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Stochastic control problems arise in many fields. Traditionally, the most

widely used class of performance criteria in stochastic control problems is risk-

neutral. More recent attempts at introducing risk-sensitivity into stochastic control

problems include the application of utility functions. The decision theory com-

munity has long debated the merits of using expected utility for modeling human

behaviors, as exemplified by the Allais paradox. Substantiated by strong experimen-

tal evidence, Cumulative Prospect Theory (CPT) based performance measures have

been proposed as alternatives to expected utility based performance measures for

evaluating human-centric systems. Our goal is to study stochastic control problems

using performance measures derived from the cumulative prospect theory.

The first part of this thesis solves the problem of evaluating Markov decision

processes (MDPs) using CPT-based performance measures. A well-known method

of solving MDPs is dynamic programming, which has traditionally been applied

with an expected utility criterion. When the performance measure is CPT-inspired,



several complications arise. Firstly, when solving a problem via dynamic program-

ming, it is important that the performance criterion has a recursive structure, which

is not true for all CPT-based criteria. Secondly, we need to prove the traditional op-

timality criteria for the updated problems (i.e., MDPs with CPT-based performance

criteria). The theorems stated in this part of the thesis answer the question: what

are the conditions required on a CPT-inspired criterion such that the corresponding

MDP is solvable via dynamic programming?

The second part of this thesis deals with stochastic global optimization prob-

lems. Using ideas from the cumulative prospect theory, we are able to introduce

a novel model-based randomized optimization algorithm: Cumulative Weighting

Optimization (CWO). The key contributions of our research are: 1) proving the

convergence of the algorithm to an optimal solution given a mild assumption on

the initial condition; 2) showing that the well-known cross-entropy optimization al-

gorithm is a special case of CWO-based algorithms. To the best knowledge of the

author, there is no previous convergence proof for the cross-entropy method. In

practice, numerical experiments have demonstrated that a CWO-based algorithm

can find a better solution than the cross-entropy method.

Finally, in the future, we would like to apply some of the ideas from cumulative

prospect theory to games. In this thesis, we present a numerical example where

cumulative prospect theory has an unexpected effect on the equilibrium points of

the classic prisoner’s dilemma game.
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Chapter 1

Overview

1.1 Motivation

Many relevant real-life problems can be modeled as stochastic systems (e.g., weather,

traffic patterns, financial markets, communication systems). A system could be

stochastic for many reasons. For one, the randomness could be introduced by inac-

curate sensors (i.e., measurement error). Sometimes, we lack sufficient information

about the system, and model our ignorance by intentionally incorporating random-

ness in the model (i.e., model error). Quantum mechanics support the idea that

uncertainty is part of the natural order of the universe. For whatever the reason

might be, studying stochastic systems is important for solving many real-life prob-

lems from various fields. This thesis will try to tackle a few problems in stochastic

systems that are inspired by recent advances in decision theory. More specifically,

we use some of the latest performance measures suggested by the decision theory

community to evaluate the performances of stochastic systems. These novel prob-

lems are particularly suited for studying human-centric systems (e.g., war games,

consumer behaviors, medical decisions).
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1.1.1 Stochastic Optimal Control Problems

“The concept of control can be described as the process of influencing the

behavior of a dynamical system to achieve a desired goal. If the goal is to

optimize some payoff function (or cost function) which depends on the

control inputs to the system, then the problem is one of optimal control.”

- Wendell H. Fleming and H. Mete Soner [38]

If a stochastic system has a control input along with a performance criterion, then

the resulting problem is a stochastic optimal control problem. Stochastic optimal

control problems have many applications in engineering. The evidence of their

successful applications can be found in a wide-range of fields (i.e., robotics, route

planning, space exploration). In finance, the seminal paper by Black & Scholes in

1973 [14] provides insight into the management of risks, which leads to an equation

for valuing options.

There are three approaches for solving stochastic optimal control problems,

namely dynamic programming (Hamilton-Jacobi-Bellman equation), the maximum

principle, and the martingale and convex duality approach [68]. Dynamic pro-

gramming, most popular in the analysis of controlled Markov processes, provides

sufficient conditions for optimality in its verification theorem, stating that if there

exists a policy satisfying the Hamilton-Jacobi-Bellman PDE, then it is an optimal

policy. The essence of dynamic programming is Bellman’s optimality principle,

which roughly says if one knows an optimal policy for an entire period, then start-

ing from any time in that period and at a state along an optimal trajectory, the
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same policy is still optimal. This insight leads to the realization that decomposing

the optimal value function into two parts (i.e., immediate value and value-to-go) is

the key to obtaining an optimal policy. Intuitively, one can obtain the Hamilton-

Jacobi-Bellman PDE by first considering the discrete time Bellman equation with

time step h, dividing both sides by h, and then taking h to zero. One key feature

of dynamic programming is that a solution of the Hamilton-Jacobi-Bellman PDE

is a function of the state. In practice, this means the computational complexity

of dynamic programming grows exponentially as the number of states increases,

leading Bellman to coin the term “curse of dimensionality”. On the other hand,

a state-feedback policy can be found easily once a solution is obtained, which can

be implemented simply as a lookup-table. Fleming & Soner [38] and Bertsekas [8]

are excellent textbooks for a comprehensive review of dynamic programming in the

controlled Markov process setting. Alternatively, the maximum principle provides

necessary conditions for optimality. The stochastic maximum principle is similar in

spirit to its deterministic counterpart. For the interested reader, Haussmann [44],

Peng [67], Yong and Zhou [89] are excellent sources for a further investigation into

this topic. The deterministic maximum principle can be intuitively described as

perturbing an optimal control over an interval ε. By taking the first order Taylor

approximation of the corresponding value function with respect to ε and sending

ε to zero, we obtain a variational inequality. Combining the variational inequality

with the co-state equations, the deterministic maximum principle is complete. The

stochastic maximum principle differs from its deterministic counterpart in its usage

of forward-backward stochastic differential equations to describe the dynamics of

3



its state and adjoint variables. The martingale approach, which was originated by

Pliska [70] and gained popularity in the mathematical finance community, divides

the problem into two subproblems: 1) Find the optimizer for the problem at a fixed

terminal time T. If the cost function is convex, then the problem of finding the

optimizer for the problem can be reduced from an infinite-dimensional problem to

a finite-dimensional problem by using convex duality. 2) Use the martingale Repre-

sentation Theorem to extract the corresponding optimal control. In Pliska’s original

paper, convexity of the cost function is an important assumption in proving the ex-

istence of the solution to the dual static problem. Pham [68] has a recent discussion

on this approach.

1.1.2 Dynamic Programming

Of the three approaches we mention above, dynamic programming has proven to be

the most popular method for solving dynamic stochastic optimization problems with

controlled Markov processes. Numerically, dynamic programming can be applied

using either value iteration or policy iteration. In value iteration, the algorithm could

start from an infeasible1 value function and converges to a feasible one. On the other

hand, applying policy iteration results in value functions that are feasible. Perhaps

the most important reason for dynamic programming’s popularity is its production

of a feedback policy, which is advantageous for storage, execution (i.e., a table

lookup) and robustness. As shown in Bertsekas [8], the breadth of problems that

can be solved using dynamic programming includes inventory control, deterministic
1A value function is feasible if it is yielded by a feasible policy.
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scheduling problems, machine repair, reachability of ellipsoidal tubes, and pursuit-

evasion games. Problems presented in his book all have the following flavor: 1) an

underlying discrete time dynamic system; 2) a cost function that is additive over

time. The natural question to ask for an inquisitive mind is: why do we want to

evaluate performances using expectation? If our goal is to predict, in particular,

what a human would do in many situations, then expected value contradicts much

empirical evidence. Hence, in applying dynamic programming to human decision

making processes, we need to have a model that agrees with empirical data. The

discussion of the merits of various classes of performance criteria is the focus of

the next section. This thesis deviates from the standard dynamic programming

approach by updating the dynamic programming framework with a more general

class of performance criteria. A host of issues arise from doing this: does a dynamic

programming equation even exist?

1.1.3 Performance Criteria: From Expected Value to Prospect The-

ory

Using expected value as a performance criterion has been a long tradition in many

engineering and scientific fields. Why is that? Is it only out of its mathematical

convenience (i.e., linearity)? In this section, we will trace the development of the

expected utility theory and highlight some of its deficiencies. For a more in-depth

analysis of the development in the area of prospect theory, the interested reader can

refer to [86], which the discussion below draws many facts and examples from.
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When given a dynamic control problem, we would like to use an appropriate

performance measure for each situation. Hence, understanding its implications is

of paramount importance. Using the wrong performance measure might yield an

ineffective policy. Each performance criterion encapsulates our preference order-

ing of the potential outcomes2 due to our action/decision. In other words, if we

know we prefer outcome L1 to L2
3 , then we must use a performance criterion that

reflects this preference (i.e., ρ (L1) > ρ (L2)). On the other hand, we would also

like the implications of such a preference ordering to be sensible for the problem at

hand. For example, in the expected value case, de Finetti [27] (also see a survey

by Fishburn [35] for the axiomatization of expected value) shows that the existence

of subjective probabilities is equivalent to transitivity, monotonicity and additiv-

ity. In addition, the existence of a certainty equivalent (i.e., deterministic) value

for each possible outcome guarantees the no-arbitrage condition for the preference

system. In other words, expected value performance criteria have properties that

we deem rational (i.e., transitivity, monotonicity, and additivity), and lack some

undesirable attributes (e.g., arbitrage). However, expected value does have some

limitations. One particular limitations that spurred the search for its alternative,

expected utility, is best demonstrated in the St. Petersburg paradox4. The paradox

is an example of a game having an infinite certainty equivalent value (i.e., the price

one is willing to pay) under expected value; However, in practice, people often are

only willing to pay a finite amount for the game. The paradox was resolved by
2An element of the probability space is usually called an outcome.
3L1 is a short-hand notation for lottery 1, not to be confused with the function space.
4see appendix on prospect theory
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Bernoulli in 1738 [7] by suggesting that people do not evaluate outcomes by their

objective values, but rather by their utility. This realization started the new field

of expected utility theory.

Expected utility as a performance criterion still remains popular. Perhaps

such success can be attributed to its axiomatization by von Neumann & Morgen-

stern [85]. von Neumann provides the necessary and sufficient conditions for using

maximization of expected utility as a function for ordering preferences. Fishburn

[34] made updates to von Neumann’s work in the 1970s. These conditions include

completeness, transitivity, continuity, and substitution. Despite many justifications

for using expected utility, it suffers from a well known contradiction with empirical

observations demonstrated by the Allais paradox [2], where most people violate the

substitution axiom implied by expected utility theory. Lesser known but more re-

cent discussions on the empirical violations of expected utility can be found in [82]

and [71].

Cumulative prospect theory resolves all of the paradoxes mentioned above,

and has stronger empirical support compared with expected utility theory. There is

also a strong behavioral foundation found in its axiomatization [19]. A key feature

of cumulative prospect theory is probabilistic sensitivity. This is different from

the traditional approach of outcome sensitivity in the expected utility theory. We

will first demonstrate, via an example, that risk-aversion can have an equivalent

representation outside of expected utility theory.

Example 1. This example is from [86], which demonstrates that risk-sensitivity

7



a b c d e
% outcome is 100 0.10 0.30 0.50 0.70 0.90
% outcome is 0 0.90 0.70 0.50 0.30 0.10

Certainty Equivalent Value 1 9 25 49 81

Table 1.1.1: Example: Data-Equivalence

can be represented either as outcome sensitivity or probability sensitivity. We are

given five certainty equivalent (i.e., indifference) values and probability pairs.

From the table above, we see that the value a person places on an outcome

(e.g., a,b,c,d or e) might not be a linear evaluation. In other words, in prospect b,

0.30× 100 + 0.70× 0 = 30 6= 9.

We can of course find a utility function U such that

∑
U (x) p (x)

agrees with the values in the table above, where p is a probability mass function

and U (·) is a utility function. This operation can be equivalently achieved by using

a probability weighting function w,

∑
w (p) x,

where instead of transforming the outcomes, we are now transforming the probability

weights (see Figure 1.1.1).

Remark 1. In the example above, we are only trying to demonstrate that risk-
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Figure 1.1.1: Data Equivalence

sensitivity can be expressed equivalently either as outcome sensitivity or probability

sensitivity. We want to emphasize the fact that w(p) : x → [0, 1], transforms

the probabilities based on the entire probability mass function. In other words,

w : P → P , is a mapping from P , the space of probability mass functions, to P .

The example above should convince the reader that every utility function has

an equivalent probability weighting function. This, of course, is not the full story.

If probability weighting is only equivalent to expected utility, then we would not

be so interested in it. After all, if probability weighting functions can predict only

as well as expected utility, we will not need to advance risk-sensitive performance

measures beyond utility theory. Several sources have demonstrated that in many

cases probability weighting gives different predictions than those given by outcome

weighting (i.e., expected utility). Onay and Öncüler [66] demonstrate the predic-

tions offered by outcome based risk-aversion are different from that of probability

weighting. More importantly, the predictive power of the probability weighting

approach is confirmed by their experiments.
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1.1.4 Stochastic Optimization with Probability Weighting Functions

Stochastic optimization is another field where a novel approach is inspired by cu-

mulative prospect theory (CPT). In CPT, the probability weighting function has

the effect of weighting rare good-news events more than other events. In stochastic

optimization, if we can apply this shift in weights iteratively to sampled distribu-

tions, we can intuitively understand how we might converge to an optimal value.

There are a few desirable properties for stochastic optimization algorithms: 1) we

would like the algorithms to increase, in expected value, monotonically; 2) once an

optimal solution is obtained, we would like it to be robust again perturbations. As

the reader will see in Chapter 3, our method, cumulative weighting optimization

(CWO) exhibits both of these properties. We also will develop CWO-based numeri-

cal algorithms and present their simulated results in the same chapter. Interestingly,

the well-known cross-entropy method is a special case of CWO-based algorithms.

In fact, we are able to improve the performance of the cross-entropy method by

viewing it as such.

1.1.5 Outline

The thesis is organized by chapters. Chapter 2 will prove the suitability of dynamic

programming equations for non-convex performance measures, which include CPT-

based criteria. We will present both the finite horizon and infinite horizon cases.

In addition, we will also analyze the structure of optimal policies yield by CPT-

based criteria and compare them with other risk-sensitive performance criteria. In

10



Chapter 3, we will provide convergence proofs for cumulative weighting optimization

methods. Numerical examples will be provided to demonstrate the performance of

our algorithms. In the last chapter, we will discuss our contributions and future

work.
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Chapter 2

Dynamic Programming with Non-Convex Risk-Sensitive Measures

Dynamic programming with risk-sensitive performance measures has applications in

many fields (e.g., operations research, finance, control systems). Historically, risk-

sensitive performance measures are represented using expected utility functions.

More recently, literature on dynamic performance (i.e., risk or reward) measures

has inspired an alternative approach to risk-sensitive performance evaluation. The

dynamic performance measure framework is a generalization of the classical work

using expected value. One limitation of this approach is that it has only been devel-

oped for coherent performance measures, which exclude a large class of important

non-convex performance measures (e.g., cumulative prospect theory (CPT) based

performance measures). We remedy this limitation by proving the optimality of the

dynamic programming equation for non-convex performance measures.

2.1 Introduction

Dynamic programming, introduced by Bellman [5], is a dynamic optimization method.

It has been the subject of intense research in the past five decades; see for ex-

ample [6, 10, 15, 32, 63, 48, 73]. Dynamic optimization problems modeled by

controlled Markov processes and solved via dynamic programming are commonly

referred to as Markov decision processes (MDPs). Researchers have developed tech-

12



niques to lift MDPs’ curse-of-dimensionality (e.g., approximate dynamic program-

ming [11, 72, 9]), which enable the application of dynamic programming in many

fields (e.g., operations research, finance, control systems).

In many applications, risk-sensitive measures are more appropriate than risk-

neutral measures [52, 56, 57]. In standard MDPs, the performance measures are

frequently expressed as expected utility functions that are risk-sensitive [23, 17, 36,

37, 33, 46, 47, 24, 25]. For example, many problems evaluate their outcomes by

using the performance measure E [u(X)], where u is a risk-sensitive utility function

(e.g., exponential), and X is a random variable representing the reward1. A notable

feature of optimal policies, induced by the risk-sensitive performance measures, is

their robustness with respect to modeling errors [30].

An important class of risk-sensitive performance measures is coherent risk

measures, of which E [u (X)], where u (·) is a convex function, is a special case

[3, 28, 40, 41, 64, 79, 78]. Other well known examples include mean-semideviation

and conditional value-at-risk. An important property of coherent risk measures is

convexity. Recently, their dynamic counterparts have received great interests in the

literature [74, 20, 31, 39, 43, 22, 21, 4, 60]. In many problems, convex performance

measures are not the best option for measuring the desirability of outcomes. A

well-known example of a non-convex performance measure is suggested by Tversky

and Kahneman in the cumulative prospect theory (CPT) [83]. Although CPT had

its beginning in the 1990s, its incorporation into dynamic systems is still nascent.

Recently, He and Zhou have studied [45] a portfolio choice problem with a non-
1Reward is often the sum of per-stage rewards.
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convex performance measure. The problem maximizes the terminal wealth of a self-

financing portfolio2 driven by a financial market3 that is uncontrollable from the

perspective of the investor (see [45], Eq. 3). Often, the financial market is assumed

to be a Markov semimartingale and has a nonempty set of equivalent martingale

measures. Under these assumptions, one can apply the martingale approach (see

[68], Chapter 7) to arrive at the desired analytical results. These results become

more difficult, if not impossible, to obtain if these assumptions are eliminated. This

chapter will study both convex and non-convex performance measures (e.g., CPT-

inspired reward measures) when the underlying model is a discrete-time controlled

Markov process.

The goal of this chapter is to address, when the underlying system is mod-

eled as a controlled Markov process, the question: How can we generalize dynamic

programming to both convex and non-convex performance measures? An approach,

suggested by Ruszczyński [76], is based on dynamic risk measures and risk transi-

tion mappings (see [77, Definition 5]). Assuming a sequence of time-consistent4 risk

measures is given (see [76, Theorem 1] ), he concludes that if the corresponding one-

step dynamic risk measures satisfy the four assumptions of coherent performance

measures, namely convexity, monotonicity, translation equivalence, and positive

homogeneity, and an equivalent Markov risk transition mapping exists for each one-

step dynamic risk measure, then a dynamic programming equation exists for the

dynamic optimization problem. Unfortunately, since CPT-inspired measures have
2This is just a constraint on the action space of the MDP.
3A special case of a controlled semi-martingale Markov process.
4Time-consistency is key for rewriting the risk measures into their nested forms, which can be

easily optimized via dynamic programming.
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nonlinear weighting functions, they do not satisfy some of these assumptions.

We derive the dynamic programming equation for a class of non-convex reward

measures (e.g., CPT-inspired reward measures). Our work has many parallels with

that of Ruszczyński; however our goal is to generalize his approach to non-convex

reward measures. Before we proceed, we will review some background material

in controlled Markov processes, CPT, reward transition mappings, and dynamic

reward measures.

2.2 Background

In the following sections, we use the following notations:

• (·)+ := max(0, ·); (·)− := −min(0, ·);

• P(·): the set of probability measures defined on ·.

2.2.1 Discrete-Time Markov Control Model

We are interested in the case when the underlying system dynamics can be modeled

as a discrete-time controlled Markov process. Let us first review the necessary

technical background for our discussion. We restate the definition from [48] for

the reader’s convenience. A Markov control model is a five-tuple, (X,A, {A(x)|x ∈

X}, Q, r), consisting of:

• a Polish space X, called the state space and whose elements are referred to as

states;
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• a Polish space A, called the control or action set;

• a family {A(x) ∈ A|x ∈ X} of nonempty measurable subsets A(x) of A, where

A(x) denotes the set of feasible controls or actions when the system is in state

x ∈ X, and with the property that the set

K := {(x, a)|x ∈ X, a ∈ A(x)} (2.2.1)

of feasible state-action pairs is a measurable subset with respect to the product

σ-algebra of X× A (i.e., σ(X× A));

• a stochastic kernel5 Q(·|x, a) on X, where (x, a) ∈ K;

• a measurable function r:K× X → R called the per-stage reward function.

Remark 2. We can make A(x) and r time-varying, denoted by At(x) and rt, by

considering the state space X′ := X ∪ [0, . . . , T ].

Polish spaces include finite-dimensional real spaces, which are important for many

real-life applications (e.g. dynamic pricing). The following definition is useful for

describing the set of feasible deterministic and randomized policies.

Definition 1. We denote by F the set of all measurable functions f : X → A

such that f(x) ∈ A(x) for all x ∈ X. In addition, we let Ψ denote the set of all
5A stochastic kernel on X given Y is a function P (·|·) such that
1. P (·|y) is a probability measure on X for each fixed y ∈ Y ;
2. P (B|·) is a measurable function on Y for each fixed B ∈ B(X).
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stochastic kernels ψ in P(A|X), the set of probability measures on A given X, such

that ψ(A(x)|x) = 1 for every x ∈ X.

We track a system’s history by doing the following: for each t = 0, 1, . . . ,

define the space Ht of admissible histories up to time t as H0 := X, and

Ht := Kt × X = K×Ht−1, ∀t = 1, 2, . . . .

The most general policies we investigate are randomized policies, which are defined

below.

Definition 2. A randomized policy is a sequence π = {πt, t = 0, 1, . . . } of stochastic

kernels πt ∈ P (A|Ht) satisfying the constraint

πt(A(xt)|ht) = 1, ∀xt ∈ X, ht ∈ Ht, t = 0, 1, . . . .

The set of all randomized policies is denoted by Π.

A special class of randomized polices is the class of randomized Markov poli-

cies.

Definition 3. A randomized policy, π ∈ Π, is a randomized Markov policy if there

exists a sequence of stochastic kernels ψt ∈ Ψ such that

πt(·|ht) = ψt(·|xt) = 1

∀ht ∈ Ht, t = 0, 1, . . . .
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The policy π is a randomized stationary policy if there is a ψ ∈ Ψ such that

πt (·|ht) = ψ (·|xt)

∀ht ∈ Ht, t = 0, 1, . . . .

We denote the sets of randomized Markov policies and randomized stationary

polices by ΠRM and ΠRS, respectively.

Furthermore, if there exists a sequence ft ∈ F such that ψt(·|xt) is the Dirac

measure concentrated at f(xt) for all t = 0, 1, . . . , then π is a deterministic Markov

policy, and πt := ft ∈ F. We denote the sets of all deterministic Markov policies

and deterministic stationary policies by ΠDM and ΠDS, respectively.

By fixing a Markov control model, an initial probability distribution v (e.g.,

a known initial state x0), and a randomized policy π, we obtain the probability

distribution evolution of a discrete-time Markov process. We denote the resulting

discrete-time Markov process and action sequence by {xπt } and {aπt } (i.e., aπt is a

random variable with probability distribution πt(·| {x0, . . . , xt})) respectively. For

ease of notation, we drop the process’s dependence on its initial condition, as it is

fixed unless stated otherwise. For the rest of the discussion, we are given a fixed

Markov control model.

2.2.2 Cumulative Prospect Theory (CPT)

Before introducing cumulative prospect theory, we will first introduce a useful defi-

nition.
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Definition 4. A good-news distribution, F̃ , of a random variable is defined as

F̃ (x) := 1− F (x) ,

where F (x) is the cumulative distribution function (CDF). Other names for this

distribution are: survival distribution, complementary CDF and reliability distribu-

tion.

Remark 3. The above definition should be altered if we are given a minimization

problem. In that case, a good-news distribution function should be the cumulative

distribution function itself, because smaller values are more favorable.

Another important element of CPT is probability weighting functions, which

are defined below.

Definition 5. A probability weighting function, w, is a continuous function from

[0, 1] to [0, 1].

Prospect theory was suggested in the 1970s by Kahneman and Tversky [59].

They were unsatisfied with the theory and suggested its improved version, cumula-

tive prospect theory (CPT), in the 1990s [83]. CPT asserts that the human decision

making process can be modeled by a utility function with the following characteris-

tics:

• The utility function has a reference point against which gains and losses are

measured;
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• The utility function is concave on gains and convex on losses (i.e., horizontal

S-shape);

• A probability weighting function that transforms the probability measure such

that a small probability is inflated and a large probability is deflated. For

example, a typical weighting function w : [0, 1] → [0, 1] is

w(y) : =
yγ

(yγ + (1− y)γ)
1
γ

,

where γ ∈ (0, 1) and y is usually the good-news distribution. This function

was originally presented in [83].

Definition 6. Given a probability space (Ω,F ,P), and random variables R and B

defined on it. A CPT performance measure has the following form:

ρ(R) : =

ˆ ∞

0

w+
(
P
(
u+
(
(R−B)+

)
> s
))
ds

−
ˆ ∞

0

w− (P (u− ((R−B)−
)
> s
))
ds, (2.2.2)

where w+ : [0, 1] → [0, 1] and w− : [0, 1] → [0, 1] are two continuous non-decreasing

functions. u+ : R+ → R+ and u− : R+ → R+ are two utility functions. The random

variable B represents the benchmark we measure the performance against.

The weighting functions used in a CPT performance measure are required to be

non-decreasing, which is not necessarily true for a probability weighting function.

We apply a CPT-inspired measure to evaluate the expected outcome of a game of
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dice in the example below.

Example 2. Cumulative Prospect Theory - Finite State Case with no Control:

Consider a game of dice. You roll a die with six possible outcomes {1, 2, 3, 4, 5, 6}.

If the outcome is even, you win an amount equal to the outcome; on the other hand,

if the outcome is odd, then you lose an amount equal to the outcome. Thus, the

payoffs are {-5, -3, -1, 2, 4, 6}. Furthermore, the payoffs are organized into gains and

losses. The probability of gains is derived by assuming the die is fair and written

as {0 : 1
2
; 2 : 1

6
; 4 : 1

6
; 6 : 1

6
}, which is read as the probability of winning 0 is 1

2
, the

probability of winning 2 is 1
6

and so on. On the down side, a similar calculation

leads to {0 : 1
2
;−1 : 1

6
;−3 : 1

6
;−5 : 1

6
}. Since the initial state of the die does not

matter in this case, the CPT expected value calculation is as follows:

Ṽ = u+
(
(2)+

)(
w+(

1

2
)− w+(

1

3
)

)
+ u+

(
(4)+

)(
w+(

1

3
)− w+(

1

6
)

)
+ u+

(
(6)+

)(
w+(

1

6
)− w+(0)

)
− u−

(
(−5)−

)(
w−(

1

6
)− w−(0)

)
− u−

(
(−3)−

)(
w−(

1

3
)− w−(

1

6
)

)
− u−

(
(−1)−

)(
w−(

1

2
)− w−(

1

3
)

)
= u+ (2)

(
w+(

1

2
)− w+(

1

3
)

)
+ u+ (4)

(
w+(

1

3
)− w+(

1

6
)

)
+ u+ (6)

(
w+(

1

6
)− w+(0)

)
− u− (5)

(
w−(

1

6
)− w−(0)

)
− u− (3)

(
w−(

1

3
)− w−(

1

6
)

)
− u− (1)

(
w−(

1

2
)− w−(

1

3
)

)
.

Here, we use different probability weighting functions for gains and losses,

namely w+ : [0, 1] → [0, 1] and w− : [0, 1] → [0, 1]. The two functions, u+ : R+ → R+

and u− : R+ → R+, are two utility functions. In this example, the reference point
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is assumed to be zero.

Remark 4. We presented in Eq. 2.2.2 the most general form of a CPT reward

measure. In the sequel, we will study various special cases of this reward measure.

For example, we are interested in the case when the rewards are strictly positive.

2.2.3 Reward Transition Mappings

In this section, we consider the Markov control model

(X,A, {A(x)|x ∈ X} , Q, r) .

The discrete-time Markov process resulting from applying the policy π and the cor-

responding action sequence are denoted by {xπt } and {aπt }, respectively. A standard

finite-horizon dynamic control problem has the following performance measure:

max
π∈Π

E

[
T−1∑
t=0

r(xπt , a
π
t , x

π
t+1) + rT (x

π
T )|x0

]
, (2.2.3)

where rT is a measurable terminal reward function. We would like to solve the

optimization problem

V ∗
T (x) := max

π∈Π
VT (x, π).

From [48], the corresponding dynamic programming equation is

vt(x) = max
δ∈P(A(x))

ˆ
X×A

(r(x, a, y) + vt+1(y))Q(dy|x, a)δ(da). (2.2.4)
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Remark 5. Under some assumptions (i.e., the existence of a measurable deterministic

selector), δ ∈ P(A(x)) in Eq. 2.2.4 can be replaced by δ ∈ A(x) to reflect the fact

that a deterministic optimal policy exists.

The right-hand side of Eq. 2.2.4 is a function of the current state x, the reward

function parameterized by the current state x (i.e., gx(a, y) := r(x, ·, ·) + vt+1(·) :

A × X → R), the transition probability Q, and the randomized control δ. Taking

one step further, we can define a function

σt (r(x, ·, ·) + vt+1(·), x, δ ◦Q(·|x, ·)) :=
ˆ
X×A

(r(x, a, y) + vt+1(y))Q(dy|x, a)δ(da),

and rewrite Eq. 2.2.4 as

vt(x) = max
δ∈P(A(x))

σt (r(x, ·, ·) + vt+1(·), x, δ ◦Q(·|x, ·)) .

The sequence, {σt, t = 0, . . . , T − 1}, is called the reward transition mappings

for Eq. 2.2.4. Before we can provide the definition for reward transition mappings,

we need to define the term δ ◦Q(·|x, ·) in the equation above.

Definition 7. Given a fixed current state x ∈ X and a randomized action δ ∈ P(A),

we denote the one-step state-action measure (see [18]) with respect to the Markov

control model by:

[δ ◦Qx](Ba ×By) :=

ˆ
Ba

Q(By|x, a)δ(da) By ∈ B(X) Ba ∈ B(A), (2.2.5)
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where Qx(a) := Q(·|x, a) : A → P(X) is the stochastic kernel parameterized by

x ∈ X.

Remark 6. The one-step state-action measure is a measure over X× A, which rep-

resents the uncertainty over the next state and the current action (i.e., we are

interested in randomized policies).

We need to define the space that contains δ ◦Qx, which was also mentioned in

Çavuş & Ruszczyński [18]. Given a probability space (X× A,B(X× A), P0), where

P0 is some reference probability measure, the space of p-integrable random variables

is denoted by V := Lp(X × A,B(X × A), P0), p ∈ [1,∞). Its dual space, V ′, is the

space of signed measures on (X × A,B(X × A)), which are absolutely continuous

with respect to P0 with their densities in Lq(X×A,B(X×A), P0), where q satisfies

the equation 1
p
+ 1

q
= 1. The reference measure, P0, should be chosen such that all

possible measures of the form δ ◦ Qx are in V ′. In the special case of a finite state

and control space, P0 can always be chosen to be uniform. We denote the set of all

probability measures in V ′ by:

M := {m ∈ V ′|m(X× A) = 1, m ≥ 0} .

Remark 7. The measure defined by Eq. 2.2.5 is an element of M.

The space V ′ (and thus M) is endowed with the Prokhorov topology (weak

convergence). For p ∈ [1,∞) we will endow V with the strong (i.e., norm) topology.
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However, if p = ∞, we will endow V with the topology induced by the form:

〈ψ,m〉 =
ˆ
X×A

ψ(x, a)m(dx, da), ψ ∈ V , m ∈ V ′.

Definition 8. A mapping σ : V × X × M → R is a reward transition mapping if

for every x ∈ X and every m ∈ M fixed (denote σ(·) := σ(·, x,m)), the following

conditions are true:

1) if φ ≤ ψ then σ(φ) ≤ σ(ψ), ∀φ, ψ ∈ V ;

2) σ(βφ) = βσ(φ), ∀φ ∈ V , β ≥ 0.

This definition is more general than Definition 3.1 in [18]. Since CPT inspired

performance measures are distorted by nonlinear probability weighting functions,

they generally do not satisfy the convexity and translation invariant requirements

satisfied by convex risk measures. By removing these two requirements, we are able

to work with non-convex CPT inspired performance measures.

2.2.4 Generalized Markov Dynamic Reward Measures

The definition of dynamic reward measures varies based on the objective of the

analysis. The dynamic risk measure community, for example [76], defines dynamic

performance measures based on coherent risk measures. Since our goal is to define

a class of dynamic performance measures that contains non-convex performance

measures (e.g., CPT inspired reward measures), we need to modify the definitions

used by the dynamic risk measure community. However, because we are maximizing

rewards rather than minimizing risks, our definitions are defined by switching the
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direction of the analogous inequalities.

Given a filtered probability space (Ω,F , {Ft}, P ) with F0 = {Ω, ∅}, we define

the spaces Lt = Lp(Ω,Ft, P ), p ∈ [1,∞], t = 0, 1, . . . , T, and Lt,T = Lt × · · · × LT .

Remark 8. Given a Markov control model, Ω can be thought of as HT and FT as

σ (HT ) .

Definition 9. A mapping ρt,T :Lt,T → Lt, where 1 ≤ t ≤ T , is called a conditional

reward measure, if it has the following monotonicity property:

Z ≥ W implies ρt,T (Z) ≥ ρt,T (W ), ∀Z,W ∈ Lt,T .

Definition 9 was first presented by Ruszczyński in [76]. The inequality above

is meant to be component-wise almost surely. Intuitively, the definition above says a

conditional reward measure preserves the order of the rewards. Furthermore, taking

R ∈ Lt,T to be a sequence of future rewards, ρt,T (R) gives the price, at time t, that

one is willing to pay to obtain the payoff sequence R.

Definition 10. A dynamic reward measure is a sequence of conditional reward

measures {ρt,T , t = 1, . . . , T}.

In other words, a dynamic reward measure is a time-varying mapping that

reflects the present value of a sequence of future rewards. It can be utilized as a

performance measure in many real-life scenarios. One important concept in dynamic

reward measures is time-consistency, which is defined below.
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Definition 11. A dynamic reward measure {ρt,T}Tt=1 is called time-consistent if for

all 1 ≤ τ < θ ≤ T and all sequences Z,W ∈ Lτ,T the conditions

Zk =Wk, k = τ, . . . , θ − 1 and ρθ,T (Zθ, . . . , ZT ) ≥ ρθ,T (Wθ, . . . ,WT )

imply that

ρτ,T (Zτ , . . . , ZT ) ≥ ρτ,T (Wτ , . . . ,WT ).

In applications, a time-consistent dynamic reward measure can be more con-

veniently represented by its corresponding sequence of one-step conditional reward

measures, whose definition is given below.

Definition 12. A mapping ρt : Lt+1 → Lt is called a one-step conditional reward

measure if

ρt(Z) = ρt,t+1(0, Z), Z ∈ Lt+1.

For this thesis, we are only interested in one-step conditional reward measures

that satisfy the assumption below.

Assumption 1. A one-step conditional reward measure satisfies the following con-

ditions:

1. If Z ≤ W then ρt(Z) ≤ ρt(W ), ∀Z,W ∈ Lt+1;

2. ρt(βZ) = βρt(Z), ∀Z ∈ Lt+1, β ≥ 0.

Below are several one-step conditional rewards that satisfy Assumption 1.
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Example 3. The following reward measures are both convex reward measures.

Mean-semideviation model:

ρt(Zt+1) = E [Zt+1|Ft] + κE
[(
(Zt+1 − E [Zt+1|Ft])+

)r |Ft

] 1
r .

Here, r ∈ [1, p] and κ ∈ [0, 1] may be any Ft-measurable random variables.

Another interesting example is the Average Conditional Value at Risk:

ρt(Zt+1) = inf
U∈Lt

{
U +

1

α
E
[
(Zt+1 − U)+ |Ft

]}
,

where the infimum is point-wise, and α is any Ft-measurable function with values

in an interval [αmin, αmax] ∈ (0, 1).

The next example is an example of a non-convex reward measure in Zt+1.

Example 4. Cumulative Prospect Theory:

ρt(Zt+1) =

ˆ ∞

0

w+
t

(
P
(
u+t ((Zt+1) +) > s

))
ds−

ˆ ∞

0

w−
t

(
P
(
u−t
(
(Zt+1)−

)
> s
))
ds,

(2.2.6)

where w+
t , w

+
t , u

−
t , and u−t are Ft-measurable functions with values in the function

spaces [0, 1] → [0, 1], [0, 1] → [0, 1], R+ → R+ and R → R+, respectively (see Eq.

2.2.2), and P is an appropriate probability measure. Here, the benchmark random

variable B in Eq. 2.2.2 is zero.

Remark 9. The performance measures in Example 3 satisfy the convexity and trans-
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lation invariance assumptions in Ruszczyński’s work, whereas the performance mea-

sure (i.e., Eq. 2.2.6) in Example 4 does not. Eq. 2.2.6 is the main motivation for

us to generalize Ruszczyński’s approach.

Applying a one-step conditional reward measure to a controlled Markov pro-

cess, we ideally would like to obtain an optimal Markov policy. However, we cannot

expect this to be true in general, because the one-step reward measure could depend

on the past history of the underlying Markov process (i.e., ht). In order to over-

come this difficulty, we follow Ruszczyński’s ([76]) definition of the one-step Markov

conditional reward measure.

2.2.4.1 Markov Conditional Reward Measures

As we mentioned in the previous section, one-step conditional reward measures

might not be Markov. However, if a one-step conditional reward has a corresponding

reward transition mapping, then it only depends on the current state of the system,

hence it is Markov. The following condition is important for the integrability of

Markov conditional reward measures.

Definition 13. A function g is said to be b-bounded if ∃C > 0 and b : X →

[1,∞), b ∈ V and

|g(x, a, y)| ≤ C (b(x) + b(y)) , ∀x ∈ X, a ∈ A(x), y ∈ X.

We denote the function g(x, a, y) : X × A × X with the x argument parame-

terized by gx : A×X → R (i.e., gx(a, y) := g(x, a, y)). In addition, the notation πt,x
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denotes the measure πt(·|x) ∈ P(A). We remind the reader that Qt,x, the transition

probability at time t, is a mapping a→ Qt(·|x, a).

We consider the filtered probability space (HT , σ(HT ),Ft,Pπ) , where Ft is

the σ-field generated by the state-action trajectory (i.e., {xπ0 , aπ0 , . . . , xπt } ) of the

controlled Markov process {xπt }. The space Lt in the definition below is defined

with respect to the filtered probability space (HT , σ(HT ),Ft,Pπ) . More specifically,

elements of Lt are functions of {xπ0 , aπ0 , . . . , xπt } .

Definition 14. A one-step conditional reward measure ρt : Lt+1 → Lt is a Markov

reward measure with respect to a controlled Markov process {xπt } and its controls

{aπt }, if there exists a reward transition mapping σt : V ×X×M → R, such that for

any b-bounded measurable functions g : X× A× X → R, there is a feasible control

πt : X → P(A(x)) such that the following equation holds

ρt
(
g(xπt , a

π
t , x

π
t+1)

)
= σt(gxπt , x

π
t , πt,xπt ◦Qt,xt), a.s. (2.2.7)

Remark 10. In the sequel, we use the term one-step Markov reward measure for

both ρt and its corresponding σt. Furthermore, the right-hand side of Eq. 2.2.7 can

be thought of as a function parameterized by the current state xπt .

Definition 15. A one-step conditional reward measure ρt is Markov, if ρt is a

Markov reward measure with respect to all feasible controlled Markov processes

and controls {{xπt } , {aπt } |π ∈ Π} and σt is the same for all π ∈ Π. Furthermore, a

dynamic reward measure {ρt} is Markov, if each of the one-step conditional reward

measure ρt is Markov.
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In other words, if a conditional reward measure ρt is Markov, then we can

replace it with its Markov counterpart σt when calculating the reward at time t.

2.3 Dynamic Programming

2.3.1 Finite-Horizon

Given a time-consistent dynamic reward measure {ρt,T}T−1
t=0 and its corresponding

one-step dynamic reward measure {ρt}T−1
t=0 , we can write the corresponding value

function starting at x0 with a control policy π ∈ Π and the resulting state-action

trajectory {xπ0 , aπ0 , . . . , xπT} as:

VT (x0, π) = ρ0 (r(x
π
0 , a

π
0 , x

π
1 ) + ρ1 (r(x

π
1 , a

π
1, x

π
2 )

+ρ2 (r(x
π
2 , a

π
2, x

π
3 ) + · · ·+

ρT−1

(
r(xπT−1, a

π
T−1, x

π
T ) + rT (x

π
T )
)
· · ·
)))

.

The equation above is obtained by applying Definition 3 and Theorem 1 in [76] 6.

We are interested in optimization problems of the form:

V ∗
T (x0) := max

π∈Π
VT (x0, π). (2.3.1)

In the rest of this section, we prove the optimality of the dynamic programming

equation that solves this optimization problem. The state space X is extended with

time variable (i.e., X ∪ [0, . . . T ]) to model the time-varying nature of the reward
6The policies considered in [76] are deterministic, but we are considering randomized policies.
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functions rt, and action space constraint At(x). The extended state space is denoted

by X′.

Theorem 1. Assume the following conditions hold:

1) ∀x ∈ X, the stochastic kernels Qt,x : a→ Qt(·|x, a) are continuous;

2) The one-step dynamic reward measure {ρt}T−1
t=0 is Markov (see Definition

15), and there exists a sequence of corresponding reward transition mappings σt :

m→ σ(ψ, x,m), t = 0, . . . , T − 1 that are upper semi-continuous;

3) The functions {rt(·, ·, ·)}T−1
t=0 are b-bounded, measurable, and a → rt(·, a, ·)

is upper semi-continuous;

4) For every x ∈ X and t ∈ [0, . . . , T − 1] the set At(x) is compact;

5) The function rT (·) is b-bounded and measurable;

Then a maximizer for the dynamic programing equation:

vt(x) = max
δ∈P(A(x))

σt (rt(x, ·, ·) + vt+1(·), x, δ ◦Qt,x)

vT (x) = rT (x) x ∈ X, t = 1, . . . , T − 1, (2.3.2)

exists. Furthermore, an optimal policy, π∗ :=
{
π∗
0, π

∗
1, · · · π∗

T−1

}
exists and each

π∗
t (x) is a maximizer for the right-hand side of Eq. 2.3.2 at time t for all x ∈ X; In

addition, every measurable solution of Eq. 2.3.2 at time 0, v0, is an optimal solution

for Eq. 2.3.1.

Proof. Let π denote an arbitrary randomized policy and {xπ0 , aπ0 , . . . , xπT}, the re-

sulting state-action trajectory of the controlled Markov process. We denote the
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reward-to-go function by :

Rt(x, π) : = ρt
(
r(xπt , a

π
t , x

π
t+1)+

ρt+1

(
r(xπt+1, a

π
t+1, x

π
t+2) + · · ·+

ρT−1

(
r(xπT−1, a

π
T−1, x

π
T ) + rT (x

π
T )
)
· · ·
))

RT (x, π) : = rT (x).

This is the total reward from time t onwards when the policy π is applied at the

initial state x. In particular, we know

VT (x, π) = R0(x, π).

We first prove that a solution to Eq. 2.3.2 exists. By assumption 1, Qt,x is a

continuous stochastic kernel, which implies δ ◦ Qt,x : P (A) → M is continuous in

δ. Here, Qt,x : A → P (X) is the stochastic kernel parameterized by x at time t (see

Definition 7). By assumption 2, we know that δ → σ(ψ, x, δ ◦ Qt,x) is upper semi-

continuous in δ. Assumptions 3, 4, 5 imply that the set P(A(x)) is weakly-compact,

hence a maximizer exists for Eq. 2.3.2.

We denote an optimal policy by

π∗ =
{
π∗
0, . . . , π

∗
T−1

}
,

where π∗
t (x) is a maximizer for Eq. 2.3.2 for all x ∈ X. We need to show that for
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t = 0, . . . T ,

Rt(x, π) ≤ vt(x), (2.3.3)

and with equality if π = π∗, i.e.,

Rt(x, π
∗) = vt(x). (2.3.4)

In particular, if Eq. 2.3.3 is true, we have VT (x, π) = R0(x, π) ≤ v0(x) and

VT (x, π
∗) = R0(x, π

∗) = v0(x), which prove the statement regarding v0(x) being

the solution for the optimization problem stated in Eq. 2.3.1.

We show Eq. 2.3.3 to be true by backward induction. We first note the fact

that

RT (x, π) = vT (x) = rT (x).

Assuming the induction hypothesis that for some t = T − 1, . . . , 0,

Rt+1(x, π) ≤ vt+1(x), x ∈ X,

the reward-to-go equation at time t satisfies the following inequalities:

Rt(x, π) = ρt
(
r(x, aπt , x

π
t+1) +Rt+1(x

π
t+1, π)

)
≤ ρt

(
r(x, aπt , x

π
t+1) + vt+1(x

π
t+1)

)
≤ max

δ∈P(A(x))
σt (rt(x, ·, ·) + vt+1(·), x, δ ◦Qx)

:= vt(x).
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The second line in the equation above is due to part 1 of Assumption 1 (i.e.,

monotonicity) and the induction hypothesis. The third line in the equation above

is true by the virtue of ρt being Markov (the second assumption of this theorem).

This proves Eq. 2.3.3. If we assume Rt+1(x, π
∗) ≥ vt+1(x), x ∈ X, then we conclude

Rt(x, π
∗) ≥ vt(x) using a similar induction argument as above, which proves Eq.

2.3.4. It should be easy to see that RT−1(x, π
∗) = vT−1(x), since π∗ is in Π by

definition. Repeating the same steps as above for T − 2, T − 3, . . . , 0, we obtain the

desired result

V ∗
T (x) = VT (x, π

∗) = R0(x, π
∗) = v0(x).

2.3.1.1 Application: Cumulative Prospect Theory Measures

We assume that we are given a one-step dynamic reward measure of the form in Eq.

2.2.6, where u+(x) = x and u−(x) = x. We would like to evaluate the performance

of the random variable ψx at each time t, assuming the dynamic reward measure is

Markov, and the following reward transition mapping satisfies Eq. 2.2.7:

σt(ψx, x,m) =

ˆ ∞

0

w+
(
m
(
(ψx)+ > s

))
ds

−
ˆ ∞

0

w− (m ((ψx)− > s
))
ds, (2.3.5)

where ψ is a B(K× X)-measurable random variable (e.g., ψ = r + v), and m ∈ M.

We denote the function ψ(x, ·, ·) by ψx ∈ Lt+1, which is a B(X × A)-measurable
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random variable. w+ : [0, 1] → [0, 1] and w− : [0, 1] → [0, 1] are two continuous

monotonically non-decreasing functions.

We would like to apply Theorem 1 to Eq. 2.2.6, given the assumption that it

is Markov, by proving that Eq. 2.3.5 is a reward transition mapping.

Theorem 2. σt defined by equation 2.3.5 is a reward transition mapping. Further-

more, it is continuous in m.

Proof. First we need to show that Eq. 2.3.5 satisfies the two properties in Definition

14.

1) prove: if φx ≤ ψx then σ(φx) ≤ σ(ψx), ∀φx, ψx ∈ V ;

We need to break σt into two parts,
´∞
0
w+
(
m
(
(ψx)+ > s

))
ds and

´∞
0
w− (m ((ψx)− > s

))
ds.

We first look at
´∞
0
w+
(
m
(
(ψx)+ > s

))
ds. Since φx ≤ ψx, we have

m
(
(φx)+ > s

)
≤ m

(
(ψx)+ > s

)
. Using the fact that w+ is a monotonically

non-decreasing function,

we have w+
(
m
(
(φx)+ > s

))
≤ w+

(
m
(
(ψx)+ > s

))
, which implies

ˆ ∞

0

w+
(
m
(
(φx)+ > s

))
ds ≤

ˆ ∞

0

w+
(
m
(
(ψx)+ > s

))
ds.

Similarly, we have m
(
(φx)− > s

)
≥ m

(
(ψx)− > s

)
, using the fact the w− is a mono-

tonically non-decreasing function, we have

w− (m ((φx)− > s
))

≥ w− (m ((ψx)− > s
))
,
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which implies

ˆ ∞

0

w− (m ((φx)− > s
))
ds ≥

ˆ ∞

0

w− (m ((ψx)− > s
))
ds.

Conclusion 1 follows from the previous inequality.

2) prove: σ(βφx) = βσ(φx), ∀φx ∈ V , β ≥ 0;

Since

ˆ ∞

0

w+
(
m
(
(βψx)+ > s

))
ds−

ˆ ∞

0

w− (m ((βψx)− > s
))
ds

=

ˆ ∞

0

w+

(
m

(
(ψx)+ >

s

β

))
ds−

ˆ ∞

0

w−
(
m

(
(ψx)− >

s

β

))
ds,

we do a change of variable with z = s
β
. Rewriting the equation in terms of z we have

β

(ˆ ∞

0

w+
(
m
(
(ψx)+ > z

))
dz −

ˆ ∞

0

w− (m ((ψx)− > z
))
dz

)
.

To prove the continuity of σt, we explicitly prove that

ˆ ∞

0

w+
(
m
(
(βψx)+ > s

))
ds

is continuous in m, because the proof for the second part of the equation will follow

similarly. We prove the continuity of σt by appealing to the fact that the sum of

two continuous functions is continuous.
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We denote the Prokhorov metric (see [16, Section 2.1]) by:

d(µ, ν) := inf {ε|µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε

∀A ∈ B(X× A)} .

For the purpose of readability, we define the function

fµ,νψx
(s) =

∣∣w+
(
ν
(
(ψx)+ > s

))
− w+

(
µ
(
(ψx)+ > s

))∣∣ ,
and its associated sets

Bδ1 =
{
s : s ∈ [0,M ], fµ,νψx

(s) ≤ δ1
}
, and

B̄δ1 =
{
s : s ∈ [0,M ], fµ,νψx

(s) > δ1
}
.

Since the total reward is the sum of a finite number (i.e., finite-horizon) of

per-stage rewards, it is bounded by M ∈ R.

Given an arbitrary ε > 0, we need to find a δ1 such that it satisfies the following
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equations:

∣∣∣∣ˆ M

0

w+
(
ν
(
(ψx)+ > s

))
ds−

ˆ M

0

w+
(
µ
(
(ψx)+ > s

))
ds

∣∣∣∣
≤
ˆ M

0

∣∣w+
(
ν
(
(ψx)+ > s

))
− w+

(
µ
(
(ψx)+ > s

))∣∣ ds ≤
ˆ M

0

1Bδ1δ1ds+

ˆ M

0

1B̄δ1ds =

δ1 ×M ×
ˆ M

0

1Bδ1
M

ds+M ×
ˆ M

0

1B̄δ1
M

ds =

δ1 ×M ×
ˆ M

0

1Bδ1
M

ds+M ×
(
1−
ˆ M

0

1Bδ1
M

ds

)
≤

2× δ1 ×M = ε.

By letting 1 > δ1 =
ε

2M
> 0, the last line in the equation above holds.

Our goal is to prove that given an arbitrary δ1, there always exists a δ ≤ δ1

such that all ν in the δ-neighborhood of µ satisfy the following

ˆ M

0

1Bδ1
M

ds ≥ 1− δ1,

which implies

δ1 ×M ×
ˆ M

0

1Bδ1
M

ds+M ×
(
1−
ˆ M

0

1Bδ1
M

ds

)
≤ ε.
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Since w+ is continuous, for any δ1 > 0 there exists a δ2 such that

∣∣ν ((ψx)+ > s
)
− µ

(
(ψx)+ > s

)∣∣ ≤ δ2 =⇒∣∣w+
(
ν
(
(ψx)+ > s

))
− w+

(
µ
(
(ψx)+ > s

))∣∣ ≤ δ1.

Hence, for any δ1 > 0 we can always find a δ2 such that

ˆ M

0

1|ν((ψx)+>s)−µ((ψx)+>s)|≤δ2
M

ds ≥ 1− δ1 =⇒
ˆ M

0

1Bδ1
M

ds ≥ 1− δ1. (2.3.6)

From the Markov inequality, we have

ˆ M

0

1|ν((ψx)+>s)−µ((ψx)+>s)|≤δ2
1

M
ds ≥

1−
´M
0

∣∣ν ((ψx)+ > s
)
− µ

(
(ψx)+ > s

)∣∣ 1
M
ds

δ2
. (2.3.7)

Next, we need to find a δ such that the following equations hold:

ˆ M

0

∣∣ν ((ψx)+ > s
)
− µ

(
(ψx)+ > s

)∣∣ 1

M
ds ≤

ˆ M

0

d(v, µ)2
1

M
ds ≤ δ2 = δ1 × δ2.

Finally, letting δ := +
√
δ1 × δ2, it is true that for any v in the δ-neighborhood of µ,
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the following equations hold:

ˆ M

0

∣∣ν ((ψx)+ > s
)
− µ

(
(ψx)+ > s

)∣∣ 1

M
ds ≤ δ1 × δ2

=⇒ 1−
´M
0

∣∣ν ((ψx)+ > s
)
− µ

(
(ψx)+ > s

)∣∣ 1
M
ds

δ2
≥

1− δ1 × δ2
δ2

= 1− δ1

=⇒
ˆ M

0

1|ν((ψx)+>s)−µ((ψx)+>s)|≤δ2
1

M
ds ≥ 1− δ1

=⇒
ˆ M

0

1Bδ1
M

ds ≥ 1− δ1 (Eq. 2.3.6).

The second implication is due to Eq. 2.3.7 and the third implication is due to Eq.

2.3.6. The second assertion of the theorem is proved.

Below is an example where we use a Markov CPT dynamic reward mea-

sure.

Example 5. The following example attempts to explain why people become en-

trepreneurs. We assume a person could be in several states {poor, middle, upper-

middle, super-rich}. If one decides to become an entrepreneur, one has the following

transition probability matrix.

poor middle upper-middle super-rich
poor .999 0 0 .001

middle .999 0 0 .001
upper-middle .999 0 0 .001

super-rich .001 0 0 .999

Table 2.3.1: Transition probability matrix for becoming an entrepreneur

One could also choose to pursuit a normal job with the following transition
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probabilities.

poor middle upper-middle super-rich
poor 0 1 0 0

middle 0 0 1 0
upper-middle 0 0 1 0
supper-rich 0 0 0 1

Table 2.3.2: Transition probability matrix for taking a normal job

The action space is {entrepreneur (E), normal (N)}. We define the random

variable xt to represent the current state of the controlled Markov process:

xt(ω) =



1 ω = poor

2 ω = middle

3 ω = upper-middle

4 ω = super-rich

.

In this example, the per-stage reward function is given as:

r(x, a) :=



x− 1/x x ≤ 3 and a = E

x x ≤ 3 and a = N

100− 1/x x > 3 and a = E

100 x > 3 and a = N

,
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and the terminal reward function is:

r2(x) :=


x x ≤ 3

100 x > 3

.

We want to solve the optimization problem stated in Eq. 2.3.1 given a dynamic

reward measure of the form in Eq. 2.2.67:

ρt(Zt+1) =

ˆ ∞

0

w+(P ((Zt+1|xt) > s))ds,

with the nonlinear weighting function w+(F ):=e−δ(−ln(F ))γ , where 0 < γ < 1 and

δ > 0. For the purpose of this example, we take γ to be 0.9 and δ to be 0.5. Since

we are only dealing with positive rewards in this example, w− and u− need not be

given. Furthermore, we note that the dynamic reward measure is Markov and has

a sequence of transition mappings σt of the form:

σt(r + vt+1, xt, λ ◦Qxt) =ˆ ∞

0

w+ (λ ◦Qxt (r + vt+1(xt+1) > s)) ds.

The table below shows the value function at times 0 and 1 by applying the
7For simplicity, we dropped u+ and u−.
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dynamic programming equation

vt(x) = max
pE∈[0,1]

{ˆ ∞

0

w+ (Qx,E (r(x,E) + vt+1(xt+1) > s) pE

+Qx,N (r(x,N) + vt+1(xt+1) > s) (1− pE)) ds} ,

where v2 = r2 and the variable pE is the probability of becoming an entrepreneur.

Time=1
x1 pE v1(x1)

poor 0.850471 7.1229
middle 0.787238 8.81843

upper-middle 0.808817 9.91617
super-rich 0 200

Time = 0
x0 pE v0(x0)

poor 0.919031 18.6786
middle 0.886583 20.3504

upper-middle 0.896001 21.4663
super-rich 0 300

Table 2.3.3: An optimal solution for Ex. 5 (a value function and an optimal policy)
at time 0 and 1.

Since Table 2.3.3 above shows the likelihood of becoming an entrepreneur

is higher if one is younger, it agrees with our intuition that one should pursue

entrepreneurship while still young. For example, an individual, starting out poor,

should be entrepreneurial almost 92% of the time; On the other hand, if the same

individual is a year older, he or she should only be entrepreneurial 85% of the time.

This result also agrees with our tendency to become more risk-averse as we grow

older.

Our approach yields an optimal randomized policy, which is different from
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the standard approach (see Eq. 2.2.3), where an optimal solution is deterministic.

Non-convex reward measures are useful for modeling many real-life problems. More

specifically, CPT-inspired reward measures are derived from experimental data and

have been proven to model several key characteristics of human behavior well. In

this section, we proved the optimality of dynamic programming equations for the

optimization problem described by Eq. 2.3.1. In addition, we provided a numerical

example demonstrating the intuitiveness of the optimal policies obtained. In the

next section, we will apply dynamic programming to infinite-horizon MDPs with

non-convex reward measures.

2.3.2 Discounted Infinite-Horizon

As in the finite-horizon case, we assume that we are given a time-consistent dynamic

reward measure {ρt,∞}∞t=0 and its corresponding time-invariant one-step dynamic

reward measure {ρ}. Here, ρ does not depend on t anymore. From Definition 3 and

Theorem 1 in [76], we write the corresponding value function starting at x0 with a

control policy π and the resulting state-action trajectory {xπ0 , aπ0 , . . . , xπT} as:

V (x0, π) = ρ (r(xπ0 , a
π
0 , x

π
1 ) + βρ (r(xπ1 , a

π
1 , x

π
2 )

+βρ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

βρ (r(xπ∞, a
π
∞, x

π
∞)) · · · ))) .
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We would like to consider the following optimization problem with β ∈ (0, 1):

V ∗ (x0) := max
π∈Π

V (x0, π). (2.3.8)

In this section, we are interested in the case when r : K × X → R is bounded, i.e.,

∃r̄ ∈ R+ such that |r| ≤ r̄. We assume r to be a non-positive valued function.

The non-negative case can be argued by symmetry. We denote the t-stage-reward

function resulting from applying a policy π by:

Jt(x0, π) = ρ (r(xπ0 , a
π
0 , x

π
1 ) + βρ (r(xπ1 , a

π
1 , x

π
2 )

+βρ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

βρ
(
r(xπt−1, a

π
t−1, x

π
t )
)
· · ·
)))

. (2.3.9)

Since r ≤ 0 and Vt ≤ Vt−1 ≤ 0 , by the Monotone Convergence Theorem, we may

write

V (x0, π) = lim
t→∞

Jt (x0, π) , ∀π ∈ Π.

From Section 2.3.1, we know the solution to Eq. 2.3.9 can be obtained by iterating

the following equation:

vt (x) := max
δ∈P(A(x))

σ (r(x, ·, ·) + βvt−1(·), x, δ ◦Qx) .

In other words,

vt (x) = max
Π

Jt (π, x) , ∀x ∈ X.

46



The equation above is the backward form of the finite-horizon dynamic pro-

gramming equation; this is different from the forward equation we used in the pre-

vious section. In the finite-horizon case, we are able to prove the optimality of the

dynamic programming equation (i.e., Eq. 2.3.2) by backward induction; this ap-

proach will not suffice in the infinite-horizon case. In the infinite-horizon case, we

need to appeal to the Banach fixed-point theorem to prove the existence of a mea-

surable function v∗ such that v∗ = Tv∗. Lastly, we need to prove that the solution

v∗ is indeed equal to

V ∗ (x) := max
Π

V (x, π) , ∀x ∈ X.

We used [48, 49] as the main technical references for the proofs below.

Definition 16. Let M (X)− denote the cone of non-positive measurable functions

on X. For every v ∈ M (X)−, Tv is defined as a mapping from X, i.e.,

Tv (x) := max
δ∈P(A(x))

σ (rx + βv, x, δ ◦Qx) , ∀x ∈ X,

where rx is the reward function with x held fixed, i.e., rx := r (x, ·, ·) .

The existence of a measurable selector8 is important in proving the optimality

of the dynamic programming equation.

Lemma 1. Assuming the function

σ (rx + βv, x, δ ◦Qx)

8See appendix for the definition of a measurable selector.

47



is upper semi-continuous (u.s.c) in δ, r is a non-positive valued function, and

P (A (x)) is compact-valued, then T maps M (X)−into itself, i.e., for every v in

M (X)−, Tv is also in M (X)−, and moreover, there exists a measurable selector

ψ : X → P (A) with ψ (x) ∈ P (A (x)) such that

σ (rx + βv, x, ψ (x) ◦Qx) = max
δ∈P(A(x))

σ (rx + βv, x, δ ◦Qx) , ∀x ∈ X.

Proof. This follows from Proposition 6 in the appendix.

The lemma above is important for ensuring the value function is measurable.

The reader might notice that ψ can be used to construct a stationary policy π =

{ψ, ψ, . . . } , which will be used to prove the optimality of stationary Markov polices.

The following Lemma is used in the upcoming theorem.

Lemma 2. If u ∈ M (X)− is such that u ≤ Tu, and r is a non-positive valued

function, then u ≤ V ∗.

Proof. Assuming u ≤ Tu and using Lemma 1, we write the following inequality:

u (x) ≤ σ (r (x, ·, ·) + βu, x, ψ (x) ◦Qx) .
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Iterating this inequality, we obtain

u (x) ≤ σ (r(x, aπ0 , x
π
1 ) + βσ (r(xπ1 , a

π
1 , x

π
2 )

+ βσ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

βσ
(
r(xπn−1, a

π
n−1, x

π
n) + βu (xπn)

)
· · ·
)))

, ∀n ≥ 1, x ∈ X, (2.3.10)

where π = {ψ, ψ, . . . }. In the inequality above, we used the short-hand notation

σ (r + βu) := σ (r + βu, x, ψ (x) ◦Qx) ,

and {xπt } is the resulting process from applying the policy π. Applying the fact that

βu (xπn) ≤ 0

to Eq. 2.3.10, we conclude the following inequality:

u (x) ≤ σ (r(x, aπ0 , x
π
1 ) + βσ (r(xπ1 , a

π
1 , x

π
2 )

+ βσ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

βσ
(
r(xπn−1, a

π
n−1, x

π
n)
)
· · ·
)))

, ∀n ≥ 1, x ∈ X.

By letting n→ ∞, the inequality above yields

u (x) ≤ V (x, π) ≤ V ∗ (x) ∀x ∈ X.
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Theorem 3. Assume the following conditions hold:

1) The stochastic kernels Qx : a→ Q(·|x, a) are continuous ∀x ∈ X;

2) The one-step dynamic reward measure ρ is Markov (see Definition 15), and

a sequence of corresponding reward transition mappings σ : m→ σ(ψ, x,m) is upper

semi-continuous;

3) The function r(·, ·, ·) is bounded, measurable, and a → r(·, a, ·) is upper

semi-continuous in a;

4) For every x ∈ X the set A(x) is compact;

5) β ∈ (0, 1) .

Then a maximizer for the dynamic programing equation

v(x) = max
δ∈P(A(x))

σ (r(x, ·, ·) + βv(·), x, δ ◦Qx) ∀x ∈ X, (2.3.11)

exists. Furthermore, an optimal policy, π∗ := {ψ∗, ψ∗ · · · } exists and each ψ∗ is

a maximizer for the right-hand side of Eq. 2.3.11. In addition, every bounded

measurable solution of Eq. 2.3.11 is an optimal solution for Eq. 2.3.8.

Proof. Since A (x) is compact for every x, we know P (A (x)) is also compact-valued.

We want to show that the operator

Tv := max
δ∈P(A(x))

σ (r + βv, x, δ ◦Qx)

is a contraction on the space of bounded measurable functions endowed with the
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supremum norm

‖v‖ := sup
X

|v| .

We first prove that a solution to Eq. 2.3.11 exists. By assumption 1, Qx is

a continuous stochastic kernel, which implies δ ◦ Qx : P (A) → M is continuous

in δ. Here, Qx : A → P (X) is the stochastic kernel parameterized by x at time

t (see Definition 7). By assumption 2, we know that δ → σ(ψ, x, δ ◦ Qx) is upper

semi-continuous in δ. Assumptions 3 and 4 imply that the set P(A(x)) is weakly-

compact; hence a maximizer exists for Eq. 2.3.11. This also proves the existence of

π∗ := {ψ∗, ψ∗, · · · }.

Next, the mapping T : M (X)− → M (X)− satisfies:

Tv : = max
δ∈P(A(x))

σ (r + βv, x, δ ◦Qx)

= σ (r + βv, x, ψ (x) ◦Qx)

= σ (r + β (v′ + (v − v′)) , x, ψ (x) ◦Qx)

≤ σ (r + βv′, x, ψ (x) ◦Qx) + β sup
X

|v − v′|

≤ max
δ∈P(A(x))

σ (r + βv′, x, δ ◦Qx) + β sup
X

|v − v′|

= Tv′ + β sup
X

|v − v′| =⇒

Tv − Tv′ ≤ β sup
X

|v − v′| ∀x ∈ X =⇒

sup
X

|Tv − Tv′| ≤ β sup
X

|v − v′| ,

where ψ is an optimal measurable selector and its existence is ensured by Lemma 1.
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Hence, by appealing to Banach’s Fixed-Point Theorem for contraction map-

pings and assumptions 3 and 5 of this theorem, we conclude there exists a unique

function v∗ ∈ V such that Tv∗ = v∗.

Finally, we need to prove that v∗ is a measurable solution to Eq. 2.3.8. We

need to prove this fact in two steps: v∗ ≤ V ∗ and v∗ ≥ V ∗. From the fact that

Tv∗ = v∗ and Lemma 2 we conclude that v∗ ≤ V ∗. To prove the inequality in the

other direction, we know from the finite-horizon case with the reward-to-go function

denoted by Rn, we have

vn ≥ Rn (x, π) ≥ V (x, π) , ∀n ∈ {0, 1, 2, . . . } , ∀n, ∀π ∈ Π, ∀x ∈ X,

which implies

vn ≥ Rn (x, π
∗) ≥ V ∗ (x) ∀n, ∀x ∈ X,

where π∗ = {ψ∗, ψ∗, . . . } is constructed using the maximizer, ψ∗, of Eq. 2.3.11. The

operator T is monotone, i.e., if u and u′ are functions in M (X)− and u ≥ u′, then

Tu ≥ Tu′. Since v0 := 0 and vn := Tvn−1 for n ≥ 1, vn form a non-increasing

sequence in M (X)− converging to some function v∗ ∈ M (X)− . Since vn ↓ v∗ due to

the monotone convergence theorem, and vn ≥ V ∗, we conclude that v∗ ≥ V ∗. The

desired conclusion is reached given the fact the policy π∗ = {ψ∗, ψ∗, . . . } ∈ Π.

If the per-stage reward is both positive and negative, we defer it to the later

transient case; as the discounted infinite-horizon problem can be rewritten into a

transient problem by adding an absorbing state. The requirement that the reward
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function, r, be a bounded measurable function can be relaxed in the previous the-

orem. Of course, the proof for the relaxed case will be different. Due to space

limitations, we do not explore alternatives with the relaxed assumption on the re-

ward function here. For the interested reader, the proof for the existence of an

optimal policy with the relaxed assumption on the reward function can be found in

[48] for the standard expected value measure, which can be adapted for our case.

We present a numerical example, similar to the finite-horizon case, which will

demonstrate the type of policies expected from the CPT-based reward measures.

In the example below, we also compare an optimal solution of the expected value

(standard reward measures) with that of the CPT-based reward measures.

Example 6. As in the finite-horizon case of Example 5, its infinite discounted coun-

terpart tries to explain why people become entrepreneurs. The major difference here

is we are no longer given a terminal reward function. The transition probabilities

and the per-stage reward function used for this numerical example can be found

from Example 5.

We calculate the discounted infinite-horizon counterpart with the nonlinear

weighting function w+(F ):=e−δ(−ln(F ))γ , where 0 < γ < 1 and δ > 0. For the

purpose of this example, we take γ to be 0.9 and δ to be 0.5. Furthermore, we

assume the discount factor, β, to be 0.5.

The tables below summarize our numerical results. We notice that the value

function given by the CPT measures is higher than that of the expected value. In

addition, using CPT measures will yield a more risk-seeking optimal policy.
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x0 P(entrepreneur) v(x0)

poor 0 3.49999
middle 0 4.99999

upper-middle 0 5.99999
super-rich 0 200

(a) Expected Value

x0 P(entrepreneur) v(x0)

poor 0.868488 11.5553
middle 0.861585 13.0742

upper-middle 0.881884 14.1858
super-rich 0 200

(b) CPT Expected Value

Table 2.3.4: An optimal solution for Ex. 6 (a value function and an optimal policy)
.

Table 2.3.4 is similar to Table 2.3.3 in the finite-horizon case in the sense that

they both produce randomized polices.

This example suggests that a middle-class person should be the least likely to

pursue entrepreneurship. On the other hand, an upper-middle class person is mostly

likely to start his/her own business. However, the difference in the probability of

entrepreneurship for the states poor, middle and upper-middle is very small, which

suggests in the long run we should all be entrepreneurial regardless of our current

state unless one is already super-rich. Of course, in practice we need to calibrate

the underlying Markov model with empirical data.

In the next section, we will examine the suitability of the dynamic program-

ming method for the transient Markov control model case.

54



2.3.3 Transient Markov Control Model

In this section, we prove the optimality of the dynamic programming equation for

transient Markov control models. Our main technical references are [18], [55] and

[49]. Transient Markov control models require further specification in addition to

the definitions provided in Section 2.2.1. Before we introduce the definition of a

transient Markov control model, we need to define a few notations first. Given a

norm weight function w : X → [1,∞), the w weighted-norm is denoted by ‖·‖w . It

is calculated for a substochastic kernel A as:

‖A‖w = sup
X

1

w (x)

ˆ
X
w (y)A (dy|x) .

Similarly, a w-norm can be defined for a measurable function v : X → R as:

‖v‖w = sup
x∈X

|v (x)|
w (x)

.

It is the standard operator norm in the space Bw (X,B (X)), of measurable functions

v such that ‖v‖w <∞. The reader can refer to [48] for a more complete discussion

on weighted norms. At this point, the reader may be confused by the three functions

w, w+, and w−. The first function is used in defining a weighted norm, and the

latter two functions are used in CPT-based measures. The function used should be

clear from the context.

Assumption 2. The function w ∈ V (i.e., the integrable function space) is fixed
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with respect to the given Markov control model such that

‖Qψ‖w <∞, ∀ψ ∈ Ψ.

Furthermore, the per-stage reward function r(·, ·, ·) is measurable, w-bounded,

i.e., there is a constant r̄ ≥ 0 such that

sup
A(x)

|r (x, a, x′)| ≤ r̄w (x′) , ∀x, x′ ∈ X,

and r : a→ r(·, a, ·) is upper semi-continuous in a.

The assumption above is assumed to hold throughout this section. A transient

Markov model has some absorbing state xA ∈ X, such that Q ({xA} |xA, a) = 1 and

r (xA, a, xA) = 0 for all a ∈ A (x). In other words, once an absorbing state is reached,

no further rewards will be given. In addition, a transient Markov model reaches its

absorbing state in finite amount of time, i.e.,

sup
Π,X

E [τπ0 |x] <∞, where τπ0 := inf {t ≥ |xπt = xA} .

Without loss of generality, we assume the model only has one absorbing state,

because the case of multiple absorbing states can be easily reduced to the single

absorbing state case. We introduce some additional notations for clarity. We denote

the effective state space by X̃ = X \ {xA}, and the effective controlled substochastic

kernel by Q̃. The substochastic kernel Q̃ restricts its arguments to only allow the
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effective states (i.e., Q̃ (B|x, a) = Q (B|x, a) , ∀B ∈ B
(
X̃
)
, ∀x ∈ X̃, ∀a ∈ A (x)).

We introduce the definition of a transient Markov control model below.

Definition 17. A randomized Markov policy π ∈ ΠRM is transient with respect to

a Markov control model, if there exists a constant k and a weight function w : X →

[1,∞) such that ∥∥∥∥∥
∞∑
t=0

Q̃t
π

∥∥∥∥∥
w

≤ k, (2.3.12)

where Qt
π := Q0Q1 . . . Qt−1 and Q0

π (·|x) := δx (·) . If the inequality above is uniform

for all Markov policies, then the model is called uniformly transient (i.e., Eq. 2.3.12

is true for all π ∈ ΠRM).

Since we are working with stationary transition probabilities (i.e., Q1 = Q2),

Eq. 2.3.12 implies that Q
(
X̃|x, a

)
≤ 1 for all x ∈ X and a ∈ A (x). Eq. 2.3.12 can

also be written as:

∥∥∥∥∥
∞∑
t=0

Q̃t
π

∥∥∥∥∥
w

= sup
X
w (x)−1

∞∑
t=0

ˆ
X
w (y) Q̃t

π (dy|x)

= sup
X
w (x)−1

∞∑
t=0

E [w (xπt ) |x] .

Hence, we can infer from Eq. 2.3.12 that E [w (xπt ) |x] → 0 as t → ∞. Eq. 2.3.12

is also known as the Pliska condition [69]. One major contribution of Çavuş and

Ruszczyński [18] is to suggest a generalized version of the Pliska condition for co-

herent risk measures (i.e., convexity). Since we are interested in non-convex perfor-

mance measures, we take a different approach to prove the optimality of dynamic

programming equations.
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We are interested in solving a more general version of the standard expected

total reward problem, which searches for an optimal policy that maximizes the

following expected value:

E

[
∞∑
t=0

r (xt, at, xt+1)

]
.

We know from [48] that we can apply dynamic programming to this problem and

obtain an optimal stationary deterministic policy. In this section, we would like to

explore the risk-sensitive version of this problem, especially when the conditional

reward function ρ is not convex. Our goal is to prove that dynamic programming

can still be applied to the non-convex risk-sensitive version of the expected total

reward problem.

We are interested in finding the maximum of a total reward function of the

form:

V (x0, π) = ρ (r(xπ0 , a
π
0 , x

π
1 ) + ρ (r(xπ1 , a

π
1 , x

π
2 )

+ρ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

ρ (r(xπ∞, a
π
∞, x

π
∞)) · · · ))) .

The corresponding optimization problem can be written as:

V ∗ (x0) := max
π∈Π

V (x0, π). (2.3.13)

Without loss of generality, we restrict ourselves to randomized Markov policies (see
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[49], Theorem 9.4.5), i.e.,

V ∗ (x0) = max
π∈ΠRM

V (x0, π) . (2.3.14)

To solve Eq. 2.3.14, we start by finding an optimal solution for the simpler case of

randomized stationary policies, i.e.,

V † (x0) := max
π∈ΠRS

V (x0, π). (2.3.15)

Later, the sufficiency of randomized stationary Markov polices is proven, i.e., the

left-hand sides of Equ 2.3.14 and Eq. 2.3.15 are equivalent. We denote the reward-

to-go function at time t by:

Rt(x0, π) = ρ
(
r(xπt , a

π
t , x

π
t+1) + ρ

(
r(xπt+1, a

π
t+1, x

π
t+2)

+ρ
(
r(xπt+2, a

π
t+2, x

π
t+3) + · · ·+

ρ (r(xπ∞, a
π
∞, x

π
∞)) · · · ))) ,

and the t-stage total reward function by:

Jt(x0, π) = ρ (r(xπ0 , a
π
0 , x

π
1 ) + ρ (r(xπ1 , a

π
1 , x

π
2 )

+ρ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

ρ
(
r(xπt , a

π
t , x

π
t+1)

)
· · ·
)))

.
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We denote the optimal t-stage-reward value function by

J∗
t (x) := max

π∈Π
Jt (x, π) ,

and define the operator T (ψ) on Bw (X,B (X)) as

T (ψ) v (x) := σ (rx + v, x, ψ (x) ◦Qx) .

In addition, the dynamic programming operator T is denoted by

Tv := max
δ∈P(A(x))

σ (rx + v, x, δ ◦Qx) .

Since σ is monotone, the operator T (ψ) is also monotone, i.e.,

v ≥ v̄ =⇒ T (ψ) v ≥ T (ψ) v̄, ∀v, v̄ ∈ Bw (X,B (X)) , ψ ∈ Ψ.

Given a Markov policy π = {ψt} ∈ Π and T (π)0 = I, then for k = 1, 2, . . . , the

iterated operator T k (π) on Bw (X,B (X)) is defined by

T k (π) := T (ψ0)T (ψ1) · · ·T (ψk−1) .

We denote the total-reward function with respect to a policy π as T → ∞ by

V (x0, π) = lim
T→∞

JT (x0, π) ∀x ∈ X̃.
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For the rest of this section, we make the following assumption.

Assumption 3. The following conditions hold.

1. There exists a k ≥ 1 such that T k (π) is a contraction mapping for all

transient stationary polices π; i.e.,

∃γ < 1 s.t.
∥∥T k (π) v − T k (π) v̄

∥∥
w
≤ γ ‖v − v̄‖w

∀v1, v2 ∈ Bw (X,B (X)) , ∀ transient π ∈ ΠRS;

2. The reward transition mapping σ : ψ → σ (ψ, x,m) is continuous;

3. V ∗ ∈ Bw (X,B (X)) ;

4. The Markov control model is uniformly transient.

Condition 4 in Assumption 3 can be relaxed (see [55]) at the expense of addi-

tional assumptions. From condition 3 in Assumption 3, we can trivially deduce the

following lemma.

Lemma 3. If Assumption 3(3) holds, then Jt (π, x) and J∗
t (x) are both w-bounded

for all x ∈ X, π ∈ Π, t = 1, 2, . . . .

Proof. Proof by contradiction: If Jt (π, x) and J∗
t are not w-bounded, then V ∗ /∈

Bw (X,B (X)). This contradicts Assumption 3(3).

The lemma above justifies for writing Jt (π, ·) and J∗
t (·) as arguments of ρ (·) .

Assumption 3(1) ensures the convergence of the operator T k , which is stated in the

following lemma.
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Lemma 4. For any transient stationary policy π ∈ ΠRS, if Assumption 3(1) holds,

then for any v ∈ Bw (X,B (X))

lim
k→∞

T k (π) v (x) = V (x, π) = lim
k→∞

Jk (x, π) ∀x ∈ X.

Proof. Using Assumption 3(1) and the Banach fixed-point theorem, noting the fact

that

V (x, π) = lim
k→∞

T k (π) 0 <∞,

the proof follows.

The following theorem proves the optimality criteria for Eq. 2.3.15.

Theorem 4. Let Assumptions 2 and 3 hold. For a transient Markov controlled

model, a Markov reward transition mapping σ (·, ·, ·), and a randomized stationary

Markov policy π = {ψ, ψ, . . . }, a bounded measurable function v : X̃ → R (i.e.,

‖v‖w <∞) satisfies the equation

v (x) = σ (rx + v, x, ψ (x) ◦Qx) , x ∈ X̃

v (xA) = 0, (2.3.16)

if and only if v (x) = V (π, x) for all x ∈ X.

Proof. Let v (·) be a bounded measurable solution of Eq. 2.3.16. Since ‖v‖w < ∞

and w ∈ Bw (X,B (X)), we know that v ∈ Bw (X,B (X)). By assumption, r (·, ·, ·) is

w-bounded, and thus rx ∈ Bw (X,B (X)). Consequently, the right-hand side of Eq.
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2.3.16 is well defined and can be iterated, which results in the following equation

v(x0) = ρ (r(xπ0 , a
π
0 , x

π
1 ) + ρ (r(xπ1 , a

π
1 , x

π
2 )

+ρ (r(xπ2 , a
π
2 , x

π
3 ) + · · ·+

v (xT+1) · · · ))) ∀x0 ∈ X̃.

Since v (·) is a w-bounded function, we conclude by evoking Lemma 4 and taking k

to infinity that

v (x) = lim
k→∞

T k (π) v (x) = V (π, x) ∀x ∈ X̃

v (xA) = 0 = V (π, xA) .

The converse is proved by writing down the equation:

JT (π, x0) = ρ (r (x0, ψ (x0) , x1) + JT−1 (π, x0)) .

Taking the limit as T → ∞ on both sides, we arrive at the following equation:

lim
T→∞

JT (π, x0) = lim
T→∞

ρ (r (x0, ψ (x0) , x1) + JT−1 (π, x0)) .

Since ρ (·) is continuous by assumption, we conclude that

lim
T→∞

JT (π, x0) = ρ
(
r (x0, ψ (x0) , x1) + lim

T→∞
JT−1 (π, x0)

)
.
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Using the fact that

lim
T→∞

JT (π, x0) = V (π, x0) = v (x0) , ∀x0 ∈ X̃

as T → ∞, we rewrite the previous equation as:

v (x0) = ρ (r (x0, ψ (x0) , x
π
1 ) + v (xπ1 )) = σ (rx0 + v, x0, ψ (x0) ◦Qx0) , ∀x0 ∈ X̃,

which is the same as Eq. 2.3.16. Furthermore, V (π, xA) = 0 = v (xA) by definition.

Theorem 5. Assume the following conditions hold for a uniformly transient Markov

control model:

1) The stochastic kernels Qx : a→ Q(·|x, a) are continuous ∀x ∈ X ;

2) The one-step dynamic reward measure ρ is Markov (see Definition 15), and

a sequence of corresponding reward transition mappings σ : m→ σ(ψ, x,m) is upper

semi-continuous;

3) The assumptions in Theorem 4 are satisfied;

4) For every x ∈ X the set A(x) is compact;

Then a maximizer for the dynamic programing equation

v(x) = max
δ∈P(A(x))

σ (r(x, ·, ·) + v(·), x, δ ◦Qx) ∀x ∈ X̃

v (xA) = 0, (2.3.17)
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exists. Furthermore, an optimal randomized stationary policy, π∗ := {ψ∗, ψ∗, · · · }

exists and each ψ∗ is a maximizer for the right-hand side of Eq. 2.3.17; In addition,

a bounded measurable function v, (i.e., ‖v‖w <∞) is a solution of Eq. 2.3.17 if and

only if it equals V † in Eq. 2.3.15, i.e., v (x) = V † (x) , ∀x ∈ X.

Proof. Since the set of all policy sequences of the form π = {λ, π, π, . . . } contains

ΠRM , we write down the inequality

V † (x0) ≤ sup
λ∈P(A(x0)),π∈ΠRM

ρ (r (x0, a0, x1) + V (π, x1)) ,

where V † is defined by Eq. 2.3.14. Because ρ is monotone, we move the supremum

operator inside:

V † (x0) ≤ sup
λ∈P(A(x0))

ρ

(
r (x0, a0x1) + sup

π∈ΠRM
V (π, x1)

)
≤ sup

λ∈P(A(x0))

ρ
(
r (x0, a0, x1) + V † (x1)

)
.

By Assumption 3(3), i.e.,
∥∥V †

∥∥
w
<∞, the right-hand side is well defined. Thus V †

satisfies the inequality

V † (x) ≤ sup
λ∈P(A(x))

σ
(
rx + V †, x, λ ◦Qx

)
, x ∈ X. (2.3.18)

Since the existence of a solution for Eq. 2.3.17 is assured by the semi-continuity

of the mapping σ : λ → σ (rx + v, x, λ ◦Qx) and the weak compactness of the set
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P (A (x)), we conclude that

V † (x) ≤ σ
(
rx + V †, x, ψ∗ (x) ◦Qx

)
, x ∈ X.

Here, ψ∗ is a solution to the optimization problem represented by the right-hand

side of Eq. 2.3.18. By iterating the inequality above, appealing to the monotonicity

property of σ, and applying the policy π∗ = {ψ∗, ψ∗, . . . } , we obtain the fact that

V † (x0) ≤ V (π∗, x0) .

Since by assumption V † (·) is the optimal value function, V † (·) ≥ V (π∗, ·), which

along with the previous inequality, imply V † (·) = V (π∗, ·) . Using Theorem 4, we

conclude V † (·) satisfies the dynamic programming equation.

To prove the converse, we first suppose v (·) satisfies Eq. 2.3.17, and ‖v‖w <∞.

Since the mapping σ : λ → σ (rx + v, x, λ ◦Qx) is continuous and the set P (A (x))

is weakly compact, an optimal control function, ψ̂, exists. Furthermore, ψ̂ is the

maximizer for the right-hand size of the dynamic programing equation. This enables

us to write

v (x) = σ
(
rx + v, x, ψ̂ (x) ◦Qx

)
, x ∈ X. (2.3.19)

Using Theorem 4, we conclude that

v (x) = V (π̂, x) ≤ V † (x) , x ∈ X, (2.3.20)
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where π̂ =
{
ψ̂, ψ̂, . . .

}
. On the other hand, it follows from Eq. 2.3.17 that the

control function ψ̂ satisfies

v (x) ≥ σ
(
rx + v, x, ψ̂ (x) ◦Qx

)
, x ∈ X̃.

Using the monotonicity property of σ, we iterate the above inequality and arrive at

v (x) ≥ ρ0,T (0, Z1, . . . , ZT + v (xT )) ,

where Zt is the reward sequence resulting from applying the policy π̂. By taking

T → ∞ for the equation above, we conclude that

v (x) ≥ V (π̂, x) = V † (x) , x ∈ X̃.

The last inequality, together with Eq. 2.3.20 and the fact that v (·) = V † (·) im-

ply the stationary policy ψ̂ that satisfies Eq. 2.3.19 is optimal, i.e., V (π̂, x) =

V (π∗, x) = V † (x) , ∀x ∈ X. In addition, we know v (xA) = V † (xA) = 0 from the

definition of transition Markov model.

In the theorem above, we provide the optimality criteria for the case of ran-

domized stationary Markov policies. Next, we prove the sufficiency of randomized

stationary Markov policies as optimal policies.

Theorem 6. Assume the assumptions in the Theorem 5 are satisfied. Then a w-

bounded measurable function v : X → R, with ‖v‖w <∞, satisfies Eq. 2.3.17 if and
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only if v (x) = V ∗ (x) for all x ∈ X. Moreover, a maximizer ψ∗ exists for Eq. 2.3.17

and defines an optimal randomized stationary Markov policy π∗ = {ψ∗, ψ∗, ψ∗, . . . } .

Proof. We denote a Markov policy by π1 = {ψ1, ψ2, . . . } . Given the monotonicity

and continuity of ρ (·), we have

V ∗ (x0) = sup
λ0,λ1,...

lim sup
T→∞

ρ
(
r (x0, a0, x1) + JT−1

(
π1, x1

))
≤ sup

λ0,λ1,...
lim sup
T→∞

ρ

(
r (x0, a0, x1) + sup

τ≥T−1
Jτ
(
π1, x1

))
= sup

λ0,λ1,...
lim
T→∞

ρ

(
r (x0, a0, x1) + sup

τ≥T−1
Jτ
(
π1, x1

))
= sup

λ0,λ1,...
ρ

(
r (x0, a0, x1) + lim sup

T→∞
JT−1

(
π1, x1

))
= sup

λ0,λ1,...
ρ
(
r (x0, a0, x1) + V

(
π1, x1

))
.

By appealing to the monotonicity property of ρ (·), we can move the supremum

inside the argument�

V ∗ (x0) ≤ sup
λ0

ρ

(
r (x0, a0, x1) + sup

Λ1

V
(
π1, x1

))
= sup

λ1

ρ (r (x0, a0, x1) + V ∗ (x2)) .

Thus V ∗ (·) satisfies the inequality

V ∗ (x) ≤ sup
λ∈P(A(x))

σ (rx + V ∗, x, λ ◦Qx) , x ∈ X. (2.3.21)

Appealing to the monotonicity property of σ, iterating the above inequality and
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letting ψ∗ be the maximizer from the equation above we conclude that

V ∗ (x) ≤ V (π∗, x) , x ∈ X,

where π∗ = {ψ∗, ψ∗, . . . } is a stationary Markov policy that maximizes Eq. 2.3.21.

Therefore, optimization with respect to stationary Markov policies is sufficient, and

the result follows from Theorem 5.

We need to ensure the first three conditions in Assumption 3 are satisfied by

all CPT-inspired reward measures, which have the form:

σt(rx + v, x, ψ (x) ◦Qx) =

ˆ ∞

0

w+
(
ψ (x) ◦Qx

(
(rx + v)+ > s

))
ds

−
ˆ ∞

0

w− (ψ (x) ◦Qx

(
(rx + v)− > s

))
ds. (2.3.22)

With this specific form, we can write down the operator T with respect to a

transient stationary policy π = {ψ, ψ, . . . } as:

T (π) v (x) : =

ˆ ∞

0

w+
(
ψ (x) ◦ Q̃x

(
(rx + v)+ > s

))
ds

−
ˆ ∞

0

w−
(
ψ (x) ◦ Q̃x

(
(rx + v)− > s

))
ds

=

ˆ ∞

0

(rx + v)+ d

((
ψ (x) ◦ Q̃x

)w+,rx+v
)

−
ˆ ∞

0

(rx + v)− d

((
ψ (x) ◦ Q̃x

)w−,rx+v
)
.

The second equality is due to the fact that the transformed measures
(
ψ (x) ◦ Q̃x

)w+,rx+v
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and
(
ψ (x) ◦ Q̃x

)w−,rx+v

are absolutely continuous with respect to ψ (x) ◦ Q̃x; hence

a Radon-Nikodym derivative exists. The lemma below will be used in Theorem 7.

Lemma 5. If a uniformly transient Markov model is given, i.e.,

lim
k→∞

∥∥∥∥∑(
πk (x) ◦ Q̃x

)k∥∥∥∥
w

≤ κ1, ∀π = {π1, π2, . . . } ∈ ΠRM ,

then there exists a k̃ > 0 such that

∥∥∥∥∥
((

πk (x) ◦ Q̃x

)w−,v
)k∥∥∥∥∥

w

< 1, ∀k ≥ k̃, ∀π = {π1, π2, . . . } ∈ ΠRM , v ∈ V .

Proof. Note that if

lim
k→∞

∥∥∥∥∑(
πk (x) ◦ Q̃x

)k∥∥∥∥
w

is finite, then there exists a k̃ such that for all k ≥ k̃

∥∥∥∥∥
((

πk (x) ◦ Q̃x

)w−,v
)k∥∥∥∥∥

w

< 1.

Since w− (p) equal to 1 if and only if p = 1, the assertion follows.

A similar statement (Lemma 5) can be made about

∥∥∥∥∥
((

πk (x) ◦ Q̃x

)w+,v
)k∥∥∥∥∥

w

.

Theorem 7. Suppose the Markov control model is uniformly transient, and the

following assumptions are satisfied:
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1) w+ and w− are continuous non-decreasing functions;

2) There is a constant r̄ such that

sup
A(x)

|r (x, a, x′)| ≤ r̄w (x′) , ∀x, x′ ∈ X;

Then Eq. 2.3.22 satisfies Assumption 3.

Proof. 1) Letting π = {ψ, ψ, . . . }, we know the following

∥∥∥T (π)
k
v1 − T (π)

k
v2

∥∥∥
w

≤

∥∥∥∥∥
ˆ ∞

−∞
(v1 − v2) d

(((
ψ (x) ◦ Q̃x

)w+,v1
)k

+

((
ψ (x) ◦ Q̃x

)w−,v1
)k
)∥∥∥∥∥

w

+εk ‖v1 − v2‖w + ε̃k ‖v1 − v2‖w

≤

(∥∥∥∥∥
((

ψ (x) ◦ Q̃x

)w+,v1
)k
∥∥∥∥∥
w

+

∥∥∥∥∥
((

ψ (x) ◦ Q̃x

)w−,v1
)k
∥∥∥∥∥
w

+ εk + ε̃k

)
· · · ‖v1 − v2‖w , (2.3.23)

where
(∥∥∥∥∥
((

ψ (x) ◦ Q̃x

)w+,v1
)k∥∥∥∥∥

w

+

∥∥∥∥∥
((

ψ (x) ◦ Q̃x

)w−,v1
)k∥∥∥∥∥

w

+ εk + ε̃k

)
can be

chosen to be less than 1. The appropriate k is found by appealing to Lemma 5.

Since the Markov control model is uniformly transient (i.e., the probability weight

on the non-absorbing states decreases as k increases), εk and ε̃k can be made ar-

bitrarily small as k → ∞. Here, ε̃k captures the difference between the distorted

measures, of the the previous finite number of per-stage rewards, induced by v1

and v2. As k increases, the measure distortions induced by v1 and v2 on the initial

steps disappear. The first inequality in Eq. 2.3.23 is due to the fact that the trans-

formed measures
((

ψ (x) ◦ Q̃x

)w+,v1
)k

and
((

ψ (x) ◦ Q̃x

)w−,v1
)k

are absolutely

continuous with respect to
(
ψ (x) ◦ Q̃x

)k
; hence a Radon-Nikodym derivative ex-
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ists. Furthermore, we used the fact that

ˆ
f1 (x1) dP (x1)−

ˆ
f2 (x1) dQ (x1)

=

ˆ
(f1 − f2) (x1)dP (x1) +

ˆ
f2(x1) (dP (x1)− dQ (x1)) ,

where f1 and f2 are two w-bounded measurable functions, and P and Q are two

σ-finite measures. In Eq. 2.3.23, εk represents the difference between the v1 and

v2 distorted measures (i.e., εk = ‖v2‖w
‖v1−v2‖w

‖P −Q‖w, where P is distorted by v1 and

Q is distorted by v2). In other words, εk captures the difference in the distorted

measures at the k-th stage induced by v1 and v2.

2) To prove condition 2, we appeal to the continuity property of w+ and w−,

which implies the following inequalities:

‖σt(z1, x,m)− σt(z2, x,m)‖w

=

∥∥∥∥ˆ ∞

0

w+
(
m
(
(z1)+ > s

))
− w+

(
m
(
(z2)+ > s

))
ds

−
(ˆ ∞

0

w− (m ((z1)− > s
))

− w− (m ((z2)− > s
))
ds

)∥∥∥∥
w

≤ ε

2
+
ε

2
= ε,

where for brevity the measure ψ (x) ◦ Q̃x is denoted by m.

From the continuity property of the functions w+ and w−, we know that there
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exist δ1 and δ2 such that

∥∥m ((z1)+ > s
)
−m

(
(z2)+ > s

)∥∥
w
≤ δ1

=⇒
∥∥w+

(
m
(
(z1)+ > s

))
− w+

(
m
(
(z2)+ > s

))∥∥
w

≤ ε

2

and

∥∥m ((z1)− > s
)
−m

(
(z2)− > s

)∥∥
w
≤ δ2

=⇒
∥∥w+

(
m
(
(z1)− > s

))
− w+

(
m
(
(z2)− > s

))∥∥
w

≤ ε

2
.

Since

‖z1 − z2‖w → 0,

implies ∥∥m ((z1)+ > s
)
−m

(
(z2)+ > s

)∥∥
w
→ 0

and ∥∥m ((z1)− > s
)
−m

(
(z2)− > s

)∥∥
w
→ 0,

we conclude that there exists a δ3 such that

‖z1 − z2‖w < δ3∥∥m ((z1)+ > s
)
−m

(
(z2)+ > s

)∥∥
w

≤ δ1∥∥m ((z1)− > s
)
−m

(
(z2)− > s

)∥∥
w

≤ δ2.
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3) Now, we prove condition 3 of Assumption 3. Since

sup
A(x)

|r (x, a, x′)| ≤ r̄w (x′) , ∀x, x′ ∈ X,

and the Markov control model is assumed to be uniformly transient, we can show, by

induction, that V (π, x) is also w-bounded for any transient policy π = {λ, λ, . . . } ∈

ΠRM . We start by writing down the one-stage reward function:

σ
(
|rx| , x, λ ◦ Q̃x

)
=

ˆ ∞

0

|rx| d
((

λ ◦ Q̃x

)w+,|rx|
)

≤ r̄

ˆ ∞

0

wd

((
λ ◦ Q̃x

)w+,|rx|
)
.

The two-stage reward function is written as

σ
(
|rx|+ σ

(
|rx1 | , x1, λ ◦ Q̃x1

)
, x, λ ◦ Q̃x

)
≤ r̄

(ˆ ∞

0

wd

((
λ ◦ Q̃x

)w+,|rx|
)
+

ˆ ∞

0

wd

((
λ ◦ Q̃x

)w+,|rx|+|rx|
)2
)
.

By iterating the inequality above and appealing to Lemma 5, we arrive at the

conclusion that

V (π, ·) ≤ r̄kw (·) ,

where the k is found in Eq. 2.3.12.

In the next section, we present a numerical example to explore the structure

of optimal policies for the transient Markov case.
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2.3.4 The Organ Transplant Example: A Comparative Analysis

We will compare numerically the type of polices obtained from CPT-based measures

against some of the other risk-sensitive approaches.

Example 7. The following example is from [18], which is a simplified version of

the organ transplant problem discussed in [1]. The problem considers the discrete-

time absorbing Markov chain depicted in Fig. 2.3.1a. The initial state S (i.e., sick)

represents a patient waiting on an organ transplant due to sickness. The state L

(i.e., live) represents the state where the patient lives after a successful transplant.

The state D, an absorbing state, represents death. There are two possible actions to

take in state S: 1) one can wait (W), in which case the next state could either be D

or S probabilistically; 2) one can choose to transplant (T), which concentrates the

transition probability on states L and D (i.e., states L and D are the only two possible

next states). The probability of death is lower for W than for T, but a successful

transplant may result in a longer life. In other two states, only the action continue

is allowed. The reward collected at each time step is months of life. In state S, a

reward equal to 1 is collected if the control is W; otherwise, the immediate reward

is 0. In state L, the reward r(L) is collected representing the certainty equivalent of

the random length of life after the transplant. In state D the reward is 0.

The states where there is only one possible action allowed have a deterministic

reward function (i.e., L and D). In particular, the equivalent length of life at the

state L is r (L) . However, this value is generated by taking on certain assumptions,

which are the focus of the following discussion. The state L is in fact an aggregation
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(a) Organ Transplant Transitions (b) The Survival Model

Figure 2.3.1: Organ Transplant State Transitions & Rewards
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(a) Semideviation [18]
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(b) CPT-based

Figure 2.3.2: Optimal Policy Comparison of the Organ Transplant Example

of n states in a survival model representing months of life after the transplant, as

depicted in Fig. 2.3.1b. At the state i, i = 1, . . . , n, the patient dies with probability

pi and survives with probability 1 − pi. The patient will die for sure in the state

n (i.e., pn = 1). The reward collected at each state i is equal to 1. In Çavuş and

Ruszczyński [18], the problem is stated as a minimization problem. However, we

desire a maximization problem, thus we compare our results to that of Çavuş and

Ruszczyński’s [18] by negating the rewards.

In [18], r (L) is calculated from the survival model using the transition mapping
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of the form:

σ (ϕ, i,m) = Em [ϕ]︸ ︷︷ ︸
expected value

+κE
[
(ϕ− Em [ϕ])+

]︸ ︷︷ ︸
semideviation

. (2.3.24)

In Eq. 2.3.24, the measure m is the transition kernel at the current state i,

and the function ϕ (·) is the reward collected at the current state and action plus the

value function at the next state (i.e., cost-to-go). At each state i = 1, . . . , n−1, two

transitions are possible: 1) transition to the state D with probability pi and ϕ = −1;

2) transition to the state i + 1 with probability 1 − pi and ϕ = −1 + vi+1 (i+ 1) .

At the state i = n, the transition to D occurs with probability 1, and ϕ = −1.

Therefore, vn (n) = −1.

The survival problem is now a finite-horizon problem, which can be expressed

as in Eq. 2.3.1. Since there is only one action allowed, the minimization operation

is eliminated. The equation has the form:

vi (i) = σ (ϕ, i, Qi) , i = 1, . . . , n− 1,

with ϕ and Qi being the reward and the transition probability respectively. The

values of ϕ and Qi are explained in the previous paragraph. By induction, vi (i) ≤ 0,

for i = n− 1, n− 2, . . . , 1.

The mean and semideviation components of Eq. 2.3.24 at the states i =
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1, . . . , n− 1 can be calculated as follows:

EQi [ϕ] = −pi + (1− pi) (−1 + vi+1 (i+ 1)) = −1 + (1− pi) vi+1 (i+ 1) ,

EQi
[
(ϕ− EQi [ϕ])+

]
= EQi [(ϕ+ 1− (1− pi) vi+1 (i+ 1))]

= pi (−1 + 1− (1− pi) vi+1 (i+ 1))+

+ (1− pi) (−1 + vi+1 (i+ 1) + 1− (1− pi) vi+1 (i+ 1))+

= pi (− (1− pi) vi+1 (i+ 1))+ + (1− pi) (pivi+1 (i+ 1))+

= −pi (1− pi) vi+1 (i+ 1) ,

where the last equality in the equation above is implied by the fact that vi+1 (i+ 1) ≤

0.

For i = 1, . . . , n− 1, the dynamic programming equation for the optimization

problem stated in Eq. 2.3.1 takes the form:

vi (i) = −1 + (1− pi) vi+1 (i+ 1)︸ ︷︷ ︸
expected value

−κ pi (1− pi) vi+1 (i+ 1)︸ ︷︷ ︸
semideviation

, i = n− 1, n− 2, . . . , 1.

The value v (1) is the negative of the risk-adjusted length of life with the new

transplanted organ. For κ = 0, the above formula gives the negative of the expected

length of life with the new organ. In the calculations below, we use the transition

data from Table 2.3.5. They have been chosen for illustrative purposes only, and do

not correspond to any real-life medical data. For the survival model, the distribution

function, F (x), of lifetime of the American population is suggested by Jasiulewicz
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Action S L D
W 0.99882 0 0.00118
T 0 0.90782 0.09218

Table 2.3.5: Transition Probabilities From State S

Distribution Parameters Weights
Weibull δ = 0.297, β = 0.225 w1 = 0.0170

Lognormal m = 3.11, σ = 0.218 w2 = 0.0092
Gompertz b = 0.0000812, α = 0.0844 w3 = 0.9737

Table 2.3.6: Organ transplant example: parameters for F (x).

[58]. It is a mixture of Weibull, lognormal, and Gompertz distribution:

F (x) := w1

(
1− e−(

x
δ )
β)

+ w2Φ

(
logx−m

σ

)
+ w3

(
1− e−

b
a
(eαx−1)

)
, x ≥ 0.

The values of the parameters and weights, provided by Jasiulewicz [58], are given

in Table 2.3.6.

Using the information provided above, the probability of dying in the k-th

month can be calculated using the equation:

pk =
F
(
k
12

+ 1
24

)
− F

(
k
12

− 1
24

)
1− F

(
k
12

− 1
24

) , k = 1, 2, . . . .

The maximum lifetime of the patient is assumed to be 1200 months, and the

post-transplant survival probabilities for the patient starts from k = 300. Hence, a

total of 900 steps, n=900, is used in the survival model to calculate r (L) .

If we let λ = (λW , λT ) be a randomized policy in the state S and let Λ =

{λ ∈ R2 : λW + λT = 1, λ ≥ 0}, then the dynamic programming equation at the
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state S has the form:

v (S) = min
λ∈Λ

{λW [qS,S (W ) (v (S)− 1) + qS,D (W ) (v (D)− 1)]

+λT [qS,L (T ) v (L) + qS,D (T ) v (D)]

+κ
(
λW
[
qS,S (W ) (v (S)− 1− µ)+ + qS,D (W ) (v (D)− 1− µ)+

]
+λT

[
qS,L (T ) (v (L)− µ)+ + qS,D (T ) (v (D)− µ)+

])}
.

Here, κ = 1. If λ is held fixed in the equation above, then we can solve for

v (S) . By varying λ ∈ (0, 1), we obtain Fig. 2.3.2a. We can compute the value

function of the CPT-based reward measure as follows:

v (S) = max
λ∈Λ

ˆ ∞

0

w+
(
λW
(
qS,S (W ) 1

{
(v (S) + 1− µ)+ > s

}
+qS,D (W ) 1

{
(v (D) + 1− µ)+ > s

})
+λT

(
qS,L (T ) 1

{
(v (L)− µ)+ > s

}
+qS,D (T ) 1

{
(v (D)− µ)+ > s

}))
ds

−
ˆ ∞

0

w−
(
λW
(
qS,S (W ) 1

{
(v (S) + 1− µ)− > s

}
+qS,D (W ) 1

{
(v (D) + 1− µ)− > s

})
+λT

(
qS,L (T ) 1

{
(v (L)− µ)− > s

}
+qS,D (T ) 1

{
(v (D)− µ)− > s

}))
ds.

In the equation above, w+ (·) = w− (·) = exp (−0.5 (− ln (·))) , and µ is the

expected value without probability weighting. The numerical results of the three
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Method r(L) Optimum Value Optimal λW
Expected Value 610.46 846.611 1.000000
Semideviation 515.33 426.139 0.987236

CPT 702.32 104.438 0.868232

Table 2.3.7: Organ Transplant Optimal Value and Policy Comparison

solution methods (i.e., expected value, semideviation, and CPT) 9 are listed in

Table 2.3.7. Furthermore, the value functions of the semideviation and the CPT

performance measures are plotted in Fig. 2.3.2.

We calculated r (L) for the CPT method using the following equation:

σ (ϕ, i,m) =

ˆ ∞

0

w+(m (ϕ+ > s))ds.

As is evident from Table 2.3.7, the CPT performance measure produces a more

randomized optimal policy than the other two approaches. The λW value of 0.99 is

very close to the deterministic policy of W (i.e., to wait). In fact, obtaining a very

randomized policy is difficult using semideviation. The ease with which the CPT

performance measure is able to obtain an optimal randomized policy can be ex-

plained by the fact that the probability weighting function is applied to the control.

Intuitively, the need for randomized policies stems from the nonlinear transforma-

tion of the uncertainty in the system, which renders deterministic optimal policies

insufficient.
9In the table, some values is negated to be positive for the purpose of comparison.
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2.4 Reward Measures and Optimal Policies

From the previous sections, we have learned that we can solve finite-horizon non-

convex optimization problems with reward functions of the form:

Vt(x0, π) = ρ
(
rt(x

π
t , a

π
t , x

π
t+1) + ρ

(
rt+1(x

π
t+1, a

π
t+1, x

π
t+2)

+ ρ
(
rt+2(x

π
t+2, a

π
t+2, x

π
t+3) + · · ·+

ρ
(
rT−1(x

π
T−1, a

π
T−1, x

π
T ) + rT (x

π
T )
)
· · ·
)))

,

where Vt is known as the reward-to-go function. The equation is analogous to the

expanded form of the standard expected value measure:

Ṽt (xt, π) = E
[
rt
(
xt, a

π
t , x

π
t+1

)
+ E

[
rt+1

(
xπt+1, a

π
t+1, x

π
t+2

)
+ E

[
rt+2

(
xπt+2, a

π
t+2, x

π
t+3

)
+ · · ·+

E
[
rT−1

(
xπT−1, a

π
T−1, x

π
T

)
+ rT (x

π
T ) |xπT−1

]
· · · |xπt+2

]
|xπt+1

]
xt
]
.

One of the advantages of the standard expected value measure is that it can be

written more compactly as

Ṽt (x0, π) = E

[
T−1∑
i=t

ri
(
xπi , a

π
i , x

π
i+1

)
+ rT (x

π
T )

]
.

We would like to write down a similar simplified counterpart in the CPT

Markov conditional reward measure case for Vt. In other words, we would like to
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study the reward measures:

Vt (xt, π) =

ˆ ∞

0

wt (πt (xt) ◦Qxt,t (rt (xt, a
π
t , xt+1) + Vt+1 (xt+1, π)) > s) dst,

where VT (xT , π) = rT (xT ) . (2.4.1)

For simplicity, we only consider bounded non-negative rewards (i.e., rt ≥ 0

and rt ≤M, M > 0 ∀t ≥ 0). The inclusion of negative rewards is a straightforward

exercise. We can see that Eq. 2.4.1 is a complicated sequence of nested integrals.

We would like to simplify this expression by introducing some new notations.

We note that the transformed measure on the measurable space (X× A,B (X× A))

Pw,ψ (ψ > s) := w (P (ψ > s)) (2.4.2)

is absolutely continuous with respect to P (ψ > s) . By the Radon-Nikodym theorem,

there exists a measurable function such that

Pw,ψ (B) :=

ˆ
B

dPw,ψ

dP
dP,

where dPw,ψ
dP is a Radon-Nikodym derivative.

Using Radon-Nikodym derivatives of the form dPw,ψ
dP , we can rewrite Eq.2.4.1
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as

Vt(xt, π) :=

ˆ
X×A

rt (xt, a
π
t , xt+1) +

ˆ
X×A

rt+1

(
xπt+1, a

π
t+1, x

π
t+1

)
· · ·

d
(
π (xt+1, t+ 1) ◦Qxt+1,t+1

)
wt+1,rt+1+vt+2

dπ (xt+1, t+ 1) ◦Qxt+1,t+1

dπ (xt+1, t+ 1) ◦Qxt+1,t+1

d (π (xt, t) ◦Qxt,t)
wt,rt+vt+1

dπ (xt, t) ◦Qxt,t

dπ (xt, t) ◦Qxt,t,

where vt is recursively defined as

vt (x) =

ˆ ∞

0

wt (πt (x) ◦Qx,t (rt + vt+1 > s)) ds

vT (x) = rT (x) .

In the equation above, the mapping rt+vt+1 : X×A×X → R is used to transform the

probability measure πt (x) ◦Qx,t, which is a probability measure on the probability

space (X× A,B (X× A)). According to Eq. 2.4.2, the function used to transform

the measure πt (x) ◦ Qx,t should be a B (X× A)-measurable function. It is obvious

that rt + vt+1 is a B (X× A)-measurable function if x is held fixed (i.e., rt + vt+1 is

treated as rt (x, ·) + v (·) in the equation above). In the sequel, whether or not x is

held fixed for the reward function rt + vt+1 should be obvious from the context.

Using the Radon-Nikodym derivative notation, Vt can be written more com-

pactly as:

84



Vt (xt, π) = Eπt

[(
T−1∑
i=t

rt
(
xπi , a

π
i , x

π
i+1

)
+ rT (x

π
T )

)
T−1∏
i=t

d (π (xi, i) ◦Qxi,i)
wi,ri+vi+1

dπ (xi, i) ◦Qxi,i

]

vt (x) =

ˆ ∞

0

wt (πt (x) ◦Qx,t (rt + vt+1 > s)) ds

vT (x) = rT (x) . (2.4.3)

Now, we can easily see that the difficulty of solving the optimization problem stated

in Eq. 2.3.1 is due to the appearance of the value functions {vi}T−1
t in the calculation

of Vt. The following proposition aggregates several fundamental properties of Eq.

2.4.3.

Proposition 1. The value function, Vt, in Eq. 2.4.3 has the following properties:

1) As sup
x

|wt (x)− x| → 0 ∀t ∈ [0, T ], a solution π̃∗ for the standard (i.e.,

risk-neutral) optimization problem:

max
π

Ṽt (xt, π) ,

also solves the optimization problem:

max
π

Vt (xt, π) ;

2) If wt is such that it puts all weights on the highest possible reward value, then an
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optimal policy for the optimization problem:

max
π

Vt (xt, π)

is obtained by considering only deterministic policies:

π∗
t (x) = arg max

a∈A(x)
rt(x, a) + vt+1 (xt+1) .

Proof. The proof for (1) is trivial since Ṽt (xt, π) → Vt (xt, π) point-wise when

sup
x

|wt (x)− x| → 0 ∀t ∈ [0, T ].

The proof for (2) is also straightforward. By placing all probability weights on the

highest reward value, it is always optimal to pick the deterministic action with the

highest reward value.

Remark 11. When there exists an action a∗ such that

Qx,t (ψx,a∗ > s|x, a∗) ≥ Qx,t (ψx,a > s|x, a)

∀s ∈ [0,∞), ∀a ∈ A (x) , ∀x ∈ X, ∀t ∈ [0, T ],

where ψx,a denotes the reward function with x and a fixed, then there exists a deter-

ministic optimal policy (i.e., the policy that takes action a∗ for state x at time t). De-

terministic optimal policies is obtained trivially when the complement CDF of an ac-

tion dominates all other complement CDFs (i.e., If 1−Fa1 (x) ≥ 1−Fa2 (x) ∀a1 6= a2,
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then a1 is an optimal deterministic action). The next example demonstrates some

of the difficulties in analyzing even the simplest probability weighting function. We

prove the uniqueness of the optimal policy for some special cases afterwards.

Example 8. For this example, we will use the probability weighting function:

w (x) = 1− (1− x)b b > 1.

For simplicity, we deal with a two-state-two-action problem. We write the

probability transition matrix as

Q1 :=

 Q [1, 1, 1] Q [1, 1, 2]

Q [2, 1, 1] Q [2, 1, 2]


and similarly we denote the transition probability matrix of taking action 2 (i.e.,

a2) as:

Q2 :=

 Q [1, 2, 1] Q [1, 2, 2]

Q [2, 2, 1] Q [2, 2, 2]

 .
In other words, Q [1, 2, 1] is the probability of starting and arriving at state 1

by taking action 2. Using the reward function ψ (x, a, x) := x+ a+ x, we study the

optimization problem:

max
p1

ˆ ∞

0

1− (1− (P (ψ > s|x, a1)× p1 + P (ψ > s|x, a1)× (1− p1)))
2 ds. (2.4.4)
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By differentiating Eq. 2.4.4 with respect to p1, we obtain

−Q[1, 2, 2]w′ (−Q[1, 2, 2] (−1 + p1))

+(Q[1, 1, 2]−Q[1, 2, 1]−Q[1, 2, 2])

×w′ (−(Q[1, 2, 1] +Q[1, 2, 2]) (−1 + p1) +Q[1, 1, 2]p1)

+3(Q[1, 1, 1] +Q[1, 1, 2]−Q[1, 2, 1]−Q[1, 2, 2])

×w′ (−(Q[1, 2, 1] +Q[1, 2, 2]) (−1 + p1) + (Q[1, 1, 1] +Q[1, 1, 2])p1) .

Substituting w′ (p) = 2 (1− p), we obtain an affine equation in p1:

g (p1) =− 2 (−3Q[1, 1, 1]− 4Q[1, 1, 2] + 4Q[1, 2, 1]

+ 3Q[1, 1, 1]Q[1, 2, 1] + 4Q[1, 1, 2]Q[1, 2, 1]

− 4Q[1, 2, 1]2 + 5Q[1, 2, 2] + 3Q[1, 1, 1]Q[1, 2, 2]

+4Q[1, 1, 2]Q[1, 2, 2]− 8Q[1, 2, 1]Q[1, 2, 2]− 5Q[1, 2, 2]2
)

−2
(
3Q[1, 1, 1]2 + 6Q[1, 1, 1]Q[1, 1, 2] + 4Q[1, 1, 2]2

− 6Q[1, 1, 1]Q[1, 2, 1]− 8Q[1, 1, 2]Q[1, 2, 1] + 4Q[1, 2, 1]2

− 6Q[1, 1, 1]Q[1, 2, 2]− 8Q[1, 1, 2]Q[1, 2, 2]

+8Q[1, 2, 1]Q[1, 2, 2] + 5Q[1, 2, 2]2
)
p1.

Although the equation above is affine in p1, its coefficients depend on the

transition probabilities (Q1 and Q2) and the reward function ψ. This dependence

makes any generalized results on the structure of the optimal policies difficult.
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We observe from the example above that any optimal solution of the problem

stated in Eq. 2.4.4 must satisfy g (p1) = 0, which has a unique solution p∗1. In the

next theorem, we will prove that this is true in general.

Theorem 8. Assume wt is a strictly concave function, then the function

ˆ ∞

0

wt (δ ◦Qx,t (rt + vt+1 > s)) ds

is strictly concave in δ. Furthermore, there is a unique maximizer for the optimization

problem:

max
δ∈P(A(x))

ˆ ∞

0

wt (δ ◦Qx,t (rt + vt+1 > s)) ds.

Proof. We prove the concavity of the function of interest:

ˆ ∞

0

wt ((αδ1 + (1− α) δ2) ◦Qx,t (rt + vt+1 > s)) ds

=

ˆ ∞

0

wt

(ˆ
Qx,t (rt + vt+1 > s) d (αδ1 + (1− α) δ2)

)
ds

> α

(ˆ ∞

0

wt (δ1 ◦Qx,t (rt + vt+1 > s))

)
ds

+(1− α)

(ˆ ∞

0

wt (δx ◦Qx,t (rt + vt+1 > s))

)
ds.

Since the right hand side of the second equation in the theorem is strictly concave,

the uniqueness of maximizer follows.

We are only able to prove the uniqueness of the optimal policy in the positive

reward case. For the more general case of both positive and negative rewards, where
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we have a convex-concave measure, we were unable to prove the uniqueness of the

optimal policy.

2.5 Conclusion

Non-convex reward measures are useful for modeling many real-life problems. More

specifically, CPT reward measures are derived from experimental data and have

been proven to model several key characteristics of human behaviors well. This

inspired us to start building a rigorous theoretical foundation for their application

to dynamic problems. Our effort has resulted in proving the applicability of dynamic

programming equations for non-convex reward measures.

In relation to Çavuş and Ruszczyński [18], we relaxed their assumptions on

the performance measures to monotonicity and positive homogeneity. In the finite-

horizon case, the monotonicity assumption is important in the proof for the suit-

ability of the dynamic programming method for the non-convex case. One of our

contributions in the finite-horizon case is the assumptions on the weighting functions

such that the monotonicity assumption of the performance measures is satisfied. In

the discounted infinite-horizon case, the suitability of the dynamic programming

method for non-convex performance measures is proven using the monotonicity as-

sumption and the fact that they are contractions. In the transient case, the proofs

are more difficult and require the utilization of k-step contractions.

In this chapter, we have established a rigorous mathematical foundation for

using dynamic programming to solve Markov Decision Problems with CPT-based
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reward measures. In our new framework, CPT-based reward measures, unlike the

existing work where CPT-based reward measures are only applied statically or to

special cases, can be applied to a larger class of problems. The development of

these new MDPs is especially useful for modeling dynamic human decision making

processes. Through numerical examples, we demonstrated the properties of optimal

policies obtained by solving these problems. The optimal polices obtained from

these problems are different from the standard polices; they are randomized rather

than deterministic. This finding, perhaps not too surprising due to previous work

done by Ruszczyński, suggests that deterministic optimal policies are insufficient for

obtaining the optimal value function when humans are involved. It is our hope that

these new proposed models will be utilized to model human risk-sensitive behaviors

in dynamic settings.
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Chapter 3

Cumulative Weighting Optimization

Global optimization problems are relevant in many fields (e.g., control systems,

operations research, economics). There are many approaches to solving these prob-

lems. One particular approach is model-based methods, which are a class of random

search methods. A model-based method iteratively updates its probability density

function. At each step, additional weight is given to solution subspaces that are

more likely to yield an optimal objective value. Model-based methods can be an-

alyzed by writing down a corresponding system of differential equations similar to

the well known Fokker-Planck equation, which models the evolution of probability

density functions for diffusions. We propose an innovative model-based method,

Cumulative Weighting Optimization (CWO), which can be proven to converge to

an optimal solution. Using this rigorous theoretical foundation, we design a class

of CWO-based numerical algorithms for solving global optimization problems. In-

terestingly, the well-known cross-entropy method is a special case of CWO-based

numerical algorithms.

3.1 Introduction

Many problems in engineering and science can be formulated as global optimiza-

tion problems. These problems are challenging when their objective functions are
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nonlinear (e.g., non-convex, multi-modal, or badly scaled). If we are only interested

in finding their local extrema and they are differentiable, then the standard local

optimization method (i.e., first derivative being zero) would suffice. If there are

only a few local extrema, then we can easily find a global optimal solution by eval-

uating all of them. However, this approach does not work on objective functions

with absence of structural information (e.g., non-differentiable), or in the presence

of many local extrema. Approaches developed to solve these problems can be di-

vided into two categories: deterministic and random search algorithms. Random

search algorithms can be further divided into instance-based (e.g., simulated anneal-

ing, genetic algorithm, tabu search, nested partitions, generalized hill climbing, and

evolutionary programming) and model-based algorithms (e.g., annealing-adaptive

search, cross-entropy (CE), model reference adaptive search (MRAS), and estima-

tion of distribution algorithms (EDAs)). A more recent addition to model-based

algorithms is model-based evolutionary optimization [88]. For the interested reader,

Hu et al. have a recent survey paper on model-based methods [54], which also

contains references to instance-based methods mentioned in this paragraph

We propose a new addition, inspired by Cumulative Prospect Theory (CPT),

to the class of model-based methods. The new CWO-based algorithms have an

intuitive connection with the risk-sensitive nature of the human decision making

process.

In the rest of this chapter, we will proceed in the following sequence. In Section

3.2, we present the problem statement. In Section 3.3, we introduce the concept of
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probability weighting functions. In Section 3.4, we will work with the case when

X = {1, 2, 3, 4, . . . }

and provide the reader some insight into the construction of our probability updating

equation. Later in the same section, we will prove the convergence properties for

the equation. In Section 3.5, we will generalize the results of Section 3.4 to Polish

spaces. Finally, in Section 3.6, we will outline our numerical algorithms and present

some simulation results.

3.2 Problem

In many engineering applications, we are looking for a “best” solution based on some

criterion. For example, in the well known traveling salesman problem (TSP), we are

looking for the cheapest route that visits all cities and terminates at the starting

point. Problems of this nature can be formulated as the following optimization

problem:

x∗ ∈ arg max
x∈X

H(x), (3.2.1)

where x∗ is an optimal solution to the problem and X is a non-empty, often compact,

solution space (in many applications X ⊂ Rn). H : X → R, the objective function,

is a bounded deterministic measurable function with many local extrema. In the

rest of this chapter we assume the following.

Assumption 4. There exists a global optimal solution to Eq. 3.2.1, i.e., ∃x∗ ∈ X
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such that H(x) ≤ H(x∗) ∀x 6= x∗, ∀x ∈ X .

In practice, this assumption is true for many optimization problems. For

example, the assumption holds trivially when X is a finite discrete solution space.

Generally, we do not assume any other structural information about the objective

function (i.e., convexity, differentiability).

We can introduce a measurable strictly increasing fitness function, φ : R →

R+, and reformulate Eq. 3.2.1 as:

x∗ ∈ arg max
x∈X

φ (H(x)) . (3.2.2)

Since the reformulated problem guarantees the range of the new fitness-objective

function (i.e., φ (H (·))) will always be non-negative, and it is equivalent to the

original problem, we will solve Eq. 3.2.2 in place of Eq. 3.2.1. A similar problem

statement can be found in Hu et al. [54].

3.3 Probability Weighting Functions

Probability weighting functions have many applications in science and engineering.

In this thesis, we are most concerned with using them to re-weight the probabili-

ties of outcomes. Weighting is suggested by Cumulative Prospect Theory (CPT) as

an important part of the human decision making process. Prospect Theory (PT),

the predecessor to CPT, was suggested in the 1970s by Kahneman and Tversky

[59]. They were unsatisfied with PT due to its violation of second order stochastic
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dominance, which was remedied by CPT in the 1990s [83]. CPT improves PT by

re-weighting the outcome cumulative probability function instead of the outcome

probability density function. This new approach can also be useful for global op-

timization problems. The purpose of this section is to familiarize the reader with

probability weighting functions, which will be used later for iteratively updating

probability measures. We first introduce several definitions to assist us in our dis-

cussion.

Definition 18. A weighting function, w : [0, 1] → [0, 1], is a monotonically increas-

ing and Lipschitz continuous function with w(0) = 0 and w(1) = 1.

We are interested in weighting functions with the additional property of optimal-

seeking.

Definition 19. A weighting function, w : [0, 1] → [0, 1], is optimal-seeking if

w (αx+ (1− α) y) > αw (x) + (1− α)w(y), ∀α ∈ (0, 1), x 6= y ∈ [0, 1].

Optimal-seeking is called risk-seeking in fields modeling risk-sensitivity. From the

definitions above, we can prove the following proposition.

Proposition 2. An optimal-seeking weighting function satisfies the inequality

w(z) > z, ∀z ∈ (0, 1) .

Proof. Let x = 1, y = 0, and α = z in the definition for optimal-seeking weighting

functions. The proof follows trivially.
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Next, we will be more concrete and provide several examples of risk-seeking

probability weighting functions.

Assumption 5. w is an optimal-seeking weighting function.

Example 9. A simple polynomial weighting function has the form:

w (p) = 1− (1− p)b , b > 1. (3.3.1)

Another more complicated weighting function involving exponentials has the form:

w(p) =
ecp − 1

ec − 1
, (3.3.2)

where c < 0. There are other parametric weighting functions, which can be found

in [29].

An optimal-seeking weighting function tends to place more weight on highly

unlikely, yet highly rewarding outcomes. In particular, it is used to overweight the

probabilities of unlikely events (i.e., events with small probabilities) and underweight

the probabilities of highly likely events. More specifically, we can apply an optimal-

seeking weighting function to the cumulative distribution function of the outcomes,

as in the example below.

Example 10. We are given a die and asked to roll it once. We are told that we

will be given a payoff that is equivalent to the outcome of the roll. For example, if

we rolled a 1, then we would be given a $1 reward. We assume the die is fair, and
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calculate the expected payoff for both the risk-neutral and optimal-seeking cases.

We use R to denote the random variable associated with the outcomes of this game.

The risk-neutral expected payoff is calculated as:

E [R] =
6∑

n=1

1− F (n) =
6∑

n=1

n

6
=

21

6
≈ 3.5,

where F (n) is the cumulative distribution function at outcome n. Using the poly-

nomial weighting function in Eq. 3.3.1 with b = 2, we have our optimal-seeking

re-weighted expected payoff:

Ew [R] =
6∑

n=1

w (1− F (n)) =
6∑

n=1

w(
n

6
) =

6∑
n=1

1− (1− n

6
)2 =

161

36
≈ 4.47222.

Remark 12. The reader should note that the re-weighting is applied to the good-

news function1 (i.e., the probability of the outcome exceeding a threshold). In

other words, the unlikely events are events whose payoff exceeded some threshold.

It should be noted that the optimal-seeking re-weighted expected payoff is greater

than that of the risk-neutral. This will be an important feature in proving the

convergence of the CWO method.
1In other fields, the good-news function is also known as the survival function or the reliability

function.
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3.4 Discrete Solution Space

We are trying to find an solution for Eq. 3.2.2 assuming that

X := {1, 2, 3, 4, . . . } .

We further assume the discrete topology for X . The discrete solution space case

should offer the reader some intuitive insight into the workings of the CWO method.

In the next section, we will present analogous results on Polish spaces.

We denote the set of optimal measures on (X ,B (X )) by

P∗
X := {P ∈ PX |P (X ∗) = 1} ,

where X ∗ is the set of all optimal solutions, i.e.,

X ∗ := {i∗ ∈ X |H(i) ≤ H(i∗), ∀i ∈ X} ,

and PX is the set of all possible probability measures over B (X ). It should not

surprise the reader that if we can find an element of P∗
X , then we have found a

solution to the global optimization problem stated in Eq. 3.2.2. We assume X ∗ has

only a finite number of elements.

Assumption 6. The objective function, H : X → R, has a finite number of optimal
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solutions, i.e., the set

X ∗ := {i∗ ∈ X |H(i) ≤ H(i∗), ∀i ∈ X}

has a finite number of elements.

Proposition 3. P∗
X and PX are both non-empty sets.

Proof. Using Assumption 4 we know that a Dirac measure concentrated at any

i∗ ∈ X ∗ is in P∗
X , which is a subset of PX .

Our objective is to restrict the temporal evolution of a probability measure such

that it will eventually concentrate its probability density at one of the optimal solu-

tions. This evolution can be defined on a measurable space, (X ×R+,B (X ×R+)),

where X is the given solution space and R+ represents time. If the evolution hap-

pens in discrete time or iteration steps, then R+ can be replaced by {0, 1, 2, 3, . . . } .

To solve Eq. 3.2.1, we want to find a probability measure P and a t∗ ∈ R+ such

that

P ({(t, i)|i ∈ X ∗}) = P ({(t, i)|i ∈ X}) , ∀t ≥ t∗. (3.4.1)

In other words, P at some finite time t∗ is a member of P∗
X . We denote the resulting

probability space by 2

(
X ×R+,B

(
X ×R+

)
,P
)
.

2For simplicity, we choose to work with (X ×R+,B (X ×R+) ,P) instead of(
XR+

,B
(
XR+

)
, P̃
)

, which is the common practice for defining a stochastic process. It

should not be hard for the reader to see that
(
XR+

,B
(
XR+

)
, P̃
)

can induce a measure P on
the measurable space (X ×R+,B (X ×R+)) .
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At each time t, P induces a probability measure on the measurable space (X ,B (X )),

Pt (BX ) := P ({(t, i)|i ∈ BX}) , ∀BX ∈ B (X ) , (3.4.2)

resulting in a probability space (X ,B (X ) ,Pt). Conversely, if we know Pt at all

times, then we can construct a P that satisfies Eq. 3.4.23. The coordinate random

variable is denoted by X (i.e., X (i) = i, i ∈ X ). Similarly, the outcome random

variable is denoted by Y, where Y = φ (H (X)) . We denote the set of all possible

outcomes from evaluating φ (H (·)) over X by

Y :=
{
y ∈ R+|∃i ∈ X s.t. y = φ (H (i))

}
.

A sensible next step is to write down the dynamics of Pt with respect to time

(i.e., Ṗt), and interestingly we will be able to prove that

Et [φ (H (X))] :=

ˆ
X
φ (H (i)) dPt :=

ˆ
Y
ydPφ(H(Xt))

t (3.4.3)

is a strictly increasing function with increasing t. In the equation above, Pφ(H(Xt))
t is

the probability measure of the random variable φ (H (Xt)) induced by Xt. Of course,

probability weighting functions from Section 3.3 play a key role in the equations for

Ṗt4. Using Eq. 3.4.3 along with Lyapunov stability analysis, we will conclude the

convergence of Pt to optimal solutions (i.e., elements of P∗
X ). The following examples

3We can construct such a measure by using the definition: P (BX ×BT ) =´
BX×BT

Pt (dx) dt, BX ×BT ∈ B (X ×R+).
4We opted for the notation Pt instead of Pw

t for simplicity, but the reader should be mindful of
Pt’s dependence on w.
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illustrate our approach.

Example 11. (Distinct Outcomes)

We are given a finite solution space X = [1, 2, 3], and its corresponding out-

come space Y = [φ (H (1)) , φ (H (2)) , φ (H (3))] ⊂ R+. In addition, we assume the

outcomes are distinct (i.e., φ (H(3)) > φ (H(2)) > φ (H(1)) ≥ 0). We denote the

vector of probabilities for non-intersecting outcome events,

yi(t) = Pt (φ (H (i)) ≤ φ (H (X)) < φ (H(i+ 1)) , i ∈ X with φ (H (4)) = ∞,

by [y1(t), y2(t), y3(t)]. Furthermore, we denote the probabilities on elements of the

solution space by [x1(t), x2(t), x3(t)], respectively.

To avoid confusion, we will refer to [y1(t), y2(t), y3(t)] as the outcome probability

vector, and [x1(t), x2 (t) , x3 (t)] as the solution probability vector. Note, Pt in the

previous discussion is equivalent conceptually to the solution probability vector.

Our goal is to write down the dynamic equation for the solution probability

vector. However, in order to do that, we need to write down the dynamic equation

for the outcome probability vector. Using an optimal-seeking weighting function,

w, the dynamics of the outcome probability vector can be written as:

dy1
dt

= (w(1)− w(y2 + y3))− y1

dy2
dt

= (w(y2 + y3)− w(y3))− y2

dy3
dt

= w(y3)− y3.
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We define the matrix G, which in the nonlinear Markov processes literature is called

a generator (see [61, 62]), as

G(y1, y2, y3) :=
−w(y2 + y3) w(y2 + y3)− w(y3) w(y3)

1− w(y2 + y3) w(y2 + y3)− w(y3)− 1 w(y3)

1− w(y2 + y3) w(y2 + y3)− w(y3) w(y3)− 1

 .

Using the matrix G, we can write down the outcome and solution probability vector

equations as:

˙
y1

y2

y3

 =

[
y1 y2 y3

]
G(y1, y2, y3)

˙
x1

x2

x3

 =

[
x1 x2 x3

]
G(x1, x2, x3).

From Proposition 2 we see that w(y) > y ∀y ∈ (0, 1), which implies

dy3
dt

> 0,
dx3
dt

> 0 ∀x3, y3 ∈ (0, 1) and dy3
dt

= 0,
dx3
dt

= 0 x3, y3 = {0, 1} .

Since the best outcome, x = 3, will monotonically increase in its probabil-

ity weight, and the increase in probability weight has to come from the non-best
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solutions, the non-best solutions will eventually die out, i.e.,


x1 (t)

x2 (t)

x3 (t)

⇒


0

0

1

 as t→ ∞.

We will prove our convergence assertion more rigorously later in this section.

What would happen if two or more members in the solution space might map

to the same outcome?

Example 12. (Non-Distinct Outcomes)

Consider the case when there are more than one solution mapping to the

same outcome. We are given an optimal-seeking probability weighting function, w,

and a solution space X = [1, 2, 3, 4]. Assume we know that φ (H(4)) = φ (H(3)) >

φ (H(2)) > φ (H(1)) ≥ 0. Now, the outcome space, Y = [φ (H(3)) , φ (H(2)) , φ (H(1))],

has fewer elements than the solution space. Following the similar line of logic as in

the previous example, the outcome probability vector equation is written as :

dy1
dt

= (w(1)− w(y2 + y3))− y1

dy2
dt

= (w(y2 + y3)− w(y3))− y2

dy3
dt

= w(y3)− y3,

104



where yi is defined as

y1 (t) = Pt (φ (H(1) ≤ φ (H (X)) < φ (H(2))

y2 (t) = Pt (φ (H (2)) ≤ φ (H (X)) < φ (H(3))

y3 (t) = Pt (φ (H (3)) ≤ φ (H (X)) <∞) .

We define the matrix Gy as:

Gy(y1, y2, y3) :=
−w(y2 + y3) w(y2 + y3)− w(y3) w(y3)

1− w(y2 + y3) w(y2 + y3)− w(y3)− 1 w(y3)

1− w(y2 + y3) w(y2 + y3)− w(y3) w(y3)− 1

 .

As in the distinct outcome case, the solution probability vector is written as:

dx1
dt

= (w(1)− w(x2 + x3 + x4))− x1

dx2
dt

= (w(x2 + x3 + x4)− w(x3 + x4))− x2

dx3
dt

= βw(x3 + x4)− x3

dx4
dt

= (1− β)w (x3 + x4)− x4, β ∈ [0, 1] ,
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and its corresponding generator is

Gx,β(x1, x2, x3, x4) :=

−w(x2 + x3 + x4) w(x2 + x3 + x4)− w(x3 + x4) βw(x3 + x4) (1− β)w(x3 + x4)

1− w(x2 + x3 + x4) w(x2 + x3 + x4)− w(x3 + x4)− 1 βw(x3 + x4) (1− β)w(x3 + x4)

1− w(x2 + x3 + x4) w(x2 + x3 + x4)− w(x3 + x4) βw(x3 + x4)− 1 (1− β)w(x3 + x4)

1− w(x2 + x3 + x4) w(x2 + x3 + x4)− w(x3 + x4) βw(x3 + x4) (1− β)w(x3 + x4)− 1


.

We can write the dynamic equation for the outcome and solution probability

vectors more compactly as:

˙
y1

y2

y3

 =

[
y1 y2 y3

]
Gy(y1, y2, y3)

˙
x1

x2

x3

 =

[
x1 x2 x3

]
Gx,β(x1, x2, x3).

From Proposition 2 we see that w(y) > y, ∀y ∈ (0, 1), which implies

dy3
dt

> 0,
dx3
dt

+
dx4
dt

> 0, ∀x3, x4, y3 ∈ (0, 1)

and

dy3
dt

= 0,
dx3
dt

= 0,
dx4
dt

= 0, x3, x4, y3 = {0, 1} .

Ultimately, we have the best solutions for the problem, x = 3 and x = 4,
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monotonically increasing in their probability weights. Since the increase in proba-

bility weights has to come from the non-best solutions, they will eventually die out,

i.e., 

x1 (t)

x2 (t)

x3 (t)

x4 (t)


⇒



0

0

α3

α4


as t→ ∞, α3, α4 ≥ 0, α3 + α4 = 1.

Remark 13. A key feature of the non-distinct outcomes case is the appearance of

the β-function (later, this will be called a distribution rule). For instance, in the

example above, the β-function could be:

Pt (X = i|Y = φ (H(i))) =
xi (t)∑

j:φ(H(j))=φ(H(i)) xj (t)
.

An interesting observation from the examples above is that the solution and

outcome probability vector equations fall into a category of equations called the

nonlinear Fokker-Planck equation (see [61, 42]). In addition, the examples suggest

that by propagating the solution and outcome probability vectors appropriately, we

can concentrate the probability weights on optimal solutions. The key step forward

is writing down the general equations for the solution and outcome probability

vectors.

The generalized solution probability vector equation has the form:
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dxi (t)

dt
= βi (t)

w
 ∑
j:φ(H(j))≥φ(H(i))

xj (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

xj (t)


· · · − xi (t) ∀i ∈ X (3.4.4)∑
φ(H(i))=y

β (i, y, t) = 1 ∀y ∈ Y ∀t ∈ R+, (3.4.5)

where xi : R+ → [0, 1] is the probability measure assigned to an element i ∈ X ,

and βi (t) := β (i, φ (H (i)) , t) is a distribution rule defined below. In Eq. 3.4.4, the

difference between the first w distorted term and the second w distorted term is the

event φ (H (j)) = φ (H (i)). Wang et al. (see [88]) have an alternative set of evolu-

tion equations, also nonlinear Fokker-Planck equations, motivated by evolutionary

game theory. As the reader will see later, we reach the same convergence results as

Wang et al. in [88] with a modified approach.

Definition 20. A distribution rule with respect to a given objective function,

φ (H (·)), is a mapping β : X × Y ×R+ → [0, 1] such that

∑
φ(H(i))=y

β (i, y, t) dx = 1 ∀y ∈ Y ∀t ∈ R+.

Connecting this equation with the discussion at the beginning of this section,

the reader should note that

Pt (X = i) = xi(t) ∀i ∈ X .
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The generalized outcome probability vector equation has the form:

dyz (t)

dt
= w

(∑
j:j≥z

yj (t)

)
− w

(∑
j:j>z

yj (t)

)
− yz (t) ∀z ∈ Y .

We pay special attention to the best outcome equation:

dy∗ (t)

dt
= w

(∑
j:j≥∗

yj (t)

)
− y∗ (t) ,

where ∗ := φ (H (i∗)) i∗ ∈ X ∗.

In the rest of this section, we want to study the convergence properties of Eq.

3.4.4. Furthermore, we want to understand the stability properties, in the Lyapunov

sense, of its limit points. The first step in understanding Eq. 3.4.4 is to understand

the existence and uniqueness of its solutions. The outline of our proof for the next

theorem follows [65] and [51].

Theorem 9. For each x(0) ∈ PX , the ordinary differential equation 3.4.4 has a

unique solution for t ∈ R+. Here, β : X × Y ×R+ → [0, 1] is a distribution rule5.

Proof. We use the total variation norm, ‖·‖ , on a σ-finite signed measure space over

(X ,B (X )) :

‖x(t)‖ = sup
A∈B(X )

∑
i∈A

|xi(t)| .

Since x (t) ∈ PX is a probability measure ∀t, and |βi| ≤ 1 , we know the following
5We will provide the definition for distribution rules in more general spaces in the next section.

For the proof of this theorem, we are only using the fact that it is a bounded function. In the
future, β could depend on both i ∈ X and x (t) ∈ PX .
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inequalities hold:

sup
A∈B(X )

∑
i∈A

∣∣∣∣∣∣βi (t)
w

 ∑
j:φ(H(j))≥φ(H(i))

xj (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

xj (t)

− xi (t)

∣∣∣∣∣∣
≤ sup

A∈B(X )

∑
i∈A

∣∣∣∣∣∣βi (t)
w

 ∑
j:φ(H(j))≥φ(H(i))

xj (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

xj (t)

∣∣∣∣∣∣
+ sup
A∈B(X )

∑
i∈A

|xi (t)| ≤ 2.

Hence, we conclude the right hand side of Eq. 3.4.4 is bounded by 2. Next, we need
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to prove that the right hand side of Eq. 3.4.4 is Lipschitz continuous.

sup
A∈B(X )

∑
i∈A

∣∣∣∣∣∣
βi (t)

w
 ∑
j:φ(H(j))≥φ(H(i))

x1j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x1j (t)

− x1i (t)


−

βi (t)
w

 ∑
j:φ(H(j))≥φ(H(i))

x2j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x2j (t)

− x2i (t)

∣∣∣∣∣∣
≤ sup

A∈B(X )

∑
i∈A

∣∣∣∣∣∣
w

 ∑
j:φ(H(j))≥φ(H(i))

x1j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x1j (t)

− x1i (t)

−

w
 ∑
j:φ(H(j))≥φ(H(i))

x2j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x2j (t)

− x2i (t)

∣∣∣∣∣∣
≤ sup

A∈B(X )

∑
i∈A

∣∣∣∣∣∣w
 ∑
j:φ(H(j))≥φ(H(i))

x1j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x1j (t)


−

w
 ∑
j:φ(H(j))≥φ(H(i))

x2j (t)

− w

 ∑
j:φ(H(j))>φ(H(i))

x2j (t)

∣∣∣∣∣∣
+
∣∣x1i (t)− x2i (t)

∣∣
≤ K sup

A∈B(X )

∑
i∈A

∣∣∣∣∣∣
∑

j:φ(H(j))=φ(H(i))

x1j (t)−
∑

j:φ(H(j))=φ(H(i))

x2j (t)

∣∣∣∣∣∣
+ sup

A∈B(X )

∑
i∈A

∣∣x1i (t)− x2i (t)
∣∣

≤ K sup
A∈B(X )

∑
i∈A

∣∣∣∣∣∣
∑

j:φ(H(j))=φ(H(i))

x1j (t)− x2j (t)

∣∣∣∣∣∣+ sup
A∈B(X )

∑
i∈A

∣∣x1i (t)− x2i (t)
∣∣

≤ K sup
A∈B(X )

∑
i∈A

∣∣x1i (t)− x2i (t)
∣∣+ ∥∥x1(t)− x2(t)

∥∥
≤ K

∥∥x1(t)− x2(t)
∥∥+ ∥∥x1(t)− x2(t)

∥∥ ≤ (K + 1)
∥∥x1(t)− x2(t)

∥∥ .
Hence, the right hand side of Eq. 3.4.4 is Lipschitz continuous in x with the

constant K+1, where K is the Lipschitz constant for w (w is defined to be Lipschitz
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continuous; see Definition 18). Using [90, Corollary 3.9], we conclude that Eq. 3.4.4

with an initial measure x(0) ∈ PX has a unique solution x(t) ∀t ∈ R+.

The next Lemma is needed in Theorem 12, which shows the monotonically

increasing nature of Et [φ (H (X))] .

Lemma 6. Given an optimal-seeking weighting function, w, there exists a ζ̃ such

that ∑
ζ∈Y

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)
(3.4.6)

can be decomposed into the sum of its non-negative and negative parts:

∑
ζ≥ζ̃

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)
︸ ︷︷ ︸

non−negative∑
ζ<ζ̃

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)
︸ ︷︷ ︸

negative

.

In other words, we can write Eq. 3.4.6 as the sum of its non-negative and

negative parts.

Proof. Since w is a monotonically increasing function, it satisfies

w
(∑

j:Y≥ζ yj (t)
)
− w

(∑
j:Y >ζ yj (t)

)
yζ (t)

≥ 0.
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Furthermore, since w is an optimal-seeking function we have

w
(∑

j:Y≥ζ1 yj (t)
)
− w

(∑
j:Y >ζ1

yj (t)
)

yζ1 (t)

>
w
(∑

j:Y≥ζ2 yj (t)
)
− w

(∑
j:Y >ζ2

yj (t)
)

yζ2 (t)
∀ζ1 ≥ ζ2 ∈ Y . (3.4.7)

In addition, since w (0) = 0 and w (1) = 1, we know that

w
(∑

j:Y≥ζ yj (t)
)
− w

(∑
j:Y >ζ yj (t)

)
yζ (t)

> 1

for some ζ ∈ Y . From Eq. 3.4.7, we know that if ζ2 satisfies the above inequality,

then so does ζ1 ≥ ζ2 ∈ Y . Hence, we conclude that ζ̃ is the smallest such ζ.

At the beginning of this section, we stated implicitly that if we can find an

element of P∗
X , then we have found a solution to the global optimization problem

stated in Eq. 3.2.2. The theorems below present a blueprint, through the use of

Eq. 3.4.4, to obtain an element of P∗
X . In Theorem 9, an initial point can be any

element of PX . As we have discovered, PX is too large a set to initialize Eq. 3.4.4

to guarantee as t → ∞ the solution probability vector, x (t), will be an element of

P∗
X . Hence, we need to constrain our initial points to a smaller set.

Definition 21. We denote the set of all x (0) for which there exists an optimal

solution, i∗ ∈ X ∗, such that xi∗(0) > 0 by O.

In other words, O contains all initial probability vectors with nonzero weights

on at least one optimal solution. The next theorem proves the total probability
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measure on the optimal solution set will converge to 1 as t → ∞. On the other

hand, the total probability measure on the non-optimal solution set will converge

to 0 as t→ ∞.

Theorem 10. If x (t) is a solution for Eq. 3.4.4, then it satisfies the following with

initial points in O (i.e., x (0) ∈ O):

1) The total probability weight on the optimal solutions,
∑

i∈X ∗ xi (t), is a

monotonically increasing function of t. In fact, it converges to 1 as t→ ∞;

2) The probability of any non-optimal solution, xi (t) : R+ → [0, 1], i /∈ X ∗,

approaches zero as t→ ∞.

Proof. We know that ∑
i∈X ∗

xi = y∗,

hence we only need to prove y∗ is a monotonically increasing function of t. Writing

down the equation for y∗,

dy∗ (t)

dt
= w

(∑
j:j≥∗

yj (t)

)
− y∗ (t) ,

and from Proposition 2:

w

(∑
j:j≥∗

yj (t)

)
> y∗ (t) ,

we conclude

dy∗(t)

dt
> 0 ∀y∗(t) 6= 1, and

dy∗(t)

dt
= 0 when y∗(t) = 1.
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Since x (0) ∈ O implies y∗ (0) > 0 , the first claim is proved.

The second claim follows from the first claim. Since y∗ (∞) = 1, and x is a

solution probability vector (i.e., sum of xis is 1), we can conclude the following:

lim
t→∞

∑
i∈X

xi (t) = lim
t→∞

∑
i∈X ∗

xi (t) +
∑
i/∈X ∗

xi (t) = 1 + lim
t→∞

∑
i/∈X ∗

xi (t) = 1

=⇒ lim
t→∞

∑
i/∈X ∗

xi (t) = 0 =⇒ lim
t→∞

xi (t) = 0 ∀i /∈ X ∗.

We are interested in finding the limit points of Eq. 3.4.4. Ideally, these limit

points should be elements in P∗
X . This is accomplished by picking the initial point

set more carefully.

Definition 22. We define the limit set of a differential equation starting from an

element x (0) ∈ I as

EI :=
{
x∞ ∈ PX |x∞ = lim

t→∞
x (t) , x (0) ∈ I

}
.

Remark 14. The limit set is invariant with respect to Eq. 3.4.4. More specifically,

once x enters the set, it will not exit the set under Eq. 3.4.4. The author is not the

first to introduce the concept of an initial point dependent limit set (cf. [87]).

We characterize the limit set of Eq. 3.4.4 when x (0) ∈ O in the following

theorem.
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Theorem 11. The limit set of Eq. 3.4.4 started in O is P∗
X , i.e.,

EO = P∗
X :=

{
x ∈ PX |

∑
i∗∈X ∗

xi∗ = 1

}
.

Proof. To prove the first claim, we will first prove EO ⊃ P∗
X , then we will prove

EO ⊂ P∗
X . The first case, EO ⊃ P∗

X , can be trivially proved by taking an element

x ∈ P∗
X , we notice that x ∈ O, and by definition of EO (i.e., the limit set of Eq.

3.4.4 starting from O), we conclude x ∈ EO .

Now we proceed to prove EO ⊂ P∗
X . We prove by contradiction. Assume there

is an element e ∈ EO, but not in P∗
X such that:

ėi (t) = βi (t)
(
w
(∑

j:φ(H(j))≥φ(H(i)) ej (t)
)
− w

(∑
j:φ(H(j))>φ(H(i)) ej (t)

))
−ei (t)

ei (0) ≥ 0, limt→∞ ei (t) > 0 i /∈ X ∗.

This contradicts the second claim of Theorem 10, where ei (∞) = 0.

The next theorem shows the monotonically increasing nature of Et [φ (H (X))],

which will be useful later in proving some stability properties of Eq. 3.4.4.

Theorem 12. Let x (t) be a solution of the dynamics represented by Eq. 3.4.4 with

an initial point in O. Then the following statements hold:

1) The expected outcome, i.e., Et [φ (H (X))] :=
∑

i∈X φ (H (i))xi (t), is mono-

tonically increasing with t;

2) If x(t) /∈ EO for any t ∈ R+, then Et [φ (H (X))] is strictly increasing with

t.
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Proof. We start our proof by differentiating the average outcome function:

d

dt
Et [φ (H (X))] =

d

dt
Et [Y ]

=
∑
ζ∈Y

ζ
dyζ(t)

dt

=
∑
ζ∈Y

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)

=
∑
ζ≥ζ̃

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)

+
∑
ζ<ζ̃

ζ

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)
(Lemma. 6)

≥ ζ̃
∑
ζ∈Y

(
w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
− yζ (t)

)
= ζ̃ × 0 = 0.

Here, the last equality holds because

∑
ζ∈Y

w

(∑
j:Y≥ζ

yj (t)

)
− w

(∑
j:Y >ζ

yj (t)

)
= 1, and

∑
ζ∈Y

yζ (t)=1.

The first claim is proved.

The second claim is proved by contradiction. We assume that x(t) is not in

the limit set, and
d

dt
Et [φ (H (X))] = 0.

Along with Theorem 10, the equality above implies that φ (H (X)) is equal to a

constant C = supi∈X φ (H (i)), which means x (t) has all its probability mass on the

optimal solutions. From Theorem 11, we know a limit point has its probability mass

117



on the optimal solutions. However, we assumed x(t) is not a limit point, hence we

reach a contradiction.

We will now proceed to prove some stability properties of Eq. 3.4.4, but first

we need to introduce our definitions of stability given a metric d.

Definition 23. Let L be a subset of PX . For a point x(t) ∈ PX , we define the

distance between x(t) and L as

d (x(t),L) := inf {d (x(t), q) , ∀q ∈ L} .

L is called Lyapunov stable if for all ε > 0, there exists a δ > 0 such that

d (x (0) ,L) < δ ⇒ d (x (t) ,L) < ε, ∀t > 0.

Lyapunov was also interested in other stronger types of stability.

Definition 24. Let L be a subset of PX . L is called asymptotically stable if L is

Lyapunov stable, and there exists a δ > 0 such that

d (x (0) ,L) < δ ⇒ d (x (t) ,L) → 0

as t→ ∞.

The next theorem is the main result of this section. It states EO is compact

and asymptotically stable.

Theorem 13. EO is a compact set and it is asymptotically stable.
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Proof. We need to first prove that EO is a compact set. Since from our Theorem 11,

we have EO = P∗
X and can instead prove

P∗
X :=

{
x ∈ PX |

∑
i∗∈X ∗

xi∗ = 1

}

is compact. It is easy to see that P∗
X is tight (see Appendix, Definition 31) due

to Assumption 6. Furthermore, we can prove it is a closed set by contradiction.

Assume there exists a sequence {xn} ∈ P∗
X such that xn → x̂ /∈ P∗

X . This implies

∃N such that ∀n > N we have
∑

i∗∈X ∗ xni∗ < 1, and
∑

i/∈X ∗ xni > 0, which contradicts

the second claim of Theorem 10. Hence, P∗
X = EO is a compact set.

Consider the Lyapunov function

V (xt) = E [φ (H (X∗))]− Et [φ (H (X))] ,

where x∗ ∈ P∗
O and X∗ is the corresponding random variable. Note that V (xt) is

positive for all xt ∈ PX\P∗
X , and V (xt) = 0 for xt ∈ P∗

X = EO. From Theorem 12 we

have V̇ (xt) < 0 for all t > 0 and xt /∈ P∗
O. Furthermore, we know EO is a compact

set. Applying a generalized version of Lyapunov’s theorem (see [12, Chapter 5]),

the desired conclusion is reached.

Remark 15. Chapter V of [12] presented a generalized version of Lyapunov’s theo-

rem on a general metric space. In the proof of Theorem 13, we applied this gen-

eralized Lyapunov’s theorem on the Banach Space of σ-finite signed measures over
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(X ,B (X )), where we used the total variation distance

d
(
x1, x2

)
= sup

A∈B(X )

∑
j∈A

∣∣x1j(t)− x2j (t)
∣∣ .

Conclusion 1. We have proven so far that if we start Eq. 3.4.4 in O, then the possible

limit points are elements of EO = P∗
X . Furthermore, the set EO is asymptomatically

stable.

The use of the Lyapunov function in proving the stability of the limit set

can also be found in Wang [87], which applied the generalized version of Lyapunov’s

theorem to an infinite dimensional space. In the next section, we will apply a similar

approach to prove the stability of the limit set when the solution space is a Polish

space.

3.5 Polish Space

In this section, we try to find a solution for Eq. 3.2.2 given that X is a Pol-

ish space with the Prohorov topology (see Appendix C.1). Polish spaces include

finite-dimensional real spaces (i.e., Rn), which are important in many engineering

applications. The Polish space of probability measures on (X ,B (X )) is denoted by

PX , which also has the Prohorov topology.

We will alter our notations in this section from the discrete space case. The

symbol x in this section is an element of X (i.e., x ∈ X ). We will use the notation

PX,t ({x}) to represent the probability measure of x at time t. This is different
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from the discrete space case, where Pt (i) = xi(t) ∀i ∈ X 6. We write X for the

solution random variable (i.e., X (x) = x), and denote the outcome random variable

by Y = φ (H (X)). On top of the assumptions we made for the discrete space case,

we will make the following assumption.

Assumption 7. w is differentiable, and has a bounded first derivative which is

denoted by w′.

The initial probability space, (X ,B (X ) ,PX,0), with an initial distribution

PX,0 induces a probability measure PY,0 on the measurable space (Y ,B (Y)), where

Y :=
{
y ∈ R+|y = φ (H (x)) ∃x ∈ X

}
⊂ R+

PY,0 (B) = PX,0 ({x|φ (H (x)) = y ∃y ∈ B}) ∀B ∈ B (Y) , (3.5.1)

and B (Y) denotes the Borel σ-algebra for Y . The space of probability measures

on (Y ,B (Y)) is denoted by PY . From examples 11 and 12, the generalized (i.e.,

when X is a Polish space) outcome probability measure, on the measurable space

(Y ,B (Y)), satisfies:7

ṖY,t (B) =

ˆ
B

w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (B) ∀B ∈ B (Y) . (3.5.2)

The initial condition for PY,t is given by Eq. 3.5.1. We pay special attention to the
6In the discrete space case, we used xi (t) to denote the probability of obtaining the i-th solution

at time t
7PY,t({y}) is equal to yi(t) in the discrete space case.
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best outcome equation:

ṖY,t (y∗) = w (PY,t ({Y ≥ y∗}))− PY,t (y∗) ,

where y∗ = maxx∈X φ (H (x)) .

Next, we write down the the Polish space counterpart to Eq. 3.4.4

PX,t (A) =
ˆ
A×Y

dPX|Y,tdPY,t ∀A ∈ B (X ) ∀t ∈ R+\ {0} , (3.5.3)

where PX|Y,t, the probability of X conditioned on Y , is the generalized β function.

In other words, given a fixed PX|Y,t , PX,t is determined by PY,t, which is a solution of

Eq. 3.5.2. PY,t can be determined, without knowing PX|Y,t, from PX,t at any t ∈ R+

by the following equation:

PY,t (B) = PX,t ({x|φ (H (x)) = y ∃y ∈ B}) ∀B ∈ B (Y) . (3.5.4)

Assumption 8. PX|Y,t is a given fixed conditional probability measure.

We denote the set of optimal measures on (X ,B (X )) by

P∗
X := {P ∈ PX |P (X ∗) = 1} ,

where X ∗ is the set of all optimal solutions, i.e.,

X ∗ := {x∗ ∈ X |H(x) ≤ H(x∗) ∀x ∈ X} .
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Similarly, we denote the set of optimal measures on (Y ,B (Y)) by

P∗
Y := {PY ∈ PY |P (y∗) = 1} ,

where y∗ = maxx∈X φ (H (x)) . Obtaining an element P of P∗
X is equivalent to solving

the optimization problem stated in Eq. 3.2.2.

We will now prove the existence and uniqueness of a solution for Eq. 3.5.2.

This is important for building a solid theoretical foundation for our approach.

Theorem 14. For each PY,0 ∈ PY , the ordinary differential equation (3.5.2) has a

unique solution for t ∈ R+.

Proof. The outline of our proof follows [65] and [51]. We use the total variation

norm, ‖·‖ , on a σ-finite signed measure space over (Y ,B (Y)) at the time t:

‖Pt‖ = sup
g

∣∣∣∣ˆ
Y
g(y)dPt

∣∣∣∣ ,
where the sup is taken over all measurable functions g : Y → R and

sup
y∈Y

|g (y)| ≤ 1.

We simplify our notations by introducing the following definition:

C (PY,t) (B) :=

ˆ
B

w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (B) ,

,
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where B ∈ B (Y). Since PY,t ∈ PY is a probability measure, we note that

‖C (PY,t)‖ = sup
g

∣∣∣∣ˆ
Y
g (y)C (PY,t)

∣∣∣∣
≤ sup

g

∣∣∣∣ˆ
Y
g (y)w′ (PY,t ({Y ≥ y})) dPY,t

∣∣∣∣+ sup
g

∣∣∣∣ˆ
Y
g (y) dPY,t

∣∣∣∣
≤
ˆ
Y
w′ (PY,t ({Y ≥ y})) dPY,t +

ˆ
Y
dPY,t

≤ K

ˆ
Y
dPY,t +

ˆ
Y
dPY,t

≤ (K + 1) ,

which proves the boundedness of C (PY,t), with K being the Lipschitz constant for

w.

Next, we need to prove that the right hand side of Eq. 3.5.2 is Lipschitz

continuous. We know that

‖C (PY,t)− C (QY,t)‖

≤ sup
g

∣∣∣∣ˆ
Y
g (y) d (C (PY,t)− C (QY,t))

∣∣∣∣ . (3.5.5)
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Furthermore, we know that

|C (PY,t)− C (QY,t)| (B)

=

∣∣∣∣(ˆ
B

w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (B)

)
−
(ˆ

B

w′ (QY,t ({Y ≥ y})) dQY,t −QY,t (B)

)∣∣∣∣
≤
∣∣∣∣ˆ
B

w′ (PY,t ({Y ≥ y})) dPY,t −
ˆ
B

w′ (QY,t ({Y ≥ y})) dQY,t

∣∣∣∣
+ |PY,t (B)−QY,t (B)|

≤ K

∣∣∣∣ˆ
B

d (PY,t −QY,t)

∣∣∣∣+ ∣∣∣∣ˆ
B

d (PY,t −QY,t)

∣∣∣∣
≤ (K + 1)

∣∣∣∣ˆ
B

d (PY,t −QY,t)

∣∣∣∣ . (3.5.6)

Substituting Eq. 3.5.6 into Eq. 3.5.5, we have

‖C (PY,t)− C (QY,t)‖

≤ sup
g

(K + 1)

∣∣∣∣ˆ
Y
g(y)d (PY,t −QY,t)

∣∣∣∣
= (K + 1) ‖PY,t −QY,t‖ .

Hence, the right hand side of Eq. 3.5.2 is Lipschitz continuous in PY,t with

the constant K + 1, where K is the Lipschitz constant for w (w is assumed to be

Lipschitz continuous). Using Corollary 3.9 of [90], we conclude that Eq. 3.5.2 with

an initial measure PY,0 ∈ PY has a unique solution PY,t.

It should not be surprising that PY,t is a probability measure for all t.
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Lemma 7. Given that PY,0 is a probability measure, then a solution PY,t of Eq.

3.5.2 at each time t > 0 is a probability measure, i.e.,

PY,t (B) ≥ 0 ∀B ∈ B (Y)

PY,t (Y) = 1 ∀t ∈ R+

PY,t (∪Bi) =
∑

PY,t (Bi) ,

where {Bi} is any countable collection of pairwise disjoint elements of B (Y).

Proof. If we can prove that

ṖY,t (Y) = 0,

and

ṖY,t (∪Bi) =
∑

ṖY,t (Bi)

then we have obtained our desired result.

From Eq. 3.5.2 we know

ṖY,t (Y) =

ˆ
Y
w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (Y)

=

ˆ
Y
(w′ (PY,t ({Y ≥ y}))− 1) dPY,t.

Furthermore, that fact that
´ 1

0
w′ (s) ds = 1 (i.e., we assumed w(1) = 1) implies

ˆ
Y
(w′ (PY,t ({Y ≥ y}))− 1) dPY,t = 0.
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Next, we need to prove that

ṖY,t (∪Bi) =
∑

ṖY,t (Bi) ,

because

ˆ
ṖY,t (∪Bi) dt =

ˆ ∑
ṖY,t (Bi) dt

ˆ
ṖY,t (∪Bi) dt =

∑ˆ
ṖY,t (Bi) dt

=⇒ PY,t (∪Bi) =
∑

PY,t (Bi) .

Using the fact that w′ is bounded, along with dominated convergence theorem we

conclude that

ṖY,t (∪Bi) =

ˆ
∪Bi

w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (∪Bi)

=
∑ˆ

Bi

w′ (PY,t ({Y ≥ y})) dPY,t − PY,t (Bi)

=
∑

ṖY,t (Bi) .

The next Lemma is needed in Theorem 18, which shows the monotonically

increasing nature of Et [Y ] .

Lemma 8. Given an optimal-seeking weighting function, w, there exists a ỹ such
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that ˆ
Y
y (w′ (PY,t ({Y ≥ y}))) dPY,t −

ˆ
Y
ydPY,t (3.5.7)

can be decomposed into the sum of its non-negative and negative parts:

ˆ
Y≥ỹ

y (w′ (PY,t ({Y ≥ y}))) dPY,t −
ˆ
Y≥ỹ

ydPY,t︸ ︷︷ ︸
non−negative(ˆ

Y <ỹ

y (w′ (PY,t ({Y ≥ y}))) dPY,t −
ˆ
Y <ỹ

ydPY,t
)

︸ ︷︷ ︸
negative

.

In other words, we can write Eq. 3.5.7 as the sum of its non-negative and

negative parts.

Proof. Since w is a monotonically increasing function, it satisfies

w′ (PY,t ({Y ≥ y})) ≥ 0 ∀y ∈ Y .

Furthermore, since w is an optimal-seeking function we have

w′ (PY,t ({Y ≥ y1})) > w′ (PY,t ({Y ≥ y2})) ∀y1 ≥ y2 ∈ Y . (3.5.8)

In addition, since w (0) = 0 and w (1) = 1, we know that

w′ (PY,t ({Y ≥ y})) > 1

for some y ∈ Y . From Eq. 3.5.8 we know if y2 satisfies the above inequality, then
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so does y1 ≥ y2 ∈ Y . Hence, we can conclude that ỹ is the smallest of such y.

At the beginning of this section, we stated implicitly that if we can find an

elements of P∗
X , then we have found a solution to the global optimization problem

stated in Eq. 3.2.2. The theorems below present a blueprint, through the use of

Eq. 3.5.3, to obtain an element of P∗
X . In Theorem 14, an initial condition can

be any element of PY , which implies there is no restriction on the initial condition

PX,0 ∈ PX . As we will discover later, PX is too large of a set to start Eq. 3.5.3 to

guarantee as t → ∞ the solution probability measure, PX,t, will be an element of

P∗
X . Hence, we need to constrain our potential initial points to a smaller set.

Definition 25. The set of all optimal initial solution probability measures is denoted

by:

OX := {PX,0 ∈ PX |PX,0 (X ∗) > 0} .

Furthermore, the set of all optimal initial outcome probability measures is denoted

by:

OY := {PY,0 ∈ PY |PY,0 (B) = PX,0 ({x|φ (H (x)) = y ∃y ∈ B})

∃PX,0 ∈ OX , ∀B ∈ B (Y)} .

Proposition 4. OY = {PY,0 ∈ PY |PY,0 (y∗) > 0} and P∗
X ⊂ OX .

Proof. The first claim is a direct result of the definition above and Eq. 3.5.1. The

second claim holds because how P∗
X is defined.

The next theorem proves the probability measure on the optimal outcome set
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will converge to 1 as t → ∞. On the other hand, the total probability measure on

the non-optimal outcome set will converge to 0 as t→ ∞.

Theorem 15. If PY,t is a solution of Eq. 3.5.2 with initial points in OY (i.e.,

PY,0 ∈ OY ), then the following statements hold:

1) PY,t ({y∗}) is a monotonically increasing function of t. In fact, it converges

to 1 as t→ ∞;

2) PY,t (Y\ {y∗}) approaches zero as t→ ∞.

Proof. We first write down the equation for PY,t (∗):

ṖY,t (∗) = w (PY,t ({Y ≥ ∗}))− PY,t (∗) .

From Proposition 2, we conclude that

w (PY,t ({Y ≥ ∗})) > PY,t (∗) .

From the two equations above, we conclude that

ṖY,t (∗) > 0 ∀PY,t (∗) ∈ (0, 1) , and ṖY,t (∗) = 0 when PY,t (∗) = 1.

Since PY,0 > 0 , the first claim is proved.

The second claim follows from the first claim. Since lim
t→∞

PY,t ({y∗}) = 1 we
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can conclude the following:

lim
t→∞

PY,t (Y) = lim
t→∞

PY,t ({y∗}) + PY,t (Y\{y∗}∗)

= 1 + lim
t→∞

PY,t (Y\{y∗}) = 1 =⇒ lim
t→∞

PY,t (Y\{y∗}) = 0.

The second claim is proved.

The next theorem connects the properties of PY,t with those of PX,t as t→ ∞.

This is an important step for understanding the evolution of Eq. 3.5.3.

Theorem 16. Assuming PX,0 ∈ OX and

PY,0 (B) = PX,0 ({x|φ (H (x)) = y ∃y ∈ B}) ∀B ∈ B (Y) ,

the following statements hold:

1) lim
t→∞

PY,t ({y∗}) = lim
t→∞

PX,t (X ∗)=1;

2) lim
t→∞

PY,t (Y\ {y∗}) = lim
t→∞

P (X\X ∗)=0.

Proof. Since we know

PX,t (A) =
ˆ
A×Y

dPX|Y,tdPY,t ∀A ∈ B (X ) ∀t ∈ R+\ {0} ,
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we prove the first claim by writing down the following equation:

lim
t→∞

PX,t (X ∗) = lim
t→∞

ˆ
X ∗×Y

dPX|Y,tdPY,t

=

ˆ
X ∗×{y∗}

dPX|Y,t lim
t→∞

dPY,t

= 1.

For claim 2, we can write down a similar equation:

lim
t→∞

PX,t (X\X ∗) = lim
t→∞

ˆ
X\X ∗×Y

dPX|Y,tdPY,t

=

ˆ
X\X ∗×{y∗}

dPX|Y,t lim
t→∞

dPY,t

= 0.

We are interested in finding the limit points of Eq. 3.5.2. Ideally, these limit

points should be elements in P∗
X . In order to guarantee this, we need to restrict

the potential initial points to OX .

Definition 26. We define a limit set starting from an element P0 ∈ I as

EI :=
{
PX,∞ ∈ PX |PX,∞ (A) = lim

t→∞
PX,t (A) ∃PX,0 ∈ I, ∀A ∈ B (X )

}

We are particularly interested in the limit set EOX . The next theorem describes

the elements in this set.
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Theorem 17. The limit set of Eq. 3.5.3 started in OX is P∗
X , i.e.,

EOX = P∗
X := {P ∈ PX |P (X ∗) = 1} .

Proof. We will first prove EOX ⊃ P∗
X , then we will prove EOX ⊂ P∗

X . In the first

case, EOX ⊃ P∗
X , can be proved by taking an element PX ∈ P∗

X ⊂ OX . By the

definition of EOX (i.e., the limit set of Eq. 3.5.3 starting from OX), equations 3.5.3

and 3.5.2, we conclude that PX ∈ EOX .

The second claim, EOX ⊂ P∗
X , can be proven by contradiction. We assume

there is an element QX ∈ EOX but not in P∗
X , which implies

QX (A) = lim
t→∞

QX,t (A) =

ˆ
A×Y

dPX|Y,t lim
t→∞

dPY,t ∀A ∈ B (X )

s.t QX,0 (X ∗) > 0, QX (X\X ∗) > 0.

The first line is due to the fact that QX ∈ EOX . The second line in the equation

above, along with Eq. 3.5.4, imply lim
t→∞

PY,t (Y\ {y∗}) > 0 , which contradicts the

second claim of Theorem 15, where lim
t→∞

PY,t (Y\ {y∗}) = 0.

The following theorem shows the monotonically increasing nature of Et [Y ] ,

which will be useful later in proving some stability properties for Eq. 3.5.3.

Theorem 18. Let PY,t be a solution for Eq. 3.5.2 with its initial point in OY . Then

the following statements are true:

1) The expected outcome, i.e., Et [Y ] is monotonically increasing with t;

2) If PY,t̃ /∈ EOY for any t̃ ∈ R+, then Et̃ [Y ] is strictly increasing with t̃.
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Proof. We start our proof by differentiating the average outcome function:

d

dt
Et [Y ] =

ˆ
Y
yṖY,t (dy)

=

ˆ
Y
y (w′ (PY,t ({Y ≥ y}))) dPY,t −

ˆ
Y
ydPY,t

=

ˆ
Y≥ỹ

y (w′ (PY,t ({Y ≥ y}))) dPY,t −
ˆ
Y≥ỹ

ydPY,t

+

(ˆ
Y <ỹ

y (w′ (PY,t ({Y ≥ y}))) dPY,t −
ˆ
Y <ỹ

ydPY,t
)

≥ ỹ

ˆ
Y
dṖY,t = ỹ × 0 = 0.

The ỹ variable is used to decompose the expected outcome function into non-negative

and negative parts (see Lemma 8). The last line of the inequality is true because

PY,t ∈ PY ∀t ∈ R+ (see Lemma 7). The first claim is proved.

The second claim is proved by contradiction. If there exists a PY,t̃, not a limit

point, with
d

dt
Et̃ [Y ] = 0.

Along with Theorem 15, the equality above implies that Y is equal to a constant

C = sup
x∈X

φ (H (x)). This implies PY,t̃ is a Dirac measure concentrated at C, which

is a limit point (see Theorem 17).

The metric function d in the following definitions is defined in Appendix C

(see Definition 32).

Definition 27. Let L be a subset of PX . For a point P ∈ PX , we define the distance
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between P and L as

d (P,L) := inf {d (P,Q) , ∀Q ∈ L} .

L is called Lyapunov stable, with respect to a sequence of measures {Pt}, if for all

ε > 0, there exists a δ > 0 such that

d (Pt,L) < δ ⇒ d (Pt,L) < ε, ∀t > 0.

L is called asymptotically stable, with respect to a sequence of measures {Pt}, if L

is Lyapunov stable, and there exists a δ > 0 such that

d (P0,L) < δ ⇒ d (Pt,L) → 0

as t→ ∞.

The next theorem is the main result of this section. It tells us that if we start

Eq. 3.5.3 in the set OX , then EOX will coincide with P∗
X . Furthermore, EOX is

asymptotically stable.

Theorem 19. EOX is a compact set and it is asymptotically stable.

Proof. We need to first prove that EOX is a compact set. Since from Theorem 17,

we have EOX = P∗
X , we can instead prove

P∗
X := {P ∈ PX |P (X ∗) = 1}
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is compact. It is easy to see that P∗
X is tight (see Appendix, Definition 31) due

to Assumption 6. Furthermore, we can prove it is a closed set by contradiction.

Assume there exists a sequence {Pn} ∈ P∗
X such that Pn → P̂ /∈ P∗

X . This implies

∃N such that ∀n > N we have Pn (X ∗) < 1, and Pn (X\X ∗) > 0, which implies

lim
n→∞

PnY (Y\ {y∗}) > 0.

This contradicts the second claim of Theorem 15. Hence, P∗
X = EO is a compact

set.

Using the Lyapunov function

V (PX,t) = y ∗ −Et [φ (H (X))] = V (PY,t) = y ∗ −Et [Y ] ,

note that V (PX,t) > 0 for all PX,t ∈ PX\P∗
X , and V (PX,t) = 0 for PX,t ∈ P∗

X = EOX .

From Theorem 18 we have V̇ (PX,t) = V̇ (PY,t) < 0 for all t > 0 if PX,t /∈ P∗
X .

Furthermore, we know V̇ (PX,t) = V̇ (PY,t) = 0 ∀t > 0 if PX,t ∈ P∗
X . Using V (PX,t)

as the Lyapunov function, and the fact that EOX is a compact set, we can appeal

to a generalized version of Lyapunov’s theorem (see [12, Chapter 5]). The desired

conclusion is reached.

The use of the Lyapunov function for proving the asymptotic stability of the

limit set can be found previously in Wang’s dissertation [87].
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3.6 Numerical Algorithms

In this section, we present a few numerical algorithms based on the CWO (Cu-

mulative Weighting Optimization) method we presented in the previous sections.

These algorithms attempt to find an optimal solution iteratively. Each iteration

consists of 5 stages: generation, quantile-update, parameter-update, weight-update,

and projection. Generation, quantile-update and projection stages remain the same

for all variations of the generic algorithm (i.e., Algorithm 1). We propose several

approaches for constructing the weight-update stage. These algorithms build on the

theoretical results using the same types of modifications as are found in the CE and

MRAS (see [75, 53, 88] ).
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Algorithm 1 Generic CWO Algorithm
1. Initialization: Select a number N0 as the total initial number of candidate

solutions generated at each iteration and an initial gθ0 (a parameterized prob-
ability density distribution) defined on X. Pick an initial quantile ρ0 ∈ (0, 1),
ε ≥ 0, α > 0, λ ∈ (0, 1).

2. Generation: Generate Nk i.i.d candidate solutions {xik}Ni=1 from

g̃θk = (1− λ)((1− β)gθk−1
+ βgθk) + λU,

where U is the uniform distribution.

3. Quantile-Update:
Calculate the (1− ρk)-quantile, γ̃k+1 (ρk, Nk) := φ (H)(d(1−ρk)Nke), where dae is
the smallest integer greater than a and H(i) is the i-th highest value for the
sequence {φ (H (xik))}

Nk
i=1 .

4. Parameter-Update:
If k=0 or γ̃k+1 (ρk, Nk) ≥ γ̄k +

ε
2
, then

→ 4(a). Set γ̄k+1 = γ̃k+1 (ρk, Nk) , ρk+1 = ρk, Nk+1 = Nk;
else
→ Find the largest ρ̄ ∈ (0, ρk) such that γ̃k+1 (ρ̄, Nk) ≥ γ̄k +

ε
2
;

→ If such a ρ̄ exists and ρ̄ > ρmin, then
→→ 4(b). γ̄k+1 = γ̃k+1 (ρ̄, Nk) , ρk+1 = ρ̄, Nk+1 = Nk;
→ else
→→ 4(c). γ̄k+1 = γ̄k, ρk+1 = ρk, Nk+1 = dαNke ;

5. Weight-Update: Update the weights of the generated samples {xik}Ni=1 ac-
cording to weight update methods based on Eq. 3.4.4, producing the p.m.f
pX,k+1 =

∑N
i=1w

i
k+1δ(x− xik). wik+1 is the updated weight for xik.

6. Density Projection: Construct gθk+1
by projecting the density pX,k+1 =∑N

i=1w
i
k+1δ(x− xik) onto gθ by solving

θk+1 = arg max
θ∈Θ

N∑
i=1

wik+1 ln gθ
(
xik
)
;

7. Stop if some stopping criterion is satisfied; otherwise go to step 2 and k = k+1.

Since discrete-time, discrete-state equations are more suitable for the computa-

tions in the weight-update stage, we write down the probability density counterparts
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of Eq. 3.5.2 and 3.5.3:

pY,k+1 (y) = w

 ∑
s:φ(H(s))≥y

pX,k (s)

− w

 ∑
s:φ(H(s))>y

pX,k (s)


pX,k+1 (x) =

pY,k+1 (H (x)) pX,k (x)∑
s:φ(H(s))=y pX,k (s)

, (3.6.1)

where w : [0, 1] → [0, 1] is the probability weighting function. If we assume w (·) is

differentiable, then Eq. 3.6.1 can be written more compactly as:

pX,k+1 (x) = w′ (1− FY,k (φ (H (x)))) pY,k (φ (H (x))) pX|Y,k (x,H (φ (H (x))))

= w′ (1− FY,k (φ (H (x)))) pY,k (φ (H (x)))
pX,k (x)∑

{s:φ(H(s))=φ(H(x))} pX,k (s)

=

w
(∑

s:φ(H(s))≥φ(H(x)) pX,k (s)
)
− w

(∑
s:φ(H(s))>φ(H(x)) pX,k (s)

)
∑

{s:φ(H(s))=φ(H(x))} pX,k (s)

 pX,k (x)

= w′ (1− FY,k (φ (H (x)))) pX,k (x) , (3.6.2)

where the second equality holds because the conditional density is taken to be

pX|Y,t (x,H (φ (H (x)))) =
pX,t (x)∑

{s:φ(H(s))=φ(H(x))} pX,t (s)

and FY,k (·) is the cumulative distribution function for the outcome values. Other

choices for pX|Y,t are also allowed; in particular, a uniform conditional density.

The second to last equality in Eq. 3.6.2 can be related to Eq. 3.6.1 by the
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following equation:

pY,k+1 (y) = w

 ∑
s:φ(H(s))≥y

pX,k (s)

− w

 ∑
s:φ(H(s))>y

pX,k (s)


= w′ (1− FY,k (φ (H (x)))) pY,k (φ (H (x))) .

Algorithm 1 is the generic CWO algorithm using Eq. 3.6.1 as the weight

update equation. Later, two algorithms with different ways of updating the density

function are described. Although both weight-update methods will use Eq. 3.6.1

with a chosen distribution rule, they differ in their assignment of the sample weights.

The performance of the algorithms is measured using asymmetric traveling

salesman problems, which we will introduce in the section below.

3.6.1 Numerical Examples: Asymmetric Traveling Salesman Prob-

lems (ATSPs)

We apply variations of Algorithm 1 to several asymmetric traveling salesman prob-

lems (ATSPs). They are taken from the website http://www.iwr.uni-heidelberg.

de/groups/comopt/software/TSPLIB95. We follow a similar approach as in Hu

[53], which is outlined below. The reader is reminded here that Algorithm 1 is

designed for maximization problems, whereas we are searching for the minimum

distances of ATSPs. The goal in each ATSP problem is to find the minimum length

of a tour that connects Ncities cities with the same starting and ending cities. For an

ATSP, we are given an Ncities-by-Ncities distance matrix D, whose (i,j)-th element
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Di,j represents the distance from city i to city j. The problem can be mathematically

stated as:

min
x∈X

{
Ncities−1∑

i=1

Dxi,xi+1
+Dx

Ncities
,x1

}
,

where x :=
{
x1, x2, . . . , xNcities , x1

}
is an admissible tour and X is the set of all

admissible tours.

We use the same approach suggested by Rubinstein [75], and De Boer et al.

[26] for solving these problems. Each distance matrix D is given an initial state

probability transition matrix P̃0, whose (i,j)-th element specifies the probability of

transitioning from city i to city j. At each iteration of the algorithm, there are two

important steps: 1) generate random admissible tours according to the probability

transition matrix and evaluate the performance of each sampled tour; 2) update the

probability transition matrix based on the tours generated from step 1. We denote

the set of tours generated at the k-th iteration by {xik} , where i ∈ {1, . . . , Nk}.

Without loss of generality, we will assume the samples are sorted according to their

values (i.e., φ (H (xik)) < φ
(
H
(
xjk
))

if and only if i < j).

A detailed discussion of the admissible tour generation process can be found

in De Boer et al. [26]. The CWO algorithm differs from other algorithms in how it

updates its transition matrix. At the k-th iteration of CWO, the probability density

function, pk (·, θk), parametrized by the transition matrix θk is given by the equation

below:

pk (x, θk) =

Ncities∏
l=i

Ncities∑
i,j

θk (i, j) I{x∈Xi,j(l)},

where Xi,j (l) is the set of all tours in X such that the l-th transition is from city i
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to city j. We can show that the new transition matrix is updated (i.e., stage 6 in

Algorithm 1) as

θk+1 (i, j) =

Nk∑
l=1

(
pwk+1

(
xik
))
I{xik∈Xi,j},

where we denote the updated density by pwk+1 (·) and {xik+1} is generated from

pk(·, θk) (i.e., a density function that is parameterized by θk). The superscript w

is used to emphasize the dependence of the updated probability mass function on

the probability weighting function w. The construction of pwk+1 (·) depends on the

specific weight-update method.

3.6.1.1 Weight-Update Methods

In this section, we present several different methods of obtaining pwk+1 (·) from a

collection of samples {xik} at the k-th step. The first method we introduce is called

tilted weight update.

Tilted weight update (CWO_T): The tilted weight-update method is described in

Algorithm 2. The key idea behind this variation is that we assign the initial weights

of the samples according to their outcome values: the smaller the value, the more

initial weight it gets (see stage 2 in Algorithm 2).
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Algorithm 2 Tilted Weight Update
1. Remove all the non-elite samples, i.e., {x̂ik} := {xik : H (xik) ≤ γ̄k} , where {x̂ik}

is the set of remaining elite samples;

2. Assign a weight to each element in Y according to the equation:

pY,k (y) =
maxY y − y∑
Y maxY y − y

,

where Y := {H (x) |x ∈ {x̂ik}} ;

3. Assign the updated outcome weights to samples according the following equa-
tion:

wik+1 =
1

N̂k,x̂ik

w
 ∑
y:y≤φ(H(x̂ik))

pY,k (y)

− w

 ∑
y:y<φ(H(x̂ik))

pY,k (y)




∀i ∈ {1, . . . , N̂k},

where N̂k is the number of elite samples, and N̂k,x̂ik
is the number of elements

in {x̂ik} having the same outcome value as x̂ik. (We remind the reader that
w : [0, 1] → [0, 1] is a probability weighting function.)

We ran 30 independent experiments for seven ATSPs. In those experiments,

we used the probability weighting function:

w (p) := 1− (1− p)2 .

The trials are done using Algorithm 1 with the parameters ρ0 = ρmin = 0.6, N0 =

1000, ε = 1, α = 2, λ = 0.02, β = 0.7 and the weight-update scheme in Algorithm

2. The results are summarized in Table 3.6.1. Ncities is the the number of cities

for each problem; NTotal is the average number of total samples until the solutions

stop changing; Hbest is the best known solution; H∗ is the worst algorithm solution

from the repeated runs; H∗ is the best algorithm solution from the repeated runs;
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δ∗ and δ∗ are the percentage deviation of the worst and best algorithm solutions

from the best known solution, respectively; δ is the average percentage deviation

of the algorithm solutions from the best known solution. The important thing to

note about the algorithm is its dependence on the actual outcome values. In the

next weight-update method, this dependence is eliminated; instead we weight the

samples uniformly.

ATSP Ncities NTotal (Std. err.) Hbest H∗ H∗ δ∗ δ∗ δ (Std. err.)

ftv33 34 6.59e4 (1.81e4) 1,286 1,379 1,286 0.0723 0.0000 0.0396(0.0279)
ftv35 36 6.79e4 (1.63e4) 1,473 1581 1473 0.0733 0.0000 0.0195(0.0172)
ftv38 39 8.81e4 (3.26e4) 1,530 1651 1536 0.0791 0.0039 0.0243(0.0190)
p43 43 2.80e5 (1.04e5) 5,620 5,636 5,622 0.0028 0.0004 0.0011(0.0007)

ry48p 48 4.65e5 (2.30e5) 14,422 18,725 14,618 0.2984 0.0136 0.0744(0.0676)
ft53 53 3.24e5 (1.23e5) 6,905 7844 7059 0.1360 0.0223 0.0590(0.0247)
ft70 70 7.02e5 (3.32e5) 38,673 39,738 38,760 0.0275 0.00225 0.0130(0.0050)

Table 3.6.1: Performance of CWO_T on various ATSP problems based on 30 inde-
pendent replications

Uniform Weight Update(CWO_U): Tilting assigns the initial weights of the sam-

ples {xik} using their values. Uniform weighting updating differs from tilting by

assuming uniform distribution over the samples. Another major difference from the

above approach is that we no longer only consider elites samples. Instead, we use a

carefully chosen probability weighting function that smoothly re-weights the sam-

ples. More specifically in stage 5, we assume a uniform initial density and use the

weighting function

w (p) :=
10pσ + ln (1 + e−σ)− ln

(
1 + e(−1+10p)σ

)
10θ + ln (1 + e−ρ)− ln (1 + e9σ)

, (3.6.3)
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where σ is the optimal-seeking factor and ρ is the quantile threshold. Eq. 3.6.3

is chosen as the weighting function due to its connection with the cross-entropy

algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
Prob .

2

4

6

8

10

Weight

Figure 3.6.1: Derivatives of Eq. 3.6.3 as σ → ∞

Using equations 3.6.2 and 3.6.3, we modify the generic CWO algorithm by

altering the way the sample weights are updated. The algorithm has a strong

connection with the traditional cross-entropy method, which is explained below.

Algorithm 3 CWO_U Weight Update Algorithm
1. Calculate the outcome cumulative distribution function (CDF),
FY,k (φ (H (x))), for {xik}, assuming a uniform density

(
i.e., pX,k (x) =

1
Nk

)
;

2. Assign the updated weights according the following equation:

wik+1 =
1

Nk,xik

w
 ∑
s:φ(H(s))≤φ(H(xik))

pX,k (s)

− w

 ∑
s:φ(H(s))<φ(H(xik))

pX,k (s)




∀i ∈ {1, . . . , Nk},

where Nk is the number of samples, and Nk,xik
, is the number of elements in

{xik} having the same value as xik. (We remind the reader that w : [0, 1] → [0, 1]
is a probability weighting function.)
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We remind the reader that the density update equation for cross entropy is

pCEX,k+1 (x) =
1{φ (H (s)) > γ}

l
pCEX,k (x)

∝ 1{φ (H (s)) > γ}pCEX,k (x) , (3.6.4)

where an indicator function is used to select the elite samples. In fact, the cross-

entropy equation is just the limiting case8 of the CWO_U algorithm. As we increase

the optimal-seeking factor, the derivative of Eq. 3.6.3 will approach a step function

(i.e., Eq. 3.6.4) with its discontinuity occurring at ρ = 0.1 (see Fig. 3.6.1).

Table 3.6.2 contains the results from running 20 trials of CWO_U and CE

algorithms with the parameters ∆ = 0.01, ρ0 = 0.1, ρmin = 0.001, N0 = 1000, ε = 0,

α = 1, λ = 0.01, and β = 0.7. Here, N0 is the initial sample size.

ATSP Ncities NTotal (Std. err.) Hbest H∗ H∗ δ∗ δ∗ δ (Std. err.)

ft53 53 90,450(6.0e3) 6,905 7,679 7,037 0.112 0.0191 0.060(0.0244)
ce_ft53 53 65,100(5.7e3) 6,905 7,676 7,088 0.111 0.0265 0.075(0.0276)

Table 3.6.2: CWO_U and CE performance Results

We plot the sorted minimum tour distances obtained from the 20 trials of CE

and CWO_U algorithms in Fig. 3.6.2. We observe from Fig. 3.6.2 that compared

with the standard cross-entropy method, our approach does better in every per-

centile. For example, the 19
20

th percentile would contain the lowest optimal solution

obtained among the 20 trials. The 18
20

th percentile would contain the second lowest

optimal solution obtained among the 20 trials.
8as σ → ∞
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Figure 3.6.3: One trial of CE vs. CWO_U

In Figure 3.6.3, which displays a typical convergence of a single run of CE vs.

that of CWO_U, we observe that although CE converges faster at the beginning,

CWO_U is able to eventually overtake CE and finishes at a lower value.
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3.7 Conclusion

In the first part of this chapter, we proved the convergence of CWO-based algo-

rithms. The proofs provided a rigorous mathematical foundation for the two practi-

cal algorithms we proposed in the numerical examples section. These two algorithms

are variations of the generic CWO algorithm described in Algorithm 1. The two

algorithm variations, CWO_T and CWO_U, differ by how they update their proba-

bility density functions over the solution space for each iteration. The first approach,

CWO_T, weights the samples according to their outcome values. On the other

hand, CWO_U, uniformly weights the samples. We benchmarked the performance

of the CWO_T algorithm and summarized the results in Table 3.6.1. Although the

numeric values are quite satisfactory, we wanted to see if we could improve these

results. This effort led us to the development of the second approach, CWO_U,

which we consider as the preferred implementation of the CWO-base algorithm.

Perhaps the most surprising fact is that by not taking into account the outcome

values of the samples, we are able to achieve better performance results. Even more

interesting is the fact that the standard cross-entropy approach is just a limiting

case of the CWO_U approach. Comparing the numerical results of CWO_U with

those of CE, we believe our algorithm is better at obtaining an optimal solution (see

Fig. 3.6.2). Of course, the improvement in performance is at the cost of increasing

computational costs.
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Chapter 4

Contributions and Future Work

4.1 Contributions

A new family of performance criteria has been proposed in the first part of this the-

sis. These performance criteria are inspired by cumulative prospect theory, which

has substantial empirical support. They include the performance criteria used in

classical risk-sensitive control problems (e.g., expected utility). We proved the class

of non-convex risk-sensitive control problems is still solvable via dynamic program-

ming. We investigated both finite-horizon and infinite-horizon cases, and offered

numerical examples to demonstrate the applications of our approach.

The second part of this thesis presented a novel approach for solving stochastic

global optimization problems. This new approach, cumulative weighting optimiza-

tion, is also inspired by cumulative prospect theory. We proved the convergence

to an optimal solution of the cumulative weighting optimization algorithms given

a mild assumption on the initial condition. In addition, the algorithms in CWO

include the well-known cross-entropy optimization algorithm. Since we have proved

the convergence for all CWO algorithms, we naturally have obtained a convergence

proof for the cross-entropy algorithm, which to the best of our knowledge, has not

been done before. In addition, we presented the numerical analysis of our algo-

rithms, where we compared the performance of two weight updating schemes. We

149



also compared the performance of our algorithms against that of the cross-entropy.

4.2 Future Work

In the future, we would like to develop a new game theory framework which cap-

tures risk-sensitivity. The effects of incorporating the CPT-based distortions could

provide a novel perspective into the well-established field of game theory. Take, for

example, the classic prisoner’s dilemma game. The payoff matrix for the players is

given in Table 4.2.1. John von Neumann and Oskar Morgenstern [84] showed that

Player 2
Decision Cooperate Defect

Player 1 Cooperate R=3 R=3 S=0 T=5
Defect T=5 S=0 P=1 P=1

R:Reward S:Sucker T:Temptation P:Penalty

Table 4.2.1: Classic Prisoner’s Dilemma Problem

a mixed strategy Nash equilibrium exists for any zero-sum game with a finite set of

actions. Although the prisoner’s dilemma game is not a zero-sum game, analyzing

how it reacts to mixed strategies is still important. The analysis of the effects of

mixed strategies on the prisoner’s dilemma starts with generating the “risk-neutral”

(i.e., non-distorted) discretized mixed strategy reward table for player 1. In the

matrix below, each element is the expected reward value given the probabilities of

player 1 and player 2 cooperate. The i-th row and j-th column entry is calculated

as the expected reward with the probability i−1
5

that player 1 cooperating and the

probability j−1
5

that player 2 cooperating, where i, j ∈ {1, 2, . . . , 6}.
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

1. 1.8 2.6 3.4 4.2 5.

0.8 1.56 2.32 3.08 3.84 4.6

0.6 1.32 2.04 2.76 3.48 4.2

0.4 1.08 1.76 2.44 3.12 3.8

0.2 0.84 1.48 2.12 2.76 3.4

0. 0.6 1.2 1.8 2.4 3.


By introducing probability weighting distortion into the prisoner’s dilemma

game, we alter the analogous risk-sensitive expected reward matrix:



1. 1.00021 1.35889 3.28597 4.72747 5.

0.931868 0.962743 1.19336 2.63784 4.20448 4.86374

0.571493 0.758082 1.06917 2.19005 3.35859 4.14299

0.0897219 0.354482 0.850323 2.03271 2.87765 3.17944

0.0000523055 0.0423175 0.533821 1.90096 2.82637 3.0001

0. 0.000156917 0.269166 1.71448 2.7956 3.



.

For the matrix displayed above, the weighting function used is

w (x) := exp
[
−3.0 (− log (x))2.5

]
, (4.2.1)

and the risk adjusted expected reward is calculated as:

E (p1, p2) := 5 (w ((1− p1) p2)) + 3 (w ((1− p1) p2 + p1p2)− w ((1− p1) p2))

+1 (w (p1p2 + (1− p1) p2 + (1− p1) (1− p2))− w (p1p2 + (1− p1) p2)) ,
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where p1 and p2 are the probabilities that player 1 and player 2 cooperate, respec-

tively.

The rate that the expected reward decreases down each column for the risk-

neutral matrix is constant, whereas the same rate for the risk-sensitive matrix slows

down as we traverse toward the bottom of each column. The particular function

(Eq. 4.2.1) used represents risk-aversion, hence we see from this example how risk-

sensitivity changes player 1’s expected payoff.

Aside from having Nash equilibria, the prisoner’s dilemma game could also

have ε-equilibria. An ε-equilibrium is formally defined below.

Definition 28. Let G =
(
N,A = A1 × · · · × AN , r : A→ RN

)
be a N-player game

with action sets Ai for each player i and a reward function r. The space of probability

distributions over Ai is denoted by P (Ai). Let ri (π) denote the payoff to player i

when the policy π = {π1 × · · · × πN} is played, where πi ∈ P (Ai). A policy π is an

ε-Nash Equilibrium for the game G if

ri (π) ≥ ri (π
′
i, π−i)− ε, ∀π′

i ∈ P (Ai) , i ∈ {1, . . . , N} ,

where π−i denotes all the mixed strategies except the i-th policy.

When ε = 0, an ε-equilibrium is exactly the well-known Nash equilibrium. By

picking an ε > 0, two additional equilibria are found in the matrix above. More

specifically, if player 1 is risk-averse, with an appropriate ε, the player could always

cooperate, which is not a Nash equilibrium. This example is only one of the many

ways in which, by introducing risk-sensitivity into the game, we alter the standard
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conclusion. It is interesting to note that the same effect cannot be achieved by using

a utility function.

In addition to game theory, we will apply the CPT-based risk-sensitive mea-

sures to classic control problems and study the structure of the optimal policies

obtained. Systems that are human-centric might find it beneficial to be controlled

by an optimal controller derived using our risk-sensitive performance measure. In

the future, we will investigate the effects of CPT-based risk-sensitive measures for

iterated games.
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Appendix A

Prospect Theory

A.1 St. Petersburg Paradox

The example below is from [86].

Example 13. [St. Petersburg paradox]. Consider the following game. A fair coin

will be flipped until the first heads shows up. If heads shows up at the k-th flip,

then you receive $2k. Thus, immediate heads gives only $2, and after each tails the

amount doubles. After 19 tails you are sure to be a millionaire. Think for yourself

how much it would be worth to you to play this game. The expected value of the

game is

1

2
× 2 +

1

4
× 4 +

1

8
× 8 +

1

16
× 16 + · · · = 1 + 1 + 1 + 1 + · · · = ∞.

Thus if you maximize expected value, then this game is worth more to you

than any amount of money. In reality, people pay considerably less to participate

in the game, something like $5.

A.2 Axiomatization of Expected Utility:

We need a little notation before we can write down the axioms. Consider two

outcomes L1 and L2 with known probabilities. We use the notation L1 < L2 to
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mean that the decision maker prefers L1 over L2 or considers them to be equally

preferred. We assume that the utility here is continuous and strictly increasing.

Axiom 1. 1. Completeness: For any two outcomes L1 and L2, either L1 < L2 or L2 < L2

or both.

2. Transitivity: For any three outcomes L1, L2, and L3, if L1 < L2, and L2 < L3,

then L1 < L3.

3. Continuity: For any three outcomes L1 < L2 < L3, there exist α, β ∈ (0, 1)

such that αL1 + (1− α)L3 < L2, and L2 < βL1 + (1− β)L3.

4. Substitution (Independence) Savage[80]: For any L1, L2 and L3, and any α ∈

(0, 1) , L1 < L2 if and only if αL1 + (1− α)L3 < αL2 + (1− α)L3.

Furthermore, von Neumann and Morgenstern [85] proved the following:

L1 < L2 if and only if
n∑
i=1

p1iu
(
x1i
)
≥

n∑
i=1

p2ju
(
x2j
)
,

where p1i is the probability for the i-th outcome of L1, x1i is the value for the i-th

outcome of L1 and u is the utility function.
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Appendix B

Multifunctions and Selectors

Our main source of reference for this section is [48].

Let X and A be (nonempty) Borel spaces.

Definition 29. A multifunction (also known as a correspondence or set-valued

mapping) ψ from X to A is a function such that ψ (x) is a nonempty subset of A

for all x ∈ X. (A single-valued mapping ψ : X → A is of course an example of a

multifunction.) The graph of the multifunction ψ is the subset of X ×A defined as

Gr (ψ) := {(x, a) |x ∈ X, a ∈ ψ (x)} .

A multifunction could have one of the properties described below. For every

subset B of A, let ψ−1 [B] := {x ∈ X|ψ (x) ∩B 6= ∅} .

Definition 30. A multifunction ψ from X to A is said to be

(a) Borel measurable if ψ−1 [G] is a Borel subset of X for every open set G ⊂ A;

(b) upper semi-continuous (u.s.c) if ψ−1 [F ] is closed in X for every closed set

F ⊂ A;

(c) lower semi-continuous (l.s.c)if ψ−1 [G] is open in X for every open set

G ⊂ A;

(d) continuous if it is both u.s.c and l.s.c.
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A multifunction ψ is said to be closed-valued (resp. compact-valued) if ψ (x)

is a closed (resp. compact) set for all x ∈ X. The multifunction is said to be closed

if its graph is closed.

Proposition 5. Let ψ be a compact-valued multifunction from X to A. Then the

following statements are equivalent:

(a) ψ is Borel-measurable;

(b) ψ−1 [F ] is a Borel subset of X for every closed set F ⊂ A;

(c) Gr(ψ) is a Borel subset of X × A;

(d) ψ is a measurable function from X to the space of nonempty compact

subsets of A topologized by the Hausdorff metric.

Proof. See [50] and [81].

Throughout the remainder of this appendix, ψ is a given Borel-measurable

multifunction from X to A, and F denotes the set of (single-valued) measurable

multifunction from X to A, and F denotes the set of (single-valued) measurable

functions f : X → A with f (x) ∈ ψ (x) for all x ∈ X. A function f ∈ F is called a

selector (or measurable selector or choice or decision function) for the multifunction

ψ. Moreover, v : Gr (ψ) → R is a given measurable function and

v∗ (x) := inf
ψ(x)

v (x, a) , x ∈ X.

If v (x, ·) attains its minimum at some point in ψ (x) , we write “min” instead of

“inf.”
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Proposition 6. Suppose that ψ is compact-valued.

(a) If v (x, ·) is l.s.c. on ψ (x) for every x ∈ X, then exists a selector f ∗ ∈ F

such that

v (x, f ∗ (x)) = v∗ (x) = min
ψ(x)

v (x, a) , ∀x ∈ X

and v∗is measurable. Similarly, if v (x, ·) is u.s.c. on ψ (x) for every x ∈ X, then

exists a selector f ∗ ∈ F such that

v (x, f ∗ (x)) = v∗ (x) = max
ψ(x)

v (x, a) , ∀x ∈ X

and v∗ is measurable.

(b) If ψ is u.s.c and v is l.s.c and bounded below on Gr(ψ) , then there exists

f ∗ ∈ F for which

v (x, f ∗ (x)) = v∗ (x) = min
ψ(x)

v (x, a) , ∀x ∈ X

holds, and v∗ is l.s.c. and bounded below on X.
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Appendix C

Spaces of Probability Measures

The content of this section can be found in the appendices of [15] and [13].

C.1 Polish Spaces

A Polish space, X , is a topological space which is separable and admits a complete

metrization. Examples of such spaces are: separable Banach spaces, compact metric

spaces, the space D [0, 1] of cadlag path from [0, 1] to R with Skorohod topology.

Let X be a Polish space and d (·, ·) a complete metric on it.

Definition 31. A probability measure P on X is said to be tight if for each ε > 0,

there exists a compact set Kε ⊂ X with P (Kε) ≥ 1 − ε. Analogously, a family

Pα, α ∈ I, (I being an index set) is said to be tight if the above holds for all Pα

uniformly in α, i.e., the set Kε above can be chosen to be the same for all α.

C.2 The Prohorov Topology

Let Cb (X ) , PX denote respectively the space of bounded continuous real valued

functions on X , and the space of probability measures on X . Endow Cb (X ) with

the supremum norm ‖·‖ . PX will be given the topology for with a local base at
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P ∈ PX is given by the sets of the type

{
Q ∈ PX |

∣∣∣∣ˆ fidQ−
ˆ
fidP

∣∣∣∣ < εi, 1 ≤ i ≤ k

}

for some k ≥ 1, εi > 0 and fi ∈ Cb (X ) for 1 ≤ i ≤ k.

It is easily seen that this topology is Hausdorff and is coarser than the one

induced by the total variation norm. It is called the Prohorov topology or the

topology of weak convergence. Some other possible choices for the local basis at

P ∈ PX are given below.

{Q ∈ PX |Q (Fi) < P (Fi) + εi, 1 ≤ i ≤ k} , Fi ⊂ X closed

{Q ∈ PX |Q (Gi) > P (Gi)− εi, 1 ≤ i ≤ k} , Gi ⊂ S open

{Q ∈ PX | |Q (Ai)− P (Ai)| < εi, 1 ≤ i ≤ k} , Ai ⊂ S

satisfy P (∂Ai) = 0 where ∂Ai is the boundary of Ai,

{
Q ∈ PX |

∣∣∣∣ˆ fidP−
ˆ
fidQ

∣∣∣∣ < εi, 1 ≤ i ≤ k

}
,

fi are bounded and uniformly continuous with respect to the metric d. Here, ε >

0, k ≤ 1.

C.3 Compactness in PX

Theorem 20. A subset L ⊂ PX is relatively compact if and only if it is tight.
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C.4 Metrics on PX

Definition 32. For any ε > 0 and any Borel setA ⊂ X , letAε = {x ∈ X |d (x,A) < ε} .

For µ, ν ∈ PX , we define the metric

d (µ, ν) = inf
ε

{ε > 0|µ (A) ≤ ν (Aε) + ε, ν (A) ≤ µ (Aε) + ε for all Borel subset A of S} .

Theorem 21. d(·, ·) defines a metric on PX consistent with the Prohorov topology.
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