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To provide efficient public transportation services in areas with high demand 

variability over time, it may be desirable to switch vehicles between different types of 

services such as conventional services (with fixed routes and schedules) for high 

demand periods and flexible route services during low demand periods. Thus, this 

dissertation analyzes and compares conventional, flexible, and variable type bus 

service alternatives. Optimization formulations and numerical results show how the 

demand variability over time and other factors affect the relative effectiveness of such 

services. A model for connecting one terminal and one local region is solved with 

analytic optimization. Then, models are extended to consider multiple regions as well 

as multiple periods. Numerical results of problems for multiple regions and multiple 

periods are also discussed.  

Secondly, a problem of integration of bus transit services (i.e., conventional 

and flexible services) with mixed fleets of buses is explored. A hybrid method 



 

 

combining a genetic algorithm and analytic optimization is used. Numerical analyses 

confirm that the total system cost can be reduced by integrating bus services with 

mixed fleets and switching service types and vehicles over time among regions in 

order to better fit actual demand densities. The solution optimality and the sensitivity 

of results to several important parameters are also explored. 

Thirdly, transit ridership may be sensitive to fares, travel times, waiting times, 

and access times. Thus, elastic demands are considered in the formulations to 

maximize the system welfare for conventional and flexible services. Numerical 

examples find that with the input parameters assumed here, conventional services 

produce greater system welfare (consumer surplus + producer surplus) than flexible 

services. Numerical analysis finds that conventional and flexible services produce 

quite acceptable trips with the zero subsidies, compared to various financially 

constrained (subsidized) cases. For both conventional and flexible services, it is also 

found that total actual trips increase as subsidies increase. When the cost is fully 

subsidized, conventional services produce 79.2% of potential trips and flexible 

services produce 81.9% of potential trips.  

Several methods are applied to find solutions for nonlinear mixed integer 

formulations. Their advantages and disadvantages are also discussed in the 

conclusions section.   
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Chapter 1 Introduction 

 

1.1. Background 

Conventional bus operations are commonly provided in the urban mass public 

transportation. Conventional bus routes and timetables are preset, and buses operate on 

their fixed routes and fixed schedules. Conventional bus services are relatively 

economical when carrying many passengers during peak periods. However, their service 

quality is limited since passengers must somehow reach some predetermined stations, 

wait for a vehicle, possibly transfer several times, and then move from their exit stations 

to their destinations. Thus, conventional transit services are least disadvantaged in areas 

and time periods with high demand densities, which can sustain high network densities 

and service frequencies.  

When ridership decreases bus operators typically adjust frequencies downward, 

thus increasing passenger wait times. This may further decrease ridership. Instead of 

changing conventional bus frequencies, providing a different type of bus service during 

off-peak periods which is more economical for low demands may be preferable for both 

bus operators and passengers. Some paratransit services can provide more flexible routes 
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and schedules, including the possibility of door-to-door services. For instance, taxis 

provide great service flexibility, but at high unit costs (especially in labor cost per 

passenger-mile). Flexible bus services may be preferable in the low demand areas and 

periods. By integrating conventional and flexible services, bus transit passengers may 

experience overall improvements in transit services. The potential advantages of variable-

type bus for integrated conventional and flexible bus operations have not been 

sufficiently explored. 

The potential benefits of using variable operation types (or “modes”) and 

multiple fleets should theoretically increase when multiple dissimilar regions are 

considered, due to the increased variability of demand densities. Bus operating costs 

increase to some extent with bus sizes. Large buses are more economical at high demand 

densities, as average costs per passenger are relatively low. This leads us to consider the 

use of mixed bus fleets, consisting of vehicles of different sizes, which may more closely 

match demand variations.  

The exploration of these potential benefits, especially combined with the 

integration of conventional and flexible bus services, has not been analyzed previously. 

Thus, the concept of mixed fleet variable type bus (MFV) operation in multiple regions is 
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analyzed here. To provide efficient service, decision variables for bus sizes (i.e. large bus 

size and small bus size) and decision variables for bus operation characteristics (i.e. route 

spacing in region for conventional bus and service area in region for flexible bus) are 

optimized. Bus frequencies and fleets for both conventional and flexible services are also 

jointly optimized. An efficient solution method is required to provide good bus transit 

operational and managerial strategies.  

Transit ridership may be sensitive to the elasticity of fares, in-vehicle times, 

waiting times, access times. To consider different qualities of service types, a system-

wide welfare function, which is the sum of consumer surplus and producer surplus, 

should be formulated and optimized. Using elastic demand functions, various decision 

variables, which are fares on conventional and flexible services, bus sizes, headways and 

fleet sizes for both service types, route spacings for conventional services, and service 

areas for flexible services, are optimized here.  

  

1.2. Objectives  

Specific objectives for this dissertation are as follows:  

1) Develop a multi-dimensional optimization model that integrates various types of 
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bus services, and finds good solutions for decision variables in nonlinear mixed 

integer problem formulations. Specifically, optimized values of vehicle sizes, bus 

network characteristics (e.g., route spacing for conventional bus, and service 

coverage for flexible bus), headways, and fleet sizes should be jointly optimized.   

2) Extend models and formulations to consider different types of services as well as 

mixed vehicle fleets. Various operational alternatives, including single fleet 

conventional bus services, single fleet flexible bus services, mixed fleets 

conventional bus services, mixed fleets flexible bus services, and mixed fleets 

variable-type bus services, are analyzed. The models developed here should be 

capable of analyzing multiple regions and periods. 

3) Develop an optimization model for maximizing social welfare. Demand functions 

with elasticity to service times and fares should be formulated and applied to 

welfare maximization problems. The objective functions for conventional and 

flexible services are taken as the sum of consumer surplus and producer surplus. 

Optimization models find solutions for fares, headways, fleet sizes, route spacings, 

service areas, and the number of zones for each region.  
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1.3. Scope 

In this dissertation, the problem of designing routes and locating stations is 

assumed to be solved in advance with methods beyond the scope of this dissertation. The 

performance of flexible route services is analyzed with a tour distance approximation 

function, namely Stein’s formula (1978), rather than with micro-level ridesharing 

algorithms.   

For welfare problems, a linear elastic demand function is applied for both 

conventional and flexible services. The optimization problems that are solved in this 

dissertation are suitable for the planning stage. Real-time vehicle control strategies are 

outside the scope of this work.  

The bus system analyzed here provides service from a major terminal (or Central 

Business District) to multiple regions. In Figure 1-1, a public bus system serves multiple 

regions connected to a central terminal. For each region, either conventional or flexible 

bus can be provided.  
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Figure 1-1 Multiple Local Regions and Different Types of Bus Services 

 

1.4. Organization  

In this dissertation, Chapter 2 reviews the relevant studies on integrating and 

coordinating bus transit services. Studies of transit welfare maximization are also 

reviewed. Chapter 3 explores the integration of conventional and flexible bus services 

between a terminal and a local region. Chapter 4 extends optimization models developed 

in Chapter 3 to cover multiple regions. Chapter 5 analyzes a bus transit integration with 

mixed fleets and explores benefits of sharing fleets (and switching vehicles over time) 

between conventional and flexible services. Chapter 6 considers demand elasticity in 

maximizing the welfare of conventional and flexible services. Two constrained 
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optimization models are formulated and solved with a numerical solution approach. 

Chapter 7 summarizes findings, contributions and suggests extensions for future study.     
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Chapter 2 Literature Review 

 

This chapter reviews relevant studies on bus transit operations, integration of 

various types of bus services, coordination of passenger transfers, and demand elasticity 

in the analysis of bus transit services.  

 

2.1. Bus Transit Services   

Kocur and Hendrickson (1982) design local bus services with demand 

equilibrium. They analyze bus service variables such as route spacing, headway, and fare, 

both with and without vehicle size constraints. They consider three objective functions, 

including profit maximization, maximization of a combination of net user benefit and 

operator profit, and maximization of net user benefit subject to a deficit constraint. They 

analytically optimize objectives and they find closed-form solutions. More specifically, 

they use calculus to find unconstrained optima, and use Lagrange multipliers to find 

optima when constraints are known to hold. They analyze a local area of 4 by 6 miles, 

and in this local area they assume an infinitely fine rectangular street grid. This means 

their models are not directly applicable to radial transit network. They also consider the 
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sensitivity of ridership to some service characteristics.  

The present dissertation analyzes the integration of conventional and flexible bus 

services. For conventional bus services, it uses some assumptions, such as parallel route 

spacings, regular bus stops, and rectilinear local regions that are similar to those of Kocur 

and Hendrickson (1982). However, it considers multiple regions while Kocur and 

Hendrickson consider only one local region within a city. 

Salzborn (1972) studies the bus scheduling problem for a single route. The 

primarily objective is to minimize fleet size. This work seems theoretically inspired by 

Newell (1971). Salzborn also shows an application of the suggested method to a suburban 

railway system. For its secondary objective, his study minimizes the passenger waiting 

time by using a calculus of variation technique (Elsgolc, 1961). He applies a flow theory 

to this study by assuming that the vehicle movements can be considered continuous and 

time-dependent flows on the links of a network. This approach is more theoretical than 

applied.  

Furth and Wilson (1981) study how frequencies should be set on bus routes. They 

also compare the theory and practice of bus frequency decisions in the 1980’s. Furth and 

Wilson note policy headways, peak-load factor, revenue/cost ratio, and vehicle 
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productivity as the most frequently used methods to set bus frequencies in practice 

(Attanucci et al, 1979). The objective is to maximize ridership by allocating buses with 

given constraints such as fares, routes, and subsidy. They approach this problem as a 

resource allocation problem in which limited resources (i.e., subsidies) can be allocated 

to maximize the ridership. They suggest an algorithm to solve this problem. Instead of 

minimizing cost only, they assume flat fares so that they approach a ridership 

maximization problem. Considering complex fare structures may be an interesting future 

research direction. They also note that an existing rule of thumb used in the transit 

industry may be less efficient than a formal model that uses a consistent objective, as 

expected.  

Woodhull et al (1985) discuss two indicators, namely load factor and standee 

factor for bus transit scheduling. They provide a simple regression analysis for better 

understanding the effects of load factor and standee factor in transit scheduling. Sheffi 

and Sugiyama (1982) also study a bus scheduling problem with time-dependent demand 

and solve it with dynamic programming. They also consider many-to-many demand 

patterns in the formulations. The objective of this work is to minimize the total waiting 

time of passengers. This study is limited to one route and it does not optimize the bus size.  
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Furth and Day (1985) provide a short qualitative discussion on transit routing and 

scheduling for heavy demand corridors. They discuss four methods, namely short-turning, 

restricted zonal service, semi-restricted zonal service, and limited stop zonal service. 

They discuss the advantages and disadvantages of those four methods for local services.  

  In high demand corridors the ridership may be shared by several bus routes; thus, 

buses may operate on some overlapping routes. Han and Wilson (1982) study this 

problem of allocating buses among overlapping routes. They provide a deterministic 

mathematical formulation for solving this problem. Because they analyze overlapping 

routes with higher demands, they consider crowding levels for all patrons in the objective 

function. To solve the problem, they develop a two state heuristic which decomposes the 

problem into base allocation and surplus allocation. Although they do not guarantee 

optimal solutions, they show how a complex problem is solved relatively simply with 

approximations. They point out a major limitation which is that origins and destinations 

are pre-determined. They also do not consider the changes in passenger behavior due to 

overlapping routes. 

Yan and Chen (2002) develop a deterministic scheduling model to analyze inter-

city bus services with one-to-one demand patterns. They seek routing and timetable 
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solutions with given demand, fleet size, and the related costs. Since inter-city bus services 

are direct trips and usually have long travel times, the authors leave out the users’ waiting 

time by assuming they know the bus departure times in advance. Yan et al (2006) then 

extend a model to analyze bus routes and timetables with stochastic demand variation for 

inter-city travel. To solve this problem, they develop two heuristics, which are a link-

based heuristic and a path-based heuristic. This work analyzes aggregated demands for 

inter-city (regional) transit planning.  

Zhao and Zeng (2008) solve an optimization problem for transit network routing, 

headway, and timetable in a large network. The method is a metaheuristic that combines 

simulated annealing, tabu, and greedy search. They note that the solution quality is 

approximately proportional to the CPU time due to the stochastic nature of the problem. 

As they point out, we note that heuristics are widely used to solve large problems because 

of computational difficulties of finding the optimal solutions. Bus seating capacities are 

assumed rather than optimized. However, this paper is a useful reference on bus route 

designs.  

Chang and Schonfeld (1991c) analyze conventional bus services with different 

demand conditions, namely steady fixed demand, cyclical fixed demand, steady 
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equilibrium demand, and cyclical equilibrium demand. Chang and Schonfeld (1993) then 

study optimal bus service zones in conventional bus operations. They analytically 

optimize route spacings, headways, and zone size (i.e., length and width of rectilinear 

zone). They also specifically optimize an elongation ratio which is defined as zone length 

divided by zone width.  

 

2.2. Bus Transit Integration 

Several attempts have been made to jointly use conventional and flexible type 

bus services. Typically, flexible bus services provide Many-to-One and/or One-to-Many 

service with flexible route tours that operate on semi-fixed schedules. (The departure 

times from or arrival times at the One major trip generator are usually pre-determined and 

the tours may have cyclical schedules.) Conventional bus services operate with fixed 

routes and fixed schedules.  

The relative advantages of conventional and flexible bus services are investigated 

using analytic optimization models in Chang (1990) and Chang and Schonfeld (1991a). 

They compare optimization models for conventional and subscription (i.e., flexible) bus 

operations. They analytically optimize vehicle sizes and headways and service design 
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variables (i.e., route spacings and service area) for both conventional and flexible bus 

services connecting a terminal and a local region. They confirm that conventional bus 

service (with fixed routes and fixed schedule) is preferable to subscription bus service 

(which has demand responsive routes and flexible schedule) at high demand densities, 

and vice versa. Chang and Schonfeld (1991a) assumed that both conventional bus and 

flexible bus either collect passengers from a local service area OR distribute passengers 

to a local area. As a possible improvement, their model should include a controllable 

directional split factor, which would enable us to consider 2-directional demands in 

various proportions.  

Chang and Schonfeld (1991b) analyze temporally integrated bus systems with a 

threshold demand analysis between conventional bus and subscription bus services. They 

compare three bus operations, namely conventional bus, flexible bus, and temporarily 

integrated bus services. They analytically optimize formulations and note that when 

demands vary over time, the integrated bus service has lower system costs than purely 

conventional or purely flexible bus services. The optimal bus size for temporarily 

integrated services is intermediate between the optimal bus sizes of conventional and 

flexible bus services. The suggested method is applied to bus services connecting a 
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terminal and a local region with multiple time periods. Quadrifoglio and Li (2009) study 

the critical demand threshold for switching between fixed route bus and demand 

responsive services. They analytically derive a closed-form solution for the threshold 

demand, but do not optimize service frequencies or vehicle sizes.   

Zhou et al (2008) develop a welfare maximization approach to compare various 

bus transit service types (i.e., conventional and flexible bus services) for a local region. 

To maximize the welfare objective, the formulation imposes financial constraints, i.e. that 

the operator cost should not exceed the sum of revenue and subsidy. They analytically 

optimize fares, headways, route spacings, and service areas for conventional and flexible 

bus services. They find that the break-even policy or low subsidy policy may be 

preferable for conventional bus services, but not for flexible bus services. The break-even 

policy causes a relatively large loss in social welfare for flexible bus services.    

A different approach to reduce bus transit cost is to use different fleets of buses 

as the demand varies, with larger buses used at higher demand densities. Lee et al (1995) 

and Fu and Ishkhanov (2004) analyze the assignment of buses with dissimilar sizes (i.e. 

“mixed fleets”) to public transit operations.  

Lee et al (1995) study mixed bus fleets in urban conventional bus operations for 
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multiple routes. They consider bus operating cost, user in-vehicle cost, and user waiting 

cost, but not user access cost. They define the demand thresholds from the service cost 

formulation, which includes bus operating cost, user in-vehicle cost, and user waiting 

cost, to assign either large or small conventional buses. They propose a heuristic for 

optimizing vehicle sizes, headways, and fleets for a total cost formulation which includes 

capital cost. Their formulation is limited to many-to-one trips, although an extension to 

analyze many-to-many trips may be possible. Their work does not consider passenger 

transfers in a terminal. An important assumption of this study is that bus operating cost is 

a function of the bus size (i.e., B = a+bS).  

Similarly, Fu and Ishkhanov (2004) study mixed fleet bus operations for 

paratransit services. They note that although larger vehicles have higher capacities, they 

do not automatically yield higher productivity because ridesharing may be limited by the 

time constraints of the clients. They use a program called FirstWin (TSS, 2003) to 

generate schedules and associated performance statistics for given demands. They have 

hard windows in their constraints. They propose a heuristic called scheduling, matching, 

allocation, and reduction (SMAR). This heuristic is fundamentally a greedy search 

procedure based on the idea of using as many small vehicles as possible without loss of 
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productivity. This study offers some insights for possible ridesharing algorithms to be 

used by the flexible bus services with mixed fleets. Lee et al (1995) and Fu and 

Ishkhanov (2004) both confirm that when demand densities differ considerably over time 

or space, mixed fleets can reduce total system cost compared to single fleets because 

vehicles of different sizes may be matched to the operations for which they are most 

suited.  

Besides the above studies, it is difficult to find studies that consider variations in 

service type as demand changes. Thus, it seems worthwhile to examine not only the 

relative advantages and disadvantages of conventional and paratransit services, but also 

to explore variable-type bus alternatives in which the service type changes in response to 

demand changes while using the same pool of resources (i.e. buses and drivers).  

 

2.3. Coordination of Bus Transit Services  

Kyte et al (1982) present a timed-transfer system in Portland, Oregon. They 

provide the history of planning, implementation, and evaluation of a timed transfer 

system which provides services since 1979. This system provides timed transfers to the 

suburban areas in which demands are low, and provides grid-type bus services to the 
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higher demand regions. This paper also discusses the performances and results of the 

implemented system. They use two indicators, which are a successful meet and a 

successful connection, to analyze the transfer reliabilities. A successful meet is defined as 

all buses arriving as scheduled at a given time, and a successful connection is a direct 

transfer connection that results from two routes arriving as scheduled. The authors point 

out that weekday ridership increased by 40 percent after one year operation, and local 

trips using this system increased dramatically. However, the 40% increase of ridership 

resulted not only from a timed transfer system, but also from new route designs. Bakker 

et al (1988) similarly study a multi-centered time transfer system in Austin, Texas, and 

confirm that such a timed transfer system is particularly applicable for low density cities.  

Abkowitz et al (1987) study timed transfers between two routes. They compare 

four policy cases, namely unscheduled, scheduled transfer without vehicle waiting, 

scheduled transfers with the lower frequency bus is held until the higher frequency 

vehicle arrives, and scheduled transfers when both buses are held until a transfer even 

occurs. In other words, this paper compares scheduled, waiting/holding, and double 

holding transfer strategies. They note that the effectiveness of timed transfers varies by 

route conditions. However, they find that the scheduled transfers are effective (over the 



- 19 - 

 

unscheduled) when there is incompatibility between headways and the double holding 

strategy outperforms the other time transfer strategies when the headways on intersecting 

routes are compatible. This study also points out that slack time may be better built into 

the schedule so that vehicle holding does not cause significant delays to passengers.  

Domschke (1989) explores a schedule coordination problem with the objective of 

minimizing waiting times. He provides a mathematical programming formulation which 

is generally applicable to a public mass transit network such as subways, trains and/or 

buses. The formulation is a quadratic assignment problem. With four routes and five 

transfer stations in a toy network, this paper considers heuristics and a branch and bound 

algorithm. The heuristics include a starting heuristic, which is based on rigid regret 

heuristic, and then a heuristic improvement procedure. Lastly, simulated annealing (SA) 

is applied to improve the solutions. For SA, the quality of the initial solution is important. 

He finds that problems with more than 20 routes cannot be solved by exact solution 

methods.   

Knoppers and Muller (1995) provide a theoretical note on transfers in public 

transportation. Their main concerns are the transfer time needed and the probability of 

missed connection to minimize passengers’ transfer time. They find that when the 
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frequency on the connecting lines increases, the benefit of transfer coordination decreases. 

Muller and Furth (2009) try to reduce passenger waiting time through transfer scheduling 

and control. They provide a probabilistic optimization model, and discuss three transfer 

control types, namely departure punctuality control, attuned departure control, and 

delayed departure of connecting vehicles. They confirm that by increasing a buffer 

(slack), the probability of missing the connection decreases. However, a larger buffer 

increases the transfer time for people do not miss their connection. They also find that if 

the control policy allows a bus to be held to make a connection, the optimal schedule 

offset decreases.  

Shrivastava et al (2002) first discuss existing algorithms for solving nonlinear 

mathematical programming, because transit scheduling problems are often nonlinear. The 

existing algorithms are generally gradient based, and require at least the first order 

derivatives of both objective and constraint functions with respect to the design variables. 

With the “slope tracking” ability, gradient-based methods can easily identify a relative 

optimum closest to the initial guess of the optimum design. However, there is no 

guarantee of locating the global optimum if the design space is known to be non-convex. 

In such case, exhaustive and random search techniques such as random walk or random 
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walk with direction exploitation are quite useful. The main drawback with these methods 

is that they often require thousands of function evaluations, even for the simplest 

functions, to reach the optimum. They also note that genetic algorithms (GAs) are based 

on exhaustive and random search techniques, and are robust for optimizing nonlinear and 

non-convex functions. Thus, they apply a genetic algorithm (GA) to schedule 

coordination problems. The objective function includes waiting time, transfer time, and in 

vehicle time for users, and vehicle operating cost for operators. For a scheduling problem, 

they try to solve routing and scheduling simultaneously. The GA is designed with two 

substrings where one represents routes, and the other represents frequencies on those 

routes. By solving benchmark problems, they find that genetic algorithms provide better 

solutions than other heuristics. They also note that computational times are proportional 

to the pool size. Cevallos and Zhao (2006) also use a GA to solve a transfer time 

optimization problem for a fixed route system. Their main focus is efficient 

computational time.  

Lee and Schonfeld (1991) study optimal slack times for coordinating transfers 

between rail and bus routes at one terminal. The transfer cost function is formulated as a 

sum of scheduled delay cost, missed connection cost for bus to train transfer, and missed 
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connection cost for train to bus transfer. In their paper, the rail transit line is assumed to 

run on-time (no slack), and slack times for bus routes are to be optimized. Bus arrivals 

are assumed to vary independently from train arrivals so that the joint probabilities of 

arrivals may be obtained by simply multiplying the probabilities obtained separately from 

the bus and train arrivals distributions. Slack times are optimized analytically, and 

numerical results show that analytic optimization with simplifying assumptions is limited 

and difficult to solve for complex situations. Thus, they develop a numerical optimization 

method to find solutions efficiently.  

Ting and Schonfeld (2005) extend Lee and Schofeld (1991)’s study. They explore 

bus service coordination among multiple transit routes in multiple hub networks. They 

analyze uncoordinated operations and coordinated operation, and compare the results. For 

uncoordinated operation, the formulation minimizes the total system cost which is sum of 

operating cost, user waiting cost, and user transfer cost. Transfer cost in uncoordinated 

operation is simply assumed to be the product of the average transfer waiting time and 

the total number of transfer passengers. For the coordinated operation, the transfer cost 

consists of slack-time cost, missed connection cost, and dispatching delay cost. Common 

headway and integer-ratio headway cases are optimized with a heuristic algorithm. Their 
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algorithms and numerical results show when coordinated operations with integer-ratio 

headways are preferable over uncoordinated operation in terms of total cost. Simplifying 

assumptions of this work are that: 1) only one dispatching strategy is considered, which 

means vehicles do not wait for other vehicles that arrive behind schedules; 2) vehicle 

arrivals on a route are assumed to vary independently from those of other routes, so that 

the joint probabilities of arrivals may be obtained by simply multiplying the probabilities 

obtained separately from the two vehicle arrival distributions. A limitation of this work is 

that it does not ensure integer fleet size.  

Chen and Schonfeld (2010) adapt the concept of bus transit coordination methods 

to freight transportation. They follow the main ideas of joint probabilities and transfer 

cost components from some previous transit studies (Lee and Schonfeld, 1991; Ting and 

Schonfeld, 2005). In this study, they propose two solution approaches, which are a 

genetic algorithm and sequential quadratic programming (SQP) to find good solutions for 

frequencies and slack times in intermodal transfers.   

Chowdhury and Chien (2002) also study the coordination of transfers among rail 

and feeder bus routes. Their objective is to minimize total cost, including supplier, user 

costs, similarly to other studies. They explore various degrees of coordination such as full 
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coordination, partial coordination, and no coordination. They also follow the assumption 

of joint probabilities of independent vehicle arrivals, and assume that trains operate on-

time. Recently, Chowdhury and Chien (2011) extend a previous study by jointly 

optimizing bus size, headway, and slack time for timed transfer. They optimize bus size 

by assuming maximum allowable bus headways instead of minimum cost headways. 

Therefore, their optimized bus size may be overestimated. For solving this problem they 

apply Powell’s algorithm (i.e., multi-variable numerical optimization). Unfortunately, 

they do not present enough details on the methodology to clarify how joint variables are 

optimized and how variables are constrained to be integer. Another limitation of this 

study is that although it finds optimized vehicle size jointly with other decision variables, 

such as headways and slack times, the vehicle size is optimized for only one time period. 

Optimizing vehicle size and required fleet size for daily demand or system-wide demand 

while finding headways and slack times for each time period is an opportunities for 

improvement.  

 

2.4. Bus Transit Services with Demand Elasticity     

In this subsection, we review papers of transit welfare objectives with demand 
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elasticity. When considering the demand elasticity, formulations typically become 

maximization problems, presumably because it makes little sense to minimize costs if 

demand is elastic (and may be driven to zero). Kocur and Hendrickson (1982) optimize 

transit decision variables namely route spacing, headway, and fare, with demand elasticity. 

They assume a linear transit utility function rather than a logit form. The reasons for the 

linear utility approximation are that: it is analytically tractable; it is easily differentiated 

and manipulated; and it is convex within its upper and lower bounds. They consider wait 

time, walk time, in-vehicle time, fare, and auto time and cost in the demand model. They 

provide analytic closed form solutions, but this study is limited to a conventional bus 

service with a local region. Later, Imam (1998) extends Kocur and Hendrickson (1982)’s 

study by relaxing the linear demand function. Imam (1998) applies a log-additive demand 

function.  

Chang and Schonfeld (1993) then consider time-dependent supply and demand 

characteristics for a transit welfare maximization problem. They have a linear demand 

function as in Kocur and Hendrickson (1982). Decision variables are route spacing, 

headways, and fare. Since this study considers multiple time periods, they optimize 

headways for multiple time periods. Their objective is to maximize consumer surplus and 
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producer surplus. They solve this maximum welfare problem with alternative financial 

constraints, namely without any constraint, with a break-even constraint, and with 

subsidy. Their problem size extends to one local region and multiple periods. Solutions 

are obtained analytically with approximations. For the formulations with constraints, a 

Lagrange multipliers method is applied. The vehicle size is considered as an input, rather 

than a decision variable.  

Zhou et al (2008) formulate welfare for conventional bus services and flexible 

bus services, but only for a system connecting a terminal to one local region in one period. 

They find solutions analytically because the formulation of a system that connects a 

terminal to one local region in one period is analytically tractable. Analyses of system 

welfare with larger problem sizes (i.e., multiple regions and multiple periods) for both 

conventional and flexible services are desirable. They analyze tradeoffs between 

subsidies and welfare, but do not provide detailed enough methods to duplicate their 

results.  

Chien and Spasovic (2002) study a grid bus transit system with an elastic demand 

pattern. They optimize route spacings, station spacings, headways, and fare with the 

objective of maximum total operator profit and social welfare. The elastic demand is 
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subtracted from the potential demand as in Chang and Schonfeld (1993), and the optimal 

solutions are found analytically. This work is applicable to conventional bus services.  

Tsai et al (2013) find headway and fare solutions for a Taiwan High Speed Rail 

(THSR) line, with a maximum welfare objective. They consider elastic demand for the 

study, and apply a GA to obtain solutions. They compare solutions from a GA and 

solutions from a SSM (Successive Substitution Method). However, this study does not 

provide enough evidence on the global optimality of its solutions.  

 

2.5. Review Summary  

To date, the integration of different types of bus services with joint optimization 

of their decision variables is largely neglected in the literature. This dissertation will deal 

with several problems of integrating conventional and flexible bus services.  

For the system welfare problems in bus transit systems, most of the literature 

covers conventional services. The problem size is constrained by the limits of analytic 

optimization. For conventional services, the solved problem size encompasses a local 

region with multiple periods. For flexible services, the solved problem size encompasses 

a local region and one period. With numerical solutions it seems desirable to consider 
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problems with multiple regions as well as multiple periods for both conventional and 

flexible services.   
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Chapter 3 Variable-Type Bus Services for a Local Region 

 

3.1. Problem Statement  

Conventional public transit services (which include most bus and rail transit 

services) are characterized by their fixed routes and schedules. They can provide 

relatively high passenger-carrying capacities at relatively low average operating costs. 

However, their service quality is limited since passengers must somehow reach some 

predetermined stations, wait for a vehicle, possibly transfer several times, and then move 

from their exit stations to their destinations. Thus, conventional transit services are least 

disadvantaged in areas and time periods with high demand densities, which can sustain 

high network densities and service frequencies. Some paratransit services can provide 

more flexible routes and schedules, including the possibility of door-to-door service. 

Thus, taxis provide great service flexibility, but at high unit costs (especially in labor cost 

per passenger-mile). Flexible services, thus, can be preferable for low demand areas. 

Improvements in service quality as well as overall system costs may be achieved by 

integrating conventional and flexible services. 

The potential advantages of variable-type bus for integrated conventional and 
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flexible bus operations have not been sufficiently explored. Those potential advantages 

are the subject of this chapter, in which we seek to quantify them. This chapter modifies 

the cost function provided by Chang and Schonfeld (1991a). More specifically it (1) 

modifies the cost functions to reflect two-directional demands in round trip times, (2) 

develops an integrated model for variable-type bus services and (3) compares 

conventional, flexible and variable-type bus services under various assumed conditions. 

This model is intended for conceptual comparisons of services rather than detailed 

planning and operations. 

 

3.2. Notation and Assumptions  

Definitions and baseline values of variables are provided in Table 3-1. 

Table 3-1 Notation and Baseline Values 

Variable Definition Baseline Value 

a hourly fixed cost coefficient for operating bus service ($/veh hr) 30.0 

ai 
hourly fixed cost coefficient for operating bus service at period 

i ($/veh hr) 
30.0 

ac 
fixed cost coefficient for bus ownership (capital cost) ($/veh 

day) 
100.0 

𝑎� weighted fixed cost coefficient defined in Table 2 ($/veh day) - 

A service zone area(sq.mile)=LW/N′ - 

Aik service zone area(sq.mile) for case k  - 

b hourly variable cost coefficient for operating bus service ($/seat 0.2 
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hr)) 

bi 
hourly variable cost coefficient for operating bus service at 

period i ($/seat hr) 
0.2 

bc variable cost coefficient for owning bus (capital cost) ($/day)  0.5 

𝑏� 
weighted fixed cost coefficient defined in equation 54, 55, and 

56 ($/veh day) 
- 

B bus operating cost ($/veh hr), (=a+bSc, a+bSs) - 

Bc bus operator cost for owning bus(capital cost)  ($/veh hr)  - 

Cc service cost for conventional bus system ($/hr) - 

Cci service cost cost for conventional bus system at period i ($/hr) - 

Coc operating cost for conventional bus system ($/hr) - 

Cos operating cost for flexible bus system ($/hr) - 

Cpc capital cost for conventional bus system($/day) - 

Cps capital cost for flexible bus system ($/day) - 

Cs service cost cost for flexible bus system ($/hr) - 

Csik flexible bus service cost for case k at period i ($/hr) - 

Csi service cost for flexible bus system at period i ($/hr) - 

Ctc total cost for conventional bus system ($/day) - 

Ctc total cost for flexible bus system ($/day) - 

Cuc user cost for conventional bus system ($/hr) - 

Cus user cost for flexible bus system ($/hr) - 

Cvc in-vehicle cost for conventional bus system ($/hr) - 

Cvs in-vehicle cost for flexible bus system ($/hr) - 

Cwc waiting cost for conventional bus system ($/hr) - 

Cws waiting cost for flexible bus system ($/hr) - 

Cxc access cost for conventional system ($/hr) - 

d bus stop spacing (miles) 0.2 

D 
equivalent average bus round trip distance for conventional bus 

service (= 2J/y+W/z+2L),(miles) 
- 

Dc 
distance of one tour of flexible  bus service in local area 

(miles) 
- 

Ds 
equivalent line haul distance for flexible bus service 

(=(L+W)/z+2J/y),  (miles) 
- 

Fc fleet size for conventional bus system (vehicles) - 
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Fci fleet size for conventional bus system in period i (vehicles) - 

Fsi fleet size for flexible bus system in period i (vehicles) - 

f a controllable directional split factor  1.0 

hc headway for conventional bus system (hrs/veh) - 

hc
max 

maximum allowable headway for conventional bus service 

(hrs/veh) 
- 

hc
opt optimized headway for conventional bus service (hrs/veh) - 

hci headway for conventional bus system at period i (hrs/veh) - 

hs headway for flexible bus system (hrs/veh) - 

hsi headway for flexible bus system in period i (hrs/veh) - 

hsi
max 

maximum allowable headway for flexible bus service in period 

i (hrs/veh) 
- 

ℎ𝑠𝑠𝑠  Headway for flexible bus system for case k in period i (hrs/veh) - 

hsi
opt optimized headway for flexible bus service in period i (hrs/veh) - 

ℎ𝑠𝑠𝑠𝑚𝑚𝑚  
maximum allowable headway for flexible bus service  for case 

k in period i (hrs/veh) 
- 

ℎ𝑠𝑠𝑠
𝑜𝑜𝑜  

optimized headway for flexible bus service for case k in period 

i (hrs/veh) 
- 

i period index - 

J line haul distance (miles) 10.0 

k period index - 

l load factor (passengers/seat) - 

lc load factor for conventional bus service (passengers/seat) 1.0 

ls load factor for flexible bus service (passengers/seat) 1.0 

L length of service area (miles) 5.0 

M Equivalent average trip distance (=J/yc+W/2zc+L/2) - 

n number of passengers in one collection tour - 

N number of branched zones in conventional bus service - 

N′ number of service zones in flexible  bus services - 

Q round trip demand density (trips/sq.mile/hr) - 

Qi round trip demand density in period i (trips/ sq.mile/hr) - 

Qp demand density in peak time (trips/sq.mile/hr) - 

𝑄�  
average round trip demand density at defined in equation 54, 

55, and 56 (trips/sq.mile/hr) 
- 
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R round travel distance (miles) -  

r route spacing - 

Sc vehicle size for conventional bus service (seats/veh) - 

Ss vehicle size for flexible bus service (seats/veh) - 

ti duration of period i  - 

u 
average number of passengers per stop point for flexible  bus 

service 
1.2 

Vc local service speed for conventional bus (miles/hr) 20 

Vs local service speed for flexible bus (miles/hr) 18 

Vx average access speed (mile/hr) 2.5 

vv value of in-vehicle time ($/passenger hr) 5 

vw value of wait time at bus stop ($/passenger hr) 12 

vx value of access time ($/passenger hr) 12 

W width of service area (miles) 4.0 

y express speed/local speed ratio for conventional bus service 
conventional bus = 1.8 

flexible  bus = 2.0 

Y term used in Table 3-1 and 3-2 - 

z 
non-stop ratio = local non-stop speed/local speed; same values 

as y  
- 

Ø 
constant in the collection distance equation for flexible  bus 

service 
1.15 

* superscript indicating optimal value - 

 

The assumptions for both conventional bus and flexible bus are listed below. 
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Figure 3-1 Conventional and Flexible Bus Services 

3.2.1. For Both Conventional and Flexible Buses 

o A rectangular service area of length L and width W (as shown in Figure 3-1) is 

J miles away from a transportation terminal at its nearest corner.  

o The demand is fixed with respect to service quality and price.  

o The demand is uniformly distributed over space within the service area and 

over time within each specified period.  

o The vehicle size (Sc for conventional bus, Sf for flexible bus) is uniform 

throughout a system.  

o The estimated average waiting time of passengers is equal to half the headway 
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(hc for conventional bus, hf for flexible bus).  

o Vehicle layover time is negligible.  

o Within the service area, the average speed (Vc for conventional bus, Vf for 

flexible bus) includes stopping times. 

o External costs are assumed to be negligible. 

 

3.2.2. For Conventional Bus Only  

o The service area is divided into N parallel zones with a width r=W/N for 

conventional bus service, as shown in Figure 3-1. Local routes branch from 

the line haul route segment to run along the middle of each zone, at a route 

spacing r=W/N. 

o A demand of Q trips/mile2/hour, which is entirely channeled to (or through) 

the single terminal, is uniformly distributed over the service area.  

o In each round trip, as shown in Figure 3-1, buses travel from the terminal a 

line haul distance J at non-stop speed yVc to a corner of the service area, then 

travel an average of W/2 miles at local non-stop speed zVc from the corner to 

the assigned zone, then run a local regionof length L at local speed Vc along 
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the central axis of the zone while stopping for passengers every d miles, and 

then reverse the above process in returning to the terminal.. 

 

3.2.3. For Flexible Bus Only  

o The service area is divided into N’ equal zones, each having an optimizable 

zone area A=LW/N’. The zones should be “fairly compact and fairly convex” 

(Stein, 1978). 

o Buses travel from the terminal a line haul distance J at non-stop speed yVf and 

an average distance (L+W)/2 miles at local non-stop speed zVf to the center of 

each zone. They collect (or distribute) passengers at their door steps through a 

tour of n stops and length Dc at local speed Vf. The values of n and Dc are 

endogenously determined. Dc is approximated by Stein (1978), in which and 

for rectilinear space according to Daganzo (1984). To return to their starting 

point the buses retrace an average of (L+W)/2 miles at zVf miles per hour and 

J miles at yVf miles per hour.  

o Buses operate on preset schedules with flexible routing designed to minimize 

each tour distance Dc.  
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o The tours are routed on the rectilinear street network.  

o Tour departure headways are equal for all zones in the service area and 

uniform within each period. 

 

3.3. Results of Chang and Schonfeld (1991a)  

The formulation proposed by Chang and Schonfeld (1991a) considered one-way 

service (i.e. only collecting passengers OR distributing passengers) in which total 

demand density is Q trips/mile2. Based on these assumptions, the analytic optimization 

results obtained for conventional bus and flexible bus services by Chang and Schonfeld 

(1991a) are presented in Table 3-2. For bus operating cost, a linear (i.e. B=a+bS) cost 

function was used (Jansson, 1980; Oldfield and Bly, 1988).  

Table 3-2 Analytic Results from Chang and Schonfeld (1991a) 

Conventional bus service Flexible bus service 

Vehicle Size Sc �
8𝑎2𝐷2𝐿𝐿Vx
𝑣𝑤𝑣𝑥𝑉𝑐2𝑙𝑐3

3
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Sf 
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1/5

 

Route Spacing r �
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3
 

Service Area 
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⎝
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Service Cost 

(Conventional 

Bus) 
3𝐿𝐿𝐿 �

𝑣𝑤𝑣𝑥𝐷
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Service Cost 

(Flexible Bus) 
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𝑌2

𝑢𝑢
)1/3

+
𝐿𝐿𝐿𝐷𝑓 �𝑏 +

𝑣𝑣𝑙𝑓
2 �

𝑉𝑓𝑙𝑓
 

Note 𝑌 = �𝑎2𝑣𝑤Ø2𝑉𝑓𝑙𝑓3�
1/5

+ �𝑢𝐷𝑓3𝑄�𝑏 + 𝑣𝑣𝑙𝑓 2⁄ �3�
1/5

 

 Dc is approximated by Stein (1978),in which Dc = ∅√nA, and ∅ = 1.15 for rectilinear space according 

to Daganzo (1984)  

 

3.3.1. Total Cost including Capital Cost  

When computing the total system cost for bus service, capital cost should be 

treated as another fixed cost. The capital cost Cp, is the cost to satisfy the peak period 

vehicle requirement. In equation (3.1), bus service cost is defined as the sum of bus 

operating cost Co, user in vehicle cost Cv, user waiting cost Cw, and user access cost Cx:  

Total cost = Capital cost + Bus operating cost + User cost  (3.1) 

Relation (3.1) can be rewritten as:  

   𝐶𝑡 = 𝐶𝑝 + 𝐶𝑜 + 𝐶𝑢 = 𝐶𝑝 + 𝐶𝑜 + 𝐶𝑣 + 𝐶𝑤 + 𝐶𝑥    (3.2) 

Analytic results with capital cost for conventional and flexible bus services are 

summarized in Table 3-3. 
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Table 3-3 Analytic Results with Capital Cost 

Conventional bus service Flexible bus service 

Vehicle Size 

Sc 
�

8𝑎�2𝐷2𝐿𝑄�𝑉𝑥
𝑣𝑤𝑣𝑥𝑉𝑐2𝑙𝑐3

3
 

Vehicle Size 

Sf 

⎝

⎜
⎛ a�3𝐷𝑓3Q�𝑢

𝑣𝑤Ø2𝑉𝑓𝑙𝑓3 �b� +
𝑣𝑣𝑙𝑓

2 �
2

⎠

⎟
⎞

1/5

 

Routing 

Space r 
�

8𝑎�𝐷𝑣𝑤𝑉𝑥2

𝑣𝑥2𝐿𝑄�𝑉𝑐

3
 

Service 

Area A 

⎝

⎜
⎛ a�𝑣𝑤3𝑉𝑓3𝐷𝑓3𝑢8/3𝑙𝑓4

Ø4Q�7/3𝑌10/3 �b� +
𝑣𝑣𝑙𝑓

2 �
2

⎠

⎟
⎞

1/5

 

Total Cost 

(Conv. Bus) 
𝑎𝑐𝐷𝐷𝐷𝑄𝑝
𝑆𝑐∗𝑉𝑐𝑙𝑐

+ 𝑏𝑐𝐷𝐷𝐷𝑄𝑝
𝑉𝑐𝑙𝑐

+ 𝐷(𝑎+𝑏𝑆𝑐∗)𝐿𝐿∑ 𝑄𝑖𝑡𝑖
𝐼
𝑖

𝑉𝑐𝑆𝑐∗𝑙𝑐
+ 𝑣𝑣𝑀𝑀𝑀∑ 𝑄𝑖𝑡𝑖

𝐼
𝑖

𝑉𝑐
+ 𝑣𝑤𝑙𝑊𝑆𝑐∗ ∑ 𝑡𝑖

𝐼
𝑖

2𝑟
+ 𝑣𝑥(𝑟+𝑑)𝐿𝐿∑ 𝑄𝑖𝑡𝑖

𝐼
𝑖

4𝑉𝑥
  

Total Cost 

(Flex. Bus) 

𝐿𝐿𝑄𝑝𝐷𝑓(𝑎𝑐+𝑏𝑐𝑆𝑓) 
𝑉𝑓𝑆𝑓𝑙𝑓

+
Ø𝐿𝐿𝑄𝑝 (𝑎𝑐+𝑏𝑐𝑆𝑓)�𝐴 𝑢⁄ 𝑆𝑓𝑙𝑓)

𝑉𝑓
 + ∑ �𝐿𝐿𝑄𝑖𝑡𝑖𝐷𝑓(𝑎+𝑏𝑆𝑓)

𝑉𝑓𝑆𝑓𝑙𝑓
+

Ø𝐿𝐿𝑄𝑖𝑡𝑖(𝑎+𝑏𝑆𝑓)�𝐴 𝑢𝑆𝑓𝑙𝑓⁄

𝑉𝑓
+𝐼

𝑖

𝑣𝑣𝐿𝐿𝑄𝑖𝑡𝑖𝐷𝑓
2𝑉𝑓

+
𝑣𝑣𝐿𝐿𝑄𝑖𝑡𝑖Ø�𝐴𝑆𝑓𝑙𝑓 𝑢⁄ )

2𝑉𝑓
+ 𝑣𝑤𝐿𝐿𝑆𝑓𝑙𝑓𝑡𝑖

2𝐴
�  

Note 𝑄� = ∑ 𝑄𝑖𝑡𝑖𝐼
𝑖
∑ 𝑡𝑖𝐼
𝑖

, 𝑎� = 𝑎𝑐𝑄𝑝∑ 𝑎𝑖𝑄𝑖𝑡𝑖𝐼
𝑖

∑ 𝑄𝑖𝑡𝑖𝐼
𝑖

,𝑏� = 𝑏𝑐𝑄𝑝 ∑ 𝑏𝑖𝑄𝑖𝑡𝑖𝐼
𝑖

∑ 𝑄𝑖𝑡𝑖𝐼
𝑖

,𝑌 = �𝑎�2𝑣𝑤Ø2𝑉𝑓𝑙𝑓3�
1/5

+ �𝑢𝐷𝑓3𝑄��𝑏� + 𝑣𝑣𝑙𝑓 2⁄ �3�
1/5

  

 

3.3.2. Limitations from Chang and Schonfeld (1991a) ‘s Study  

Here, formulations in this chapter seek to overcome two main limitations in the 

bus service cost formulations of Chang and Schonfeld (1991a). First, they assume that 

trip demand for bus services is always one-directional (i.e. either all demand from 

terminal to local or local to terminal). The model is modified here by introducing a 

directional demand split factor, f. Second, they only consider the maximum allowable 
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headway (required to satisfy demand) rather than an optimized headway. It seems 

preferable to optimize the headway for each period, which should be the minimum of (1) 

the maximum feasible headway which satisfies the demand and (2) the headway that 

minimizes total costs. 

 

3.4. Cost Function Modification and Optimized Headways  

Here a directional demand split factor, f, is introduced for conventional bus 

service only (because flexible service does not need a directional demand split factor 

unless passengers are collected and distributed in different tours) as well as provide 

optimized headway solutions for both conventional bus and flexible bus services. If f=1.0 

all demand is one-directional. In other words, buses return without any passengers. 

Similarly, if f=0.5, then demand is equal in the two directions. In flexible service, since 

passengers are collected and distributed within the same tours, no directional split factor 

is needed. Therefore, if the demand density Q is assumed as the sum of both collected 

passengers and distributed passengers, the Chang and Schonfeld (1991a)’s flexible 

service cost functions are still applicable. 
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3.4.1. Conventional Bus Cost Formulation  

As shown in Figure 3-1, buses travel from the terminal a line haul distance J at 

non-stop speed yVc to a corner of the service area, then travel an average of W/2 miles at 

local non-stop speed zVc from the corner to the assigned zone, run a distribution segment 

of length L at local speed Vc along the central axis of the zone while stopping for 

passengers every d miles, and the reverse the process in returning. Therefore, the buses’ 

average round trip time is:  

𝑅𝑐 = 2𝐽
𝑦𝑉𝑐

+ 𝑊
𝑧𝑉𝑐

+ 2𝐿
𝑉𝑐

         (3.3) 

This round trip time can be re-written as:  

𝑅𝑐 = �2𝐽
𝑦

+ 𝑊
𝑧

+ 2𝐿� 𝑉𝑐�         (3.4) 

In equation (3.4), the expression in parentheses represents an equivalent vehicle round 

trip distance, D.  

The total cost of conventional bus service includes the operator cost Coc and the 

user costs Cuc. To determine operator cost, the fleet size, 𝐹𝑐, which is the total vehicle 

round trip time divided by the headway is first determined. With the equivalent vehicle 

round travel distance D, a controllable directional split factor f, and conventional bus 

speed Vc. The required fleet size Fc is: 
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𝐹𝑐 = 𝐷𝐷
𝑟ℎ𝑐𝑉𝑐

 ,where 𝐷 = 2𝐽 𝑦⁄ + 𝑊 𝑧⁄ + 2𝐿    (3.5) 

The hourly conventional bus operator cost Coc is the required fleet size multiplied 

by bus operating cost: 

𝐶𝑜𝑜 = 𝐹𝑐𝐵        (3.6) 

The bus operating cost B is formulated as:  

𝐵 = 𝑎 + 𝑏𝑆𝑐        (3.7)  

The required service headway hc is: 

ℎ𝑐 = 𝑆𝑐𝑙𝑐
𝑟𝑟𝑟𝑟

        (3.8) 

The operating cost Coc can be reformulated by substituting equations (3.5), (3.7), and (3.8) 

into equation (3.6): 

𝐶𝑜𝑜 = 𝐷(𝑎+𝑏𝑆𝑐)𝐿𝐿𝐿𝐿
𝑙𝑐𝑉𝑐𝑆𝑐

       (3.9) 

The hourly user cost for the conventional bus system Cuc is the sum of in-vehicle cost Cvc, 

waiting cost Cwc, and access cost Cxc: 

𝐶𝑢𝑢 = 𝐶𝑣𝑣 + 𝐶𝑤𝑤 + 𝐶𝑥𝑥       (3.10) 

 The user in-vehicle cost for the conventional system can be formulated as  

𝐶𝑣𝑣 = 𝑣𝑣𝐿𝐿𝐿𝐿         (3.11) 

The hourly in-vehicle cost for the conventional system is then: 
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𝑡 = 𝐽
𝑦𝑉𝑐

+ 𝑊
2𝑧𝑉𝑐

+ 𝐿
2𝑉𝑐

= 𝑀
𝑉𝑐

  ,where M=J/y + W/2z + L/2   (3.12) 

Then equation (3.11) can be written as: 

𝐶𝑣𝑣 = 𝑣𝑣𝐿𝐿𝐿 𝑀
𝑉𝑐

        (3.13) 

It is assumed that the average waiting time is half the headway. Therefore, the hourly user 

waiting cost for conventional system Cwc is: 

𝐶𝑤𝑤 = 𝑣𝑤𝐿𝐿𝐿 ℎ𝑐
2

= 𝑣𝑤𝐿𝐿𝐿 𝑆𝑐𝑙𝑐
2𝑟𝑟𝑟𝑟

= 𝑣𝑤𝑊𝑆𝑐𝑙𝑐
2𝑟𝑟

    (3.14) 

Since the spacing between adjacent branches of local bus service is r, and since 

service trip origins (or destinations) are uniformly distributed over the area, the average 

access distance to the nearest route is one-fourth of route spacing, r/4. Similarly, the 

access distance alongside the route to the nearest transit stop is one-fourth of the bus stop 

spacing, i.e., d/4. Therefore, the hourly access cost for the conventional bus system Cxc is:  

𝐶𝑥𝑥 = 𝑣𝑥𝐿𝐿𝐿(𝑟+𝑑)
4𝑉𝑥

       (3.15) 

The total cost for the conventional system Cc is the sum of operating cost and user 

costs:  

𝐶𝑐 = 𝐷(𝑎+𝑏𝑆𝑐)𝐿𝐿𝐿𝐿
𝑙𝑐𝑉𝑐𝑆𝑐

+ 𝑣𝑣𝐿𝐿𝐿𝐿
𝑉𝑐

+ 𝑣𝑤𝑊𝑆𝑐𝑙𝑐
2𝑟𝑟

+ 𝑣𝑥𝐿𝐿𝐿(𝑟+𝑑)
4𝑉𝑥

   (3.16) 

In equation (3.16), the optimizable variables are routing space r and vehicle size Sc, 

which are optimized by taking partial derivatives of Cc in equation (3.16). Setting the 
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partial derivatives equal to zero and solving simultaneously, we obtain:    

𝑆𝑐∗ = 2𝑓
𝑙𝑐
�𝑎2𝐷2𝐿𝐿𝑉𝑥

𝑣𝑤𝑣𝑥𝑉𝑐2
3        (3.17) 

𝑟∗ = �8𝑎𝑎𝑣𝑤𝑉𝑥2

𝑣𝑥2𝐿𝐿𝑉𝑐

3          (3.18) 

The second derivatives of equation (3.16) with respect to vehicle size Sc and 

routing space r are positive for any reasonable inputs. Therefore, equations (3.17 and 3.18) 

yield the globally minimal total cost. From equations (3.17 and 3.18) it is found that that 

product of the optimized vehicle size and optimized route spacing is constant (i.e, 

𝑆𝑐∗ × 𝑟∗ = (4𝑓𝑓𝑓𝑉𝑥) (𝑙𝑐𝑣𝑥⁄ 𝑉𝑐) = constant). 

After optimizing vehicle size 𝑆𝑐∗ and route spacing 𝑟∗, the headway ℎ𝑐∗ , which 

minimizes total cost 𝐶𝑐, is optimized. Optimal headway ℎ𝑐∗  should be the minimum of 

the maximum allowable headway and minimum cost headway. The maximum allowable 

headway ℎ𝑐𝑚𝑚𝑚 can be found by substituting equations (3.17) and (3.18) into equation 

(3.8).  

ℎ𝑐𝑚𝑚𝑚 = 𝑆𝑐∗𝑙𝑐
𝑟∗𝐿𝐿𝐿

        (3.19) 

The optimized headway ℎ𝑐
𝑜𝑜𝑜  can be found from the total cost function, which is 

provided in equation (3.20), by setting its first derivative equal to zero. The second 

derivative is positive. Therefore, the optimized headway will yield the globally minimal 
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total cost.  

 𝐶𝑐 = 𝐷𝐷(𝑎+𝑏𝑆𝑐)
𝑟𝑉𝑐ℎ𝑐

+ 𝑣𝑣𝐿𝐿𝐿𝐿
𝑉𝑐

+ 𝑣𝑤𝐿𝐿𝑄ℎ𝑐
2

+ 𝑣𝑥𝐿𝐿𝐿(𝑟+𝑑)
4𝑉𝑥

    (3.20) 

The resulting minimum cost headway is:  

ℎ𝑐
𝑜𝑜𝑜 = �2𝐷(𝑎+𝑏𝑆𝑐∗)

𝑣𝑤𝑟∗𝑉𝑐𝐿𝐿
        (3.21) 

Overall, the optimal headway ℎ𝑐∗  is then: 

ℎ𝑐∗ = 𝑚𝑚𝑚 � 𝑆𝑐∗𝑙𝑐
𝑟∗𝐿𝐿𝐿

,�2𝐷(𝑎+𝑏𝑆𝑐∗)
𝑣𝑤𝑟∗𝑉𝑐𝐿𝐿

�       (3.22) 

After substituting equations (3.18) and (3.19) into equation (3.5), the optimal fleet size 

𝐹𝑐∗ for the conventional bus system is: 

𝐹𝑐∗ = 𝐷𝐷
𝑟∗ℎ𝑐∗ 𝑉𝑐

        (3.23) 

Therefore, the bus service cost based on the jointly optimized vehicle size 𝑆𝑐∗, route 

spacing 𝑟∗, and optimal headway ℎ𝑐∗  is: 

𝐶𝑐 = 𝐷𝐷(𝑎+𝑏𝑆𝑐∗)
𝑟∗𝑉𝑐ℎ𝑐∗ + 𝑣𝑣𝐿𝐿𝐿𝐿

𝑉𝑐
+ 𝑣𝑤𝐿𝐿𝐿ℎ𝑐∗ 

2
+ 𝑣𝑥𝐿𝐿𝐿(𝑟∗+𝑑)

4𝑉𝑥
    (3.24) 

When computing total system cost for conventional bus service, the capital cost 

Cp should satisfy the peak period fleet size requirement. In equation (3.25), the bus 

service cost is the sum of bus operating cost Co, user in vehicle cost Cv, user waiting cost 

Cw, and user access cost Cx.  

Total cost = Capital cost + Bus service cost  
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     = Capital cost + Bus operating cost + User cost    (3.25) 

Equation (3.25) can be expressed as:  

    𝐶𝑡 = 𝐶𝑝 + 𝐶𝑜 + 𝐶𝑢 = 𝐶𝑝 + 𝐶𝑜 + 𝐶𝑣 + 𝐶𝑤 + 𝐶𝑥    (3.26) 

Although the conventional bus cost is reformulated, the overall procedure for 

computing total cost with capital cost is basically similar to that in CS. The capital cost 

for conventional bus system should be computed based on peak-period demand. 

Therefore, capital cost Cpc for conventional bus service is:  

  𝐶𝑝𝑝 = 𝐷
𝑉𝑐

𝑊
𝑟

1
ℎ𝑝
𝐵𝑐 = 𝐷

𝑉𝑐

𝑊
𝑟
𝑟𝑟𝑓𝑄𝑝
𝑆𝑐𝑙𝑐

𝐵𝑐 = 𝐷
𝑉𝑐

𝑊
𝑟
𝑟𝑟𝑓𝑄𝑝
𝑆𝑐𝑙𝑐

(𝑎𝑐 + 𝑏𝑐𝑆𝑐)   (3.27) 

The total daily service cost for conventional bus service Ctc is formulated below. 

Subscript i denotes time periods in the following equations and ti represents the number 

of hours in period i.  

Ctc = Cpc + ∑ {Coci + Cvci + Cwci + Cxci}I
i      (3.28) 

Equation (3.28) can be rewritten as follows:        

 𝐶𝑡𝑡 = 𝑎𝑐𝐷𝐷𝐷𝑓𝑓𝑝
𝑆𝑐𝑉𝑐𝑙𝑐

+ 𝑏𝑐𝐷𝐷𝐷𝑄𝑝
𝑉𝑐𝑙𝑐

+ 𝐷(𝑎+𝑏𝑆𝑐)𝐿𝐿𝐿 ∑ 𝑄𝑖𝑡𝑖
𝐼
𝑖

𝑙𝑐𝑉𝑐𝑆𝑐
+ 𝑣𝑣𝑀𝑀𝑀∑ 𝑄𝑖𝑡𝑖

𝐼
𝑖

𝑉𝑐
+ 𝑣𝑤𝑊𝑆𝑐𝑙𝑐 ∑ 𝑡𝑖

𝐼
𝑖

2𝑟𝑟
+ 𝑣𝑥(𝑟+𝑑)𝐿𝐿∑ 𝑄𝑖𝑡𝑖

𝐼
𝑖

4𝑉𝑥
 

          (3.29) 

By simultaneously solving the derivatives of Ctc in equation (3.29) with respect to route 

space r and vehicle size Sc we find the optimal values of 𝑟∗ and 𝑆𝑐∗: 
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𝑟∗ = �8𝑎�𝐷𝑣𝑤𝑉𝑥2

𝑣𝑥2𝐿𝑄�𝑉𝑐

3
        (3.30) 

𝑆𝑐∗ = 2𝑓
𝑙𝑐
�𝑎�2𝐷2𝐿𝑄�Vx

𝑣𝑤𝑣𝑥𝑉𝑐2
3 ,        (3.31) 

where 𝑄� = ∑ 𝑄𝑖𝑡𝑖𝐼
𝑖
∑ 𝑡𝑖𝐼
𝑖

,𝑎� = 𝑎𝑐𝑄𝑝+∑ 𝑎𝑖𝑄𝑖𝑡𝑖𝐼
𝑖

∑ 𝑄𝑖𝑡𝑖𝐼
𝑖

, 𝑏� = 𝑏𝑐𝑄𝑝+∑ 𝑏𝑖𝑄𝑖𝑡𝑖𝐼
𝑖

∑ 𝑄𝑖𝑡𝑖𝐼
𝑖

    

Based on the optimized vehicle size 𝑆𝑐∗ and route spacing 𝑟∗, bus service cost for 

period i can be expressed as follows: 

𝐶𝑐𝑐 = 𝐷𝐷(𝑎+𝑏𝑆𝑐∗)
𝑟∗𝑉𝑐ℎ𝑐𝑐

+ 𝑣𝑣𝐿𝐿𝑄𝑖𝑀
𝑉𝑐

+ 𝑣𝑤𝐿𝐿𝑄𝑖ℎ𝑐𝑐
2

+ 𝑣𝑥𝐿𝐿𝑄𝑖(𝑟∗+𝑑)
4𝑉𝑥

    (3.32) 

The optimized headway ℎ𝑐𝑐
𝑜𝑜𝑜  for period i can be obtained by setting the first derivative 

of conventional bus service cost 𝐶𝑐𝑐 to zero.  

ℎ𝑐𝑐
𝑜𝑜𝑜 = �2𝐷(𝑎+𝑏𝑆𝑐∗)

𝑣𝑤𝑟∗𝑉𝑐𝐿𝑄𝑖
        (3.33) 

Therefore, the optimal headway ℎ𝑐𝑐∗  for each period i is the minimum of ℎ𝑐𝑐𝑚𝑚𝑚  

and ℎ𝑐𝑐
𝑜𝑜𝑜 : 

 ℎ𝑐𝑐∗ = min�ℎ𝑐𝑐𝑚𝑚𝑚 ,ℎ𝑐𝑐
𝑜𝑜𝑜 �  = 𝑚𝑚𝑚 � 𝑆𝑐∗𝑙𝑐

𝑟∗𝐿𝐿𝑄𝑖
,�2𝐷(𝑎+𝑏𝑆𝑐∗)

𝑣𝑤𝑟∗𝑉𝑐𝐿𝑄𝑖
�    (3.34) 

The optimal fleet size 𝐹𝑐𝑐∗  for each period depends on the optimal headway of that period: 

𝐹𝑐𝑐∗ = 𝐷𝐷
𝑟∗𝑉𝑐ℎ𝑐𝑐

∗          (3.35) 

The capital cost should be determined from the peak period demand, which is denoted as 

period 1, as follows: 

𝐶𝑝𝑝∗ = 𝐷𝐷
𝑟∗𝑉𝑐ℎ𝑐1∗ 𝐵𝑐 = 𝐷𝐷(𝑎𝑐+𝑏𝑐𝑆𝑐∗)

𝑟∗𝑉𝑐ℎ𝑐1∗        (3.36) 
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The bus service cost Cci for each period i can be formulated using the optimal headway of 

that period. Therefore, the conventional bus service cost Cc for all periods can be 

expressed as:  

𝐶𝑐∗ = ∑ �𝐷𝐷(𝑎+𝑏𝑆𝑐∗)
𝑟∗𝑉𝑐ℎ𝑐𝑐

∗ + 𝑣𝑣𝐿𝐿𝑄𝑖𝑀
𝑉𝑐

+ 𝑣𝑤𝐿𝐿𝑄𝑖ℎ𝑐𝑐
∗ 

2
+ 𝑣𝑥𝐿𝐿𝑄𝑖(𝑟∗+𝑑)

4𝑉𝑥
� 𝑡𝑖𝑖    (3.37) 

The total cost including capital cost can be found by substituting the optimal route 

spacing r* and optimal vehicle size Sc
* into equation (3.29):  

𝐶 𝑡𝑡
∗ = 𝐷𝐷(𝑎𝑐+𝑏𝑐𝑆𝑐∗)

𝑟∗𝑉𝑐ℎ𝑐1∗ + ∑ �𝐷𝐷(𝑎+𝑏𝑆𝑐∗)
𝑟∗𝑉𝑐ℎ𝑐𝑐

∗ + 𝑣𝑣𝐿𝐿𝑄𝑖𝑀
𝑉𝑐

+ 𝑣𝑤𝐿𝐿𝑄𝑖ℎ𝑐𝑐
∗ 

2
+ 𝑣𝑥𝐿𝐿𝑄𝑖(𝑟∗+𝑑)

4𝑉𝑥
� 𝑡𝑖𝑖

          (3.38) 

3.4.2. Flexible Bus Service Cost  

When considering capital cost for Flexible Bus service, the optimized vehicle size 

𝑆𝑓∗  and vehicle service area 𝐴∗  can be adopted from Table 3-2 from Chang and 

Schonfeld (1991a). In this section, headways for flexible bus service are optimized. 

Unlike Chang and Schonfeld (1991a) who only used the maximum allowable headway,   

the optimal headway should be the minimum of (1) the maximum allowable headway and 

(2) the minimum cost headway.  

The maximum allowable headway ℎ𝑓𝑓𝑚𝑚𝑚 for demand period i is a function of 

optimized vehicle size 𝑆𝑓∗, load factor 𝑙𝑓, service area 𝐴∗, and demand density 𝑄𝑖: 
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ℎ𝑓𝑓𝑚𝑚𝑚 =
𝑆𝑓
∗𝑙𝑓

𝐴∗𝑄𝑖
         (3.39) 

From Table 3-2, the flexible bus service cost for period i 𝐶𝑓𝑓 can be rewritten as:  

𝐶𝑓𝑓 =
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�(𝐷𝑓+Ø𝐴∗�
𝑄𝑖ℎ𝑓𝑓
𝑢 )

𝐴∗𝑉𝑓ℎ𝑓𝑓
+

𝑣𝑣𝐿𝐿𝑄𝑖(𝐷𝑓+Ø𝐴∗�
𝑄𝑖ℎ𝑓𝑓
𝑢 )

2𝑉𝑓
+ 𝑣𝑤𝐿𝐿𝑄𝑖ℎ𝑓𝑓

2
  (3.40) 

The optimized service headway ℎ𝑓𝑓
𝑜𝑜𝑜can be obtained by setting the first derivative equal 

to zero: 

𝜕𝐶𝑓𝑓
𝜕ℎ𝑓𝑓

= −
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�𝐷𝑓
𝐴∗𝑉𝑓

1
ℎ𝑓𝑓
2 −

𝐿𝐿�𝑎+𝑏𝑆𝑓
∗�Ø𝐴∗�𝑄𝑖𝑢

2𝐴∗𝑉𝑓

1

�ℎ𝑓𝑓
3

+
𝑣𝑣𝐿𝐿𝑄𝑖Ø𝐴∗�

𝑄𝑖
𝑢

4𝑉𝑓

1
�ℎ𝑓𝑓

+ 𝑣𝑤𝐿𝐿𝑄𝑖
2

= 0  

          (3.41) 

Equation (3.41) is a quartic equation with respect to headway. In equation (3.41), by 

substituting  1

�ℎ𝑓𝑓
 into t, equation (3.41) becomes 

−
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�𝐷𝑓
𝐴∗𝑉𝑓

𝑡4 −
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�Ø𝐴∗�𝑄𝑖𝑢
2𝐴∗𝑉𝑓

𝑡3 + 0 × 𝑡2 +
𝑣𝑣𝐿𝐿𝑄𝑖Ø𝐴∗�

𝑄𝑖
𝑢

4𝑉𝑓
𝑡1 + 𝑣𝑤𝐿𝐿𝑄𝑖

2
= 0  

          (3.42) 

Equation (3.42) can be rewritten as: 

𝐴𝑡4 + 𝐵𝑡3 + 𝐶𝑡2 + 𝐷𝑡1 + 𝐸 = 0      (3.43) 

,where 𝐴 = −
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�𝐷𝑓
𝐴∗𝑉𝑓

,𝐵 = −
𝐿𝐿�𝑎+𝑏𝑆𝑓

∗�Ø𝐴∗�
𝑄𝑖
𝑢

2𝐴∗𝑉𝑓
,𝐶 = 0,𝐷 =

𝑣𝑣𝐿𝐿𝑄𝑖Ø𝐴∗�
𝑄𝑖
𝑢

4𝑉𝑓
,𝐸 = 𝑣𝑤𝐿𝐿𝑄𝑖

2
  

To solve equation (3.44), the value of P, Q, R, S, T, and V must be computed using A, B, 

C, D and E.  

𝑃 = 𝐵
4𝐴
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𝑄 = 2𝐶
3𝐴

  

 𝑅 = 𝐶2 − 3𝐵𝐵 + 12𝐴𝐴  

𝑆 = 2𝐶2 − 9𝐵𝐵𝐵 + 27𝐴𝐷2 + 27𝐸𝐵2 − 72𝐴𝐴𝐴  

𝑇 = −𝐵3

𝐴3
+ 4𝐵𝐵

𝐴2
− 8𝐷

𝐴
  

𝑉 = √23 𝑅

3𝐴 �𝑆+√−4𝑅3+𝑆2
3 +

�𝑆+√−4𝑅3+𝑆2
3

3 √23 𝐴
       (3.44) 

 

After finding the values of P, Q, R, S, T and V, the following results are obtained:  

𝑋1 = −𝑃 − 1
2
�4𝑃2 − 𝑄 + 𝑉 − 1

2�8𝑃2 − 2𝑄 − 𝑉 − 𝑇
4�4𝑃2−𝑄+𝑉

  

𝑋2 = −𝑃 − 1
2
�4𝑃2 − 𝑄 + 𝑉 + 1

2�8𝑃2 − 2𝑄 − 𝑉 − 𝑇
4�4𝑃2−𝑄+𝑉

  

𝑋3 = −𝑃 + 1
2
�4𝑃2 − 𝑄 + 𝑉 − 1

2�8𝑃2 − 2𝑄 − 𝑉 + 𝑇
4�4𝑃2−𝑄+𝑉

  

𝑋4 = −𝑃 + 1
2
�4𝑃2 − 𝑄 + 𝑉 + 1

2�8𝑃2 − 2𝑄 − 𝑉 + 𝑇
4�4𝑃2−𝑄+𝑉

  (3.45) 

X1~X4 correspond to t (= 1

�ℎ𝑓𝑓
). Therefore, among the four solutions, the only feasible 

solution satisfying both t>0 and ℎ𝑓𝑓 >0 is the optimized headway ℎ𝑓𝑓
𝑜𝑜𝑜. 

The optimal headway ℎ𝑓𝑓∗  is the minimum of the (1) maximum allowable 

headway and (2) optimized headway obtained by solving equation (3.42): 

ℎ𝑓𝑓∗ = 𝑚𝑚𝑚 �
𝑆𝑓
∗𝑙𝑓

𝐴∗𝑄𝑖
,ℎ𝑓𝑓

𝑜𝑜𝑜�        (3.46) 

Based on the optimal headway for period i, the required fleet size 𝐹𝑓𝑓∗  is 
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𝐹𝑓𝑓∗ =
𝐿𝐿(𝐷𝑓+Ø𝐴∗�

𝑄𝑖ℎ𝑓𝑓
∗ 

𝑢 )

𝐴∗𝑉𝑓ℎ𝑓𝑓
∗        (3.47) 

Finally, the total cost 𝐶 𝑡𝑡
∗  which is the sum of capital cost and bus service cost for all 

periods can be expressed as:  

𝐶 𝑡𝑡
∗ =

𝐿𝐿(𝑎𝑐+𝑏𝑐𝑆𝑓
∗)(𝐷𝑓+Ø𝐴∗�

𝑄𝑖ℎ𝑓1
∗ 

𝑢 )

𝐴∗𝑉𝑓ℎ𝑓1
∗ + ∑ �

𝐿𝐿�𝑎+𝑏𝑆𝑓
∗�(𝐷𝑓+Ø𝐴∗�

𝑄𝑖ℎ𝑓𝑓
∗ 

𝑢 )

𝐴∗𝑉𝑓ℎ𝑓𝑓
∗ +

𝑣𝑣𝐿𝐿𝑄𝑖(𝐷𝑓+Ø𝐴∗�
𝑄𝑖ℎ𝑓𝑓

∗ 

𝑢 )

2𝑉𝑓
+

𝑣𝑤𝐿𝐿𝑄𝑖ℎ𝑓𝑓
∗ 

2
� 𝑡𝑖𝑖  

          (3.48) 

3.5. Variable-Type Bus Service using Conventional and Flexible Buses  

Conceptually, conventional services using relatively large buses are expected to 

have lower cost per passenger trip than flexible services at higher demand densities, and 

vice versa. In this section, the demand boundary between conventional and flexible bus 

services is explored. Below this boundary, flexible services are chosen. Purely 

conventional and purely flexible service costs are also compared to variable-type services. 

 

3.5.1. Integer Solutions  

In the objective function shown in equation (3.50), only one service type (either 

conventional or flexible bus) is used in each period. The constraints in equations 

(3.50~3.53) are required to obtain integer values for the number of routes and fleet sizes 

per route.   
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𝐶𝑡 = min�𝐶𝑝𝑝 + ∑ �𝐶𝑐𝑐 + 𝐶𝑓𝑓�𝑡𝑖𝑖 �      (3.49) 

Subject to    

𝑆𝑐∗ =  𝑆𝑓∗ = integer        (3.50) 

W
r

, LW
A

= integer        (3.51) 

𝐹𝑐𝑐∗,𝐹𝑓𝑓∗ = integer        (3.52) 

𝐹𝑐𝑐∗

N
, 𝐹𝑓𝑓

∗

N′
= integer        (3.53) 

 

3.6. Numerical Evaluation: Base Case Analysis  

In this section, bus operation costs (pure conventional bus service, pure flexible 

bus service, and variable-type bus service) are computed and compared. In this numerical 

analysis the cumulative demand distribution over time has four values, as shown in 

Figure 3-2. 
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Figure 3-2 Demand Density Variations 

For pure conventional service cost, equations (3.1~3.38) are used in this 

numerical example. For flexible service cost, optimized decision variables (optimized 

vehicle size and service area) can be found from Tables 3-2 and 3-3. The previous Chang 

and Schonfeld (1991a) study used the maximum allowable headway, without considering 

the minimum cost headway. Here, headways for flexible services are analytically 

optimized in equations (3.40~3.47).  

 

3.6.1. Variable-Type Bus Service Boundary  

For variable-type bus operation, the optimized bus size is usually determined by 

the conventional service requirements. As mentioned for constraint (3.52), integer values 

for both W/r and LW/A are required to obtain integer fleets. The resulting possible values 

of decision variables r and A are shown in Table 3-4.  

Table 3-4 Possible Values of Decision Variables r and A 

N, N’ 

r = W/N  

for conventional bus periods  

A=LW/N’  

for flexible bus periods  

1 4 20 

2 2 10 

3 1.333 6.667 

4 1 5 
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5 0.8 4 

6 0.667 3.333 

… … … 

 

These values in Table 3-4 will be used to search for the minimum cost route 

spacing r* for conventional bus and minimum cost service area A* for flexible bus 

services.  

 

3.6.2. Procedure for Finding Minimum Variable-Type Service Cost  

In general, if our demand distribution has k periods, then there are (k+1) possible 

boundaries between periods (i.e. boundary 1… k+1) when service switches from one type 

to another. Thus our numerical example has five possible boundaries because it has four 

cumulative demand periods. Variable-type service is provided when 1 < k < 5, while k = 

1 means that service is always purely flexible service and k=5 implies purely 

conventional service in every period.  

The computation procedures for variable-type service are as follows: 

1) Set up boundary k =1. 

2) Based on boundary, optimize decision variables, namely vehicle sizes and 

route spacing for conventional operations, or service area for flexible service. 
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3) Optimize headway for variable-type service. 

4) Compute total cost using results in 2) and 3). 

5) Change boundary k to k+1 (i.e. One more period has conventional service and 

the remaining periods have flexible service). 

6) Continue 2) ~ 4) until the total cost starts increasing. Then the optimal 

boundary minimizes the total cost for variable-type service.  

 

3.6.3. Results of Numerical Analysis  

The results obtained with baseline inputs are provided in Table 3-1. The optimized 

pure conventional bus service costs $107,166/day, including capital costs and user time 

costs. To operate conventional bus service with the given demand density, 60 buses are 

required. The vehicle size is optimized with 40 seats/bus to satisfy all demand periods. 

While the local area route spacing is jointly optimized (subject to a constraint requiring 

an integer number of zones) at one mile.  

Purely flexible bus results show that the optimized total cost for serving this 

demand is about $118,377/day, which is much costlier than the total cost of purely 

conventional bus services. The reason is that the optimized flexible services use many 
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more zones (9 versus 4) and vehicles, but much smaller vehicles, than optimized 

conventional services. Moreover, purely flexible service requires more buses to cover 

peak demand since its optimized vehicles are smaller than for conventional bus. As 

shown in Table 3-5, flexible services require 108 buses in the peak period, which 

increases capital cost.  

For variable-type services, the purely conventional bus size of 40 seats is used in 

all periods for both conventional and flexible operations as well as for capital cost 

computation. In this numerical analysis, it is found that variable-type services are 

preferable to purely conventional and flexible bus services. Therefore, conventional 

services are chosen in periods 1 and 2, and flexible services are chosen in periods 3 and 4, 

using the same bus size.  

The variable-type service (using flexible service in period 3 and 4) reduces the 

total cost compared to both purely conventional and purely flexible services. Compared 

to purely conventional service, variable-type service saves $1,382/day. Similarly, 

variable-type service costs about $12,600/day less than purely flexible service. 

Table 3-5 Numerical Results with Baseline Inputs 

 Purely Conventional Service Purely Flexible  Service Variable-type Service 

Sc, Sf (seats/bus ) 40 23 40 
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r, A 1 2.222 0.8 6.667 

N 4 9 5 3 

h1(hrs) 0.078 0.089 0.097  

h2(hrs) 0.146 0.177 0.194  

h3(hrs) 0.389 0.510  0.269 

h4(hrs) 0.583 0.476  0.340 

F1(vehicles) 60 108 60  

F2(vehicles) 32 54 30  

F3(vehicles) 12 18  12 

F4(vehicles) 8 18  9 

C1($/hr) 10,676.7 11,175.1 10,430.0  

C2($/hr) 5,822.7 8,111.1 5,798.3  

C3($/hr) 1,911.6 5,085.4  1927.3 

C4($/hr) 1,171.8 1,824.9  1109.3 

t1(hrs) 4 4 4  

t2(hrs) 6 6 6  

t3(hrs) 8 8  8 

t4(hrs) 6 6  6 

Cp($/day) 7,200.0 12,042.0 7,200.0  

TC($/day) 107,166.3 118,376.8 105,784.3 

% Change 1.290 % 10.64 %  

 

3.7. Numerical Evaluation: Sensitivity Analysis  

Sensitivity analyses are conducted to explore the relative merits of conventional, 

flexible and variable-type bus services in different circumstances. Seven cases are 

presented below. 
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3.7.1. Case I - Directional Demand Split Factor  

The directional demand split factor, f, is changed to 75% & 25% (vs. 100% & 0% 

in the baseline). In Table 3-6, the total costs of conventional and variable-type service in 

this case decrease compared to the baseline results in Table 3-5. In this case, variable-

type service reduces total cost by 1.39% from purely conventional and 11.67% from 

purely flexible service, respectively. In this case I with f=0.75, a directional demand split 

factor can slightly reduce costs below the baseline case. 

Table 3-6 Sensitivity Analysis Results for Directional Split Factor 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 31 23 31 

r, A 1 2.857 0.8 6.667 

N 4 7 5 3 

h1(hrs) 0.078 0.066 0.097 
 

h2(hrs) 0.146 0.154 0.194 
 

h3(hrs) 0.389 0.334 
 

0.269 

h4(hrs) 0.583 0.487 
 

0.340 

F1(veh) 60 112 60 
 

F2(veh) 32 49 30 
 

F3(veh) 12 21 
 

12 

F4(veh) 8 14 
 

9 

C1($/hr) 10,568.7 11,481.7 10,322.0 
 

C2($/hr) 5,765.1 6,087.9 5,744.3 
 

C3($/hr) 1,890.0 1,990.4 
 

1,897.1 

C4($/hr) 1,157.4 1,220.0 
 

1,087.7 

t1(hrs) 4 4 4 
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t2(hrs) 6 6 6 
 

t3(hrs) 8 8 
 

8 

t4(hrs) 6 6 
 

6 

Cp($/day) 6,930.0 12,488.0 6930.0 
 

TC($/day) 105,859.5 118,185.3 104,387.2 

% Change  1.39 % 11.67 % - 

 

3.7.2. Case II - Load Factors   

Maximum load factors for both conventional and flexible service are increased 

from 1 to 1.25 (implying that some standees are allowed). Table 3-6 shows the resulting 

costs. It is noted that the costs of purely conventional service in Table 3-7 are below the 

baseline case (Table 3-5). Similarly, purely flexible and variable-type services benefit 

from higher load factors. However, similarly to Case I, the effect of variable-type service 

is saving about 1.41% and 9.71% savings compared to purely conventional and purely 

flexible services, respectively. 

Table 3-7 Sensitivity Analysis Results for Load Factors 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 32 23 32 

r, A 1 3.333 0.667 6.667 

N 4 6 6 3 

h1(hrs) 0.078 0.068 0.117  

h2(hrs) 0.146 0.118 0.194  

h3(hrs) 0.389 0.340  0.209 
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h4(hrs) 0.583 0.494  0.340 

F1(veh) 60 96 60  

F2(veh) 32 54 36  

F3(veh) 12 18  15 

F4(veh) 8 12  9 

C1($/hr) 10,580.7 11,391.4 10,247.3  

C2($/hr) 5,771.5 6,149.2 5,808.7  

C3($/hr) 1,892.4 1,940.2  1,896.5 

C4($/hr) 1,159.0 1,176.9  1,090.1 

t1(hrs) 4 4 4  

t2(hrs) 6 6 6  

t3(hrs) 8 8  8 

t4(hrs) 6 6  6 

Cp($/day) 6,960.0 10,704.0 6960.0  

TC($/day) 106,004.7 115,747.8 104514.3 

% Change  1.41 % 9.71 % - 

 

3.7.3. Case III - Demand Variation  

This Case explores the effect of very low demand density (i.e. Q1=10, Q2=5, 

Q3=1.2, Q4=0.6 trips/sq. mile, and equals to 10% of baseline value). Here the costs of 

purely conventional and flexible services are very close. With variable-type services, as 

shown in Table 3-8, the total cost is reduced by 3.19% and 4.06% from purely 

conventional and flexible services, respectively. It is interesting here that conventional 

service is only used during the highest demand period, leaving the other three periods to 

flexible service. 
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Table 3-8 Sensitivity Analysis Results for Demand Variation 

 
Purely Conventional Service Purely Flexible Service Variable-Type Service 

Sc, Sf (seats/bus) 17 16 17 

r, A 2.0 10.0 2.0 10.0 

N 2 2 2 2 

h1(hrs) 0.167 0.111 0.167  

h2(hrs) 0.292 0.198  0.253 

h3(hrs) 1.167 0.472  0.472 

h4(hrs) 1.167 0.944  0.944 

F1(veh) 14 18 14  

F2(veh) 8 10  8 

F3(veh) 2 4  4 

F4(veh) 2 2  2 

C1($/hr) 1,653.9 1,692.3 1,653.9  

C2($/hr) 935.4 930.2  903.0 

C3($/hr) 353.2 317.7  318.7 

C4($/hr) 210.0 192.8  193.4 

t1(hrs) 4 4 4  

t2(hrs) 6 6  6 

t3(hrs) 8 8  8 

t4(hrs) 6 6  6 

Cp($/day) 1,519.0 1,944.0 1519.00  

TC($/day) 17,832.1 17,992.9 17,262.8 

% Change  3.19 % 4.06 %  

 

3.7.4. Case IV - Time Period Variation  

In the baseline case (Table 3-5) there are 4, 6, 8, and 6 hours, respectively, in 

periods 1, 2, 3 and 4. In Case IV the effect of higher demand variability is explored by 
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changing those four periods to 2, 4, 4 and 14 hours. The results in Table 3-9 show that 

variable-type bus service now achieves much greater savings compared to the baseline 

case (Table 3-5). These savings are about 3.41% and 13.08% compared to pure services, 

while in the baseline (Table 3-5) variable-type bus service cost savings from purely 

conventional services are about 1.29 %.   

Based on the sensitivity of results in these cases, it is found that significant 

advantages of variable-type bus service occur when there are long period of demand that 

is far below peak levels. 

Table 3-9 Sensitivity Analysis Results for Service Time Variation 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 40 21 40 

r, A 1.333 3.333 0.667 10.0 

N 3 6 6 2 

h1(hrs) 0.058 0.052 0.117  

h2(hrs) 0.117 0.105 0.194  

h3(hrs) 0.389 0.340  0.179 

h4(hrs) 0.583 0.494  0.259 

F1(veh) 60 120 60  

F2(veh) 30 60 36  

F3(veh) 9 18  12 

F4(veh) 6 12  8 

C1($/hr) 11,243.3 11,775.8 10,343.3  

C2($/hr) 5,971.7 6,202.7 5,866.3  

C3($/hr) 1,893.6 1,931.7  1,958.9 
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C4($/hr) 1,143.8 1,171.4  1,096.0 

t1(hrs) 2 2 2  

t2(hrs) 4 4 4  

t3(hrs) 4 4  4 

t4(hrs) 14 14  14 

Cp($/day) 7,200.0 13,260.0 7,200.0  

TC($/day) 77,160.9 85,748.9 74531.6 

% Savings  3.41 % 13.08 %  

 

3.7.5. Case V - Operating Cost Parameters  

In Case V,  the sensitivity of total cost and other results to bus operating cost that 

is a linear function of the number of seats (i.e. B=a+bS) is examined. Here, the values of 

parameters a and b are increased by 50 % (i.e., a=45, b=0.3). The results in Table 3-10 

show that we achieve the lowest total cost by providing variable-type service When the 

variable-type service is operated, the cost savings are 1.379% and 14.86% compared to 

purely conventional and flexible services, respectively. 

Table 3-10 Sensitivity Analysis Results for Operating Cost Inputs 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 50 27 50 

r, A 1 2.857 1 6.667 

N 4 7 4 3 

h1(hrs) 0.097 0.077 0.097  

h2(hrs) 0.194 0.154 0.194  

h3(hrs) 0.583 0.527  0.269 
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h4(hrs) 1.167 0.487  0.340 

F1(veh) 48 98 48  

F2(veh) 24 49 24  

F3(veh) 12 14 12  

F4(veh) 4 14  3 

C1($/hr) 11,510.0 13,381.0 11,510.0  

C2($/hr) 6,338.3 7,153.1 6,338.3  

C3($/hr) 2,215.6 2,357.3 2,175.6  

C4($/hr) 1,527.8 1,510.0  1,312.3 

t1(hrs) 4 4 4  

t2(hrs) 6 6 6  

t3(hrs) 8 8 8  

t4(hrs) 6 6  6 

Cp($/day) 6,000.0 11,123.0 6000.0  

TC($/day) 116,961.6 135,483.6 115348.9 

% Savings  1.379 % 14.86 %  

 

3.7.6. Case VI - Length of Service Region 

In Case VI the service region length is increased by 20% (from 5 to 6 miles). It is 

found, for variable-type service, that conventional bus serves periods 1, 2, and 3; flexible 

bus only serves period 4. This result shows that as the local service region lengthens, the 

potential savings of variable-type service decrease because demand also increases, thus 

favoring conventional service. In Table 3-11, Period 3 in variable-type service is served 

by conventional service, unlike in the baseline case (Table 3-5). 
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Table 3-11 Sensitivity Analysis Results for Service Region Length 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 45 25 45 

r, A 1 3.429 1 8 

N 4 7 4 3 

h1(hrs) 0.075 0.057 0.075  

h2(hrs) 0.141 0.122 0.141  

h3(hrs) 0.422 0.352 0.422  

h4(hrs) 0.633 0.511  0.358 

F1(veh) 68 133 68  

F2(veh) 36 63 36  

F3(veh) 12 21 12  

F4(veh) 8 14  9 

C1($/hr) 12,980.9 14,299.2 12,980.9  

C2($/hr) 7,045.3 7,524.1 7,045.3  

C3($/hr) 2,308.3 2,370.2 2,308.3  

C4($/hr) 1,414.6 1,435.0  1,351.4 

t1(hrs) 4 4 4  

t2(hrs) 6 6 6  

t3(hrs) 8 8 8  

t4(hrs) 6 6  6 

Cp($/day) 8,330.0 14,962.5 8,330.00  

TC($/day) 129,479.7 144,875.7 129,100.6 

% Savings  0.29 % 10.89 %  

 

3.7.7. Case VII - Line-haul Distance  

In Case VII, the sensitivity to line-haul distance (from 10miles to 20miles) is 

analyzed. Here the ratio of line-haul distance/length of local area (i.e. J/L) is increased 
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from 2 to 4. Table 3-12 shows variable-type service reduces total cost by 0.704% and 

11.12% compared to purely services. By increasing line-haul distance (without changing 

demand), round trip time increases for both conventional and flexible service, favoring 

larger vehicles because bus operator wants to carry more passengers in round trip time. 

Thus, in Table 3-12, vehicle size for variable-type service is 50 seats/bus, but only 40 

seats/bus in the baseline case (Table 3-4) is 40 seats/bus. With variable-type services, 

service costs are reduced in Periods 1 & 4 compared to purely conventional services. 

These service cost savings and capital cost savings allow variable-type service to 

outperform to pure services. 

Table 3-12 Sensitivity Analysis Results for Line-haul Distance 

 
Purely Conventional Service Purely Flexible Service Variable Type Service 

Sc, Sf (seats/bus) 50 31 50 

r, A 1 4 0.8 10 

N 4 5 5 2 

h1(hrs) 0.096 0.066 0.123  

h2(hrs) 0.191 0.139 0.246  

h3(hrs) 0.431 0.405  0.239 

h4(hrs) 0.574 0.523  0.324 

F1(veh) 72 125 70  

F2(veh) 36 60 35  

F3(veh) 16 20  14 

F4(veh) 12 15  10 

C1($/hr) 14,269.3 15,954.5 14,037.3  
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C2($/hr) 7,708.7 8,347.3 7,756.7  

C3($/hr) 2,488.9 2,546.6  2,539.7 

C4($/hr) 1,507.8 1,523.0  1,422.5 

t1(hrs) 4 4 4  

t2(hrs) 6 6 6  

t3(hrs) 8 8  8 

t4(hrs) 6 6  6 

Cp($/day) 9,000.0 14,437.5 8,750.0  

TC($/day) 141,287.5 157,850.3 140,292.1 

% Savings 0.704 % 11.12 %  

 

3.8. Chapter Summary  

In Chapter 3, optimization models are developed for analyzing and integrating 

conventional services (having fixed routes and schedules) and flexible bus services. The 

optimization models are improved from those of Chang and Schonfeld (1991a). More 

specifically, the models developed in this chapter (1) reflect two-directional demands in 

round trips in conventional services, (2) optimize the flexible service headways rather 

than using maximum allowable headways, (3) develop an integrated model for variable-

type bus services and (4) compare conventional, flexible and variable-type bus services 

which can switch between conventional and flexible service as the demand changes over 

time. 

The above numerical analysis indicates that variable-type bus operation can 
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reduce total cost compared to a purely conventional bus or purely flexible bus service. In 

our baseline case, variable-type service can reduce costs by about 1.29% compared to 

purely conventional service and about 10.64% compared to purely flexible service. 

Moreover, we present various sensitivity analyses to explore how major parameter 

changes affect the optimized results. In Case IV (when service periods are adjusted to 

increase the variability of demand over time), it is found that variable-type service can 

reduce costs by more than 3.41% and 13.08 %, respectively, compared to purely 

conventional and flexible services. These results confirm that such variable-type services 

are especially promising for systems whose demand (1) varies greatly over time and (2) 

straddles the threshold between conventional and flexible services.  

To summarize, it is confirmed that conventional service with large buses is 

preferable when demand is high. Similarly, flexible service is less costly at relatively low 

demand. A public bus system alternating among these two service concepts based on 

demand variation and other conditions can be used to improve service efficiency.  

 

 

 



- 69 - 

 

Chapter 4 Integrating Bus Services for Multiple Regions  

 

4.1. Problem Statement  

In Chapter 3 a model for analyzing bus service in one region (i.e. connecting one 

terminal to one region) was presented. Here, some assumptions and notation are modified 

to analyze a more general system with multiple local regions as well as multiple periods. 

Also, an optimization method to deal with more generalized systems is proposed.  

 

4.2. Assumptions  

Henceforth, superscripts k and i correspond to region and time period, 

respectively, while subscripts c and f represent conventional and flexible service, 

respectively. Definitions, units and default values of variables are presented in Table 4-1.  

Table 4-1 Notation 

Variable Definition Baseline Value 

a hourly fixed cost coefficient for operating bus ($/bus hr) 30.0 

ac fixed cost coefficient for bus ownership (capital cost) ($/bus day) 100.0 

Ak service zone area(mile2)= LkWk/N′ - 

b hourly variable cost coefficient for bus operation ($/seat hr) 0.2 

bc variable cost coefficient for owning bus (capital cost) ($/day) 0.5 

d bus stop spacing (miles) 0.2 

𝐷𝑐𝑠𝑠 distance of one flexible bus tour in local region k and period i (miles) - 
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𝐷𝑓𝑠 
equivalent line haul distance for flexible bus on  k 

(=(Lk+Wk)/z+2Jk/y),  (miles) 
- 

𝐷𝑠 
equivalent average bus round trip distance for conventional bus on 

region k (= 2Jk/y+ Wk /z+2 Lk),(miles)  
- 

𝑓 directional demand split factor 1.0 

𝐹𝑠𝑠 
fleet size for region k and period i (buses) 

subscript corresponds to (c = conventional, f=flexible) 
- 

ℎ𝑐 , ℎ𝑐𝑠𝑠 headway for conventional bus; for region k and period i (hours/bus) - 

ℎ𝑓 , ℎ𝑓𝑠𝑠 headway for flexible bus; for region k period i (hours/bus) - 

ℎ𝑐 𝑚𝑚𝑚
𝑠𝑠 , ℎ𝑓 𝑚𝑚𝑚

𝑠𝑠  
maximum allowable headway for region k and period i 

subscript: c = conventional, f=flexible 
- 

ℎ𝑐 𝑚𝑠𝑚
𝑠𝑠 ,ℎ𝑓 𝑚𝑠𝑚

𝑠𝑠  
minimum cost headway for region k and period i 

subscript: c = conventional, f=flexible 
- 

ℎ𝑐 𝑜𝑜𝑜
𝑠𝑠 , ℎ𝑓 𝑜𝑜𝑜

𝑠𝑠  
optimized headway for region k and period i 

subscript: c = conventional, f=flexible 
- 

 k ,i index (k: route, i : period) - 

Jk line haul distance of region k (miles) - 

𝑙𝑐 , 𝑙𝑓 load factor for conventional and flexible bus (passengers/seat) 1.0 

Lk, Wk length and width of local region k (miles) - 

𝐿𝑠 equivalent average trip distance for region k (=Jk/yc+ Wk /2zc+ Lk /2) - 

n number of passengers in one flexible bus tour - 

N, N’ number of zones in local region for conventional and flexible bus - 

𝑄𝑠𝑠 round trip demand density (trips/mile2/hr) - 

𝑄𝑜𝑠𝑠 
threshold demand density between conventional and flexible service 

(trips/mile2/hr) 
- 

rk route spacing for conventional bus at region k (miles) - 

𝑅𝑐𝑠𝑠 round trip time of conventional bus for region k and period i (hours) - 

𝑅𝑓𝑠𝑠 round trip time of flexible bus for region k and period i (hours) - 

𝑆𝑐 ,𝑆𝑓  sizes for conventional and flexible bus (seats/bus) - 

𝑆𝑙 ,𝑆𝑠  
sizes of larger and smaller buses in MFCS and MFFS service 

formulation  
- 

𝑆𝑐𝑠𝑠 ,𝑆𝑓𝑠𝑠 conventional and flexible bus sizes for region k and period i (seats/bus) - 

𝑆𝐶𝑐𝑠𝑠 ,𝑆𝐶𝑓𝑠𝑠 
service cost for region k and period i  

subscript: c = conventional, f=flexible 
- 
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𝑇𝑆𝐶𝑐 ,𝑇𝑆𝐶𝑓  
total service cost over all routes and periods   

subscript: c = conventional, f=flexible 
- 

TC total cost = service cost + capital cost over times and over regions  

𝐿𝑠𝑠 time duration for region k and period i - 

u average number of passengers per stop for flexible bus 1.2 

𝑉𝑐𝑠 local service speed fo/r conventional bus in period i (miles/hr) 
20 at i =1 

30 at i = 2,3,4 

𝑉𝑓𝑠 local service speed for flexible bus in period i (miles/hr) 
18 at i =1 

25 at i = 2,3,4 

𝑉𝑚 average passenger access speed (mile/hr) 2.5 

𝑣𝑣,𝑣𝑤, 𝑣𝑚 value of in-vehicle time, wait time and access time ($/passenger hr) 5, 12, 12 

𝑦 express speed/local speed ratio for conventional bus 
conventional bus = 1.8 

flexible  bus = 2.0 

𝑧 non-stop ratio = local non-stop speed/local speed; same values as y - 

Ø 
constant in the flexible bus tour equation (Daganzo, 1984) for flexible 

bus  
1.15 

* 
superscript indicating optimal value; subscript: c = conventional, 

f=flexible 
- 

 

4.2.1. Assumptions for both conventional and flexible buses 

All service regions, 1… k, are rectangular, with lengths Lk and widths Wk. These 

regions may have different line haul distances Jk (miles, in region k) connecting a 

terminal and each region’s nearest corner.  

o The demand is fixed with respect to service quality and price.  

o The demand is uniformly distributed over space within each region and over 

time within each specified period.  
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o The bus sizes (Sc for conventional, Sf for flexible) are optimized based on 

their service coverage, and the optimized bus sizes are uniform throughout 

regions. 

o The average waiting time of passengers is approximated as half the headway 

(hc for conventional, hf for flexible).  

o Bus layover time is negligible.  

o Within each local region k, the average speed (𝑉𝑐𝑖 for conventional bus, 𝑉𝑓𝑖 

for flexible bus) includes stopping times. 

o External costs are assumed to be negligible. 

 

4.2.2. Assumptions for conventional bus only 

o The region k is divided into Nk parallel zones with a width rk=Wk/Nk for 

conventional bus, as shown in Figure 4-1. Local routes branch from the line 

haul route segment to run along the middle of each zone, at a route spacing 

rk=Wk/Nk. 

o Qki trips/mile2/hour, entirely channeled to (or through) the single terminal, are 

uniformly distributed over the service area.  
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o In each round trip, as shown in Figure 4-1, buses travel from the terminal a 

line haul distance Jk at non-stop speed y𝑉𝑐𝑖 to a corner of the local regions, 

then travel an average of Wk/2 miles at local non-stop speed z𝑉𝑐𝑖 from the 

corner to the assigned zone, then run a local region of length Lk at local speed 

𝑉𝑐𝑖 along the central axis of the zone while stopping for passengers every d 

miles, and then reverse the above process in returning to the terminal. 

 

4.2.3. Assumptions for flexible bus only 

o To simplify the flexible bus formulation, region k is divided into N’k equal 

zones, each having an optimizable zone area Ak=LkWk/N’k. The zones should 

be “fairly compact and fairly convex” (Stein, 1978). 

o Buses travel from the terminal line haul distance Jk at non-stop speed y𝑉𝑓𝑖 and 

an average distance (Lk+Wk)/2 miles at local non-stop speed z𝑉𝑐𝑖 to the center 

of each zone. They collect (or distribute) passengers at their door steps 

through an efficiently routed tour of n stops and length 𝐷𝑐𝑘𝑘 at local speed 𝑉𝑓𝑖. 

𝐷𝑐𝑘𝑘 is approximated according to Stein (1978), in which  𝐷𝑐𝑘𝑘 = ∅√n𝐴𝑘 , and 

∅=1.15 for the rectilinear space assumed here (Daganzo, 1984). The values of 
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n and 𝐷𝑐𝑘𝑘  are endogenously determined. To return to their starting point the 

buses retrace an average of (Lk+Wk)/2 miles at z𝑉𝑓𝑖 miles per hour and Jk 

miles at y𝑉𝑓𝑖 miles per hour. 

o Buses operate on preset schedules with flexible routing designed to minimize 

each tour distance 𝐷𝑐𝑘𝑘.  

o Tour departure headways are equal for all zones in the region and uniform 

within each period. 

 

4.3. Bus Operation Costs and Optimal Headways  

In terms of operation cost for conventional and flexible bus, I consider bus 

operating cost, user in-vehicle cost, user waiting cost, and user access cost. Since flexible 

bus provides door-to-door service, its user access cost is negligible. Detailed formulation 

derivations regarding conventional bus and flexible bus are provided in Chapter 3.  

 

4.3.1. Conventional Bus Formulation and Optimal Headway  

Conventional bus cost for region k and period i, 𝑆𝑆𝑐𝑘𝑘, includes operating cost, 

user in-vehicle cost, user waiting cost, and user access cost, as shown in Equation (4.1): 
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 𝑆𝑆𝑐𝑘𝑘 = 𝐷𝑘𝑊𝑘�𝑎+𝑏𝑆𝑐 �
𝑟𝑘𝑉𝑐𝑖ℎ𝑐𝑘𝑘

+ 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘𝑀𝑘

𝑉𝑐𝑖
+ 𝑣𝑤𝐿𝑘𝑊𝑘𝑄𝑘𝑘ℎ𝑐𝑘𝑘

2
+ 𝑣𝑥𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝑟𝑘+𝑑)

4𝑉𝑥
 (4.1) 

Since multiple periods are considered for bus operations, the optimized headway should 

be the maximum allowable headway or the minimum cost headway, whichever is smaller. 

The maximum allowable headway for region k and period i is: 

 ℎ𝑐 𝑚𝑚𝑚
𝑘𝑘 = 𝑆𝑐𝑙𝑐

𝑟𝐿𝑘𝑓𝑄𝑘𝑘
       (4.2) 

The minimum cost headway can be obtained from the partial derivative of equation (4.1) 

with respect to headway;  

 ℎ𝑐 𝑚𝑚𝑚
𝑘𝑘 =  � 2𝐷𝑘(𝑎+𝑏𝑆𝑐)

𝑣𝑤𝐿𝑘𝑟𝑘𝑄𝑘𝑘𝑉𝑐𝑖
        (4.3) 

The optimal headway is then: 

 ℎ𝑐 𝑜𝑜𝑜
𝑘𝑘 =  min � 𝑆𝑐𝑙𝑐

𝑟𝑘𝐿𝑘𝑓𝑄𝑘𝑘
,� 2𝐷𝑘(𝑎+𝑏𝑆𝑐)

𝑣𝑤𝐿𝑘𝑟𝑘𝑄𝑘𝑘𝑉𝑐𝑖
�                 (4.4) 

The optimized headway obtained in equation (4.4) applies for optimizing the 

conventional bus fleet size for region k and period i (𝐹𝑐 
𝑘𝑘 = 𝐷𝑘𝑊𝑘

𝑟𝑘ℎ𝑐 𝑜𝑜𝑜
𝑘𝑘 𝑉𝑐𝑖

). However, the 

resulting fleet size must be rounded off to an integer value. The modified headway ℎ𝑐𝑘𝑘∗ 

can be obtained with an integer value of fleet size (ℎ𝑐𝑘𝑘∗ = 𝐷𝑘𝑊𝑘

𝑟𝑘𝐹𝑐 𝑜𝑜𝑜 
𝑘𝑘 𝑉𝑐𝑖

).  

 The service cost for region k and in period i, is finally formulated by substituting 

the modified headway into equation (4.1).  

 𝑆𝑆𝑐𝑘𝑘∗ = 𝐷𝑘𝑊𝑘

𝑟ℎ𝑐𝑘𝑘∗𝑉𝑐𝑖
(𝑎 + 𝑏𝑆𝑐) + 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘 𝑀

𝑘

𝑉𝑐𝑖
+  𝑣𝑤𝐿𝑘𝑊𝑘𝑄𝑘𝑘 ℎ𝑐

𝑘𝑘∗

2
 + 𝑣𝑥𝐿

𝑘𝑊𝑘𝑄𝑘𝑘(𝑟+𝑑)
4𝑉𝑥
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          (4.5) 

4.3.2. Flexible Bus Formulation and Optimal Headway  

 Similarly, flexible bus cost consists of bus operating cost, user in-vehicle cost and 

user waiting cost. Service cost for region k, in period i, 𝑆𝑆𝑓𝑘𝑘, is formulated as follows:  

 𝑆𝑆𝑓𝑘𝑘 =
𝐿𝑘𝑊𝑘�𝑎+𝑏𝑆𝑓 �(𝐷𝑓

𝑘+Ø𝐴𝑘�
𝑄𝑘𝑘ℎ𝑓

𝑘𝑘

𝑢 )

𝐴𝑘𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 +

𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝐷𝑓
𝑘+Ø𝐴𝑘�

𝑄𝑘𝑘ℎ𝑓
𝑘𝑘

𝑢 )

2𝑉𝑓
𝑖 +

𝑣𝑤𝐿𝑘𝑊𝑘𝑄𝑘𝑘ℎ𝑓
𝑘𝑘

2

          (4.6) 

Since multiple periods are considered, the optimized headway should be the maximum 

allowable headway or the minimum cost headway, whichever is smaller. The maximum 

allowable headway for region k and period i is:  

 ℎ𝑓 𝑚𝑚𝑚
𝑘𝑘 = 𝑆𝑓𝑙𝑓

𝐴𝑘𝑄𝑘𝑘
       (4.7) 

The minimum cost headway can be obtained from the partial derivative equation (4.6) 

with respect to the headway ℎ𝑓𝑘𝑘. An analytically optimized solution with respect to 

headway for a one region bus service is provided in the Chapter 3. However, since the 

partial derivation of equation (4.6) is difficult to solve analytically, we find it numerically 

using existing computing software (i.e., MATLAB). The minimum cost headway ℎ𝑓 𝑚𝑚𝑚
𝑘𝑘  

can easily be obtained using a function called fminbnd in MATLAB (version R2011b). 
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Thus, the optimized headway for flexible bus is:  

 ℎ𝑓 𝑜𝑜𝑜
𝑘𝑘 =  𝑚𝑚𝑚 � 𝑆𝑓𝑙𝑓

𝐴𝑘𝑄𝑘𝑖
,ℎ𝑓 𝑚𝑚𝑚

𝑘𝑘 �      (4.8) 

The optimized fleet size for flexible bus is:  

 𝐹𝑓 𝑜𝑜𝑜
𝑘𝑘 =

𝐿𝑘𝑊𝑘(𝐷𝑓
𝑘+Ø𝐴𝑘�𝑄𝑘𝑘ℎ𝑓 𝑜𝑜𝑜

𝑘𝑘 𝑢⁄ )

𝑉𝑠𝐴𝑘ℎ𝑓 𝑜𝑜𝑜
𝑘𝑘       (4.9) 

Equation (4.9), similarly to conventional bus fleet size (𝐹𝑐 𝑜𝑜𝑜
𝑘𝑘 = 𝐷𝑘𝑊𝑘

𝑟𝑘ℎ𝑐 𝑜𝑜𝑜
𝑘𝑘 𝑉𝑐𝑖

), must yield an 

integer value. The number of zones for flexible bus, 𝐿
𝑘𝑊𝑘

𝐴𝑘
, must have an integer value. 

Therefore, the remaining part of equation (4.9), 
(𝐷𝑓

𝑘+Ø𝐴𝑘�𝑄𝑘𝑘ℎ𝑓 𝑜𝑜𝑜
𝑘𝑘 𝑢⁄ )

𝑉𝑠ℎ𝑓 𝑜𝑜𝑜
𝑘𝑘 , should have an 

integer value. Since this part of equation is a function of headway, we round off fleet size 

to an integer value, and then check if the modified headway violates the maximum 

allowable headway. The modified headway corresponding to an integer fleet size should 

not exceed the maximum allowable headway. The modified headway denoted as ℎ𝑓𝑘𝑘∗ 

provides minimum total service cost with an integer fleet size.  

 Minimum service cost for flexible bus operation with an integer fleet is obtained 

by substituting the modified headway into equation (4.6):  

 𝑆𝑆𝑓𝑘𝑘∗ =
𝐿𝑘𝑊𝑘�𝑎+𝑏𝑆𝑓�(𝐷𝑓

𝑘+Ø𝐴𝑘�𝑄𝑘𝑘ℎ𝑓
𝑘𝑘∗ 𝑢⁄ )

𝑉𝑓
𝑘𝑘𝐴𝑘ℎ𝑓

𝑘𝑘∗ + 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘

2

𝐷𝑓
𝑘+Ø𝐴𝑘�𝑄𝑘𝑘ℎ𝑓

𝑘𝑘∗ 𝑢⁄ )

𝑉𝑓
𝑘𝑘 +

 𝑣𝑤𝐿𝑘𝑊𝑘𝑄𝑘𝑘 ℎ𝑓
𝑘𝑘∗

2
        (4.10) 
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4.3.3. Capital Cost   

After headways are optimized for each period, they and the round trip times 

determine fleet size. Thus, with optimized bus sizes, we have the required fleet matrix for 

each region and period. For capital cost, which is our fixed cost component, the required 

fleet size is the largest of the fleet sizes that are needed  to serve any local region in any 

period (i.e. largest value among ∑ 𝐹𝑘1𝐾
𝑘=1 , ∑ 𝐹𝑘2𝐾

𝑘=1 , …, ∑ 𝐹𝑘𝑘𝐾
𝑘=1 ). Here, the capital 

cost units are $/day.  

 

4.4. Total Cost Formulations 

 

4.4.1. Single Fleet Conventional Bus (SFC) 

For SFC, a single conventional bus size covers all regions. Since the number of 

zones can differ by regions, the number of unknown variables is k+1 (k=the number of 

regions). This bus size and the number of zones for each region must be optimized. Then, 

this integer number of zones for each region yields the route spacing in each region. 

 𝑟𝑘 = 𝑊𝑘

𝑁𝑘
        (4.11) 

After vehicle size and route spacings are determined, headways and required fleets are 
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analytically optimized using equations (4.2~4.6).  

Total cost for SFC is formulated as  

 𝑇𝑇 = 𝑓(𝑆𝑐,𝑁, 𝑟,𝐹,ℎ) = (𝑎𝑐 + 𝑏𝑐𝑆𝑐)𝐹 + ∑ ∑ 𝑆𝑆𝑐𝑘𝑘𝑡𝑘𝑘𝑖𝑘       (4.12) 

subject to  

 Sc = integer ∀ 1, … 𝑆𝑚𝑚𝑚 

𝑁𝑘 = 𝑊𝑘

𝑟𝑘
= integer ∀ 1, … 𝑊𝑘

𝑟𝑚𝑚𝑚  

𝐹𝑘𝑘 = integer  

𝐹𝑖 = ∑ 𝐹𝑘𝑘𝑘 ∀ k = 1, … , K  

F ≥ 𝐹𝑖  ∀ i =  1, … , I  

0 ≤ ℎ𝑘𝑘 ≤ 𝑆𝑐𝑙𝑐
𝑟𝑘𝐿𝑘𝑓𝑄𝑘𝑘

  

𝑆𝑆𝑐𝑘𝑘is provided in equation (5)  

 

4.4.2. Single Fleet Flexible Bus (SFF) 

Similarly to SFC, SFF has the same number of decision variables, flexible bus 

size and the number of zones for each region. The difference from SFC is that the number 

of zones can be converted into service area (mi2 / zone).  

𝐴𝑘 = 𝐿𝑘𝑊𝑘

𝑁′𝑘
         (4.13) 
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With vehicle size and service area values for regions, headway and fleet size are 

optimized with equations (4.7~4.10).  

Total cost for SFF is formulated as  

𝑇𝑇 = 𝑓�𝑆𝑓 ,𝑁′,𝐴,𝐹,ℎ� = (𝑎𝑐 + 𝑏𝑐𝑆𝑓)𝐹 + ∑ ∑ 𝑆𝑆𝑓𝑘𝑘𝑡𝑘𝑘𝑖𝑘     (4.14) 

subject to  

 Sf = integer ∀ 1, … 𝑆𝑚𝑚𝑚 

𝑁′𝑘 = 𝐿𝑘𝑊𝑘

𝐴𝑘
= integer ∀ 1, … 𝐿𝑘𝑊𝑘

𝐴𝑚𝑚𝑚   

𝐹𝑘𝑘 = integer  

𝐹𝑖 = ∑ 𝐹𝑘𝑘𝑘 ∀ k = 1, … , K  

F ≥ 𝐹𝑖  ∀ i =  1, … , I  

0 ≤ ℎ𝑘𝑘 ≤ 𝑆𝑓𝑙𝑓
𝐴𝑘𝑄𝑘𝑘

  

𝑆𝑆𝑓𝑘𝑘is provided in equation (10) 

4.4.3. Single Fleet Variable-Type Bus (SFV) 

SFV switch the type of operation between conventional and flexible services, 

depending on the demand variability. The same size of vehicles is assumed to be used. 

Thus, the number of decision variables is 2k + 1. (k = the number of regions). The total 

cost formulation is shown as follows.  
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𝑇𝑇 = (𝑎𝑐 + 𝑏𝑐𝑆 )𝐹 + ∑ ∑ �𝛼𝑘𝑘𝑆𝑆𝑐𝑘𝑘 + (1 − 𝛼𝑘𝑘)𝑆𝑆𝑓𝑘𝑘�𝑡𝑘𝑘𝑖𝑘    (4.15) 

subject to  

 S = integer ∀ 1, … 𝑆𝑚𝑚𝑚 

𝛼𝑘𝑘 = �1 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑐ℎ𝑜𝑜𝑜𝑜
0 𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑐ℎ𝑜𝑜𝑜𝑜   

𝑁𝑘 = 𝑊𝑘

𝑟𝑘
= integer ∀ 1, … 𝑊𝑘

𝑟𝑚𝑚𝑚  

𝑁′𝑘 = 𝐿𝑘𝑊𝑘

𝐴𝑘
= integer ∀ 1, … 𝐿𝑘𝑊𝑘

𝐴𝑚𝑚𝑚   

𝐹𝑘𝑘 = integer  

𝐹𝑖 = ∑ 𝐹𝑘𝑘𝑘 ∀ k = 1, … , K  

F ≥ 𝐹𝑖  ∀ i =  1, … , I  

0 ≤ ℎ𝑘𝑘 ≤ 𝑆𝑐𝑙𝑐
𝑟𝑘𝐿𝑘𝑓𝑄𝑘𝑘

  

0 ≤ ℎ𝑘𝑘 ≤ 𝑆𝑓𝑙𝑓
𝐴𝑘𝑄𝑘𝑘

  

𝑆𝑆𝑐𝑘𝑘is provided in equation (5)  

𝑆𝑆𝑓𝑘𝑘is provided in equation (10) 

 

4.5. A Hybrid (Genetic Algorithm-Analytic) Optimization Approach 

4.5.1. Number of Integer Variables 

The number of integer variables varies based on the types of bus operations. SFC, 
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for instance, has k+1 integer variables which are vehicle size and number of zones for 

each of k regions. Thus, if 4 regions are considered, we have 5 integer variables. Then, 

these integer variables should be used to analytically optimize headways and required 

fleet sizes over time. Similarly to SFC, SFF also has k+1 integer variables. For SFV, the 

number of integer variables is 2k+1 that is the vehicle size, the number of zones for 

conventional services, and the number of zones for flexible services.  

4.5.2. Solution Approach 

The problem formulations are non-linear mixed-integer problems, which are 

known to be NP-hard. For optimizing our three alternatives, a solution approach which 

combines analytic optimization with a genetic algorithm is proposed. To find a solution 

efficiently, the variables are split into two groups. k+1 integer decision variables (i.e., 

vehicle sizes, the number of zones for conventional bus, and the number of zones for 

flexible bus) are optimized by the GA, depending on the type of bus operations. Then, 

analytic optimization determines headways and required fleet sizes based on the values of 

decision variables provided by the GA. Thus, the GA and analytic optimization work 

iteratively in this hybrid solution approach. The detailed interactions between GA and 

analytic optimization are shown in Figure 4-1.   
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Figure 4-1 Graphical Description of Solution Approach 

In this model, the role of GA is to find integer values for decision variables. To 

provide integer solutions, we use an Integer Genetic Algorithm (IGA), which is described 
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below. 

4.5.3. Integer Genetic Algorithm  

Genetic Algorithms (GAs) are widely used for optimization problems. The GA 

concept was introduced by Holland (1975). A detailed implementation of GA may be 

found in Goldberg (1989). The way the variables are coded affects a GA’s efficiency. 

Real Coded Genetic Algorithms (RCGAs), which use real numbers for encoding, have 

faster convergence towards optimal than binary and gray coded GAs (Deb, 2001; Deep et 

al, 2009). The details, such as Laplace crossover, Power mutation, truncation procedure 

for integer restrictions and constraint handling techniques, can be found in Deep et al 

(2009). Since this RCGA handles integer variables efficiently, we call this “Integer 

Genetic Algorithm (IGA), and use it to solve our nonlinear mixed integer formulations.  

RCGAs attempt to minimize a penalty function, which includes a penalty term 

for infeasibility, rather than a normal fitness function. This penalty function is combined 

with binary tournament selection to select individual solutions for subsequent generations 

(Deb, 2000). According to Deb (2000), if the solution is feasible, the penalty function is 

the fitness function; however, if the solution is infeasible, the penalty function is the 

maximum fitness function among feasible solutions in the population, plus a sum of the 
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constraint violations.  

Since the method used here, which combines a GA and analytic optimization, is 

partially heuristic, it does not guarantee a global optimum. However, this hybrid solution 

approach can provide a near-optimal solution quickly. The proposed method is evaluated 

with numerical examples in the following section.   

 

4.6. Numerical Evaluation: Base Case Analysis   

4.6.1. Input Values  

In the base numerical case, Four distinct local regions, each with four periods (i.e. 

K = 4 and I = 4) are considered. Demand, service time and line-haul distance are 

presented in Table 4-2. All other required input parameters are presented in Table 4-1.  

Table 4-2 Demand, Service Time, and Line-haul Distance 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

1 70 80 60 55 

2 30 35 40 40 

3 10 15 30 15 

4 5 7.5 10 5 

Time(hours) 

Region A B C D 
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Period 

1 4 4 4 4 

2 6 6 6 6 

3 8 8 8 8 

4 6 6 6 6 

Region A B C D 

Line-haul Distance (miles) 4 5 3 5 

Length of Region (miles) 3 2 4 5 

Width of Region (miles) 4 5 3 3 

4.6.2. Optimization Results   

The results of SFC for give base inputs are provided in Table 4-3. The optimized 

bus size is 30 seats. Route spacings are 0.75 or 1 miles, and required flee sizes vary from 

4 buses to 24 buses by time periods. The total operation cost is 145,289.27 $/day, and the 

capital cost is 9,085 $/day. The total cost of SFC is then 154,374.27 $/day.  

Table 4-3 SFC Results for Base Case  

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

30 1 1 0.75 0.75 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.141 0.154 0.153 0.144 18 20 17 24 

2 0.169 0.206 0.158 0.153 10 10 11 15 

3 0.338 0.294 0.173 0.255 5 7 10 9 

4 0.422 0.411 0.347 0.459 4 5 5 5 

 Conventional Bus Cost ($/hour) Operation Cost × Time 
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Region 

Period 
A B C D A B C D 

1 3,581.93 3,645.33 2,903.51 3,775.33 14,327.73 14,581.33 11,614.02 15,101.33 

2 1,533.20 1,597.06 1,757.02 2,386.22 9,199.20 9,582.33 10,542.11 14,317.33 

3 692.67 861.45 1,414.80 1,154.11 5,541.33 6,891.62 11,318.40 9,232.89 

4 430.73 537.58 656.40 548.56 2,584.40 3,225.50 3,938.40 3,291.33 

Total Operation Cost 

($/day) = 145,289.27 

Total Capital Cost ($/day) = 

9,085.00 

Total Cost ($/day) = 

154,374.27 

 

For the flexible bus services, the optimized bus size is 19 seats, compared to the 

30 seats for conventional services. Service areas are optimized to be 2.5 or 3 mile2. Since 

the optimized bus size for SFF is smaller than that for SFC, SFF requires more buses. The 

total cost of SFF is 151,654.96 $/day.  

Table 4-4 SFF Results for Base Case 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

19 3 2.5 3 3 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.090 0.094 0.098 0.115 38 37 32 41 

2 0.139 0.156 0.119 0.129 16 15 18 25 

3 0.295 0.240 0.138 0.228 7 9 15 13 

4 0.379 0.421 0.266 0.459 5 5 7 6 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3,536.44 3,449.17 2,920.60 3,889.67 14,145.75 13,796.68 11,682.39 15,558.68 
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2 1,343.78 1,347.03 1,592.10 2,280.22 8,062.69 8,082.15 9,552.63 13,681.30 

3 603.98 721.93 1,268.52 1,080.88 4,831.87 5,775.41 10,148.17 8,647.04 

4 376.32 457.32 567.73 512.66 2,257.95 2,743.90 3,406.41 3,075.93 

Total Operation Cost 

($/day) =135,448.96 

Total Capital Cost ($/day) 

=16,206.00 

Total Cost ($/day) 

=151,654.96 

 

For the SFV, the optimized bus size is 25 seats. Period 1 is service by 

conventional service, and other periods are served by flexible type services as shown in 

Table 4-5. The total cost of SFV is 145,229.81 $/day, which is lower than either SFC of 

SFF.  

Table 4-5 SFV Results for Base Case 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Single Fleet Variable-

Type Bus 
A B C D A B C D 

25 0.8 1 0.75 0.6 6 5 4 5 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.144 0.154 0.137 0.148 - - - - 

2 - - - - 0.097 0.106 0.099 0.097 

3 - - - - 0.183 0.168 0.114 0.175 

4 - - - - 0.306 0.251 0.218 0.392 

 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 22 20 19 29 0 0 0 0 

2 0 0 0 0 15 14 18 24 

3 0 0 0 0 7 8 15 12 



- 89 - 

 

4 0 0 0 0 4 5 7 5 

 Variable-Type Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3,518.45 3,625.33 2,886.96 3,802.33 14,073.82 14,501.33 11,547.83 15,209.32 

2 1,393.14 1,365.74 1,628.51 2,346.75 8,358.86 8,194.47 9,771.06 14,080.49 

3 569.14 684.24 1,285.39 1,050.21 4,553.13 5,473.91 10,283.11 8,401.66 

4 341.80 405.88 554.03 474.26 2,050.82 2,435.28 3,324.15 2,845.56 

Total Operation Cost 

($/day) =135,104.81 

Total Capital Cost ($/day) 

=10,125.00 

Total Cost ($/day) 

=145,229.81 

 

 Figure 4-2 compares the total cost of SFC, SFF, and SFV. It is notable that SFV 

has a total cost that is 6.30 % below SFC and 4.42% below SFF, as shown in Figure 4-3. 

 

 

Figure 4-2 Total Costs of Base Case Study  
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Figure 4-3 SFV Cost Savings for Base Case Study 

4.7. Numerical Evaluation: Sensitivity Analysis  

In this section, sensitivity analyses of demand and time variations, and capital 

cost with respect to the SFC, SFF, and SFV are explored. 

4.7.1. Case I: Higher Demand Densities  

Sensitivity Case I considers very high demand, which is 50 times higher than the 

baseline values. The demand inputs are shown in Table 4-6.  

Table 4-6 Input Values for Sensitivity Case I 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

6.30% 

4.42% 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

SFC SFF
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1 3500 4000 3000 2750 

2 1500 1750 2000 2000 

3 500 750 1500 750 

4 250 375 500 250 

 

Figure 4-4 shows the total costs of SFC, SFF, and SFV for the first sensitivity 

case analysis. The total cost for SFC is 4,223,486.04 $/day. The total cost of SFF, which 

is 4,370,478.77 $/day is higher than the one of SFC.   

 

Figure 4-4 Total Costs of Sensitivity Case I  

Figure 4-5 shows that the total cost of SFV is 0.16 % lower and 3.48% lower 

than SFC and SFF, respectively. It is also found that as demand densities are higher, the 

total costs of SFC and SFV converge.  
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Figure 4-5 SFV Cost Savings for Sensitivity Case I  

 Details on results of SFC, SFF, and SFV are provided in Tables 4-7~ 4-9.  For 

SFC (as shown in the results of Table 4-7), the optimized vehicle size is 50 seats/bus, 

which is the upper bound of the vehicle size variable. The route spacings for regions are 

all 0.5 miles, which are also lower boundary of the route spacing variable. These results 

confirm that as demand density increases, conventional services should use larger 

vehicles and smaller route spacings.  

Table 4-7 SFC Results for Sensitivity Case I 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

50 0.5 0.5 0.5 0.5 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region A B C D A B C D 

0.16% 

3.48% 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

SFC SFF
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Period 

1 0.010 0.012 0.008 0.007 532 494 468 711 

2 0.022 0.029 0.013 0.010 152 144 208 345 

3 0.061 0.060 0.017 0.026 55 68 156 130 

4 0.089 0.086 0.050 0.078 38 48 52 44 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 109,710.00 108,022.62 91,260.00 127,909.36 438,840.00 432,090.47 365,040.00 511,637.43 

2 38,100.00 38,527.13 48,280.00 71,352.66 228,600.00 231,162.78 289,680.00 428,115.94 

3 14,284.24 18,198.92 36,660.00 27,896.79 114,273.94 145,591.37 293,280.00 223,174.36 

4 8,056.67 10,226.25 13,420.00 10,490.81 48,340.00 61,357.50 80,520.00 62,944.85 

Total Operation Cost 

($/day) =3,954,648.64 

Total Capital Cost ($/day) 

=275,625.00 

Total Cost ($/day) 

=4,230,273.64 

 

 SFF results are shown in Table 4-8 as follows. The vehicle size is optimized with 

the 40 seats/bus, which is lower than the optimized vehicle size of SFC. The service area 

is optimized with one mile2, which is the upper boundary of the service area variable. As 

shown in Figure 4-4, SFF has a very high cost compared to SFC and SFV. This indicates 

that when the demand is high, SFF is not promising.  

Table 4-8 SFF Results for Sensitivity Case I 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

40 1 1 1 1 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 
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1 0.011 0.010 0.013 0.015 825 842 671 897 

2 0.024 0.022 0.018 0.020 278 271 348 470 

3 0.053 0.042 0.022 0.043 117 136 271 207 

4 0.083 0.068 0.050 0.090 71 81 113 93 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 116,703.74 118,475.47 93,530.22 127,255.92 466,814.95 473,901.89 374,120.87 509,023.67 

2 37,915.92 38,956.91 46,273.84 68,348.76 227,495.52 233,741.45 277,643.06 410,092.59 

3 14,091.48 17,892.43 35,320.02 27,667.18 112,731.82 143,139.42 282,560.14 221,337.46 

4 7,877.74 9,790.55 13,135.35 10,809.02 47,266.43 58,743.31 78,812.09 64,854.11 

Total Operation Cost 

($/day) =3,982,278.77 

Total Capital Cost ($/day) 

=388,200.00 

Total Cost ($/day) 

=4,370,478.77 

 

It is expected that when the demand varies over time and also over regions, SFV 

may have lower cost compared to cost of SFC or SFF. When the demand is too high, SFV 

has higher cost compared to SFC.   

Table 4-9 SFV Results for Sensitivity Case I 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Single Fleet Variable-

Type Bus 
A B C D A B C D 

50 0.5 0.5 0.5 0.5 - - 1 - 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.010 0.012 0.008 0.007 - - - - 

2 0.022 0.029 0.013 0.010 - - - - 

3 0.061 0.060 - 0.026 - - 0.023 - 

4 0.089 0.086 - 0.078 - - 0.052 - 
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 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 532 494 468 711 0 0 0 0 

2 152 144 208 345 0 0 0 0 

3 55 68 0 130 0 0 264 0 

4 38 48 0 44 0 0 110 0 

 Variable-Type Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 109,710.00 108,022.62 91,260.00 127,909.36 438,840.00 432,090.47 365,040.00 511,637.43 

2 38,100.00 38,527.13 48,280.00 71,352.66 228,600.00 231,162.78 289,680.00 428,115.94 

3 14,284.24 18,198.92 35,856.73 27,896.79 114,273.94 145,591.37 286,853.81 223,174.36 

4 8,056.67 10,226.25 13,359.77 10,490.81 48,340.00 61,357.50 80,158.59 62,944.85 

Total Operation Cost 

($/day) =3,947,861.04 

Total Capital Cost ($/day) 

=275,625.00 

Total Cost ($/day) 

=4,223,486.04 

4.7.2. Case II: Lower Demand Densities 

In this second case, low demand densities, which are 1/10 of base case demands, 

are considered. The input values for demand densities are provided in Table 4-10.  

Table 4-10 Input Values for Sensitivity Case II 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

1 7 8 6 5.5 

2 3 3.5 4 4 

3 1 1.5 3 1.5 

4 0.5 0.75 1 0.5 
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The total costs of SFC, SFF, and SFV with lower demand densities are provided 

in Figure 4-6. It is found (in Figure 4-6 and Figure 4-7) that SFV approaches SFF when 

demand densities are very low. The cost of SFC is almost 12% above the cost of SFF and 

SFV. This case study shows that when demand densities are low and steady, flexible 

services are preferable to conventional services, and variable-type service is not 

economical.  

 

Figure 4-6 Total Costs of Sensitivity Case II  

 28,046.35  

 25,093.45   25,093.45  

 23,500.00

 24,000.00

 24,500.00

 25,000.00

 25,500.00

 26,000.00

 26,500.00

 27,000.00

 27,500.00

 28,000.00

 28,500.00

SFC SFF SFV

To
ta

l C
os

t (
$/

da
y)

 



- 97 - 

 

 

Figure 4-7 SFV Cost Savings for Sensitivity Case II 

Results of SFC and SFF with a low demand input case are shown in Table 4-11 

and Table 4-12, respectively. The optimized vehicle size of SFC is 15 seats/bus, and the 

optimized vehicle size of SFF is 14 seats/bus. As shown in Tables 4-11 and 4-12, 

headways of SFC exceed the headways of SFF. Due to the low demand density, SFC 

operates with low service frequencies.  

Table 4-11 SFC Results for Sensitivity Case II  

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

15 2 2.5 1.5 1.5 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.317 0.308 0.325 0.344 4 4 4 5 

11.77% 

0.00% 
0.00%
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2 0.422 0.411 0.433 0.383 2 2 2 3 

3 0.844 0.822 0.433 0.574 1 1 2 2 

4 0.844 0.822 0.867 1.148 1 1 1 1 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 614.86 642.53 500.28 629.84 2,459.44 2,570.13 2,001.12 2,519.37 

2 281.24 295.87 324.72 420.29 1,687.44 1,775.23 1,948.32 2,521.73 

3 135.15 168.52 260.04 212.32 1,081.17 1,348.13 2,080.32 1,698.53 

4 84.07 100.76 128.88 107.61 504.44 604.55 773.28 645.63 

Total Operation Cost 

($/day) =26,218.85 

Total Capital Cost ($/day) 

=1,827.50 

Total Cost ($/day)  

=28,046.35 

 

SFF requires more capital cost but less operating cost than SFC. Thus, SFF 

provides lower cost solutions with a low demand density.  

Table 4-12 SFF Results for Sensitivity Case II 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

14 12 10 12 15 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.138 0.162 0.182 0.167 8 7 6 8 

2 0.244 0.242 0.257 0.178 3 3 3 5 

3 0.731 0.800 0.225 0.434 1 1 3 2 

4 0.569 0.628 0.674 0.744 1 1 1 1 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 
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1 564.00 534.99 472.16 621.56 2,256.01 2,139.94 1,888.64 2,486.25 

2 216.78 212.84 264.91 362.05 1,300.70 1,277.07 1,589.44 2,172.32 

3 107.34 134.80 207.52 173.05 858.70 1,078.40 1,660.13 1,384.42 

4 61.80 72.85 101.50 80.25 370.82 437.10 609.02 481.47 

Total Operation Cost 

($/day) =21,990.45 

Total Capital Cost ($/day) 

=3,103.00 

Total Cost ($/day)  

=25,093.45 

 

Table 4-13 shows that SFV results are identical to those of SFF. This confirms 

that SFV can converge to either pure SFC or SFF, depending on the demand variability.  

Table 4-13 SFV Results for Sensitivity Case II 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Single Fleet Variable-

Type Bus 
A B C D A B C D 

14 0.5 1 0.6 1.5 12 10 12 15 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 - - - - 0.138 0.162 0.182 0.167 

2 - - - - 0.244 0.242 0.257 0.178 

3 - - - - 0.731 0.800 0.225 0.434 

4 - - - - 0.569 0.628 0.674 0.744 

 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 0 0 0 8 7 6 8 

2 0 0 0 0 3 3 3 5 

3 0 0 0 0 1 1 3 2 

4 0 0 0 0 1 1 1 1 

 Variable-Type Bus Service Cost ($/hour) Operation  Cost × Time 
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Region 

Period 
A B C D A B C D 

1 564.00 534.99 472.16 621.56 2,256.01 2,139.94 1,888.64 2,486.25 

2 216.78 212.84 264.91 362.05 1,300.70 1,277.07 1,589.44 2,172.32 

3 107.34 134.80 207.52 173.05 858.70 1,078.40 1,660.13 1,384.42 

4 61.80 72.85 101.50 80.25 370.82 437.10 609.02 481.47 

Total Operation Cost 

($/day) =21,990.45 

Total Capital Cost ($/day) 

=3,103.00 

Total Cost ($/day)  

=25,093.45 

4.7.3. Case III: Demand and Time Variation 

This case considers lower demand densities and longer durations for low demand 

densities. The demand densities are 1/10 of base case demand inputs. Time periods are 

changed from 4, 6, 8, and 6 hours to 2, 4, 4, 14 hours, as shown in Table 4-14.  

Table 4-14 Demand and Service Time for Sensitivity Case III 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

1 7 8 6 5.5 

2 3 3.5 4 4 

3 1 1.5 3 1.5 

4 0.5 0.75 1 0.5 

Time(hours) 

Region 

Period 
A B C D 

1 2 2 2 2 

2 4 4 4 4 

3 4 4 4 4 

4 14 14 14 14 
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The results in Figures 4-8 and 4-9 show that when demand densities are low and 

time periods are longer for low demands, SFF becomes preferable to SFC and the costs of 

SFF and SFV are the same. The cost of SFC is about 12% higher than SFF or SFV, as 

shown in Figure 4-9.  

 

Figure 4-8 Total Costs of Sensitivity Case III 
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Figure 4-9 SFV Cost Savings for Sensitivity Case III 

The results of SFC, SFF, and SFV are provided in Tables 4-15~4-17. Results of 

Case III are similar to those of Case II. SFV is expected to be the most cost effective 

operation when the demand varies over time and over regions. However, the demand 

variability is not significant, so that SFV reduces to SFF. The Base Case is a good 

example how SFV reduces the total cost when the demand varies over time as well as 

over regions.  

Table 4-15 SFC Results for Sensitivity Case III 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

15 2 2.5 1.5 1.5 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region A B C D A B C D 

12.12% 
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Period 

1 0.317 0.308 0.325 0.344 4 4 4 5 

2 0.422 0.411 0.433 0.383 2 2 2 3 

3 0.844 0.822 0.433 0.574 1 1 2 2 

4 0.844 0.822 0.867 1.148 1 1 1 1 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 614.86 642.53 500.28 629.84 1,229.72 1,285.07 1,000.56 1,259.68 

2 281.24 295.87 324.72 420.29 1,124.96 1,183.49 1,298.88 1,681.16 

3 135.15 168.52 260.04 212.32 540.59 674.07 1,040.16 849.27 

4 84.07 100.76 128.88 107.61 1,177.03 1,410.62 1,804.32 1,506.48 

Total Operation Cost 

($/day) =19,066.04 

Total Capital Cost ($/day) 

=1,827.50 

Total Cost ($/day)  

=20,893.54 

Table 4-16 SFF Results for Sensitivity Case III 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

14 12 10 12 15 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.138 0.162 0.182 0.167 8 7 6 8 

2 0.244 0.242 0.257 0.178 3 3 3 5 

3 0.731 0.800 0.225 0.434 1 1 3 2 

4 0.569 0.628 0.674 0.744 1 1 1 1 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 564.00 534.99 472.16 621.56 1,128.01 1,069.97 944.32 1,243.13 

2 216.78 212.84 264.91 362.05 867.13 851.38 1,059.63 1,448.21 

3 107.34 134.80 207.52 173.05 429.35 539.20 830.07 692.21 

4 61.80 72.85 101.50 80.25 865.26 1,019.91 1,421.04 1,123.43 



- 104 - 

 

Total Operation Cost 

($/day) =15,532.24 

Total Capital Cost ($/day) 

=3,103.00 

Total Cost ($/day)  

=18,635.24 

Table 4-17 SFV Results for Sensitivity Case III 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Single Fleet Variable-

Type Bus 
A B C D A B C D 

14 1 0.5 0.75 1 12 10 12 15 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 - - - - 0.138 0.162 0.182 0.167 

2 - - - - 0.244 0.242 0.257 0.178 

3 - - - - 0.731 0.800 0.225 0.434 

4 - - - - 0.569 0.628 0.674 0.744 

 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 0 0 0 8 7 6 8 

2 0 0 0 0 3 3 3 5 

3 0 0 0 0 1 1 3 2 

4 0 0 0 0 1 1 1 1 

 Variable-Type Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 564.00 534.99 472.16 621.56 1,128.01 1,069.97 944.32 1,243.13 

2 216.78 212.84 264.91 362.05 867.13 851.38 1,059.63 1,448.21 

3 107.34 134.80 207.52 173.05 429.35 539.20 830.07 692.21 

4 61.80 72.85 101.50 80.25 865.26 1,019.91 1,421.04 1,123.43 

Total Operation Cost 

($/day) =15,532.24 

Total Capital Cost ($/day) 

=3,103.00 

Total Cost ($/day)  

=18,635.24 
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4.7.4. Case IV: No Capital Cost  

When no capital cost is considered, possibly because it is subsidized or already 

paid, the optimization results tend to have large fleet sizes because there is no extra cost. 

The optimized bus size for SFC is 23 seats while SFF has 16 seats and SFV has 20 seats. 

Similarly to the base case study, SFV provides conventional services to the first period 

and flexible services to the other periods. The total cost of SFC is 144,352.96 $/day and 

the total cost of SFF is 134,891.93 $/day. The SFV has the lowest total cost, which is 

134,310.49 $/day, as shown in Figure 4-10.   

 

Figure 4-10 Total Costs of Sensitivity Case IV 
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that the total cost of SFV is close to the total cost of SFF, so that without capital costs, 

flexible type services favor conventional bus services.  

 

Figure 4-11 SFV Cost Savings for Sensitivity Case IV 

When no capital cost is considered, the optimized vehicle sizes decrease. The 

optimized vehicle sizes are 23, 16, and 20 seats/bus for SFC, SFF, and SFV, respectively. 

However, the optimized vehicle sizes of the Base Case are 30, 19, and 25 seats/bus.  

Table 4-18 SFC Results for Sensitivity Case IV 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

23 0.8 1 0.75 0.75 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.132 0.140 0.124 0.111 24 22 21 31 
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2 0.192 0.187 0.144 0.153 11 11 12 15 

3 0.352 0.294 0.173 0.255 6 7 10 9 

4 0.528 0.411 0.289 0.459 4 5 6 5 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3,518.40 3,619.26 2,892.26 3,823.52 14,073.60 14,477.04 11,569.03 15,294.07 

2 1,517.15 1,578.41 1,738.40 2,365.22 9,102.87 9,470.48 10,430.40 14,191.33 

3 701.60 851.65 1,400.80 1,141.51 5,612.80 6,813.22 11,206.40 9,132.09 

4 448.73 530.58 642.40 541.56 2,692.40 3,183.50 3,854.40 3,249.33 

Total Operation Cost 

($/day) =144,352.96 

Total Capital Cost ($/day)   

=0 

Total Cost ($/day) 

=144,352.96 

Table 4-19 SFF Results for Sensitivity Case IV 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

16 3 3.333 3 3 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.074 0.060 0.087 0.096 44 45 35 47 

2 0.139 0.127 0.110 0.129 16 15 19 25 

3 0.295 0.224 0.138 0.228 7 8 15 13 

4 0.379 0.338 0.266 0.459 5 5 7 6 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3,546.16 3,576.37 2,906.89 3,895.61 14,184.62 14,305.48 11,627.55 15,582.45 

2 1,334.18 1,320.51 1,578.83 2,265.22 8,005.09 7,923.05 9,472.97 13,591.30 

3 599.78 690.51 1,259.52 1,073.08 4,798.27 5,524.10 10,076.17 8,584.64 

4 373.32 423.46 563.53 509.06 2,239.95 2,540.74 3,381.21 3,054.33 

Total Operation Cost 

($/day) =134,891.93 

Total Capital Cost ($/day)   

=0 

Total Cost ($/day) 

=134,891.93 
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Table 4-20 SFV Results for Sensitivity Case IV 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Single Fleet Variable-

Type Bus 
A B C D A B C D 

20 0.667 0.833 0.6 0.6 6 5 4 5 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.141 0.148 0.135 0.120 - - - - 

2 - - - - 0.097 0.106 0.099 0.091 

3 - - - - 0.183 0.168 0.114 0.175 

4 - - - - 0.306 0.251 0.218 0.311 

 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 27 25 24 36 0 0 0 0 

2 0 0 0 0 15 14 18 25 

3 0 0 0 0 7 8 15 12 

4 0 0 0 0 4 5 7 6 

 Variable-Type Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3,515.93 3,585.73 2,902.20 3,868.43 14,063.73 14,342.93 11,608.80 15,473.72 

2 1,378.14 1,351.74 1,610.51 2,320.99 8,268.86 8,110.47 9,663.06 13,925.96 

3 562.14 676.24 1,270.39 1,038.21 4,497.13 5,409.91 10,163.11 8,305.66 

4 337.80 400.88 547.03 460.48 2,026.82 2,405.28 3,282.15 2,762.88 

Total Operation Cost 

($/day) =134,310.49 

Total Capital Cost ($/day)   

=0 

Total Cost ($/day) 

=134,310.49 
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4.8. Chapter Summary 

As an extension of Chapter 3, this chapter formulates SFC, SFF, and SFV 

between the main terminal and multiple regions. Since analytic optimization becomes 

intractable with multiple regions and periods, a hybrid solution approach, which jointly 

uses analytic optimization and genetic algorithm, is proposed for finding solutions. The 

base case results and sensitivity analyses show that SFV becomes preferable to purely 

SFC or SFF when demand densities vary over times and over regions. It is also shown 

that when demand densities are very high, SFV becomes identical to SFC. Similarly, SFV 

approaches SFF when demand densities are very low.  
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Chapter 5 Integrating Bus Services with Mixed Fleets 

 

5.1. Problem Statement  

The potential benefits of using variable operation types (or “modes”) and mixture 

of vehicle fleets should theoretically increase when multiple dissimilar regions are 

considered, due to the increased variability of demand densities. To explore these 

potential benefits we analyze in this chapter the concept of mixed fleet bus operations in 

multiple regions. To provide efficient service, an optimization model is developed to 

optimize  bus sizes (i.e. large bus size and small bus size) and decision variables for bus 

operation characteristics (i.e. route spacing in region for conventional bus, service area in 

region for flexible bus), headways, and required fleets.  

The analyzed bus system provides service from a major terminal (or CBD) to 

multiple regions. In Figure 5-1, a public bus system serves multiple regions connected to 

a central terminal. For each region, either conventional bus or flexible bus can be 

provided. Assumptions for the system in Chapter 4.2 and cost formulations in Chapter 4.3 

are used for mixed fleet formulations. Demand thresholds between various bus operations 

using mixed fleet services are formulated in this chapter.   
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Figure 5-1 Local Regions and Bus Operations 
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5.2. Various Bus Services with Mixed Fleets 

 

5.2.1. Mixed Fleets Conventional Bus Service (MFC) 

MFC operates two sizes of conventional buses. To efficiently allocate demand 

between large and small buses, our approach identifies the threshold demand at which 

their costs are equal, using equation (4.1). To find the demand threshold, 𝑄𝑡𝑘𝑘, between 

these two, we first substitute the maximum allowable headway in equation (4.2) into 

conventional bus formulation in equation (4.1) to ensure acceptable headways. Then, 

equation (4.1) becomes equation (5.1).  

 𝑆𝑆𝑐𝑘𝑘 = 𝐷𝑘𝐿𝑘𝑊𝑘𝑓𝑄𝑘𝑘�𝑎+𝑏𝑆𝑐 �
𝑉𝑐𝑖𝑆𝑐𝑙𝑐

+ 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘𝑀𝑘

𝑉𝑐𝑖
+ 𝑣𝑤𝑊𝑘𝑆𝑐𝑙𝑐

2𝑟𝑟
+ 𝑣𝑥𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝑟𝑘+𝑑)

4𝑉𝑥
 

          (5.1) 

Large conventional bus cost and small conventional bus cost are formulated in equations 

(5.2) and (5.3), respectively.   

 𝑆𝑆𝑙𝑘𝑘 =
𝐷𝑘𝐿𝑘𝑊𝑘𝑓𝑄𝑘𝑘�𝑎+𝑏𝑆𝑙 �

𝑉𝑐𝑖𝑆𝑙 𝑙𝑐
+ 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘𝑀𝑘

𝑉𝑐𝑖
+ 𝑣𝑤𝑊𝑘𝑆𝑙 𝑙𝑐

2𝑟𝑟
+ 𝑣𝑥𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝑟𝑘+𝑑)

4𝑉𝑥
 

          (5.2) 

 𝑆𝑆𝑠𝑘𝑘 = 𝐷𝑘𝐿𝑘𝑊𝑘𝑓𝑄𝑘𝑘�𝑎+𝑏𝑆𝑠 �
𝑉𝑐𝑖𝑆𝑠 𝑙𝑐

+ 𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘𝑀𝑘

𝑉𝑐𝑖
+ 𝑣𝑤𝑊𝑘𝑆𝑠 𝑙𝑐

2𝑟𝑟
+ 𝑣𝑥𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝑟𝑘+𝑑)

4𝑉𝑥
 

          (5.3) 
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Then, equations (5.2) and (5.3) are set to be equal, and solved in terms of the threshold 

demand. The resulting threshold is:   

𝑄𝑡𝑘𝑘 = 𝑣𝑤𝑙𝑐2𝑉𝑐𝑖𝑆𝑙 𝑆𝑠
2𝑎𝑟𝑘𝑓2𝐿𝑘𝐷𝑘

       (5.4) 

Thus, large buses are used when demand, 𝑄𝑘𝑘, exceeds the threshold, 𝑄𝑡𝑘𝑘, and 

small buses are used otherwise. After bus sizes are selected, the analytically optimized 

headway can also be found using equations (4.2~4.5). One interesting point from 

equation (5.4) is that the value of the passengers’ in-vehicle time, 𝑣𝑣 , does not affect the 

threshold demand.  

 

5.2.2. Mixed Fleets Flexible Bus Service (MFF) 

MFF operates two sizes of flexible buses. To find the demand threshold, 𝑄𝑡𝑘𝑘, 

between these two, we first substitute the maximum allowable headway in equation (4.7) 

into flexible bus formulation in equation (4.6) to ensure acceptable headways, and then 

set the cost of large and small flexible buses to be equal, using equation (4.6).  

 𝑆𝑆𝑓𝑘𝑘 =
𝑄𝑘𝑘𝐿𝑘𝑊𝑘�𝑎+𝑏𝑆𝑓 �(𝐷𝑓

𝑘+Ø𝐴𝑘�
𝑆𝑓𝑙𝑓
𝑢𝐴𝑘

)

𝑉𝑓
𝑖𝑆𝑓𝑙𝑓

+
𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝐷𝑓

𝑘+Ø𝐴𝑘�
𝑆𝑓𝑙𝑓
𝑢𝐴𝑘

)

2𝑉𝑓
𝑖 + 𝑣𝑤𝐿𝑘𝑊𝑘𝑆𝑓𝑙𝑓

2𝐴𝑘

          (5.5) 
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Then, large flexible service cost and small flexible service cost are formulated in 

equations (5.6) and (5.7), respectively.  

 𝑆𝑆𝑙𝑘𝑘 =
𝑄𝑘𝑘𝐿𝑘𝑊𝑘(𝑎+𝑏𝑆𝑙)(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑙𝑙𝑓

𝑢 )

𝑉𝑓
𝑖𝑆𝑙𝑙𝑓

+
𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑙𝑙𝑓

𝑢 )

2𝑉𝑓
𝑖 + 𝑣𝑤𝐿𝑘𝑊𝑘𝑆𝑙𝑙𝑓

2𝐴𝑘
 

          (5.6) 

 𝑆𝑆𝑠𝑘𝑘 =
𝑄𝑘𝑘𝐿𝑘𝑊𝑘(𝑎+𝑏𝑆𝑠)(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑠𝑙𝑓

𝑢 )

𝑉𝑓
𝑖𝑆𝑠𝑙𝑓

+
𝑣𝑣𝐿𝑘𝑊𝑘𝑄𝑘𝑘(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑠𝑙𝑓

𝑢 )

2𝑉𝑓
𝑖 + 𝑣𝑤𝐿𝑘𝑊𝑘𝑆𝑠𝑙𝑓

2𝐴𝑘
 

          (5.7) 

Now, equations (5.6) and (5.7) are set to be equal, and find the threshold demand in 

equation (5.8).  

𝑄𝑡𝑘𝑘 =
𝑣𝑤𝑙𝑓
2𝐴𝑘

(𝑆𝑠−𝑆𝑙)

⎩
⎪⎪
⎨

⎪⎪
⎧
�𝑎+𝑏𝑆𝑙�(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑙𝑙𝑓

𝑢 )

𝑉𝑓
𝑖 𝑆𝑙𝑙𝑓

−

(𝑎+𝑏𝑆𝑠)�𝐷𝑓
𝑘+Ø�

𝐴𝑘𝑆𝑠𝑙𝑓
𝑢 �

𝑉𝑓
𝑖 𝑆𝑠𝑙𝑓

+
𝑣𝑣(𝐷𝑓

𝑘+Ø�
𝐴𝑘𝑆𝑙𝑙𝑓

𝑢 )

2𝑉𝑓
𝑖 −

𝑣𝑣�𝐷𝑓
𝑘+Ø�

𝐴𝑘𝑆𝑠𝑙𝑓
𝑢 �

2𝑉𝑓
𝑖

⎭
⎪⎪
⎬

⎪⎪
⎫
  

(5.8) 

For finding MFF headways in each period, Equations (4.7~4.10) are still applicable. 

 

5.2.3. Mixed Fleets Variable Type Bus Service (MFV) 

Anticipating that conventional bus has lower average cost than flexible bus at 
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high demand densities, and vice versa, we find the threshold demand for region k in 

period i, above which conventional bus is preferable and below which flexible bus is 

preferable. This threshold is obtained in equation (5.9) by setting equations (5.1) and (5.5) 

to be equal:  

𝑄𝑘𝑘 =
𝑣𝑤
2 �

𝑆𝑓𝑙𝑓
𝐴𝑘

− 𝑆𝑐𝑙𝑐
𝑟𝑘𝑓𝐿𝑘

�

⎩
⎪
⎨

⎪
⎧
𝐷𝑘𝑓�𝑎+𝑏𝑆𝑐 �

𝑉𝑐𝑖 𝑆𝑐𝑙𝑐
+𝑣𝑣𝑀

𝑘

𝑉𝑐𝑖
+𝑣𝑥𝑄 (𝑟𝑘+𝑑)

4𝑉𝑥
−

�𝑎+𝑏𝑆𝑓 ��𝐷𝑓
𝑘+Ø�

𝑆𝑓𝑙𝑓𝐴𝑘

𝑢 �

𝑉𝑓
𝑖 𝑆𝑓𝑙𝑓

−
𝑣𝑣(𝐷𝑓

𝑘+Ø�
𝑆𝑓𝑙𝑓𝐴𝑘

𝑢 )

2𝑉𝑓
𝑖

⎭
⎪
⎬

⎪
⎫
    (5.9) 

 

5.3. Solution Method  

Here, the same solution approach as we used in Chapter 4 is applied. However, 

the number of integer variables varies based on the mixed fleet operations with two bus 

sizes. Thus, MFC and MFF have k+2 integer variables. For instance, if 4 local regions are 

considered, the number of integer variables is 6. MFV requires up to 2k+2 integer 

variables because two different bus sizes (i.e. large conventional bus size and small 

flexible bus size) as well as the numbers of zones for both conventional bus and flexible 

bus are needed. Then, these integer variables are used to analytically optimize headways 

and required fleet sizes over time.   

The detailed interactions between GA and analytic optimization are shown again 
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in Figure 5-2.   

 

Figure 5-2 Graphical Description of Solution Approach (same as Figure 4-2) 
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5.4. Numerical Evaluation: Base Case Analysis   

To confirm that the proposed method in Chapter 4 minimizes cost efficiently, a 

set of numerical evaluations is designed and compared to the cost of each bus operation 

(i.e., MFC, MFF, and MFV).  

5.4.1. Input Values 

The base numerical case has four distinct local regions, each with four periods 

(i.e. K = 4 and I = 4). Demand, service time and line-haul distance are presented in Table 

5-1. All other required input parameters are presented in Table 4-1.  

Table 5-1 Demand, Service Time, and Line-haul Distance 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

1 70 80 60 55 

2 30 35 40 40 

3 10 15 30 15 

4 5 7.5 10 5 

Time(hours) 

Region 

Period 
A B C D 

1 4 4 4 4 

2 6 6 6 6 

3 8 8 8 8 
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4 6 6 6 6 

Region A B C D 

Line-haul Distance (miles) 4 5 3 5 

Length of Region (miles) 3 2 4 5 

Width of Region (miles) 4 5 3 3 

5.4.2. Optimization Settings  

The detailed IGA setting is provided in this section. As mentioned previously, 

IGA finds a solution using special creation, crossover, and mutation functions to enforce 

integer values (Deep et al, 2009). To insure integer decision variables, the population type 

should be “double vector” rather than “bit string” or “custom setting”. For optimizing our 

five bus operation alternatives, we must set a population size, elite counts, and the 

number of generations. Here we set a population size of 100, 10 elite counts, and up to 

250 generations. To use this IGA algorithm, we must provide bounds for each decision 

variable. For both conventional and flexible buses we specify a range of 1 to 50 seats/bus. 

To optimize route spacings for conventional bus, we must first optimize the number of 

zones in each region. These optimized numbers of zones are convertible into route 

spacings. The minimum number of zones is set to be one; in this case, one conventional 

bus serves an entire local region. The minimum specified route spacing (0.5 miles here) 

determines the maximum number of zones for each region. Bounds are also needed for 
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the service area of flexible bus. A minimum service area (one mile2 is assumed here for 

all regions) determines the maximum number of zones for the various regions. The 

minimum number of zones is one, similarly to conventional bus; in this case, flexible 

buses serve the entire region (undivided into zones).  

5.4.3. Base Case Results  

The optimization results (i.e. total cost and solutions of decision variables such as 

vehicle size(s), and route spacings (or service areas)) are shown in Figure 5-3. Although 

the MATLAB user interface shown below does not provide the optimized headways and 

required fleets, the solutions of decision variables shown in Figure 5-3 are found by 

simultaneously evaluating optimized headways and required fleets. The detailed results 

are shown in Table 5-2. Figure 5-3 shows SFC results and, in its lower left, we note that 

SFC has 5 decision variables. The first decision variable corresponds to conventional bus 

size, and the second to fifth values are the numbers of zones in each region (4, 5, 4, and 

4). These numbers of zones are transformable to route spacings, which are 1.0, 1.0, 0.75, 

and 0.75 miles for regions A, B, C, and D, respectively.  

 



- 120 - 

 

 

Figure 5-3 SFC Inputs and Results 

The detailed results obtained with our hybrid approach, combining IGA and 

analytic optimization, are shown in Table 5-2, including vehicle sizes, route spacings, 

optimal headways, required fleets, and corresponding costs. For SFC capital cost is 

$9,085/day and operation cost is $ 145,289.27/day; thus, total cost is $154,374.27/day.  

Table 5-2 SFC Results for Base Case  

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

30 1.00 1.00 0.75 0.75 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.141 0.154 0.153 0.144 18 20 17 24 
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2 0.169 0.206 0.158 0.153 10 10 11 15 

3 0.338 0.294 0.173 0.255 5 7 10 9 

4 0.422 0.411 0.347 0.459 4 5 5 5 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3581.93 3645.33 2903.51 3775.33 14327.73 14581.33 11614.02 15101.33 

2 1533.20 1597.06 1757.02 2386.22 9199.20 9582.33 10542.11 14317.33 

3 692.67 861.45 1414.80 1154.11 5541.33 6891.62 11318.40 9232.89 

4 430.73 537.58 656.40 548.56 2584.40 3225.50 3938.40 3291.33 

Total Operation Cost ($/day)   =  145289.27, Total Capital Cost ($/day) = 9085, Total Cost ($/day) = 

154374.27 

 

For SFF, detailed results are shown in Table 5-3 The optimized flexible bus size 

is 19 seats/bus, and optimized service areas are 3.0, 2.5, 3.0, and 3.0 mile2/bus for 

regions A, B, C, and D, respectively. This 19 seat bus serves all regions as well as all time 

periods. Total cost is $151,654.96/day, which is slightly lower than for SFC, mainly 

because input parameters for line-haul distance and length of local region are relatively 

small. This is further explored in the sensitivity analysis section.  

Table 5-3 SFF Results for Base Case  

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

19 3.00 2.50 3.00 3.00 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 



- 122 - 

 

1 0.090 0.094 0.098 0.115 38 37 32 41 

2 0.139 0.156 0.119 0.129 16 15 18 25 

3 0.295 0.240 0.138 0.228 7 9 15 13 

4 0.379 0.421 0.266 0.459 5 5 7 6 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3536.44 3449.17 2920.60 3889.67 14145.75 13796.68 11682.39 15558.68 

2 1343.78 1347.03 1592.10 2280.22 8062.695 8082.155 9552.63 13681.3 

3 603.98 721.93 1268.52 1080.88 4831.873 5775.41 10148.17 8647.04 

4 376.32 457.32 567.73 512.66 2257.946 2743.901 3406.406 3075.932 

Total Operation Cost ($/day)   =  135448.96, Total Capital Cost ($/day) = 16206, Total Cost ($/day) = 

151654.96 

 

For mixed fleet conventional bus (MFC), two bus sizes are optimized with 40 

and 27 seats/bus. It is noted that MFC’s total cost (153,640.08$/day) is below that of SFC 

(154,374.27$/day, in Table 5-2). This result implies that, given significant demand 

variations, operating multiple sizes of buses can reduce capital cost and operation cost. 

With current input parameters, large conventional buses serve only period 1 in region D 

while all the other periods and regions are served by small conventional buses.  

Table 5-4 MFC Results for Base Case  

 

Vehicle Size Route Spacing for Conventional Bus 

Large Conv. Bus Small Conv. Bus A B C D 

40 27 1.00 1.00 0.75 1.00 

 Large Conventional Bus Headway (hours) Small Conventional Bus Headway (hours) 

Region A B C D A B C D 
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Period 

1 0.000 0.000 0.000 0.144 0.127 0.154 0.144 0.000 

2 0.000 0.000 0.000 0.000 0.169 0.187 0.158 0.132 

3 0.000 0.000 0.000 0.000 0.338 0.294 0.173 0.215 

4 0.000 0.000 0.000 0.000 0.422 0.411 0.347 0.431 

 Large Conventional Bus Fleet Assignment (buses) Small Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 0 0 18 20 20 18 0 

2 0 0 0 0 10 11 11 13 

3 0 0 0 0 5 7 10 8 

4 0 0 0 0 4 5 5 4 

 
Mixed Fleet Conventional Bus Service Cost 

($/hour) 
Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3571.00 3633.33 2892.00 3842.83 14284.00 14533.33 11568.00 15371.33 

2 1527.20 1587.21 1750.42 2412.23 9163.20 9523.28 10502.51 14473.41 

3 689.67 857.25 1408.80 1126.99 5517.33 6858.02 11270.40 9015.93 

4 428.33 534.58 653.40 519.74 2570.00 3207.50 3920.40 3118.43 

Total Operation  Cost ($/day)   = 144897.08, Total Capital Cost ($/day) = 8743, Total Cost ($/day) = 

153640.08 

 

As noted for Table 5-5, sizes for flexible buses are below those of mixed 

conventional bus service (in Table 5-4) because flexible services are preferred for lower 

demand areas. Vehicle sizes are optimized with 22 and 17 seats/bus for larger and smaller 

flexible bus, respectively. In this MFF operation, large flexible bus is preferable for 

period 1 in regions A and B. The total cost of MFF’s total cost is below that of Single 
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Fleet Flexible Bus (SFF) in Table 5-3. 

Table 5-5 MFF Results for Base Case  

 

Vehicle Size Service Area for Flexible Bus 

Large Flex. Bus Small Flex. Bus A B C D 

22 17 3.00 2.50 3.00 3.00 

 Large Flexible Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.097 0.105 0.000 0.000 0.000 0.000 0.094 0.101 

2 0.000 0.000 0.000 0.000 0.139 0.156 0.110 0.129 

3 0.000 0.000 0.000 0.000 0.295 0.240 0.138 0.228 

4 0.000 0.000 0.000 0.000 0.379 0.338 0.266 0.459 

 Large Flexible Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 36 34 0 0 0 0 33 45 

2 0 0 0 0 16 15 19 25 

3 0 0 0 0 7 9 15 13 

4 0 0 0 0 5 6 7 6 

 
Mixed Fleet Conventional Bus Service Cost 

($/hour) 
Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3559.10 3466.35 2907.78 3889.18 14236.40 13865.41 11631.12 15556.72 

2 1337.38 1341.03 1582.63 2270.22 8024.29 8046.15 9495.77 13621.30 

3 601.18 718.33 1262.52 1075.68 4809.47 5746.61 10100.17 8605.44 

4 374.32 447.65 564.93 510.26 2245.95 2685.89 3389.61 3061.53 

Total Operation  Cost ($/day)  = 135121.84, Total Capital Cost ($/day) = 16233 , Total Cost ($/day) = 

151354.84 

MFV operation has up to 10 decision variables, namely conventional bus and 
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flexible bus sizes, four route spacings and four service areas. Optimized vehicle sizes are 

somewhere between mixed fleet conventional buses and mixed fleet flexible buses. 

Except for MFV, Mixed Fleet Flexible Bus (MFF) operation is the least costly alternative. 

However, by considering different types of bus operations as well as different sizes of 

vehicles, MFV reduces total cost compared to MFF. Detailed results are presented in 

Table 5-6. 

Table 5-6 MFV Results for Base Case  

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Large 

Conv. 

Bus 

Small 

Flex. Bus 
A B C D A B C D 

31 16 1.00 - 0.75 0.75 4.00 3.33 4.00 7.50 

 Large Conventional Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.141 0.000 0.153 0.150 0.000 0.060 0.000 0.000 

2 0.000 0.000 0.000 0.153 0.125 0.127 0.092 0.000 

3 0.000 0.000 0.000 0.000 0.240 0.224 0.114 0.135 

4 0.000 0.000 0.000 0.000 0.404 0.338 0.218 0.298 

 Large Conventional Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 18 0 17 23 0 45 0 0 

2 0 0 0 15 15 15 19 0 

3 0 0 0 0 7 8 15 12 

4 0 0 0 0 4 5 7 5 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 
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Region 

Period 
A B C D A B C D 

1 3585.53 3576.37 2906.91 3774.82 14342.13 14305.48 11627.62 15099.28 

2 1330.98 1320.51 1593.94 2389.22 7985.91 7923.05 9563.62 14335.33 

3 573.37 690.51 1258.39 1034.28 4586.97 5524.10 10067.11 8274.24 

4 359.07 423.46 541.43 439.51 2154.44 2540.74 3248.55 2637.04 

Total Operation  Cost ($/day)  = 134215.62, Total Capital Cost ($/day) = 11991 , Total Cost ($/day) = 

146206.62 

5.4.3.1. Benefit of Sharing Fleets  

When demands vary over time and among local regions, fleets can be shared 

among regions as well as time periods. For instance, fleets that are used for peak periods 

can also be used for other periods or other regions without additional capital costs. This 

sharing of fleets can significantly reduce capital costs; to realize such savings, we 

constrain vehicle size(s) to be consistent throughout regions and times. Table 5-7 shows 

that the cost of our integrated multi-zone approach can be significantly lower than the 

sum of four separately optimized costs.  

Table 5-7 Comparison of Integrated and Separately Optimized Total Costs 

 Vehicle Size Total Cost 

Total Cost Large Conv. Bus Small Flex. Bus Regional Cost Total Cost 

Integrated System 31 16 - 146,206.6 

Region A only 30 16 32,745.0 

149,437.8 Region B only 25 17 34,179.2 

Region C only 32 17 38,197.2 
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Region D only 31 16 44,298.4 

5.4.4. Solution Reliability  

Since a GA is heuristic and does not guarantee global optimality, the reliability of 

solutions is additionally compared with 20 time repetitive runs. .MFV is shown in Figure 

5-4 since it is the most complex and computationally demanding among our five 

alternatives. 17 of 20 runs yield the same consistent minimized value while the remaining 

3 runs yield a slightly costlier value (by less than 0.3%). SFC, SFF, MFC, and MFF yield 

results faster because their search boundaries are much smaller. Their results (not shown 

here) are also more consistent than those for MFV. The hybrid approach can find good 

solutions for these five alternative models.   

Figure 5-5 shows the convergence of IGA. MFV, the most complex alternative, 

converges relatively quickly (i.e. in less than 50 generations). For each instance, IGA runs 

up to 250 generations to carefully check cost variations.  
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Figure 5-4 Reliability of IGA 

 

 

Figure 5-5 Convergence of IGA to the MFV 
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Figure 5-5 shows that solutions converge quickly. To assess the quality of the 

solution obtained from our partially heuristic hybrid approach without knowing the actual 

globally optimal solution a statistical test (Jong & Schonfeld 2003; Wang & Schonfeld 

2012) is used here. One million random candidate solutions are generated, and compared 

with the solution provided by the hybrid algorithm. The computation time for generating 

a million random solutions was about 12.8 hours with a quad core processor (Intel(R) 

Core™ i7-3610QM CPU @ 2.30GHz). The best of the million candidate solutions is 

$147,563.32/day, which is 0.92% costlier than our hybrid solution. The average of the 10 

best random solutions is $147,941.15/day, which is 1.17% costlier than our solution.  

A small problem (a terminal connecting two local regions with four time periods) 

is additionally designed to check the solution quality by comparing solutions obtained 

with our method with the optimal solution obtained through complete enumeration. Since 

complete enumeration is only used to validate the solution quality of our approach, its 

computational time is not a great concern in this test. Input values for this complete 

enumeration are shown in Table 5-8. For the other input values, the Notation Table 5-1 is 

still applicable, and the same units are also applied. 
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Table 5-8 Input Values for a Complete Enumeration 

Parameter Region A Region B 

J 4 5 

L 3 2 

W 2 2 

Q 

Period 1 100 80 

Period 2 50 40 

Period 3 10 30 

Period 4 5 5 

 

For this verification, a total of 185,856 candidate solutions (7~50 conventional 

bus seats * 7~50 flexible bus seats * up to 2 conventional bus zones for zone A * up to 2 

conventional bus zones for region B * up to 6 flexible bus zones for region A * up to 4 

flexible bus zones for region B) are compared.  

Comparison of results with those of complete enumeration shows that they are 

identical. Only MFV results are compared (in Tables 5-9 and 5-10) because MFV has 

more optimizable variables and is more general than the other alternatives. 

Table 5-9 Result Comparison 

 Complete Enumeration Our Method 

Vehicle Size (Sc, Sf) 37, 15 37, 15 

Conventional Bus Zones (A, B) (2,2) (2,2) 

Flexible Bus Zones (A, B) (2,1) (2,1) 

Total Cost 33452.64 33452.64 
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Table 5-10 Resulting Fleet Sizes 

(Conv, Flex) Region A Region B 

Periods 

1 (10,0) (0,18) 

2 (0,11) (0,7) 

3 (0,3) (0,5) 

4 (0,2) (0,1) 

 

With two local regions, it is found that our hybrid method finds identical 

solutions to those from complete enumeration. Thus, depending on the problem sizes, our 

proposed solution can provide optimal or near optimal solutions. Since MFV has a more 

complex formulation than the other alternatives, repeating such tests seems unnecessary 

for SFC, SFF, MFC, or MFF.  

 

5.5. Numerical Evaluation: Sensitivity Analysis  

This section explores the sensitivity of results to important input factors. From 

this analysis, it is be found how total cost and other optimized characteristics change 

from baseline values and vary among alternatives. 

5.5.1. Sensitivity Case I: Demand   

To explore how bus operations change mainly with demand density, demand 
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inputs are multiplied by a factor of 10, as shown in Table 5-11.   

Table 5-11 Demand Input 

Demand (trips/mile2/hour) 

Region 

Period 
A B C D 

1 700 800 600 550 

2 300 350 400 400 

3 100 150 300 150 

4 50 75 100 50 

 

When demand increases tenfold, the optimized bus size becomes 50 seats, which 

is our upper bound for bus size. Similarly, optimized route spacings are at the specified 

lower boundary; hence, bus service has the maximum possible number of zones per 

region. Compared to the SFC Base Case in Table 5-2, headways noticeably decrease to 

satisfy the higher demand.  

Table 5-12 Sensitivity of SFC to Demand 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

50 0.5 0.5 0.5 0.5 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.047 0.062 0.041 0.036 107 99 94 143 

2 0.080 0.089 0.060 0.050 42 46 43 69 

3 0.141 0.137 0.070 0.101 24 30 37 34 
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4 0.199 0.196 0.124 0.181 17 21 21 19 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 23872.54 24003.23 19700.34 27042.63 95490.17 96012.93 78801.36 108170.51 

2 9341.14 9670.70 11093.40 15708.21 56046.86 58024.20 66560.37 94249.28 

3 3948.00 4985.00 8721.84 6909.31 31584.00 39880.00 69774.70 55274.51 

4 2382.63 2996.79 3639.43 2969.68 14295.76 17980.71 21836.57 17818.07 

Total Operation  Cost ($/day)   = 921800.01, Capital Cost ($/day) = 55375.00, Total Cost ($/day) = 

977175.01 

 

The SFF sensitivity results for a tenfold demand increase are shown in Table 10. 

Flexible bus size increases from 19 seats in the Base Case (Table 5-3) to 31 seats. 

Headways are significantly decreased from the Base Case, thus requiring more buses 

(Table 5-13). Additionally, optimized service areas for flexible bus are 1 mile2 for all 

regions, which means that with higher demand, flexible bus operation is required to serve 

a smaller zone size than baseline case; thus, more zones are desirable. It is interesting that 

flexible bus size is optimized here at only 31 seats even though the bus size upper bound 

is 50 seats. Thus, even when demand densities increase tenfold, the optimized bus size 

below the “standard” 50 seat size is more effective for flexible bus operations.   
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Table 5-13 Sensitivity of SFF to Demand 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

31 1 1 1 1 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.044 0.039 0.047 0.056 201 206 172 220 

2 0.071 0.069 0.056 0.065 83 79 98 133 

3 0.137 0.114 0.067 0.118 40 45 80 68 

4 0.200 0.169 0.130 0.220 26 29 38 34 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 25073.58 25245.67 20305.20 27746.00 100294.34 100982.69 81220.81 110983.99 

2 8998.98 9096.15 10676.35 15747.74 53993.91 54576.93 64058.10 94486.42 

3 3796.69 4583.22 8387.95 7081.45 30373.54 36665.78 67103.61 56651.64 

4 2309.17 2726.81 3544.91 3158.52 13855.04 16360.87 21269.44 18951.09 

Total Operation  Cost ($/day)   =  921828.17, Capital Cost ($/day) = 82284.50, Total Cost ($/day) = 

1014112.67 

 

Table 5-14 shows MFC sensitivity to a tenfold demand increase. As a result, 

demands in all regions are served by larger conventional buses. The demand threshold in 

equation (5.4) does not assign any periods in any regions to smaller conventional buses. 

The provision of two different sizes of conventional buses (MFC) at very high demand is 

superfluous. Therefore, the results in Table 5-14 are consistent with the results of SFC 
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operation in Table 5-12. The one notable difference from Table 5-12 is that the smaller 

conventional bus size is optimized at 1 seat/bus, but never used for any service. It should 

also be noted that in the solution method (i.e., IGA), the bus sizes (integer values) are 

optimized within the range of from 1 to 50 seats/bus.  

Table 5-14 Sensitivity of MFC to Demand 

 

Vehicle Size Route Spacing for Conventional Bus 

Large Conv. Bus Small Conv. Bus A B C D 

50 1 0.5 0.5 0.5 0.5 

 Large Conventional Bus Headway (hours) Small Conventional Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.047 0.062 0.041 0.036 0.000 0.000 0.000 0.000 

2 0.080 0.089 0.060 0.050 0.000 0.000 0.000 0.000 

3 0.141 0.137 0.070 0.101 0.000 0.000 0.000 0.000 

4 0.199 0.196 0.124 0.181 0.000 0.000 0.000 0.000 

 Large Conventional Bus Fleet Assignment (buses) Small Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 107 99 94 143 0 0 0 0 

2 42 46 43 69 0 0 0 0 

3 24 30 37 34 0 0 0 0 

4 17 21 21 19 0 0 0 0 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 23872.54 24003.23 19700.34 27042.63 95490.17 96012.93 78801.36 108170.51 

2 9341.14 9670.70 11093.40 15708.21 56046.86 58024.20 66560.37 94249.28 

3 3948.00 4985.00 8721.84 6909.31 31584.00 39880.00 69774.70 55274.51 

4 2382.63 2996.79 3639.43 2969.68 14295.76 17980.71 21836.57 17818.07 
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Total Operation  Cost ($/day)   = 921800.01, Capital Cost ($/day) = 55375.00, Total Cost ($/day) = 

977175.01 

 

When two flexible bus sizes are used for these four regions, period 1 in local 

regions B and D is served by the large flexible buses (33 seats). The small flexible bus is 

optimized at 24 seats/bus and optimized service areas are 1, 1, 1, and 1.07 mile2 for local 

regions A, B, C, and D, respectively. These service area values are at or very near the 

lower bound. To serve higher demand with MFF, notable changes are made compared to 

the MFF Base Case results in Table 5-5; optimized bus sizes increase, while headways 

and service areas decrease. Therefore, larger fleets are also required. 

Table 5-15 Sensitivity to MFF to Demand 

 

Vehicle Size Service Area for Flexible Bus 

Large Flex. Bus Small Flex. Bus A B C D 

33 24 1 1 1 1.07 

 Large Flexible Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.000 0.041 0.000 0.055 0.034 0.000 0.040 0.000 

2 0.000 0.000 0.000 0.000 0.070 0.067 0.055 0.056 

3 0.000 0.000 0.000 0.000 0.137 0.114 0.066 0.110 

4 0.000 0.000 0.000 0.000 0.200 0.169 0.126 0.208 

 Large Flexible Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 196 0 214 246 0 195 0 
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2 0 0 0 0 84 81 100 144 

3 0 0 0 0 40 45 81 69 

4 0 0 0 0 26 29 39 34 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 25034.94 25288.44 20130.05 27983.71 100139.76 101153.75 80520.21 111934.85 

2 8881.76 8983.46 10536.96 15597.70 53290.54 53900.76 63221.77 93586.18 

3 3740.69 4520.22 8274.78 6941.92 29925.54 36161.78 66198.24 55535.40 

4 2272.77 2686.21 3490.08 3066.13 13636.64 16117.27 20940.45 18396.76 

Total Operation  Cost ($/day)  = 914659.90, Capital Cost ($/day) = 97157.00 , Total Cost ($/day) = 

1011816.90 

 

For MFV the total cost is $970,303.33/day with 50 seat conventional and 23 seat 

flexible buses. Flexible bus does not serve any passengers in region D. Conventional bus 

route spacings are optimized at 0.5 miles for all regions while flexible bus service areas 

are optimized as 3.0, 1.25, and 2.4 mile2 for region A, B, and C, respectively.  

 In the MFV Base Case, periods 3 and 4 in region D are served by flexible bus (in 

Table 5-6). However, with increased demand, as shown in Table 5-16, conventional bus 

serves all periods in region D. Also, period 1 in region B is now served by conventional 

bus instead of the flexible bus in MFV Base Case (Table 5-6). Basically, as demands 

increase, the optimized bus sizes, service frequencies, numbers of zones, and required 

fleets all increase.  
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Table 5-16 Sensitivity of MFV to Demand 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Large 

Conv. 

Bus 

Small 

Flex. Bus 
A B C D A B C D 

50 23 0.5 0.5 0.5 0.5 3.0 1.25 2.4 - 

 Large Conventional Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.047 0.062 0.041 0.036 0.000 0.000 0.000 0.000 

2 0.080 0.000 0.060 0.050 0.000 0.052 0.000 0.000 

3 0.000 0.000 0.070 0.101 0.068 0.099 0.000 0.000 

4 0.000 0.000 0.000 0.181 0.108 0.147 0.074 0.000 

 Large Conventional Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 107 99 94 143 0 0 0 0 

2 42 0 43 69 0 87 0 0 

3 0 0 37 34 37 44 0 0 

4 0 0 0 19 22 28 36 0 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 23872.54 24003.23 19700.34 27042.63 95490.17 96012.93 78801.36 108170.51 

2 9341.14 9029.42 11093.40 15708.21 56046.86 54176.49 66560.37 94249.28 

3 3654.27 4440.55 8721.84 6909.31 29234.18 35524.37 69774.70 55274.51 

4 2037.40 2594.18 3384.09 2969.68 12224.42 15565.08 20304.53 17818.07 

Total Operation  Cost ($/day)  = 155071.00, Capital Cost ($/day) = 13853.50 , Total Cost ($/day) = 

168924.50 
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5.5.2. Sensitivity Case II: Line-haul Distance   

First, line-haul distances are increased by five miles, as shown in Table 5-17. 

This case explores how distances between the main terminal (or CBD) and local regions 

affect system costs for five alternative operations.  

Table 5-17 Line-haul Distance by Region 

Region A B C D 

Line-haul Distance (miles) 9 10 8 10 

 

When increasing line-haul distance, round travel times (i.e. distances) also 

increase. Therefore, optimized bus size (35 seats/bus) increases as well in order to serve 

more passengers per vehicle round trip. Higher frequency is more expensive when 

vehicle round trips are longer. This explains why route spacings are also equal or slightly 

increased compared to Base Case (Table 5-3). In this case, longer SFC line-haul distances 

mainly lead to larger buses and route spacings. However headways and fleet sizes do not 

change significantly. Detailed results are shown in Table 5-18.  

Table 5-18 Sensitivity of SFC to Line-haul Distance 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

35 1 1.25 1 1 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 
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Region 

Period 
A B C D A B C D 

1 0.166 0.170 0.139 0.127 22 21 20 27 

2 0.221 0.217 0.155 0.163 11 11 12 14 

3 0.405 0.341 0.186 0.253 6 7 10 9 

4 0.607 0.477 0.309 0.456 4 5 6 5 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 4456.84 4575.67 3688.00 4646.72 17827.37 18302.67 14752.00 18586.89 

2 1859.16 1934.78 2162.76 2856.60 11154.95 11608.68 12976.53 17139.62 

3 838.58 1025.28 1725.87 1332.00 6708.62 8202.22 13806.93 10656.00 

4 529.18 629.47 763.02 609.11 3175.07 3776.83 4578.13 3654.67 

Total Operation  Cost ($/day)   =  176907.18, Capital Cost ($/day) = 10575, Total Cost ($/day) = 

187482.18 

 

With increased SFF line-haul distance, both bus size and service areas increase to 

serve more passengers per bus round trip, since longer line-haul distances yield longer 

travel times, and thus higher operating cost. In Table 5-19, flexible bus size is optimized 

at 26 seats and optimized service areas are 4, 3.33, 4, and 3.75 mile2 for regions A, B, C, 

and D, respectively. Optimized service areas are increased compared to Base Case results 

(in Table 5-3). It is found that changes in SFF line-haul distance do not seriously affect 

optimized headways and required fleets. Instead, bus size and service areas respond more 

sensitively.   
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Table 5-19 Sensitivity of SFF to Line-haul Distance 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

26 4 3.33 4 3.75 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.092 0.097 0.105 0.126 42 40 35 43 

2 0.151 0.164 0.125 0.138 17 16 20 27 

3 0.296 0.275 0.154 0.247 8 9 16 14 

4 0.451 0.390 0.277 0.456 5 6 8 7 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 4641.98 4454.96 3889.00 4927.84 18567.92 17819.86 15556.01 19711.34 

2 1697.63 1674.01 2068.75 2840.57 10185.77 10044.06 12412.50 17043.43 

3 731.28 873.09 1634.54 1310.93 5850.21 6984.75 13076.32 10487.41 

4 451.36 532.65 703.26 601.11 2708.15 3195.92 4219.59 3606.64 

Total Operation  Cost ($/day)   =  174169.88, Capital Cost ($/day) = 18080.0, Total Cost ($/day) = 

189549.88 

 

Results of MFC sensitivity to line-haul distance are shown in Table 5-20. 

Optimized conventional bus sizes increase (40 to 47 and 27 to 32 seat/bus) compared to 

the Base Case results (Table 5-4). Route spacings are either increased or equal to the Base 

Case. Optimized headways are similar to the Base Case results or slightly increased (i.e. 

reduced frequencies) based on the changes of bus size and route spacings. 
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Table 5-20 Sensitivity of MFC to Line-haul Distance 

 

Vehicle Size Route Spacing for Conventional Bus 

Large Conv. Bus Small Conv. Bus A B C D 

47 32 1 1.25 1 1 

 Large Conventional Bus Headway (hours) Small Conventional Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.000 0.000 0.000 0.171 0.152 0.156 0.133 0.000 

2 0.000 0.000 0.000 0.000 0.202 0.217 0.155 0.152 

3 0.000 0.000 0.000 0.000 0.405 0.341 0.186 0.253 

4 0.000 0.000 0.000 0.000 0.607 0.477 0.309 0.456 

 Large Conventional Bus Fleet Assignment (buses) Small Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 0 0 20 24 23 21 0 

2 0 0 0 0 12 11 12 15 

3 0 0 0 0 6 7 10 9 

4 0 0 0 0 4 5 6 5 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 4446.87 4564.76 3683.77 4654.96 17787.47 18259.02 14735.09 18619.83 

2 1849.20 1928.18 2155.56 2845.56 11095.20 11569.08 12933.33 17073.33 

3 834.98 1021.08 1719.87 1326.60 6679.82 8168.62 13758.93 10612.80 

4 526.78 626.47 759.42 606.11 3160.67 3758.83 4556.53 3636.67 

Total Operation  Cost ($/day)   = 176405.23, Capital Cost ($/day) = 10358.00, Total Cost ($/day) = 

186763.23 

 

A similar finding is that for MFF bus sizes and service areas increase. Another 

point in comparison to MFC is that larger flexible buses are favored for period 1 in 
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regions A and B (with MFC, and larger conventional buses are selected for period 1 in 

region D, Table 5-20). The main changes for MFF are increased bus size and service 

areas.  With MFF, headways and fleet sizes are less sensitive to line-haul distances.   

Table 5-21 Sensitivity of MFF to Line-haul Distance 

 

Vehicle Size Service Area for Flexible Bus 

Large Conv. Bus Small Flex. Bus A B C D 

29 24 4 3.33 3 3.75 

 Large Flexible Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.098 0.107 0.000 0.000 0.000 0.000 0.129 0.116 

2 0.000 0.000 0.000 0.000 0.151 0.164 0.146 0.138 

3 0.000 0.000 0.000 0.000 0.296 0.275 0.176 0.247 

4 0.000 0.000 0.000 0.000 0.451 0.390 0.347 0.456 

 Large Flexible Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 40 37 0 0 0 0 35 46 

2 0 0 0 0 17 16 21 27 

3 0 0 0 0 8 9 17 14 

4 0 0 0 0 5 6 8 7 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 4666.04 4474.86 3798.00 4914.45 18664.15 17899.43 15191.99 19657.78 

2 1690.83 1667.61 2066.57 2829.77 10144.97 10005.66 12399.44 16978.63 

3 728.08 869.49 1647.53 1305.33 5824.61 6955.95 13180.23 10442.61 

4 449.36 530.25 736.97 598.31 2696.15 3181.52 4421.82 3589.84 

Total Operation  Cost ($/day)  = 171234.80, Capital Cost ($/day) = 17888.50 , Total Cost ($/day) = 
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189123.30 

   

As in the MFV Base Case results (Table 5-6), it is notable that conventional bus does not 

serve local region B at all, as no route spacing for region B is provided. In this case, there 

are 9 optimized decision variables from the hybrid solution approach. Similarly to other 

alternatives such as MFC and MFF, the larger conventional buses serve when demand is 

higher, and smaller flexible buses serve the other periods. Bus sizes increase by 10 and 5 

seats compared to the MFV Base Case (Table 5-6).  

Table 5-22 Sensitivity of MFV to Line-haul Distance 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Large 

Conv. 

Bus 

Small 

Flex. Bus 
A B C D A B C D 

41 21 1 - 1 1 6 3.33 4 7.5 

 Large Conventional Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.174 0.000 0.164 0.149 0.000 0.077 0.000 0.000 

2 0.000 0.000 0.000 0.163 0.114 0.164 0.125 0.000 

3 0.000 0.000 0.000 0.000 0.259 0.275 0.142 0.162 

4 0.000 0.000 0.000 0.000 0.329 0.390 0.277 0.319 

 Large Conventional Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 21 0 17 23 0 48 0 0 

2 0 0 0 14 17 16 20 0 
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3 0 0 0 0 7 9 17 13 

4 0 0 0 0 5 6 8 6 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 4484.80 4476.65 3703.49 4635.26 17939.20 17906.60 14813.98 18541.04 

2 1695.09 1658.01 2048.75 2873.40 10170.55 9948.06 12292.50 17240.42 

3 697.16 864.09 1615.61 1253.55 5577.32 6912.75 12924.89 10028.37 

4 413.05 526.65 695.26 528.51 2478.31 3159.92 4171.59 3171.04 

Total Operation  Cost ($/day)  = 167276.54, Capital Cost ($/day) = 13207.0 , Total Cost ($/day) = 

180483.54 

5.5.3. Sensitivity Case III: Value of Waiting Time 

Waiting time value is important in this study because if affects the optimized 

headway, user cost and the threshold demands for mixed fleets operations such as MFC, 

MFF, and MFV. In this sensitivity analysis, the value of waiting time is increased by 40% 

from 12 to 16.8$/hour.  

Table 5-23 shows how decision variables and costs of SFC operation change with 

higher values of waiting time. The detailed results of SFC are shown Table 5-23. Since 

waiting time is now more expensive, headways are reduced compared to SFC Base Case 

results, thus requiring more buses. Based on the changes of headways and fleet sizes, 

optimized bus size is reduced from 30 to 26 seats/bus. Route spacings also increase 

slightly.  
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Table 5-23 Sensitivity of SFC to Waiting Time 

 

Vehicle Size Route Spacing for Conventional Bus 

Single Fleet Conventional Bus A B C D 

26 1 1.25 1 1 

 Conventional Bus Headway (hours) Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.115 0.117 0.108 0.092 22 21 18 28 

2 0.141 0.149 0.108 0.115 12 11 12 15 

3 0.281 0.235 0.130 0.191 6 7 10 9 

4 0.422 0.329 0.217 0.344 4 5 6 5 

 Conventional Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3811.51 3953.87 3135.60 4073.39 15246.04 15815.47 12542.40 16293.57 

2 1656.40 1737.10 1910.40 2581.78 9938.40 10422.62 11462.40 15490.67 

3 764.40 932.57 1533.52 1231.63 6115.20 7460.53 12268.16 9853.07 

4 488.33 578.28 692.40 577.39 2930.00 3469.70 4154.40 3464.33 

Total Operation  Cost ($/day)   =  156926.95, Capital Cost ($/day) = 10057.00, Total Cost ($/day) = 

166983.95 

 

The sensitivity of SFF results to waiting time value is shown in Table 5-24. 

Optimized headways are all reduced compared to the SFF Base Case results (Table 5-3) 

to provide higher bus frequencies because waiting time is more critical than the SFF Base 

Case, and this change results in larger fleets. Service areas are all increased, and vehicle 

size is re-optimized from 19 (Base Case) to 20 seats/bus. The results show that the 
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optimized bus size for flexible bus (SFF) is less sensitive than for conventional bus (SFC 

in Table 5-23). With a higher value of waiting time, the optimization yields increased bus 

size, higher frequencies, more buses, and larger service areas. 

Table 5-24 Sensitivity of SFF to Waiting Time 

 

Vehicle Size Service Area for Flexible Bus 

Single Fleet Flexible Bus A B C D 

20 4 3.33 4 3.75 

 Flexible Bus Headway (hours) Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0.070 0.075 0.073 0.092 40 38 35 43 

2 0.106 0.117 0.086 0.100 17 16 20 27 

3 0.202 0.193 0.105 0.176 8 9 16 14 

4 0.304 0.270 0.183 0.319 5 6 8 7 

 Flexible Bus Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3812.98 3690.67 3156.97 4150.08 15251.92 14762.68 12627.88 16600.33 

2 1436.97 1432.60 1710.29 2434.33 8621.84 8595.60 10261.76 14605.95 

3 637.27 765.46 1361.75 1154.94 5098.15 6123.72 10893.99 9239.55 

4 399.45 474.85 602.18 544.06 2396.72 2849.09 3613.06 3264.35 

Total Operation  Cost ($/day)   =  144806.58, Capital Cost ($/day) = 17160.00, Total Cost ($/day) = 

161966.58 

 

Table 5-25 shows the sensitivity of MFC to waiting time value. Mainly, 

optimized headways are decreased to reduce waiting times; therefore, larger fleets are 
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required compared to the Base Case (Table 5-4). With the changes in bus frequencies and 

fleets, the two conventional bus sizes are reduced from 40 to 35 and from 27 to 24 

seats/bus. Route spacings are similar to the MFC Base Case results or slightly higher in 

order to increase passengers per bus round trip.  

Table 5-25 Sensitivity of MFC to Waiting Time 

 

Vehicle Size Route Spacing for Conventional Bus 

Large Conv. Bus Small Conv. Bus A B C D 

35 24 1 1.25 1 1 

 Large Conventional Bus Headway (hours) Small Conventional Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.000 0.000 0.000 0.123 0.110 0.117 0.098 0.000 

2 0.000 0.000 0.000 0.000 0.141 0.149 0.108 0.115 

3 0.000 0.000 0.000 0.000 0.281 0.235 0.130 0.191 

4 0.000 0.000 0.000 0.000 0.422 0.329 0.217 0.344 

 Large Conventional Bus Fleet Assignment (buses) Small Conventional Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 0 0 0 21 23 21 20 0 

2 0 0 0 0 12 11 12 15 

3 0 0 0 0 6 7 10 9 

4 0 0 0 0 4 5 6 5 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3802.18 3945.47 3132.48 4077.92 15208.73 15781.87 12529.92 16311.67 

2 1651.60 1732.70 1905.60 2575.78 9909.60 10396.22 11433.60 15454.67 

3 762.00 929.77 1529.52 1228.03 6096.00 7438.13 12236.16 9824.27 

4 486.73 576.28 690.00 575.39 2920.40 3457.70 4140.00 3452.33 
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Total Operation  Cost ($/day)   = 156591.27, Capital Cost ($/day) = 9635.50, Total Cost ($/day) = 

166226.77 

 

The key change in MFF due to an increased waiting time value is the reduced 

headways; therefore, fleets sizes also increase. As with the SFF results (Table 5-24), it is 

noted that flexible bus size changes seem less sensitive than the conventional bus size 

changes.  

Table 5-26 Sensitivity of MFF to Waiting Time 

 

Vehicle Size Service Area for Flexible Bus 

Large Felx. Bus Small Flex. Bus A B C D 

20 17 4 3.33 3 3.75 

 Large Flexible Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.070 0.075 0.000 0.000 0.000 0.000 0.087 0.082 

2 0.000 0.000 0.000 0.000 0.106 0.117 0.097 0.100 

3 0.000 0.000 0.000 0.000 0.202 0.193 0.117 0.176 

4 0.000 0.000 0.000 0.000 0.304 0.270 0.224 0.319 

 Large Flexible Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 40 38 0 0 0 0 35 47 

2 0 0 0 0 17 16 21 27 

3 0 0 0 0 8 9 17 14 

4 0 0 0 0 5 6 8 7 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 
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1 3812.98 3690.67 3064.12 4128.66 15251.92 14762.68 12256.48 16514.62 

2 1426.77 1423.00 1700.73 2418.13 8560.64 8538.00 10204.36 14508.75 

3 632.47 760.06 1366.53 1146.54 5059.75 6080.52 10932.20 9172.35 

4 396.45 471.25 627.95 539.86 2378.72 2827.49 3767.67 3239.15 

Total Operation  Cost ($/day)  = 144055.51, Capital Cost ($/day) = 17477.00 , Total Cost ($/day) = 

161532.31 

 

The effects of increased waiting time on MFV are shown in Table 5-27. Period 1 

in local region C and period 2 in local region D are now served by flexible bus while 

those periods are served by conventional bus in the MFV Base Case results (Table 5-6). 

Since conventional bus serves only period 1 in region A, which is the highest demand 

period, bus size is optimized to cover this single period. The optimized size for 

conventional bus increases by 4 seats while flexible bus size increases by 1 seat, from 16 

to 17 seats/bus.  

Table 5-27 Sensitivity of MFV to Waiting Time 

 

Vehicle Size Route Spacing for Conv. Bus Service Area for Flex. Bus 

Large 

Conv. 

Bus 

Small 

Flex. Bus 
A B C D A B C D 

35 17 1 - - 1 6 3.33 4 5 

 Large Conventional Bus Headway (hours) Small Flexible Bus Headway (hours) 

Region 

Period 
A B C D A B C D 

1 0.121 0.000 0.000 0.123 0.000 0.064 0.070 0.000 

2 0.000 0.000 0.000 0.000 0.082 0.117 0.086 0.082 
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3 0.000 0.000 0.000 0.000 0.153 0.193 0.096 0.158 

4 0.000 0.000 0.000 0.000 0.227 0.270 0.183 0.311 

 Large Conventional Bus Fleet Assignment (buses) Small Flexible Bus Fleet Assignment (buses) 

Region 

Period 
A B C D A B C D 

1 21 0 0 21 0 43 36 0 

2 0 0 0 0 17 16 20 27 

3 0 0 0 0 8 9 17 13 

4 0 0 0 0 5 6 8 6 

 Mixed Fleet Bus Service Cost ($/hour) Operation  Cost × Time 

Region 

Period 
A B C D A B C D 

1 3852.80 3684.00 3135.22 4077.92 15411.20 14735.98 12540.88 16311.67 

2 1439.86 1423.00 1698.29 2428.33 8639.18 8538.00 10189.76 14570.00 

3 604.76 760.06 1349.75 1116.07 4838.11 6080.52 10797.97 8928.53 

4 366.96 471.25 597.38 512.84 2201.74 2827.49 3584.26 3077.04 

Total Operation  Cost ($/day)  = 143272.33, Capital Cost ($/day) = 13615.00 , Total Cost ($/day) = 

156887.33 

5.5.4. Summary of Sensitivity Analysis 

Table 5-24 summarizes sensitivity results. For three important input parameters, 

namely demand, line-haul distance, and value of waiting time, are analyzed. Detailed 

results are presented above in Tables 5-3~5-23. The detailed sensitivity analysis results to 

in-vehicle time, access time, directional factor, and number of passenger per stop are 

omitted, but their results are summarized in Table 5-28.   

When we analyze Base Case results, MFV reduces total cost by 5.29, 3.59, 4.84, 
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and 3.40% compared to SFC, SFF, MFC, and MFF, respectively. Since Base Case input 

demands are relatively favorable to flexible bus operations, SFCS has the highest cost 

here.  

Demand is an obviously important factor for public transit analysis. Thus, all 

demands are increased tenfold to explore resulting changes in system characteristics. 

Consequently total costs increase by 532~568% compared to the corresponding Base 

Case. MFV provides cost reductions about 4.32~4.10% compared to flexible bus 

operations such as SFF and MFF. It is also notable that MFC does not provide any cost 

reduction because all demands are assigned to the larger conventional bus by threshold 

demand in equation (5.4). This implies that when demand density exceeds some level, 

mixed conventional bus operation is no longer beneficial, unless perhaps unusually large 

buses could be operated. MFV and SFC have very small difference (0.70%) in total cost. 

This implies that flexible services are not preferable when demand is high. Nonetheless, 

providing different sizes of buses and different types of operations does reduce costs 

when demand densities vary greatly over time and over regions.  

Line-haul distance directly affects travel time. When line-haul distance increases 

by 5 miles for all local regions, it is noted that total costs increase by about 21~25% 
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compared to the corresponding Base Case operations. More specifically, the costs of 

conventional bus operations such as SFC or MFC increase by 21.45~21.56 % while the 

costs of flexible bus operations by SFF or MFF increase by 24.95~24.99%. This line-haul 

distance change increases total cost significantly, and implies that conventional bus 

operations may be preferable with long line-haul distances. Still, MFV operation is the 

most promising alternative among MFV, SFC, SFF, MFC, and MFF. MFV reduces total 

cost about 3.36~4.78% compared to the other alternatives.  

The directional factor f is also analyzed by setting it at 0.75 instead of 1.0 (Base 

Case input). In the other words, 75% of trips are in one direction, and the other 25% are 

in the opposite direction. This change yields a lower optimized bus size. Since this factor 

affects only conventional bus, it does not greatly reduce total cost. Reduced bus size is 

related to bus operating cost function (B=a+bS), and bus size may not affect to the bus 

operating cost significantly. Although we only have room here to present sensitivities to a 

few input parameters, further analyses of sensitivities to cost parameters are of interest. 

For SFC and MFC, about 1.08~1.10% of total cost can be saved compared to the baseline. 

MFV is the least cost alternative. 

In these models the number of passengers per stop is only relevant to flexible bus 
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operation. Rather than assuming 1.2 passengers per stop, we here assume 1.0; thus, 

flexible bus requires more bus stops. Hence, the total costs, which includes flexible bus, 

are 2.03~3.56% above Base Case values. Although flexible bus operation costs increase, 

MFV is still preferable to the other options; MFV decreases cost about 2.90~4.98%. With 

the same demand and fewer passengers per stop, flexible buses must stop more frequently; 

this also increases round-trip travel times. Therefore, flexible bus operations become less 

attractive with more frequent stops.  

Table 5-28 Results Comparison among Various Sensitivity Inputs 

 

MFV 

 

SFC 

 

SFF 

 

MFC 

 

MFF 

BASELINE 146206.6 

 

154374.3 

 

151655.0 

 

153640.1 

 

151354.8 

Savings bet. MFV & alternatives 

  

5.29% 

 

3.59% 

 

4.84% 

 

3.40% 

DEMAND* 10 970303.3  977175.0  1014112.7    1011816.9 

Savings bet. MFV & alternatives   0.70%  4.32%    4.10% 

Savings bet. Same Services 563.65%   532.99%   568.70%       568.51% 

J+5 180483.5 

 

187482.2 

 

189549.9 

 

186763.2 

 

189123.3 

Savings bet. MFV & alternatives 

  

3.73% 

 

4.78% 

 

3.36% 

 

4.57% 

Savings bet. Same Services 23.44%   21.45%   24.99%   21.56%   24.95% 

f=0.75 (was 1.0) 145617.9 
 

152701.0 
 

151655.0 
 

151944.6 
 

151354.8 

Savings bet. MFV & alternatives 

  

4.64% 

 

3.98% 

 

4.16% 

 

3.79% 

Savings bet. Same Services -0.40%   -1.08%   0.00%   -1.10%   0.00% 

u=1.0 (was 1.2) 149177.0 

 

154374.3 

 

156989.6 

 

153640.1 

 

156738.1 

Savings bet. MFV & alternatives 

  

3.37% 

 

4.98% 

 

2.90% 

 

4.82% 

Savings bet. Same Services 2.03%   0.00%   3.52%   0.00%   3.56% 

v=7 (was 5, 40% up) 164279.6 

 

167704.6 

 

173325.4 

 

166970.4 

 

172979.7 

Savings bet. MFV & alternatives 

  

2.04% 

 

5.22% 

 

1.61% 

 

5.03% 

Savings bet. Same Services 12.36%   8.64%   14.29%   8.68%   14.29% 
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w=16.8 (was 12, 40% up) 156887.3   166984.0 

 

161966.6 

 

166226.8 

 

161532.3 

Savings bet. MFV & alternatives 

  

6.05% 

 

3.14% 

 

5.62% 

 

2.88% 

Savings bet. Same Services 7.31%   8.17%   6.80%   8.19%   6.72% 

x=16.8 (was 12, 40% up) 150176.0   170069.8   151655.0   169213.4   151354.8 

Savings bet. MFV & alternatives 

  

11.70% 

 

0.98% 

 

11.25% 

 

0.78% 

Savings bet. Same Services 2.71%   10.17%   0.00%   10.14%   0.00% 

 

The sensitivities for three different time values, namely values of in-vehicle time, 

waiting time, and access time are also analyzed. The detailed results of sensitivity to 

waiting time value are shown in Tables 5-23~5.27. The brief summary results of these 

three analyses are also provided in Table 5-28. When the value of in-vehicle time 

increases from 5 to 7 ($/hour, 40 % up), total costs increase by 8.64~14.29%, respectively. 

The magnitudes of total cost increases (8.64~14.29%) are relatively small even when the 

in-vehicle time value increases by 40 %. As noted in Table 5-28, the increased value of 

in-vehicle time increases total costs of the flexible bus operation, as expected. This shows 

that flexible bus operations are sensitive to changes of in-vehicle time value. MFV 

reduces total cost by 1.61~2.04% compared to conventional bus (i.e. SFC and MFC). The 

MFV cost reduction compared to flexible bus (i.e. SFF, MFF) is about 5.03~5.22%.  

With a waiting time value change, MFV reduces total cost by 2.88~6.05%. Total 

cost reductions in MFV are greater from SFC and MFC than other services (i.e., SFF or 
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MFF). As shown in Tables 5-20~5-24, a higher value of waiting time results in more bus 

frequencies, larger fleets, increased bus size(s), and increased route spacings (or service 

areas) to avoid expensive waiting cost. Compared to the Base Case results, the total costs 

increase by 6.72~8.19% when the waiting time value increases by 40%.  

The last sensitivity analysis explores the effects of the value of access time. Since 

flexible bus operations are assumed to provide door-to-door services, the value of access 

time only affects access cost in conventional bus operations. As access time value 

increases by 40%, SFC and MFC costs increase by about 10.14~10.17% while flexible 

costs remain around Base Case results. Optimized route spacings are reduced in order to 

reduce access distances for passengers. This change increases fleet sizes; therefore, total 

costs increase although users’ access cost decreases. MFV cost increases by 2.71%, 

relatively less than for SFC and MFC. The reason is that conventional bus in MFV serves 

only a small fraction of the entire demand. For the access time increase MFV can reduces 

cost by 11.70% and 11.25% from SFC and MFC, which is quite significant. However, the 

total cost gap between MFV and flexible services such as SFF and MFF is reduced 

significantly, since MFV cost is increased by the access time value while SFF and MFF 

total costs stay at Base Case values. 
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5.6. Chapter Summary   

In Chapter 5, optimization models are developed to provide bus services to 

multiple regions while allowing the use of different vehicle sizes which may be switched 

to different regions in different periods. A hybrid solution method is proposed, which is 

combination of a genetic algorithm and analytic optimization.  

To reduce total costs when demand and other factors vary over times and over 

regions, the Mixed Fleet Variable Type Bus (MFV) operation is preferable to alternatives. 

In order to compare the performances of MFV, we also compare four other types of bus 

operations, namely Single Fleet Conventional Bus (SFC), Single Fleet Flexible Bus 

(SFF), Mixed Fleet Conventional Bus (MFC), and Mixed Fleet Flexible Bus (MFF). For 

mixed fleet operations (i.e. MFC, MFF, and MFV), the demand thresholds between using 

large or small buses are analytically formulated using bus operation cost functions.  

To solve these five different problems (nonlinear mixed integer problem 

formulations) efficiently, a hybrid solution approach is proposed, which combines an 

Integer Genetic Algorithm (IGA) and analytic optimization. Such a hybrid algorithm 

helps reduce the computation time because some variables (i.e. headways and resulting 
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fleets) are optimized analytically. 

To examine the quality of solutions, one million candidate solutions are 

generated and compared to the best solution found by the hybrid algorithm. It is found 

that the solution from the approach proposed in this chapter is superior to any of the 

million random solutions. A small problem (i.e., two regions with four periods) is 

additionally generated to obtain complete enumeration solutions. Our hybrid method 

finds the identical solution obtained through complete enumeration. This confirms that 

the proposed hybrid method yields solutions that are at least near-optimal.  

 As shown in Table 5-7, benefits of sharing fleets throughout the system are 

explored. To do that, common vehicle size(s) are optimized over all regions as well as 

periods. Through this numerical evaluation, it is found that the cost of an integrated 

multi-zone system is lower than the sum of separately optimized results. Numerical 

evaluation also shows that MFV can yield significantly lower costs than the other four 

alternatives. Other numerical cases and sensitivity analyses confirm that the proposed 

approach finds good solution quickly.    
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Chapter 6 Analyzing Bus Services with Demand Elasticity     

 

6.1. Problem Statement  

Transit riders may have different service preferences based on fares, travel times, 

and other factors. In this chapter, different service qualities and demand elasticities are 

considered in conventional and flexible service formulations. Total cost minimization is 

not a reasonable objective when the demand is elastic, since the demand can be driven 

toward zero in minimizing costs. Instead of minimizing total system costs, the objective 

in this chapter is to maximize the social welfare, which is the sum of consumer surplus 

(i.e. net user benefit) and producer surplus (i.e. profit). Optimizable decision variables 

include fares for conventional and flexible buses, route spacings for conventional bus 

services, service areas for flexible bus services, as well as headways, vehicle sizes and 

fleet sizes for both service types.  

 

6.2. System Specifications and Assumptions 

Chapter 4.2 addressed assumptions for analyzing a general system with multiple 

local regions as well as multiple periods. Some assumptions are modified from Sections 
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4.2.2 and 4.2.3 in order to consider elastic demand in the following formulations. 

Henceforth, superscripts k and i correspond to region and time period, respectively, while 

subscripts c and f represent conventional and flexible services, respectively. The 

definitions, units and default values of variables used in this chapter are presented in 

Table 6-1.  

Table 6-1 Notation 

Variable Definition Baseline Value 

a hourly fixed cost coefficient for operating bus ($/bus hr) 30.0 

Ak service zone area(mile2)= LkWk/N′ - 

b hourly variable cost coefficient for bus operation ($/seat hr) 0.2 

d bus stop spacing (miles) 0.2 

𝐷𝑐𝑠𝑠 distance of one flexible bus tour in local region k and period i (miles) - 

𝐷𝑓𝑠 
equivalent line haul distance for flexible bus on region k 

(=(Lk+Wk)/z+2Jk/y),  (miles) 
- 

𝐷𝑠 
equivalent average bus round trip distance for conventional bus on 

region k (= 2Jk/y+ Wk /z+2 Lk),(miles)  
- 

𝐿𝑠𝑠𝑠  directional demand split factor 1.0 

𝐹𝑠𝑠 
fleet size for region k and period i (buses) 

subscript corresponds to (c = conventional, f=flexible) 
- 

ℎ𝑐 , ℎ𝑐𝑠𝑠 headway for conventional bus; for region k and period i (hours/bus) - 

ℎ𝑓 , ℎ𝑓𝑠𝑠 headway for flexible bus; for region k period i (hours/bus) - 

 k ,i index (k: region, i : period) - 

Jk line haul distance of region k (miles) - 

𝑙𝑐 , 𝑙𝑓 load factor for conventional and flexible bus (passengers/seat) 1.0 

Lk, Wk length and width of local region k (miles) - 

𝐿𝑠 equivalent average trip distance for region k (=(Jk/yc+ Wk /2zc+ Lk /2)) - 

n number of passengers in one flexible bus tour - 
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𝑁𝑐𝑠 ,𝑁𝑓𝑠 number of zones in local region for conventional and flexible bus - 

𝑄𝑠𝑠 actual demand density (trips/hr) - 

𝑞𝑠𝑠 potential demand density (trips/mile2/hr) - 

rk route spacing for conventional bus at region k (miles) - 

𝑅𝑐𝑠𝑠 round trip time of conventional bus for region k and period i (hours) - 

𝑅𝑓𝑠𝑠 round trip time of flexible bus for region k and period i (hours) - 

𝑆𝑐 ,𝑆𝑓  sizes for conventional and flexible bus (seats/bus) - 

𝐿𝑠𝑠 time duration for region k and period i - 

u average number of passengers per stop for flexible bus 1.2 

𝑉𝑐𝑠 local service speed fo/r conventional bus in period i (miles/hr) 30 

𝑉𝑓𝑠 local service speed for flexible bus in period i (miles/hr) 25 

𝑉𝑚 average passenger access speed (mile/hr) 2.5 

𝑣𝑣,𝑣𝑤, 𝑣𝑚 value of in-vehicle time, wait time and access time ($/passenger hr) 5, 12, 12 

𝑦 express speed/local speed ratio for conventional bus 
conventional bus = 1.8 

flexible  bus = 2.0 

Ø 
constant in the flexible bus tour equation (Daganzo, 1984) for flexible 

bus  
1.15 

* 
superscript indicating optimal value; subscript: c = conventional, 

f=flexible 
- 

𝑌𝑐𝑠𝑠 ,𝑌𝑓𝑠𝑠  
total social welfare in region k and period i 

subscript: c = conventional, f=flexible 
- 

𝑃𝑐𝑠𝑠 ,𝑃𝑓𝑠𝑠 
producer surplus (revenue – cost) in region k and period i 

subscript: c = conventional, f=flexible 
- 

𝑅𝑐𝑠𝑠 ,𝑅𝑓𝑠𝑠 
revenue in region k and period i 

subscript: c = conventional, f=flexible 
- 

𝐶𝑐𝑠𝑠 ,𝐶𝑓𝑠𝑠  
operating cost in region k and period i 

subscript: c = conventional, f=flexible 
- 

𝑓𝑐 , 𝑓𝑓 fares on the system ;subscript: c = conventional, f=flexible - 

𝐺𝑐𝑠𝑠 ,𝐺𝑓𝑠𝑠  
consumer surplus in region k and period i 

subscript: c = conventional, f=flexible 
 

𝑐𝑣 , 𝑐𝑤 , 𝑐𝑚 , 𝑐𝑜 elasticity factors  0.35, 0.7, 0.7, 0.07 

𝑇𝑇𝑇𝑐𝑘𝑘, 
𝑇𝑇𝑇𝑓𝑘𝑘 

the total user benefit in region k and period i 

subscript: c = conventional, f=flexible 
 

𝑌𝑐 ,𝑌𝑓  the total welfare of system  
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subscript: c = conventional, f=flexible 

𝐹𝐹𝑘𝑘  the amount of subsidy for region k and period i  

6.2.1. Common assumptions for conventional and flexible buses 

All service regions, 1… k, are rectangular, with lengths Lk and widths Wk. These 

regions may have different line haul distances Jk (miles, in region k) connecting a 

terminal and each region’s nearest corner.  

o The demand is uniformly distributed over space within each region and over 

time within each specified period.  

o The optimized bus sizes (Sc for conventional, Sf for flexible) are uniform 

throughout regions and time periods. 

o The average waiting time of passengers is approximated as a constant fraction 

alpha of the headway (hc for conventional, hf for flexible). Alpha is usually 

assumed to be 0.5. 

o Bus layover time is negligible.  

o Within each local region k, the average speed (𝑉𝑐𝑖 for conventional bus, 𝑉𝑓𝑖 

for flexible bus) includes stopping times. 

o External costs are assumed to be negligible. 
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Figure 6-1 Local Regions and Bus Operations 

 

6.3. Elastic Demand Functions and Operating Costs  

6.3.1. Conventional Bus Service  

In this section, the linear elastic demand function and the operating cost for 
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conventional services are formulated. Chang and Schonfeld (1993) consider elastic 

demand for conventional bus services for one region and multiple periods. For 

conventional services, their elastic demand function is modified here to accommodate 

multiple regions as well as multiple periods. Assumptions from Section 4.2.2 are still 

applicable, and additional assumptions are introduced in the following sections when they 

are required.  

6.3.1.1. Elastic Demand Function for Conventional Bus Service   

The demand density may be sensitive to in-vehicle time, waiting time, access 

time, and the fare of the system. A linear demand function, 𝑄𝑐𝑘𝑘, in region k and period i is 

formulated as follows.  

𝑄𝑐𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘 �1 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2
�𝑟𝑘+𝑑�
𝑉𝑥

− 𝑒𝑣
𝑀𝑐
𝑘

𝑉𝑐𝑖
− 𝑒𝑝𝑓𝑐�   (6.1) 

where 𝑧1  = usually 0.5 for uniform passenger arrivals, uniform bus arrivals  and 

sufficient bus capacity; 𝑧2 = usually 0.25 for rectilinear network. The elastic demand 

function in equation (6.1) can be rewritten as: 

𝑄𝑐𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐�    (6.2) 

where 𝐾𝑐𝑘 = 1 − 𝑒𝑥𝑧2
𝑑
𝑉𝑥
− 𝑒𝑣

𝑀𝑐
𝑘

𝑉𝑐𝑖
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6.3.1.2. Conventional Bus Operating Cost   

The conventional bus operating cost in region k and time period i is formulated 

below. Unit operating cost, 𝐵𝑐 , is assumed to be a function of vehicle size (i.e., 

𝐵𝑐 = 𝑎 + 𝑏𝑆𝑐 ): 

𝐶𝑐𝑘𝑘 = 𝐵𝑐 𝑁𝑐𝑘
𝐷𝑘𝑡𝑘𝑘

𝑉𝑐𝑖ℎ𝑐𝑘𝑖
        (6.3) 

6.3.2. Flexible Bus Service  

6.3.2.1. Elastic Demand Function for Flexible Bus Service  

The demand density of flexible bus services is affected by the in-vehicle time, 

waiting time and fare. Zhou et al (2008) considered a flexible service with elastic demand 

for only one time period and one region. Their solutions were obtainable with simple 

calculus since the problem was small. Here, the elastic demand function for flexible 

services is modified for multiple regions as well as multiple periods. The actual demand 

in region k and period i is formulated as: 

𝑄𝑓𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘�1 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣𝑀𝑓
𝑘𝑘 − 𝑒𝑝𝑓𝑓�     (6.4) 

where 𝑧1 = usually 0.5 uniform passenger arrivals, uniform bus arrivals and sufficient 

bus capacity. Equation (6.4) can be rewritten as  
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𝑄𝑓𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘

⎩
⎪
⎨

⎪
⎧

𝐾𝑓𝑘𝑘 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣
(∅𝐴𝑘�

𝑞𝑘𝑘ℎ𝑓
𝑘𝑘

𝑢 )

2𝑉𝑓
𝑖 − 𝑒𝑝𝑓𝑓

⎭
⎪
⎬

⎪
⎫

   (6.5) 

where 𝐾𝑓𝑘𝑘 = 1 − 𝑒𝑣 �
𝐿𝑘+𝑊𝑘

2𝑉𝑓
𝑖𝑦𝑓

+ 𝐽𝑘

𝑉𝑓
𝑖𝑦𝑓
�. 

6.3.2.2. Flexible Bus Operating Cost  

Flexible bus operating cost, 𝐶𝑓𝑘𝑘 , is formulated by multiplying unit bus operating 

cost, the number of zones in region k, and round travel time:  

𝐶𝑓𝑘𝑘 = 𝐵𝑓 𝑁𝑓𝑘
(𝐷𝑓

𝑘+𝐷𝑐𝑘𝑘)𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘         (6.6) 

𝐷𝑐𝑘𝑘 is the approximated flexible bus tour distance according to Stein (1978), in which 

 𝐷𝑐𝑘𝑘 = ∅√n𝐴𝑘 , and ∅=1.15 for the rectilinear space assumed here (Daganzo, 1984). The 

service area, 𝐴𝑘,  of flexible bus in region k is equal to 𝐿
𝑘𝑊𝑘

𝑁𝑓
𝑘 . Thus, by substituting 

average tour distance 𝐷𝑐𝑘𝑘 into equation (6.6), the flexible bus operating cost in region k 

and time period i is estimated as:  

𝐶𝑓𝑘𝑘 ≈ 𝐵𝑓 𝑁𝑓𝑘
(𝐷𝑓

𝑘+∅�n𝐴𝑘)𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 =

𝐵𝑓 𝑁𝑓
𝑘𝐷𝑓

𝑘𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 +

∅𝐵𝑓 𝐿𝑘𝑊𝑘𝑡𝑘𝑘�𝑞𝑘𝑘ℎ𝑓
𝑘𝑘 𝑢⁄

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘   (6.7)

  

6.4. Welfare Maximization without Financial Constraints 

For public transit services and in general, the social welfare is the sum of the 
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consumer surplus and the producer surplus. In this section, social welfare functions are 

formulated for both conventional and flexible bus services.  

6.4.1. Conventional Service Formulations  

The welfare of conventional bus services, 𝑌𝑐𝑘𝑘 , in region k and period i is the sum 

of the producer surplus, 𝑃𝑐𝑘𝑘 and the consumer surplus, 𝐺𝑐𝑘𝑘: 

𝑌𝑐𝑘𝑘 = 𝑃𝑐𝑘𝑘 + 𝐺𝑐𝑘𝑘         (6.8) 

The producer surplus 𝑃𝑐𝑘𝑘is the total revenue 𝑅𝑐𝑘𝑘 minus the operating cost 𝐶𝑐𝑘𝑘 of the 

conventional bus service:  

𝑃𝑐𝑘𝑘 = 𝑅𝑐𝑘𝑘 − 𝐶𝑐𝑘𝑘        (6.9) 

The total revenue 𝑅𝑐𝑘𝑘 in region k and period i is the fare multiplied by the total demand 

density in region k and time period i:  

𝑅𝑐𝑘𝑘 = 𝑓𝑐𝑄𝑐𝑘𝑘𝑡𝑘𝑘 = 𝑓𝑐𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐�  (6.10) 

where 𝐾𝑐𝑘 = 1 − 𝑒𝑥𝑧2
𝑑
𝑉𝑥
− 𝑒𝑣

𝑀𝑐
𝑘

𝑉𝑐𝑖
 

The producer surplus in equation (6.8) can be now rewritten as:  

𝑃𝑐𝑘𝑘 = 𝑓𝑐𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐� − 𝐵𝑐 𝑁𝑐𝑘

𝐷𝑘𝑡𝑘𝑘

𝑉𝑐𝑖ℎ𝑐𝑘𝑘
  (6.11) 

Now, the consumer surplus 𝐺𝑐𝑘𝑘 is formulated for region k and time period i. The 

consumer surplus is the total user benefit minus the prices that actually transit users pay. 
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The total social benefit function can be obtained by using the willingness to pay function 

in equation (6.2). The fare in equation (6.2) is formulated as a function of the demand 

density, 𝑄𝑐𝑘𝑘: 

𝑓𝑐 = 1
𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2

𝑟𝑘

𝑉𝑥
� − 𝑄𝑐𝑘𝑘

𝑒𝑝𝐿𝑘𝑊𝑘𝑞𝑘𝑘
     (6.12) 

The total user benefit is then obtained by integrating equation (6.12) over the demand 

density, 𝑄𝑐𝑘𝑘, which is expressed as:  

∫𝑓𝑐𝑑𝑄𝑐𝑘𝑘 = 1
𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑖 − 𝑒𝑥𝑧2

𝑟𝑘

𝑉𝑥
� 𝑄𝑐𝑘𝑘 −

�𝑄𝑐𝑘𝑘�
2

2𝑒𝑝𝐿𝑘𝑊𝑘𝑞𝑘𝑘
   (6.13) 

Equation (6.13) is rearranged by substituting the potential demand density 𝑞𝑘𝑘 using 

from equation (6.2). The total user benefit 𝑇𝑇𝑇𝑐𝑘𝑘 is now formulated as follows:  

𝑇𝑇𝑇𝑐𝑘𝑘 = 𝑄𝑐𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2

𝑟𝑘

𝑉𝑥
+ 𝑒𝑝𝑓𝑐�     (6.14) 

 The consumer surplus is now formulated as the total user benefit minus the fares 

that users actually pay to the conventional bus providers:  

 𝐺𝑐𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2

𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐�

2
   (6.15) 

 The total welfare in equation (6.8) that sums the producer surplus and consumer 

surplus in region k and period i is then expressed as:  

𝑌𝑐𝑘𝑘 = 𝑓𝑐𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐� − 𝐵𝑐 𝑁𝑐𝑘

𝐷𝑘𝑡𝑘𝑘

𝑉𝑐𝑖ℎ𝑐𝑘𝑘
+

𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐𝑘𝑘 − 𝑒𝑥𝑧2

𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐�

2
      (6.16) 
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The total welfare for the entire system is formulated as follows:  

𝑌𝑐 = ∑ ∑ 𝑌𝑐𝑘𝑘 = ∑ ∑ �𝑃𝑐𝑘𝑘 + 𝐺𝑐𝑘𝑘�𝐼
𝑖=1

𝐾
𝑘=1

𝐼
𝑖=1

𝐾
𝑘=1   

𝑌𝑐 = ∑ ∑ �𝑓𝑐𝐿
𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐

𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐� − 𝐵𝑐 𝑁𝑐

𝑘 𝐷𝑘𝑡𝑘𝑘

𝑉𝑐𝑖 ℎ𝑐
𝑘𝑘 +𝐼

𝑖=1
𝐾
𝑘=1

𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐

𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘

𝑉𝑥
− 𝑒𝑝𝑓𝑐�

2
�      (6.17) 

Equation (6.17) can also be written as:  

𝑌𝑐 = ���𝑓𝑐𝐿
𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐

𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘
𝑉𝑥
− 𝑒𝑝𝑓𝑐��

𝐼

𝑖=1

𝐾

𝑘=1

−���𝐵𝑐 𝑁𝑐
𝑘 𝐷𝑘𝑡𝑘𝑘

𝑉𝑐𝑖 ℎ𝑐
𝑘𝑘�

𝐼

𝑖=1

𝐾

𝑘=1

+ ���
𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑐𝑘 − 𝑒𝑤𝑧1ℎ𝑐

𝑘𝑘 − 𝑒𝑥𝑧2
𝑟𝑘
𝑉𝑥
− 𝑒𝑝𝑓𝑐�

2

�
𝐼

𝑖=1

𝐾

𝑘=1

 

          (6.18) 

The social welfare in equation (6.18) is maximized by optimizing the decision 

variables of vehicle size, fares, headways, fleet sizes, and route spacings (or the numbers 

of zones).  

6.4.2. Flexible Service Formulations  

The welfare of flexible bus services in region k and period i, 𝑌𝑓𝑘𝑘, is formulated as 

the sum of producer surplus 𝑃𝑓𝑘𝑘 and consumer surplus 𝐺𝑓𝑘𝑘:   

𝑌𝑓𝑘𝑘 = 𝑃𝑓𝑘𝑘 + 𝐺𝑓𝑘𝑘        (6.19) 

The producer surplus 𝑃𝑓𝑘𝑘 is computed by subtracting the flexible bus operating cost 

from the revenue of the flexible bus service:  
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𝑃𝑓𝑘𝑘 = 𝑅𝑓𝑘𝑘 − 𝐶𝑓𝑘𝑘        (6.20) 

The total revenue of the flexible bus service in region k and period i, 𝑅𝑓𝑘𝑘, is the flexible 

bus service fare multiplied by total demand density:  

𝑅𝑓𝑘𝑘 = 𝑓𝑓𝑄𝑓𝑘𝑘𝑡𝑘𝑘 = 𝑓𝑓𝐿𝑘𝑊𝑘𝑞𝑓𝑘𝑘𝑡𝑘𝑘�1 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣𝑀𝑓
𝑘𝑘 − 𝑒𝑝𝑓𝑓�   (6.21) 

Then, the producer surplus in region k and period i 𝑃𝑓𝑘𝑘 is:  

𝑃𝑓𝑘𝑘 = 𝑓𝑓𝐿𝑘𝑊𝑘𝑞𝑓𝑘𝑘𝑡𝑘𝑘�1 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣𝑀𝑓
𝑘𝑘 − 𝑒𝑝𝑓𝑓� − �

𝐵𝑓 𝑁𝑓
𝑘𝐷𝑓

𝑘𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 +

∅𝐵𝑓 𝐿𝑘𝑊𝑘𝑡𝑘𝑘�𝑞𝑓
𝑘𝑘ℎ𝑓

𝑘𝑘 𝑢⁄

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 �  

          (6.22) 

The consumer surplus 𝐺𝑓𝑘𝑘 in region k and period i the total social benefit of the 

flexible bus services minus the price that flexible bus users actually pay. The total social 

benefit of the flexible bus service 𝑇𝑇𝑇𝑓𝑘𝑘 can be found by integrating the willingness to 

pay function:  

𝑇𝑇𝑇𝑓𝑘𝑘 = ∫ 𝑓𝑓𝑑𝑄𝑓𝑘𝑘 = ∫ � 1𝑒𝑝 �𝐾𝑓
𝑘 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣

𝐷𝑐𝑘𝑘

2𝑉𝑓
𝑖� −

𝑄𝑓
𝑘𝑘

𝑒𝑝𝐿𝑘𝑊𝑘𝑞𝑘𝑘
� 𝑑𝑄𝑓𝑘𝑘   

𝑇𝑇𝑇𝑓𝑘𝑘 =
𝑄𝑓
𝑘𝑘

𝑒𝑝
�𝐾𝑓𝑘 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣

𝐷𝑐𝑘𝑘

2𝑉𝑓
𝑖� −

�𝑄𝑓
𝑘𝑘�

2

2𝑒𝑝𝐿𝑘𝑊𝑘𝑞𝑘𝑘
   (6.23) 

By substituting the potential demand density 𝑞𝑘𝑘 from equation (6.4), the total social 

benefit of the flexible bus in region k and period i 𝑇𝑇𝑇𝑓𝑘𝑘 becomes:  

 𝑇𝑇𝑇𝑓𝑘𝑘 =
𝑄𝑓
𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑓𝑘 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣

𝐷𝑐𝑘𝑘

2𝑉𝑓
𝑖 + 𝑒𝑝𝑓𝑓�     (6.24) 

The consumer surplus of the flexible bus service is now formulated as the total 
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social benefit minus the price that users actually pay to the flexible bus providers:  

𝐺𝑓𝑘𝑘 = 𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑓𝑘 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣

𝐷𝑐𝑘𝑘

2𝑉𝑓
𝑖 − 𝑒𝑝𝑓𝑓�

2
    (6.25) 

The total welfare of the flexible bus service in region k and period i is now 

expressed as:  

𝑌𝑓𝑘𝑘 = 𝐺𝑓𝑘𝑘 + 𝑃𝑓𝑘𝑘    

𝑌𝑓𝑘𝑘 =
𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑓𝑘 − 𝑒𝑤𝑧1ℎ𝑓

𝑘𝑘 − 𝑒𝑣
𝐷𝑐𝑘𝑘

2𝑉𝑓
𝑖 − 𝑒𝑝𝑓𝑓�

2

+ 𝑓𝑓𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘�1 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 −

𝑒𝑣𝑀𝑓
𝑘𝑘 − 𝑒𝑝𝑓𝑓� − �

𝐵𝑓 𝑁𝑓
𝑘𝐷𝑓

𝑘𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 +

∅𝐵𝑓 𝐿𝑘𝑊𝑘𝑡𝑘𝑘�𝑞𝑘𝑘ℎ𝑓
𝑘𝑘 𝑢⁄

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 �     (6.26) 

 The social welfare for the entire flexible bus services is formulated as follows:   

𝑌𝑓 = ∑ ∑ 𝑌𝑓𝑘𝑘 = ∑ ∑ �𝐺𝑓𝑘𝑘 + 𝑃𝑓
𝑘𝑘�𝐼

𝑖=1
𝐾
𝑘=1

𝐼
𝑖=1

𝐾
𝑘=1   

𝑌𝑐 = ∑ ∑ �
𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑓

𝑘 − 𝑒𝑤𝑧1ℎ𝑓
𝑘𝑘 − 𝑒𝑣 𝐷𝑐

𝑘𝑘

2𝑉𝑓
𝑖 − 𝑒𝑝𝑓𝑓�

2
+ 𝑓𝑓𝐿

𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘 �1−𝐼
𝑖=1

𝐾
𝑘=1

𝑒𝑤𝑧1ℎ𝑓
𝑘𝑘 − 𝑒𝑣𝑀𝑓

𝑘𝑘 − 𝑒𝑝𝑓𝑓� − �
𝐵𝑓 𝑁𝑓

𝑘𝐷𝑓
𝑘𝑡𝑘𝑘

𝑉𝑓
𝑖 ℎ𝑓

𝑘𝑘 +
∅𝐵𝑓 𝐿

𝑘𝑊𝑘𝑡𝑘𝑘�𝑞𝑘𝑘ℎ𝑓
𝑘𝑘 𝑢�

𝑉𝑓
𝑖 ℎ𝑓

𝑘𝑘 � �    (6.27) 

Equation (6.27) can also be written as:  

𝑌𝑓 = ∑ ∑ �𝑓𝑓𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘�1 − 𝑒𝑤𝑧1ℎ𝑓𝑘𝑘 − 𝑒𝑣𝑀𝑓
𝑘𝑘 − 𝑒𝑝𝑓𝑓��𝐼

𝑖=1
𝐾
𝑘=1 − ∑ ∑ �

𝐵𝑓 𝑁𝑓
𝑘𝐷𝑓

𝑘𝑡𝑘𝑘

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 +𝐼

𝑖=1
𝐾
𝑘=1

∅𝐵𝑓 𝐿𝑘𝑊𝑘𝑡𝑘𝑘�𝑞𝑘𝑘ℎ𝑓
𝑘𝑘 𝑢⁄

𝑉𝑓
𝑖ℎ𝑓
𝑘𝑘 � + ∑ ∑ �

𝐿𝑘𝑊𝑘𝑞𝑘𝑘𝑡𝑘𝑘

2𝑒𝑝
�𝐾𝑓

𝑘 − 𝑒𝑤𝑧1ℎ𝑓
𝑘𝑘 − 𝑒𝑣 𝐷𝑐

𝑘𝑘

2𝑉𝑓
𝑖 − 𝑒𝑝𝑓𝑓�

2
�𝐼

𝑖=1
𝐾
𝑘=1    (6.28) 

 Equation (6.28) must be maximized by optimizing the decision variables of 
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flexible bus size, fares, headways, fleet sizes, and service areas. 

6.4.3. Solution Method: Purely Numerical Approach  

The welfare formulations designed for both conventional and flexible services 

are nonlinear and they have both integer and continuous variables. In the literature, 

analytic optimization was applicable to problems of one region. The problem of multiple 

regions as well as multiple periods cannot be solved by analytic optimization. A 

numerical method (i.e., a genetic algorithm) is chosen to solve the proposed formulations. 

The genetic algorithm used in this chapter is called a real coded genetic algorithm 

(RCGA). Such an RCGA can efficiently handle integer variables.  

6.4.4. Discussions with Numerical Example  

In this section, a numerical analysis is designed to check formulations without 

financial constraints. For this case study, the maximum allowable headway constraints 

are enforced. The vehicle size (seats/bus) is one of the input values, and its sensitivity to 

the system welfare is also analyzed.  
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6.4.1.1. Input Values   

For a numerical example, three local regions and four time periods are considered. 

The baseline input values are shown in Table 6-1. The potential demand densities, sizes 

of regions, and time periods are shown in Table 6-2. The minimum and maximum 

headways are assumed to be 3 and 60 minutes, respectively. The minimum and maximum 

fleet sizes can be obtained with headway boundaries. For the vehicle size inputs, 7, 10, 16, 

20, 25, 35, and 45 seats are the acceptable values.  

Regions A, B, and C have the same demand densities. However, the regional 

characteristics are different. Region A is 4 mile2, region B is 12.25 mile2, and region C is 

25 mile2. Therefore, the total demand in region C exceeds those in regions A or B, 

although the demand densities are the same. The same demand density inputs are 

assumed initially for all regions, in order to identify the effects of region size.  

Table 6-2 Potential Demand, Service Time, Line-haul Distance, and Sizes of Regions 

Demand (trips/mile2/hour) 

Region 

Period 
A B C 

1 90 90 90 

2 40 40 40 

3 20 20 20 

4 10 10 10 

Time(hours) 
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Region 

Period 
A B C 

1 4 4 4 

2 6 6 6 

3 8 8 8 

4 6 6 6 

Region A B C 

Line-haul Distance (miles) 6 6 6 

Length of Region (miles) 2 3.5 5 

Width of Region (miles) 2 3.5 5 

Regional Area (mile2) 4 12.25 25 

6.4.1.2. Discussion of Results   

Constrained optimization problems are solved with a real coded genetic 

algorithm (RCGA). The maximum allowable headways are enforced as constraints. The 

first order derivatives of the fare with respect to the total welfare formulations (i.e., 

equations (6.18) and (6.28)) are set to zero. Then, optimized fares found for both 

conventional and flexible services are zero. However, Figure 6-2 shows that optimized 

fares of conventional services with vehicle sizes 7 and 10 seats are non-zero. With these 

smaller vehicle sizes, optimized headways are less than three minutes, thereby violating 

the low boundary of the headway. In the other words, all demand cannot be served with 

the minimum 3 minutes headways. Thus, it is confirmed that the optimization model 

cannot find any feasible solutions with the conventional vehicle sizes of 7 or 10 seats 
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because the input demand is too high. It is possible that if demand inputs were lower, 

conventional services with 7 or 10 seats buses could have solutions with optimized fares 

of zero. The flexible services also cannot find any feasible solutions for vehicle sizes of 7, 

10, and 16 seats.  

 

Figure 6-2 Optimized Fares with Vehicle Size Inputs 

Figure 6-3 shows that the welfare is maximized (at 120219 $/day) when the 

conventional bus size is 25 seats. For the flexible services, the maximum welfare of 

flexible services is 113999 $/day with 20 seat vehicles.  
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Figure 6-3 Welfare versus Vehicle Size Inputs 

Table 6-3 shows the actual demand density results of conventional and flexible 

services. The actual demands of conventional services among regions A, B and C are 

very close (less than one trip/mile2/hour). These results confirm that the size of regions 

does not significantly affect the demand elasticity. However, it is found that the actual 

trips for flexible services are higher than the actual trips for conventional services.  

The main reason for higher actual trips in flexible services is that flexible 

services have door-to-door services, and hence zero access costs. However, conventional 

services include access times in the elastic demand function. Thus, it is noted that when 
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services are preferable to conventional services in terms of the total actual trips served.  

Table 6-3 Demand with Elasticity 

Demand (trips/mile2/hour) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 74.21 73.59 73.35 77.01 75.86 74.20 

2 32.53 31.74 31.47 33.68 32.83 32.30 

3 15.81 15.26 15.36 16.05 16.32 15.98 

4 7.22 6.72 7.30 7.85 7.55 8.10 

 

Table 6-4 shows the optimized number of zones for conventional and flexible 

services. The numbers of zones for conventional services are two, four, and six for 

regions A, B, and C, respectively. The route spacings (which can be obtained by Width of 

region / Number of zones) are then 1.0, 0.875, and 0.833 miles for regions A, B, and C, 

respectively. The number of zones increases as the width of a region increases.  

The sizes of regions A, B, and C are 4, 12.25, and 25 mile2, respectively, as 

shown in Table 6-2. The numbers of zones for flexible services are one, three, and five 

for regions A, B, and C, respectively. Hence, optimized service areas for flexible services 

are 4.0, 4.08, and 5.0 mile2 for regions A, B, and C, respectively. Additional zones 

increase operating costs. Thus, it is concluded that the optimal areas of flexible services 
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with given inputs range between four and five square miles.  

Table 6-4 Optimized Number of Zones  

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

Number of Zones  2 4 6 1 3 5 

Route Spacings (mile)  1.0 0.875 0.833 - - - 

Service Areas (mile2) - - - 4.0 4.08 5.0 

 

The optimized headways for both conventional and flexible services are provided 

in Table 6-5. For conventional services, period 1, which has higher demand densities than 

other periods, has optimized headways of about four to six minutes. Optimized headways 

increase as demand densities decrease. It is also found that headways of flexible services 

are generally lower than headways of conventional services if they are compared in the 

same period and the same region. This indirectly explains why flexible services produce 

more actual trips than conventional services. For period 1, flexible service headways are 

slightly above 3 minutes, which is the minimum headway boundary.  

 For conventional services, the longest headway, which is about 31 minutes, is 

used for period 4 in region B. For flexible services, period 4 in region B has headways of 

about 21 minutes.  
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Table 6-5 Optimized Headways in Minutes 

Headways (minute) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 5.89 6.24 4.86 3.53 3.59 3.17 

2 7.85 10.41 9.72 6.77 7.68 6.60 

3 11.78 15.61 12.96 13.54 10.52 9.84 

4 23.56 31.22 19.44 18.43 21.03 10.83 

 

 Table 6-6 shows optimized fleet sizes for conventional and flexible services. As 

expected, period 1 requires larger fleet sizes than other periods. It is also noted that 

flexible services require much larger fleet sizes than conventional services. Conventional 

services require a total of 166 vehicles with 25 seats, while flexible services require 268 

vehicles with 20 seats. Larger fleet sizes imply higher operating costs.  

Table 6-6 Optimized Fleet Sizes  

Fleet Sizes (buses) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 4 5 8 12 13 17 

2 3 3 4 6 6 8 

3 2 2 3 3 4 5 

4 1 1 2 2 2 4 

Total Fleet Size (buses) 166 268 
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Table 6-7 provides costs and profits for conventional and flexible services. The 

analytically optimized fares using equations (6.18) and (6.28) are zero. Numerically 

optimized fares for both conventional and flexible services also show that fares are zero. 

Thus, without subsidy, revenues of conventional and flexible services in any periods are 

zero, and thus total revenues are also zero. Therefore, profits are simply negative values 

of costs in each period and each region. Costs and profits are shown per hour because 

each period has a different duration. As shown in Figure 6-7, the total cost of flexible 

services is about 52% higher than the total cost of conventional services.  

Table 6-7 Costs and Profits for Conventional and Flexible Services   

Cost ($/hour) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 280.0 700.0 1680.0 408.0 1326.0 2890.0 

2 210.0 420.0 840.0 204.0 612.0 1360.0 

3 140.0 280.0 630.0 102.0 408.0 850.0 

4 70.0 140.0 420.0 68.0 204.0 680.0 

Total Cost ($/day) 31640 48144 

Profit ($/hour) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 
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1 -280.0 -700.0 -1680.0 -408.0 -1326.0 -2890.0 

2 -210.0 -420.0 -840.0 -204.0 -612.0 -1360.0 

3 -140.0 -280.0 -630.0 -102.0 -408.0 -850.0 

4 -70.0 -140.0 -420.0 -68.0 -204.0 -680.0 

Total Profit ($/day) -31640 -48144 

 

Table 6-8 shows results of the consumer surplus from conventional and flexible 

services. Period 1 in region A has the highest consumer surplus, which is 42705$/period 

for conventional services and 43692 $/period. It is found that the consumer surplus of 

flexible services exceeds the one for conventional services. The main reason is that with 

the elasticity, the actual trips for flexible services exceed those for conventional services. 

The main reason for the difference in actual trips is the access time factor, as already 

discussed. The total consumer surplus in flexible services is $162143/day while the total 

consumer surplus in conventional services is $151859/day.  

Table 6-8 Consumer Surplus   

Consumer Surplus ($/period) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 6994.1 21060.7 42705.5 7531.7 22381.2 43692.5 

2 4534.1 13218.9 26523.8 4862.4 14148.1 27936.9 

3 2854.9 8151.2 16842.9 2944.8 9321.6 18240.9 

4 892.5 2370.6 5709.4 1056.3 2989.8 7037.4 
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Total ($/day) 151859 162143 

 

From previously discussed results, it is found that flexible services have a larger 

consumer surplus than conventional services. Flexible services also have higher costs 

than conventional services, which explain why flexible services have a larger negative 

profit (i.e., loss) than conventional services.  

Table 6-9 provides welfare results of conventional and flexible services for each 

period and region. It is noted that the total welfare of conventional services exceeds that 

of flexible services. For region A, the welfare of flexible services exceeds that of 

conventional services. For regions B and C, conventional services produce greater 

welfare than flexible services. As discussed, the higher cost of flexible service is the main 

reason why welfare is higher in conventional services than in flexible services. The total 

welfare difference between conventional and flexible services is about 5.45% 

(=120219/113999).  

Table 6-9 Social Welfare   

Welfare ($/period) 

 Conventional Services Flexible Services 

Region 

Period 
A B C A B C 

1 5874.1 18260.7 35985.5 5899.7 17077.2 32132.5 
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2 3274.1 10698.9 21483.8 3638.4 10476.1 19776.9 

3 1734.9 5911.2 11802.9 2128.8 6057.6 11440.9 

4 472.5 1530.6 3189.4 648.3 1765.8 2957.4 

Total ($/day) 120219 113999 

 

6.5. Welfare Maximization with Financial Constraint 

In addition to vehicle capacity constraints, financial (i.e., subsidy) constraints are 

considered in this section. With various subsidy inputs, the resulting variations of fares, 

headways and fleet sizes are explored. To consider additional financial constraints, 

formulations for conventional and flexible services are modified. 

The total welfare Yc is the sum of the welfare for all time and all regions, shown 

in equation (6.29). The financial constraint is expressed in equation (6.30). The amount of 

subsidies is an input value. If zero subsidies are provided, the financial constraint simply 

becomes that the profit should be non-negative. The maximum allowable headway 

(service capacity) constraints are also applied in equation (6.31): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑐 = ∑ ∑ �𝑌𝑐𝑘𝑘�𝐼
𝑖=1

𝐾
𝑘=1       (6.29) 

subject to 

∑ ∑ �𝑃𝑐𝑘𝑘�𝐼
𝑖=1

𝐾
𝑘=1 + ∑ ∑ �𝐹𝐹𝑘𝑘�𝐼

𝑖=1
𝐾
𝑘=1 ≥ 0      (6.30) 

ℎ𝑐𝑘𝑘 ≤ ℎ𝑐,𝑚𝑚𝑚
𝑘𝑘 = 𝑆𝑐𝑙𝑐

𝑟𝑘𝑊𝑘𝑑𝑠𝑘𝑖𝑄𝑐𝑘𝑘
       (6.31) 
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6.5.1. Flexible Service Formulations  

Flexible service formulations that consider financial constraints are provided in 

equations (6.32~6.34). The maximum allowable headway constraints for flexible services 

in equation (6.34) are different from those for conventional services in equation (6.31):  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑓 = ∑ ∑ �𝑌𝑓𝑘𝑘�𝐼
𝑖=1

𝐾
𝑘=1       (6.32) 

subject to 

∑ ∑ �𝑃𝑓𝑘𝑘�𝐼
𝑖=1

𝐾
𝑘=1 + ∑ ∑ �𝐹𝐹𝑘𝑘�𝐼

𝑖=1
𝐾
𝑘=1 ≥ 0      (6.33) 

ℎ𝑓𝑘𝑘 ≤ ℎ𝑓,𝑚𝑚𝑚
𝑘𝑘 = 𝑆𝑓𝑙𝑓

𝐴𝑘𝑄𝑓
𝑘𝑘        (6.34) 

6.5.2. Solution Method: Purely Numerical Approach 

Welfare formulations for conventional and flexible services are highly nonlinear. 

In addition to the nonlinear objective functions, constraints are moved to the objective 

function with the Lagrange multiplier. Then, the objective function becomes more 

complex. Since objective functions are nonlinear and variables are continuous or integer, 

a real coded genetic algorithm (RCGA) is chosen to solve formulations. Fares for either 

conventional or flexible services are continuous variables, and fleet sizes are integer 

variables. Headways can be obtained from the optimized fleet sizes.  



- 185 - 

 

6.5.3. Discussion of Numerical Examples  

In this numerical example, financial (subsidy) constraints are enforced in addition 

to maximum allowable headway constraints. Different input values for subsidy are 

considered through sensitivity analysis. As explained below, the sum of the total revenue 

and the total subsidy should be larger or equal to the total cost. If the total subsidy is zero, 

the total revenue minus the total cost (i.e. the profit) should be non-negative. The total 

subsidy is an input value so that unit subsidy ($/potential trip) is used to calculate the 

total amount of subsidies in this numerical analysis.  

It is possible to jointly optimize vehicle sizes, numbers of zones, headways, and 

fleet sizes with a financial constraint. However, computation times are much longer and 

optimized vehicle sizes and numbers of zones are not significantly different from the ones 

in the financially unconstrained case.  Thus, by using the optimized vehicle sizes and 

numbers of zones from financially unconstrained results, the complexity of financially 

constrained welfare formulations is reduced and converged solutions are found relatively 

quickly. It is also reasonable to think that route spacings of conventional services, service 

areas of flexible services, and vehicle sizes can be determined in an earlier planning level. 

The service providers (operators) may then want to re-optimize service frequencies and 
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fares based on the subsidy.  

Thus, headways, fleet sizes, and fares are optimized here with the various subsidy 

inputs. The value of route spacings for conventional services, service areas for flexible 

services, and vehicle sizes are adapted from the solution of the financially unconstrained 

optimization model. The main focus of this analysis is on exploring how optimized fares 

are changed with different financial constraints (i.e., subsidy). Results of conventional 

services will be discussed first, and then results of flexible services will be discussed.  

6.5.3.1. Results for Conventional Services  

Subsidy inputs are applied from zero to 1.2$/potential trip with 0.2$/potential trip 

increment. Table 6-10 provides detailed results for conventional services with various 

subsidy inputs.  

For conventional services, seven sensitivity cases are considered, as shown in 

Figure 6-4. The amount of subsidy increases linearly. The total number of potential trips 

for the system with given inputs is 33825. Thus, when the unit subsidy is 1.0$/potential 

trip, the total subsidy is $33825/day.  
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Figure 6-4 Total Amount of Subsidy 

 Figure 6-5 provides optimized fares of conventional services from various subsidy 

inputs. For the zero subsidy case, the fare for conventional services is 1.3$/actual trip. As 

the subsidies increases, the optimized fare decreases quite linearly. When the unit subsidy 

is about 1.0$/potential trip, the fare becomes zero, which means the total revenue is zero, 

and all the costs of bus operations are covered by the subsidy.  
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Figure 6-5 Fares for Conventional Services with Subsidies 

Figure 6-6 provides profit results from various financial constraints (i.e., subsidy 

inputs). With the subsidy provision, the revenue decreases since the optimized fare 

decreases. Thus, the profit also decreases (as expected) because the revenue decreases. In 

the formulation the sum of the profit and subsidy can be either zero or positive. For the 

zero subsidy case result, the profit is positive, which means the optimized fare could have 

been slightly reduced to use this available budget.  
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Figure 6-6 Profits of Conventional Services with Subsidies 

Figure 6-7 shows total costs of conventional services for various subsidy inputs. 

It is interesting to note that the cost of the zero subsidy case is lower than other subsidy 

cases. From the 0.2 $/potential trip to 1.2$/potential trip, total costs are identical, which 

means, their resulting fleet sizes do not change over different subsidy inputs. It explains 

why fleet sizes and headways do not change significantly in conventional services with 

financial constraints while fares are changed.  
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Figure 6-7 Total Costs of Conventional Services with Subsidies 

The total consumer surplus in the zero subsidy case is $114699/day, as shown in 

Figure 6-8. Consumer surplus results of other subsidy cases show that the consumer 

surplus increases until the unit subsidy is 1.0$/potential trip. After that, the consumer 

surplus does not change significantly. When the unit subsidy is 1.2$/potential trip, the 

consumer surplus for the conventional services is 151859$/day. The consumer surplus 

difference between the subsidy inputs 1.0 and 1.2 $/potential trip is 39$/day, which is tiny 

if 39$ is divided by the total actual trips served per day. Thus, it can be confirmed that the 

consumer surplus converges beyond a unit subsidy of 1.0$/potential trip.  
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Figure 6-8 Consumer Surplus of Conventional Services with Subsidies 

Figure 6-9 shows the social welfare results for conventional services. The 

welfare of the zero subsidy case is 118321$/day, while the maximum system welfare is 

found as 120219$/day from the unit subsidy of 1.0$/potential trip or more. As expected, 

when the total cost is fully covered by subsidies, the system welfare becomes identical to 

the one without financial constraints (discussed in the previous section). There is no 

unusual observation among comprehensive sets of sensitivity analyses. Thus, numerical 

results confirm that a RCGA used here finds good and consistent solutions although it 

does not guarantee the global optimality of solutions.  
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Figure 6-9 Total System Welfares of Conventional Services with Subsidies 

Table 6-10 summarizes all results of conventional services with various subsidy 

input values. One further finding worth noting is that actual trips increase as the subsidy 

increases. For instance, the zero subsidy case serves about 68.7% of the total potential 

demand, but the fully subsidized case carries about 79.2% of the total potential demand.    

Table 6-10 Results of Conventional Services with Financial Constraints 

Unit Subsidy ($/trip) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 
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Revenue 30221.6 24875.0 18110.4 11345.0 4580.0 38.8 0.0 

Cost 26600.0 31640.0 31640.0 31640.0 31640.0 31640.0 31640.0 

Profit 3621.6 -6765.0 -13529.6 -20295.0 -27060.0 -31601.2 -31640.0 

Subsidy 0.0 6765.0 13530.0 20295.0 27060.0 33825.0 40590.0 

Profit + Subsidy 3621.6 0.0 0.4 0.0 0.0 2223.8 8950.0 

Consumer Surplus 114699.0 125751.3 133131.3 140283.9 147242.9 151819.8 151858.6 

Welfare 118321.0 118986.3 119601.7 119988.9 120183.0 120218.6 120218.6 
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Total Actual Trips  23247 24381 25087 25754 26386 26793 26797 

Total Actual Trips  

/ Total Potential Trips  68.7% 72.1% 74.2% 76.1% 78.0% 79.2% 79.2% 

6.5.3.2. Results for Flexible Services  

Figures 6-10~6-15 provide results for flexible services with financially 

constrained cases (i.e., sensitivity analyses of subsidies with respect to welfares). Table 6-

11 also provides details on these results.  

Figure 6-10 shows optimized fares for flexible services with different subsidy 

inputs. In the zero subsidy case, the optimized fare is 1.91$/actual trip, which exceeds the 

optimized fare (1.30$/actual trip, Table 6-5) of conventional services with the zero 

subsidy case. The higher flexible service operating cost results in the higher flexible 

service fare. The optimized fares decrease as the subsidy increases. When the unit 

subsidy is 1.4$/potential trip, the optimized fare for flexible services is close to zero 

(three cents per actual trip). When the unit subsidy is 1.4$/potential trip, the total subsidy 

is 47355$/day, as shown in Figure 6-11. For conventional services (shown in Figure 6-5), 

the optimized fare becomes zero when the subsidy reaches 1.0$/potential trip. Thus, it is 

found that flexible services require larger subsidies than conventional services to cover 

all the operating cost. 
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Figure 6-10 Fares for Flexible Services with Subsidies 

 

Figure 6-11Total Amount of Subsidy 

Figure 6-12 provides results of the profit. For the zero subsidy case, flexible 

services have zero profit, as expected; this means the operating cost is exactly equal to 
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the revenue. The profit decreases as the subsidy increases because the optimized fare 

decreases.  

The cost of flexible service operation increases with the provision of subsidies 

since the financial subsidy allows providing more service frequencies. As shown in 

Figure 6-13, the total operating cost increases with the larger subsidy. The absolute value 

of the minimum profit in Figure 6-12 and the absolute value of the maximum cost in 

Figure 6-13 are identical (i.e., unit subsidy of 1.8$/actual trip). This can also explain why 

the optimized fare and revenue are zero.   

 

Figure 6-12 Profits of Flexible Services with Subsidies 
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Figure 6-13 Costs of Flexible Services with Subsidies 

The consumer surplus with the zero subsidy case is 109693$/day, as shown in 

Figure 6-14. The higher subsidies result in the reduced fare and increase in actual trips.  

Therefore, the consumer surplus increases as the subsidy increases. The maximum 
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Figure 6-14 Consumer Surplus of Flexible Services with Subsidies 

Figure 6-15 provides results of the system welfare for flexible services. The 
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the system welfare is not decreasing after reaching its maximum. Therefore, results 

confirm that unit subsidies beyond about 1.2$/potential trip yield no additional social 

benefits.   

 

Figure 6-15 Total System Welfares of Flexible Services with Subsidies 

 In the zero subsidy case, 67.7% of the total potential demand yields actual trips. 

However, when the operating cost is fully subsidized, about 81.9% of the potential 

demand is served. 
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Revenue 43452.0 37419.1 31146.0 25197.0 18842.8 12755.2 7842.3 789.0 0.0 0.2 

Cost 43452.0 43792.0 44676.0 45492.0 45900.0 46580.0 47600.0 48144.0 48144.0 48144.0 

Profit 0.0 -6372.9 -13530.0 -20295.0 -27057.2 -33824.8 -39757.7 -47355.0 -48144.0 -48143.8 

Subsidy 0.0 6765.0 13530.0 20295.0 27060.0 33825.0 40590.0 47355.0 54120.0 60885.0 

Profit + 

Subsidy 
0.0 392.1 0.0 0.0 2.8 0.2 832.3 0.0 5976.0 12741.2 

Consumer 

Surplus 
109692.6 117674.1 125490.7 133186.4 140684.4 147646.5 153750.4 161353.5 162143.5 162143.3 

Welfare 109692.6 111301.2 111960.7 112891.4 113627.2 113821.7 113992.6 113998.5 113999.5 113999.5 

Total 

Actual 

Trips  

22774.8 23597.9 24359.6 25102.6 25803.4 26434.1 26977.1 27635.3 27702.9 27702.9 

Total 

Actual 

Trips 

/ Total 

Potential 

Trips 

67.3% 69.8% 72.0% 74.2% 76.3% 78.1% 79.8% 81.7% 81.9% 81.9% 

 

6.6. Chapter Summary  

In this chapter, conventional and flexible services are formulated with the 

demand elasticity. The actual ridership is formulated as a linear function using elastic 

factors of the fare, in-vehicle time, waiting time, and access time. The welfare, which is 

sum of the consumer surplus and the producer surplus, are also formulated for multiple 

regions as well as multiple time periods for conventional and flexible services. Two 

constrained optimization models are analyzed. They have: 1) an objective of the 
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maximum system welfare with the service capacity (maximum headway) constraints, and 

2) an objective of the maximum system welfare with the service capacity and financial 

constraints, for both conventional and flexible services.  

Objective functions (i.e., welfare functions) are highly nonlinear and decision 

variables include continuous and integer variables. Such nonlinear mixed integer 

formulations are known as NP-hard problems, and have no proven method for finding 

their exact optimum solution. Commercial optimization programs such as GAMS or 

LINGO are excluded because they only guarantee a local solution. Thus, a genetic 

algorithm, which is an iterative global solution search technique, is chosen to solve 

formulations. 

In numerical examples, the fares, route spacings for conventional services, 

service areas for flexible services, headways and fleet sizes are optimized. The numerical 

examples show that the welfare of conventional services exceeds those of flexible 

services, with given input values. Numerical examples also explore the sensitivity of 

vehicle sizes and the sensitivity of the subsidies with respect to the social welfare for 

conventional and flexible services. For both conventional and flexible services, the actual 

trips increase as the subsidies increase.  
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For conventional services, the problem of one local region with multiple periods 

has been solved in previous studies. For flexible services, a problem with one local region 

and one period has also been solved in the literature. These were all solved with analytic 

optimization (and with approximations). This chapter extends the welfare problems of 

conventional and flexible services to the multiple regions and multiple periods.  
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Chapter 7 Conclusions and Future Studies   

 

This dissertation analyzes several interesting problems in order to integrate bus 

transit systems. Contributions of this research are valuable for bus transit planning 

purposes. To be implemented realistically, further research is required,  as discussed in 

the future studies section. Findings and contributions of this research are discussed below.   

 

7.1. Findings and Contributions    

7.1.1. Integrating Bus Services with Conventional and Flexible Buses  

In Chapter 3, optimization models are developed for analyzing and integrating 

conventional bus services (having fixed routes and schedules) and flexible bus services 

(many-to-one or one-to-many demand patterns). Flexible services are formulated to pick- 

up or drop passengers concurrently. The optimization models are improved from those of 

Chang and Schonfeld (1991a). More specifically, (1) cost functions in conventional bus 

service are modified to reflect two-directional demands in round trips, (2) flexible service 

headways are optimized rather than using maximum allowable headways, (3) an analysis 

is presented that compares conventional, flexible and variable-type bus services which 
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can switch between conventional and flexible service as the demand changes over time. 

For a terminal connected to one local region, numerical analyses indicate that 

variable-type bus operations can reduce the total cost compared to purely conventional 

bus or purely flexible bus services. In the baseline case, variable-type services decrease 

costs by about 1.29% compared to purely conventional services and about 10.64% 

compared to purely flexible services. Moreover, various sensitivity analyses are used to 

explore how major parameter changes affect the optimized results. In Case IV (when 

service periods are adjusted to increase the variability of demand over time), it is found 

that variable-type services decrease costs by more than 3.41% and 13.08 %, respectively, 

compared to purely conventional and flexible services. These results confirm that such 

variable-type services are especially promising for systems whose demand (1) varies 

greatly over time and (2) straddles the threshold between conventional and flexible 

services.  

If transit demand has heterogeneous characteristics, it may be desirable to 

separate demand with homogeneous patterns. The analysis of multiple regions is then 

required to handle such demand variability in the transit services coverage. Thus, Chapter 

4 extends the Single Fleet Variable Type Service (SFV) to problems of multiple regions 
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as well as multiple periods. Since analytic optimization is difficult to extend to problems 

with multiple regions as well as multiple periods, a combination of analytic optimization 

and a genetic algorithm is developed to find solutions. The base case results and 

sensitivity analyses show that SFV becomes preferable to Single Fleet Conventional 

Services (SFC) or Single Fleet Flexible Services (SFF) when demand densities fluctuate 

over times and over regions. It is also shown that when demand densities are very high, 

SFV provides conventional services to all regions in all periods because flexible services 

are not preferable when demand densities are high. Thus, SFV converges to SFC. 

Similarly, when demand densities are very low and have low variability, SFV provides all 

services with flexible type bus operations. Thus, SFV converges to SFF. It is therefore 

found that conventional services with large buses are preferable when demands are high. 

Similarly, flexible services are less costly at relatively low demands. A bus system 

alternating among these two service concepts based on demand variation and other 

conditions can be used to improve service efficiency. 

7.1.2. Integrating Bus Services with Mixed Fleets   

In Chapter 5, the optimization models are extended to analyze bus services to the 

multiple regions and periods with mixed fleets (containing different vehicle sizes). To 
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reduce total costs when demand and other factors vary over times and over regions, the 

integration of conventional and flexible services with mixed fleets (i.e., Mixed Fleet 

Variable Type Bus (MFV)) is explored by comparing four alternatives, namely SFC, SFF, 

Mixed Fleet Conventional Bus (MFC), and Mixed Fleet Flexible Bus (MFF). For mixed 

fleet operations (i.e. MFC, MFF, and MFV), the demand thresholds between using large 

or small buses are analytically formulated using bus operation cost functions. Currently, 

no attempt for bus transit integration problems with mixed fleets exists in the literature.  

For optimizing the decision variables, a hybrid solution method is proposed, 

which combines a genetic algorithm and analytic optimization. To examine the quality of 

solutions, one million random candidate solutions are generated and compared to the best 

solution found by the proposed hybrid algorithm. It is found that the solution obtained 

with the hybrid method proposed here is superior to any of the million random solutions. 

An additional small problem (i.e., two regions with four periods) is designed to obtain 

complete enumeration solutions. The proposed hybrid method also finds the solution 

obtained through complete enumeration. Thus, it may be concluded that the proposed 

hybrid method yields solutions that are at least near-optimal.  

 As shown in Table 5-7, the benefits of sharing fleets throughout the system are 
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explored. Through numerical evaluations, it is found that the cost of an integrated multi-

zone system is lower than the sum of separately optimized results. Numerical evaluations 

also show that MFV can yield significantly lower costs than the other four alternatives. 

Other numerical cases and sensitivity analyses confirm that the proposed approach finds 

very good solutions quickly.    

7.1.3. Analyses of Social Welfare for Conventional and Flexible Services with 

Demand Elasticity  

In Chapter 6, conventional and flexible services are formulated with demand 

elasticity. With demand elasticity, the social welfare, which is sum of the consumer 

surplus and the producer surplus, is the relevant objective function for both conventional 

and flexible services, for multiple regions as well as multiple time periods. Two 

constrained optimization models are formulated and discussed. They: 1) maximize social 

welfare with service capacity (maximum allowable headway) constraints, and 2) 

maximize welfare with service capacity and financial (subsidy) constraints, for both 

conventional and flexible services.  

Objective functions (i.e., welfare functions) are highly nonlinear and decision 

variables include continuous and integer variables. Such nonlinear mixed integer 
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formulations are known as NP-hard problems. There are no proven methods to find their 

exact optima. Commercial software such as GAMS or LINGO is excluded as solution 

approaches because they only guarantee finding a local solution. Thus, a read coded 

genetic algorithm, which is an iterative global solution search technique, is chosen to find 

solutions, even though it does not guarantee global optimality.  

In numerical examples, the fares, route spacings for conventional services, 

service areas for flexible services, headways and fleet sizes are jointly optimized. The 

numerical examples show that the welfare of conventional services exceeds that of 

flexible services, with the given input values. The details on conventional and flexible 

services are discussed along with the sensitivity of vehicle sizes, and the sensitivity of the 

subsidies. For both conventional and flexible services, the total actual trips increase as the 

amount of subsidies increases. The input parameters for numerical analyses in Chapter 6 

are mostly adopted from a previous paper by Chang and Schonfeld (1993). Further 

sensitivity analyses of input parameters for elastic demand functions and operating cost 

functions may be required to reflect current and future transit operations. 

For conventional services, the problem of one local region with multiple periods 

has been solved in previous studies. For flexible services, a problem with one local region 
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and one period has also been solved in the literature. These were all solved with analytic 

optimization (and with approximations). Chapter 6 extends the welfare problems of 

conventional and flexible services to the multiple regions and multiple periods.  

7.1.4. Discussion of Solution Methods 

This dissertation explores three different problem types that have all nonlinear 

objective functions with mixed integer variables. In Chapter 3, a purely analytic solution 

is proposed, which is able to find the globally optimal solution. The analytic optimization 

approach is fast and also insightful because it provides closed form solutions. However, 

analytic solutions become unreachable when problem become more complex (e.g., 

multiple regions and periods).  

 In the Chapter 6, all formulations are solved in one-stage, which means that all 

decision variables are found simultaneously. A real coded genetic algorithm is chosen to 

find solutions. There is no guarantee of finding the global optimum, but numerical 

analyses can confirm that a real coded genetic algorithm finds good solutions. Since all 

decision variables are optimized in one-stage, solutions converged with longer 

computational times compared to the  computational time of a hybrid approach. To 

reduce computational times, specifically customized genetic algorithm operators for bus 
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transit problems are desirable. General-purpose genetic algorithms such as a real coded 

genetic algorithm may only be feasible for planning purposes.  

In Chapters 4 and 5, hybrid solution methods are proposed that combine analytic 

optimization and a genetic algorithm. The number of decision variables for a genetic 

algorithm is reduced by considering partly-analytic two-stage formulations. Once a 

genetic algorithm selects values for some decision variables, those are used to optimize 

other decision variables through analytic optimization. The numerical analyses discussed 

in Chapter 5 show that the solution obtained from the proposed hybrid method is superior 

to randomly generated one million candidate solutions. It is also confirmed that the 

hybrid method finds the exact globally optimal solution for a small problem. For larger 

problems, the two-stage solution method can provide good solutions more efficiently than 

purely numerical methods.    

 

 

 

 

 



- 210 - 

 

7.2. Future Research   

This dissertation analyzes several interesting bus transit problems. However, it 

also leaves rooms for the further improvements, especially for more realistic 

implementations. Possible extensions are discussed as follows:  

1) Problems in this dissertation are analyzed deterministically. To be more 

realistic and be ready for actual implementations, considerations of stochastic 

components are necessary. Examples are: 1) probabilistically distributed bus 

travel times due to congestion, incidents or other factors; 2) scheduled 

transfers coordination among vehicles; 3) stochastic variation of passenger 

arrivals and waiting times; and 4) consideration of dwell times as a function of 

passengers.  

2) This dissertation assumes uniformly distributed demand within each region. In 

actual transit operations, the analysis of highly heterogeneous demand patterns 

may be desirable. Future studies may pursue such geographic detail.  

3) Transit operators have information and control systems that collect origins and 

destinations of passengers before drivers operate their buses, especially for 

flexible services. Thus, the approximate Stein (1978) formula used in this 
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dissertation should be replaced with vehicle routing algorithms for real-time 

control. Many-to-many demand patterns should be also considered.  

4) The complexity of switching service types and fleets in actual bus transit 

operations should be further explored. Research attempts of vehicle transitions 

(e.g., switching vehicles for different headways, vehicle transitions from 

regions to other regions, drivers scheduling and allocations) are not 

sufficiently explored. They are all interesting future study directions to make 

dissertation more realistic.  

5) Studies of actual passenger responses (e.g., willingness to pay) to different 

service types are desirable.  

6) In Chapter 4~6, formulations are NP hard problems. Thus, they are solved 

purely numerical or partially numerical approach. Therefore, the globally 

optimal solutions are unknown to these problems. Since methods used are 

partially or purely heuristic, some research attempt is required to fill the gap 

between the unknown global optima and the best solution from proposed 

methods. One possible attempt is: 1) break-down large problems into 

analytically tractable small problems, 2) sequentially or independently 
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optimize sub problems, and 3) compare obtained solutions. The attempts to 

estimate solution gaps should be useful for managing large transit data-driven 

optimization problems.  

7) This dissertation analyzes several interesting topics in the context of bus 

transit integration. However, each topic is independently explored in separate 

chapters. It might be possible to integrate these in one analysis framework. 

More specifically, a joint optimization model that finds solutions for the 

integration decision using conventional and flexible services, while 

considering elastic demands for a general system (e.g., multiple terminals, 

multiple regions, and multiple analysis periods) should be useful but also quite 

challenging to develop.  

8) Bus transit network design problems with realistic geographic information 

would be also an interesting topic. With recent technology developments, 

transit riders may easily obtain the bus arrival information. It would be worth 

considering how such information affects passenger arrivals at bus stops and 

overall travel times.  

9) Optimization models developed in this dissertation may be applied to other 
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intermodal transportation system analyses. For instance, the elastic demand 

and welfare analyses can also be used for other intermodal transportation 

systems. This dissertation assumed a linear elastic demand function. An 

extension of linear demand curve for social welfare analyses may be another 

interesting study.  
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