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Energy and security are becoming increasingly important in the design of fu-

ture wireless communication systems. This thesis focuses on these two main aspects

of wireless networks and studies their tradeoffs with other performance metrics such

as throughput and delay.

The first part of the thesis deals with the energy aspect of wireless networks

in which we present several novel joint physical network layer techniques and ei-

ther evaluate their energy efficiency or study the energy/delay/throughput trade-

offs. First, we study the energy/delay tradeoffs for the problem of reliable packet

transmission over a wireless time-varying fading link and also investigate the effect

of having Channel State Information on the resulting tradeoff. Then, we extend

the model to a single-hop multicast time varying wireless network. We address en-

ergy/delay/throughput tradeoffs by considering the problem of streaming a real time

file with fixed delay and energy constraints where the objective is to maximize the

number of packets received by the destinations. Again, the effect of having Channel



State Information is studied. Also, the effect of using Random Network Coding as

a transmission scheme is studied and compared to traditional transmission schemes

such as simple ARQ. Next, we consider the effect of cooperation on the energy effi-

ciency of wireless transmissions in which we propose several joint physical-network

layer cooperation techniques. Also, the effect of Random Network Coding is in-

vestigated in the context of cooperation in which Random Network Coding based

cooperation techniques are investigated and compared to cooperation techniques

that rely on simple ARQ solely or combined with superposition Alamouti space-

time codes. We then consider the particular case of cellular systems in which we

design rate allocation technique that minimizes the consumption energy in a Macro

cell. This technique takes into account sleep mode configuration of current base

stations.

In the second part of the thesis, we focus on security and in particular on

privacy. We also study the tradeoff between securing wireless transmissions and the

energy/delay overhead due to security by considering the problem of information

exchange among adjacent wireless node in the presence of an eavesdropper. The

nodes are required to exchange their information while keeping it secret from the

eavesdropper. The nodes can choose to transmit either through public channel

or though more costly private channels. We express the cost of using the private

channels in terms of the extra energy or delay required to transmit through the

private channel. We then minimize the security cost subject to a target security

level. Also, this part presents a deterministic Network Coding based transmission

scheme and investigates its effect on the achieved performance.



Last, we introduce the problem of minimum energy scheduling of a group of

base stations and compare this problem to the standard minimum length scheduling

problem. We also discuss the complications and the challenges associated with

solving the minimum energy scheduling problem.
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Chapter 1

Introduction

1.1 The importance of Energy Efficiency in Wireless Networks and

Energy/ Delay/ Throughput Tradeoffs

Energy efficiency has tremendously become a crucial parameter in designing

communications systems especially wireless systems. The necessity of energy ef-

ficient communication systems stems from the increasing cost of energy and the

concern to reduce the global CO2 emissions to combat climate change. However,

most communications systems were initially designed to be optimal in terms of other

performance metrics such as throughput, reliability and delay. Thus, they are not

optimal in terms of energy efficiency. For example to ensure Quality of Service

(QoS) requirements for real time applications, the problem was to find the maxi-

mum throughput given strict delay requirement without considering minimizing the

energy consumed.

Thus, there are numerous performance tradeoffs that arise and will be ad-

dressed in this thesis. Some of these tradeoffs: 1) what is the minimum energy

consumed given certain delay constraints or rate requirements? 2) What is the

achievable throughput given certain energy/delay constraints? 3) Given that the

information should be transmitted reliably (with no errors) to the corresponding
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destinations, how long will it take to transmit the information and how much en-

ergy will it consume? The choice of selecting which tradeoff to study depends on the

target application on the upper layers. For example, the first and second tradeoffs

are interesting for real time applications while the third tradeoff is suitable for non

real time applications that require reliable transmission such as file transfers.

Also, this thesis studies energy efficiency in wireless multicast systems. Due

to the varying nature of the wireless channel, different receivers will have different

channel qualities, and hence the performance of transmission will be different among

users. Thus, whenever a transmitter is multicasting packets to multiple receivers

in energy/delay constrained system, there is a tradeoff between ensuring reliable

packet delivery to all receivers and the number of packets that can so be delivered.

Thus, one should find the transmission scheme that maximizes the number of pack-

ets transmitted with target energy/delay constraints while also it ensures that an

acceptable number of receivers would receive each packet.

1.2 Security Challenges in Wireless Networks and the Security/ En-

ergy Tradeoffs

Another crucial aspect of wireless networks is security. Security is challenging

in wireless networks due to the wireless multicast property i.e. wireless signals are

broadcasted over the air, and hence any user that is in the communication range

of the transmitter can receive the signal. This property achieves energy savings

since the transmitter can transmit the information once to all receivers instead of

2



transmitting the information multiple times to each user; however, this feature is

a security bottleneck since the transmitted signals can be easily intercepted by an

attacker who is within the communication range of the transmitter, which makes

information ”privacy” harder to attain. Hence, this thesis focuses on the privacy

aspect of security.

An important issue that is not yet well addressed is the tradeoff between energy

and security. This tradeoff is due to the following: In order to ensure the privacy of

information, complex modulation (such as spread spectrum), coding and encryption

schemes are used, which usually increases transmission rate and hence require more

energy. However, most of the current designed wireless secure systems do not take

into consideration this energy overhead due to secure transmissions. On the other

hand, it is known that [1] it is most energy efficient to transmit with lowest feasible

rate and hence designing energy efficient systems may result in higher delays which

might increase the eavesdropper chances to acquire the information and thus affect

the level of security achieved.

Although some of these tradeoffs and the energy/delay/throughput tradeoffs

mentioned in the previous section have been addressed in prior work, this thesis

presents novel joint physical and network layer techniques for wireless transmissions

and studies their effect on the different stated tradeoffs. These techniques are mainly

based on Network Coding, cooperation, and sleep mode methods which are used in

particular in cellular systems.
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1.3 Network Coding

Network Coding, as proposed by Ahlswede el al [2], is an alternative com-

munication concept which has proved to achieve high improvements in terms of

throughput and energy efficiency in wireless networks, especially in multicasting [3]

[4], and thus it is important to examine its effect on the network performance and

to incorporate it in the design of secure/ energy efficient systems.

The idea of Network Coding is that unlike traditional routing where the node

forwards the packets as they are received by the original sender, the node forms a

new packet that is a linear combination of a group of packets and sends the new

packet to the intended destination. The group of packets may belong to different

flows (Inter-session Network Coding) or to the same flow (Intra-session Network

Coding). After the destination receives enough linearly independent combination of

the packets, it recovers the original packets by solving the system of linear equations.

There are two types of Network Coding. The first type is Deterministic Network

Coding in which the coefficients of all the linear combinations received by the des-

tination are deterministic and determined prior to transmission. The other type

is Random Network Coding in which the coefficients are randomly selected from a

uniform distribution over the symbols’ alphabet. Hence, Random Network Coding

can be widely used in distributed settings since the nodes do not need centralized

coordination to determine the coefficients of the linear combinations.

Network Coding is also promising for security consideration and is simple to

implement since each transmitted packet is a linear combination of the original
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packets. Hence, it is not straightforward for an intercepting eavesdropper to recover

the original packets especially for the case of Deterministic Network Coding. Thus,

its use results in a form of scrambling that makes it difficult for the eavesdropper to

decode.

In this thesis, we investigate the effect of using Network Coding on the en-

ergy/delay/throughput tradeoffs mentioned in part 1.1. We also study the effect of

using Network Coding on the security/energy/delay tradeoffs discussed in part 1.2.

1.4 Network Cooperation Techniques

It is interesting to investigate the effect of cooperation techniques on the de-

sign of energy efficient systems especially in the context of wireless multicast as

cooperation has proven to achieve performance improvements in wireless networks

[5], [6], [7]. Cooperation can be achieved by adding relays that have better chan-

nels qualities with the destinations than the source node and hence can assist the

source in transmitting the information to the target destinations. Another form of

cooperation is user cooperation. User cooperation works whenever a source node is

multicasting packets to multiple destinations, the destinations that first receive the

data successfully from the source can assist the source in transmitting the data to

the remaining destinations. This form of cooperation is motivated by the fact that

some destinations may have better channel quality than the source node due to the

nature of wireless channels. Hence, this method is anticipated to decrease the total

energy consumed in the network to deliver the required data.
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Relay cooperation is expensive since new resources (i.e. the relays) are added

to the network. In user cooperation, on the other hand, no extra resources are

added, and hence it is less expensive than relay cooperation. However, obtaining

better performance is not always guaranteed in user cooperation since the users that

act as relays may not always have better channel quality than the source with the

remaining users. Hence, it is essential to study the cases in which user cooperation

can achieve performance improvement than when no cooperation is used and design

techniques that decide whether the source or the users should transmit based on the

channel quality between the nodes in the network.

In this work, we consider joint physical and network layer cooperation tech-

niques in wireless settings and evaluate their energy efficiency. We present a Random

Network Coding based cooperation scheme and study the benefits of using Network

Coding in achieving energy reductions. Also, we consider cooperative techniques

that include using both Network Coding at the network layer and/or Alamouti

space-time codes at the physical layer.

1.5 Sleep Mode Techniques

In cellular networks, the energy consumed by base stations accounts for a

significant percentage of the total consumed energy. Hence, there have been several

attempts to design energy efficient base stations by using advanced technologies for

the RF power amplifier, the baseband processing circuits, and the cooling systems.

Furthermore, system-level algorithms have been designed to reduce the power of
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base stations when no users are active in the network. The base station’s power is

reduced by using either “Micro” sleep mode or “Deep” sleep mode. In “Micro” sleep

mode, only some of the components of the base station are turned off, and hence the

base station can be turned on again relatively quickly (in the order of microseconds).

In “Deep” sleep mode, however, most of the base station components are turned off,

and hence a long time is needed for the base station to be turned on. The “Micro”

sleep mode is beneficial in the case of “bursty traffic” where the base station can

adapt its power efficiently based on the cell traffic on a micro-time scale, while the

“Deep” sleep mode is more useful in situations when traffic displays longer-term

activity or inactivity patterns.

In this thesis, we consider ”Micro” sleep mode. First, we present a rate allo-

cation algorithm that takes into account the sleep mode feature of the base station

to minimize the consumed energy in a Macro cell. Then, we consider a network

composed of several cells and present the problem of scheduling the base stations in

order to minimize the total consumed energy in the network.

1.6 Thesis Outline

This thesis is organized as follows. In the first problem, we consider transmis-

sion over a wireless link in which packets are transmitted from source to a destination

over time varying Rayleigh fading wireless link, and the source has knowledge about

the Channel State Information (channel statistics). We address the tradeoff between

the energy consumed and the delay spent to deliver each packet successfully by in-
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vestigating two problems: In the first problem, we assume that each packet has a

delay constraint and minimize the energy spent to successfully deliver each packet.

In the second problem, we assume that each packet has a finite energy budget and

minimize the time spent to deliver the packet successfully. Rate control and power

control techniques are investigated respectively to obtain the minimum energy and

delay values.

The second problem similarly addresses tradeoffs between energy and other

performance metrics. We consider the problem of finding the optimal power policy

of multicasting a group of packets by a transmitter to a set of receivers in a single

hop network over independent time varying channels, where the packets should

be delivered within a delay constraint and with a limited amount of energy. The

objective is to maximize the multicast throughput. We investigate the effect of using

Random Network Coding (RNC) on the achieved throughput.

The third problem also investigates the effect of Random Network Coding

on the performance of wireless transmissions in particular on energy efficiency but

now in simple cooperative networks. We consider different cooperative strategies for

packets transmission in a simple wireless fading network where the channel statistics

do not change over time. We then find the optimal power values that minimize

the transmission energy consumed per successfully delivered packet. We consider

both cases when simple Automatic Repeat Request (ARQ) and Random Network

Coding (RNC) are used as transmission schemes. Some techniques considered also

incorporate Alamouti space-time codes at the physical layer.

The fourth problem investigates energy efficient sleep mode based techniques
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for wireless networks but in particular for cellular networks. We consider the down-

link scenario in a Macro cell in which the base station should satisfy its users’

demands within a strict delay constraint. We assume that the consumed power of

the base station is a linear function of the transmission power, and that the base

station can go to “Micro” sleep mode when there are no active users. We start by

considering the simple case when there is only one active user. Then, we consider

the case when multiple users are active in the cell. In this case, we consider both

time division multiplexing and frequency division multiplexing. For each case, we

find the optimal rate value the base station should use to each active user in order

to minimize the overall consumed energy.

The fifth problem deals with the second aspect of this thesis which is ensuring

secure wireless transmissions in the presence of an eavesdropper. It also studies the

tradeoff between achieving a certain security level and the energy/delay costs due to

security. In the first part, we start by considering the single link case where a file is

residing at a source node and should be delivered to the intended receiver. Then, we

consider the case where the file is distributed among multiple nodes, and the nodes

are required to exchange their packets until all they receive the file successfully.

In either cases, the nodes can chose to transmit through public channels in which

the eavesdropper has access to or through private channels that are not accessible

for the eavesdropper. We define two security cost: the extra energy spent and the

extra delay incurred due to using the private channels. The objective is then to

minimize each of the security costs respectively subject to a certain security level.

The parameters of the security level are the maximum number of packets that the
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eavesdropper is allowed to receive, and the upper bound on the probability that

the number of packets the eavesdropper receives is greater than or equal to the

maximum value.

In the last part, we extend the fourth problem for the case when multiple cells

are present in the network and introduce the problem of scheduling the base stations

to minimize the consumed energy in the network. We compare the problem to a

previous work that considers a similar scheduling problem but where the objective

is to minimize the emptying time of the network. However due to time limitation,

the problem is not fully developed and it is interesting to consider it for future work.
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Chapter 2

Energy/Delay Tradeoffs in Data Transmission over a Time Varying

Wireless Link

2.1 Overview

The primary focus of this chapter is to investigate the effect of Channel State

Information (CSI) on the design of energy efficient transmission schemes over time

varying wireless channels. Designing energy efficient wireless systems must cope

with the time varying property of the wireless channel. Furthermore, it is necessary

to also meet quality of service requirement of applications such as delay.

We consider two related questions: (i) Given CSI what is the minimum energy

spent to deliver a certain amount of data while maintaining Quality of Service

requirements such as delay? (ii) What is the minimum delay that can be achieved

given a certain energy budget?

The availability of CSI can be of considerable help in addressing these two

questions. In [8], a distributed protocol is developed for energy efficient transmission

in wireless sensor networks. The protocol uses CSI at the sensor nodes, and selects

the users with the best channel state for transmission. In [9], dynamic control

algorithms are developed. These algorithms minimize energy in a time varying

wireless network by varying transmission rates. Also, techniques that maximize the
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stable throughput subject to power constraints have been considered. Similar to

the approach in [9], stochastic control methods are used in [10] to minimize energy

of data transmission but with a deadline constraints in a time varying wireless

transmission. A flow based model of the system is considered and a continuous

time system is used to model the evolution of the channel characteristics. Then, a

transmission policy is developed to obtain energy efficient transmission for a packet

arrivals system.

The problem of energy efficient delay constraint data transmission over time

varying wireless channels has been further addressed in [11], [12], [13], and [14]. In

[11], dynamic programming is used to find an optimal energy allocation strategy in a

wireless fading channel for two problems: the first is to maximize throughput given

an energy constraint; the second is to minimize energy given a minimum acceptable

throughput. In both cases, strict delay constraints are imposed on transmission.

Again, a flow based model is used for data transmission, and it is assumed that CSI

is available at the transmitter. In [12], data transmission over a block fading channel

is considered, and it is assumed that data arrive to according to a stochastic process

and then are stored in bits in a buffer. Then, the transmission rate and power are

dynamically adjusted based on CSI in order to regulate the average transmission

power and the average buffer delay. Perfect CSI is assumed to be available at

the transmitter and the receiver. In [13], delay constrained data transmission over

block fading channel is considered and CSI is used to find the optimal power value

that meets the target QoS and the energy cost. QoS in this case is measured
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in terms of the outage probability. Further, the problem of power allocation to

maximize throughput subject to an average power constraint and a delay constraint

is considered in [14]. Both cases of full and partial CSI are considered.

In this chapter, we consider a discrete time system in which packets are trans-

mitted from source to a destination over a time varying Rayleigh-fading wireless

link, where the source has knowledge about partial Channel State Information i.e.

not actual channel state but rather only channel statistics. We address the tradeoff

between the energy consumed and the delay achieved to deliver each packet suc-

cessfully by investigating two problems: In the first problem, we assume that each

packet must meet a delay constraint and we minimize the energy spent to success-

fully deliver each packet. In the second problem, we assume that each packet has a

finite energy budget and minimize the time spent to deliver the packet successfully.

Rate control and power control techniques are investigated respectively to obtain

the optimal energy and delay values. Each of the problems is formulated as a Con-

strained Markov Decision Problem, and a Linear Programming method is provided

to obtain the optimal solution.

2.2 System Model

Consider a wireless link with a single source and a destination. Time is slotted.

In each time slot, the source can transmit a packet to the destination. We assume

that the channel between the source and the destination is slow Rayleigh fading

where the channel characteristics do not change within one time slot, and the fading
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coefficient hk at time slot k is a complex, zero-mean Gaussian random variable with

variance sk. We consider the case when the variance sk is time varying and is

modeled as a two-state Markov chain that changes between a high value sH and a

low value sL.

Using a discrete-time Markov chain to model flat fading channels has been

widely studied (e.g. see [15]-[17]). Also, recent measurements done in [18] show

that a two state Markov chain is suitable to model the wireless channel in many

applications.

It is also assumed that additive white Gaussian noise (AWGN) of variance N0

is present at the destination and that the transmitted packet is received successfully

by the destination in the kth time slot with probability pk.

Note that the probability pk of packet successful reception by the destination

at time slot k is dependent on the channel quality as well as on the selected power

value P and the selected rate value r, and these are related according to the SNR

model:

pk = P (SNR(P ) ≥ θ(r)) (2.1)

where SNR is the Signal to Noise Ratio at the receiver and is given by:

SNR(P ) =
|hk|2P
N0

(2.2)

where θ(r) is the required threshold at the destination. Note that θ(r) is an increas-

ing function of the selected rate value r. In this work, we will assume that the rate

and the threshold are related by Shannon’s formula i.e.

r = log2(1 + θ) hence θ(r) = 2r − 1
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Although this is somewhat an approximation, it offers valid insight into the

problem and is widely used. It is desirable to use different θ(r) if the modulation

and coding schemes are specified.

Since the fading coefficient is Rayleigh distributed, it can be shown that the

probability of success pk is given by:

pk = e
−(2r−1)N0

skP (2.3)

Based on the above expression, a good quality channel corresponds to the case

when the variance sk has high value, and a bad quality channel corresponds to the

case when the variance sk has low value.

We assume that the the source uses simple Automatic Repeat Request (ARQ)

to transmit each packet reliably. Also in each time slot k, the source knows whether

the channel has good or bad quality and transmits following one of two cases:

1. Power Control: In each time slot k, the transmitter transmits with a power

value Pi ∈ {P1, P2, ..., Pn} (assuming without loss of generality that the power

value P1 is zero) with a probability qiG(k) or qiB(k) if the channel has good or

bad quality respectively while keeping the transmission rate fixed. In this case,

energy is defined as the expected total energy spent to successfully deliver

a packet. The delay is defined as the expected total number of time slots

successfully needed deliver a packet.

2. Rate Control: In each time slot k, the transmitter transmits with a rate rk ∈

{r1, r2, ..., rn} (ri > 0, i = 1, 2, ..., n) with a probability qiG(k) or qiB(k) when
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the channel has good or bad quality respectively while keeping the transmission

power value fixed at P.

In this problem, it is assumed that the transmission rate r, the packet size M ,

and the time slot duration T are related as follows:

r =
M

T
(2.4)

Hence, the rate value can be controlled in either one of the following two ways:

• The packet size is kept fixed at M bits while the time slot duration Ti

is varied according to the selected rate value ri. In this case, the energy

metric is defined as the expected total energy spent to successfully deliver

a packet; the delay is defined as the expected total time (in seconds) to

successfully deliver a packet.

• The time slot duration is kept fixed at T seconds while the packet size Mi

is varied according to the selected rate ri. In this case, the total energy

spent to transmit a packet is independent of the rate value (since the

power value P and the time slot duration T are fixed), the energy metric

is defined as the expected energy per bit spent to successfully deliver a

packet; the delay is defined as the expected total number of time slots

needed to successfully deliver a packet.

For the case of power control, let piG and piB to be the probabilities of success when

the channel has good or bad quality respectively, when power value Pi is selected.

Similarly for the case of rate control, let piG and piB be the probabilities of success
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Figure 2.1: Markov Chain Model of the Probability of Success.

when the channel has good and bad quality respectively, when the rate value ri is

selected (i = 1, 2, ..., n). Also, let pi(k) be the probability of success at time slot k

when power Pi or rate ri is selected. Since the variance sk of the Rayleigh fading

distribution of the channel evolves according to a Markov chain, the probability

of success pi(k) will also evolve according to a Markov chain. Figure 1 shows this

Markov chain (g, b > 0),

The objective is to find the optimum probabilities q∗iG(k) and q∗iB(k) of trans-

mission powers Pi and transmission rates ri (i = 1, 2, .., n) respectively for the

following two problems: In the first problem, we minimize the energy spent to suc-

cessfully deliver a packet to the destination, subject to a delay constraint (i.e. the

expected time spent to deliver the packet successfully shouldn’t exceed a certain

value K). In the second problem, we minimize the delay (time spent to successfully

deliver the packet) while the energy spent should not exceed a certain value E. We

will later show that the optimal probabilities can be independent of the time slot k,

i.e. the q∗iG(k) = q∗iG and q∗iB(k) = q∗iB.
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2.3 Energy/Delay Minimization with Power Control

2.3.1 Problem Formulation

Let the random variable yk be an indicator whether the packet has failed or not

to be received successfully by the destination in time slot k. It takes the following

values:

yk =


0, with probability

∑n
i=1 qi(k)pi(k)

1, otherwise

(2.5)

where qi(k) ∈ {qiG(k), qiB(k)} and pi(k) ∈ {piG, piB}

Also, let the random variable Wk indicate whether the packet has not been

received successfully by the destination up to time slot k. Wk is defined in terms of

yk as follows:

W0 = 1 (2.6)

Wk = Wk−1 • yk (2.7)

where • is the binary AND operation

Next, let the random variable xk be the energy spent in each time slot k. Note

that:

xk = PiTWk−1 with probability qi(k) (2.8)

Hence, the energy spent to deliver the packet successfully is given by:

ξ(qiG(k), qiB(k)) =
∞∑
k=1

xk (2.9)
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Also, the number of time slots spent to deliver the packet is given by:

D(qiG(k), qiB(k)) =
∞∑
k=1

Wk−1 (2.10)

Thus, the energy minimization problem with power control is formulated as follows:

MinqiG(k),qiB(k)E[ξ(qiG(k), qiB(k))]

Subject to:

E[D(qiG(k), qiB(k))] ≤ K (2.11)

Similarly, the delay minimization problem can be formulated as follows:

MinqiG(k),qiB(k)E[D(qiG(k), qiB(k))]

Subject to:

E[ξ(qiG(k), qiB(k))] ≤ E (2.12)

These are Constrained Markov Decision Problems.

2.3.2 Solution

2.3.2.1 MDP Model

Constrained Markov Decision Problems (CMDP) constitute a mathematical

framework for dynamically optimizing constrained systems that evolve as a Markov

process.

In general, a constrained MDP is composed of:

• The state space S

• The action space A
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• For each state x ∈ S, the set of actions A(x) pertaining to x.

• The transition probabilities Pxay from state x to state y (x, y ∈ S) when action

a ∈ A(x) is taken.

• The immediate cost values c(x, a) (which are used in the objective cost func-

tion) starting from state x and using action a ∈ A(x).

• The immediate cost values dj(x, a), j = 1, 2, ...,m (which are used in the

constraint cost functions where m is the number of constraints)

• The class of possible policies U. In general, a policy u ∈ U is a sequence

u = (u1, u2, ...) where each entry uk specifies to any history of length k the

probability that the action rk taken at time slot k is action a ∈ A(sk); where

sk is the current state at time slot k i.e.

uk(a|hk) = P (rk = a|hk), a ∈ A(sk)

The history hk at time k is the sequence of previous states and actions up to

the current state sk, i.e. hk = (s1, r1, , sk−1, rk−1, sk). One special class of policies is

the class of stationary policies US. In a stationary policy us, the probability uk(a|hk)

that the action rk taken at time slot k is a ∈ A(sk) if the state sk at time k has

value x is the same in all time slots and independent of the history hk and, hence,

is given by ux(a).

Now, using a policy u and starting from an initial state distribution β, the

objective cost function (known as the total cost criterion) is defined as:
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C(β, u) =
∑∞

k=1E
u
β [c(sk, rk)] where:

• The pair (sk, rk) corresponds to the values of the state and the action taken

at time k.

• Eu
β [.] corresponds to the expectation over the policy u given that the initial

distribution is β.

The cost functions related to the constraints are defined similarly as follows:

Dj(β, u) =
∑∞

k=1E
u
β [dj(sk, rk)], j = 1, 2, ...,m

For a real vector (V1, ..., Vm), the Constrained Markov Decision Problem (CMDP)

with total cost criterion can be stated as:

Find a policy u ∈ U that minimizes C(β, u) subject to Dj(β, u) ≤ Vj, j = 1, 2, ...,m.

Now, we define the MDP pertaining to our problem.

• The state space S is the following finite set:

S = {(0, G), (0, B), (1, G), (1, B)}

where states (1, G) and (0, G) correspond respectively to the destination hav-

ing received the packet successfully or not, when channel quality is good. Simi-

larly, states (1, B) and (0, B) indicate respectively whether the destination has

received the packet successfully or not when channel quality is bad.

• The action space is composed of the set A = {1, 2, ..., n}

where the action a = i (i = 1, 2, ..., n) corresponds to the case when the

transmitter decides to transmit with power Pi.
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Also, we define the action sets pertaining to every state as follows:

A(0, G) = A(0, B) = {0, 1, ..., n}

A(1, G) = A(1, B) = φ

• The transition probabilities between any two states in S for the case when

action taken is a = i are shown in figure 4.3.

• The immediate costs c(x, a) correspond to the energy spent in each time slot

and they are given by: follows:

c((0, G), i) = c((0, B), i) = PiT , i = 1, 2, ..., n.

Note that the immediate costs c(x, a) are used as part of the objective function

in the energy minimization problem, and as part of the constraint function for

the delay minimization problem.

• The immediate costs d(x, a) correspond to an additional time slot spent to

deliver the packet successfully.

d((0, G), i) = d((0, B), i) = 1, i = 1, 2, ..., n.

Note that the immediate costs d(x, a) are used as part of the constraint func-

tion for the energy minimization problem, and as part of the objective function

for the delay minimization problem.

• For this problem, each policy u ∈ U is defined as follows: the source transmits

with power value Pi with probability qiB(k) when the current state is (0, B),

and transmits with probability qiG(k) in time slot k if the current state is

(0, G).
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Figure 2.2: Transition Probabilities when the action a=i.

In the following, the conditions under which a stationary policy is an optimal so-

lution for solving a CMDP are presented. Also, the Linear Programming approach

that finds the optimal stationary policy is provided.

2.3.2.2 Linear Programming Approach

In [19], the authors show that stationary policies are optimal for solving CMDP

with the total cost criterion under two conditions:

• The immediate costs c(x, a) and dj(x, a) (j = 1, 2, ...,m) are non negative.

• The MDP has the transient property i.e. for any initial state distribution β

and for any policy u ∈ U , the state space S can be decomposed into two sets

S ′ and M where:

– Every state x ∈ S ′ is transient i.e. the expected time to stay in state x

is finite.

– Every state y ∈ M is absorbing i.e. any state x ∈ S ′ is not reachable
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once reaching any state y ∈M .

Under these two conditions, the Constrained Markov Decision Problem (CMDP) is

equivalent to solving the following linear program:

Minρ(x,a)

∑
x∈S
∑

a∈A(x) c(x, a)ρ(x, a)

Subject to:∑
x∈S
∑

a∈A(x) dj(x, a)ρ(x, a) ≤ Vj, j = 1, 2, ...,m∑
y∈S
∑

a∈A(y) ρ(y, a)δx(y)− PyaxI(x ∈ S ′)) = β(x) ∀x ∈ S

ρ(x, a) ≥ 0 ∀x ∈ S, a ∈ A(x)

where:

• β(x) is the initial distribution of the state x

• δx(.) is the delta function centered at state x.

• ρ(x, a) is the occupation measure i.e. the total expected time spent in state x

when action a is chosen.

Also, according to [19], the stationary policy that minimizes the original

CMDP is defined as follows: the probability ux(a) of choosing action a ∈ A(sk)

if the current state sk is x ∈ S is given by:

ux(a) = ρ(x, a)(
∑
a∈A(x)

ρ(x, a))−1 (2.13)

In our problem, the MDP (which is composed of finite state space and finite

action space) has non negative immediate costs (since the costs are energy and

delay costs). As for the transient property, the MDP is not transient if we allow
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the class of policies U to include all possible policies, since in this case there exist

some policies in which the MDP is not transient. An example of such policies is the

policy of always not transmitting with probability one. In this case, the packet will

never be received successfully by the destination, and hence the state space can not

be decomposed into transient states and absorbing states (states (1, G) and (1, B)

are not reachable starting from states (0, G) and (0, B)). One possible approach is

to restrict the class of policies U to include only stationary policies but excluding

the stationary policy of always not transmitting with probability 1). In this case,

the optimal policy for the CMDP is stationary and the linear programming method

finds the optimal solution. Including only stationary policies in the class of possible

policies is somewhat restrictive and hence it is desirable to alter the class of policies

U to include non-stationary policies as well. However, in order to guarantee that

the MDP is transient we define each policy u ∈ U as follows: The source transmits

with power value Pi with probability qiB(k) when the current state is (0, B), and

transmits with probability qiG(k) in time slot k if the current state is (0, G) where:

• 0 ≤ q1G < 1

• 0 ≤ qiG ≤ 1, i = 2, 3, ..., n

The first condition states that the source doesn’t transmit (i.e. with power P1 = 0)

with probability strictly less than one. Note that this mathematical restriction

makes perfect sense from the practical point of view since the packet would never

be received successfully. Under these conditions, the MDP is transient because for

any policy u ∈ U , states (0, G) and (0, B) are transient and states (1, B) or (1, G) are
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absorbing . Hence, the stationary policy is optimal for the CMDP and the Linear

Programming method finds the optimal solution. The importance of the second

approach is that it shows that there exist a stationary policy that is optimal to the

problem even if the class of possible policies is expanded to include non stationary

policies.

For the MDP pertaining to the energy minimization problem, we get the following

linear program:

LP1 :

Minρ((0,G),i),ρ((0,B),i),i=1,2,...,n

∑n
i=1 PiT (ρ((0, G), i) + ρ((0, B), i))

Subject to:∑n
i=1 ρ((0, G), i) + ρ((0, B), i) ≤ K∑n
i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)

ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0, ∀i ∈ {1, 2, ..., n}

Similarly, for this MDP we get the following linear program:

LP2 :

Minρ((0,G),i),ρ((0,B),i),i=1,2,...,n

∑n
i=1 ρ((0, G), i) + ρ((0, B), i)

Subject to:∑n
i=1 PiT (ρ((0, G), i) + ρ((0, B), i)) ≤ E∑n
i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)

ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0, ∀i ∈ {1, 2, ..., n}

Using the simplex method, each of the above linear programs can be solved. If the
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problem is feasible, the optimal values of ρ((0, G), i) and ρ((0, B), i) (i = 1, 2, ..., n)

are used according to equation 2.13 to find the values of the probabilities u(0,G)(i)

and u(0,B)(i), and hence the probabilities q∗iG and q∗iB (i = 1, 2, ..., n) are obtained

(since u(0,G)(i) = q∗iG and u(0,B)(i) = q∗iB).

The simplex method is an iterative procedure that initially selects a feasible

solution to the linear program and tries to improve the solution in every step until

the optimal solution is reached. Due to the iterative nature of the simplex method,

it is not straightforward to find expression for the optimal policy (i.e. the optimal

probabilities of selecting power values) and hence the optimal policy will be obtained

through numerical computation.

2.4 Energy/Delay Minimization with Rate Control

2.4.1 Rate Control via Varying the Packet Size

2.4.1.1 Problem Formulation

Here, the transmitter is varying the transmission rate by varying the packet

size. For a given rate value ri, the corresponding packet size Mi is:

Mi = riT (2.14)

where T is the time slot duration.

The random variables yk and Wk are defined in the same way as in part 2.3.1.

Let the random variable zk be the size of the packet sent at time slot k. It is given
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by:

zk = riTWk−1 with probability qi(k) (2.15)

where qi(k) is the probability of selecting rate value ri at time slot k.

Next, let the random variable vk be the energy per bit spent in each time slot k;

given by:

vk =
P

ri
Wk−1 (2.16)

Hence, the energy per bit spent to deliver the packet successfully is given by the

following expression:

ξ(qiG(k), qiB(k)) =
∞∑
k=1

vk (2.17)

Also, the number of time slots spent to deliver the packet successfully is given by:

D(qiG(k), qiB(k)) =
∞∑
k=1

Wk−1 (2.18)

Hence, the energy minimization problem in this case is formulated as:

MinqiG(k),qiB(k)E[ξ(qiG(k), qiB(k))]

Subject to:

E[D(qiG(k), qiB(k))] ≤ K (2.19)

Similarly, the delay minimization problem can be formulated in this case as:

MinqiG(k),qiB(k)E[D(qiG(k), qiB(k))]

Subject to:

E[ξ(qiG(k), qiB(k))] ≤ E (2.20)

Both problems are formulated as Constrained Markov Decision Problems (CMDP)

as follows.
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2.4.1.2 Solution

First, we define the MDP arising from this problem.

• The state space is again the same set S (defined in part 2.3.1), where S =

{(0, G), (0, B), (1, G), (1, B)}

• The action space is again composed of the set A = {1, 2, ..., n} Where the

action a = i (i = 1, 2, ..., n) corresponds to the case when the transmitter

decides to transmit with rate ri (i.e. the packet size used is Mi bits). Also,

we define the action sets pertaining to every state:

A(0, G) = A(0, B) = {0, 1, 2, ..., n}

A(1, G) = A(1, B) = φ

• Transition probabilities between any two states in S for the case when action

taken is a = i are the same as for the case of power control and are shown in

Figure 4.3.

The only difference is that in this case piG corresponds to the probability

of success when rate ri is selected for transmission and the channel has good

quality and piB corresponds to the probability of success when rate ri is selected

when the channel has a bad quality.

• The immediate costs c(x, a) correspond to the energy per bit spent in every

time slot and they are defined as follows:

c((0, G), i) = c((0, B), i) = PT
Mi

• In this problem, immediate costs d(x, a) correspond to an additional time slot
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spent to deliver the packet.

d((0, G), i) = d((0, B), i) = 1, i = 1, 2, ..., n

• For this problem, we define each policy u ∈ U as follows: each policy u is a

sequence (u1, u2, ...) where the entry uk assigns at time slot k the probabilities

qiG(k) (0 ≤ qiG(k) ≤ 1) and qiB(k) (0 ≤ qiB(k) ≤ 1) for selecting each rate ri

when the current state is (0, G) and (0, B) respectively.

For this MDP, the immediate costs are nonnegative since they correspond to

energy and delay costs. Also, the MDP is transient since for any policy u, states

(0, G) and (0, B) are transient and states (1, G) and (1, B) are absorbing. This is

because all rate values are strictly positive and hence under any policy there is a

positive probability of moving from states (0, G) and (0, B) to states (1, G) and

(1, B). Hence, there exist a stationary policy that is optimal for solving the CMDP,

and hence the linear programming approach can be used to find the minimizing

stationary policy.

Hence, the linear program for the energy minimization problem in this case is:

LP3 :

Minρ((0,G),i),ρ((0,B),i),i=1,2,...,n

∑n
i=1

PT
Mi

(ρ((0, G), i) + ρ((0, B), i))

Subject to:∑n
i=1 ρ((0, G), i) + ρ((0, B), i) ≤ K∑n
i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)
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ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0, ∀i ∈ {1, 2, ..., n}

Similarly, the linear program corresponding to the delay minimization problem in

this case is:

LP4 :

Minρ((0,G),i),ρ((0,B),i),i=1,2,...,n

∑n
i=1 ρ((0, G), i) + ρ((0, B), i)

Subject to:∑n
i=1

PT
Mi
ρ((0, G), i) + ρ((0, B), i) ≤ E∑n

i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)

ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0, ∀i ∈ {1, 2, ..., n}

The linear programs LP3 and LP4 can be solved using the Simplex method, and

hence the optimum solution (using equation 2.13) can be obtained.

2.4.2 Rate Control via Varying the Time Slot Duration

2.4.2.1 Problem Formulation

Here, the transmitter is varying the transmission rate by varying the time slot

duration. For a given rate value ri, the corresponding time slot duration Ti is:

Ti =
M

ri
(2.21)

where M is the packet size. To formulate the minimization problems for this case,

the following variables are defined.

The random variables yk and Wk are defined in the same way as in part 2.3.1

Let the random variable lk be the duration (in seconds) of the time slot k (based on
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the selected rate ri at time slot k, i = 1, 2, ..., n).

It is given by:

lk = TiWk−1 with probability qi(k) (2.22)

where qi(k) is the probability of selecting rate value ri at time slot k.

Next, we define the random variable ak be the energy spent in each time slot k, that

is:

ak = PTiWk−1 with probability qi(k) (2.23)

Hence, the energy per packet spent to deliver the packet successfully is given by:

ξ(qiG(k), qiB(k)) =
∞∑
k=1

ak (2.24)

Also, the delay (i.e. the total duration in seconds to deliver the packet successfully)

is given by:

D(qiG(k), qiB(k)) =
∞∑
k=1

lk (2.25)

Hence, the energy minimization problem in this case is formulated as:

MinqiG(k),qiB(k)E[ξ(qiG(k), qiB(k))]

Subject to:

E[D(qiG(k), qiB(k))] ≤ K (2.26)

Similarly, the delay minimization problem can be formulated as follows:

MinqiG(k),qiB(k)E[D(qiG(k), qiB(k))]

Subject to:

E[ξ(qiG(k), qiB(k))] ≤ E (2.27)
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These problems are also formulated as Constrained Markov Decision Processes

(CMDP) as follows.

2.4.2.2 Solution

First, we define the MDP pertaining for this problem.

• The state space is again the set:

S = {(0, G), (0, B), (1, G), (1, B)}

• The action space is again composed of the set A = {1, ..., n}

Where the action a = i (i = 1, 2, ..., n) corresponds to the case when the

transmitter decides to transmit with rate ri (i.e. the time slot duration is Ti).

Also, we define the action sets pertaining to every state as follows:

A(0, G) = A(0, B) = {0, 1, ..., n}

A(1, G) = A(1, B) = φ

• Transition probabilities between any two states S for the case when action

taken is a = i are the same as for the case of power control are shown in figure

2.

• The immediate costs c(x, a) corresponding to the energy spent to transmit the

packet in every time slot and they are defined as follows:

c((0, G), i) = c((0, B), i) = PTi, i = 1, 2, ..., n.

Where Ti corresponds to the time slot duration when rate ri is used.

• In this problem, immediate costs d(x, a) corresponding to the duration of the
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current time slot (in seconds)

d((0, G), i) = d((0, B), i) = Ti, i = 1, 2, ..., n.

• For this problem, we define each policy u ∈ U as follows: each policy u is a

sequence (u1, u2, ...) where the entry uk assigns at time slot k the probabilities

qiG(k) (0 ≤ qiG(k) ≤ 1) and qiB(k) (0 ≤ qiB(k) ≤ 1) to select each rate ri

when the current state is (0, G) and (0, B) respectively.

This MDP also satisfies the conditions stated in [19], and hence the Linear Pro-

gramming approach will be used to find a minimizing stationary policy.

Thus, the linear program for the energy minimization problem in this case is:

LP5 :

Minρ((0,G),i),ρ((0,B),i),i=1,2,...,n

∑n
i=1 PTi(ρ((0, G), i) + ρ((0, B), i))

Subject to:∑n
i=1 Ti(ρ((0, G), i) + ρ((0, B), i)) ≤ K∑n
i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)

ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0, ∀i ∈ {1, 2, ..., n}

Similarly, the linear program corresponding to the delay minimization problem in

this case is:

LP6 :

Minρ((0,G),i),ρ((0,B),i,)i=1,2,...,n

∑n
i=1 Ti(ρ((0, G), i) + ρ((0, B), i))

Subject to:∑n
i=1 PTi(ρ((0, G), i) + ρ((0, B), i)) ≤ E
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∑n
i=1 ρ((0, G), i)(1− P(0,G)i(0,G)) + ρ((0, B), i)(−P(0,B)i(0,G)) = β(0, G)∑n
i=1 ρ((0, G), i)(−P(0,G)i(0,B)) + ρ((0, B), i)(1− P(0,B)i(0,B)) = β(0, B)

ρ((0, G), i) ≥ 0 ρ((0, B), i) ≥ 0 ∀i ∈ {1, 2, ..., n}

Both LP5 and LP6 can be solved using the Simplex method, and hence the

optimum solution can be obtained (using equation 2.13).

2.5 Numerical Results

2.5.1 Energy Minimization with Power Control

In order to investigate the effect of the availability of the Channel State Infor-

mation on the minimum energy consumed to deliver the packet successfully when

the channel is time varying, we compute the minimum energy consumed when the

channel is time varying and modeled by two state Markov chain as described in the

system model. We also compute the minimum energy obtained for the case when

the channel is modeled to be time invariant and has an average quality compared to

the quality of the time varying channel i.e. the value of the variance of the fading

coefficient for the time invariant channel sc is constant and equal to the average

value of the variance under the Markovian channel model i.e.

sc =
g

g + b
sH +

b

g + b
sL (2.28)

The time invariant channel is a special case of the time varying channel (since the

probability of success is the same over all time slots, the channel can be modeled

by a Markov chain composed of one absorbing state). Hence, the proposed method
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for the time varying channel (based on the Constrained Markov Decision Problems)

can still be used.

In this part, it is assumed in the following that power control is binary i.e. the

source can transmit with power P or remain silent. (i.e. n = 2)

The following values for the power and the parameters of the time varying channel

are considered:

P = 100mW , T = 10msec, sh = 20, sL = 11, g = 0.2, b = 0.8, N0 = 1W ,

r = 1bits/sec and assuming the starting state is (0, G).

Based on the above parameters values, the probabilities of success when transmitting

with power P when the channel has good and bad quality respectively are: pG =

0.6065, pB = 0.4029.

For the time invariant channel, the probability of packet successful reception is:

p = 0.4436.

Table 2.1 shows the optimal probabilities qG and qB of transmitting with power

P when the channel has good and bad quality for the cases when the channel is

time varying, and the optimal probability q of transmitting with power P when

the channel is time invariant. Figure 4.2 shows the minimum energy consumed (in

millijoules) to deliver the packet successfully when the channel is time varying and

when the channel is time invariant for different values of the maximum allowable

delay (i.e. maximum value of expected number of time slots). For a delay constraint

value of one time slot, the minimum energy has zero value because the problem is

infeasible (i.e. the packet cannot be delivered successfully with the available delay

constraint).
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Table 2.1: The probabilities qG, qB, and q for different values of the maximum

allowable delay

Time Varying Time Invariant

Max Delay qG qB q

2 1.0000 0.8445 0.9007

3 1.0000 0.2341 0.7948

4 1.0000 0.0306 0.7112

5 0.9244 0.0000 0.6436

6 0.8936 0.0000 0.5876

7 0.8582 0.0000 0.5407

Based on the results, we observe that the minimum energy decreases as the

value of the maximum allowable delay increases in the case when the channel is time

varying. This is because as more time slots are available to transmit the packet

successfully, there is a higher chance for the transmitter to exploit the time varying

property of the channel by transmitting with high probability when the channel has

good quality and with low probability when the channel has bad quality, this results

in reducing the energy consumed which is lower than the energy consumed when

the channel is time invariant, and this shows the performance improvement gained

by using the Channel State Information. The values of probabilities of transmitting

qG and qB with power P in table 2.1 verify this analysis. As for the time invariant

channel, the decrease in the optimal probability of transmitting with power P is just

due to the fact that as the value of the delay constraint increases, the transmitter
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Figure 2.3: Minimum Energy Consumed vs Maximum Allowable Delay

can decrease the probability of transmitting with power P. However, this decrease

does not have an effect on the minimum energy consumed.

Hence, based on the above values we can can reduce the minimum energy

spent by 35% to 51% (depending on the target delay constraint) by knowing the

Channel State Information of the time varying channel than the minimum energy

spent for the case when the channel is modeled to be time invariant, which shows

the advantage of using CSI when the channel is modeled as time varying.

2.5.2 Energy Minimization with Rate Control

The objective of this part are two. The first is to investigate the effect of the

availability of the Channel State Information on the optimal rate values and on the

minimum energy consumed to deliver the packet successfully when the channel is

time varying. The second is to find out whether rate control by varying the packet

size or rate control by varying the time slot duration achieve better performance.
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Hence in order to make fair comparison, we compute the minimum energy consumed

per bit and the delay is computed in seconds. Again, we consider both cases when

the channel is time varying and time invariant. We assume in the following that

rate control policy is binary i.e. the source can select the value of the rate between

two values r1 and r2.

We consider the following values for the rates, power and the parameters of the

channel: r1 = 5bits/sec, r2 = 7bits/sec, P = 0.1W , g = 0.2, b = 0.8, s1 = 300,

s2 = 200, N0 = 1W For the rate control problem by varying the packet size, we

compute the minimum energy obtained for each of the following values of the time

slot duration: T = 1, 5, and 10 milliseconds.

For the rate control problem by varying the time slot duration, we compute the min-

imum energy obtained for each of the following values of the packet size: M = 5, 10

and 20 bits.

As for the starting state, we consider both cases when each of the states (0, G) and

(0, B) is the starting state respectively.

Based on the results, we find that for the case of rate control by varying the time

slot duration, the selected packet size value affects whether the problem is feasible

or not. Similarly for the case of rate control by varying the packet size, the selected

time slot duration affects whether the problem is feasible or not. This is because

the values of the packet size and time slot duration directly affects the value of

the delay but not the value of the energy per bit (it is rather determined by the

selected rate value). However, once the problem is feasible, the optimum policy is

deterministic and the transmitter decides to transmit with rate value r1 = 5 bits/sec
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with probability one for the case when the channel has good quality and decides to

transmit with rate value r2 = 7 bits/sec when the channel has bad quality. As for

the time invariant channel, the optimal rate value is 5 bits/sec.

Finally, table 2.4 shows the minimum energy spent per bit for the time invariant

channel and for the time varying channel for both cases when the starting state is

(0, G) and (0, B) respectively.

Table 2.2: The value of the packet size used versus the minimum value of the delay

constraint at which the problem becomes feasible

M (bits) Min Delay Min Delay

(Time Varying Channel) (Time Invariant Channel)

5 2 2

10 3 3

15 4 4

Table 2.3: The value of the time slot duration used versus the minimum value of

the delay constraint at which the problem becomes feasible

T (msec) Min Delay Min Delay

(Time Varying Channel) (Time Invariant Channel)

1 2 2

5 6 6

10 12 12
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The values in table 2.4 show the effect of the starting state on the value of the mini-

Table 2.4: Minimum Energy Consumed per bit in MilliJoules

Minimum Energy

Time Invariant 0.5685 millijoules

Time Varying/Starting state (0,G) 0.3143 millijoules

Time Varying/Starting state (0,B) 0.9163 millijoules

mum energy obtained, and hence in order to reduce the energy spent the transmitter

should always start transmitting when the channel has good quality.

2.6 Summary

In this chapter, we have considered the problems of minimizing energy and

delay spent to successfully deliver each packet over a time varying wireless link. We

have assumed the availability of Channel State Information at the transmitter side.

The problems are formulated as Constrained Markov Decision Problems, and a Lin-

ear Programming approach is provided to obtain the optimum solution. The results

show the advantage of using Channel State Information; however, this advantage

in some cases is dependent on the initial state conditions. Although the method

is applied only over a simple wireless link, it provides a new modeling approach in

optimizing performance metrics such as energy and delay for time varying wireless
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transmissions and it leads to exact solutions.
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Chapter 3

Energy Constrained Real Time Wireless Multicasting

3.1 Overview

Similar to the previous chapter, this chapter addresses the tradeoff between

energy and other important performance metrics which are throughput and delay

but for a single-hop multicast network. In this chapter, we consider the problem

of transmitting a file composed of a finite number of packets under energy and

delay constraints over erasure channels. We are interested in finding the maximum

throughput that can be achieved under such constraints in multicasting the packets

by a transmitter to multiple receivers over independent time varying channels in

a single hop network. This problem is motivated by the challenge of delivering

real time applications that usually have strict delay constraints through wireless

devices that are energy limited. Also, this problem captures the challenge in wireless

multicast between reliable packet delivery to all receivers and the number of packets

that can be so delivered within the specified energy and delay constraints.

Also in this chapter, we investigate the effect of using Random Network Cod-

ing (RNC) on the achieved performance. It is anticipated that RNC might result

in performance improvement due to the following: Using traditional simple ARQ,

the transmitter keeps transmitting each packet until it is received by every receiver.

Thus, the number of packets delivered to every receiver will degrade considerably
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if there is only a small number of receivers with significantly worse channel than

the other receivers in the system. With RNC, however, users with better channel

quality can receive sooner enough linear combinations of the group of the trans-

mitted packets to decode them, even if some receivers in the multicast session are

experiencing poor channel quality.

The problem of optimizing data throughput under energy and delay constraints

is considered in [20] and [21], but only for a unicast session. In [22], rate and power

control techniques are considered for multiple multicast sessions to maximize the av-

erage throughput at every receiver, but without strict energy and delay constraints.

In [23], the problem of power control is considered for a multicast session where

a strict delay constraint is imposed on every packet, and dynamic programming

is used to find the optimum power policy that maximizes the number of received

packets by every receiver within the required deadline. However, none of the above

approaches have considered the use of RNC and its effect on the achieved through-

put. The advantages of RNC in multicasting have been amply demonstrated in [5],

[6], and [7].

3.2 System Model

Consider a transmitter multicasting T packets to M receivers over a wireless

single hop network. Time is slotted. The transmitter is required to deliver the T

packets in N time slots and consuming no more than E units of energy. In addition,

perfect channel feedback is assumed which means that acknowledgements from the
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receivers are guaranteed to reach the transmitter instantaneously and error-free.

Also, the channel between the transmitter and each receiver is modeled as an erasure

channel where the probability of successful reception for receiver i in time slot k is

given by pik. We consider the case when the probability of successful reception is

time varying and is modeled by a two state Markov chain. In this model, the channel

changes between a good state and a bad state. Figure 3.1 shows the channel model

where:

• piG is the probability of successful reception for receiver i when the channel is

in the good state.

• piB is the probability of successful reception for receiver i when the channel is

in the bad state.

• bi is the transition probability of the channel at receiver i from the good to

the bad state.

• gi is the transition probability of the channel at receiver i from the bad to the

good state.

Figure 3.1: Markovian Channel Model
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We also consider for comparison the case when the probability of successful

reception for every receiver pik is constant in time and is given by the average value

of pik under the Markovian model. The value of pi is:

pi =
g

g + b
piG +

b

g + b
piB (3.1)

In this study, the power control policy is binary, which means that in every

time slot the transmitter decides on transmitting the packet with maximum power

P or not transmitting at all.

The two transmission schemes that will be considered are simple ARQ and

RNC.

The objective is to find the optimal power control policy that maximizes the

total number of packets successfully received by all the receivers, while satisfying the

energy and delay constraints imposed on the T packets. However, the interdepen-

dence of the transmission times and energy usage from packet to packet, while the

constraint applies only globally to the entire set of T packets, renders the problem

truly formidable. Thus, we provide a suboptimal approach in which we distribute

the global constraints among all individual packets for ARQ or groups of L packets

for RNC. The details are described for the cases of ARQ and RNC in the following

section.
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3.3 Proposed Approach

3.3.1 ARQ Case

3.3.1.1 Problem Formulation

To simplify the problem, we translate the energy and delay constraints for the

T packets into constraints for every delivered packet, and then solve the optimization

problem for each packet individually. We realize that this is not optimal but it does

simplify the otherwise formidably complex scheduling problem. In this approach,

the transmitter should deliver the current packet t in Nt time slots and Et amount

of energy. The value of Nt is given by :

Nt
.
=

⌈
Nr

Tr

⌉
(3.2)

where:

• Nr=N −
∑t−1

k=1 nk is the remaining number of time slots.

• nk is the number of time slots consumed by the kth packet.

• Tr = T − (t− 1) is the remaining number of packets in the system.

Similarly, Et is given by:

Et
.
=

⌈
Er
Tr

⌉
(3.3)

where:

• Er=E −
∑t−1

k=1 ek is the remaining amount of energy.

• ek is the amount of energy consumed by the kth packet.
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• Tr = T − (t− 1) is the remaining number of packets in the system.

Thus, the problem can be reduced to the problem of finding the optimum

power control policy that maximizes the number of receivers who receive every

packet individually. We start by solving the problem for the first packet. Then,

the problem will be repeated for each of the T packets where the energy and delay

constraints will be updated according to equations 3.2 and 3.3 respectively.

Since the energy expenditure for every packet t (1 ≤ t ≤ T ) is constrained by

the value of Et and the maximum number of time slots required to deliver packet t

by Nt, the problem is formulated as an optimization problem where the transmitter

should decide on the optimal sequence of actions (whether to transmit with maxi-

mum power P or not, in every time slot) in order to maximize the expected number

of receivers who receive the packet t within the time constraint of Nt time slots.

In this model, the energy expenditure during each time slot k (1 ≤ k ≤ Nt) is

modeled by a variable uk such that:

• uk = 1, if the sender is transmitting with maximum power P

• uk = 0, otherwise

In every time slot k, the variable Wk = (w1k,w2k,...,wMk) is a random vector where

every entry wik is a binary random variable that indicates whether receiver i (1 ≤

i ≤ M) sent an acknowledgement during time slot k. Each entry wik takes values

as follows.

• If uk = 1,
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– wik = 1, if acknowledgement is received (with probability pik)

– wik = 0, otherwise (with probability 1− pik)

• If uk = 0, wik = 0

Also, we define the variable Xk= (x1k,x2k,...,xMk) to be another random vector

where every entry xik is a binary random variable that indicates whether receiver i

sends an acknowledgement up to and including time slot k. The variable xik takes

the following assignment:

xik = xi(k−1) ⊕ wik

where ⊕ is the logical binary ”or” operation.

Since the channel between the transmitter and each receiver i is modeled as

a two state Markov chain, we define the variable Yk to be a random vector where

every entry yik takes the following values:

• yik = 1, if the channel between the transmitter and receiver i is in the good

state

• yik = 0, if the channel between the transmitter and receiver i is in the bad

state

The objective is to find the optimum energy allocation (u∗1,...,u∗Nt) that maximizes

the expected number of receivers who receive packet t up to time slot Nt.

In other words, the problem is described by:

Maxu1,u2,...,uNtE
[∑M

i=1(xiNt)
]

Subject to:
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∑Nt
k=1 uk ≤ Et

where Et is the value of the maximum allowable energy to spend per packet t.

This problem can be solved using standard dynamic programming as follows.

3.3.1.2 Solution

The objective function (which is the maximum expected number of receivers

who receive packet t successfully within Nt time slots under maximum energy con-

sumed is Et) is a function of the stochastic vector XNt . It is also dependent on the

channel state Yk (1 ≤ k ≤ Nt). Thus, we define Zk = (Xk, Yk) to be a vector in

{0, 1}2M where the first M entries correspond to the entries of Xk and the remaining

M entries corresponds to the entries of Yk. Note that Z1,Z2,...,ZNt forms a Markov

chain since both Xk and Yk are Markov chains. Also, Z1,Z2,...,ZNt is a Markov

chain that depends on chosen value of the variable uk in time slot k. Then, the

evolution of Zi, i = 1, ..., Nt, is a Markov decision process, where each state S is a

distinct vector in {0, 1}2M (M is the number of receivers) and each state S has the

form of S0S1...S2M−1 where for 0 ≤ i ≤ M − 1, Si is the entry bit that has value

equal to one if receiver i received the packet successfully and zero otherwise, and

for M ≤ i ≤ 2M − 1, Si is the entry bit that has value equal to one if the channel

between the transmitter and receiver i is in the good state and zero otherwise. The

transition probabilities P uk
SS′ from S to S’ following the action uk are given by:

• If uk = 0,

P 0
SS′ =

∏M−1
i=0 I(S ′i = Si)

∏2M−1
i=M [I(Si = 0, S ′i = 1)(1− bi)
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+I(Si = 1, S ′i = 0)(1− gi)

+I(Si = 0, S ′i = 0)bi

+I(Si = 1, S ′i = 1)gi]

• If uk = 1,

P 1
SS′ =

∏M−1
i=1 [I(Si = 0, S ′i = 0)(1− pik) + I(Si = 0, S ′i = 1)pik

+I(Si = 1, S ′i = 1)]

∏2M−1
i=M [I(Si = 0, S ′i = 1)(1− bi) + I(Si = 1, S ′i = 0)(1− gi)

+I(Si = 0, S ′i = 0)bi + I(Si = 1, S ′i = 1)gi]

where I(.) is the indicator function.

Note that the value of pik depends on whether the channel between the trans-

mitter and receiver i is in the good or bad state. Thus, the value of pik is obtained

as follows:

• If Si+M = 0, then pik = piB

• If Si+M = 1, then pik = piG

Also, a reward R(S, S ′) is associated with every transition from S to S’ in every

time slot. The reward is the number of receivers who receive the packet successfully

in the current time slot; that is:

R(S, S ′) =
∑M−1

i=0 I(Si = 0, S ′i = 1)

The objective is to maximize the expected sum of rewards up to time slot Nt.

The expected sum of rewards is the expected number of receivers who successfully
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receive the packet up to time slot Nt. The problem is to find the optimum energy

allocation u∗k within Nt time slots subject to a constraint of maximum spent energy

Et to maximize the expected number of receivers that receive packet t successfully.

It can be solved using dynamic programming.

The principle of dynamic programming says that if we consider the problem of

finding the optimum energy allocation u∗k within Nt time slots subject to a constraint

of maximum spent energy is Et to maximize the expected number of receivers who

successfully receive the packet, then the sub problem must be solved of finding the

optimum energy allocation within k time slots to maximize the expected number of

receivers who successfully receive the packet subject to a constraint that the total

energy spent is w, where 1 ≤ k ≤ Nt and 1 ≤ w ≤ Et.

Let Jk(S,w) be the expected sum of rewards (expected number of receivers

who receive packet t successfully) starting from time slot k and from state S and let

the value of remaining energy be w; then Jk(S,w) is defined recursively as follows:

• Ifw = 0,

Jk(S, 0) = Jk−1(S, 0) = 0

• Ifk = Nt + 1

JNt+1(S,w) = 0, ∀S,w

• Ifw > 0, k < Nt + 1,

Jk(S,w) = Maxuk
∑

allS′ P
uk
SS′(Jk+1(S ′, w − uk) +R(S, S ′))
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where J0(”0000..0”, Et) is the objective function since the system starts from

the state where none of the receivers have the packet at time slot 0 and having Et

units of energy.

As with all discrete optimization problems, here too, the issue of complexity

needs to be dealt with. Typically, heuristics are developed that are less complex or

the action space is restricted and the complete optimization within the restricted

set is carried out. Additionally, there are methods to convert the discrete problem

to continuous formulations and convexify the optimization problem. The literature

is replete with such techniques (see e.g. [25], [26] and [27]). However, such a line of

investigation is outside the scope of this work.

3.3.2 RNC Case

3.3.2.1 Problem Formulation

In this case, the constraint is simplified by translating the energy and delay

constraints for the group of the T packets into constraints for every sub-group of L

packets (L is the coding parameter) and therefore solve the optimization problem

for the current tth batch of L packets, the delay constraints for the current tth group

of L packets will be:

Nt =

⌈
Nr

Tr
∗ L
⌉

(3.4)

where:

• Nr=N −
∑t−1

k=1 nk is the remaining number of time slots.
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• nk is the number of time slots consumed by the kth group of L packets.

• Tr = T − L · (t− 1) is the remaining number of packets in the system

and the corresponding energy constraint is:

Et =

⌈
Er
Tr
∗ L
⌉

(3.5)

where:

• Er=E −
∑t−1

k=1 ek is the remaining amount of energy.

• ek is the amount of energy consumed by the kth group of L packets.

• Tr = T − L · (t− 1) is the remaining number of packets in the system.

As in the case of ARQ, the energy expenditure during each time slot k is modeled

by a variable uk such that:

• uk = 1, if the sender is transmitting with maximum power P

• uk = 0, otherwise

Since RNC is considered in this case, each receiver i should keep a matrix that stores

the coefficients of every received coded packet. Let the variable Wk be a random

vector where every entry wik is a random variable which stores the current value of

the rank of the matrix of receiver i. The random variable wik ∈ {0, 1, 2, ..., L} where

L is the number of coded packets. As we know from RNC, to successfully decode

all L packets in a batch, the rank of the matrix of the coefficients of the successfully

received packets must reach the value of L.
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However, the number of linearly independent coded packets received by the

receivers are correlated since the source is transmitting in every time slot the same

random linear combinations to all the receivers.

Hence, in order to track the evolution of the number of linearly independent

packets received by every receiver, we need to track the correlations between them.

This is achieved by also tracking the number of linearly independent packets received

by every subgroup of the receivers; however, the number of variables that we need

to track is exponential function of the number of receivers. Hence from now on, we

will restrict our analysis here to the case of two receivers.

For the case of two receiver, we will define the vector Wk = (w1k, w2k, w12k)

where the entries w1k and w2k be the number of linearly independent packets received

by receivers 1 and 2 respectively up to time slot k. Also, the entry w12k is the number

of linearly independent packets that are received by both receivers.

At every time slot k, we define the variable Xk = (x1k, x2k) is a random vector

where every entry xik is a random variable that indicates if receiver i (i = 1, 2)

successfully decodes the tth group of L coded packets during time slot k. Each entry

xik takes the following assignment:

• xik = 1, if wik = L

• xik = 0, otherwise

Also, as in the case of ARQ, we define the variable Yk to be a random vector

where every entry yik, (i = 1, 2) takes the following values:
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• yik = 1, if the channel between the transmitter and receiver i is in the good

state

• yik = 0, if the channel between the transmitter and receiver i is in the bad

state

The objective is to find the optimum energy allocation (u∗1,..,u∗Nt) that maxi-

mizes the number of receivers who are able to decode the current delivered L packets

up to time slot Nt. In other words, the problem is formulated as follows:

Maxu1,u2,...,uNtE[
∑2

i=1(xiNt)]

Subject to:

∑Nt
k=1 uk ≤ Et

where Et is the value of the maximum allowable energy to spend by the tth batch of

L coded packets.

This problem can also be solved using standard dynamic programming.

3.3.2.2 Solution

As in the case of ARQ, the objective function(which is the maximum expected

number of receivers who successfully decode the tth group of L coded packets success-

fully within Nt time slots under maximum energy consumed is Et) is a function of

the stochastic vector WNt . It is also dependent on the channel state Yk (1 ≤ k ≤ Nt).

Thus, we also define Zk = (Wk, Yk) to be a vector in {0, 1}5. Note that Z1,Z2,...,ZNt

forms a Markov chain since both Wk and Yk are Markov chains. Also, Z1,Z2,...,ZNt
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is a Markov chain that depends on the chosen value for the variable uk in time slot

k. Then, the evolution of Zi, i = 1, ..., Nt is a Markov decision process where each

state S is a distinct vector in {0, 1}5 and each state S has the form of S0S1...S5 where

S1, S2 and S3 are the number of linearly independent packets received by receivers

1, 2 and by both of them respectively. S4 and S5 indicates if the channel between

the transmitter and receivers 1 and 2 respectively is in the good state.

The expressions for the transition probabilities P uk
SS′ from S to S’, following the

action uk, are found in Appendix 3.4.

The reward function R(S, S ′) is the number of receivers who can successfully

decode the L coded packets in the current time slot. It is defined as follows.

R(S, S ′) =
∑2

i=1 I(Si = L− 1, S ′i = L).

The objective is to maximize the expected sum of rewards up to time slot Nt.

The expected sum of rewards is the expected number of receivers who successfully

decode the L coded packets up to time slot Nt. The problem of optimum energy

allocation u∗k within Nt time slots subject to a constraint of maximum energy spent

is Et to maximize the expected number of receivers who successfully decode the L

coded packets can be solved using dynamic programming and following the same

solution that is presented in the case of ARQ.

3.3.3 Numerical Evaluation

In this section, we illustrate the performance of the power control policy for

both ARQ and RNC. The evaluation criteria are the expected number of packets
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received by each receiver. For the evaluation, we use T=6 packets, E=12 units,

N=18 time slots and M=2 receivers. For RNC, we chose the coding parameter

L=2,4 and 6 respectively. The alphabet size is chosen to be q =997. The evaluation

is done for the cases when the channel between the transmitter and each receiver

is modeled by the Markovian channel model as well as by time invariant channel

model respectively. The parameters chosen for the Markovian channel model are:

For receiver 1: p1G = 0.8, p1B = 0.4, b1 = 0.2, g1 = 0.8

For receiver 2: p2G = 0.5, p2B = 0.2, b2 = 0.4, g2 = 0.5

The corresponding probability of successful reception of the packet in the case

of the time-invariant channel for receiver 1 is p1=0.72 and for receiver 2 is p2=0.37

according to equation 3.1.

Figures 3.2 and 3.3 plot the expected number of packets received per time slot

as a function of the coding parameter L for receivers 1 and 2 respectively. We assume

that L=1 corresponds to the case when the transmitter is using ARQ. As shown, the

expected number of packets received by receiver 1 increases as the coding parameter

L increases; however for receiver 2, that has worse channel quality than receiver 1,

the expected number of packets successfully received per time slot decreases as the

coding parameter L increases.

Also, for both receivers 1 and 2, the performance is better when the channel is

time varying than when it is constant. This is because the transmitter can exploit

the statistics of the time varying channel and transmit more frequently when the

channel has good quality.
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Figure 3.2: Throughput at Receiver 1

Figure 3.3: Throughput at Receiver 2
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This is a remarkable illustration that RNC combat the effect of fading more

successfully than ARQ for good channels but not for poor channels.

3.4 Summary

In this chapter, we have used dynamic programming to maximize the multicast

throughput in a finite delay constraint and within an energy budget over a time

varying channel. We have modeled the time varying channel as a two state markov

chain where the channel switches between a good quality state and a bad quality

state. We have considered two transmission schemes: ARQ and RNC. Our results

show that the performance of the transmission schemes is dependent on the channel

quality for every receiver. We have only considered single hop multicasting, and we

simplified the constraint application. However, the solution is rigorous and exact

and introduces the physical layer aspects of fading and channel variation (as it

should) to the constrained multicast problem. It can serve as a spring board for

extending it to multiple sources and more general multihop topologies.

3.5 Appendix: Transition Probabilities for the Markov Chain Model

considered in section 3.2.2

• From state (i, j, k, l,m) to state (i, j, k, p, q)

(1 ≤ i < L, 1 ≤ j < L, 1 ≤ k < min(i, j), 0 ≤ l,m, p, q ≤ 1 )

P 1
(i,j,k,l,m),(i,j,k,p,q) = pgb((1− p1)(1− p2) + (1− p1)p2u

j−L)

• From state (i, j, k, l,m) to state (i+ 1, j, k, p, q)
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P 1
(i,j,k,l,m),(i+1,j,k,p,q) = pgb(p1(1− p2)(1− ui−L) + p1p2(uj − uk)u−L)

• From state (i, j, k, l,m) to state (i, j + 1, k, p, q)

P 1
(i,j,k,l,m),(i,j+1,k,p,q) = pgb(p2(1− p1)(1− uj−L + p1p2(ui − uk)u−L)

• From state (i, j, k, l,m) to state (i+ 1, j + 1, k + 1, p, q)

P 1
(i,j,k,l,m),(i+1,j+1,k+1,p,q) = pgb(p2p1(1− ui + uj − uk)u−L)

• From state (i, L, k, l,m) to state (i, L, k, p, q)

P 1
(i,L,k,l,m),(i,L,k,p,q) = pgb((1− p1) + p1u

i−L)

• From state (i, L, k, l,m) to state (i+ 1, L, k + 1, p, q)

P 1
(i,L,k,l,m),(i+1,L,k+1,p,q) = pgb(p1(L− k)u−L))

• From state (L, j, k, l,m) to state (L, j, k, p, q)

P 1
(L,j,k,l,m),(L,j,k,p,q) = Pgb((1− p2) + p2u

j−L)

• From state (L, j, k, l,m) to state (L, j + 1, k, p, q)

P 1
(L,j,k,l,m),(L,j+1,k,p,q) = pgb(p2(1− (uj + L− k)u−L))

• From state (L, j, k, l,m) to state (L, j + 1, k + 1, p, q)

P 1
(L,j,k,l,m),(L,j+1,k+1,p,q) = pgb(p2(L− k)u−L)

• From state (L,L, k, l,m) to state (L,L, k, p, q)

P 1
(L,L,k,l,m),(L,L,k,p,q) = pgb

The probabilities pgb, p1, and p2 are given by the following expressions:

pgb = I(l = 0, p = 0)b1 + I(l = 0, p = 1)(1− b1) + I(l = 1, p = 1)g1

+I(l = 1, p = 0) + (1− g2)I(m = 0, q = 0)b2 + I(m = 0, q = 1)(1− b2)
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+I(m = 1, q = 1)b2 + I(m = 1, q = 0)(1− g2)

p1 = I(l = 1)p1G + I(l = 0)p1B

p2 = I(m = 1)p2G + I(m = 0)p2B
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Chapter 4

The Effect of Cooperation and Network Coding on the Energy

Efficiency of Wireless Transmissions

4.1 Overview

The objective of this chapter is to present different physical and network layer

cooperative techniques for wireless fading transmissions and to evaluate their energy

efficiency. Both user and relay cooperation are captured by considering two models

for wireless transmissions. The first model considers transmissions over a wireless

link, and a relay is used to assist the source node to deliver its data to the destination

node. The second model considers multicast transmissions in which the source

node is multicasting its data to two destinations. In this case, user cooperation

is utilized i.e. the destination node that first receives the data successfully can

assist the source in transmitting the data to the remaining destination. To evaluate

the energy efficiency of each transmission scheme, the minimum energy will be

computed by finding the optimal transmission powers. Then, the tradeoff between

energy efficiency and the maximum stable throughput is studied by using the optimal

transmission powers resulting from minimizing energy to compute the maximum

stable throughput.

Early work has considered cooperation at the physical layer. One of the main
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techniques used in physical layer cooperation is the use of Space-time codes and in

particular Alamouti code [28]. Some of the cooperative algorithms that use Alam-

outi code are studied in [29] and [30]. Then, due to the growing importance of

energy efficiency, there has been recently much attention in finding which coopera-

tive schemes are energy efficient. In [34], a wireless fading network consisting of a

single source, a single destination and N relays is considered, and it is shown the

tradeoff between decreasing the overhead of obtaining the Channel State Informa-

tion (CSI) by using less relays and decreasing the energy consumption. In [35],

energy efficient cooperative scheme is proposed in a wireless sensor network where

the cooperating nodes employ Alamouti codes, and it is shown show that under

certain distance ranges between the nodes, the energy of the cooperative scheme is

reduced compared to non cooperative schemes.

Also, this chapter investigates the effect of using Random Network Coding

on the energy efficiency of cooperative transmission. In [36] and [37], it is shown

that cooperation using Network Coding increases the maximum stable throughput.

More recent work has considered cooperative techniques that use Alamouti codes

combined with Network Coding such as in [38] and [39] and evaluates their perfor-

mance in terms of outage probability. However, there is no work that evaluates the

use of Alamouti codes and Network Coding in terms of energy efficiency, which will

be considered in this chapter.
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4.2 Relay Cooperation in Single Link Wireless Transmission

4.2.1 System Model

Consider a wireless network as shown in figure 4.1. Packets arrive at the

source according to a Bernoulli process with rate λ. Each packet is composed of N

symbols (N is fixed for all packets). Time is slotted; each time slot corresponds to

the transmission duration of a single packet. The nodes cannot send and receive at

the same time. The channels between each pair of nodes are independent Rayleigh

fading with constant fading level during each slot; however, the value of the fading

level changes from one time slot to another. We denote by hit the gain of channel i

at every time slot t. The channel gains are independent Rayleigh distributed with

pdf given by:

fhit(h) =
2h

si
e
−h

2

si (4.1)

Figure 4.1: Schematic diagram that shows the system model

It is assumed that the network nodes do not have full Channel State Informa-

tion instead they have only knowledge of the channels’ statistics. It is also assumed
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that AWGN noise is present at each receiver. The packet erasure model is used

i.e. the packet is received successfully with a probability; otherwise it is discarded.

Due to the assumption of flat fading in each time slot, all the symbols of the packet

are subject to the same level of fading (i.e. the value of the channel gain is the

same during the transmission of all symbols), and hence the probability of success-

ful transmission is given by the probability that the Signal to Noise Ratio (SNR)

of the received symbols exceeds the threshold γ required at the receiving node and

hence it is given by:

psuccess = P (SNR ≥ γ) (4.2)

.The threshold γ depends on communication parameters such as the transmission

rate, the target error probability, the modulation and coding scheme, etc. Although

we could track the dependence of γ on these parameters, we choose for simplicity to

consider a value of γ that may encompass all of these parameters. We denote by pi

the probability of packet successful transmission on channel i. These probabilities

are constant in every time slot t. It is assumed that channel 3 has better quality

than channel 1, and hence the probability p1 has higher value than the probability

p3. The source S can use either:

• Simple Automatic Repeat Request (ARQ)

• Random Network Coding (RNC) .i.e. in every time slot, the transmitter selects

randomly L coefficients from u-ary alphabet (where u is the alphabet size) and

forms random linear combination of a group of L packets in its buffer and keeps

transmitting random linear combinations of the same group of L packets in
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every time slot. Once the destination receives L linearly independent random

combinations, it sends an acknowledgement to the source.

Acknowledgements from the receivers are assumed to reach the transmitter instan-

taneously and error-free. At the relay, the Store and Forward Protocol is used

i.e. the relay forwards a packet to the destination after it decodes it successfully.

Also, the source and the relay transmit with powers P1 and P2 respectively where

Pi ∈ [0, Pmax]. To transmit the data, one of the following cooperation protocols are

used.

4.2.1.1 Plain Relaying (PR) using ARQ

The source transmits each packet using ARQ until either the destination or

the relay receives the packet. If the destination receives the packet successfully,

transmission is completed and the source starts transmitting the next packet. If

the relay successfully receives the packet before the destination, the relay transmits

the packet using ARQ to the destination until the destination receives the packet

successfully. Using this scheme, the received SNR values are given by:

• From the source to the destination:

SNRSD =
|h1t|2

N0

P1 (4.3)

• From the source to the relay:

SNRSR =
|h2t|2

N0

P1 (4.4)
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• From the relay to the destination:

SNRRD =
|h3t|2

N0

P2 (4.5)

Based on the above expressions, the SNR variables are exponentially distributed

with means s1P1

N0
, s2P1

N0
and s3P2

N0
respectively, and hence the probabilities of success

are given by:

• From the source to the destination:

p1 = e
−γN0
s1P1 (4.6)

• From the source to the relay:

p2 = e
−γN0
s2P1 (4.7)

• From the relay to the destination:

p3 = e
−γN0
s3P2 (4.8)

4.2.1.2 Relaying with Alamouti Coding (AC) using ARQ

The first stage of this protocol is similar to Plain Relaying i.e. the source

transmits the packet using ARQ until either the destination or the relay receives

the packet. If the relay receives the packet successfully before the destination, it

forms an encoded packet by applying Alamouti Coding to every pair of consecutive

symbols of the original packet.

After the relay forms the encoded packet, both source and relay transmit in the

next time slot where the source transmits the original packet, and the relay transmits
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the encoded packet until the destination receives the packet successfully. In this case,

perfect synchronization is assumed between the source and the relay. Although both

the sender and the relay transmit simultaneously, they do not interfere with each

other. This is because Alamouti Coding constructs a packet that is orthogonal

to the original packet. Assuming channel estimation is performed at the receiver,

the decoding process of the transmitted signals using Alamouti Coding is similar

to Maximum Ratio Combining (MRC) as shown in [28]. Hence, the SNR at the

destination in the cooperation phase is:

SNRAC =
|h1t|2P1 + |h3t|2P2

N0

(4.9)

Based on the above expression, SNRAC has a hypoexponential distribution with

mean s1P1

N0
+ s3P2

N0
. The probability pAC is then given by:

pAC =
P1s1e

− N0γ
P2s3 − P2s3e

− N0γ
P1s1

P2s3 − P1s1

(4.10)

The expressions for the Signal to Noise Ratios SNRSD and SNRSR and the probabil-

ities of success p1 and p2 are as shown in equations 4.3, 4.4, 4.6, and 4.7 respectively.

4.2.1.3 Plain Relaying with Random Network Coding

In this case, the source transmits random linear combinations of every group of

L packets until either the destination or the relay successfully decodes the L packets.

If the destination decodes successfully the L packets before the relay, transmission is

successful and the source starts transmitting the next group of L packets. If the relay

successfully decodes the L packets before the destination, it starts transmitting the
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L packets to the destination using RNC until the destination successfully decodes

the L packets. The destination uses the previously successfully received random

linear combinations directly from the source along with the new ones generated by

the relay to perform its decoding. Using this scheme, the received SNR expressions

and the expressions for the probabilities of success are identical to the case of Plain

Relaying using ARQ but this time they apply to the coded packets.

4.2.1.4 Relaying using Alamouti Coding using Pseudo Random Net-

work Coding

Under Alamouti Coding, in the cooperation phase, the relay transmits the

Alamouti coded version of the packet transmitted by the source. So using Alamouti

Coding in conventional Random Network Coding is not feasible because the source

and the relaying node select independently different random linear combination in

every time slot. Hence in order to be able to use Alamouti Coding with Random

Network Coding, we assume that: the source starts transmitting random linear

combinations of every group of L packets until either the relay or the destination

decodes the L packets successfully. If the relay decodes the L packets before the

destination, in every subsequent time slot the source forms a new random linear

combination and sends the coefficients of the formed linear combination to the relay

in order to form the same linear combination. Then, the relay forms the Alamouti

coded version of the linear coded packet, and subsequently the source and the relay

transmit simultaneously to the destination. This process is repeated in every time
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slot until the destination node decodes the L packets successfully. Again, perfect

synchronization between the source and the relay is assumed. The SNR values and

the success probabilities are again given by equations 4.3, 4.4, 4.9, 4.6, 4.7 and 4.10.

4.2.2 Energy Cost Functions

The distance between the nodes is considered sufficiently large to make the

transmission energy the major contributor to the total energy consumed. Thus,

the cost is defined as the expected transmission energy consumed per successfully

transmitted packet. The cost expressions for each cooperation protocol are obtained

as follows:

4.2.2.1 Plain Relaying(PR) using (ARQ)

In this case, the energy cost CARQ(PR) is given by:

CARQ(PR) = E[ξARQ(PR)] (4.11)

where ξARQ(PR) is the energy spent per packet using Plain Relaying with ARQ,

which is given by:

ξARQ(PR) =


P1TSR + P2TRD, TSR < TSD

P1TSD, otherwise

(4.12)

where TSR, TSD, and TRD are the number of time slots needed for the successful

transmission of the current delivered packet from source to relay, from source to des-

tination, and from relay to destination respectively. Based on our assumption, the

random variables TSD, TSR, and TRD are geometrically distributed with parameters
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p1, p2 and p3 respectively. Hence,

E[ξARQ(PR)]

= Pr(TSR < TSD)× (P1 × E[TSR|TSR < TSD] + P2 × E[TRD])

+Pr(TSR ≥ TSD)× (P1 × E[TSD|TSR ≥ TSD]) (4.13)

The probability Pr(TSR ≥ TSD) is given by:

Pr(TSR ≥ TSD) =
p1

1− (1− p2)(1− p1)
(4.14)

Thus, we obtain the probability P (TSR < TSD) as:

Pr(TSR < TSD) = 1− P (TSR ≥ TSD) (4.15)

The expected value E[TSD|TSR ≥ TSD] is then:

E[TSD|TSR ≥ TSD] =
1

p1

− p2(1− p1)

p1(1− (1− p1)(1− p2))

− p2(1− p1)

(1− (1− p1)(1− p2))2
(4.16)

Also, the expected value E[TSR|TSR < TSD] is similarly derived as:

E[TSR|TSR < TSD] =
1− p1

p2

− p1

p2

(1− p1)(1− p2)

1− (1− p1)(1− p2)

−p1
(1− p1)(1− p2)

(1− (1− p1)(1− p2))2
(4.17)

Since TRD follows a geometric distribution with parameter p3, its expected value

E(TRD) is given by:

E[TRD] =
1

p3

(4.18)
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4.2.2.2 Relaying with Alamouti Coding (AC) using ARQ

The cost is similarly given by:

CARQ(AC) = E[ξARQ(AC)] (4.19)

where ξARQ(AC) is the energy spent per packet using Relaying with ARQ and AC,

which is given by:

ξARQ(AC) =


P1TSR + (P1 + P2)TSRD, TSR < TSD

P1TSD, otherwise

(4.20)

where TSRD is the number of time slots needed for the successful transmission of

the current delivered packet simultaneously from the source and the relay using

Alamouti Coding to the destination. TSRD follows a geometric distribution with

parameter pAC . Hence,

E[ξARQ(AC)]

= Pr(TSR ≥ TSD)× P1 × E[TSD|TSR ≥ TSD]

+Pr(TSR < TSD)×
(
P1 × E[TSR|TSR < TSD]

+(P1 + P2)× E[TSRD]
)

(4.21)

The quantities Pr(TSR ≥ TSD), Pr(TSR < TSD), E[TSR|TSR < TSD], and E[TSD|TSR ≥

TSD] are given by equations 4.14, 4.15, 4.16, and 4.17. Since TSRD is geometrically

distributed, we have:

E[TSRD] =
1

pAC
(4.22)
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4.2.2.3 Plain Relaying with RNC

Again, the cost is given by:

CRNC(PR) = E[ξRNC(PR)] (4.23)

where ξRNC(PR) is the energy spent per successfully delivered packet using Plain

Relaying with RNC and is given by:

ξRNC(PR) =


P1TSR + P2TRD

L
, TSR < TSD

P1TSD
L

, otherwise

(4.24)

where TSR, TSD, and TRD are the number of time slots needed for the successful

transmission of the current L packets from the source to the relay, from the source

to the destination, and from the relay to the destination respectively. The random

variable TRD depends on the random variable ND which is the number of linearly

independent packets received by the destination from source S transmission. Hence,

CRNC(PR) =
E1 + E2

L
(4.25)

where

E1 = Pr(TSR < TSD)×( L−1∑
n=0

Pr(ND = n|TSR < TSD)×

(P1 × E[TSR|TSR < TSD] + P2 × E[TRD|ND = n])
)

(4.26)

E2 = Pr(TSR ≥ TSD)× P1 × E[TSD|TSR ≥ TSD] (4.27)

In the case of RNC, TSR and TSD are correlated since source S transmits the same

random linear combinations to both destinations, and hence the joint distribution
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function of TSR and TSD is dependent on NR and ND, the number of linearly in-

dependent packets received by the relay and the destination respectively from the

source S. Thus, the derivation of probabilities and expected values become com-

plicated. Hence, these computations are done through a Markov chain model that

keeps track of the number of linearly independent coded packets received by the re-

lay and the destination as well as the linearly independent packets received by both

of them. The Markov chain is composed of the triplet (L1(k), L2(k), Lc(k)) where

L1(k), L2(k), Lc(k) are the number of linearly independent packets received by the

relay, by the destination, and by both the relay and the destination respectively at

time k. (0 ≤ L1(k), L2(k), Lc(k) ≤ L)

The transition probabilities for the Markov chain are presented in Appendix

4.5. The computation proceeds as follows:

• Computing Pr(TSR < TSD) and E[TSR|TSR < TSD] : When TSR < TSD, the

relay receives L linearly independent coded packets before the destination.

This corresponds to first time passage from state (0, 0, 0) to any state in set

Q={(L, j, k) where 0 ≤ j < L and 0 ≤ k ≤ j } before the first time passage

to any one of the states in set R={ (i, L, k) where 0 ≤ i ≤ L and 0 ≤ k ≤ i}.

Now, the probability P(TSR < TSD) is computed as follows:

Pr(TSR < TSD)

=
∞∑
i=2

Pr(TSR < TSD|TSD = i)× Pr(TSD = i)

=
∞∑
i=2

i−1∑
j=1

f0Q(j)× f0R(i) (4.28)

where f0Q(j) is the probability of first passage from state 0 to either one of
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the states in the set Q at time j and f0R(i) is the probability of first passage

from state 0 to either one of the states in the set R at time i. The expected

value E[TSR|TSR < TSD] is computed as follows:

E[TSR|TSR < TSD]

=
∞∑
i=0

E[TSR|TSR < i]× Pr(TSD = i)

=
∞∑
i=2

i−1∑
j=1

jf0Q(j)× f0R(i) (4.29)

The expected values E[TSD|TSR ≥ TSD] and E[TRD] can be computed in a similar

way.

In order to obtain analytic expressions, we consider the special case when

the alphabet size u is infinite, and when the probabilities of success p1 and p2 are

equal to p. Given that the destination received successfully i linearly independent

packets from the source, the probability that the newly received coded packet is

linearly independent from the previously received linearly independent packets is

1 − ui−L. Hence as u goes to infinity, the probability becomes one, and the packet

is linearly independent from the previously received packets. Thus, the number of

packets received successfully by the relay and the destination are independent. The

analytic expressions for the probabilities and expected values in this case are listed

in Appendix 4.6.
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4.2.2.4 Relaying using Alamouti Coding with Pseudo Random Net-

work Coding

In this case, the cost is given by:

CRNC(AC) = E[ξRNC(AC)] (4.30)

where ξRNC(AC) is the energy spent per successfully delivered packet using Alam-

outi Coding with pseudo RNC. It is given by:

ξRNC(AC) =


P1TSR + (P1 + P2)TSRD

L
, TSR < TSD

P1TSD
L

, otherwise

(4.31)

where TSRD is the number of time slots needed for the successful transmission of

the current L packets from the simultaneous transmission of the source and the

relay (using Alamouti Coding with pseudo RNC) to the destination. The random

variable TSRD depends on the random variable ND which is the number of linearly

independent packets received by the destination from source S transmission prior to

the cooperation phase. Hence,

CRNC(PR) =
E1 + E2

L
(4.32)

where

E1 = Pr
(
TSR < TSD)×( L−1∑

n=0

Pr(ND = n|TSR < TSD)×(
P1 × E[TSR|TSR < TSD] + (P1 + P2)×

E[TSRD|ND = n]
))

(4.33)
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E2 = Pr(TSR ≥ TSD)× P1 × E[TSD|TSR ≥ TSD] (4.34)

Note that we do not distinguish between the energy needed to transmit the ”pay-

load” bits versus the ”overhead” bits in each packet. The evaluation of these terms

is similar to the one described in part 4.2.2.3. As in Plain relaying with RNC, when

the alphabet size u goes to infinity and when the probabilities p1, p2, and p3 are

equal to p, the expressions for the cost functions terms have the expressions defined

in Appendix 4.6.

4.2.3 Cost Optimization

The objective is now to find the optimal power values P ∗1 and P ∗2 for each of

the cooperation strategies that minimize their corresponding cost and the conditions

i.e.(channel characteristics, transmission scheme,etc) which performs better. Since

the cost functions have complicated structures and in the case of RNC do not have

closed form expression, numerical global optimization is performed. This is achieved

by choosing closely spaced power values over the interval [0, Pmax]. Then for every

pair of values for the powers P1 and P2, the cost function for every cooperation

scheme is computed based on the method presented in part 4.2.2. Finally, the power

values which correspond to the lowest cost are selected. Based on the optimal power

values, the maximum stable throughput achieved at the source for every cooperative

protocol will be computed in the following section.
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4.2.4 Stable Throughput Computation

We know [40] that for a single link system stability corresponds to:

λs < µs (4.35)

where λs is the arrival rate of the source and µs is the service rate. The service

rate is given by the reciprocal of the expected completion time of the successful

transmission of the current delivered packet when ARQ is used and is given by the

ratio of the Network Coding parameter L over the completion time of the successful

transmission of the current delivered L packets when RNC is used. The completion

time for each of the three cooperation schemes is derived as follows:

4.2.4.1 Plain Relaying with ARQ

In this case, The completion time TPR,ARQ of successful delivery of a packet is

given by:

TPR,ARQ =


TSR + TRD, TSR < TSD

TSD, otherwise

(4.36)

Hence, the expected completion time E[TPR,ARQ] is given by:

E[TPR,ARQ]

= Pr(TSR < TSD)×
(

E[TSR|TSR < TSD] + E[TRD]
)

+Pr(TSR ≥ TSD)× E[TSD|TSR ≥ TSD]

where the values of the above quantities are given by equations 4.14, 4.15, 4.16,

4.17, and 4.18.
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4.2.4.2 Relaying with Alamouti Coding using ARQ

In this case, the completion time TAC,ARQ of successful delivery of a packet is

given by:

TPR,ARQ =


TSR + TSRD, TSR < TSD

TSD, otherwise

(4.37)

The expected completion time E[TAC,ARQ] is given by:

E[TAC,ARQ]

= Pr(TSR < TSD)×
(

E[TSR|TSR < TSD] + E[TSRD]
)

+Pr(TSR ≥ TSD)× E[TSD|TSR ≥ TSD] (4.38)

The values of the above quantities are evaluated by equations 4.14, 4.15, 4.16, and

4.17, and 4.22.

4.2.4.3 Plain Relaying with Random Network Coding

Using the first Markov chain model used in the energy cost function for Plain

Routing under Random Network Coding, the expected completion time E[TPR,RNC ]

of the successful delivery of the L coded packets is computed as the expected number

of transitions before entering any of the absorbing states starting from state (0,0,0).

The absorbing states correspond to completion of successful decoding of L packets.

The expected completion time can be computed using a similar method for the case

of relaying using Alamouti Coding with pseudo RNC.
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4.2.5 Numerical Results

In this section, we present some numerical results that illustrate the effect

of the channel conditions on the performance of each of the cooperation protocols

described above.

Since there are three different channels in the network and to limit the number

of variables in the analysis, we vary the channel quality between the source and the

destination while fixing the quality of the remaining channels. Thus, the variance

s1 of the Rayleigh fading distribution between the source and the destination is

varied between 40 and 50 dB (the higher the value, the better the channel quality)

while the variances s2 and s3 of the other two Rayleigh fading distributions are kept

fixed at 50 dB. The optimal cost for each cooperation protocol is computed for

every considered value of s1. These optimal costs are shown in figure 4.2. Also,

the optimal power values obtained are used to compute the service rate for every

cooperation protocol. The results are shown in figure 4.3.

In order to verify the validity of the analytic results, we simulate the process

of packet loss. The simulation is performed through a Matlab program. For every

value of the variance s1 of the Rayleigh fading distribution between the source

and the destination, the program takes as an input the optimal power values P ∗1

and P ∗2 obtained from the numerical global optimization performed in section 4.2

and substitutes the power values in equations 4.6, 4.7, 4.8 and 4.10 to compute

the probabilities p1, p2, p3 and pAC respectively. Then, the program computes the

energy spent per packet for each of the four cooperation protocols using the following
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procedure:

In the case of ARQ, two Bernoulli random variables with success probabilities

p1 and p2 respectively are generated. If both of the two generated random numbers

are zero, another two Bernoulli numbers are generated and the process repeats until

one of the random numbers is one. Also, the program counts the number of time

slots the source spends to deliver the packet to either the relay or the destination by

counting the number of time the two Bernoulli numbers are zero. In the case when

the first number is zero and the second number is one, a new Bernoulli number is

generated with success probability p3 in the case of plain relaying and pAC in the

case of Alamouti coding. If its value is zero, another Bernoulli random number is

generated and the process repeats until the value of the random number is one.

Finally, the value of the energy spent to deliver the packet successfully is computed

for the case of plain relaying according to equation 4.13 and for the case of relaying

with Alamouti coding according to equation 4.21.

In the case of RNC, a vector of L random numbers is generated from a discrete

uniform random distribution with maximum u. The L random numbers correspond

to the random coefficients of the coded packet. As in the case of ARQ, two Bernoulli

random numbers with success probabilities p1 and p2 are generated. In case both

numbers are zero, another two Bernoulli numbers are generated and the process

repeats until either one of the random numbers is one. If the first random number

is one, the vector of L random numbers is stored in a matrix MD provided it is

linear independent from the vectors previously stored in the matrix. Otherwise if

the second random number is one, the vector of L random numbers is stored in
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a matrix MR provided that it is linear independent from the vectors stored in the

matrix. The whole process is repeated until the number of vectors stored in matrix

MD or in matrix MR is L. During this process, the number of time slots that that

source spends to deliver the packet to either the relay or the destination is obtained

by counting the number of times a new vector of L random numbers is generated. In

case the number of vectors stored in matrix MR is L, a new Bernoulli number (with

success probabilities p3 and pAC in cases of plain relaying and Alamouti Coding

respectively) and a new vector of L uniformly distributed numbers are generated.

This process is repeated until the value of the Bernoulli number is one. In this case,

the vector is stored in matrix MD if it is linear independent from the vectors stored

in matrix MD. The process repeats until the number of vectors in matrix MD is L.

During this process, the program obtains the number of time slots that the relay

spends to deliver the packet to the destination by counting the number of times

a new vector of L random numbers is generated. Finally, the value of the energy

spent per successfully delivered packet is computed according to equations 4.25

and equation 4.32 for the cases of plain relaying and Alamouti Coding respectively.

The simulation is repeated 100000 times for each cooperation protocol; and the

corresponding average energy per successfully delivered packet is computed. The

average energy is computed as:

Eavg =
1

Ns

Ns∑
i=1

Ei (4.39)

where Ns is the number of simulations, Ei is the energy consumed per success-

fully delivered packet during the ith simulation, and Eavg is the average energy per
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Figure 4.2: Optimal cost for each cooperation scheme as a function of the variance

successfully delivered packet over all the simulations. Also in each simulation, the

completion time Ti (to deliver each packet in the case of ARQ, or to deliver the

group of L packets in case of RNC) during the ith step is computed leading to:

Tavg =
1

Ns

Ns∑
i=1

Ti (4.40)

The average service rate is then the the reciprocal of the average completion time

Tavg in the case of ARQ, and the ratio of the number of linearly coded packets L

over the average completion time Tavg in the case of RNC. These are shown in

figures 4.2 and 4.3

Figures 4.2 and 4.3 first show that using Alamouti Coding with ARQ achieves

higher service rate and consumes less energy per successfully transmitted packet

compared to the case of ARQ with Plain Relaying; this is because under Alamouti
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Figure 4.3: Service rate for each cooperation scheme as a function of the variance

Coding in the cooperation phase, the probability that the destination receives the

packet successfully (from the simultaneous transmission of the source and the relay)

is higher than the case of Plain Relaying with ARQ. Also, figures 4.2 and 4.3 show

that as the Network Coding parameter L increases, the service rate increases and

RNC becomes more energy efficient. This is because when the relay receives the

packet successfully from the source’s transmission under ARQ, it starts transmit-

ting the packet again to the destination, while in the case of RNC even though

the destination may not have successfully decoded the L packets (while the relay

has successfully decoded the L packets), it may have successfully received linearly

independent packets from the source, and thus the relay need not retransmit the

L packets again but only sufficient additional random linear combinations of the
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currently delivered L packets until the destination. Thus, the total number of time

slots required for successful delivered packet decreases, and the performance of RNC

becomes better than ARQ combined with Alamouti Coding. Also, more energy re-

duction is observed under Alamouti Coding used with RNC. Finally, figures 3 and

4 show that simulation results confirm the results of the theoretical results. Similar

conclusions can be drawn for different values used for the system parameters.

4.3 User Cooperation in a Simple Wireless Multicast Network

4.3.1 System Model

Consider source S multicasting packets to two destinations D1 and D2 as

shown in figure 4.4. Time is slotted, and it is assumed that packets are always

available at the source. The channels between the source and each destination Di

(i = 1, 2) are independent Rayleigh fading with fading coefficient hi (i = 1, 2), and

between both destinations are also Rayleigh fading with coefficient hij (i, j = 1, 2

and j 6= i). The fading coefficient hi is Rayleigh distributed with parameter si i.e.

the pdf of hi is given by:

fhi
.
=

2h

si
e
−h2
si (4.41)

Similarly, hij is Rayleigh distributed with parameter sij (i, j = 1, 2 and j 6=

i). Further, each of the channels is slowly fading i.e. the channel characteristics

do not change within the duration of a time slot and AWGN noise is present at

each destination Di . Hence, the packet erasure model is appropriate; namely, the

probability of successful transmission is given by the probability that the Signal to
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Figure 4.4: Schematic diagram that shows the system model

Noise Ratio (SNR) exceeds the threshold γ required at the destination and it is

given by:

psuccess = P (SNR ≥ γ) (4.42)

The Signal to Noise Ratio (SNRi) at destination Di is given by:

SNRi =
|hi|2P
N0

(4.43)

where P is the value of the power used by the transmitting node.

We denote by pi (i = 1, 2) the probability of successful transmission by source

S to destinations Di, and by pij the probability of successful transmission from

destination Di to Destination Dj (i = 1, 2 and j 6= i).

In every time slot, source S can either:

• Multicast a single packet to both destinations using simple Automatic Repeat

Request (ARQ)

• Multicast a group of L packets using Random Network Coding (RNC).
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Also, each of the nodes can transmit with power P ∈ [0, Pmax] where Pmax is

the maximum allowable power for transmission. We define Ps to be the transmission

power value of source S and Pi be the transmission power value of destination Di.

4.3.2 Transmission Strategies

To transmit the packets reliably from the source to both destinations D1 and

D2. We consider the following transmission protocols.

4.3.2.1 Plain Relaying Using ARQ

The source transmits each packet until either of destinations D1 or D2 receive

the packet. If both destinations receive the packet at the same time slot, transmis-

sion is successful, and the source starts transmitting the next packet. If only one

of the destinations receive the packet successfully, this destination transmits the

packet using ARQ to the remaining destination. Using this scheme, the received

SNR values are given by:

• From the source to destination D1

SNR1 =
|h1|2

N0

Ps (4.44)

• From the source to destination D2

SNR2 =
|h2|2

N0

Ps (4.45)

• From destination Di to destination Dj (i, j ∈ {1, 2}, i 6= j)

SNRij =
|hij|2

N0

Pi (4.46)
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where N0 is the power spectral density of the AWGN at both destinations D1 and

D2.

4.3.2.2 Relaying with Alamouti Coding (AC) using ARQ

The source transmits the packet using ARQ until either of the destinations

receives the packet. If both destinations receive the packet at the same time slot,

transmission is successful, and the source starts transmitting a new packet. If only

one of the destinations receive the packet successfully, it forms an encoded packet

by applying Alamouti Coding to every pair of consecutive symbols of the original

packet. Then, both the source and this destination transmit in the next time slot

where the source transmits the original packet, and the destination transmits the

encoded packet until the remaining destination receives the packet successfully.

The received Signal to Noise at destinations D1 and D2 when the source is transmit-

ting in the non cooperative phase are the same as the expressions given by equations

and

During the cooperation phase, the Signal to Noise ratio at destination D1 is:

SNRAC =
|h1|2Ps + |h21|2P2

N0

(4.47)

The Signal to Noise ratio at destination D2 in the cooperation phase is:

SNRAC =
|h2|2Ps + |h12|2P1

N0

(4.48)
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4.3.2.3 Plain Relaying with Random Network Coding

In this case, the source transmits random linear combinations of every group

of L packets (L is determined prior to transmission) until either of the destinations

decode the L packets. If both destinations decode successfully the L packets at

the same time slot, transmission is successful and the source starts transmitting

the next group of L packets. If only one of the destinations successfully decode

the L packets, it starts transmitting the L packets to the remaining destination

using RNC until the remaining destination successfully decodes the L packets. The

remaining destination retains the coded packets that were received successfully from

the source’s transmissions.

The received SNR expressions are identical to the case of Plain Relaying using ARQ

but this time they apply to the coded packets.

4.3.2.4 Relaying using Alamouti Coding with Pseudo Random Ran-

dom Network Coding

Similar to the case of wireless unicast transmission, we will propose a scheme

that combine Alamouti Coding with Random Network Coding. The scheme works as

follows: The source starts transmitting random linear combinations of every group

of L packets until one of the destinations decode the L packets successfully. If both

destinations decode the L packets in the same time slot, transmission is successful,

and the source starts transmitting the next group of L packets. If only one of the

destinations decodes successfully the L packets, in every subsequent time slot the
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source forms a new random linear combination and sends the coefficients to this

destination node in order to form the same linear combination. Then, the destina-

tion forms the Alamouti coded version of the packet, and subsequently the source

and the transmitting destination node transmit simultaneously to the remaining

destination. This process is repeated until the remaining destination decodes the L

packets successfully. In this case, the SNR expressions are the same as in the case

of relaying using Alamouti Coding with ARQ.

4.3.2.5 No Cooperation

The source keeps transmitting until both destinations receive the data. (i.e.

the individual packet in the case of ARQ or all L packets in the case of RNC).

This case is used as baseline comparison and to assess under what conditions user

cooperation achieve performance improvement.

The following section defines the energy cost used to evaluate each of the cooperation

protocols. It also presents the method of minimizing the energy cost for each of the

considered protocols.

4.3.3 Cost Functions

The cost associated with each cooperation/transmission scheme pair is defined

as follows:
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4.3.3.1 No Cooperation Using ARQ

Using ARQ, the cost is defined as the expected energy spent per successfully

delivered packet.

For the case of no cooperation with ARQ, the cost is:

CARQ(NC) = E[ξARQ(NC)] (4.49)

where ξARQ(NC) is the energy spent per successfully delivered packet using ARQ

when no coding is used. It is given by:

ξARQ(NC) = PsTmax (4.50)

where Tmax is the time required for successful transmission of the current delivered

packet using ARQ to both destinations and is given, in turn, by

Tmax = max(T1, T2) (4.51)

where Ti is the number of time slots for source S to successfully transmit the current

delivered packet to destination Di. Using ARQ, Ti is a random variable that follows

a geometric distribution with parameter pi i.e. Ti ∼ geom(pi)

Hence,

CARQ(NC) = E[PsTmax] = PsE[Tmax] (4.52)

4.3.3.2 Plain Relaying with ARQ

In this case, the cost is:

CARQ(PR) = E[ξARQ(PR)] (4.53)
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where ξARQ(PR) is the energy spent per successfully delivered packet using ARQ

with Strategy 2. It is given by:

ξARQ(PR) =


PsT1 + P1T12, T1 < T2

PsT2 + P2T21, T2 < T1

PsT, T2 = T1

(4.54)

where

• Tij is the number of time slots needed for the successful transmission of the

current delivered packet from destination Di to destination Dj (i, j = 1, 2 and

j 6= i).

• T is the number of time slots needed for successful transmission to both des-

tinations knowing that both destinations receive the packet at the same time

slot.

Hence,

E[ξARQ(PR)]

= Pr(T1 < T2)× (Ps × E[T1|T1 < T2] + P1 × E[T12])

+Pr(T2 < T1)× (Ps × E[T2|T2 < T1] + P2 × E[T21])

+Pr(T1 = T2)× Ps × E[T |T1 = T2] (4.55)

4.3.3.3 Relaying with Alamouti Coding (AC) using ARQ

In this section, the cost is:

CARQ(AC) = E[ξARQ(AC)] (4.56)
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where ξARQ(AC) is the energy spent per successfully delivered packet using ARQ

with Strategy 2. It is given by:

ξARQ(AC) =


PsT1 + P1Ts12, T1 < T2

PsT2 + P2Ts21, T2 < T1

PsT, T2 = T1

(4.57)

where Tsij is the number of time slots needed for the successful transmission of

the current delivered packet from the simultaneous transmission and destination Di

(using Alamouti coding) to destination Dj (i, j = 1, 2 and j 6= i).

Hence,

E[ξARQ(AC)]

= Pr(T1 < T2)× (Ps × E[T1|T1 < T2] + P1 × E[Ts12])

+Pr(T2 < T1)× (Ps × E[T2|T2 < T1] + P2 × E[Ts21])

+Pr(T1 = T2)× Ps × E[T |T1 = T2] (4.58)

The analytic expressions for the probabilities and expected values terms in the above

cost functions are presented in Appendix 4.7.

4.3.3.4 No Cooperation using RNC

The cost is:

CRNC(NC) = E[ξRNC(NC)] (4.59)

where ξRNC(NC) is the energy spent per packet using RNC when no cooperation.

It is given by:

ξRNC(NC) =
PsTmax
L

(4.60)
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where Tmax is the time required for successful transmission of the current delivered

L packets using RNC to both destinations. Hence,

CRNC(NC) =
PsE[Tmax]

L
(4.61)

4.3.3.5 Plain Relaying with RNC

The cost is:

CRNC(PR) = E[ξRNC(PR)] (4.62)

where ξRNC(PR) is the energy spent per packet using RNC when plain relaying is

used. It is given by:

ξRNC(PR) =



PsT1 + P1T12(n)

L
, T1 < T2

PsT2 + P2T21(n)

L
, T2 < T1

PsT

L
, T2 = T1

(4.63)

where

• Tij(n) is the number of time slots needed for the successful transmission of the

current L packets from destination Di to destination Dj (i = 1, 2 and j 6= i)

knowing that destination Dj has received n linearly independent combinations

of the L packets from source S, where 0 ≤ n < L.

• T is the number of time slots needed for successful transmission of the current

L packets to both destinations if both destinations successfully decode the L

packets in the same time slot. (i.e. they receive successfully the Lth linearly

independent combination in the same slot).
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Hence, the cost is given by:

CRNC(PR) =
E1 + E2 + E3

L
(4.64)

where

E1 = Pr(T1 < T2)×
( L−1∑
n=0

Pr(N2 = n|T1 < T2)

×(Ps × E[T1|T1 < T2] + P1 × E[T12(n)])
)

E2 = Pr(T2 < T1)×
( L−1∑
n=0

Pr(N1 = n|T2 < T1)

× (Ps × E[T2|T2 < T1] + P2 × E[T21(n)])
)

E3 = Pr(T1 = T2)× Ps × E[T |T1 = T2]

As explained in the problem of relay cooperation over a single link, T1 and T2 are

correlated since source S transmits the same random linear combinations to both

destinations,and hence the joint distribution function of T1 and T2 is dependent on

N1 and N2, the number of linearly independent packets received by destinations D1

and D2 respectively. Thus similar to the approach in part 4.2.3, the computation

of each of these probabilities and expected values is done through a Markov chain

model that keeps track of the number of linearly independent coded packets received

by every destination as well as the linearly independent packets received by both of

them.

4.3.4 Cost Optimization

After obtaining the expressions of the cost functions as described in the preced-

ing section the different transmission protocols, the objective is to find the optimum
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power values Ps, P1, and P2 for each of the protocols that minimize their correspond-

ing cost and to find under what conditions(channel characteristics, transmission

scheme) each performs better. However, since the cost functions have complicated

structures and in the case of RNC do not have closed form expression, the same

method of optimization is performed as in the problem of relay cooperation over

a single link i.e. optimization is performed by generating dense vectors of power

values over the interval [0, Pmax]. Then for every power value, the cost function

for each protocol is computed. Finally, the power values which correspond to the

lowest cost are selected.

4.3.5 Numerical Results

In this section, we will investigate the effect of the channel conditions on each of

the cooperation protocols. Hence, the channel qualities between the destinations D1

and D2 are varied simultaneously while fixing the quality of the remaining channels.

The channel qualities between the destinations D1 and D2 are varied by varying

simultaneously the values of the variances s12 and s21 for the Rayleigh distribution

of the channel between destination D1 to destination D2 and the channel between

destination D2 to D1. The values of the variances are varied between 40 and 50

dB while the variance values of the Rayleigh distribution of the channel between

the source and destinations D1 and D2 (corresponding to the channels between the

source and the destinations D1 and D2) are kept fixed at 45 dB, and the minimum

energy for each cooperation protocol is computed for every considered value of s12
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and s21. Then, the optimal costs for every transmission scheme as a function of the

value of the variances are computed and are shown in figure 4.5. Also similar to the

relay cooperation case, the optimal power values obtained are used to compute the

service rate for every protocol. The results are shown in figure 4.6.

Figures 4.5 and 4.6 show as in the previous problem using Alamouti Coding

with ARQ achieves higher service rate and consumes less energy per successfully

transmitted packet compared to the other strategies. As the channel quality between

the destinations becomes higher and as the Network Coding parameter L increases,

the service rate increases and using RNC becomes more energy efficient even than

the case when ARQ is used with Alamouti Coding. Also in the case of wireless

multicast, for certain values of the coding parameter L, Random Network Coding

combined with Alamouti coding achieves the best performance. The results were

always verified by the simulation setup similar to the one described in section 4.2;

however, the simulation curves are removed for the clarity of the figure.

4.4 Summary

We have considered several joint physical/network layer cooperative schemes

that use either Automatic Repeat Request(ARQ) or Random Network Coding(RNC).

For each of the proposed protocols, we have obtained the energy needed for success-

ful packet delivery and the optimum power values that minimize that energy. Based

on the optimal power values, we have obtained the stable throughput achieved at the

source. We find that for certain values of the Network Coding parameter L, coop-
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Figure 4.5: Optimal cost for each cooperation scheme as a function of s12/s21

eration using RNC combined with Alamouti Coding achieves the best performance

among the considered cooperation protocols.

4.5 Appendix: Transition Probabilities for the Markov Chain Model

considered in section 4.2

• From state (i, j, k) to state (i, j, k)

(1 ≤ i < L, 1 ≤ j < L, 1 ≤ k < min(i, j))

P(i,j,k),(i,j,k) = (1− p1)(1− p2) + (1− p1)p2u
j−L + (1− p2)p1u

i−L

• From state (i, j, k) to state (i+ 1, j, k)

P(i,j,k),(i+1,j,k) = p1(1− p2)(1− ui−L) + p1p2
(uj−uk)
uL
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Figure 4.6: Service Rate (in packets/slot) for each cooperation scheme as a function

of s12/s21

• From state (i, j, k) to state (i, j + 1, k)

P(i,j,k),(i,j+1,k) = p2(1− p1)(1− uj−L) + p1p2(ui−uk)
uL

• From state (i, j, k) to state (i+ 1, j + 1, k + 1)

P(i,j,k),(i+1,j+1,k+1) = p2p1(1− (ui + uj − uk)u−L)

• From state (i, L, k) to state (i, L, k)

P(i,L,k),(i,L,k) = 1

• From state (L, j, k) to state (L, j, k)

P(L,j,k),(L,j,k) = (1− p3) + p3u
j−L

• From state (L, j, k) to state (L, j + 1, k)
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P(L,j,k),(L,j+1,k) = p3(1− (uj + L− k)u−L)

• From state (L, j, k) to state (L, j + 1, k + 1)

P(L,j,k),(L,j+1,k+1) = p3(L− k)u−L

• From state (L,L, k) to state (L,L, k)

P(L,L,k),(L,L,k) = 1

4.6 Appendix: Analytic Expressions for the cost for a special case of

plain relaying using RNC

For the case when the alphabet size u is infinite and when the probabilities of

success p1, p2 and p3 are equal to p, we get the following expressions:

Pr[TSR = i] = Pr[TSD = i]

=

(
i

L− 1

)
(1− p)i−L+1pL

E[TRD|ND = n]

=
∞∑
i=L

i

(
i

L− 1− n

)
(1− p)i−L+1+npL−n

Pr[TSR ≥ TSD]

=
∞∑
i=L

∞∑
j=i

(
j

L− 1

)(
i

L− 1

)
(1− p)i+j−2L+2p2L

Pr[ND = n|TSR < TSD]

=
∞∑
i=L

(
i

n− 1

)(
i

L− 1

)
(1− p)2i−n−L+1pn+L
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E[TSR|TSR < TSD]

=
∞∑

i=L+1

i−1∑
j=L

(
j

L− 1

)
j

(
i

L− 1

)
(1− p)i+j−2L+2p2L

The expected value E[TSRD|ND = n] has the same expression as the above equation

with p replaced by pAC .

E[TSD|TSR ≥ TSD]

=
∞∑
i=L

i∑
j=L

j

(
j

L− 1

)(
i

L− 1

)
(1− p)i+j−2L+2p2L

4.7 Appendix: Analytic Expressions for the Probabilities and Ex-

pected Values Terms in the ARQ Cost functions Presented in

section 4.3

E[T12] =
1

p12

E[T21] =
1

p21

E[Ts12] =
1

ps12

E[Ts21] =
1

ps21
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Pr(T1 < T2) = 1− p2

1− (1− p1)(1− p2)

Pr(T2 < T1) = 1− p1

1− (1− p1)(1− p2)

E[T1|T1 < T2] =
E[cond1]

P (T1 < T2)

E[T2|T2 < T1] =
E[cond2]

P (T2 < T1)

Pr(T1 = T2) =
p1p2

1− (1− p1)(1− p2)

E[T |T1 = T2] =
(1− p1)(1− p2)

1− (1− p1)(1− p2)

E[cond1] =
1− p2

p1

−p2

p1

(1− p1)(1− p2)

1− (1− p1)(1− p2)

− p2(1− p1)2(1− p2)2

(1− (1− p1)(1− p2))2

− p2(1− p1)(1− p2)

(1− (1− p1)(1− p2))
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E[cond2] =
1− p1

p2

−p1

p2

(1− p1)(1− p2)

1− (1− p1)(1− p2)

− p1(1− p1)2(1− p2)2

(1− (1− p1)(1− p2))2

− p1(1− p1)(1− p2)

(1− (1− p1)(1− p2))
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Chapter 5

Optimal Rate Allocation for Minimization of the Consumed Energy

of Base Stations with Sleep Mode

This chapter deals with another technique used to reduce the consumed en-

ergy in particular in cellular systems. This technique is based on exploiting the

sleep mode feature of current base stations. During sleep mode, the base station is

allowed to reduce its power when no users are active in the cell, which may result

in considerable energy savings.

In addition, the value of the transmission rate affects energy efficiency. When

base stations are required to be in the ”ON” mode, it has been shown (see [1]) that

transmitting at the lowest acceptable rate is most energy efficient. However, this

may not be the case when base stations are allowed to switch to a sleep mode. The

reason is that although the base station will consume more energy by transmitting

at higher rates, it will satisfy the users’ demands in a shorter time, and hence it can

stay in the sleep mode for a longer period of time. Hence, it is not clear what rate

values should be used in conjunction with sleep modes.

Furthermore, when multiple users are active in the cell, it is anticipated that

the base station scheduling technique will affect the sleep mode duration of the base

station as well as the energy efficiency of the system. Prior work has focused on

the effect of the scheduling method on networks throughput. In [41] and [42], it
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has been proven that Time Division Multiplexing (TDM) achieves capacity when

transmitting over fading channels. In [43] and [44], it has been proven that TDM

achieves the best downlink system throughput for the case when users have bursty

traffic. In [45], rate and power control algorithms are used in the downlink of CDMA

network to maximize the system throughput. In [46] and [47], power control is used

to minimze the transmission energy in a CDMA cell, and it is shown that time

division scheduling is most energy efficient. However, none of these methods have

considered the case when the base station is allowed to reduce its power when no

users are active in the network.

We consider in this chapter the downlink scenario in a Macro cell in which

the base station should satisfy its users’ demands within a strict delay constraint.

We assume that the consumed power of the base station is a linear function of the

transmission power, and that the base station can go to “Micro” sleep mode when

there are no active users. We start by considering the simple case when there is

only one active user. Then, we consider the case when multiple users are active in

the cell. In this case, we consider both time division multiplexing and frequency

division multiplexing. For each case, we find the optimal rate value the base station

should use to each active user in order to minimize the overall consumed energy.

Although there is a prior work [48] that considers the uplink problem and has a very

similar formulation for the case of time division, this work provides a formulation

for the frequency division case (which is to our knowledge not yet provided). Also,

we provide a comparison between the performance of time division and frequency

division scheduling.
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5.1 Single User

5.1.1 Problem Formulation

We consider a Macro cell in which there is only one active user. The user

has a demand of B bits to be delivered within T seconds. In the active mode,

the consumed power PC of the base station is a linear function of the transmission

power PT . Measurements done in [49] on various base station models show that a

linear function of the transmission power is a good approximation to the consumed

power. Also, it is assumed that the base station can reduce its consumed power and

switch to a sleep mode when the user is not active. Hence, the consumed power PC

at the base station follows a piecewise linear model and is given by the following

expression:

PC =


s, PT = 0

∆PPT + P0, 0 < PT ≤ Pmax

(5.1)

where the values of the linear model parameters ∆P and P0 depend on the base

station type, Pmax is the maximum transmission power, and the parameter s is the

consumed power value when the base station is in the sleep mode (s ≤ P0). The

received power PR at the user follows the path-loss power model. Also, it is assumed

that the value of the channel gain H between the base station and the user is known

at the base station

Hence, the received power value is given by:

PR = A|H|2PT |d|−α (5.2)
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where α is the path-loss exponent, d is the distance from the user to the base station,

and A is a constant which accounts for system losses. Further, it is assumed that

there is a receiver noise of power spectral density NR.

The base station transmits to the user over a bandwidth of W Hz at a rate of

R bits/sec. It is assumed that the achievable rate and the transmission power PT

are related through Shannon’s capacity formula, and hence we have:

R = Wlog

(
1 +

A|H|2PT |d|−α

NRW

)
(5.3)

The energy spent by the base station is given by:

E = ((∆PPT + P0)τ + s(1− τ))T (5.4)

where τ is the fraction of time the base station is in the active mode and given by:

τ =
B

RT
(5.5)

Combining (5.3), (5.4), and (5.5), we have:

E(R) =

(
∆P

2R/W − 1

ϕ(d)
+ P0

)
B

R
+ s

(
T − B

R

)
(5.6)

where

ϕ(d) =
A|H|2|d|−α

NRW
(5.7)

The objective is to find the optimal rate value that minimizes the consumed energy.

Note that since 0 < τ ≤ 1, we have R ≥ B
T

. Also, since 0 ≤ PT ≤ Pmax and by using

(5.3), we obtain:

0 ≤ R ≤ Wlog

(
1 +

A|H|2Pmax|d|−α

NRW

)
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Hence, the objective can be stated as:

minRE(R)

s.t.
B

T
≤ R ≤ Wlog

(
1+

A|H|2Pmax|d|−α

NRW

)
(5.8)

5.1.2 Solution

It can be easily seen that the energy E(R) given in (5.6) is a convex function

of R (since it is differentiable, it suffices to show that the second derivative with

respect to R is nonnegative for every value of R in the constraint set), and the

constraints are only bound constraints. Hence, any local minimizer is a global

minimizer. However, the function is nonlinear in R. Hence, the optimal value

is obtained by numerical nonlinear optimization methods. We use the so-called-

standard “Interior Point” method to solve it. The “Interior Point” method is of

interest because of its polynomial complexity, and it provides solution to a wide

range of nonlinear optimization problems.

The details of the ”Interior Point” method can be found in [50]. The complete

proof of the convexity of E(R) is shown in appendix 5.4.

5.1.3 Numerical Results

To evaluate the rate control algorithm, the following values of the parameters

for the Macro base station considered in [51] are used: Pmax = 20W , W = 10MHz

The values of the user’s demand and the delay constraint are: T = 10sec and
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B = 15Mbits

The values of the path-loss model parameters are taken from 3GPP simulation

scenarios and are given by: A = 0.03, α = 3.76. Without loss of generality, the value

of the channel gain H is: H = 1.

The values of the receiver’s noise used are: NR = 8.1875× 10−15W/MHz. In

addition to the thermal noise, external interference of value I = 1.77 × 10−11W is

added in order the base station operates in its typical range of transmitted rate.

In order to investigate the effect of system parameters (such as the distance

of the user, the values of the parameters of the power model used, etc), we compute

the minimum energy consumed using the rate control algorithm for the following

two cases:

Case 1: The value of the sleep mode power value s is varied between 0.1P0

and P0 while the values of ∆P and P0 are kept fixed at: ∆P = 5 and P0 = 118.7 [?].

The minimum energy is computed for each value of s. Also, the minimum

energy value is compared to the energy spent using the non-optimal rate allocation

method that uses the lowest feasible rate to deliver the required load to the user.

In the non-optimal rate allocation method, the energy is computed by substituting

the value of the lowest feasible rate in (5.6). Figure 5.1(a) plots the optimal rate

value obtained versus the value of the sleep mode power value used for the cases

when the distance between the user and the base station is given by: d =50, 100

and 150 meters respectively. Figure 5.1(b) plots the gain of using the optimal rate

allocation algorithm over the ”Lowest Feasible Rate” allocation algorithm versus
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the sleep mode power value. The gain is defined as:

Gain =
Energy

Nonoptimal

Energy
Optimal

(5.9)

Case 2: The value of ∆P is varied from 1 to 5 while the value of P0 is varied

from 0 to 119. Both values are varied in steps of one. For every value of P0, the value

of s is kept fixed at 0.4P0, and the minimum energy is computed for every pair of

values of ∆P and P0. Figures 5.2(a) and 5.2(b) plot the minimum energy consumed

(in Joules) and the optimal rate (in bits/sec) respectively versus the different values

of the pair (∆P , P0). In this case, the value of the distance of the user from the base

station used is: d = 50m.

Figure 5.1(a) shows that as the distance between the user and the base station

increases, the gain of the optimal rate allocation method decreases. This is because

as the distance between the user and the base station increases, the optimal rate

decreases and this is shown in figure 5.1(b). Also, Figure 5.1(a) and figure 5.1(b)

show that the gain of using the optimal rate allocation decreases as the sleep mode

power value increases until it reaches unity for the case when the value of the sleep

mode power is equal to the power when the base station is active (i.e. s = P0). The

reason the gain decreases is that the optimal rate decreases with increasing sleep

mode power value as shown in figure 5.1(b) until the optimal rate value is equal to

the lowest feasible rate. This agrees with the previous studies that prove that for

the case when there is no sleep mode, the optimal rate to minimize energy is the

lowest feasible rate.

Furthermore, figure 5.2(a) shows that the minimum energy decreases slightly
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with decreasing the value of the parameter ∆P and decreases considerably with

decreasing the value of the parameter P0. Also, figure 5.2(b) shows that for low

values of P0 the base station transmits with lowest rate; however, as the value of P0

increases, the base station transmits with higher rate and hence tries to maximize

the duration of the sleep mode. Similar conclusions are drawn when considering

other values of system parameters.

(a) Optimal Rate Value (b) The gain of the rate allocation method

Figure 5.1: The optimal rate values and the gain of the optimal rate allocation

versus the sleep mode power value s
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(a) Minimum Energy Consumed (b) Optimal Rate Value

Figure 5.2: The minimum energy consumed and the optimal rate values respectively

versus the base station parameters ∆P and P0

5.2 Multiple Users

5.2.1 System Model

Now, we consider the case when multiple users are active in the Macro cell.

Let M be the number of users in the cell. Each user i is located at a distance di

meters from the base station and has a demand of Bi bits. The base station should

satisfy the demands of every user within time T seconds. Also, the base station

transmits to each user with power value PiT . The consumed power PC by the base

station follows the same piecewise linear model as in the preceding section. Also,

the received power at each user follows the path-loss model as before. Further, it is

assumed that the value Hi of the channel gain between the base station and user i

is known at the base station. Also, there is receiver noise of power spectral density

NR.

The base station uses one of the following:
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• Time Division, where it transmits using the total bandwidth W with rate Ri

to user ui during a fraction τi of the time duration T , and the rate value Ri is

varied by varying PiT .

• Frequency division, where it allocates to each user ui a bandwidth wi of the

total bandwidth W and delivers to each user i load with rate Ri during the

time duration of T seconds, and the rate value Ri is varied by varying the

bandwidth value wi.

5.2.2 Time Division Scheduling

5.2.2.1 Problem Formulation

Let τi be the fraction of time that the base station is transmitting to user i;

we have:

τi =
Bi

RiT
(5.10)

Thus, the fraction of time the base station is active is given by:

τ =
M∑
i=1

τi (5.11)

Hence, the energy spent by the base station is given by:

E =

(
M∑
i=1

(∆PPiT + P0)τi + s(1−
M∑
i=1

τi)

)
T (5.12)

Also, by substituting in (5.12) the value of the time fractions τi and the power PiT

as given by (5.3) and (5.10), we obtain:

E(R1, ..., RM) =
M∑
i=1

(
∆P

2
Ri
W − 1

ϕ(di)
+ P0

)
Bi

Ri

+ s

(
T −

M∑
i=1

Bi

Ri

)
(5.13)
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However, and the rate values R1, ..., RM are constrained by:∑M
i=1

Bi
RiT
≤ 1 since 0 ≤

∑M
i=1 τi ≤ 1

Since 0 ≤ PiT ≤ Pmax and by (5.3), we obtain the following constraint on Ri:

0 ≤ Ri ≤ Wlog

(
1 +

A|Hi|2Pmax|di|−α

NRW

)

Also, the rate value Ri is constrained by: Ri ≥ Bi
T

Hence, the objective can be stated as:

minR1,..RME(R1, .., RM)

s.t.
M∑
i=1

Bi

RiT
≤ 1

Bi

T
≤ Ri ≤ Wlog

(
1 +

A|Hi|2Pmax|di|−α

NRW

)
∀i = 1, 2, ...,M

(5.14)

5.2.2.2 Solution

Similar to the single user case, it can be shown that the energy function

E(R1, .., RM) described in (5.13) is convex. Also, the constraints are either bound

constraints or convex functions of Ri. Hence, any local minimizer for the problem is

a global minimizer. But since the objective function and some of the constraints are

nonlinear, numerical nonlinear optimization methods such as the standard “Interior

Point” method will be used to obtain the optimal solution.

The proof of the convexity of the objective function as well as for the constraint

functions are presented in appendix 5.4.
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5.2.3 Frequency Division Scheduling

5.2.3.1 Problem Formulation

Again, let τi to be the fraction of time the base station is serving user i. It is

given by:

τi =
Bi

RiT
(5.15)

The fraction of time the base station is active is given by:

τ = max1≤i≤Mτi (5.16)

The rate Ri depends on the bandwidth wi and the transmission power value

PiT assigned to user i; we assume the dependence that corresponds to the Shannon’s

formula, that is:

Ri = wilog

(
1 +

A|Hi|2PiT |d|−α

NRwi

)
(5.17)

The rate Ri depends on the bandwidth wi while the value of the transmission

power PiT stays fixed.

Combining (5.15) and (5.17), we obtain:

τi =
Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

)
T

(5.18)

Thus, the energy spent to satisfy the users’ demands is given by:

E =
M∑
i=1

(∆PPiT + P0)τi + s(1− τ)T (5.19)

By substituting the value of τi (given by (5.18)) in (5.19), we obtain:

E =
M∑
i=1

(∆PPiT + P0)
Bi

wilog
(

1 + APiT |d|−α
NRwi

) + s(1− τ)T (5.20)
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The bandwidth value wi assigned to user i is constrained by:

wilog

(
1 + A|Hi|2PiT |d|−α

NRwi

)
≥ Bi

T
, since Ri ≥ Bi

T

Also, the total assigned bandwidth should not exceed W i.e.

∑M
i=1 wi ≤ W

Hence, the objective can be stated as:

minw1,..wME(w1, .., wM)

s.t.

M∑
i=1

wi −W ≤ 0

Bi

T
− wilog

(
1 +

A|Hi|2PiT |d|−α

NRwi

)
≤ 0∀i = 1, 2, ...,M

5.2.3.2 Solution

From (5.16), it follows that the fraction of time the base station is active is

the maximum of the fractions of time the base station is serving each of its users.

Hence, the energy function E(w1, ..., wM) described in (5.20) is not differentiable.

In order to solve the minimization problem, we rewrite it as:

minw1,..wME(w1, .., wM)

= minw1,..wM

M∑
i=1

(
(∆PPiT + P0)

Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

) + s(1−max1≤j≤Mτj)T

)

= minw1,..wM

M∑
i=1

(
(∆PPiT + P0)

Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

) + s(1 +min1≤j≤M (−τj))T
)

= minw1,..wMmin1≤j≤M

M∑
i=1

(
(∆PPiT + P0)

Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

) + s(1− τj)T
)
(5.21)
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But we have that

Ej(w1, ..., wM) =
M∑
i=1

(
(∆PPiT + P0)

Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

) + s(1− τj)T
)

=
M∑
i=1

(
(∆PPiT + P0)

Bi

wilog
(

1 + A|Hi|2PiT |d|−α
NRwi

)
+s(1− Bj

wjlog
(

1 +
APjT |d|−α
NRwj

))T

)
(5.22)

Hence,

minw1,..wME(w1, .., wM) = min1≤j≤Mminw1,..wMEj(w1, ..., wM) (5.23)

It can be shown that the function Ej(w1, ..., wM) is a convex function of the band-

width values w1,...,wM . Also, both constraint functions of the optimization problem

in (5.21) are convex. Hence according to (5.23), the solution to the minimization

problem is obtained as the minimum value of the minima of M convex functions.

That is, the minimum value of E(w1, ..., wM) is found by minimizing each of the M

functions Ej(w1, ..., wM) (1 ≤ j ≤M) and then selecting the minimum value of the

function with the lowest value among the minima of the M convex functions. The

proof of the convexity of Ej(w1, ..., wM) and of the constraints of the optimization

problem in (5.21) are presented in appendix 5.4.

5.2.4 Numerical Results

In this part, we investigate the performance of the rate allocation method for

both cases of time division scheduling and frequency division scheduling.

The same values of the parameters of the base station and the power con-

sumption model used in section 5.1 are used here as well. To keep things simple, we
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assume that there are two users in the cell.

The values considered for the distances of users 1 and 2 from the base station

are: d1 = 100m and d2 = 50m. The values of the channel gains between the base

station and the users are chosen to be: H1 = H2 = 1. As for users’ loads, we

consider both cases when B1 is kept fixed at 10 and 40 Mbits respectively while user

2 load is varied between 10 to 40 Mbits in steps of 10 Mbits. Also, we consider three

cases of the sleep mode power value s: in the first case we let s = 0.4P0, and in the

second case when s = P0 (i.e. there is no sleep mode). For the case of frequency

division, the transmission powers assigned to the users are: P1T = P2T = Pmax
2

.

Then, for both cases of time division scheduling and frequency division schedul-

ing, the minimum energy is computed for the different values of the user load com-

binations B1 and B2, and for both cases when there is sleep mode and when there

is no sleep mode. Figure 5.4 and figure 5.3 show the optimal rate values of users 1

and 2 respectively for both cases of time division scheduling and frequency division

scheduling. In the case of frequency division, the optimal rate values are obtained

by substituting the optimal bandwidth values in (5.17).

To evaluate the energy savings achieved by using a lower sleep mode power

value, we compute the gain which is defined as the ratio of the minimum energy

consumed when there is no sleep mode to the minimum energy consumed when there

is sleep mode. This gain is computed for both cases of time division scheduling and

frequency division scheduling. Figures 5.5 and 5.6 show the gain achieved when

time division scheduling and frequency division scheduling are used respectively.

Also to investigate whether time division scheduling or frequency division
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scheduling is more energy efficient, the optimal power values P ∗(1) and P ∗(2) for

both users 1 and 2 obtained from the case of time division (computed by substi-

tuting the optimal rate values in (5.3)) are used to compute the minimum energy

consumed for the case of frequency division. However, the sum of the optimal power

values may exceed the value of the maximum power allowed. This is because in the

case of time division, the power value of each user should not exceed Pmax, while

in the case of frequency division the sum of power values of both users should not

exceed Pmax. Hence, the optimal power values are normalized so that their sum

does not exceed Pmax. The normalized power values P ′i for each user i are given by:

P ′i =
PmaxP

∗i

P ∗(1) + P ∗(2)
(5.24)

where i = 1, 2

Then, we compute the gain which is defined as the ratio of the minimum

energy consumed when frequency division scheduling is used to the minimum energy

consumed when time division scheduling is used. We consider the case when the

power is reduced during sleep mode (s = 0.4P0). Figure 5.7 plots the gain versus

the different values of users loads combinations.

Figure 5.5 and figure 5.6 show that the gain of reducing the power during sleep

mode, increases as the users’ loads decreases. This is because when there is no sleep

mode, the optimal rate values that the base station uses are the lowest feasible rates;

however when there is sleep mode, the base station transmits at higher rates. This

is verified in figure 5.4 and figure 5.3. Hence, as the load decreases, the base station

completes transmitting the loads faster, and hence it can stay in the sleep mode for
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a longer time, which results in energy savings.

Figure 5.7 shows that using time division scheduling is always more energy

efficient than using frequency division scheduling. This is because when using time

division scheduling the base station uses the full bandwidth to transmit to each

user, and hence the base station can transmit with much higher rates than the case

of frequency division, which allows the base station to finish delivering both users’

loads faster. Thus when using time division scheduling, the base station can stay

in sleep mode for a longer period of time, which results in energy savings. Also due

to the higher rates used in time division scheduling, figure 5.7 shows that the gain

achieved by time division scheduling over frequency division scheduling increases as

the users’ loads increases. The values of the optimal rates displayed in figure 5.4

and figure 5.3 verify this analysis.

In order to compare the performances of time division scheduling and fre-

quency division scheduling, the minimum energy is computed for both cases when

the number of active users in the cell are 2,4, 6, 8 and 10 respectively. In each case,

each user has a load of size 5 Mbits, and the users loads should be delivered in a

duration T of 10 sec. Also, the value of the distance di of user i from the base

station is given by (5.25), namely,

di =
80

M
i (5.25)

where M is the number of users. The gain of time division scheduling over frequency

division scheduling for the different number of active users is plotted in figure 5.8.

Figure 5.8 shows that the energy efficiency of time division scheduling com-
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pared to frequency division increases as the number of users increases. This is

because as the number of users increases, the optimal rates of frequency division

scheduling decreases and becomes considerably lower than the rates used in time

division scheduling. Hence, the sleep mode duration of the base station when us-

ing frequency division scheduling becomes considerably shorter than the sleep mode

duration using time division scheduling, which results in more energy savings when

time division scheduling is used.

Figure 5.3: Optimal Rate Value for User 1
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Figure 5.4: Optimal Rate Value for User 1
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Figure 5.5: The gain of time division scheduling
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Figure 5.6: The gain of frequency division scheduling
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Figure 5.7: The gain of time division scheduling over frequency division scheduling.

Figure 5.8: The gain of time division scheduling over frequency division scheduling.
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5.3 Summary

In this chapter, we have addressed rate allocation problems to minimize the

consumed energy of a Macro base station. The rate allocation problem takes into

account the linear model of the consumed power as a function of the transmission

power, and the reduced sleep mode power value used by the base station when no

users are active in the cell. Also, we have considered time division and frequency

division scheduling methods to satisfy the users’ demands. For each scheduling

method, the rate allocation problem is formulated as a nonlinear convex optimiza-

tion problem. This chapter constitutes a natural extension of the rate allocation

techniques previously considered for cellular networks. However while the previous

rate allocation techniques take into account the transmission power of the base sta-

tions, the rate allocation problem considered in this chapter takes into account the

total consumed power of the base station and the sleep mode capability of the mod-

ern base stations. Also, it considers consumed energy as the performance metric. It

remains of interest to extend the rate allocation problem to the case when multiple

base stations can serve the users and to incorporate into the problem the fading

nature of the wireless channel.
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5.4 Appendix: Proof of the Convexity of the Energy Functions

5.4.1 Single User Case

For the case of a single user, the second derivative of the energy function E

given by (5.6) with respect to the rate R is given by:

∂2E

∂R2
=

aB((R2ln(2)2 + 2w2 − 2Rwln(2))2R/w − 2w2)

R3w2ϕ(d)
+

2B

R3
(P0 − s) (5.26)

where ln(.) is the natural logarithm.

Since P0 ≥ s, we have that 2B
R3 (P0 − s) ≥ 0. Also, the denominator R3w2ϕ(d)

is positive since R is positive. Hence, it remains to check the sign of the function

N(R) = (R2ln(2)2 + 2w2 − 2Rwln(2))2R/w − 2w2. Since the function N(R) is zero

when R is zero, it suffices to show that N(R) is increasing function of R, in order

to prove that N(R) is positive. By computing the derivative of N(R) with respect

to R, we obtain:

w
∂N

∂R
= (ln(2)2R2 + 2wln(2)(ln(2)− 1)R + 2w2(1− ln(2)))2R/w (5.27)

Since the exponential function 2R/w is positive, there remains to check the sign

the quadratic function: ln(2)2R2 + 2wln(2)(ln(2) − 1)R + 2w2(1 − ln(2)). The

discriminant ∆ of the quadratic function is given by:

∆ = (4ln(2)4 − 4ln(2)2)w2 < 0 (5.28)

Hence, since the discriminant is negative, the roots of the quadratic equation are

complex, which implies that for real values of R, the function is either positive or

negative. By selecting R = 0, the value of the quadratic function at R is equal to

2w2(1− ln(2)), and, hence, positive.
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5.4.2 Multiple Users

5.4.2.1 Time Division Case

By arranging the terms of the energy function given by (5.13), we have:

E(R1, ..., RM) =
M∑
i=1

((
a

2
Ri
w − 1

ϕ(di)
+ P0

)
Bi

Ri

− sBi

Ri

)
+ sT (5.29)

In this expression, each ith term of the summation is a convex function of Ri. This

can be verified since the second derivative of each term i with respect to Ri has the

same expression as in (5.26). The only difference is that the term is a function of Ri

instead of R. Hence, the hessian HE of the energy function is an M ×M diagonal

matrix, where each entry HE(i, i) is nonnegative. Hence, the function is convex. As

for the constraint function, the hessian matrix HC is also a diagonal matrix where

each entry HC(i, i) is given by:

HC(i, i) =
2Bi

R3
iT

(5.30)

In the above expression, HC(i, i) is positive since the rate Ri is positive, and hence

the constraint is convex.

5.4.2.2 Frequency Division Case

We start by proving that the function L(wi) = wilog
(

1 + A|H|2PiT |d|−α
NRwi

)
is

concave. The second derivative of L(wi) is given by:

∂2L

∂w2
i

= − A|H|2PiT |d|−α(NRwi)

(NRwi)2(A|H|2PiT |d|−α +NRwi)2
(5.31)

The second derivative ∂2L
∂w2

i
is negative since all of the parameters and the variables

in (5.31) are positive. Hence L(wi) is concave.
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We then show that the function G(wi) = 1

wilog

(
1+

A|H|2PiT |d|−α
NRwi

) is convex by

showing that under appropriate conditions the inverse of a concave function is con-

vex. Let f(x) be a concave function of x, and let g(x) = 1
f(x)

. The second derivative

of g(x) with respect to x is given by:

∂2g

∂x2
=
−∂2f
∂x2

(f(x))2 + 2f(x)(∂f
∂x

)2

f(x)4
(5.32)

The first term in the numerator in (5.32) is positive since ∂2f
∂x2

is negative; however,

the sign of the second term depends on whether the value of f(x) is positive or

negative. If the value of f(x) is positive for all values of x, the second term of the

numerator is positive, and ∂2g
∂x2

is positive. Hence in this case, g(x) is convex.

The function L(wi) = wilog
(

1 + A|H|2PiT |d|−α
NRwi

)
is concave (as proved earlier).

Also, L(wi) is positive for all positive values of wi. This is because for positive values

of wi, the argument of the logarithm function is always greater than one, and thus

the value of L(wi) for any positive value wi is positive.

Hence, the function G(wi) = 1

wilog

(
1+

A|H|2PiT |d|−α
NRwi

) is convex.

In the function Ej(w1, w2, ..., wM) (described by (5.22)), each term i in the sum

is a positive multiple of the functionG(wi) = 1

wilog

(
1+

A|H|2PiT |d|−α
NRwi

) and, hence, is con-

vex function of wi. Thus, the hessian matrix HE of the function Ej(w1, w2, ..., wM)

is a M ×M diagonal matrix, where each entry HE(i, i) (i 6= j) is given by:

HE(i, i) = (∆PPiT + P0)Bi
∂2G(wi)

∂w2
i

(5.33)

Also, the entry HE(j, j) is given by:

HE(j, j) = (∆PPjT + P0 − s)Bj
∂2G(wj)

∂w2
j

(5.34)
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Since the function G(wi) is convex, each entry HE(i, i) is positive and hence the

function Ej(w1, w2, ..., wM) is convex. Furthermore, the first constraint function in

the optimization problem in (5.14) is a convex function of the bandwidth values w1,

w2,..,wM since it is a linear function of w1, w2,...,wM . Also, the second constraint

function is convex since its second derivative with respect to wi is given by −∂2L(wi)

∂w2
i

and L(wi) is concave.
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Chapter 6

Secure Distributed Information Exchange

6.1 Introduction

This chapter considers the problem of information exchange under secrecy

requirements in wireless systems. Usually, most security techniques achieve the re-

quired level of security at the expense of extra consumed energy or higher delays.

Thus, it is important to study the tradeoff between achieving the security require-

ment and the energy and delay costs. The overall problem combines the issues of

communication complexity, security, and energy/delay performance cost.

More specifically, this work considers a wireless system in which it is required

to deliver securely a file composed of a finite number of packets. First, the single

link case is considered where the file is residing at one source node and must be

delivered to one intended receiver over a wireless link. Then, the case where the file

is distributed among multiple nodes is considered, where the nodes are required to

exchange their portions of the file until all nodes possess the entire file. In either case,

the nodes can chose to transmit through public channels to which an eavesdropper

may have direct access or through private secure channels that are not accessible to

the eavesdropper. It is understood that the costs in the private channel are higher.

Two security costs are defined: the extra energy spent and the extra delay incurred

for using the private channel. The objective is to minimize each of the security costs
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respectively subject to a certain security requirement. The security requirement

is that the probability that the number of packets the eavesdropper is allowed to

receive must not exceed a specific threshold.

There have been earlier attempts to address the above tradeoffs. In [52], the

problem of information exchange between two nodes in the presence of an eaves-

dropper is considered. The channels between each pair of nodes are considered to

be error free. Then, the authors minimize the security cost of the data exchange by

computing the minimum number of bits that should be transmitted over the private

channel. The same problem in [53] is considered; however, the channels are assumed

to be noisy. Then, it is shown that the minimum number of bits that should be

exchanged over the private channel are fewer in the case when the channels are

noisy than when the channels are error free. These works follow on the pioneering

communication complexity work of A. Yao [54].

This work considers a more complex version of the problem. It also employs

Network Coding and examines its effects on achieving more secure and efficient

systems. Network Coding, [2], has previously proved to achieve throughput perfor-

mance improvements, and mostly in multicast networks. It is however also promis-

ing for security considerations and is simple to implement where each transmitted

packet is a linear combination of the original packets. Note that here we will NOT

consider random linear coding. Thus, the use of Network Coding results in a form

of scrambling that makes it difficult for the eavesdropper to decode. Network Cod-

ing security was initially studied using Information Theoric notions as in [55]-[60].

For each of the considered problems, the maximum achievable capacity to achieve
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secure transmission using Network Coding is computed. However, Information The-

ory considers a strict notion of security and demands that information should be

delivered securely in a way that any potential eavesdropper does not obtain any

information about the secure message. In [61], the problem of secure transmission

against wiretapping in a multihop network is considered. The definition of secu-

rity is relaxed where the eavesdropper is allowed to receive a part of the message,

and the tradeoff between the security level and the cost incurred due to security

is investigated. Two Network Coding-based heuristics are proposed that construct

coded subgraphs with low network cost and high security level. It was shown that

Network Coding achieves lower costs than traditional routing.

Our approach is different than the work in [61] in that we do not consider

flow-based models and Random Network Coding as was done in [61]. Also, the

network costs and other system parameters were just defined as constants while in

our work the network costs are related to physical layer parameters such as channel

fading parameters and transmission power.

6.2 Single Link Case

6.2.1 System Model

Consider transmissions over a wireless link in which the source S is required

to deliver a file of M packets to destination D in the presence of an eavesdropper E.

Each packet is composed of a finite number of symbols belonging to an alphabet A

of finite field size F . Time is slotted with slot duration equal to µ seconds, and in
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each time slot the source can transmit a packet. Also in every time slot, the source

S can chose to transmit through a private channel, which the eavesdropper does not

have access to, or over a public channel that is accessible to the eavesdropper.

In every time slot, the private and public channels between source S and

destination D are independent slow Rayleigh Fading (i.e. the values of the fading

coefficients do not change within one time slot). Also, the channel between source

S and eavesdropper E is slow Rayleigh fading and independent of the private and

public channel between source S and the destination. Further, all channels are

independent across time slots. We denote by hprivate,D and hpublic,D the values of

the fading coefficients for the private channel and the public channel respectively

between source S and destination D and by hE be the value of the fading coefficient

between source S and the eavesdropper E. It is assumed that the channels’ statistics

are time-invariant (i.e. the distributions of the fading coefficients do not change from

one time slot to another). Also, AWGN noise of variance N0 is present at each node

and at the eavesdropper.

Each node can receive the transmitted packet if the received Signal to Noise

(SNR) ratio exceeds a threshold. Due to fading, this is a random event. We define

γprivate,D and γpublic,D to be the required threshold values at destination D, when

source S is transmitting through the private and public channels respectively, and

γE to be the required threshold at eavesdropper E. The Signal to Noise Ratio is

given by:
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SNR(P ) =
|h|2P
N0

(6.1)

where h is the value of the fading coefficient and P is the transmission power.

The reason that the thresholds at destination D are different when the source

is transmitting through the public channel or the private channel is that the SNR

threshold is an increasing function of the rate, and in order to use the private channel,

the source S must use appropriate, usually more complex modulation coding and

encryption schemes, to guarantee the privacy and thus the transmission rate must

increase if the protected packet is to ”fit” using one time slot. Hence, the threshold

must increase.

The assumed fading structure permits the use of a packet-erasure channel

model. Let pprivate,D be the probability of successful packet reception by destination

D when the source is transmitting over the private channel, and let ppublic,D and

pE be the probabilities of successful packet reception by the destination and the

eavesdropper respectively when the source is transmitting over the public channel.

Since the fading coefficients are Rayleigh distributed, the probabilities of success are

given by:

pprivate,D = e−
γprivate,DN0

σ2
private,DP

(6.2)

ppublic,D = e−
γpublic,DN0

σ2
public,DP

(6.3)
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pE = e−
γEN0

σ2
EP

(6.4)

where σ2
private,D, σ2

public,D, and σ2
E are the variances of the fading coefficients hprivate,D,

hpublic,D, and hE respectively.

It is required that the source deliver the file to the destination while keeping it

secret from the eavesdropper. The secrecy requirement is that the probability that

the eavesdropper receives successfully n or more packets is less than a target value

λ (where 0 ≤ n ≤M).

To transmit the packet reliably we assume that the source can use either:

• Simple Automatic Repeat Request (ARQ), or

• Deterministic Network Coding (DNC), where in each time slot, the source

forms M linearly independent combinations of the M packets and then uses

simple ARQ to transmit each linear combination reliably to the destination.

Instant error-free acknowledgements are assumed in all cases as is usually

assumed in similar investigations.

The objective is to find the optimal (i.e. minimum) number of packets that the

source should transmit through the private channel in order to minimize an appro-

priate cost subject to the secrecy requirement. Two types of costs are considered:

• The extra energy spent to transmit through the private channel

• The extra delay required to transmit through the private channel
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In what follows, the problem is explained in detail for both cases when simple

ARQ and Deterministic Network Coding (DNC) are used respectively.

6.2.2 Problem Formulation

6.2.2.1 ARQ Case

Let the random variables Tprivate and Tpublic be the number of time slots spent

to deliver a packet successfully though the private channel and the public channel

respectively from the source to destination. Since the channels are time invariant and

independent, the random variables Tprivate and Tpublic are geometrically distributed

with probabilities pprivate,D and ppublic,D respectively.

Let Pr(E|Tpublic = k) be the probability that eavesdropper E receives a par-

ticular, lets call it ”current”, packet successfully from the public channel given that

destination D receives the packet successfully at time slot k. This reception may

occur in any one or more of the k slots. This probability is given by the following

expression:

Pr(E|Tpublic = k) =
k∑
t=1

(1− pE)t−1pE = 1− (1− pE)k (6.5)

Then, the probability that eavesdropper E receives the packet successfully is given
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by:

p(E) =
∞∑
k=1

Pr(E|Tpublic = k)Pr(Tpublic = k)

=
∞∑
k=1

(1− (1− pE)k)(1− ppublic,D)k−1ppublic,D

=
∞∑
k=1

(1− ppublic,D)k−1ppublic,D −
ppublic,D

1− ppublic,D

∞∑
k=1

(1− pE)k(1− ppublic,D)k

= 1− (1− pE)ppublic,D
1− (1− pE)(1− ppublic,D)

(6.6)

Also, let the random variables MD and ME be the numbers of packets received suc-

cessfully by destination D and eavesdropper E respectively over the public channel.

Since the channels are independent and time invariant, the conditional probability

the the eavesdropper receives i packets given that the destination has received suc-

cessfully m packets is binomially distributed with m number of trials and probability

of success p(E). Hence, it is given by the following expression:

Pr(ME = i|MD = m) =

(
m

i

)
(1− p(E))m−ip(E)i (6.7)

Then, the probability that the eavesdropper receives n or more packets given that

the destination receives m (m ≥ n) packets over the public channel is given by:

Pr(ME ≥ n|MD = m) =
m∑
i=n

(
m

i

)
(1− p(E))m−ip(E)i (6.8)

This probability can be rewritten as:

Pr(ME ≥ n|MD = m) = 1− Pr(ME ≤ n− 1|MD = m)

= 1−
n−1∑
i=0

(
m

i

)
(1− p(E))m−ip(E)i (6.9)

In general, the cumulative distribution function of a binomially distributed random

variable Z with number of trials n and success probability p can be expressed in
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terms of the regularized incomplete beta function (see [62]). The regularized incom-

plete beta function Ix(a, b) is defined as:

Ix(a, b) =
B(x, a, b)

B(a, b)
(6.10)

where B(x, a, b) is the incomplete beta function and B(a, b) is the beta function as

follows:

B(x, a, b) =

∫ x

0

ta−1(1− t)b−1dt (6.11)

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt (6.12)

Then, the relationship between the cumulative distribution function of the random

variable Z and the regularized incomplete beta function (see [?]) is given by:

Pr(Z ≤ k) = I1−p(n− k, k + 1) (6.13)

Using equation (6.13), we obtain:

Pr(ME ≤ n− 1|MD = m) = I1−p(E)(m− n+ 1, n) (6.14)

Pr(ME ≥ n|MD = m) = 1− I1−p(E)(m− n+ 1, n) (6.15)

Hence,

Pr(ME ≥ n|MD = m) = 1− Pr(ME ≤ n− 1|MD = m)

= 1−
∫ 1−p(E)

0
tm−n(1− t)n−1 dt∫ 1

0
tm−n(1− t)n−1 dt

(6.16)

Also, we define ξpublic and ξprivate to be the energy spent to deliver a packet success-

fully through the public channel and the private channel respectively.

140



Since Tprivate is geometrically distributed, the expected number of time slots and the

expected energy spent to deliver a packet over the private channel are given by:

E[Tprivate] =
1

pprivate,D
=

1

e−
γprivate,DN0

σ2
private,DP

(6.17)

E[ξprivate] = Pµ× E[Tprivate] =
Pµ

e−
γprivate,DN0

σ2
private,DP

(6.18)

Similarly, the expected number of time slots and the expected energy spent to deliver

a packet over the public channel are given by:

E[Tpublic] =
1

ppublic,D
=

1

e−
γpublic,DN0

σ
2public,DP

(6.19)

E[ξpublic = Pµ× E[Tpublic] =
Pµ

e−
γpublic,DN0

σ
2public,DP

(6.20)

Given that the source transmits m packets over the public channel, the extra delay

required to deliver the remaining M −m packets over the private channel is given

by:

CDelay(m) = (M −m)(E[Tprivate]− E[Tpublic])

= (M −m)

(
1

e−
γprivate,DN0

σ2
private,DP

− 1

e−
γpublic,DN0

σ
2public,DP

)
(6.21)

The function 1
e− a

x
is increasing in a when both x and a are positive. Hence in order

for the security cost to be positive, we need to have that
γprivate,DN0

σ2
private,D

is greater than

γpublic,DN0

σ
2public,D

.

The extra energy spent by the source to deliver the remaining M −m packets over
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the private channel is given by:

CEnergy(m) = (M −m)(E[ξprivate]− E[ξpublic])

= (M −m)

(
Pµ

e−
γprivate,DN0

σ2
private,DP

− Pµ

e−
γpublic,DN0

σ
2public,DP

)
(6.22)

Based on equations 6.21 and 6.22, the energy cost is a multiple of the delay cost.

Hence, it suffices to study any one of them.

The objective is to find m∗, the optimal number of packets the source should

transmit through the public channel, in order to minimize each of the security costs

CDelay and CEnergy subject to the probability that the eavesdropper receives n or

more packets is less than λ. The problems can be stated as follows:

(P1) MinmCDelay(m)

Subject to:

Pr(ME ≥ n|MD = m) ≤ λ

(P2) MinmCEnergy(m)

Subject to:

Pr(ME ≥ n|MD = m) ≤ λ

In order to solve these problems, we will first prove the following lemma:

Lemma 5.1:

1. The probability Pr(ME ≥ n|MD = m) ≤ λ is increasing function of m

2. The security costs CDelay and CEnergy are decreasing functions of m

3. The optimal solution to both problems is m∗ = mλ where mλ is the
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highest integer (0 ≤ mλ ≤M) that satisfies:

Pr(ME ≥ n|mλ) ≤ λ (6.23)

Proof of 1:

Let m1 and m2 be two integers such that m1 < m2.

Let X be binomially distributed random variable with number of trials m1

and success probability p.

Let Y be binomially distributed random variable with number of trials m2 and

success probability p.

Then, the probability Pr(X ≥ n) is given by:

Pr(X ≥ n) = 1− Pr(X ≤ n− 1) (6.24)

Hence, using equation (6.13), we obtain:

Pr(X ≤ n− 1) = I1−p(m1 − n+ 1, n) (6.25)

Pr(X ≥ n) = 1− I1−p(m1 − n+ 1, n) (6.26)

Similarly, we get the following expression for the random variable Y :

Pr(Y ≥ n) = 1− I1−p(m2 − n+ 1, n) (6.27)

The regularized incomplete beta function Ix(a, b) has the following property [?]:

Ix(a+ 1, b) = Ix(a, b)−
xa(1− x)b

aB(a, b)
(6.28)

By iteratively applying equation (6.28), it can be shown that for any integer k > 0,

the quantity Ix(a, b) has the following property:

Ix(a+ k, b) = Ix(a, b)−
k−1∑
i=0

xa+i(1− x)b

(a+ i)B(a+ i, b)
(6.29)
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Using equation (6.29), the probability Pr[Y ≥ n] in equation (6.27) can be rewritten

as:

Pr(Y ≥ n) = 1− I1−p(m2 − n+ 1, n) = 1− I1−p(m2 −m1 +m1 − n+ 1, n)

= 1− I1−p(m1 − n+ 1, n) +

m2−m1−1∑
i=0

(1− p)m1−n+1+ipn

(m1 − n+ 1 + i)B(m1 − n+ 1 + i, n)

(6.30)

Hence using equation (6.26), we obtain:

Pr(Y ≥ n) = Pr(X ≥ n) +

m2−m1−1∑
i=0

(1− p)m1−n+1+ipn

(m1 − n+ 1 + i)B(m1 − n+ 1 + i, n)
(6.31)

In equation (6.31), each term in the summation is positive, which results in the

probability Pr(Y ≥ n) being greater than the probability Pr(X ≥ n). Since the

probability Pr(ME|MD = m) is binomially distributed with number of trials m,

Pr(ME ≥ n|MD = m) increases with m, which is the number of packets transmitted

through the public channel.

Proof of 2: The derivatives of cost functions CDelay and CEnergy (given by

equations (6.21) and (6.22)) are both -1, and hence CDelay and CEnergy are decreasing

functions of m.

Proof of 3: The optimal solution to both problems is m∗ = mλ where mλ is

the highest integer that satisfies:

Pr(ME ≥ n|MD = mλ) ≤ λ (6.32)

This is because any value of m higher than mλ is not feasible since it will violate

the security level constraint in the minimization problems P1 and P2. Also, any

value less than mλ is not optimal because the security costs are decreasing function
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of m, and hence the value of the security costs will be higher than the value of the

security costs CDelay(mλ) and CEnergy(mλ).

And this completes the proof of the lemma.

Since the probability Pr(ME ≥ n|MD = m) is non-linear in m, the optimal

number of packets m∗ is found by searching iteratively over the range of values of

m i.e. start from m = 0 and increase the value of m each time the probability

Pr(ME ≥ n|MD = m) is less than or equal λ until the probability exceeds λ. The

optimal value of m∗ will be the value of m obtained from the iterative method minus

one.

6.2.2.2 DNC Case

In this case, the source S constructs a system of M linearly independent

combinations of the M packets such that the eavesdropper can not recover the

value of any of the M packets except if it receives successfully all M linearly coded

packets.

In what follows, the conditions under which a linear system of equations sat-

isfies the above property are presented, and a method is provided to construct a

linear system satisfying this property.

Conditions

Consider n linear independent equations in m variables x1, ..., xm, (n < m) of the
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form:

a11x1 + a12x2 + ...+ a1mxm = b1

a21x1 + a22x2 + ...+ a2mxm = b2

... (6.33)

an1x1 + an2x2 + ...+ anmxm = bn

Since n < m, this system has infinitely many solutions. In order for the value of

any variable xi not to be recoverable, the following conditions must be satisfied:

(a) For any equation with non zero coefficient of the variable xi, the

coefficient vector of the remaining variables must not be the all-

zero vector.

(b) For all equations with non-zero coefficient of the variable xi, the co-

efficients vectors of the remaining variables must be linearly inde-

pendent.

In what follows, the stated conditions are proved to be necessary and sufficient.

Proof of Sufficiency: In any equation with non-zero coefficient of the vari-

able xi, the coefficients vector of the remaining variables is not the all zeros vector

(according to condition a). Hence, it is not possible to recover the value of the

variable xi from that equation. Also since in all equations with non-zero coefficients

of the variable xi, the coefficient vectors of the remaining variables are linearly in-

dependent (according to condition b), performing elementary row operations on the
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equations with non-zero coefficients of the variable xi cannot convert all the coeffi-

cients of the remaining variables to zero. Hence the value of the variable xi cannot

not be recovered.

Proof of Necessity: Assume there exists a linear system that satisfies the

desired property (i.e. it is not possible to recover the value of any variable from any

subset of equations) but does not satisfy the above conditions. Hence in this linear

system, there exist either some equations with non-zero coefficient of a variable xi

in which the coefficient vectors of the remaining variables are the all-zero vector or

there exist some equations in which the coefficient vectors of the remaining variables

are linearly dependent. In either case, the value of the variable xi can be recovered,

which is a contradiction.

The following part presents a simple method of constructing a linear network

code that satisfies these properties.

Method of Construction

In order to obtain a linear network code of m variables where the first m−1 equations

satisfy the above property, we proceed as follows:

• Construct the first equation composed of any two variables with non-zero

coefficients.

• Construct each subsequent equation using two variables with non-zero coeffi-

cients as follows: one variable has been used in a previous equation and one

variable has not been used.

• Repeat step 2 until m− 1 equations have been constructed.
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• Construct the mth equation composed of any one of the variables.

The above method satisfies condition (a) since each of the first m−1 equations

is constructed of two variables with non-zero coefficients. Also in every equa-

tion, a new variable with a non-zero coefficient is introduced. Hence, the first

m− 1 equations are linearly independent, and for all equations with non-zero

coefficient of any variable xi, the coefficient vectors are linearly independent.

Thus, the value of none of the variables will be recovered from the first m− 1

equations. Furthermore, the mth equation is linearly independent of the first

m − 1 equations. This is because each of the first m − 1 equation contains

at least an additional variable than the mth equation. Hence, all of the m

equations are linearly independent.

Example

Consider a linear system of five equations in five unknowns is constructed as follows:

x1 + x2 = b1

x1 + x3 = b2

x2 + x4 = b3

x3 + x5 = b4

x1 = b5 (6.34)

Hence, the eavesdropper can recover the value of all the packets only if it receives

successfully the 5 linearly coded packets. Otherwise, it can not recover the value of

any of the xi’s from the bi’s.

Thus, the probability that the eavesdropper receives n or more packets given that
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the destination receives successfully m packets through the public channel is:

Pr(ME ≥ n|MD = m) =


0, 0 ≤ m ≤M − 1

p(E)M , m = M

(6.35)

where p(E) is the probability that the eavesdropper receives a packet successfully

and is given by equation (6.6).

Given that the source transmits m coded packets over the public channel, the

extra time and the extra energy spent by the source to deliver the remaining M−m

coded packets over the private channel are given by equations (6.21) and (6.22)

respectively.

The objective is then to find m∗ the optimal number of packets the source

should transmit through the public channel in order to minimize each of the security

costs CDelay and CEnergy subject to the probability that the eavesdropper receives n

or more packets is less than λ. These problems can be stated as follows:

(P3) MinmCDelay(m)

Subject to:

Pr(ME ≥ n|MD = m) ≤ λ

(P4) MinmCEnergy(m)

Subject to:

Pr(ME ≥ n|MD = m) ≤ λ

It was shown in the case of ARQ, that the security costs CDelay and CEnergy

are decreasing in m. Hence, the optimal solution is m∗ = M if Pr(ME ≥ n|MD =

M) ≤ λ; otherwise the optimal solution is m∗ = M − 1. This is because when

Pr(ME ≥ n|MD = M) ≤ λ, any value m′ < M will incur security cost higher
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than the cost incurred when M packets are transmitted through the public channel.

Also for the case when Pr(ME ≥ n|MD = M) > λ, any value m′ < M − 1

used will incur security cost higher than the cost incurred when M − 1 packets are

transmitted through the public channel. Also, any value m ≤M−1 is feasible since

Pr(ME ≥ n|MD = m) = 0 for any m ≤ M − 1, which proves the optimality of the

proposed solution.

6.2.3 Numerical Results

In this part, we compare the performance of the secure transmission using

ARQ to the case when Deterministic Network Coding (DNC) is used. Also, we

investigate the effect of the security level parameters n and λ on the minimum

security cost.

The following values for the system parameters are used:

P = 2W , M = 7, N0 = 0 dB, σ2
E = 9 dB, γE = 10 dB, σ2

private,D = 10 dB,

γprivate,D = 13 dB, σ2
public,D = 10 dB, γpublic,D = 10 dB.

Since the energy cost is a constant multiple of the delay cost, we will consider only in

this section the delay cost and compute the minimum delay for the following cases:

• The value of the security level parameter n is varied between 0 and 7. Two

values of λ are considered respectively: λ = 0.04, 0.5.

• The value of the security level parameter n is kept fixed at 3 while the value

of λ is varied between 0.01 and 0.1 in steps of 0.01.

• The value of the security level parameter n is kept fixed at 3 while the value
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Figure 6.1: Security cost as a function of the security level parameter n

of λ is varied between 0.1 and 1 in steps of 0.1.

For each case, the minimum security cost and the optimal number of packets that

should be transmitted through the public channel are shown in figures 6.1, 6.2, 6.3,

6.4, 6.5 and 6.6.

Figures 6.1 and 6.2 show that as the security level parameters n and λ in-

creases, the optimal number of packets that the source transmits through the public

channel increases and hence the security cost decreases. Also for any value of the

security level parameters n and λ, the security cost, when using Network Coding,

is considerably lower than when using ARQ. This is because due to the structure

of the network coded packets, the receiver can not decode any of the packets unless

it receives successfully the M coded packets. Hence the probability that the eaves-

dropper decodes successfully n or more packets when the source transmits all of the
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Figure 6.2: Optimal number of packets m as a function of the security level parameter n

Figure 6.3: Security cost as a function of the security level parameter lambda (0.01 ≤

λ ≤ 0.1)
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Figure 6.4: Optimal number of packets m as a function of the security level parameter

lambda (0.01 ≤ λ ≤ 0.1)

Figure 6.5: Optimal cost for every strategy/transmission scheme pair (0.1 ≤ λ ≤ 1)
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Figure 6.6: Optimal number of packets m as a function of the security level parameter

lambda (0.1 ≤ λ ≤ 1)

M network coded packets is considerably lower than the the case when ARQ is used.

Also for any security level parameter n, the transmitter can at most send one packet

over the private channel when using DNC and even send no packets through the

private channel when the value of λ is high, which results in considerable security

costs savings when using DNC compared to ARQ.

Figures 6.3, 6.4, 6.5 and 6.6 investigate further the effect of the security level

parameter λ on the security cost. Figures 6.3 and 6.4 show that when the security

level parameter λ is very low, the source can transmit very few packets through the

public channel when ARQ is used, and thus the security cost when using ARQ is

much higher than when using Network Coding.

For the case when the values of λ increases as in figures 6.5 and 6.6, the source

can transmit more packets through the public channel when ARQ is used, but there
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is a still security cost gap between ARQ and Network Coding, and hence Network

Coding still outperforms ARQ.

Similar conclusions can be drawn for different values of the system parameters.

6.3 Multiple Nodes Case

6.3.1 System Model

Now, we consider the more general case in which the file is distributed among

several nodes in a wireless network. We consider a wireless network composed of

a set of K nodes that we designate as G, and an eavesdropper E. It is required

that a file X of M packets belonging to an alphabet A with a finite field size F

be delivered to all K nodes. Initially, each node i (1 ≤ i ≤ K) has a distinct

subset Xi of the M packets and all the M packets are available somewhere in the

network i.e
⋃

1≤i≤K Xi = X. In the general case, some of the nodes may possess

common packets amongst themselves. There are two ways to deal with this issue.

The first one is to find the best node that should transmit each common packet,

which may not be easy, especially for the case when the number of nodes that have

the same packet is large. The other approach is to assume a rather pessimistic

procedure in that many of the packets may be redundantly transmitted. Namely,

it is not assumed that each node knows what packets of the file the other nodes

possess. Hence, it must transmit everything it has, and thus multiple transmissions

of the same packet are possible, which results to the benefit of the eavesdropper.

In order to simplify the problem, we assume the simpler case in which the packets
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available at each node are distinct from the packets available at other nodes i.e.

Xi

⋂
Xj = ∅ ∀i, j . Also, relaying is not assumed, because if nodes are allowed

to transmit packets that are successfully received from other nodes’ transmissions,

the problem of having common packets among the nodes to transmit will again

arise. Furthermore, a fully connected network is assumed in which the K nodes

share private broadcast channels amongst each other and public broadcast channels

amongst each other and with the eavesdropper. Time is slotted where each time slot

is of duration µ seconds, and in each time slot a node can transmit a packet to the

remaining nodes. In every time slot k, the private and public channels between each

pair of nodes i and j (1 ≤ i, j ≤ K) or between any node i and the eavesdropper

E are independent slow Rayleigh Fading (i.e. the value of the fading coefficients do

not change within one time slot). We denote by hprivate,ij and hpublic,ij the values of

the fading coefficients for the private channel and the public channel respectively

between nodes i and j, and by hiE be the value of the fading coefficient between

each node i and the eavesdropper E. Also, AWGN noise of variance N0 is present

at each node and at the eavesdropper.

Furthermore in every time slot, one of the nodes transmits to the remaining

nodes with power value P , and decides if it should transmit through the public

channels or the private channels.

Due to fading, each node can successfully receive the transmitted packet with

a certain probability. This probability is the probability that the received Signal to

Noise Ratio (SNR) at the receiving node exceeds its required threshold. Let γprivate,i

and γpublic,i be the required threshold at node i when transmission occurs through
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the private and public channels respectively. Also, we define γE to be the required

threshold at eavesdropper E.

Also, let pprivate,ij and ppublic,ij be the probability of packet successful reception

by node j when node i is transmitting through the private and public channels

respectively. Also, let piE be the probability of successful reception by eavesdropper

E when node i is transmitting.

Once a node receives a new transmitted packet, it sends an acknowledgment

(ACK) packet. Acknowledgements are received by all nodes instantaneously and

error free.

As in the single-source single-destination case, the nodes will use either simple

ARQ or deterministic linear Network Coding (DNC) respectively to deliver the

packets reliably to the remaining nodes.

It is required that the nodes exchange their packets while keeping the file

secret from the eavesdropper. The secrecy requirement is that the probability that

the eavesdropper successfully receives n or more packets of the file is less than a

target value λ (0 ≤ n ≤M , 0 ≤ λ ≤ 1).

Since in this case the file is distributed among the nodes in the network, it

is more complicated to find the number of packets that each node should transmit

through the public channel to solve the security minimization problem. Instead,

we consider finding which nodes should transmit through the public channels and

through the private channels respectively in order to minimize the security cost

subject to the secrecy requirement. Similarly to the single-source case, two costs are

defined which are the extra energy spent to transmit through the private channel
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and the extra delay required to transmit through the private channel.

6.3.2 Problem Formulation

6.3.2.1 ARQ Case

In order to formulate the security minimization problem, it is necessary to

define a number of variables as follows:

• Let S be the set of nodes transmitting through the public channel, and let

Ns = |S|

• Let ni be the number of packets available at node i i.e. ni = |Xi|

• Let Yi be the set of integers such that Yi = {t, 1 ≤ t ≤ ni}

• Let φ : S → YNs be a bijection on the indices of the nodes in S. It is defined

as follows:

φ(i) = j if node i has the jth lowest index value in S

• Let R = (r1, r2, ..., rNs) be a vector such that R ∈
∏Ns

j=1 Yφ−1(j).

where
∏

denotes Cartesian product, and vector R represents the number of

the packets that the eavesdropper receives successfully from each node in S

where entry rj corresponds to the number of packets that the eavesdropper

receives successfully from node φ−1(j).

• Let χ be the set of vectors such that χ = {R s.t.
∑Ns

j=1 rj = n}

where rj is the jth entry of the vector R.
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• Let MiE be a random variable that represents the number of of packets that

the eavesdropper receives successfully from node i transmission.

• Let wi be the security cost of node i if it’s transmitting through the private

channel. Depending whether delay or energy costs are considered, cost wi is

given by either:

– Delay cost: It is given by:

wi = mi(E[Tprivate,i]− E[Tpublic,i]) (6.36)

where Tprivate,i and Tpublic,i are the number of time slots spent by node i

to deliver the current packet to the remaining nodes through the private

and public channels respectively. The random variable Tprivate,i can be

written as:

Tprivate,i = max1≤j≤K,j 6=iTprivate,ij (6.37)

where the random variable Tprivate,ij is the number of time slots spent by

node i to deliver the current packet to node j. Since the channels are time

invariant and independent, the random variable Tprivate,ij is geometrically

distributed with probability of success pprivate,ij.
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Then, the probability Pr(Tprivate,i ≤ k) is given by:

Pr(Tprivate,i ≤ k) = Pr(max1≤j≤K,j 6=iTprivate,ij ≤ k)

=

j=K∏
j=1,j 6=i

Pr(Tprivate,ij ≤ k)

=

j=K∏
j=1,j 6=i

k∑
t=1

(1− pprivate,ij)t−1pprivate,ij

=

j=K∏
j=1,j 6=i

(1− (1− pprivate,ij)k)

= 1 +
∑

X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1− pprivate,ij)k

(6.38)

where I(.) is the indicator function, xj is the jth entry of the binary vector

X. Also, the fifth line of equation (6.38) is obtained by expanding the

product term of the forth line. The probability Pr(Tpublic,i ≤ k) can be

derived similarly as equation 6.38 and thus has the following expression:

Pr(Tpublic,i ≤ k) = 1 +
∑

X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1− ppublic,ij)k (6.39)

160



Hence, the expected value E[Tprivate,i] is given by:

E[Tprivate,i] =
∞∑
k=1

Pr(Tprivate,i ≥ k)

=
∞∑
k=1

(
1− Pr(Tprivate,i ≤ k − 1)

)

=
∞∑
k=1

(
1−

j=K∏
j=1,j 6=i

(1− (1− pprivate,ij)k−1)

)

=
∞∑
k=1

∑
X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1− pprivate,ij)k−1

=
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)

1−
∏K

j=1,j 6=i(1− pprivate,ij)
(6.40)

The expected value E[Tpublic,i] can be similarly derived and has the fol-

lowing expression:

E[Tpublic,i] =
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)

1−
∏K

j=1,j 6=i(1− ppublic,ij)
(6.41)

– Energy cost: It is given by:

wi = mi(E[ξprivate,i]− E[ξpublic,i]) (6.42)

where ξprivate,i and ξpublic,i are the energy spent by node i to deliver a

packet through the private and public channel respectively. Thus, we

have the following expressions:

E[ξprivate,i] = E[PµTprivate,i]

= PµE[Tprivate,i] (6.43)

E[ξpublic,i] = E[PµTpublic,i]

= PµE[Tpublic,i] (6.44)
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where E[Tprivate,i] and E[Tpublic,i] are given by equations 6.40 and 6.41

respectively.

To compute the probability that the number ME of packets that the eavesdropper

receives successfully is exactly n packets, we proceed by considering all possible

combinations of the number of packets that the eavesdropper can receive successfully

from the nodes in S such that the total number of packets is n i.e. by considering

all the vectors in χ. Then since the channels among the nodes are independent, the

probability that number of packets received from the nodes in S is n is computed by

multiplying the probabilities that eavesdropper receives rj packets from node φ−1(j)

(1 ≤ j ≤ Ns). Hence, we obtain the following:

Pr(ME = n) =
∑
R∈χ

∏
i∈S

Pr(MiE = rφ(i)) (6.45)

Similarly to equation (6.7), the probability Pr(MiE = rφ(i)) is computed as:

Pr(MiE = rφ(i)) =

(
ni
rφ(i)

)
(1− pi(E))ni−rφ(i)pi(E)rφ(i) (6.46)

where pi(E) is the probability that the eavesdropper E receives the packet trans-

mitted by node i given that it has been received successfully by all the remaining

nodes.

To derive pi(E), we proceed as follows.

The probability that node i successfully transmits the packet to all of the other

nodes at time slot k through the public channel is the probability that the nodes

receive the packet successfully up to time slot k minus the probability that they
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receive the packet successfully up to time slot k − 1:

Pr(Tpublic,i = k) = Pr(Tpublic,i ≤ k)− Pr(Tpublic,i ≤ k − 1) (6.47)

By substituting the value of Pr(Tpublic,i ≤ k) from equation 6.39, we get the follow-

ing:

Pr(Tpublic,i = k) =
∑

X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1−ppublic,ij)k−
∑

X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1−ppublic,ij)k−1

(6.48)

Given that node i successfully delivers the packet to the remaining nodes in exactly

k time slots, the eavesdropper can receive the packet at any of the k time slots, and

hence the conditional probability that the eavesdropper receives the packet knowing

that node i successfully delivers the packet to the remaining nodes in exactly k time

slots is given by:

Pr(E|Tpublic,i = k) =
k∑
t=1

(1− piE)t−1piE

= 1− (1− piE)k (6.49)
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Thus, the probability pi(E) is given by:

pi(E) =
∞∑
k=1

Pr(E|Tpublic,i = k)× Pr(Tpublic,i = k)

=
∞∑
k=1

(1− (1− piE)k)×
( ∑
X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1− ppublic,ij)k

−
∑

X∈{0,1}K

K∏
j=1,j 6=i

−I(xj)(1− ppublic,ij)k−1

)

=
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)(1− ppublic,ij)
1−

∏K
j=1,j 6=i(1− ppublic,ij)

−
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)

1−
∏K

j=1,j 6=i(1− ppublic,ij)

−
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)(1− ppublic,ij)(1− piE)

1−
∏K

j=1,j 6=i(1− ppublic,ij)(1− piE)

+
∑

X∈{0,1}K

∏K
j=1,j 6=i−I(xj)(1− piE)

1−
∏K

j=1,j 6=i(1− ppublic,ij)(1− piE)
(6.50)

Then, the probability that the eavesdropper receives n or more packets given that

the nodes in S transmit through the public channel is given by:

Pr(ME ≥ n) =

ntotal∑
t=n

Pr(ME = t) (6.51)

where ntotal is the total number of packets available at the nodes in S i.e. ntotal =∑
i∈S ni

Then, the total security cost ScostARQ is computed by adding the security costs of

all the nodes transmitting through the private channel. Hence,

ScostARQ =
∑
l∈G\S

wl (6.52)

where G \ S is the complement of S in G.

The optimization problem becomes:

(P5) MinS∈Part(G)ScostARQ
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Subject to:

Pr(ME ≥ n) ≤ λ

where Part(G) is the partition set of G i.e. the set of all possible subsets of G

6.3.2.2 DNC Case

To formulate the problem for this case, we define the following:

• Let ni be the number of packets available at node i.

• Let S be the set of nodes transmitting all their packets through the public

channel.

• Let S ′ be the set of subsets of S such that every subset V of S must satisfy:∑
j∈V nj ≥ n

• Let MiE be a random variable that represents the number of of packets that

the eavesdropper receives successfully from node i.

As was discussed in the single-link case, the network-coded packets are constructed

such that the eavesdropper can not decode any of the packets except if the eaves-

dropper receives successfully all the network coded packets from the transmitting

node. Hence, the probability that the eavesdropper receives n or more packets, given

that the nodes in S are transmitting through the public channel, is computed by

considering all the possible subset of nodes such that the sum of their transmitted

packets is greater than or equal to n and thus the probability is given by:

Pr(ME ≥ n) =
∑
V ∈S′

∏
j∈V

Pr(MjE = nj) (6.53)
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The probability that the eavesdropper decodes successfully the nj packets from node

j is given by:

Pr(MjE = nj) = pj(E)nj (6.54)

where pj(E) is the probability that the eavesdropper E receives successfully the

packet transmitted by node j, given that it has been received successfully by all the

remaining nodes. The probability pj(E) has the same expression as that in equation

(6.50).

In the case of DNC, each node has to transmit at most one packet through the

private channel. Hence, the security cost of node i transmitting through the private

channel is given by:

• Delay cost:

wi = E[Tprivate,i]− E[Tpublic,i] (6.55)

• Energy cost:

wi = E[ξprivate,i]− E[ξpublic,i] (6.56)

where the expressions E[Tprivate,i], E[Tpublic,i], E[ξprivate,i], E[ξpublic,i] are the same

given by equations 6.40, 6.41, 6.43, and 6.44 respectively.

Then, the total security cost ScostDNC is computed by adding the security costs of

all the nodes transmitting through the private channel. Hence,

ScostDNC =
∑
l∈G\S

wl (6.57)

The optimization problem becomes:

(P6) MinS∈Part(G)ScostDNC
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Subject to:

Pr(ME ≥ n) ≤ λ

6.3.3 Solution

For both cases of ARQ and DNC, the expression of the probability Pr[ME ≥ n]

in equations (6.51) and (6.53) is dependent on S and is quite complicated. Hence,

in order to find the optimal set of nodes that solves the minimization problem, it is

necessary to consider all possible subsets of the set of nodes G which of course has

exponential computational complexity.

In order to simplify the analysis, we analyze the following special case in which there

is a lot of symmetry.

6.3.4 Special Case

All nodes have the same public channel quality amongst each other and with

the eavesdropper, but not necessarily the same private channel quality amongst each

other. Also, we assume that the nodes have equal number of packets. Let I be the

number of packets available at each node.

We denote by σ2
E the variance of the channel between each node and the

eavesdropper, γE the SNR threshold at the eavesdropper, σ2
public the variance of the

channel between each pair of nodes, and γpublic the SNR threshold at each node

when receiving through the public channel.

Thus for any node transmitting through the public channel, the probability
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p(E) that the eavesdropper receives successfully a packet is the same irrespective of

which node is transmitting and can be derived as in equation (6.50).

6.3.4.1 ARQ Case

Similar to equation (6.8), the probability that the eavesdropper receives n

or more packets given that the number of packets Mpublic transmitted through the

public channel is m, is given by:

Pr(ME ≥ n|Mpublic = m) =
m∑
i=n

(
m

i

)
(1− p(E))m−ip(E)i (6.58)

The security cost wi of node i if it’s transmitting through the private channel is

given by equations (6.36) and (6.42).

In this case, the solution to the optimization problem P5 is given by the following

proposition.

Proposition:

• The optimal number of nodes K∗ that should transmit through the private

channel is given by:

K∗ = K − bM∗
public/Ic where M∗

public is the maximum number of packets that

can be transmitted through the public channel. Also, M∗
public is the highest

integer that satisfies.

Pr(ME ≥ n|Mpublic = M∗
public) ≤ λ (6.59)

• The optimal set of nodes that should transmit through the private channel are

the nodes that have the lowest security cost wi.
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Proof:

Based on equation (6.52), the security cost is additive (it is the sum of the

security costs of each node transmitting through the private channel). Hence, the

cost decreases as the number of nodes transmitting through the private channel

decreases. Also, the cost decreases as the individual security costs of the nodes

transmitting through the private channel are lower.

However, the number of nodes that should transmit through the private channel is

lower bounded by:

KL = K −K∗public

where K∗public is the maximum number of nodes that can transmit through the public

channel. Since the public channel among the nodes are identical and each node has

I packets, K∗public can be expressed as:

K∗public = bM
∗
public

I
c

where M∗
public is the maximum number of packets that can be transmitted through

the public channel. Also, the probability that the eavesdropper receives n or more

packets in equation (6.58) has the same expression as equation (6.7), and it is shown

in section 6.2 that this probability is an increasing function of the number of packets

that can be transmitted through the public channel. Hence, M∗
public is the highest

integer that satisfies:

Pr(ME ≥ n|Mpublic = M∗
public) ≤ λ (6.60)

The value of M∗
public can be calculated using the same iterative method proposed in

part 6.2.2.
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6.3.4.2 DNC Case

In this case, the probability that the eavesdropper receives successfully the I

coded packets transmitted by node i through the public channel is given by:

Pr(MiE = I) = p(E)I (6.61)

The probability that eavesdropper receives n or more packets given that k nodes

are transmitting through the public channel is given by:

Pr(ME ≥ n) =
k∑
j=t

(
k

t

)
(1− p(E)I)k−tp(E)It (6.62)

where t is the lowest integer such that tI ≥ n

In this case, the solution to the optimization problem P6 is given by the following

proposition.

Proposition:

• The optimal number of nodes K∗ that should transmit through the public

channel is the highest integer that satisfies:

Pr(ME ≥ n) ≤ λ

• The optimal set of nodes that should transmit through the private channel are

the nodes that have the lowest security cost wi.

Proof:

Based on equation (6.57), the security cost is additive (it is the sum of the

nonnegative security costs of each node transmitting through the private channel).

Hence, the cost decreases as the number of nodes transmitting through the private
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channel decreases. Also, the cost decreases as the individual security costs of the

nodes transmitting through the private channel are lower. However, the number of

nodes that should transmit through the private channel is lower bounded by G−K∗

where K∗ is the maximum number of nodes that should transmit through the public

channel. Also, it can be easily shown (based on equation (6.62)) that the probability

that the eavesdropper receives n or more packets through the public channel is an

increasing function of k, that is the number of nodes that transmit through the

public channel (since the cost has similar expression as equation 6.8 which has been

proven in section 6.2 to be increasing). Hence, the maximum number of nodes K∗

that should transmit through the public channel is the highest integer that satisfies:

Pr(ME ≥ n) ≤ λ

The value of K∗ can be found using the same iterative technique explained in part

6.2.2.

6.3.5 Numerical Results

In this part, we compare for the distributed case the performance of the secure

transmission using ARQ to the case when Deterministic Network Coding is used.

Also in this part, we consider the symmetric case in which the nodes have same

public channel quality among each others and with the eavesdropper, and that the

nodes have equal number of packets. Furthermore, we consider that the nodes have

the same private channel quality among each others.

As for the values, we consider 7 nodes in the network where each node has 3
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Figure 6.7: Optimal number of nodes as a function of the security level parameter n.

packets. As for the other system’s parameters, we consider the following values:

P = 1W , N0 = 0 dB, σ2
E = 9 dB, γE = 10 dB, σ2

private = 10 dB, γprivate = 13

dB, σ2
public = 10 dB, γpublic = 7 dB.

For both ARQ and Network Coding, the optimal number of nodes that should

transmit through the public channel, and the minimum delay cost is computed for

the case when the security parameter n is varied between 1 and 10 packets. Two

values of λ are considered respectively: λ = 0.04, 0.8.

The optimal number of nodes and the minimum security cost for each case are

shown in figures 6.7 and 6.8 respectively.

Figure 6.7 shows that for both cases of ARQ and Network Coding, the optimal

number of nodes that transmit through the public channel increases as the security

parameter n increases. Also for both considered values of λ, the optimal number
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Figure 6.8: Security cost as a function of the security level parameter n.

of nodes is higher for the case of Network Coding than the case of ARQ. This is

because in the case of Network Coding, the eavesdropper should decode all the

packets transmitted by each node. This consequently decreases the probability

that the eavesdropper receives the target number of packets, and hence for high

values of λ all the nodes can transmit using Network Coding through the public

channel. Also, figure 6.8 shows for both considered values of λ, the security cost

using Network Coding is lower than the case of ARQ. There are two main reasons

for that. The first one is that the number of nodes that should transmit through

the public channel is higher for the case of Network Coding than ARQ as shown in

figure 6.7. The second reason is that each node needs to transmit only one packet

through the private channel in the case of Network Coding while in the case of ARQ

each node has to transmit all its packets through the private channel, which again
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emphasizes the gains achieved by using Network Coding for secure transmissions.

Similar conclusions can be drawn for different values of the systems parameters.

6.4 Summary

We considered the issue of secure transmissions in a wireless fading network in

which a file is required to be delivered while keeping it secure from an eavesdropper.

Two transmissions schemes were proposed: the first was based on simple ARQ

while the second was based on deterministic Network Coding. The results show the

tradeoff between achieving a certain security level and the cost incurred to achieve a

required level of security. Also, the results show that Network Coding considerably

reduces the security cost compared to the case when simple ARQ is used. Overall,

this work constitutes a modest but important step towards resolving any important

problem of wireless networking that combines security issues with performance costs

and distributed operation.
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Chapter 7

Minimum Energy Scheduling of Base Stations with Sleep Modes

7.1 Overview

This chapter extends the problem of minimizing the consumed energy in a

Macro cell discussed in chapter five to the case of a network of multiple cells. The

case of multiple cells is of a higher complexity due to the following: The received rate

at each user is affected by the interference caused by other base stations transmitting

simultaneously with the base station serving that user. Hence, the problem in this

case will be transformed to a scheduling problem which should select the groups of

base stations to be activated simultaneously in order to minimize the total consumed

energy in the network. Also similar to the single cell case, we assume that each base

station reduces its power and switches to Micro sleep mode when it completes serving

the users in its cell, and hence it is anticipated that the sleep mode power values of

the base stations will affect the optimal activation groups and the minimum energy

consumed in the network.

The problem of scheduling multiple transmitters and its complexity has been

extensively studied in the past (see e.g. [63]-[66]) where the optimal solution is

usually found for special cases of the general scheduling problem, but most of these

works minimize the time required to serve the users. The work in [67] considers

a very similar model to the one that we consider in this chapter. However, the
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objective in [67] is to minimize the emptying time of the network i.e. the total time

needed to serve all the users in the network, and hence it does not take the energy

consumed into consideration. Also in [67], the conditions that make particular

scheduling techniques optimal (such as the optimality of time division) are presented.

Hence, the interesting question that arises: Is the optimal solution to the minimum

energy problem the same as for the minimum time problem? If not, under what

conditions are the optimal solutions the same?

Thus in this chapter, we will first present the minimum time scheduling prob-

lem studied in [67] . Based on the minimum time problem, we will then formulate

the problem of minimum energy scheduling of base stations. Due to time limitations,

the problem of minimum energy scheduling is not fully developed and is interesting

to pursue for future work.

7.2 Minimum Time Scheduling Problem

The problem studied in [67] considers a wireless network composed of N

transmitter-receiver pairs. Each transmitter is required to deliver the requested

data to its receiver, and it is assumed that the data is available at each of the trans-

mitters. It is also assumed that rate at each receiver depends on which group of

transmitter-receiver pairs are activated simultaneously. Two models of the rate are

considered: the first one assumes the rate to be a function of the Signal to Interfer-

ence Noise Ratio (SINR). The second model is a special case of the first model, and

it assumes that the rate depends on the cardinality of the activation group. It is
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then required to find the optimal activation groups and the optimal activation time

of each group that minimize the time required the receivers’ demands. In order to

formulate the problem, the following lemma is used:

Lemma 7.1: There exists an optimal schedule such that, before reaching the end

of the time duration of a group, none of the link queues in the group is empty.

The full proof of the lemma can be found in [67].

Using this lemma, the problem has a linear programming formulation as follows:

min
∑
S∈H

τS

s.t.
∑
S∈H

riSτS = Bi ∀i = 1, 2, ..., N

τS ≥ 0 (7.1)

where S is an activation group, τS is the activation duration of group S, H is the

set of all possible activation groups, Bi is the demand of receiver i, riS is the rate

at receiver i when group S is activated.

In general, the cardinality of the activation group set H is exponential in the

number of transmitter-receiver pairs and hence it is complex to solve the linear

program. Thus in [67], the authors present the conditions under which some of the

basic scheduling strategies are optimal. The scheduling strategies considered are:

the first strategy is time division (i.e. each of the links is activated solely) while the

second strategy is when all links are activated simultaneously. Here, we will present

the condition under which time division is optimal through the following theorem.

Theorem 7.1: For any group S ∈ H, the sum of the ratios between the members’

rates in S and their respective rates of being served individually, is at most 1, that
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is, ∑
i∈S

riS
rii
≤ 1 (7.2)

7.3 Single User Cells

7.3.1 System Model

We consider a cellular network K composed of N cells. In each cell i, base

station station i is required to deliver Bi bits to a user i. It is assumed that the

queue at each base station is saturated. Also, base station i is transmitting with

power value PiT to user i. The consumed power PiC by base station i is a linear

function of the transmission power PiT . Also, it is assumed that the base station

can reduce its consumed power and switch to macro sleep mode during the time it

is deactivated and not delivering the load to user i. Hence, the consumed power

PiC at base station i follows a piecewise linear model and is given by the following

expression:

PiC =


si, PiT = 0

4iPPiT + Pi0, 0 < PiT ≤ Pmax

(7.3)

where the values of the linear model parameters 4iP and Pi0 depend on the base

station type, Pmax is the maximum transmission power, and the parameter si is the

consumed power value when base station i is in the sleep mode (si ≤ Pi0). The

received power PijR at user j from base station i follows the pathloss power model
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given by:

PijR = APiT |dij|−α (7.4)

where α is the pathloss exponent, dij is the distance from user j to base station i,

and A is a constant which accounts for system losses. Also, AWGN is present at

each user with power spectral density NR.

In order to deliver the target load to each user, it is required to find which

group of base stations should be activated simultaneously, and the time duration

that the group should be activated in order to minimize the total consumed energy

of the network.

The problem formulation is explained in the following section.

7.3.2 Problem Formulation

In order to formulate the problem, we define the following entities.

Let S be the current activated set of base stations and let H be the set of all possible

activation sets. It is assumed that the rate riS of each base station i ∈ S follows the

SINR model i.e.

riS = Wlog(1 + SINRiS) (7.5)

where W is the transmission bandwidth value (in Hz) and SINRiS is the signal to

interference noise ratio from base station i to user i when group S is activated. It

is given by:

SINRiS =
APiT |dii|−αGii∑

k∈S,k 6=iAPkT |dki|−αGki +NR

(7.6)
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where Gki is the channel gain between base station k and user i and NR is the

variance of the receiver’s noise. It is assumed that the values of the channel gains

are known at each base station.

Let τS be the duration of time group S is activated. The energy spent during the

activation period of group S is:

ES = (
∑
i∈S

(4iPPiT + Pi0) +
∑
j∈K\S

sj)τS (7.7)

Define the quantity eS such that:

eS =
∑
i∈S

(4iPPiT + Pi0) +
∑
j∈K\S

sj (7.8)

In order to formulate the energy minimization problem, we will formulate a lemma

similar to lemma 7.1 (which is used in [67]). The lemma states the following:

Lemma 7.2: There exists an optimal schedule such that before reaching the end

of the time duration of a group, none of the base stations has completed delivering

the load to the designated user.

The proof of the lemma is similar to the proof of lemma 7.1 and is as follows:

Assume the opposite. Then, there exist a group S with activation period τ and a

cell i such that base station i has completed delivering the load to user i. Let t′ be

the completion time of delivery of user i load. Consider spitting the time duration

τ into two time durations such that the first is of period t′ and group S is activated

while the second is of period τ − t′ such that group S \ i is activated.
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Then, the energy minimization problem has the following LP formulation:

min
∑
S∈H

eSτS

s.t.
∑
S∈H

riSτS = Bi ∀i = 1, 2, ..., N

τS ≥ 0 (7.9)

Since the linear program depends on the piecewise power model parameters

and the users load, it is anticipated that the optimal schedule will also depend on

these values. In the following theorem, we derive the conditions (as was done for the

minimum length scheduling problem in [67]) in which time division is the optimal

solution.

Theorem 7.2: Time division is optimal if and only if the following condition is

satisfied: ∑
i∈S

eiriS
rii
≤ 1 (7.10)

For all S ∈ H where ei is the total consumed power when base station i is activated.

The proof follows the same argument done [67], the only difference is that

the vector of costs of the basic variables will be (e1, e2, ..., eN) where ei is the total

consumed power when base station i is transmitting.

Assuming that the consumed power at each base station i is greater than one,

we can easily see based on theorems 7.1 and 7.2 that when time division is optimal

for the minimum energy problem, it is also optimal for the minimum time problem.
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7.4 Multiple Users Cells

7.4.1 System Model

We consider a cellular network K composed of N cells. Each cell i is composed

of base station i and Mi users. Base station i is required to deliver Bij bits to user

j (1 ≤ j ≤ Mi). Also, base station i can transmit with power PiT and assigns

transmission power value PijT to user j (such that
∑Mi

j=1 PijT = PiT ). It is assumed

that the power values are integers. As in section 7.3, the consumed power PiC by

base station i is a linear function of the transmission power PiT and is given by

equation 7.3. The received power PijR at user j from base station i follows the

pathloss power model given by:

PijR = APiT |dij|−α (7.11)

where α is the pathloss exponent, dij is the distance from user j to base station i,

and A is a constant which accounts for system losses. Also, AWGN is present at

each user with power spectral density NR.

In order to deliver the target load to each user, it is required to find which group

of base stations should be activated simultaneously, the power values that each base

station assigns to each user, and the time duration that the group with a specific

power assignment should be activated in order to minimize the total consumed

energy of the network.
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7.4.2 Problem Formulation

In order to formulate the problem, we define the following variables:

Let S be the activated group of base stations and let H be the the set of all

possible activation groups.

Let πi be a power assignment vector of base station i to its Mi users. Let Ψi

be the set of all possible power assignment vectors of base station i.

Let πS be the vector of power assignment vectors of the base stations in the

activation set S and let ΨS be the set of all possible power assignment vectors of

activation group S.

Let ΨH be the set of all possible power assignment vectors of all possible

activation groups i.e.

ΨH =
⋃
S∈H ΨS

The received rate at user j (1 ≤ j ≤ Mi) of base station i when group S is

activated with power assignment πS follows the SINR criterion and is given by:

rj(S,πS) = Wlog(1 + SINRj(S,πS)) (7.12)

where the SINR at user j of base station i when group S is activated with power

assignment πS is given by the following expression:

SINRj(S,πS) =
APijT |dij|−αGij∑

k∈S,k 6=iAPkjT |dkj|−αGkj +NR

(7.13)

where Gij is the channel gain between base station i and user j and dij is the

distance between base station i and user j.

let τ(S,πS) be the activation duration of group S with power assignment vector
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πS. The energy spent during the activation time of group S with power assignment

vector πS is independent of πS and is given by equation 7.7.

Thus and using the same argument as lemma 7.2, the energy minimization

problem has the following LP formulation:

min
∑

(S,πS)∈H×ΨH

eSτ(S,πS)

s.t.
∑

(S,πS)∈H×ΨH

ri(S,πS)τ(S,πS) = Bi ∀i = 1, 2, ..., N

τ(S,πS) ≥ 0 (7.14)

where the couple (S, πS) corresponds to a particular activation set and a particular

power assignment of the base stations in set S and eS is given by equation 7.8.

This problem is of high complexity because the number of possible power allocations

that base station i can assign to its Mi users is exponential in the number of users.

Also, the number of possible groups of base stations that can be activated together

is exponential in the number of base stations.

In order to reduce the complexity of the problem, one possibility is to restrict

the power allocation policies that each base station can use to distribute its power

on its users. These policies are:

• Equal Power Policy: In which each base station serves its users simultaneously

and divide its transmission power equally among its users.

• Distance-Based Policy: In which each base station serves its users simultane-

ously; however unlike the equal power policy, each base station assigns higher

power value to the user with the lower distance. Hence under this policy, base
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station i assigns power value to user j according to the following method.

First, the indices of the users are arranged in ascending order of their distance

where the new index t corresponds to the user with the tth lowest distance.

Then, the power assigned to user t by base station i is:

PitT =
dit′PiT∑Mi

t=1 dit
(7.15)

where t′ = Mi − t

Hence under each of the presented policies, the complexity of the problem will be

only exponential in the number of base stations, and the problem will be formulated

as in 7.9.

7.5 Summary

In this chapter, we have formulated the minimum energy scheduling problem

in a wireless network first for the case when a user is present in each cell and then

for the general case when multiple users are present in each cell. Following the steps

done in [67], both problems were formulated as linear programs, and the complexity

of the number of variables of each problem is demonstrated. It remains interesting to

design efficient techniques to solve the linear programs associated with the minimum

energy problems.

185



Chapter 8

Conclusion

8.1 Summary of Contributions

The main contributions of this thesis are the proposed novel joint physical-

network layer techniques, evaluating their performance while taking energy into con-

sideration and studying the tradeoff between energy and other performance metrics

such as throughput and delay. In the second chapter, we considered discrete time

packetized transmissions over a wireless link and studied the tradeoff between en-

ergy and delay. We considered the time varying nature of the wireless channel by

representing the channel by the markov chain model. Also, we proposed rate and

power control techniques respectively where the transmitter changed its rate/power

based on Channel State Information, and we showed the performance gain achieved

by using Channel State Information compared to the case when the transmitter

knows the average channel quality. These results are presented in [68].

In the third chapter, we studied the tradeoff between throughput, energy, and

delay but for a single hop multicast network. We considered the problem of stream-

ing a real-time file with finite energy and delay constraints while the objective was

to maximize the number of packets received by the receivers. Also as in chapter

two, markov chain model was used to represent the time variations of the wireless

channel. Moreover, we studied the effect of using Random Network Coding as a
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transmission method on the achieved performance. Our results showed that Ran-

dom Network Coding benefited receivers with good channel quality while it harmed

receivers with bad channel quality. Also, this chapter reinforced the findings of

chapter two of the importance of having Channel State Information. The results

are presented in [69].

In chapter four, we focused on the effect of cooperation on the energy efficiency

of wireless transmissions, and we proposed several joint physical-network coopera-

tive techniques. Some of these techniques incorporated Random Network Coding

at the network layer and/or Alamouti space-time codes at the physical layer. We

considered two system models: the first was the simple relay network while the sec-

ond was the simple multicast network, and we evaluated the cooperative protocols

by computing the minimum energy required per successfully delivered packet. We

then studied the tradeoff between the minimum energy consumed and the maximum

stable throughput achieved. We showed that Random Network Coding can achieve

performance gains compared to Alamouti-only-based cooperation techniques. Fur-

ther, we showed that techniques that combined both Random Network Coding and

Alamouti codes can achieve the best performance. The results are shown in [70] and

[71].

In chapter five, we switched to studying techniques for energy efficient cellular

systems, and in particular we considered a downlink scenario and we proposed a rate

allocation method to minimize the energy consumed in a Macro cell. This method

takes into account the ”Micro” sleep mode feature of current base stations. We pro-

posed both time division scheduling and frequency division scheduling. Although
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there is an earlier work that considered the uplink scenario and that considered a

similar problem formulation for the case of time division, our frequency division for-

mulation and the comparison between the time and frequency scheduling techniques

were not considered earlier. The results are presented in [72].

Another main contributions of this thesis are investigating the effect of us-

ing of Network Coding on securing wireless transmissions and studying the tradeoff

between security and energy/delay. In chapter six, we considered the problem of

distributed information exchange of a file among a group of adjacent wireless nodes

in the presence of an eavesdropper and with the choice of the nodes transmitting

through public channels or more expensive private channels. We addressed the

tradeoff between security and energy/delay by expressing the cost of using the pri-

vate channel by energy/delay costs, and we minimized the total security cost while

achieving the required level of security. We proposed a deterministic Network Cod-

ing transmission strategy and showed the vast performance gains achieved by using

Network Coding. The results are presented in [73]

Last, we introduced the problem of minimum energy scheduling for a cellular

network of several cells. Similar to chapter four, the scheduling technique assumed

that the base stations had ”Micro” sleep mode. We compared the minimum energy

scheduling problem to a previous work that the considered a similar scheduling

problem but minimized the time required to serve the users. Also, we extended the

model considered in the previous work by considering several users in each cell, and

we showed the additional complexity associated with this case.
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8.2 Future Work

There are several ideas that are associated with the problems considered in

this thesis and are beneficial to pursue in the future. The first issue is fairness.

In chapter three, we considered the problem of maximizing the total number of

packets received by all receivers under energy and delay constraints; however, we

did not offer any guarantees on the minimum number of packets that each receiver

should receive. In chapter six, we minimized the total energy/delay security costs by

selecting which nodes should transmit through the private channel; however, we did

not consider individual energy constraints on the nodes. In other words, nodes that

transmit through private channels consume more energy than nodes that transmit

through public channel. Hence, it is essential to rethink these problem while taking

fairness into account.

For the distributed exchange problem discussed in chapter six, the nodes were

assumed to be transmitting with fixed power. Hence, one could incorporate power

control techniques and investigate their effect on the security cost. Also for the

general case of multiple nodes, it is of interest to develop heuristics that are close

to optimal and that allow the file to be delivered successfully to all the nodes in the

network without special symmetry assumptions and without the restriction that the

parts of the file residing at each node are distinct.

As pointed out in chapter seven, the problem of minimum energy scheduling

was introduced but not fully addressed. It remains important to design efficient

heuristics that reduce the complexity the problem and are close to optimality. Fur-
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ther, it is again essential to consider fairness in this problem. Our model minimizes

the energy consumed in the network while did not put constraints on the time each

user is served.

Also, some of the problems considered in this thesis were based on simple single

hop networks as we were more focused on assessing the performance of the different

proposed physical-network layer techniques. Thus, it is beneficial to consider these

problems, as a next step, in more general multihop networks.
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