequence,

one of the failure modes above has been encountered, the algorithm records the

mechanism and continues to the next image. The first step of the extraction of

oblique features is the identification of linear segments. Given the raw image ROI I
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shown in Figure 4.13a and its corresponding label image IL in Figure 4.13b, a fixed

Canny scale σc = 1, hysteresis threshold parameters TL and TH , and a fixed Hough

grid resolution [∆r,∆θ], the following steps are performed:

1 Canny edge detection on the raw image I at scale σc to create edge image Ie.

2 Hough transformation of Ie to form the transformation matrix H (∆r,∆θ).

3 Extract k1 linear segments from H corresponding to large vote counts.

These first steps provide anywhere from two to six linear segments for the test

sequence used here, some or none of which are viable candidates to represent the

angle of both the shock wave and contact surface. Considering line segments which

correspond to large vote counts in the Hough transform accumulator bin encourage

that the more visually evident lines in the edge image are returned. No steps have

been taken yet that specify the detection algorithm to the double-cone geometry.

To eliminate nuisance linear segments and test for candidate viability for a

physical representation, the remaining portion of the algorithm is the implemen-

tation of the knowledge base that allows to determine which of the remaining line

segments (if any) is a reasonable representation of the structure of interest, and is

a rule-based classification. Since both the separation shock and contact surface are

visibly dominant in the edge images, elimination of some false positives was accom-

plished by selecting large vote counts in the Hough transform accumulator bin in

step 3 of the line finding algorithm. Considering only line segments greater than a

certain length lmin for candidates can further restrict the selection. Potential failure
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methods and locations are listed in the algorithm below, which continues where the

line extraction algorithm left off:

4 Remove lines whose length l [k1] < lmin giving k2 segments.

• return line failure if k2 = ∅.

failure mode 1 ; line segments are too short to represent either structure.

5 Remove lines whose angles θl ≤ θ [k2] ≤ θu giving k3 segments.

• return angle failure if k3 = ∅.

failure mode 2 ; no segment is within the expected angle bounds, meaning

the model surface or a nuiscance fragment has been identified.

6 Calculate the midpoint locations (xm, ym) of the remaining k3 lines.

a To extract the separation shock angle, check the label immediately above

the midpoint, removing lines that that do not satisfy the label check

IL [xm −∆x, ym] = fs, returning k4 segments.

b To extract the contact surface angle, check the label above and be-

low the midpoint, removing lines that do not satisfy the label check

IL [xm −∆x, ym] = ff and IL [xm +∆x, ym] = ff , returning k4 seg-

ments.

• return region failure if k4 = ∅.

failure mode 3 ; no lines exist which satisfy the location requirements.
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7 If more than a single line remains, extract the longest remaining. This is likely

the best fit as it incorporates a larger number of points in the edge map, while

maintaining a high accumulator vote.

The only information specific to the application of the algorithm to the double-

cone sequence is the particular segmentation scheme and knowledge base, which

gives relative structure location, as well as angle bounds for line segments. Iden-

tification of failure modes is critical to the successful employment of the of the

knowledge base sued to extracts the angle; this is an implementation of decision

making.
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Algorithm 2: Determination of separation shock and contact surface angles.
Input: I raw image ROI

IL labeled image ROI
σc, [TL, TH ] Canny scale and hysteresis thresholds
∆r, ∆θ fixed Hough accumulator resolution
lmin minimum allowed line length
θu, θl upper and lower angle bounds

Output: separation shock βs [i] or contact surface angle θcs [i] for each image
for i = [to, . . . tf ] do

// Line extraction

Canny Edge Detection of I to form edge image Ie ;
Hough transformation of Ie to form H (∆θ,∆r) ;
Extract k1 linear segments l from transform peaks ;
// Structure identification

remove lines whose length l [k1] < lmin, giving k2 segments;
FailCheck(k2, 1) ;
remove lines whose angles θl ≤ θ [k] ≤ θu, giving k3 segments;
FailCheck(k3, 2) ;
Enforce location constraints;
LocationCheck(k3, IL) ;
FailCheck(k4, 3) ;
return angle of the longest remaining line βs [i] or θcs [i] ;

end
// Function to find and identify failure mode

FailCheck(line set k, mode j) ;
if k = {∅} then

fail[i] = true;
failmode = j ;
continue to next i;

end
// Function to evaluate labels

LocationCheck(line set k3, IL) ;
calculate midpoints of all linear segments (xm, ym) ;
if measuring βs then

retain only lines whose midpoints are immediately above the freestream,
IL [xm −∆x, ym] = fs;
return k4 segments ;

else
measuring θcs ;
retain only lines whose midpoints are immersed in the flowfield
IL [xm −∆x, ym] = ff ∧ IL [xm +∆x, ym] = ff ;
return k4 segments

end
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4.6 Results for the Shock and Contact Surface Angle

A partial indication of the usefulness of the extraction technique to capture the

line is to study how finely the angle can be resolved using the Hough transformation.

The transform gird studies in Figure 4.11 and Table 4.1 illustrated sensitivities to

line measurements of the structures in the ROI. It is therefore desired to measure

as fine an angle possible subject to minimizing the failure rate of the detection

algorithm.

Due to the small size of the ROI, the pixel bin spacing ∆r in the Hough

transform space was held constant at 2. The angular resolution ∆θ was varied

between 0.125, 0.25 and 0.5◦. These are listed as cases I, II and III respectively

in Tables 4.2 and 4.3. Edge detection was performed at scale σc = 1 for all grid

resolutions. The detection algorithm developed in the previous sections was applied

to a sequence of 5,000 images for each grid resolution case, with success rates between

98% and 99%. From these tables, the effects of grid resolution have little effect on

the mean µ and standard deviation σstd of the data spread which remain reasonably

constant. The shock angle distribution has a mean µ of approximately 36◦ and

standard deviation σstd close to 1◦, suggestive of a fairly tight grouping over of the

angle value through the test time. The contact surface angle has a mean value of

approximately 31◦ with nearly the same standard deviation of the shock wave angle.

However, the number of discrete bins is too small for any analysis over time at lower

grid resolutions. Case I in Tables 4.2 and 4.3 illustrate that the finest resolution

offers the largest number of discrete angle values, and has the lowest failure rate
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for each angle measurement. Increasing failure rate suggests that over too coarse

a grid, the angles possess a smaller statistical accumulator in the Hough transform

space and the line is missed. Statistical outliers were defined using the 3σstd rule,

and are few.

Table 4.2: Test cases for shock angle βs.

case σc H [∆θ◦,∆r] failures µ (βs)
◦

σ (βs)
◦ outliers ∆θ bins

I 1.0 [0.125, 2] 42 36.026 1.033 6 54
II 1.0 [0.25, 2] 53 36.007 1.031 5 30
III 1.0 [0.5, 2] 69 35.987 1.047 5 16

Table 4.3: Test cases for contact surface angle θcs.

case σc H [∆θ◦,∆r] failures µ (θcs)
◦

σ (θcs)
◦ outliers ∆θ bins

I 1.0 [0.125, 2] 53 30.977 1.010 12 53
II 1.0 [0.25, 2] 64 30.955 1.024 22 30
III 1.0 [0.5, 2] 87 30.919 1.024 35 15

The histograms for the shock angles at the different cases of ∆θ divisions of

the probabilistic transform bins tested are shown in Figures 4.14 and 4.15 for the

shock and contact surface angles respectively. All distributions shown are relatively

normal for both flow structures across all grid resolutions. This preservation of

the distribution over grid refinement demonstrates consistent performance of the

extraction algorithm irrespective of Hough transform resolution. However, the finest

angle resolution is desired for a quantitative analysis. The persistent distribution of

angle values is suggestive of motion patterns grouped tightly about a mean value of

the flow structures through the sequence.
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4.6.1 Analysis of Detected Failure Modes

The total number of failures for shock and contact surface angle measurements

are given for their respective cases show success rates ranging from 98.3% (contact

surface angle coarse grid) to 99.16% (shock wave angle fine grid) over the sequence

of 5,000 frames. A break down of the failures listed in Tables 4.2 and 4.3 are given in

Tables 4.4 and 4.5, respectively. Failures were identified during the classifier portion

of the detection algorithm, and were defined when either lines extracted were not

sufficiently long to represent a flow structure, no lines had angle values within the

expected bounds of the flow structure, or a line segment was not located in the

proper physical place in order to be a shock wave or contact surface. The most

common cause of failure was incorrect location for proper classification.

Failures can always be measured manually when they are few. Detection

failures may be caused by a multitude of factors including the tight solution bounds

imposed by the algorithm, and the potential alignment with a freestream disturbance

(turbulent eddy) in a manner which partially occludes the shock structure. This can

inhibit the edge map from attaining a reasonable representation of the features of

interest.

Table 4.4: Shock failure modes.

case Lines Angles Region Total

I 3 4 35 42
II 6 4 43 53
III 9 6 54 69
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Table 4.5: Contact surface failure modes.

case Lines Angles Region Total

I 1 0 52 53
II 2 0 62 64
III 2 0 85 87

4.6.2 Combining Evidence Across Grids and Convergence

The high success rates for the grid studies do not guarantee a converged or

accurate solution. Due to the size of the structures in the image sequence, a search

across scale space for measurement verification was not possible. The lines quickly

became curves before the smallest edge detection scale σc was doubled, as illustrated

by the raw-primal sketches shown in Figure 4.12. Likewise, a coarse-to-fine pyra-

midal downsampling using the methods of Burt and Adelson [35] provided images

which were too small for non-aliased representation. Either of these methods would

be a typical approach in the computer vision field to verify an observation given

higher resolution images, or if the structure existed in a larger ROI than in the

present case of 88 x 128 pixels.

Without persistence across scale in the traditional sense to verify measure-

ments, an approach varying the Hough transform grid resolution was applied using

the ∆θ bin spacing. Convergence was examined across the two finest grids, cases

I and II for both the shock and contact surface angle. A measure of bin distance

in the histograms in each case was used as a convergence criterion as twice the

accumulator width of ∆θ for case II minus ∆θ for case I,
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� ≤ (2∆θII −∆θI) . (4.9)

This convergence criterion is based on the inherent uncertainty of the accumulator

bin divisions in the Hough transform itself, and by the grid spacing defined in Tables

4.2 and 4.3, � = ±0.375◦.

Results illustrating convergence across Hough grid resolutions for cases I and

II are shown in Figures 4.16 and 4.17, for the shock and contact surface angles re-

spectively. In addition to structure detection failures noted in the previous section,

there are an additional 109 shock angle values which lie outside of the convergence

criterion �, and an additional 229 for the contact surface angle value. Over the se-

quence, these non-converged values represent less than 2.2% and 4.6% of the images

for the shock and shear layer respectively.

To obtain a final measurement, an indirect Bayesian approach was employed

to verify observations at the fine grid resolution. The observation from case I is

accepted, subject to the constraint that the angle is within ±� of of the coarser

case II observation at the same time instant. This means that any failures in either

case I or II cannot be considered a valid observation if a value is not observed at

both scales. Given these measurements, the remaining values from the fine scale

observation are removed if they are statistical outliers, defined by the 3σstd rule.

After removal of failure modes, statistical outliers and non-convergent results, the

successful detection rate for the shock and contact surface angles are nearly 97%

and 94% respectively.
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Figure 4.16: Shock angle convergence across ∆θ spacing.
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Figure 4.17: Contact surface angle convergence across ∆θ spacing.
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Chapter 5: Feature Tracking of Large Scale Interest Points

5.1 Motivation

Segmentation, the extraction of oblique structures, and outer-shock structure

motion of the double-cone sequence have been performed in previous chapters. This

portion of the research focuses on the identification and tracking of the model tip

and the shock intersection point in the sequence using feature identification and

tracking concepts from vision. From inspection of the sequence, the shock inter-

section point motion appears to be one of the dominant unsteady features of the

flowfield. Tracking through feature identification can provide a trajectory and mo-

tion history of the structure throughout the test duration. In addition, the location

of the triple point can provide a location at which the segmented flowfield can be

split and further analyzed for spectral and stochastic relationships of and between

the full, fore, and aft-cone flow regions.

Tracking the model cone tip can provide an estimate of model motion, if

present. Model motion during wind tunnel test time can be crucial in extracting

meaningful conclusions from image or sensor data. Nominally still models in super-

sonic wind tunnel are prone to experiencing large forces due to shock pressure rise,

and vibration may occur. Estimation of vibration or illustrating model stillness,

111



in this particular data set, can help to isolate reasons for the unsteadiness in the

double-cone flowfield. As the model is axisymmetric and mounted on a stiff sting,

any motion caused by vibration will be largest at the tip.

5.2 Feature Concepts

A feature is defined as a point or region in an image which is perceptually

interesting. Also referred to as corners or interest points, these features should be

unique, and account for some definition of saliency so that they may be identified and

potentially tracked through an image sequence. From a vision perspective, a feature

or corner should be unique, well defined, tractable and meaningful. These properties

are well suited for identification and tracking these features between frames. The

concept of saliency, and the interpretation of “meaningful” is largely mathematical

in this sense. False structures can also be detected along with true features. Even

in the case of edge labeling, spurious and unphysical artifacts can be returned in

addition to actual edges in simple image scenes.

The definition of a point of interest or desirable feature can change from ap-

plication to application. For example, in the present work, interest is in the model

tip and the shock intersection point. In other data sets such as boundary layer

images, structures of interest may include a transition region, a separation point,

or the movement of a turbulent structure as it is convected downstream. There is

no unifying theme, physical or mathematical, of these potentially interesting points.

Their only common factor is that they are physically salient, and of interest to their
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respective studies. From an aerodynamics perspective, a feature, in addition to

the above considerations, must be useful, or interesting from a physical standpoint.

Saliency must also account for aerodynamic definitions. The concepts of feature-

ness or cornerness in vision are not immediately reconcilable with those from a fluid

dynamics perspective. Even the most advanced feature identification algorithms

in vision, such as the Scale Invariant Feature Transform, or SIFT [59] can provide

structures that are undesirable for any analysis; may not correspond to anything

of interest or what is expected from a fluid dynamics perspective; are matched by

chance, or at worst, correspond to false structure.

Schlieren images, like ultrasound images, contain structures that appear as

“white noise” or “sand”, particularly when system sensitivity is high. Images can

be dominated by textures that are physically uninteresting, for example the large

freestream regions. Although these correspond to true structure, from a human

standpoint, they are considered “noise”. Many feature or corner detectors rely

implicitly on texture and regions of rapid change in the image through the use of

differential operators. These regions can be the most rapidly changing features in the

data. Most corner or feature detection algorithms may return a physically interesting

point, but they are guaranteed to return most responses from the texture rich regions

which can dominate the images. Responses are highly sensitive to freestream texture

patterns and other “noise”, few of which (if any) are meaningful. Those that are

returned often have no physical basis or objective metric by which they can describe

a flow feature, other than human evaluation. Uniqueness is difficult to define, as

mathematical scores of the same feature can vary drastically within the sequence.
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5.2.1 Scale in Features

Feature or interest point detection schemes in vision are heavily reliant on

the concept of scale. Persistence through, and existence at, scale as discussed in

previous chapters, is of paramount importance in vision. This is particularly true

in feature detection algorithms where search across scales is common. For example,

an integration scale results from the convolution of an image with a Gaussian kernel

with scale parameter σ. The convolution of an image with a Gaussian derivative

provides a differentiation scale.

Scale space filtering of a signal was first proposed by Witkin [60] as a means

of examining and inferring structure at multiple scales. Through successive levels of

signal smoothing, the number of signal features, for example local extrema or zero-

crossings, will gradually diminish. At a large level of smoothing (large scale), only

true features of the signal will remain. Those due to noise will not persist through

increased smoothing. This can be applied to employ a coarse to fine search of such

features by identifying structure at a coarse scale (large amount of smoothing), and

searching through a finer scale (less smoothing) to update location. This can avoid

the marking of noise and spurious signal properties as salient points, which can

be indistinguishable from true features at fine or unsmoothed scale observations.

Mathematically, this is represented by

featureσk
∈
�
featureσk+1

−∆ : featureσk+1
+∆

�
, (5.1)
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which states that a feature at a fine level with scale parameter σk is located within

some distance ∆ of the feature at the next coarsest level of the scale parameter σk+1.

Yuille and Poggio [61] showed that of all the smoothing filters, only the Gaus-

sian avoids the creations of new zero crossings with increasing scale parameter σ

in one and two dimensions. The Gaussian kernel and its family of derivatives have

been singled out as the only possible functions that satisfy the requirements of a

scale space representation of an image or signal [62]. The Gaussian functions have

the ideal properties of non causality, semi grouping, separability and ensures that

the number of zero-crossings and values of extrema are strictly decreasing with in-

creasing scale parameter σ, properties which make them ideal and unique for scale

space implementation of vision algorithms [34].

A one dimensional signal and its scale space representation are show in Figure

5.1 from reference [62]. The original signal is show below. Scale is calculated by

convolution of the signal with a Gaussian. The scale space description of the signal

is computed by finding the zero-crossings of the second derivative of the signal at

each scale. The ordinate is indexed to the original signal length, the abscissa is scale

parameter σ. The scale space is binary; a black mark represents a zero crossing at

the corresponding scale. The tree structure provides a hierarchical description of

the inflection points of the signal at all scales simultaneously. Through successive

smoothing operations, fine features such as those due to noise gradually disappear,

while the more dominant points are retained.
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Figure 5.1: A one-dimensional signal and its scale space representation [62].

5.2.2 Tracking

Tracking is closely coupled to feature definition. The tracking problem involves

the definition of objects of features through modeling in one or more frames in a

sequence. Objects are then matched by the application of an appropriate tracking

algorithm. Matching can be achieved through an optimal criterion, taking advantage

of the sequence; or in cases where this is not possible, features can be tracked by

searching for a unique definition in each frame to circumvent the correspondence

problem. The latter approach is used in this research. Tracking may be complicated

by many factors including feature ambiguity, noise, spatial or temporal nonuniform

illumination, object or feature occlusion and the entry and exit of objects from the

imaging plane during the sequence. Constraints are often employed to simplify the

problems, which may be probabilistic or deterministic. Knowledge of the scene is

crucial and should be implemented if available. For example, a known direction of

object motion or a constant velocity should be included in the search algorithm. A

recent review of tracking methods and strategies is presented in [63].
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5.2.3 Specific Challenges in Schlieren Data

A challenge for feature identification in this particular data sequence is the

nonuniform laser pulse illumination. The laser pulsed at 25 ns was desired from a

sensitivity standpoint and provided nearly instantaneous image acquisition at each

frame. Intensity can vary up to 20% between pulses, typical of pulsed laser light

sources. This can make the structural representation of objects or regions in the

sequence inconsistent in an intensity-based representation. Laser speckle can also

compete with true structure and noise. Another difficulty is the framing rate of the

camera itself. The camera was operated at the maximum framing rate of 10 kHz,

however there are multiple time scales existing simultaneously in the flowfield, most

of which are unknown. This means that once a general interest point is identified

(presuming it can be), if the structure is moving at a time scale greater than the

Nyquist frequency, it will have exited the image plane long before the next frame

is acquired, and a new set of features will have entered the frame. Therefore any

feature match between frames within the freestream region moving at the freestream

velocity would be rejected on a physical basis.

The problem is complicated by the three-dimensional optical path of integra-

tion. The wall boundary layers at the imaging station windows can cause structure

occlusion, and allow for the possibility of the inclusion of numerous additional time

scales to the freestream region. Theses are reasons why tracking cannot be per-

formed on the finer flow structures in the sequence. The focus remains on the shock

intersection point and the model tip.
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5.3 Grayscale Features

Many feature detectors operate directly on the image, i.e. they are intensity-

based. Harris and Stephens [64] proposed a corner detector that accounts for rapid

spatial changes within the image through the identification of localized gradients.

With tracking as a motivation, they stated that any features should be unique

and invariant to translation and rotation. The Harris matrix is defined by the

convolution of a two-dimensional Gaussian kernel with the structure tensor (Hessian)

of the image in a windowed region, given in Equation 5.2. The Harris matrix

incorporates scale through Gaussian convolution and allows for inclusion of scale

with the differential operator. The Harris matrix H is a function of both position

and scale(s):

H = g (σI , x, y)�




I2
x

IxIy

IyIx I2
y



 , (5.2)

where subscripts denote partial differentiations with respect to the image I. The

Gaussian kernel g is a function of both x, y and scale parameter σI .

Corner responses are computed from an approximation to the eigenvalues λ of

the Harris matrix in Equation 5.2 through the determinant and trace

R = det (H)− ktrace (H)2 ≈ R (λ) , (5.3)
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where k is an empirical constant, typically between 0.04 and 0.15. The response R

is positive a at corner or a region of rapid change in two directions, a negative value

indicates an edge or a region of change in one direction, and a flat region of near

constant intensity gives a small value, with little change in either direction. These

changes correspond to the hypothetical eigenvalues of H as two large eigenvalues,

one small and one large, and two small eigenvalues, respectively. The approximation

of the eigenvalues in Equation 5.3 ensures a degree of rotational and translational in-

variance under constant illumination through a sequence. Once the corner responses

from Equation 5.3 have been determined, scores are retained only if they are a local

maxima within an 8-neighbored region using non-maximal suppression. The result-

ing responses may then be thresholded or statistically ranked by discarding scores

smaller than a specified value.

Shi and Tomasi [65] proposed a modification to corner detection, where the

eigenvalues in Equation 5.2 are solved for directly. The model was based on building

a tracking algorithm that by definition, detected “good features.” The rotation and

translation of the structure tensor is monitored during tracking. Affine feature

deformation is tracked in consecutive frames; the feature is discarded if it becomes

too degraded. A threshold is employed on the minimum allowed eigenvalues directly.

The Features from Accelerated Segment Testing (FAST) [66, 67] was developed for

speed in real time tracking applications. This method constructs a Bresenham circle

around each pixel and tests for dissimilarity at several points. Scale is implicit based

on the circle radius, and hard thresholding is employed for each image based on the

dissimilarity metric from the radius test.
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5.3.1 Corner Detection Evaluation

Harris corner detection was performed on the double-cone sequence using an

integration scale parameter of σI = 1. All corner detection was performed directly on

the raw images. Reasons for not denoising the data have been discussed previously

in Chapter 1. The Hessian was calculated using 3-tap central difference operators

which eliminated the use of a differentiation scale, and provided the finest level of

localization. The trace in equation 5.3 was weighted with k = 0.04.

Thresholding or ranking was not employed, due to the temporally nonuniform

illumination through the sequence. Only 8-neighbored non-maximal suppression is

used, responses above zero were kept. As response signatures and their distributions

may change throughout the sequence, it is unwise to employ a threshold at this

point. This is the reason why the Shi-Tomasi method is not shown, as a hard value

of min (λ1,λ2) is required in the operation. A similar argument holds for FAST.

Both methods were attempted and gave similar results, which are not shown.

Figure 5.2 shows the Harris corners in red overlaid on image I (to). 2,502

corners were found, largely in the texture dominated freestream region. The corners

are clustered due to the small interrogation window used in the Hessian. As a

consequence, features are well localized but numerous. Features identified on the

model body are of little use, and could be discarded by employing the labeling

scheme from the previous chapters. This result is typical of images in the sequence.

Several thousand features are returned, few of which seem particularly meaningful,

and are highly responsive to freestream texture patterns and other “noise”.
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Figure 5.2: Image I (to) showing all Harris corner responses.

5.3.2 Performance in The Regions of Interest

Figure 5.3 shows typical Harris responses (black ◦ surrounding white ∗ ) in the

cone tip ROI. Images are shown at to and (to + 1055), times selected to illustrate

characteristic differences in detection results. The cone tip ROI is 41 x 41 pixels,

with 44 and 38 interest points found in Figures 5.3a and 5.3b respectively. The

detector is sensitive to noise, as expected. The model tip gives a corner response,

and can therefore be considered a good detection method. However, there are far

too many responses, and there is no physical reasoning in the detection algorithm on

why the cone tip has been detected, and more importantly, a means of isolating the

response point of the actual cone tip. This last item is the problem of localization.

Harris responses in the shock intersection ROI shown in Figure 5.4 corresponds

to the time instances in Figure 5.3. The shock intersection ROI is 51 x 51 pixels.
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(a) I (to), R (λ) > 0, 44 corners (b) I (to + 1055), R (λ) > 0, 38 corners

Figure 5.3: Harris corner responses in the model tip ROI shown in �. ROI is 41 x
41 pixels. Responses are spurious, although the cone tip is identified.

Sensitivity to “noise” or freestream structure is the most obvious attribute of the

detector performance in the vicinity of the shock intersection. It can be argued that

the shock intersection point has been reasonably identified in image to in Figure

5.4a by the Harris detector among the 79 feature points found. However, in Figure

5.4b, with 74 features, the intersection structure is difficult to determine even by

the human eye, and does not appear to have been identified. Note that aside from

the fact of considerable motion of the intersection structure, the triple point itself

seems to take on a different representation. The separation shock angle seems to

have steepened in Figure 5.4b. The Harris operator fails to identify the intersect

point. Furthermore, it appears that tracking of the intersect point may require a

larger region than a small windowed operator can account for. A larger scale must

be accounted for when defining the intersection point.

The following can be concluded from Figure 5.3: the model tip is a true

physical corner and responds as such using the Harris operator, and its identification
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(a) I (to), R (λ) > 0, 79 corners. (b) I (to + 1055), R (λ) > 0, 75 corners.

Figure 5.4: Harris corner responses in the shock intersection ROI shown in �. ROI
is 51 x 51 pixels. Responses are spurious and the intersect point is not
always captured.

is largely a question of both a hard definition and localization. The cone tip should

be identified at a larger scale by an alternate algorithm, that should account for

some physical measure of saliency, and localized by a Harris corner point as a final

step to provide the finest scale assignment. This larger scale algorithm should more

importantly include some form of logic as to why the returned point can be defined

as the model tip. Regarding the performance of the Harris feature detector for

the shock intersection point, as shown in Figure 5.4 the desired interest point is

not found, or well defined. More importantly, a method which accounts for the

fact the the shock intersection is only meaningful when examining a large region.

A larger scale must be accounted for when defining this feature, and the Harris

method cannot be applied for a final localization step. Finally, the Harris detector

incorporates no measure of physical saliency that an ideal detection algorithm for

these features to account for.
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5.4 Curvature as a Feature

As intensity-based feature detectors have proven problematic for application

to schlieren data, at least as a general method, attention is turned to saliency mea-

sures based on boundary descriptors. Direct comparison of edges are non-unique;

there is no one-to-one correspondence from any edge point to another in monocular

vision. This is due to an ambiguous match from a point on any one line to any

on the next in from frame to frame caused by the aperture problem. Therefore,

edge point matching is by definition intractable and under-constrained. However,

boundary descriptors built from edge representations can provide unique and iso-

lated features. Given that a contour has been extracted from the image, for example

from segmentation or edge detection, salient features describing the shape can be

defined in terms of contour properties. Changes in curvature on a silhouette or

contour provide a set of salient points or knot points, that can be used to describe

shape. These salient points are localized boundary descriptors.

Outer-shock contours have been isolated in the previous chapters using edge

maps and boundary shot detection. The use of a contour property for a feature

detection scheme in this case is beneficial due to localization and saliency. Given

that the outer contour is a reasonable representation of the complete outer-shock

structure, both the model tip and the triple point must be defined in terms of, and

exist on this contour. The curvature of this contour can be used to uniquely define

the structures of interest on a physical basis, namely the signed extrema.
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Given a parameterized curve in terms of (x (t) , y (t)), the analytical expression

of curvature is defined as the rate at which the tangent vector slope which traverses

the curve changes. Analytical curvature κ is given by

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

. (5.4)

Positive curvature is defined when the tangent vector traversing the outside of a

curve moves clockwise. The curvature is negative when the tangent vector sweeps

in the counter- clockwise direction. Extrema in curvature, its changes, and inflection

points measured from the second derivative can all be used to describe the features

of a contour. Therefore, In addition to sharp corners, features can also be identified

by curvature properties.

Asada and Brady [68] proposed that curvature changes consists of two funda-

mental primitives, a corner and a smooth join. Additional primitives were defined

as compound representations of the first two, consisting of an end, a crank and a

bump (or dent). Analytical forms of convolutions of curvature with a Gaussian and

it derivatives were performed. These representations were computed at multiple

scales to form the curvature primal sketch, consisting of curvature profiles and their

derivatives. The resulting tree structure was searched, and instances of primitives

in the primal sketch were assigned a descriptor based on their behavior through the

scale space, or tree.
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5.4.1 Curvature Evolution and Scale Space

Mokhtarian and Mackworth [69,70] proposed a method of curve representation

using the zero-crossings of contour curvature at multiple scales for descriptions of,

and matching between, curves. Gaussian convolution was used to compute curvature

and its derivatives of the discrete parameterized coordinates. This gave representa-

tions of a contour and its curvature through multiple scales. Successive convolutions

are termed evolutions of the contour. Evolutions were used to construct the Curva-

ture Scale Space (CSS) image, given in Equation 5.5

κ (s, σ) = 0. (5.5)

this a binary image tree structure which constitutes the number of zero-crossing

of curvature along a contour at multiple scales (vector of σ), providing a view of

contour inflection points at all scales simultaneously, a direct analogy to scale space

filtering shown in Figure 5.1. A zero-crossing (feature) can be found at a large scale

where noise has been eliminated. Localization through a coarse to fine search is

accomplished by searching the neighborhood near the zero-crossing at successively

smaller scales using Equation 5.1.

5.4.2 The Curvature Scale Space Corner Detector

Mokhtarian and Suomela [71] developed a CSS-based corner detector. Corner

points were identified at a large scale, where noise is assured to be removed. Since
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locations of the corner points may not be well localized at large scales, they were

updated by searching from a coarse to fine scale in the neighborhood of the corner

on the previous scale, using Equation 5.1. The true corners are determined as local

extrema in absolute curvature at the largest scale. In addition to representing a

true corner, extrema in curvature can be due to noise and rounded peaks caused

by rounded corners. Mokhtarian and Suomela state that noise and rounded corners

should not be considered; they are removed through the introduction of a threshold

ensuring that only sharp corners remain. Local extrema are defined as having values

twice as large as their neighboring local minimum. A rounded corner will have a

rounded peak in local curvature, and therefore be discarded. The detector was

later refined [72] to account for relative scales for the smoothing of long and short

contours, and for smoothing of long contour curvature. Both of these steps increased

the detection rate of true corners while decreasing the false positive detections. This

highlights the fact that it is difficult to select a proper scale for a general class of

applications.

He and Yung [56,57] considered curvature at a single small scale and removed

corners based on an adaptive threshold. Additional corners were removed subject

to an angle threshold based on a dynamic region of support surrounding corner

candidates. By design, rounded corners were removed. A true scale space view

was not taken advantage of due to the use of a single assumed scale. Zhang et al.

[73] proposed a CSS-based corner detector that examined extrema in the curvature

product at several scales. The need from coarse to fine tracking is claimed to be

eliminated, although the assumption is made that true features, exclusive of noise,
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are included in the small scale calculation. A global threshold was used. Zhang

et al. [74] used contour evolution directly to calculate locations of corners. The

difference in evolution was defined as the difference between two evolved contours

computed with convolutions with Gaussians of different scale, or the Difference of

Gaussians filter (DoG). Evolution distance was noted to be a local maximum at true

corner locations. The use of two scales int the DoG filter superseded the coarse to

fine tracking step. It was shown that extrema in the norm of the DoG evolution

distance were equivalent to those in curvature. The definition of curvature used did

not take into account the contour shrinking during the evolution process.

Problems in reconciling these measures of cornerness include: only a well de-

fined (sharp) corner will have a distinct peak in local curvature, and a thresholding

criterion can arbitrarily discard weak or rounded corners which may correspond to

true physical events. Too large a threshold (sensitive to smoothing scale) can re-

move true events on a shock contour, while one that is too small may return false

positives. Most importantly, there is again the lack of an objective metric for which

to define a physically salient point. These problems can be overcome with the in-

troduction of a knowledge base while taking advantage of the fact that significant

events on shock contours have curvature responses that may be weak.

5.5 Contour Extraction and Processing

Bottom-up image understanding requires image segmentation to reduce image

content. Here, image content is reduced to edge maps, from which outer-shock
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structures are isolated. Given that a reasonable representation of the outer-shock

structure can be isolated, salient features describing the shape can be defined as

properties of the contour. The use of a contour property for a feature detection

scheme is beneficial due to inherent localization and saliency. Both the model tip

and the triple point must be defined by, and exist on, this contour; these features

are automatically localized. The contour curvature can be used to uniquely define

the structures of interest on a physical basis, namely the signed extrema.

5.5.1 Contour and Curvature Evolution

Application of a CSS-based method requires that the outer-shock be repre-

sented as a single unbroken contour. Contour evolution and curvature calculation is

performed as in Mokhtarian’s work [69–71] discussed in the previous section. Scale

selection is crucial, and can often only be determined by trial and error through in-

spection. The method for the extraction and isolation of the continuous outer-shock

contour has been discussed in the previous chapter. The Canny edge detection al-

gorithm [15] was used. A portion of the corner detection algorithm code developed

by He and Yung [56,57] was employed to extract and label contours given the edge

image. The outer-shock contour was then isolated. This is by no means the only

method by which image contours can be retrieved. Alternative methods such as

level sets or snakes [75] may also be used for contour extraction.

Once an image has been reduced to a single contour, we assumed that this

contour represents the outer-shock. This is justified since the structure is represented
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by the strongest gradients in the image and therefore the most likely to be detected.

This was confirmed by inspecting sample results. The isolated outer-shock contours

are reasonable but “noisy” representations of true structure. This is largely due to

the scale of the original images (resolution), but partially due to the low dynamic

range and the high sensitivity at which they were acquired. The discrete curvature

will be noisy at a small scale, dominated by contour noise rather than true features.

Noise is inherent on discrete curves. At the level of single pixel inspection, lines may

only be formed by 8-neighbored movements (chessboard distance) from one pixel to

the next. The only pure discrete lines in an image are oriented at 0, 45 and 90◦ etc.

For these reasons, it is assumed that the dominant features of the shock contour are

retained at large scale.

The discrete curve or contour in an image is represented by Γo in Equation 5.6,

where x and y are the parameterized image coordinates along the discrete arclength

s of length N .

Γo (s) = {x (s) , y (s)}, s ∈ [1, ..., N ] . (5.6)

The contour Γo from Equation 5.6 is successively evolved at multiple scales σ

through Gaussian convolutions of increasing scale with the parameterized functions.

During contour evolution, the curve is simplified with increasing scale (as in scale

space filtering) during this evolution and the shape is simplified. The evolution is

given in Equation 5.7 below, where g is the Gaussian. Although the curve remains

integer index, the evolved curve is mapped from Z �→ R:
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Γ (s, σ) = g (s, σ)� Γo (s)

= {g (s, σ)� x (s) , g (s, σ)� y (s)}.
(5.7)

Scale parameters σ from coarse to fine of 6, 4, 2 and 1.5 were used for evolution.

During this process, the contour shrinks although s remains discrete and the total

integer arclength N remains constant.

The discrete curvature is computed directly from its continuous definition in

Equation 5.4 using the evolved contours,

κ (s, σ) =
Ẋ (s, σ) Ÿ (s, σ)− Ẏ (s, σ) Ẍ (s, σ)

�
Ẋ (s, σ)2 + Ẏ (s, σ)2

� 3
2

. (5.8)

Where the variables X denotes a Gaussian smoothing at scale σ ha been applied to

the image indexed coordinates x, y. As differentiation and convolution are commu-

tative, the smoothed parameters and their derivatives are calculated as follows

X (s, σ) = x (s)� g (s, σ) (5.9)

Ẋ (s, σ) = x (s)� gs (s, σ) (5.10)

Ẍ (s, σ) = x (s)� gss (s, σ) , (5.11)

and similarly for y and Y . All Gaussian convolution kernels are constructed directly

from their analytical definitions given by
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g (s, σ) =
1√
2πσ

e
− s2

2σ2 (5.12)

gs (s, σ) =
∂g

∂s
=

−s√
2πσ3

e
− s2

2σ2 (5.13)

gss (s, σ) =
∂2g

∂s2
=

1√
2πσ3

�
s2

σ2
− 1

�
e
− s2

2σ2 . (5.14)

5.5.2 Kernel Construction and Convolution

For accurate Gaussian kernel construction, all functions in Equation 5.14 were

sampled at ±6σ and renormalized. This was done to minimize truncation errors in

the construction of a finite representation of a function with infinite support and to

maintain scale space behavior in the discrete analog case. Due to the use of large

kernel convolutions, dictated by large scale parameters σ, potential edge effects from

padding the contours prior to convolution was a concern. All contours are open in

the cases of the present data set and will be for most schlieren data. Circular

convolution is unwise in this case. Zero-padding and reflected boundary conditions

introduced large artifacts in the curvature scale space. Boundary conditions were

therefore copied on either end of the X and Y coordinates to match the extent of

the kernel. This method yielded results with minimum effects of false artifacts near

the edges relative to the order of the extrema.

132



5.6 Algorithm Design

Construction of a feature detector for a specific application requires implemen-

tation of expert knowledge to construct a formal knowledge base. This incorporates

descriptions of the feature into rules to construct a definition that ensures proper

detection and localization; providing machine instructions that implement visual

observations and physical laws. This should also negate or minimize false detections

and maximize the probability of true detections. Given the computed curvature at

multiple scales, the data must be searched for instances which correspond to relevant

features. Whereas most CSS-based corner detectors consider absolute curvature, the

retention of signed curvature can be advantageous in building a feature definition

to search for salient regions on a shock contour.

Figure 5.5 displays a representative isolated outer contour from the sequence

showing locations of the model tip and shock intersection along with curvature no-

tations and the locations of contour endpoints. Although inspection of the contours

extracted from the sequence shows that they approximate the outer-shock structure

well in most instances, this may not always be the case. Contour noise may be

significant, or a freestream schliere in the optical path may be aligned such that

false structures are generated in the contour image. This can manifest itself as

protrusions in the aft-cone bow shock, or a shock wave which appears to turn into

itself, due to strong, but unphysical gradients in the image, causing sharp corners

on the contour other than the model tip. These factors must be considered when

building the detector. It is assumed that the extracted contours are reasonable rep-
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Figure 5.5: Isolated outer-shock contour showing feature locations and sign conven-
tions.

resentations of the outer-shock structure, and that significant departures from the

ideal can be recognized with a carefully constructed knowledge base.

From a tracking perspective, it is assumed that both the model tip and the

shock intersection region occur at most once in each frame, and can be well defined.

Additionally, the assumption is made that the motion of both the model tip and

shock intersection point is planar and translational. The small motion assumption

is imposed; the motion of both features are smooth and the distance moved between

frames is small. Finally, observations of an event should be similar. This means that

observations that seem like outliers in a final motion distribution have a physical

basis for being re-examined.
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5.6.1 Large Scale Curvature as a Canonical Descriptor

Figures 5.6 and 5.7 show curvature of the continuous outer-shock contours

computed at the largest and smallest scales, σ of 6 and 1.5 for images I (to) and

I (to + 2158), illustrating typical variations of the shock structure through the se-

quence. Curvature at small scale (σ = 1.5) is represented by the dashed line in Fig-

ures 5.6 and 5.7; both instances show significant noise. In Figure 5.6 (corresponding

to the contour shown in Figure 5.5) at small scale, two significant positive peaks and

a negative peak are discernible among the salient structures. At time (to + 2158) in

Figure 5.7, the dominant structure at small scale is the negative peak. Significant

zero-crossings are evident for both time instances at small scale. At the larger scale

of σ = 6 (the solid line), the number of zero-crossings has been reduced significantly

and much of the contour “noise” and fine structure has been removed for both time

instances. Most importantly, at both time instances for increased scale, there are

only two dominant features remaining in curvature: a negative peak at s ≈ 45, and

a small positive rounded structure near s ≈ 240. The large scale view allows for a

consistent and general description of the contours that is not possible at the small

scale. This provides a canonical view of all contours in terms of two events: a large

negative curvature structure, and a local (possibly weak) maximum. These large

scale events correspond directly to the features of interest the shock: the model tip

and the shock intersection.
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Figure 5.6: Curvature κ for Ic (to) at two scales.
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Figure 5.7: Curvature κ for Ic (to + 2158) at two scales.

5.6.2 Model Tip Identification

From Figure 5.5, the cone model tip can be represented by the most negative

value of curvature. Furthermore, the value of curvature at the model tip is the largest
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curvature in the absolute sense. Figures 5.6 and 5.7 illustrate a sharp negative peak

at the large and small scale curvatures at an arclength position s ≈ 45. This is

the curvature primitive for a sharp corner (cusp) made by an acute physical angle

(obtuse angle swept by the tangent vector). The primitive persists through scale,

maintaining its general appearance, and both of values of curvature at this point are

similar at both scales at each time instance. The cone tip is a solid corner, its rep-

resentation and curvature primitive will not change during the sequence aside from

potential contour noise. Since the aft-cone can be oriented at most vertically, the

cone tip forms the most acute angle in the image; its curvature must be the largest

absolute curvature on the shock contour, and negative. Any additional sharp cusps

protruding from the shock contour would be due to poor contour representation and

indicate false structure. From observation of Figure 5.5, the cone tip must occur

within, say the first N1 points of the contour. This provides further localization

and minimizes computational time for tracking. Although a sharp corner has an

easily identifiable signature in curvature and would survive arbitrary thresholding

selection, this method lacks a meaningful and searchable definition of the model tip.

The following knowledge is therefore incorporated to construct a physical definition

1 The model tip occurs at most once in each image; ∃! ptip

2 The approximate cone tip location is known; ptip ∈ [Γ (1) ,Γ (N1)]

3 The model tip is physically acute; κtip must be negative.

4 The tip must be the only acute angle on the contour at large scale: max (|κ|) =

|κtip|.
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The above statements form the knowledge base; this allows the location of model tip

stip to be defined at large scale in Equation 5.15, which uniquely defines the feature.

ptip (s) = argmin
s

(κ (s, σMAX)) : s ∈ [Γ (1)Γ (N1)] (5.15)

5.6.2.1 Localization

Search from coarse to fine scale may arrive at final incorrect locations due

to local peaks created by contour noise. This is a trade-off between accuracy and

localization; the more accurate the scale of final assignment, the more susceptible

that assignment is to local peaks created by noise. This uncertainty principal is

common in many vision algorithms. Locations of curvature extrema are inherently

based on some region of support on either side of the defined corner, this is true

from the mathematical definition and explicit through the definition of the Gaussian

functions used in convolution. Therefore some error, which may be difficult to

quantify, will always be inherent at the scale of pixel assignment to a feature. In

order to minimize the effect, an “attractor” feature is compared to that returned by

the CSS method.

Figures 5.3a and 5.3b illustrate that the Harris response detected the cone tip

well. Although it did not account for a definition and feature values were numerous,

it can be used as a final localization step. This is because the true feature has been

uniquely defined with a knowledge base, narrowing down the potential candidates.

The model tip is a true physical corner persisting through illumination changes and
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is well suited for a final localization step as it detected well against the many and

spurious responses. The final CSS model tip point is therefore updated to the closest

Harris response in the vicinity of the model tip in the raw image using Equation

5.16

ptip = argmin
j

(�R (xj, yj)− Γo (smin) �) : (xj, yj) ∈ ROI, (5.16)

which gives the final location of the model tip ptip at time t.

5.6.2.2 Detection Algorithm

The procedure to identify and localize the cone tip for the successfully isolated

shock contours is given in Algorithm 3. Both the raw image and the isolated contour

are required. Curvature is calculated at four scales using σ values of 6, 4, 2 and

1.5 for Equation 5.8. The minimum value of curvature within the first N1 = 100

arclength points along the contour, and the location and curvature value of the model

tip smin and κmin are identified at large scale using Equation 5.15. Localization is

accomplished by a coarse to fine search across scale using Equation 5.1, searching

within a distance ∆ = ±5 arclength points on either side of the previous minimum.

The Harris response closest to the minimum identified curvature is then returned as

the final model tip. In the event that Equation 5.16 returns multiple solutions, this

instance is recorded and marked for visual inspection.
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Algorithm 3: Identifying the cone tip for known contours.
Input: I raw image

Ic isolated outer contour image
IMAX descending scale parameters σ

Output: p (t)
tip
: model tip coordinates at time t

calculate Harris response R for I in ROI;
// calculate curvature at all scales

for i = 1 : IMAX do
smooth contours;
calculate curvature κ (s, σ [i]);

end
// initialize the minimum

smin = argmin
s

(κ (s, σ1)) : s ∈ [1, ..., N1] ;

// localize the result from coarse to fine search

for i = 2 : IMAX do
smin = argmin

s

(κ (s, σ [i])) : s ∈ [smin [i− 1]−∆, smin [i− 1] +∆] ;

end
κmin = κ (smin, σ [IMAX]);
// localize to the closest Harris response

ptip = argmin
j

(�R (xj, yj)− smin�) : (xj, yj) ∈ ROI;

// is argmin multivalued?

if j > 1 then
mark the image for manual evaluation;

end
return ptip

Three of the four contour evolution stages are illustrated for images I (to) and

I (to + 1678) in Figure 5.8 at scales 6, 4 and 1.5 with decreasing scale from left to

right. Contours are evolving from right to left. The initial contour Γo extracted from

the edge map is labeled with a �, each evolved contour is labeled ◦. The respective

minimums detected at each stage in the algorithm are denoted with a solid marker,

corresponding to the coordinate on the edge and its contour in R, illustrating the

coarse to fine search through CSS in the detection algorithm. In Figures 5.8a,

5.8b, and 5.8c, for I (to), the location of the minimum curvature indexed to the
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initial contour does not change through evolution. At time (to + 1678) in Figures

5.8d, 5.8e, and 5.8f, the initial contour is noisy, but the curve simplification through

contour evolution is able to capture the structure well at large scale, and the location

of the minimum changes. This illustrates both the benefits of a large scale canonical

view, and the importance of the final localization step.

5.6.3 Shock Intersection Identification

In Figures 5.6 and 5.7, the shock intersection is represented by a small rounded

peak near s ≈ 240 at the large scale; although the peak at time (to + 2158) is nearly

half the value at both scales as it was at to. In Figure 5.6, a positive peak is evident

at small scale, surrounded by smaller structure or noise. At a larger scale, the peak

has become clarified, seeming to take on a global maximum. To contrast, at the

large scale in Figure 5.7, the peak positive value is not evident at the small scale.

The intersection angle is more physically obtuse, and is dominated by fine detail and

noise at small scale. At a larger scale, the fine detail and noise has been removed,

revealing the dominant structure. The increased aperture width of the Gaussian

at larger scale allows the primitive of the more obtuse shock angle to be captured

accurately. Although it persists through scale, the intersection point is difficult to

spot at small scale. In both instances, the intersect curvature has the opposite sign

and is much smaller in absolute value than that of the model tip.
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5.6.3.1 Intersection Curvature Primitives

The region of the shock intersection, unlike the model tip, changes during

the sequence and may take on multiple appearances, many of which have different

curvature primitives. The intersection may appear as a sharp corner, a rounded

corner, or a smooth join. During the sequence, the bow shock angle is observed to

pitch backward. This is due to the angle made by the intersecting shocks changing

due to changes in the orientation of the aft-cone bow shock, which has an at most

vertical orientation near the intersection (further inclination of the bow shock is not

physically possible). Variants of the shock intersection representation are illustrated

in Figure 5.9; a “typical” representation is shown in addition to a representation

which occurs when the bow shock angle is pitched back, and a a nearly vertical

inclination of the bow shock is shown. These are referred to here as a typical, a

smooth join and a sharp curvature primitives due to their corresponding contour

shapes in Figure 5.10. Curvature primitives for the three types are shown in Figure

5.11; large and small scales curvatures κ are plotted. A value for a typical shock

intersect primitive is shown in Figure 5.11a (corresponding to the contour in Figure

5.10a), and has values at large and small scales of κ 0.12 and 0.4 respectively. The

smooth join curvature in Figure 5.11b (corresponding to the contour in Figure 5.10b)

is less than half that of the typical value, and on the level of contour noise at large

scale; such a “feature” would typically be discarded by a CSS-based corner detector.

The sharp corner contour in Figure 5.10c has curvature scales shown in Figure 5.11c.

The value of κ is nearly three times the typical value, and in this case would be
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detected through CSS-based methods. However, all potential representations must

be accounted for when searching for the shock intersection point.

(a) Typical primitive I (to). (b) Smooth join I (to + 3276). (c) Sharp corner I (to + 1678).

Figure 5.9: Shock intersection primitive structures in the raw image.

(a) Typical primitive Ic (to). (b) Smooth join
Ic (to + 3276).

(c) Sharp corner
Ic (to + 1678).

Figure 5.10: Shock intersection primitive structures in the contour image.

Many CSS-based corner detectors would likely reject all but the model tip

during the detection phase through an arbitrary threshold. The sharp corner is the

only feature with a strong curvature signature. The typical intersect primitive and

the smooth join (κ < 0.02) would be classified as weak features and likely be purged

from the candidate list. While not strong corners, they correspond to true physical

events. Lowering the threshold would cause false positive detections. The CSS

algorithm must be modified to allow for these primitives. Thresholding is therefore
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(b) Smooth join κ I (to + 3276).
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(c) Sharp corner κ I (to + 1678).

Figure 5.11: Shock intersection curvature primitives.

avoided, as a rounded corner or smooth join may be weak. All primitives in Figure

5.11, while potentially weak, appear to take on at least a local maximum in curvature

at large scale. Viewing the intersect in this manner as opposed to a threshold allows

rounded corners and smooth joins a definition insensitive to a threshold based on a

physical event.

At a large scale, the shock intersection region can be represented by the largest

positive curvature on the contour, since the angle must be physically obtuse (acute

with respect to motion of the contour tangent). The intersect point occurs within

the first N2 > N1 points from inspection of Figure 5.5. The curvature must also be

145



less than the absolute value of the model tip to account for potential false structure.

The following rules and observations can therefore constitute the knowledge base:

1 The intersection occurs at most once in each image; ∃! pint

2 The approximate intersection location is known; pint ∈ [Γ (1) ,Γ (N2 > N1)]

3 The intersection may take on multiple primitive curvatures, all of which must

be physically obtuse and therefore have positive curvature.

4 The intersection must be the only obtuse angle at large scale; κint = max (κ)

5 As the bow shock is inclined at most vertically, it is physically impossible

for the intersection curvature to be larger than that of the absolute value

of tip curvature, which provides an upper bound indicating false structure;

κint < |κtip|.

The above knowledge base allows the shock intersection to be uniquely defined at

large scale by Equation 5.17.

pint (s) = argmax
s

(κ (s, σMAX)) : s ∈ [Γ (1)Γ (N2)] (5.17)

The shock intersection is defined and localized using the CSS method to de-

termine the value and location of the maximum curvature and location κmax and

smax, and localized using the same methods as identifying the model tip. At the

finest scale, the value of curvature must be checked against a physically impossible

representation of the contour image. This is asserted by evaluating
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|κmax| < |κmin|. (5.18)

If the above expression is true, a failure is noted and the time instance is recorded for

manual evaluation. An example of an impossible contour representation is shown in

Figure 5.12a where the intersection is represented by a loop structure. This image

was identified by the algorithm due to a curvature which violated Equation 5.18,

and shown in Figure 5.12b.

(a) Contour Ic (to + 2226)
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(b) κ (σ, s) I (to + 2226)

Figure 5.12: Unphysical intersection representation violating predicate logic.

5.6.3.2 Localization

Instances of significant feature drift for the shock intersection were observed

viewing the algorithm progress, due to contour noise and complex primitives. Due

to nonuniform illumination and more importantly the changing primitive of the

intersect structure, a Harris response (shown in Figure 5.4) can not be used as a

final attractor to correct the intersection for feature drift through scale, as it is not a

147



true physical corner. Contour evolution distance, which is maximal at corners, was

therefore used as a localization step. Evolution is calculated between two large scales

σ2 > σ1, using a similar method to that in [74] to ensure that any distance moved

by a point on the arclength is not due to local noise, this can be used to guarantee

that structure motion as opposed to noise evolution is measured. Evolution distance

is given by Equation 5.19

D (s, σ2, σ1) = �∆Γ� =
�

(X (s, σ2)−X (s, σ1))
2 + (Y (s, σ2)− Y (s, σ1))

2
, (5.19)

which is the absolute distanced traveled by a point on the arclength during evolution.

This method was not used as an initial search criterion as it does not allow for

incorporation of a physics-based knowledge base, and can therefore only be used as

a final localization step. The shock intersection point returned from the CSS-based

method in Equation 5.17 is updated to the nearest maximum of Equation 5.19, using

pint = argmin
s

{�Γo (smax)− argmax
s

(D (s)) �} : s ∈ [smax −∆s : smax +∆s] .

(5.20)

It was observed during the algorithm development that this method consistently

corrected for feature drift.
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5.6.3.3 Detection Algorithm

Algorithm 4 shows the procedure for identification and localization of the

shock intersection point for images with known contours. Unlike the model tip, this

algorithm requires only the continuous isolated contour. Contours and curvatures

at IMAX decreasing scales are calculated as in the cone tip identification, in this

instance the maximum value of curvature is used. The search is initiated within

the first N2 = N − 100 arcelngth points using Equation 5.17. Coarse to fine search

for localization is again performed using Equation 5.1. The final value of κmax is

compared to the value of κmin to identify false structure in the contour, any such

image is recored and set aside for manual evaluation. The final localization is defined

as the closest maximum in the evolution distance to the final CSS location using

Equation 5.20.
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Algorithm 4: Identifying the shock intersection for known contours.
Input: Ic isolated outer contour image

IMAX descending scale parameters σ
Output: p (t)

int
shock intersection coordinates at time t

// calculate curvature at all scales

for i = 1 : IMAX do
smooth contours;
calculate curvature κ (s, σ [i]);

end
// calculate κmin as in previous algorithm

// initialize the maximum

smax = argmax
s

(κ (s, σ1)) : s ∈ [1, ..., N2] ;

// localize the result from coarse to fine search

for i = 2 : IMAX do
smax = argmax

s

(κ (s, σ [i])) : s ∈ [smax [i− 1]−∆, smax [i− 1] +∆] ;

end
κmax = κ (smax, σ [IMAX]);
// asset physical impossibility

if κmax > |κmin| then
mark the image for manual evaluation;

end
// calculate evolution distance at two large scales

D (s) = �∆Γo (σ [1] , σ [2]) � ;
// localize to the nearest maximum in evolution distance

pint = argmin
s

{�Γo (smax)− argmax
s

(D (s)) �} : s ∈ [smax −∆s : smax +∆s];

return pint

Figure 5.13 displays contour evolution near the vicinity of the shock intersec-

tion for instances I (to) and I (to + 1678) (corresponding to the sharp corner primi-

tive). Scales and labeling schemes correspond to those in Figure 5.8. Figures 5.13a,

5.13b, and 5.13c for (to) show the typical primitive which has a single localization

step from coarse to fine search as the evolution scale decreases from left to right.

A similar trend occurs in Figures 5.13d, 5.13e, and 5.13f; in both cases, with de-

creasing evolution and reduction of shape simplification, the evolved contour closely

approaches the initial curve Γo.
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5.6.4 Handling of Missing Contours

When a contour representation in the schlieren sequence is physically not rep-

resentative of the outer-shock structure, neither continuous nor single valued, the

relative extrema of curvature are not accessible to describe the physical features

as they have been defined. For the model tip, the CSS method was used for a

unique definition and localization criterion. The final localization was assigned by

updating the final value to the Harris response subject to the minimization of the

euclidean distance between the two features. When a contour at time t is not avail-

able, given the previous model point at instant (t− 1), the tracking problem can

be constrained deterministically using the small motion assumption. The location

of the model tip at time t can be determined by minimizing the euclidean distance

between the known and unknown feature between time instances, or

ptip (t) = argmin
j

(�ptip (t− 1)−R (xj, yj, t) �) : (xj, yj) ∈ ROI, (5.21)

which is simply the assignment of the model tip closet to the previous known loca-

tion. Note that this approach allows for consecutive missing contours.

For the shock intersection point, Harris point estimators are not available for

final candidate localization, a separate contour evolution based criterion was used,

as this feature is not consistently represented by a true corner. To extract the

missing data points, a graphical user input was constructed. The point was selected
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manually from the raw image for each missing frame which was processed with a

diffusion like bilateral filter [46] allowing a visual grouping, as the instances are by

definition difficult to evaluate by the human eye. A total of 89 frames, less than 2%

of the data, needed to be measured manually. Although a human evaluation is not

repeatable, the small percentage of data for which this method is used will render

any potential manually generated anomalies statistically insignificant, and will have

no effect on the final motion distributions. Also, outliers arising from this method

will be visible through inspection of the distributions. This program later served to

visually verify and evaluate, and correct if necessary, any potential problem images,

or those identified as outliers.

5.7 Results

The schlieren sequence was processed using MATLAB. Results are plotted in

pixel coordinates (row, column) to best illustrate feature motion history. There are

several reasons for not localizing the results beyond pixel coordinates. These include

the resolution (outer scale) of the features, spurious gradients caused by schlieren

system sensitivity, and potential artifacts in the optical integration path. Combined,

these reasons create structures which are difficult to discern by the human. As

there is no ground truth to compare against in this application, further localization

would provide a false impression that the methods used on this data allow for

resolution capabilities beyond a discrete (binned distribution) assignment. Sub-

pixel localization is of course possible, and potentially desirable given other data.
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5.7.1 Model Detection and Motion

Three instances of detection and localization of the cone model tip are shown

in Figure 5.14, which correspond to the model tip ROI of the primitives in Figure

5.3. The smallest scale CSS result is shown by �, and the final tip location selected

by the Harris attractor using Equation 5.16 is labeled with a �. At to in Figure

5.14a, all CSS scales and the final Harris assignment are coincident, there was no

feature drift. For Figure 5.14b, a single localization through scale occurred followed

by a final localization change by the Harris update. The same number of updates

occurred at (to + 1678) in Figure 5.14c, although the finest CSS point drifted in

the opposite direction, and is located closer to the final assignment as opposed to

Figure 5.14b. In all illustrated cases, the model tip has been localized well by the

final assignment.

(a) I (to) (b) I (to + 3276) (c) I (to + 1678)

Figure 5.14: Model tip localization results. Fine scale CSS point labeled �, final
assignment in �.

A total of 4,912 images were solved using the combined modified CSS-method

fused with the Harris detector. The small motion assumption was employed for

missing contours, and the remaining 89 images were solved by minimizing distance
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between the Harris response operators alone in Equation 5.21. A total of 43 images

had multiple solutions to the closest Harris response R in Equation 5.16 for the

final localization step, and had to be evaluated manually. In some cases, the correct

response had been returned. In others, the model cone tip solution had drifted from

the true response, which was equidistant to a spurious response. Initial distributions

of model motion histories were inspected for anomalies and violations of the small

motion assumption (deterministic constraint) and suspect points were re-examined.

This does not imply that the reported values are incorrect, simply and indication

that manual evaluation is called for. A total of 9 responses fit this criterion. Several

were corrected and determined visually to be a result of feature drift, due to contour

noise at small scale which caused the closest Harris response R to be located away

from the true model tip. Although handling of the small number of outliers and

broken curves may appear insignificant, these numbers will increase with larger data

sets.

After visual verification and manual corrections, the final distributions of the

cone tip motion obtained from the sequence obtained are shown in Figures 5.15a and

5.15b, in terms of row and column position, respectively. Figures are oriented with

respect to the image viewing axes for clarity. Each 2 mm division represents a single

pixel. The row and column position of the model tip each occupy three discrete bins

over the entire sequence of 5,000 images, indicating a degree of model motion small

enough to conclude that the double-cone model remains steady throughout the test

time. The two-dimensional histogram (point distribution) in Figure 5.16 shows that

the cone tip is most often located in the center pixel of the 3 x 3 region. It can
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be concluded that model motion is negligible, As all locations of the model tip

are 8-connected to the most likely location, within the inherent localization errors

associated with the identification methods. This confirms the expected results from

viewing the sequence, yet the analysis method developed here provides a means for

a quantitative assessment and confirmation.
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Figure 5.15: Row and column distributions of the model tip.

5.7.2 Shock Intersection Detection and Motion

Figure 5.17 shows three instances of the shock intersect detection and local-

ization procedure corresponding to the primitive intersection types in Figures 5.9

and 5.10. The finest scale CSS point is shown in �, the final assignment corrected

by distance evolution from Equation 5.19 is labeled �. For to in Figure 5.17a, one

jump from coarse to fine scale and a final jump due to the evolution distance met-

ric occurred. Figure 5.17b (smooth join) is the most difficult primitive structure

to identify and localize. At (to + 3276), two position changes occurred during the

156



Figure 5.16: Two-dimensional histogram of the model tip.

coarse to fine search, followed by a change in the final update step. The algorithm

has captured the subtle structure well. For the sharp corner primitive in Figure

5.17c (to + 1678), a single location update was performed in the scale search; the

fine scale and final assignment points are coincident. An example of the coarse to

fine search and localization process of the smooth join is shown in Figure 5.18b; the

maximum κ at each scale is identified with a solid marker on its plot of curvature vs.

arclength s. Moving upward from the zero-datum, the maximum drifts leftward to-

ward one of two extrema in noise. The vertical dashed line represents the maximum

distance evolution point on the arc closest to the smallest scale curvature. Overall,

the shock intersection point has been modeled well. Potential strong violations of

the structure definition were defined in the predicate logic, an example of which was

shown in Figure 5.12.
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(a) I (to) (b) I (to + 3276) (c) I (to + 1678)

Figure 5.17: Shock intersection localization results. Fine scale CSS point labeled
�, final assignment in �.
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(c) Sharp CornerI (to + 1678)

Figure 5.18: CSS localization of the contour primitives. Local extrema shown in
solid.
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As with the model tip, 4,912 images were solved using the CSS-based method.

The final location was assigned to the closest maximum evolution distance. The

remaining 89 shock intersection points were manually located using a graphical user

interface. A total of 33 images were marked during the identification algorithm

as violating a constraint on the maximum allowed value of the intersection point

curvature defined by Equation 5.18. These images were revisited and evaluated

visually. Several results were found to be from an edge representation of the image

which was physically impossible, for example, a sharp inward directed turn on the

outer-shock contour. Other images had been properly localized, but were marked

for manual inspection due to large values of curvature at the smallest scale.

An example of a failure which was not detected by the algorithm is shown in

Figure 5.19. Several hundred images selected at random were visually viewed at all

stages of the detection algorithm, and run multiple times to find this instance. It

can be concluded that such instances are few. The method failed due to a poor edge

image arising from the outer-shock being defined having a much weaker gradient

than a neighboring artifact, as illustrated by the contour image in Figure 5.19b.

(a) I (to + 1743) (b) Ic (to + 1743)

Figure 5.19: Failure instance undetected by the algorithm.
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In the initial shock intersection motion distributions, statistical outliers were

identified using the 3σ rule for the row and column histories. These images were

set aside for visual verification. The combined 19 outliers from the row and column

distributions corresponded to 14 unique images. Many needed correction due to

feature drift caused by contour noise in the localization process. In other images,

the algorithm had selected the proper location, which simply appeared as outliers

from viewing the distributions.

Final motion distributions for the row and column locations of the shock in-

tersection point are shown in Figures 5.20a and 5.20b, respectively. Data were

converted to fluctuating components by subtracting the median. Distribution mo-

ments corresponding to these plots are given in Table 5.1. The discrete number

of bins in each distribution denotes the pixel-wise extent of the structure motion

and gives the unique locations through the sequence. The small number of unique

bins in the distribution precludes the use of spectral or temporal analysis. This is

a function of the limiting scales of the data set, which are the image resolution of

the structure and its absolute motion. This could be remedied by the use of a lens

with a larger magnification factor (at the cost viewing the entire flowfield), or by an

increased resolution (at the cost of framing rate). The limiting scale would not be a

factor when the methodology is applied to data sets acquired with modern cameras

with similar framing rates.

From an inspection of the distributions and their moments in Figure 5.20 and

Table 5.1, the motion individual motion histories of the intersect coordinates appear

Gaussian. This is confirmed by their skewness µ3/σ3
std

and kurtosis µ4/σ4
std
, which
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Figure 5.20: Row and column distributions of the shock intersection point.

Table 5.1: Distribution properties for the triple point location.

coordinate σstd [mm] µ3

σ3
µ4

σ4 bins

row 5.291 0.224 3.054 19
col. 3.672 -0.247 2.965 14

are near the nominal values of a normal distribution. Although independent random

variables produce normal distributions by definition, the converse is not true. The

observed distributions neither confirm nor discount any underlying random motion

of the intersection point. Row motion in the image plane has a larger extent than

the column location, indicating a greater extent of motion in the vertical than the

streamwise direction. This is evident from the values of σstd and the number of

discrete bins in Table 5.1, as well as confirmed by viewing Figure 5.20.

The two-dimensional histogram of the shock intersection is shown in Figure

5.21. The motion history as plotted is similar to a discrete joint distribution function

where bar height indicates probability of feature location. An alternate view of the
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motion is presented in a joint probability distribution style in Figure 5.22. Motion of

the shock intersection structure was apparent from viewing the sequence. However,

Figures 5.21 and 5.22 show a definite orientation of the motion, with vertical (col-

umn) motion of the structure as dominant. The algorithms developed here offer a

quantitative evaluation of the motion, and illustrate a pattern and motion extent of

the shock intersection motion that could not be inferred by a human observer. From

Figure 5.21 and Table 5.1, the dominant motion is in the vertical (column) direction.

Comparing values of σstd, the motion spread is 44 % greater in the column than in

the streamwise direction. This shows that the inherent breathing motion associated

with the shock-wave/boundary-layer interaction on the fore-cone surface dominates

the streamwise motion of lower portion of the bow shock in the vicinity of the shock

intersection. The motion of the shock intersection observed here explains the cause

of the oscillations in peak heating rate on the aft-cone surface reported by Coblish

et al. [37] The peak heating rate on the model surface is caused by the impinging

transmitted shock, which emanates from the shock intersection point. The motion

shown in Figure 5.21 is consistent with the description by Druguet, Candler, and

Nompelis [42] who state that the separation zone affects the shock impingement,

which can alter the entire interaction pattern. The unsteady behavior observed

here is consistent with previous findings of the interaction sensitivities.
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Figure 5.21: Two-dimensional histogram of shock intersection motion.

Figure 5.22: Joint probability distribution of shock intersection motion.
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Chapter 6: Flowfield Motion Analysis

6.1 Introduction

The preceding chapters of this work have focused on the development and ap-

plication of computer vision-based techniques for interpreting large schlieren data

sets. The methods of measurement and extraction of flow structures is largely

general, and applicable to a broad class of data sets which contain these common

phenomena. Here, focus is on the analysis and understanding of the double-cone

flowfield. Of all the techniques applied, the only data for which there are both

enough unique data points to approximate a continuous distribution, and for which

further statistical and spectral analysis can provide additional physical understand-

ing of the flowfield, are the segmentation data. The goals of this analysis are twofold:

first, to demonstrate that segmentation can permit measurement of gross flow mo-

tion, and second, to see what this analysis can reveal about the double-cone flow.

Further analysis of the outer-shock motion identified in Chapter 4 is first per-

formed. The flowfield segment isolated in Chapter 3 is further partitioned by the

value of the shock intersection point determined in Chapter 5 into fore and aft-cone

segments. Flowfield areas and centroids of all three segments are calculated to per-

form spatial and temporal analysis on the flowfield as a whole, and its sub-partitions.
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6.2 Outer-Shock Motion Analysis

The motion history of the isolated outer-shock structure from Figure 4.7 and

discussed in section 4.3.1 is repeated in Figure 6.1. Further analysis of the shock

motion can assist in understanding the segmentation data. Black indicates the

outer-shock has occupied the image location during the test time. This Figure

indicates significant motion of the aft-cone bow shock. The knot which appears just

downstream of the model tip is false structure and is not indicative of shock motion.

As discussed in section 4.3.1, this is due to insufficient image evidence to capture

the faint structure of the fore-cone shock. This issue was addressed at length in

section 2.5, and may be due to potential misalignment in the schlieren system.

Figure 6.1: Motion history of isolated outer-shock structure.

The small number of unique bins in the outer-shock motion history precludes

temporal or correlation analyses. This does not, however, prevent the estimation of

distribution moments which can provide insight into the outer-shock contour mo-
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tion. The standard deviation of the outer-shock contour motion history in Figure

6.1 is plotted in Figure 6.2 in units of mm. Locations of the model tip and shock

intersection bounds identified in Chapter 5 are shown. The largest motion spreads

occur toward the upper potion of the bow shock, increasing toward the frame edge.

A significant change in the pattern of σstd occurs near the intersection point. This

region, as with the region containing the separation shock identified in Chapter 4,

contains both rotational and translational motion. The standard deviation signifi-

cantly decreases near where the attached conical shock should be on the fore-cone.

As discussed in sections 2.5 and 4.3.1, the entirety of this structure could not be

consistently captured and was difficult to discern with the human eye. The sharp

increase in σstd reflects this. The motion spread is smallest at the model tip, as

expected from results presented in the previous chapter.
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Figure 6.2: Outer-shock motion standard deviation.
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Figure 6.3 shows the kurtosis of the outer-shock motion history from Figure

6.1. The model tip and shock intersection motion bounds are indicated. For a

normal distribution, the kurtosis should be near 3, which is approximated at most of

the outer-shock contour locations. The two-locations where kurtosis is significantly

non-normal are the model tip and the region near the “knot structure” shown in

Figure 6.1. The low kurtosis at the model tip location is due to its lack of a true

distribution caused by its stationarity. The large kurtosis indicates that the knot

structure in Figure 6.1 has a large peak with heavy tails; this is confirmation that

this portion of the outer-shock was only captured intermittently.
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Figure 6.3: Outer-shock motion kurtosis.
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6.3 Full Flowfield Motion Analysis

To calculate the properties of the full flowfield segment, images segmented in

Chapter 3 (Figure 3.17) were tightly cropped, as illustrated in Figure 6.4. Figure

6.4 shows the image at to, with the geometric centroid indicated by �. Spatial and

temporal analysis of the full flowfield area AFF and its centroid xcFF can provide

information that can describe the gross motion of the shocked flow region in the

double-cone flow. The change in the segment shape, and the motion of its centroid

through the sequence are directly related to the fluctuations in, and motion of, the

shocked flowfield. Unless otherwise stated, all subsequent analysis is performed on

the fluctuating data components.

Figure 6.4: Cropped flowfield segment showing centroid location for I (to). Flowfield
centroid indicated by �.

The motion history of the full segment centroid x
�
cFF

fluctuation is plotted in

Figure 6.5 in units of mm. The centroid is resolved in the image coordinate system.

The distribution is resolved into real numbers R as opposed to integers; this is from
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the definition of the centroid. The centroid spans approximately 8 mm and 12 mm in

the streamwise and normal direction, respectively, through the test time. Pearson’s

correlation coefficient rp, defined in Equation 6.1 below, was calculated to examine

the linearity of the shocked flowfield motion

rp =

�
N

i=1

�
Xi −X

� �
Yi − Y

�
��

N

i=1

�
Xi −X

�2��
N

i=1

�
Yi − Y

�2 . (6.1)

A value of rp = 0.7221 does not indicate a strong linear trend. The motion is

bounded, with a slight Gaussian appearance from inspection of Figure 6.5. The

centroid motion is overlaid on the outer-shock motion history in Figure 6.6, and

shown in red. The motion bounds of the full flowfield centroid appear small. How-

ever, this centroid encompasses the entire flowfield area change throughout the test

time. A large deviation in the upper portion of the bow shock may be offset by

a decreasing area in the fore-cone region, or a smaller motion in the lower portion

of the bow shock. The greater distance covered by the vertical (column) motion of

the centroid suggests a larger fluctuation in the upper bow shock region. This is

substantiated by Figure 6.2, which shows that the upper portion of the bow shock

has a larger motion than the lower segment.

The distribution moments of the flowfield centroid corresponding to Figure

6.5 are listed in Table 6.1. Inspection of σstd of the row and column distributions

indicate a nearly 40% greater motion spread in the row (vertical) direction of motion

through the sequence as opposed to the column (streamwise) direction. This is

consistent with the orientation of the motion in Figure 6.5. The number of unique
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Figure 6.5: Full flowfield segment centroid x
�
cFF

fluctuation motion history. Axes
oriented to image.

Figure 6.6: Full segment centroid motion overlaid on outer-shock motion history.

values distributions in Table 6.1 are sufficient for spectral and statistical analysis.

The skewness and kurtosis of the centroid x
�
cFF

in Table 6.1 are close to the normal

distribution. Temporal behavior cannot be deduced from a spatial distribution, and

is considered in a later section.
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Table 6.1: Full segment centroid fluctuation x
�
c
distributions.

x
�
c

σstd [mm] µ3

σ3
µ4

σ4 bins

row 1.8845 -0.0020 2.9687 494
col. 1.3670 0.1235 3.1217 381

6.4 Fore and Aft-Cone Flowfield Relations

The flowfield segmentation results in Figure 6.4 were further partitioned by

the shock intersection point determined in Chapter 5. This operation parsed the

isolated flowfield into fore and aft-cone flowfield segments, which roughly isolates

the shock-wave/boundary-layer interaction region in the fore-cone from the aft-cone

flow phenomena behind the detached bow shock. Figure 6.7 shows the segment at

time to from Figure 6.4 split by the column (vertical) coordinate of the detected

shock intersection. Figure 6.7 illustrates a typical flowfield partitioning, determined

from the visual inspection of multiple sample results. The fore-cone segment is

identified in black; the isolated aft-cone segment is gray. The centroid locations of

the fore and aft-cone centroids are indicated by �.

Distribution properties of the full flowfield AFF , the fore-cone AFC , and aft-

cone AAC segment areas are given in Table 6.2 in pixels. All segments are based on

8-connected graph partitions. Properties of AFF are repeated from Table 3.1. Dis-

tribution moments for each segment indicate near-normal distributions, evidenced

by skewness µ3

σ3 and kurtosis µ4

σ4 . The number of bins in each distribution justify spec-

tral and stochastic estimates for the image sequence. From inspection of the three

flowfield standard deviations σstd in Table 6.2, the full segment and the aft-cone
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Figure 6.7: Cropped flowfield segment split into fore and aft-cone regions by the
detected shock intersect for I (to). Flowfield centroids indicated by �.

segment appear to have the same data spread in terms of area size. The standard

deviation of the fore-cone flowfield is approximately 50% less than its counterparts;

this is not surprising, as from viewing the sequence, the aft-cone segment seems to

constitute the bulk of the flow motion. This was also evident in the outer-shock

motion history shown in Figures 6.1 and 6.2.

Table 6.2: Flowfield segment area distributions for the full, fore-cone, and aft-cone
[pixels].

Area µ σstd

µ3

σ3
µ4

σ4 bins

AFF 11482 212 0.0483 3.110 984
AFC 2425 118 0.0158 3.009 604
AAC 9056 217 0.1019 3.095 1003

6.4.1 Fore-Cone Region Motion Analysis

The motion history of the fore-cone segment centroid x
�
cFC

is shown in Fig-

ure 6.8. The fluctuating component, given in mm, is plotted in the image coordi-
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nate system. The motion history of the fore-cone flow corresponds to the shock-

wave/boundary-layer interaction region of the flow shown in black in Figure 6.4.

Pearson’s correlation coefficient was calculated to examine the linearity of the seg-

ment motion. A coefficient of rp = 0.9807 indicates that the movement is dominantly

linear, and along the direction of the model surface. This is indicative of the expan-

sion motion of shock separated flows. Figure 6.8 shows that the largest motion of

the separated region is in the streamwise direction. The centroid motion is overlaid

on the motion history of the outer-shock in Figure 6.9.
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Figure 6.8: Fore-cone flowfield segment centroid x
�
cFC

fluctuation motion history.
Axes oriented to image.

The distribution moments of the fore-cone centroid are given in Table 6.3. The

column (streamwise) motion distribution has a value of σstd nearly 50% greater than

that of the row (vertical) motion. This indicates that the streamwise motion of the

fore-cone flow region spans a much larger spatial area than the vertical component.
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Figure 6.9: Fore-cone segment centroid motion overlaid on outer-shock motion his-
tory.

The span of streamwise motion of the separated flow region is approximately 30 mm,

significantly larger than the 8 mm span of the full flowfield segment shown in Figure

6.5. Vertical extent of the centroid motion is approximately 18 mm, compared to

12 mm for the full flowfield segment centroid x
�
cFF

.

Table 6.3: Fore-cone segment centroid fluctuation x
�
c
distributions.

x
�
c

σstd [mm] µ3

σ3
µ4

σ4 bins

row 3.0346 0.1561 3.0699 749
col. 4.4985 -0.2532 3.0988 1040

The large scale streamwise motion evident in Figure 6.8 and Table 6.3 is

likely due to the motion of the separation shock foot at the point of separation

onset. This shock can be a significant source of unsteady motion in typical shock-

wave/boundary-layer interactions. The shock foot could not be captured by any

of the vision-based methodologies, since it was too faint to visualize clearly, as dis-

cussed in section 2.5.
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6.4.2 Aft-Cone Region Motion Analysis

The motion history of the aft-cone segment centroid x
�
cAC

is shown in Figure

6.10, oriented to the image axis and scaled to mm. Pearson’s correlation for the

isolated aft-cone centroid is 0.7276, which is on the order of the value for the full

flowfield centroid motion. The streamwise and vertical span of the centroid motion

of 9 and 14 mm, respectively, are slightly larger than that those of the full flowfield.

This is consistent with the observation that the apparently small motion of the full

flowfield may be due to mitigation caused by events in the fore-cone segment. This

suggests large scale bulk motions in the aft-cone flow region, which is consistent

with motion patterns of the aft-cone bow shock in Figures 6.1 and 6.2. The cen-

troid motion history plotted along with the outer-shock motion history in Figure

6.11 shows a different location and larger spread of the aft-cone centroid motion as

compared to that of the full flowfield shown in Figure 6.6.

Distribution moments of the aft-cone centroid motion are listed in Table 6.4.

The row (vertical) σstd is approximately 33% larger than the column (streamwise)

centroid motion, consistent with the motion history in Figure 6.10. Data spread

in the motion of the aft-cone centroid is larger than that of the entire flowfield by

approximately 24% and 31% in the vertical and streamwise directions, respectively.

Table 6.4: Aft-cone segment centroid fluctuation x
�
c
distributions.

x
�
c

σstd [mm] µ3

σ3
µ4

σ4 bins

row 2.3434 0.2169 3.0438 600
col. 1.7497 -0.1877 3.0505 471
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Figure 6.10: Aft-cone flowfield segment centroid x
�
cAC

fluctuation motion history.
Axes oriented to image.

Figure 6.11: Aft-cone segment centroid motion overlaid on outer-shock motion his-
tory.

6.4.3 Flowfield Area Correlations

Pearson’s correlation coefficients are used here to test for relationships between

the partitioned flowfield regions, as opposed to motion linearity in the preceding
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sections. All segment areas are normalized; the fluctuating components are scaled

by their respective standard deviations σstd. Correlations between the segmented

areas are shown in Figure 6.12. Figure 6.12a plots the aft-cone area fluctuations A�
AC

against the full area fluctuations A
�
FF

. From inspection, these events are correlated

strongly, and a correlation coefficient of rp = 0.8491 confirms this. An important

conclusion can be drawn from Figure 6.12a, namely, that the bulk of the unsteady

motion in entire the double-cone flowfield is due to fluctuations in the aft-cone area.

Figure 6.12b shows the fore-cone area fluctuations A
�
FC

against those of the

full flowfield A
�
FF

. A coefficient of rp = 0.2341 suggests a weak positive correlation

between the fore-cone segment and the full flowfield, indicating a slight correlation

with sign change. This is not surprising, as from viewing the sequence it appeared

that the motions of the aft-cone bow shock region occur on a much larger scale

than those of the fore-cone region associated with the shock separated flow. From

Figures 6.12a and 6.12b and their correlation coefficients, it can be concluded that

that the large scale motions seen in the sequence are primarily due to motion of

the largely subsonic region behind the bow shock, and occur downstream of the

shock intersection. This is further supported by Figure 6.2 which showed that the

motion spread in the upper portion of the bow shock is much larger than that of

the fore-cone area.

The aft-cone area A
�
AC

fluctuations are plotted against the fore-cone flowfield

A
�
FC

fluctuations in Figure 6.12c. The correlation coefficient between the fore and

aft-cone area is weak; rp = −0.3148 indicates only a slight inverse relation between

the two partitions. A stronger relationship between the two fluctuations might have
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been expected. However, the aft-cone region may be either wholly or partially sub-

sonic, so a direct proportionality between this region and the shock separated portion

of the flow may not exist, due to the lack of a dominant feedback mechanism be-

tween these regions as a whole. Also, the aft-cone region is treated as a single entity,

whereas in actuality the outer-shock structure may be more sensitive to changes in

the supersonic jet along the model surface than to any upstream disturbances from

the shock separated region of the flow.
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Figure 6.12: Standardized flowfield segment area change correlations.
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6.5 Flowfield Spectral Content

The changes in flowfield segment shape and its sub-partitions into fore and aft-

cone regions encompass all unsteady events in the shocked flowfield. All frequencies

and length scales associated with the flow will affect segmented areas. In addition

to frequency content within the camera’s Nyquist frequency of 5 kHz, aliased phe-

nomena may be present at harmonics much lower than their true frequency. In

an unsteady Mach 14 flowfield, multiple phenomena can be expected in a frequency

range much greater than 5 kHz. The flowfield segments will therefore contain a sum-

mation of an unknown number of events, and are likely to be noisy for two reasons:

there may be random motion(s) present in the flowfield, and the segmentations may

contain small errors due to segment resolution scales and 8-connectivity. This can

cause the appearance, or a potential source, of noise. All processes are assumed

Wide Sense Stationary (WSS). The assumption is made that frequency content is

present in the segmented data fluctuations, and that it may be obscured by signif-

icant noise. All data are therefore tested heuristically for whiteness by examining

content of the autocorrelation functions, and flatness of power spectral densities.

Without high-speed surface instrumentation data, there are no expected values

for the number of motion components in the flowfield, or their associated frequency

content. The lack of high-speed instrumentation on the double-cone model signifi-

cantly hinders power spectral estimation of the computer vision results. The absence

of known signal information precludes the use of more advanced signal recovery and

parametric spectral estimation methods than those employed here, and make fre-
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quency content difficult to recover. Initial studies to ascertain tunnel noise have

been conducted at Tunnel 9 [76]. Results indicate that noise in the freestream is

broadband in nature, at least up to the 20 kHz range of the flush mounted pitot

acoustic probes used in the study.

6.5.1 The Full Flowfield

Plots of the fluctuating components of full segment flowfield area A
�
FF

and its

centroid motion x
�
cFF

against test time revealed no obvious sinusoidal patterns. As

the full flowfield segment consists of all length and time scales in the entire shocked

flowfield, autocorrelations were examined to test for any underlying frequency con-

tent. The autocorrelation coefficient in Equation 6.2 is measure of signal similarity

with itself at lag τ .

Rxx (τ) =
1

N

N−τ�

t=0

x
�
(t) x� (t+ τ) (6.2)

If the data are truly white, no patterns whatsoever should appear in the autocorre-

lation data, even in the initial lags. The presence of noise can drive all coefficients

at τ �= 0 to zero exponentially. When SNR is sufficiently low, data trends can be

obscured. If the data are truly random, there will be no significantly non-zero co-

efficients aside from Rxx (τ = 0). Significantly non-zero values are defined as those

outside the bounds ±1.96/
√
N (e.g. [77]). In the presence of noise or randomness,

inspection of the correlogram can assist in the determination of underlying period-

icity.
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Normalized autocorrelations are plotted in Figure 6.13. Rows in Figure 6.13

from top to bottom give autocorrelations for the area, row, and column centroid

motion, respectively. The first column plots the autocorrelations for the first 500

lags (0.05s). The second column is a closeup on the first 100 lags (0.01s). From

initial inspection, any periodicity in the area and centroid row autocorrelations over

the 1st 500 lags in Figure 6.13 is difficult to determine. The column (streamwise)

centroid motion, however, appears to have a definite “chirp” pattern over the first

500 lags, indicating the presence of multiple signals. Close inspection of the first

100 lags in the second column show approximately 7.5 cycles in each trend. This

pattern is most clear in the streamwise autocorrelation, but evident in the area and

centroid row functions correlograms as well, although it appears partially obscured

by noise, and possibly additional frequency content. Periodicity is more clear in

the centroid components; this is likely due to the averaging operation of the area

from the calculation of the centroid. The 7.5 cycles visible through the first 100 lags

should correspond to a frequency peak at 750 Hz.
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Distributions for the full flowfield segment area A
�
FF

in Table 6.2 appeared

normal. Normality of the distribution does not imply randomness, when significant

noise and multiple frequency content exist in the signal. Welch’s method is used

to estimate spectral density. Lack of known signal structure that could have been

provided by surface instrumentation precludes the use of parametric methods which

are better suited to recover partially obscured signals. Periodogram averaging pro-

vides a good estimation in the presence of noise. A heuristic estimate of noise was

gathered for each periodgram presented here. As the distributions of all measure-

ments appear normal in the previous section, a Gaussian noise estimate was created

using Equation 6.3 below

η̂ = σstdN (µ = 0, σ = 1) . (6.3)

where the normal white noise distribution function N is shaped with the σstd of the

variable of the measured variable. If the data are truly random, then the spectral

density estimate of the data should be bound by the maximum frequency in the

spectrum of Equation 6.3, as they are both approximately normal, with the same

σstd. For all power spectral estimates presented here, the calculated power spectrum

was compared against that of the test white noise sequence shaped by σstd. This

provided an upper estimate of noise, above which, a legitimate frequency peak could

be declared.

The power spectral density of the full flowfield area fluctuations A
�
FF

is shown

in Figure 6.14. All power spectral densities are plotted in terms of arbitrary units
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(a.u.); and only relative levels in the peaks are of concern. A 1024 point Hamming

window with 8 overlapping segments yielded the best trade-off between spectrum

estimation and leakage in the periodogram estimate, providing a frequency resolu-

tion of ∆f = 4.883 Hz. Spectral density of the noise and the upper value of the

noise estimation max (η̂) are shown. Any peak above the noise estimate η̂ ≈ 23 can

be considered true frequency as opposed to artifact. Significant frequency peaks are

evident at 740 and 835 Hz. A lesser peak exists at approximately 884 Hz. Potential

peaks at approximately 5 and 54 Hz are just below the upper noise estimate. The

740 Hz frequency is consistent with the conclusion from the first 100 lags of the

autocorrelations in Figure 6.13.
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Figure 6.14: Power spectral density of full segment area fluctuation A
�
FF

Figures 6.15 and 6.16 show the power spectral densities of the row and column

centroid motions, respectively. Noise estimates generated using Equation 6.3 are

also shown. The frequency peaks of 740, 835 and 884 Hz from the area fluctuation

periodogram in Figure 6.14 are also evident in the row and column centroid motions.
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Additionally, peaks have become more clarified at approximately 54 and 5 Hz; an

additional peak is observed at 10 Hz. The peaks at 5 and 10 Hz occur within the first

two bins of the ∆f periodogram resolution. The reason the lesser peaks are evident

in Figures 6.15 and 6.16 as opposed to the corresponding area spectral estimation

is likely due to the effect of averaging across the large segment to calculate the

centroid, as was observed in the correlogram discussion.
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Figure 6.15: Power spectral density of full segment row centroid fluctuation x
�
cFF

.
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Figure 6.16: Power spectral density of full segment col. centroid fluctuation x
�
cFF

.

6.5.2 The Fore-Cone Flow

Normalized autocorrelations of the fore-cone isolated segment A
�
FC

and its

centroid x
�
cFC

fluctuations are shown in Figure 6.17. The first column of Figure 6.17

shows the autocorrelations through the first 500 lags (0.05s); the second column is a

closeup of the first 100 lags (0.01s). The first, second, and third rows of Figure 6.17

show the area, row, and column centroid autocorrelations, respectively. The first 500

lags of the autocorrelations show no evidence of periodic motion in the signals. From

close inspection of the first 100 lags of the area fluctuations, and with assistance

from the correlograms of the full segment in Figure 6.13 to interpret the data, there

is faint evidence of 7.5 cycles in the data. Their is no evidence of periodicity in either

component of the centroid data. The fact that the autocorrelations of the row and

column motion are above the confidence bounds may indicate that the fore-cone

centroid motion is non-WSS through the test time. In section 2.5, it was noted that
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the laser began to fail approximately half way through the test. As a result, the

images became darker; this may have an effect on the visualization of the attached

flow near the cone tip. The visualization, could in turn affect the segment size of

the fore-cone. The weak appearance of the 7.5 cycles in the area data could be due

to either actual signal noise, or the presence of random motion. Here, actual signal

noise may arise from segmentation errors. The small fore-cone segment would be

more sensitive to slight errors in the segmentation, since this area is much smaller

than the full flowfield area. A segmentation error of several pixels may therefore

result in the appearance of significant noise which may dominate the signal. This is

simply a function of the small size of the fore-cone segment compared to the limiting

scale (resolution) at which the images were acquired.
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Power spectral density estimations of the fore-cone area fluctuation A
�
FC

are

presented in Figure 6.18. Peaks above the estimated noise-band in the power spec-

trum of A
�
FC

appear at 740 and 835 Hz, and approximately 50 and 5 Hz. A frequency

cluster that may not be properly resolved appears at approximately 434 Hz. A po-

tential peak may exist near 1 kHz, but this is very close to the noise limit. The

power spectrum in Figure 6.18 contains more noise than that for the full segment

A
�
FF

in Figure 6.14, due to reasons discussed during the correlogram interpretation,

yet the peaks are still distinct. The higher noise level relative to the peaks is likely

caused by small segmentation errors. Such an error may be caused, for example, by

the lack of consistent image evidence to visually identify the attached conical shock

on the model tip, as discussed in section 2.5. This is consistent with the assumption

that the segmentations contain frequency content which may be partially obscured

by noise.
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Figure 6.18: Power spectral density of fore-cone segment area fluctuation A
�
FC
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Spectral estimates of the fore-cone centroid x
�
cFC

row and column motion are

shown in Figures 6.19 and 6.20, respectively. There is no significant spectral con-

tent in the row centroid motion in Figure 6.19. Peaks observed in the full area

periodogram in Figure 6.14 are evident but weak in the column centroid motion at

742 and 884 Hz. These frequencies are dominated by peaks at 0 and approximately

5 Hz, the first two frequency bins in the spectrum. Whereas the averaging inherent

in the centroid calculation served to highlight features in the full segment; the same

effect is not seen here. This is likely due to the averaging process in the centroid

calculation occurring at a reduced scale over the smaller fore-cone segment, where

small pixel errors can constitute a larger percentage of the segment.
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Figure 6.19: Power spectral density of fore-cone row centroid fluctuation x
�
cFC

.
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Figure 6.20: Power spectral density of fore-cone col. centroid fluctuation x
�
cFC

.

6.5.3 The Aft-Cone Flow

Figure 6.21 shows the autocorrelations of the aft-cone area fluctuations A
�
AC

and centroid row and column fluctuations x
�
cAC

. The first and second columns of

Figure 6.21 are again the first 500 and 100 lags corresponding to the first 0.05s and

0.01s of the sequence, respectively. There is no evidence of periodicity whatsoever

in any of the autocorrelations in either the first 500, or 100 lags. The correlograms

are indicative of data whiteness, and correspond physically to large scale broadband

motion of the aft-cone bow shock region of the double-cone flow. This seemed

evident from viewing the sequence, and the large scale motion of the bow shock

was shown in Figure 6.2. From Figure 6.21, it appears that the aft-cone motion is

random, at least within the Nyquist frequency of 5 kHz.
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The power spectral estimates of the aft-cone flowfield fluctuations are shown in

Figure 6.22. Compared against the test white noise sequence, the spectrum of A
�
AC

has no significant frequency content above the estimated noise level; the apparent

peak at 884 Hz is too close to maxη̂ to be considered significant. The aft-cone

fluctuations can therefore be considered broadband and random, within the 5 kHz

bandwidth. The same observation holds for the column centroid periodogram in

Figure 6.24, and the row centroid component in Figure 6.23 appears to be noise.

From the power spectrum estimates of the full A
�
FF

and fore-cone A
�
FC

areas in

Figures and 6.14 6.18, it can be concluded that the distinct frequency peaks of 740,

835, and 50 Hz are associated with the shock separated flow in the fore-cone region,

while the flow downstream of the shock intersection is large scale and random within

the 5 kHz bandwidth.
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Figure 6.22: Power spectral density of aft-cone segment area fluctuation A
�
AC
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Figure 6.23: Power spectral density of aft-cone row centroid fluctuation x
�
cAC

.

Frequency [Hz]

P
S
D

[a
.u

.]

 

 

0 1000 2000 3000 4000 5000

×10−3

0

0.2

0.4

0.6

0.8

1

1.2
A

�

F F

η̂

max(η̂)

Figure 6.24: Power spectral density of aft-cone col. centroid fluctuation x
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6.6 Flowfield Motion Summary

Motion analysis of the double-cone isolated outer-shock contour across the en-

tire sequence revealed that the upper portion of the aft-cone bow shock undergoes

the most spatial change during the test time. The lower portion of the bow shock

moves to a lesser extent. Considerable motion was evident near where the sepa-

ration shock interacts with the bow shock; this motion includes both rotation and

translation. The motion analysis confirmed that the attached conical shock and

the point of separation were difficult to consistently capture, most likely due to a

misalignment of the schlieren system discussed in section 2.5.

The segmentation results from Chapter 3 were further partitioned into fore

and aft-cone regions using the shock intersection point detected in Chapter 5. Anal-

ysis of spatial motion showed that the motions of the flowfield as a whole, and the

aft-cone segment appear Gaussian. The motion of the smaller scale fore-cone seg-

ment is nearly linear, and has the largest extent of centroid motion in the three

flow partitions, consistent with observations in typical shock-wave/boundary-layer

interactions. Correlations showed that the dominant unsteadiness observed in the

sequence are due to fluctuations in the largely subsonic aft-cone region associated

with the detached bow shock. No significant correlations were observed in compar-

ing the fore-cone fluctuations to both the full flowfield, and the aft-cone region. This

suggests that fore-cone motion, although more organized, occurs at a much smaller

scale.
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It was demonstrated that true frequency content, distinct from artifacts of

signal processing or noise, can be recovered from segmentation data. The aft-cone

motion was shown to be broadband in frequency content from spectral estimation,

and large scale from motion analysis of the outer-shock structure. Definite frequency

content at approximately 50, 740, and 835 Hz was shown to exist in the fore-cone

region from peridogram estimations, and this motion was shown to be small scale

and organized from centroid motion analysis. Researchers have stated that one of

the most difficult aspects of simulating double-cone flows is accurate modeling of

the multiple length scales and the coupling of the shock- separation and shock-

interaction [43]. Due to the inherent complexity of the flowfield, and lacking high-

speed surface instrumentation, we are not presently able to draw definite conclusions

about the source of these frequencies, other than their association with the shock-

separated flow on the fore-cone.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

The analysis of large schlieren data sets has been recast as a computer vision

problem, using a unique and interdisciplinary approach. The complex double-cone

sequence was used as a testbed for the development and application of vision-based

data extraction and measurement of features and flow structures of interest. Success

rates of the techniques presented here when applied to a noisy sequence, with fea-

tures at small spatial resolution, implies the methodology can be applied to classic

or degraded data sets, and promises to produce better quantitative results given

sequences with higher resolution and greater temporal uniformity of illumination.

The application of computer vision techniques has yielded physical information from

the schlieren sequence that was previously difficult, or not possible, to obtain. Em-

phasis has been given to vision techniques and approaches which apply not only to a

broad spectrum of schlieren sequences, but also to shadowgraph visualizations and

other flowfield imaging results. Computer vision analysis provides a natural and

meaningful extension to existing data analysis capabilities.

Vision techniques were used to describe linear structures in schlieren sequences.

Using physical rules as prior knowledge, a classifier was developed to extract aero-
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dynamic features of interest. Image representations were used which allowed for

incorporation of rules which the flow structure needed to obey to be a reasonable

candidate for a shock or contact surface, eliminating a random line fragment from

consideration. Over a noisy sequence of 5,000 images, separation shock wave and

contact surface angles in a small region of interest were measured at each frame with

nearly 97% and 94% success rates, respectively. Results were substantiated by ex-

tracting measurements across accumulator grids at two scales. Final measurements

were taken from the finest resolution distribution, subject to a similar observation at

a coarser scale. A concise description of this technique is presented in reference [78].

Feature detection algorithms from computer vision have been used to define,

localize, and track structures that occur on shock contours. Grayscale feature de-

tection methods can be spurious, have difficulty measuring large scale structures,

and may not allow for incorporation of expert knowledge in a manner that can

be used to uniquely define shock structures of interest from a fluid mechanics per-

spective. Features based on curvature offer an inherent localization to structures

of interest on shock contours, and the curvature properties may define points of

interest directly. The CSS method was modified; signed curvature was retained and

no thresholding was employed to provide a low-level canonical description of shock

contours. Features were defined by constructing their definitions through imple-

mentation of a knowledge base rather than by employing an arbitrary threshold,

which lacks physical meaning. This allowed the hard definition (as opposed to a

potential probable correlation) of a sharp model tip and a shock intersection re-

gion, which changes appearance through the test time, to be localized and tracked.
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Results were localized through scale, and a final update was performed using a sep-

arate metric. Feature uniqueness circumvents the correspondence problem, which

justifies its use as a tracking method. Multiple failure instances were accounted for

when designing the detection algorithm to handle potential false representations of

the shock contour based on fluid dynamic rules. Strong violations of the knowledge

base rejected physically impossible image representations, and an example of a weak

violation that was missed by the knowledge base was shown. This resulted in a ro-

bust semi-supervised method necessary for the evaluation of large data sets which

is summarized in [79].

The double-cone model appeared still from examining the image sequence;

the implementation of the algorithm provided a quantitative confirmation of model

stillness. Motion of the shock intersection point was evident from human inspection

of the sequence. The application of a feature detection and tracking technique from

computer vision methods provided a quantitative measurement of the movement and

revealed a definite pattern of motion. This motion correlates directly to oscillations

in peak heating observed on the aft-cone surface in previous computational studies of

the double-cone. Due to the techniques developed here and the analysis performed,

model motion can be ruled out as a cause of flow unsteadiness.

The shocked flowfield was isolated using image segmentation. This segment

was further partitioned by the detected shock intersection point. This grouped

the flowfield into the fore- cone region, which contains the shock-wave/boundary-

layer interaction and the aft-cone region, which contains the region downstream of

the shock intersection associated with the detached bow shock and the supersonic
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jet along the model surface. Motion analysis and power spectral estimates were

performed on all three segments. It was shown that the bulk of the unsteadiness

observed in the double-cone sequence is due to large scale random motions of the

aft-cone flow. The shock-separated flow region occurs on a smaller spatial scale

than the either the bulk or the aft-cone flow, but is strongly organized and appears

to contain frequency content at approximately 50, 740, and 840 Hz. The analysis

holds within the 5 kHz bandwidth. Lacking high-speed surface instrumentation, it

is difficult to attribute these frequencies to anything other than the gross motion of

the shock-separated flow, or to apply more advanced spectral estimates and signal

recovery methods to better isolate the spectral peaks from potential noise sources.

The motion analysis and power spectral density estimates performed on the

segmentation results and its sub-partitions show that image partitioning of a schlieren

sequence into physically meaningful events can permit a measurement of flow un-

steadiness. It can also provide for motion analysis and correlations which are not

possible to achieve through traditional surface instrumentation. Small segmented

regions can be more sensitive to noise than larger areas. This is simply a function of

image resolution. Future benchmark data sets, coupled with high-speed surface in-

strumentation that was lacking in this study, can be used to calibrate segmentation

methods as a means of measurement.
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7.2 Original Contributions

• Computer vision-based tools have been developed that can be used to ana-

lyze supersonic schlieren data. To the author’s knowledge, this is the first

application of computer vision to large schlieren data sets.

• A method and means for recognizing and classifying oblique structures was

developed. A separate methodology was designed to define, localize, and

track key features on shock contours. The methods enable automation of

the interpretation of large image sequences, adding quantitative statements to

qualitative human inference.

• It has been demonstrated that image segmentation can be used to partition

and label flowfields providing information that was not previously possible to

obtain, such as flowfield motion correlations and spectral content.

• General methodologies for automatically identifying and classifying common

flow structures and features have been developed so that the approaches used

here may be applied to other schlieren and shadowgraphy data.

• The integration of a computer vision approach with compressible flow visual-

ization data provides a future direction for analyzing and understanding large

data, as such tools are necessary.
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7.3 Directions for Future Work

Researchers are capable of acquiring thousand of frames of data for a given test

sequence. This research has shown that computer vision-based analysis is viable,

and should be used to better understand unsteady flows. Optical data can provide

insight into mechanisms which surface instrumentation may not. Vision is a rapidly

evolving field, and not yet ready to be applied without a significant understanding of

the discipline. Computer vision has had significant impacts on medical imaging and

understanding through cooperation between vision and medical researchers; vision

has the potential for a similar impact on schlieren and shadowgraph understanding.

For example, Piponniau et al. [80] proposed a mechanism for large scale motion

of the separation bubble in shock-wave/boundary-layer interactions through mass

drain across the discriminating streamline. Given a sequence with sufficient contrast,

segmentation can be used to measure not only the time scale, but also the length

scales of separation length and bubble height directly from the optical data.

Application of these techniques to sequences obtained with modern cameras

can yield significantly improved results in one of two ways: a nearly three-fold

resolution increase is possible at the same sampling frequency of 10 kHz used in

this study, or similar spatial resolutions to the sequence used here can be acquired

at over 70 kHz. Larger framing rates are possible still (1 MHz), but at the cost of

decreased resolution (128 x 16) and should be used to study smaller scale phenomena

with simpler flow structures. Larger resolution data will increase the limiting scale

at which flow phenomena can be observed. This increased scale can provide more
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accurate segmentation results, and a better approximation to contours, edges, and

lines in images. Larger scale will also increase the motion of detected features,

which would provide a larger domain over which spectral analysis of feature motion

would be appropriate. Physical scale may also be increased by a lens with a larger

magnification factor, but at the cost of viewing the entire flowfield.

A problem that is often encountered in all areas of vision (including this re-

search), is the lack of a ground truth that can be used to benchmark results. Mul-

tiscale analysis can mitigate this effect by providing confirmation of measurement

across scale, and should be used whenever possible. Modern segmentation meth-

ods and edge detection schemes are typically benchmarked against the “Berkeley

Segmentation Database” [81]. This database was created to provide human marked

ground truths on a set of test images, as it is largely human interpretation that

vision aims to reproduce. The test images were marked by hand by several hundred

participants, and results were combined for each image. Thicker lines represent what

more humans marked as a line or region, as interpretation of scene can be subjec-

tive. Corner and feature detectors are similarly ground truthed against specific sets

of images, where locations of corners are known.

Ground truth data sets should be created for schlieren and shadowgraph anal-

ysis. Ideal experiments would be simple two-dimensional geometries with analytical

solutions, or computational solutions that can be easily obtained. These could in-

clude a wedge pitching during test time, and a circular cylinder during tunnel start.

Mach number variation during these tests would also be helpful. High-speed imaging

with moderate resolution could benchmark the linear feature, shock extraction, and
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feature detection methods used here. Initially, high resolution would be preferable

over framing rate to study algorithm performance over a wide range of spatial scales.

Synthetic schlieren generated from numerical studies could be useful in benchmark-

ing performance against “noise.” For more complex phenomena, it is better to begin

with single images that are hand-marked by multiple researchers, so as to gather a

consensus in expert knowledge against which to benchmark.

The effects of optical integration across the test section on image quality can

be mitigated when two-dimensional test articles are used, or more appropriately,

focusing schlieren techniques can limit the effects of boundary layer sidewalls. Fo-

cusing schlieren has been successfully applied at AEDC Tunnel 9 [82], and should

benefit from vision-based analysis. High frequency surface instrumentation should

also be employed. With knowledge of some of the frequency content, the use of

modern signal recovery and parametric spectral estimation methods can be used to

further process vision-based results and better interpret their frequency content.
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Appendix A: Extensions of Salient Point Identification Methodology

The generality of the modified curvature scale space (CSS) method developed

in Chapter 5 for identification of salient points on isolated shock contours is illus-

trated here. The techniques are applied to a still schlieren image of a “waverider” (a

body designed for hypersonic flight that generates lift by capturing the shock wave

created underneath it) in order to identify the foremost point on a bow shock. Fig-

ure A.1 shows a shock forming on a three-dimensional waverider installed in Arnold

Engineering Development Center Hyper Velocity Wind Tunnel 9 with a nominal

freestream Mach number of 8. Details of the test are given by Norris [83]. The

foremost region of the waverider has been cropped resulting in an 376 x 226 pixel

image in Figure A.1.

Figure A.1: Waverider test image.

Figure A.2 shows the shock contour extracted after applying a diffusion-type
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bilateral filter [46]. The shock contour was extracted using the methods discussed

in Chapter 4. The foremost point on the shock is represented by the minimum in

curvature. As the contour is simple, the knowledge base simply comprises the global

minimum in contour curvature, given by Equation A.1

ptip (s) = argmin
s

(κ (s, σMAX)) : s ∈ Γ. (A.1)

Curvature was calculated using four scales of σ =12, 8, 6 and 4 due to long contours

in the image and the width of the primitive structure.

Figure A.2: Waverider contour image.

Curvatures at the largest and smallest scale are shown in Figure A.3. The

minimum in curvature, corresponding to the foremost shock position, is plotted on

the grayscale image in Figure A.4. The final solution was updated to the nearest

maximum in contour evolution distance large scales as in Chapter 5, due to the large

aperture needed to define the nearly circular contour segment. Figure A.4 shows that

the foremost point on the bow shock has been identified well, thus demonstrating

the general applicability of the detection method.
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Figure A.3: Waverider contour curvature κ (σ, s).

Figure A.4: Bow shock identification with modified CSS method. Fine scale CSS
point labeled �, final assignment in �.
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Appendix B: Performance Estimate of Salient Point Detection

In general, a traditional uncertainty analysis (e.g. the method of Coleman

and Steele [84]) of computer vision-based algorithms designed to perform on data

where expert knowledge is needed for interpretation is challenging. There is no ob-

jective metric, only judgment by an expert, with which to judge how well schlieren,

ultrasound, or magnetic resonance images represent the true scene. Feature detec-

tion methods discussed in Chapter 5, excluding our modified curvature scale space

(CSS) method, have been benchmarked against known ground truths in the cited

references. The issue of detection accuracy here is related to contour distortion;

that is, how well the contour represents the underlying structure. While direct

comparisons cannot be made without a ground truth, the effect of noise on contour

distortions of a known shape, and how this affects the feature detection methodology

developed in Chapter 5 can be studied.

A 256 x 256 grayscale image with a square in the lower quadrant was con-

structed as a test image. The square was chosen since the Canny edge detector

has difficulty at 90◦ corners due to ambiguity of the gradient direction, which may

exclude the true corner from the edge map. The image was corrupted with zero-

mean Gaussian noise with a variance of 0.025, and multiplicative speckle noise with
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a variance of 0.04. Closeups of the original and noise corrupted shapes are shown

in Figure B.1, each image is 32 x 32 pixels.

(a) Test square. (b) Gaussian noise corrup-
tion.

(c) Speckle noise corruption.

Figure B.1: Test shape and effects of noise corruption. Each image is a 32 x 32 pixel
closeup.

Edges and contours were extracted in the same manner used to isolate the

outer-shock contour discussed in Chapter 4. The contours extracted from the images

in Figure B.1 are shown in Figure B.2, where significant distortions are evident under

both Gaussian and speckle noise.

(a) Test contour. (b) Gaussian deformed con-
tour.

(c) Speckle deformed contour.

Figure B.2: Test shape and deformed isolated contours. Each image is a 32 x 32
pixel closeup.

Following contour extraction, the corner locations smin in the images shown

in Figure B.1 were found using Equation B.1 to search for the global minimum in
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curvature that defines the corner in the image

ptip (s) = argmin
s

(κ (s, σMAX)) : s ∈ Γ. (B.1)

Scales σ of 6, 4, 2 and 1.5 were used to calculate curvature. As the true corner

may be missed by the contour, the final location was updated to the closest Harris

response R using Equation B.2 below

ptip = argmin
j

(�R (xj, yj)− Γo (smin) �) : (xj, yj) ∈ I. (B.2)

Sub-pixel localization was not performed, as a pixel-level comparison to the shock

contour features is desired.

The error was defined as the distance between the known and detected corner

locations. The algorithm applied to the distorted contours in Figure B.2 matched

the true corner exactly. As noise generation is not repeatable, the test shape was

corrupted with Gaussian and speckle noise 500 times each. Outliers were removed

from the resulting error distributions, which give an average error of 0.6157 and

0.8483 pixels for the additive and speckle noise, respectively. From this analysis, it

can be concluded that the salient point identification method developed in Chapter

5 is detected within an accuracy of less than one pixel at the level of pixel-scale

localization. It should be noted that this error estimation is based on the pixel-

level assignment of a feature, and may be further reduced in cases where sub-pixel

localization is appropriate.
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