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We examine the ways of extracting information from semi-invisible decays of

(new) heavy particles at hadron colliders, i.e., such heavy particles are assumed to

decay into visible/Standard Model (SM) particles and invisible particles. As a con-

crete realization, we employ the models with the stable weakly interacting massive

particle (WIMP), a well-motivated dark matter (DM) candidate. By definition, dark

matter is not seen by the detectors, i.e., invisible. Typically, stability of dark mat-

ter is ensured by introducing a new (unbroken) symmetry under which the DM is

non-trivially charged while the SM particles are uncharged. Also, many new physics

models contain other heavier particles which are charged under the same symmetry

so that such heavier particles must decay into (invisible) DM particles along with

the relevant visible/SM particles.

In particular, we study how to determine the masses of DM and heavy parti-

cles and the nature of the above-mentioned DM stabilization symmetries. For this



purpose we take three kinematic variables as the main toolkits. We first discuss the

distribution of the invariant mass formed by the visible part in the associated decays.

As the second variable, we include the invisible part in forming the invariant mass.

Because we are not aware of the longitudinal momentum of invisible particles, such

a quantity is constructed in the plane transverse to the beam pipe, which is there-

fore called “transverse” mass. This is typically suitable for a singly produced heavy

particle. Since the DM stabilization symmetries lead to pair-production of heavier

particles, we here consider the “stransverse/MT2” type variable, a simple general-

ization of the transverse mass. Finally, we consider the energy spectrum of visible

particle(s), which is not Lorentz-invariant at all even under longitudinal boosts. The

relevant strategy is predicated upon the new observations that we shall make about

physical implications of the peak position in such an energy spectrum. We empha-

size that the relevant methods using the three observables are complementary to one

another.
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Chapter 1: Introduction

1.1 Motivation

There is a tremendous amount of evidence for the existence of dark matter

(DM) in the universe [1]. A consensus picture of the nature of such a particle

is provided by a lot of astrophysical and cosmological observations and the rele-

vant experimental results. A viable DM candidate must be electrically neutral and

colorless, non-relativistic, stable and give rise to the measured relic abundance of

h2ΩDM = 0.1131 ± 0.0034 [2]. Additionally, a Weakly Interacting Massive Particle

(WIMP) – with a mass being of order the weak scale – is a very well-motivated

paradigm since it approximately has the correct relic density upon thermal freeze-

out [1].

Moreover, such a DM candidate also often arises in extensions of the Standard

Model (SM), most of which are motivated primarily as solutions to other problems

in the SM such as the Planck-weak hierarchy problem. Typically, such extensions

contain extra particles at the weak scale, some of which are charged under a new

unbroken symmetry. Since SM particles are assumed neutral under such a symmetry

in most cases, the lightest of such new particles cannot decay further into lighter

particles to end up with the lightest stable particles like electron, proton, photon,

1



neutrino and so on. If the above-mentioned lightest particle is further SM-neutral,

then it becomes a stable DM candidate in itself. In this sense, such a new symmetry

is called the dark matter stabilization symmetry. In addition, if such stable WIMP

dark matter is an ingredient for an extension of the SM, then it is likely to have

(weak) interactions with SM particles. Therefore, This enables us to test the WIMP

paradigm by direct detection via scattering off nuclei or indirect detection via its

annihilation products.

Such a scenario also makes the idea of DM amenable for testing at the high-

energy colliders, which is the main focus in this thesis. At a minimum, it is possible

to produce DM particles directly at colliders, but then this does not leave any visible

signature since (by construction) the DM particles will simply escape the detectors

without interactions. We instead pay attention to a different scenario. As discussed

above, many new physics models having stable WIMPs as the DM candidate also

contain heavier particles which are also charged under the DM stabilization sym-

metry. Unlike the DM particle, however, they can have non-trivial color, electric or

both charges, i.e., they are typically SM-charged. Therefore, such heavier particles

(a.k.a. “mother” particles or “DM partners”) can be produced first in collisions of

SM particles via SM gauge interactions.1 They then must decay into DM particle(s)

with the relevant visible state due to the symmetry introduced in the models. In

this context, the relevant events that we investigate are characterized by the visible

part and the (large) missing transverse energy/momentum (MET) which is carried

1As opposed to this case, the production of DM only requires new interaction(s) because DM

is assumed SM-neutral.
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by invisible particle(s), and such a MET signature could be taken as evidence of the

DM existence. But again it should be emphasized that we do not preclude invisible

particles other than the DM candidates, i.e., the techniques/argument which we

shall develop throughout this thesis are still applicable to the decay processes with

generic invisible particles.2

1.2 Determination of dark matter properties

Once dark matter particles are produced at colliders, for example, the Large

Hadron Collider (LHC), and in turn discovered, then one of the natural steps for

studying dark matter is to determine its various properties such as mass, DM stabi-

lization symmetries, spin, coupling constants, and so on, first two of which are main

interests here.

1.2.1 Mass measurement

As obvious from the astrophysical and cosmological observations and the rel-

evant theory arguments, the DM particle must have a non-zero mass, for example,

mDM ∼ 100 GeV for the WIMPs as mentioned earlier so that it is important to mea-

sure the mass of the DM particle in experiment. To date, a large amount of effort

has been made in order to determine the mass of the DM in the relevant processes

involving the dark matter [4–39]. See also the reference [40] for a general review

2For example, a certain type of invisible particles could be collider-stable in that they decay

outside the detectors so that effectively they behave like the DM particles in the relevant signals.

See for example the reference [3].
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on mass measurement. Typically, the mass measurement in most of the relevant

studies involves reconstructing the associated decay chains so that it is also possible

to determine the masses of the mother particle and the intermediate particle(s) as

well as that of the DM particles. In this sense, we do not restrict ourselves to deter-

mination of the DM mass in this thesis. We again emphasize that the argument in

mass measurement is, in general, applicable to the cases with any type of invisible

particles including dark matter.

1.2.2 Distinction of dark matter stabilization symmetries

As briefly discussed earlier, in order to prevent the (massive) DM particle

from decaying into lighter particles, the relevant models typically employ a new

symmetry. However, surprisingly enough, most of the collider studies of the DM

assume a Z2/parity type symmetry to stabilize the DM candidate (henceforth called

Z2 models). This is because most of the popular models constructed under the

framework of supersymmetry (SUSY), little Higgs and extra dimensions [41–47]

ensure the stability of the DM particle by introducing a Z2 stabilization symmetry.

More importantly, these models have served as guide to expected signatures of dark

matter at the LHC [48,49].

In this thesis, we emphasize that any discrete or continuous global symmetry

can be employed as the DM stabilization symmetries.3 Furthermore, since all fun-

damental particles in nature are defined by the way in which they transform under

3Gauge symmetries alone cannot be used to stabilize dark matter. See the discussion in the

reference [50]. For example of models with a non-Z2 symmetry, see also references [51–53].
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various symmetries, most of the popular (Z2) models actually consider only one

type of the DM candidate. It is therefore critical to determine experimentally, i.e.,

without any theoretical bias, the nature of the symmetry that stabilizes dark mat-

ter. In this context, we study how to distinguish models in which the DM becomes

stable by a Z2 discrete symmetry from ones in which the DM becomes stable by

other symmetries. For definiteness and simplicity, we have focused on the models

to introduce a Z3 type symmetry (henceforth called Z3 models) as the DM stabi-

lization symmetry. However, we emphasize that the techniques in this thesis can be

generalized to distinguishing most of the other DM stabilization symmetries from

the parity type symmetry.

1.3 Z3 symmetry: primer

Since the Z3 symmetry is not as familiar as the Z2 symmetry, we here briefly

review some key features/observations to be used especially for distinguishing DM

stabilization symmetries. As usual, Z3 symmetry can be defined by the relevant

transformation rule under which a particle/field φ transforms as

φ→ φ exp

(
2πiq

3

)
(1.1)

where Z3 quantum number q = 0 (i.e., Z3-neutral) or q = +1,+2 (non-trivial Z3-

charged). Suppose that the lightest of the Z3-charged particles (labeled φ0) has

charge q = +1 (a similar argument goes through for charge q = +2 for φ0). Clearly,

its anti-particle (φ̄0) has a (different) charge q = −1, which is equivalent to q = +2,

and has the same mass as φ0. Then, solely based on Z3 charge conservation, all
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Figure 1.1: Two possible decay processes of a Z3-charged heavier parti-
cles. The numbers denote Z3 quantum numbers for each particle. The
red dashed lines denote the particles having a non-trivial Z3 charge
whereas the black solid lines denote the particles having a neutral Z3

charge.

other (heavier) Z3-charged particles can decay into this lightest Z3-charged particle

(in addition to Z3-neutral particles including SM ones). To be explicit, a heavier

Z3-charged particle with charge q = +1 can decay into either a single φ0 or two φ̄0’s

along with Z3-neutral particles (See Figure 1.1). Taking the CP conjugate of the

preceding statement, we see that a heavier Z3-charged particle with the other type

of charge, namely q = +2, is allowed to decay into two φ0’s or a single φ̄0. Of course,

φ0 cannot decay and thus is the (single) DM candidate in this theory. We denote

this DM particle and its anti-particle by DM and DM, respectively, throughout this

thesis although we do not make this distinction in the text since DM and anti-DM

particles are still degenerate.4

One noteworthy observation is that in Z2 models it is possible to have only the

diagram in the left-hand side of Figure 1.1, i.e., the decay of a mother particle into a

4Of course, which of the two particles is denoted as anti-DM is a matter of convention. Also,

as a corollary, the DM particle should be a Dirac fermion or a complex scalar in a Z3 model.
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single dark matter particle along with the relevant visible state due to Z2 quantum

number conservation (again assuming that such a symmetry is not broken). In terms

of the visible final state, of course, the left- and the right-hand sides in Figure 1.1

seem to be the same because one or two DM particles there are not visible in

any case. Thus at the first glance it seems that there is “no” hope for distinction

between them. Nevertheless, this simple difference in the number of DM particles

remarkably does leave an impact on the kinematic variables to be discussed in this

thesis so that determining the DM properties, in particular the DM stabilization

symmetries, becomes more feasible.

1.4 Signal processes and kinematic variables

1.4.1 Signal processes

As discussed so far, in order for dark matter to become stabilized a certain new

unbroken symmetry is needed, and this symmetry requires that the particles charged

under this symmetry should be pair-produced since typically known particles/SM

particles are assumed uncharged under this new symmetry. Considering this re-

quirement, the minimal situation that involves DM particles is the pair-production

of DM particles. However, this is not interesting as indicated earlier because by con-

struction DM particles are very unlikely to leave their visible trace in the relevant

detectors so that nothing would be observed. Therefore, to ensure a non-trivial vis-

ible signature mother particles/DM partners are pair-produced first, and then each
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Figure 1.2: A schematic signal process at colliders.

of them should decay into DM particle(s) plus the associated visible particle(s).5

Figure 1.2 schematically demonstrates a possible signal process which would

occur in the relevant collider experiment. In this picture, the blobs denote the

intermediate states which might involve several new particles that are on shell or off

shell depending on models. Here (and henceforth) off-shell intermediate particles

typically imply that they are heavier than their mother particle unless specified.

Although it is shown that each DM partner ends up with a single DM particle

in Figure 1.2 for simplicity, we do not restrict our argument later to this simplest

possibility, i.e., two DM particles can appear in each decay chain.

5Of course, as the next simplest situation one can consider the directly pair-produced DM

particles along with extra jet/photon radiated from the initial state so that the resultant signal is

featured by a large missing energy stemming from the (invisible) DM particles, i.e., this possibility

also leaves a similar collider signature to the one we study here. But we do not consider this case

in this thesis because of the difficulty in mass measurement.
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1.4.2 Kinematic variables: the main toolkits

In order to analyze the signal processes described in the previous section and

extract the physical properties of new particles including dark matter, suitable vari-

ables must be introduced. For this purpose we adopt three kinematic variables:

invariant mass distribution, stransverse mass/MT2 distribution, and the peak po-

sition in the energy distribution. We delineate the main idea behind using these

variables item by item.

1.4.2.1 Invariant mass

Given any Lorentz four momentum, the invariant mass can be obtained simply

by taking the Lorentzian magnitude of it, and the resultant quantity is invariant by

definition. This invariance is useful in the sense that the associated values are fixed

in any

For invariant mass, the main strategy is that the final states and the “topology”

of the decay of a mother particle are (in part) determined by the DM stabilization

symmetry. Thus reconstructing the visible parts of these decay chains will allow

us to differentiate a model of DM stabilized with a non-Z2 symmetry from one

where DM is stabilized with a Z2 symmetry. The conclusions seem generic for

most stabilization symmetries that are not parity symmetries as mentioned before;

however, again for definiteness, we focus on the case of a Z3 symmetry. When

illustrating the signatures we will generically refer to any model stabilized with Z2

and Z3 stabilization symmetry simply as Z2 and Z3 models, respectively.
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More specifically to see differences between Z2 and Z3 models, we focus on

the kinematic edges and shapes of invariant mass distributions of the SM particles

resulting from the decay of a single mother particle charged under the SM and the

DM stabilization symmetries. We note the possibility of one or two DM particles in

each decay chain being allowed by the Z3 symmetry along with SM particles which

can, in general, be different in the two decay chains as discussed earlier. Whereas,

in Z2 models, decays of a mother particle in the given SM final state cannot have

two DM particles in the decay chain and hence typically has only one DM particle.

Thus,

• If all the intermediate particles in the two decay chains are off-shell and the SM

particles in the two decay chains are the same, then we show that there are two

Z3 kinematic edges in the invariant mass distribution of this SM final state at

approximately Mmother−mDM and Mmother−2mDM. Models with Z2 stabilized

dark matter have only one endpoint approximately given by Mmother −mDM.

In the case of on-shell intermediate particles, the decay of such a mother in a

Z3 model can similarly result in double edges due to the presence of one or two DM

in the final state. However, in this case the endpoint also depends on the masses of

intermediate particles. Thus it is possible to obtain multiple edges even from decay

of a single mother particle in a Z2 model due to different intermediate particles to

the same final state. Hence, multiple edges are not a robust way to distinguish

between Z3 and Z2 symmetries in the case of on-shell intermediate particles. For

the case of on-shell intermediate particles, we thus use shapes of invariant mass
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distributions instead of edges. In particular,

• We find a unique decay chain topology with two SM particles separated by

a DM particle (along with another DM at the end of the decay chain) which

is generally present for Z3 models but absent for the Z2 case. Based on pure

kinematics/phase space, this topology leads to a “cusp” (i.e., derivative dis-

continuity) in the invariant mass distribution of the SM particles.

The idea of using the invariant mass variable can be generalized to the cases in

which a heavy resonance decays into Nv visible particles and Nχ invisible particles.

Without making any assumption on the underlying physics there naturally arise

several basic questions: 1) How many invisible particles are in the final state? 2)

What are their masses? 3) What is the exact topology (i.e., Feynman diagram) of

such a decay process: are there any intermediate resonances, and if so, what are

their masses?

In this context, here we do not hypothesize the specific decay topology includ-

ing the number of invisible particles. Also we shall concentrate on the region near

the peak rather than the kinematic endpoint of the invariant mass distributions,

where the available statistics can be rather poor (in the sense that the most popu-

lated bins are rarely near the kinematic endpoint). The main idea is to derive the

analytic formulae necessary to analyze the full shape of the invariant mass distribu-

tions of the visible particles including the location of the peak. For definiteness and

simplicity, we begin this program of research with the simplest and most challenging

case of Nv = 2 along with Nχ = 1, 2. We shall then demonstrate how the relevant
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results can be used to determine: 1) the number of missing particles, 2) their masses,

and 3) the associated event topology.

1.4.2.2 Stransverse mass/MT2

The basic idea behind distinguishing Z3 from Z2 models by utilizing stransverse

mass/MT2 is again (like the invariant mass) that a

• single mother charged under a Z3 symmetry is allowed (based simply on the

symmetry) to decay into one or two DM candidates.

This is to be contrasted with the fact that mother particles charged under a Z2

symmetry have only one DM candidate in the final state. As discussed in the

previous section, decays of a single Z3-charged mother particle generate a “double

edge” in the invariant mass distribution of the visible (SM) particles. This is with the

condition that the intermediate particles in the decay chains are off-shell and that

the decay chains with one and two DM contain identical SM particles. For the case

of on-shell intermediate particles, this invariant mass distribution has a “cusp” for

certain decay topology (with two DM) of a Z3 mother particle. In all, the analysis

with the invariant mass distribution is focused on new features in observables from

a single decay chain only.

Instead we consider the total inclusive event in order to glean even more infor-

mation, recalling that there must be two such mother particles present. For example,

consider the case where there is only one visible (SM) particle in the decay chain of a

mother particle. Constructing the invariant mass of the visible particle of this decay
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chain, as per the analysis using invariant mass, is not very useful for the purpose of

reconstructing the mass of the mother particle: one might have to resort to including

information about the invisible particle(s) in the same decay chain. Since we can

only measure the total missing transverse momentum in the event which is shared

between invisible particles from two mothers, we must use measurements from both

sides. An option is to use “MT2”-type observables/variables [4–27]. Another case

where one of the analyses using the invariant mass distribution (based on single

mother decay) might not work is when the visible/SM particles in the decay chains

with one and two DM (of course for Z3 model) are not identical (even if they is more

than one). Thus, one does not obtain a double edge for the case of intermediate

particles in the decay chains being off-shell.

With the above motivations in mind, in the relevant part,

• we develop techniques for distinguishing Z3 models from Z2 models using

information from both mother decays and the missing (in addition to visible)

energy/momentum in an event.

We especially study the above cases where the techniques with the invariant mass

variable might not work – in this sense, our work with the stransverse mass/MT2

variable is complementary to that with the invariant mass variable.

• We show that shapes and edges of these MT2 distributions, along with the ratio

of visible momentum/energy on the two sides of the event, act as powerful

discriminants between Z3 and Z2 models (including the case of a neutrino,

i.e., massless invisible particle – in addition to DM, in the final state for Z2
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models).

1.4.2.3 Energy peak

The method using the energy peak, which is developed in this thesis, is pri-

marily predicated upon the features of the energy distribution of the visible particle

coming from purely two- and three-body decays. We remark that this is the first

work to use the energy distribution of the the decay products to study the stabiliza-

tion symmetry of the DM. In fact, other work has typically focused on using Lorentz

invariant quantities or quantities that are invariant under boosts along the beam di-

rection of the collider. This is the case for the invariant mass or the stransverse/MT2

distributions. In particular, the technique using the invariant mass variable used the

endpoints of kinematic distributions to probe the stabilization symmetry of the DM

whereas this method relies quite directly on peak measurements and only marginally

on endpoint measurements. Additionally, we note that the methods using the invari-

ant mass variable apply only to the case where there is more than one visible particle

per decay. Therefore, this result for cases where there is only one visible particle

per decay is complementary to the results from the invariant mass distribution.

Our basic strategy is explained in the following. It relies on a new result:

• Assuming massless visible decay products and the unpolarized production of

the mother particles, we shall show that in a three-body decay the peak of

the observed energy of a massless decay product is smaller than its maximum

energy in the rest frame of the mother.
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This observation can be used in conjunction with a previously observed kinematic

characteristic of the two-body decay to distinguish the stabilization symmetry of

the DM. Specifically, it was shown in references [54,55] that

• For an unpolarized mother particle, the peak of the laboratory frame energy

distribution of a massless daughter from a two-body decay coincides with its

(fixed) energy in the rest-frame of the mother.

Clearly, to make use of these observations in distinguishing two from three-

body decays, we need to measure the “reference” values of the energy that are

involved in these comparisons. Moreover, the procedure that is to be used to obtain

this reference value from the experimental data should be applicable to both two

and three-body decays. To this end, we find that when the mother particles are pair-

produced, as happens in hadronic collisions, the MT2 variable can be used. Thus,

these observations make counting the number of invisible decay products possible

by looking only at the properties of the single detectable particle produced in the

decay. However, it is worth noting that our proof of the above assertion regarding

the kinematics of two- and three-body decays is only valid with a massless visible

daughter and an unpolarized mother. Therefore, care must be taken when discussing

cases with a massive daughter or a polarized mother.

1.5 Outline of thesis

In Chapter 2, we discuss how to determine the DM properties using the in-

variant mass variable. We begin with the case of off-shell intermediate particles in a
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decay chain followed by the case of on-shell intermediate particles. We there expli-

cate the general strategies of distinguishing Z2 from Z3 models, i.e., “double-edge”

and “cusp” signatures, respectively. For the latter, we show that the feature of the

cusp is intact even in the presence of any generic spin correlations by a formal proof

as well as some Monte Carlo simulation. Some possible extensions and challenging

issues regarding the techniques proposed therein are also briefly discussed.

In the following section, we consider the generic decay of a heavy resonance

without any prior assumptions about the decay topology or the number of invisible

particles. Assuming that there are two visible particle in the final state, we show that

there are two decay topologies with one invisible particle and seven decay topologies

with two invisible particles. We then demonstrate how to analyze and contrast the

invariant mass distribution in each of those nine cases. In particular, we provide

the formulae for the shape, kinematic endpoint, the location of the peak, and the

curvature of the peak. We also present the topology disambiguation diagram as a

way of distinguishing the event topologies.

In Chapter 3, we begin with a review of the MT2 variable in Z2 models. We

present some important formulae such as the location of the maximum value of

the MT2 distribution, and discuss some interesting features such as a “kink” in the

maximum MT2 as a function of the “trial” DM mass in the case where more than

one visible particle is involved in each decay chain. Once this review is done, we

move on to the MT2 variable in Z3 models. We define three different event types

arising in Z3 models based on the number of dark matter particles in the final state

and provide their corresponding theoretical predictions of the maximum MT2. In
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particular, we discuss the conditions to have a kink in maximum MT2 as a function

of trial DM mass for the cases where there exist more than two DM particles in

the final state: such situations do not arise in Z2 models. We further show some

simulation results for MT2 distributions for the new types of events in Z3 models

and discuss some notable features to be used for distinguishing Z3 models from Z2

models.

In the following two sections, we provide detailed applications of our results

of the previous two sections for distinguishing Z3 from Z3 models. First we consider

the easier case where the decay chain with one DM contains visible/SM particle(s)

which are not identical to the ones in the two DM decay chain mentioned above (in

Z3 models). Based on the theoretical considerations given in the first two sections,

we provide ways of distinguishing Z3 models from Z2 models, as well as measuring

the mother and DM masses. We do it for both the case of one visible/SM particle

in the two decay chains and more than one visible/SM particle case. In the next

section we deal with the case where one DM and two DM decay chains contain

identical visible/SM particle(s), and discuss additional techniques required in this

case to distinguish Z2 and Z3 models. In all of the examples above, we make the

simplifying assumption that the intermediate particles in the decay chain are off-

shell.

In Chapter 4, we first review the current theory about the peak position in

the energy distribution of a visible particle coming from a two-body decay, and

then move onto the derivation of new results about the energy spectrum of the

decay products of two- and three-body decays. Once the discussion on the energy
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spectrum is done, we quote some key results from Chapter 3. By comparing them

with the peak position in the energy spectrum of visible particle(s), we invoke some

noteworthy physical implications. They are then the foundation of the general

technique presented in the following section for differentiating decays into one DM

particle from those into two DM particles.

In the next section, we apply this technique to the specific case of bottom

partners at the LHC. There we remark that the b quark is relatively light compared

to the expected mass of the bottom partner, so that our theoretical observation

for massless visible particles is expected to apply. Additionally, the production of

bottom partners proceeds dominantly via QCD and is thus unpolarized. In this

sense, the example of a bottom partner is well-suited to illustrate our technique. To

be more realistic, we include the backgrounds to the production of bottom partners,

and show that they are under control so that our technique works even in the

presence of background.

Chapter 5 provides the conclusion to the thesis.
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Chapter 2: Invariant mass

2.1 Overview

In this chapter, we discuss how to determine the physical properties of in-

visible particles using the invariant mass variable. We mostly study the decay of

a single heavy particle, which is charged under the dark matter stabilization and

SM symmetries, into dark matter candidate(s) and the relevant SM state inside the

detector. In order to form the invariant mass variable, such a SM/visible state will

be used in each event. In addition, such heavy particles are denoted by “mother”

particles here and throughout this thesis. As discussed in Chapter 1, such mother

particles must be produced in pairs due to the unbroken dark matter stabilization

symmetry so that in each event there exist two decay chains. As mentioned before,

we here consider each decay chain separately, i.e., the information coming from the

other decay side is irrelevant, which will be dealt with in Chapter 3. In this context,

it is assumed that we are aware which visible particle is emitted from which par-

ticle. Hence, it is understood that the visible products constructing the associated

invariant mass variable belong to the same decay chain.

We first begin with off-shell intermediate particles. More specifically, we con-

sider the possibility that a mother particle decays into two visible particles and one
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or two DM particles via three- and four-body decay process, respectively. We point

out that in Z2 models the second scenario, i.e., the decay into two DM’s, is absent

while in Z3 models both of them are possible. Therefore, if the visible states involv-

ing one or two DM particles are identical, for the Z3 case it is anticipated to have a

double edge signature in the relevant invariant mass distribution. In addition, the

gap between the two edges can be a direct measurement of the DM mass.

On the other hand, in the case with intermediate particle(s) being on-shell the

method of searching for a double-edge signal is not successful since even Z2 models

can easily fake such a signal by introducing intermediate particle(s) with different

masses. Instead, we focus on a particular decay topology in which one of the two

DM particles is located in-between the two visible particles. Obviously, this decay

topology is absent in Z2 models. It turns out that such a decay chain develops

a “cusp”, i.e., derivative discontinuity, in the middle of the relevant invariant mass

distribution. We further verify that such a cuspy structure is actually invariant even

in the presence of the effect of spin correlations.

Once consideration of those two cases is done, we further generalize the idea of

extracting various information from the invariant mass distribution to more generic

decay process of a heavy resonance. For simplicity we study the cases that there

are two visible particles and one or two invisible particles in the final state. Here

the invisible particles (in the final state) do not have to have the same mass. We

provide analytic formulae for the overall shape, the kinematic (upper) endpoint,

the location of the peak and the curvature around the peak in the invariant mass

distribution of the two visible particles for each of the distinct decay topologies. We
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demonstrate that the decay topologies, which are typically hypothesized in most of

the relevant studies, can be distinguished using the endpoint, peak position and cur-

vature. In each case, we provide the effective mass variables which can be extracted

in experiment, and show for some cases the shape analysis is adequate to pin down

the masses of the new particles, including the overall mass scale.

2.2 Off-shell intermediate particles

In this section we assume that all intermediate particles (if any) in this decay

chain are off -shell, i.e., (here and henceforth) they are heavier than their mother

particle.1 This off-shell scenario has been frequently studied by the ATLAS and

CMS collaborations [48,49] for SUSY theories (which is an example of a Z2 model).

We consider constructing the invariant mass distribution of the (visible) decay

products. Unlike for the Z2 case, for Z3 models a mother particle A can decay into

one or two DM particles along with (in general different) SM particles. We mostly

assume, just for simplicity, that there exist two visible particles (a, b or c, d) in the

final state as shown below (note however that the same argument is relevant to the

general cases where more than two visible particles are emitted):

Here (and henceforth) the “blob” denotes intermediate particles in the decay which

are off-shell. Also, upper-case letters/red/dashed lines denote particles charged

under the DM symmetry (Z3 or Z2) and lower-case letters/black/solid lines denote

1In general, the off-shell state implies that the square of the relevant four momentum is not the

same as its invariant mass, i.e., p2 6= m2. However, we restrict ourselves to the case described here

throughout this thesis.
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(2.1)

SM (or “visible”, as opposed to DM) particles, including, for example, a W boson.

Such an unstable SM particle decays further into SM fermions, at least some of

which are observed by the particle detector.

For simplicity, we assume that the SM (or visible) parts of the event can be

completely reconstructed. Considering the invariant masses mab and mcd, which are

formed by the two SM particles a, b and c, d in each decay chain, one can easily

derive the minimum and the maximum kinematic endpoints of the distributions of

mab and mcd which are given by [56]:

mmin
ab = ma +mb, (2.2)

mmax
ab = Mmother −mDM

(
Left process of Eq. (2.6)

)
, (2.3)

mmin
cd = mc +md, (2.4)

mmax
cd = Mmother − 2mDM

(
Right process of Eq. (2.6)

)
. (2.5)

Physically, the lower limit corresponds to the case when the two visible particles a, b

(and similarly c, d) are at rest in their center-of-mass frame so that they move with

the same velocity in any Lorentz frame. The upper limit corresponds to the case

in which the DM particle(s) are at rest in the overall center-of-mass frame of the

final state. Both maxima are independent of the masses of the virtual intermediate

particles. The point is that the upper endpoints in the two distributions are different.
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2.2.1 Double edge

An especially striking/interesting case is when the SM particles in the two

decay chains are identical:

(2.6)

As we show below, it is possible to obtain a double edge in the distribution of this

SM final state. We begin with presenting a basic idea of this phenomenon, before

going on to more details.

2.2.1.1 Basic idea

Taking into account the fact that the visible particles of both decays are the

same and assuming that both subprocesses are allowed, the experimental distri-

bution (1/Γ) dΓ/dmab will contain events of both processes. In such a combined

distribution, clearly, the endpoint of Eq. (2.5) – denoted now by m′ max
ab – will become

an edge in the middle of the distribution, which along with the overall kinematic

endpoint given by Eq. (2.3), will give rise to a double edge signal. Assuming the two

edges are visible, it is interesting that we can determine both the DM and mother

particle masses by simply inverting Eqs. (2.3) and (2.5):

mDM = mmax
ab −m′ max

ab , (2.7)

Mmother = 2mmax
ab −m′ max

ab . (2.8)
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In particular, the distance between the two edges is identified as the DM mass.

In contrast to the cases just considered, in Z2 scenarios only one or three DM

particles (i.e., not two) are allowed in a single decay chain due to Z2-charge con-

servation (unless the process is triggered with an uncharged mother particle [37]).

Independently of phase-space considerations, we note that in Z2 models the decay

chain with three DM particles should be highly suppressed with respect to the one

DM case. The reason for such an expectation is that a decay with three DM in the fi-

nal state requires a vertex with four (in general different) Z2-charged particles which

is typically absent, at least at the renormalizable level in most models.2 Therefore

with only one possible decay process (in terms of the number of DM particles in the

final state) we can only observe a single kinematic endpoint in the invariant mass

distributions in a Z2 model.

2.2.1.2 Details

Of course the visibility of such a signal depends on the shapes of the distri-

butions of each subprocess as well as their relative decay branching fractions. The

solid curve and the dashed plot in the left panel of Figure 2.1 illustrate the generic

shape of the distributions for the two processes of Eq. (2.6) based only on pure

kinematics, i.e., no effects of matrix element and spin-correlations. (Such effects

might be important and we will return to this issue in the context of specific models

2Compare this situation to the Z3 case, where appearance of two DM in a decay chain comes

from a vertex with three Z3-charged particles which is more likely to be present, especially at the

renormalizable level.
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Figure 2.1: Invariant mass distribution (1/Γ) dΓ/dmab for the processes
of Eq. (2.6). The masses of the mother particle A and of the DM parti-
cles are mA = 800 GeV and mDM = 300 GeV and the SM particles a and
b are assumed to be massless. The solid and dashed curves on the left
panel represent the distributions for the 3-body decay and the 4-body
decay, respectively. On the right panel, blue/dashed (highest peaked),
red/solid, and green/dot-dashed (lowest peaked) curves show the com-
bined distributions with branching ratios of 3-body to 4-body given by
1:3, 1:1, and 3:1, respectively.

to show that multiple edges can still “survive” after taking these effects into con-

sideration.) Because of the phase-space structure of the processes one realizes that

the distribution in the case of 3-body decays is more “bent” towards the right (i.e.,

larger values of invariant mass) whereas for the 4-body decays the peak of the distri-

bution leans more towards the left (i.e., smaller values of invariant mass). Because

of this feature, the combination of the two distributions can give rise to two visible

edges (as long as the relative branchings of the two decays are of comparable size).

This is shown in the right panel of Figure 2.1 in which we show the combined in-

variant mass distribution of the two visible SM particles, for three different relative

branching fractions of the two subprocesses. Based on the location of the edges in
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Figure 2.2: Same as the right panel of Figure 2.1 but using a smaller
DM mass, mDM = 50 GeV. The edge in the middle of the distribution is
no longer apparent.

right panel of Figure 2.1 and Eqs. (2.7) and (2.8), the mass of the DM particle must

be about 300 GeV and the mass of the mother particle must be about 800 GeV,

which are of course the masses used in the example.

Whether or not the double-edge signal is clear (and hence we can determine

the DM and mother masses) also depends on the DM mass which must be relatively

sizable compared to the mass of the mother particle. For example, if we take a DM

mass of 50 GeV instead of 300 GeV that we assumed above, with the mother mass

fixed at 800 GeV, we observe from Figure 2.2 that the plotted distribution does not

provide a good measurement of Mmother and mDM.

Let us return to the issue of the relative branching fraction for each subpro-

cess. The decay into two DM particles should be generically phase-space suppressed

relative to the decay into just one DM particle, So, based on pure phase-space

suppression, the branching ratio of the decay into two DM might be much smaller
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than the decay into one DM (unlike what is chosen in the figures above). Hence,

it might be difficult to observe a double-edge signal. However, in specific models

this suppression could be compensated by larger effective couplings so that the two

decays have comparable branching ratio, and therefore, the double-edge is visible as

in Figure 2.1.

In fact, another possibility is that the two decay chains for the Z3 case, i.e., with

one and two DM particles, do not have identical SM final states, but there is some

overlap between the two SM final states. For example, if we assume that particle

(2.9)

c is (at least approximately) massless, then the maximum kinematic endpoint of

mab in the first of the above-given two reactions is still Mmother − mDM − mc ≈

Mmother − mDM . In this situation both the reactions have 4-body final states and

hence could be easily have comparable rates, at least based on phase-space (c.f.

Earlier we had 3-body vs 4-body by requiring the same two-body SM final state for

the two reactions found in (2.6)). On the other hand, although the two rates are now

comparable, it might actually be harder to observe a double edge because the shape

of the two individual distributions are both peaked towards the left (i.e., smaller

values of invariant mass) and even if they have different end-points, the combined

distribution might not show as clearly a double edge as the earlier case where the
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two shapes are apparently distinct.

2.2.2 Different edges in pair production

Finally, what if there are no common SM particles between the final states

of the decay chains with one and two DM particles so that we do not obtain a

double edge? In this case, one can consider another analysis, by making the further

assumption that the same mother particle A is pair-produced in each event, and

that the decay products of each A are now distinct and very light or massless, i.e.,

here we have chosen three SM particles (a, b, c) in the decay chain with one DM

(2.10)

just so that both decay chains involve a 4-body final state. In this situation one can

restrict to events with all five SM particles (a,...e) particles in the final state3, but use

both sides of the event, i.e., obtain the full invariant mass distribution of the visible

particles of each (distinct) side. In the interpretation of these results in the context

of a Z3 model, the difference between the endpoints of each separate distribution

will give the dark matter mass, and like before, the mass of the mother particle A

3If we include other events which have a, b, c or d, e on both sides, we still get the different

edges that we discuss below, but as we will mention later, such events will not allow us to get rid

of “faking” Z2 models.
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can be found using a combination of the two end-points, i.e., m DM = m max
abc −mmax

de

and Mmother = 2mmax
abc −m max

de .

2.3 On-shell intermediate particles

In this section, we consider the case where the mother particle decays into SM

and DM via intermediate particles which are all on-shell. Again, like in section 2.2

all particles are assumed to decay inside the detector. In this case, the endpoints of

invariant mass distributions will depend on the masses of these intermediate states

as well as the masses of the mother and the final state particles. Both in the Z2

and Z3 cases there will be more possibilities for the upper endpoints because of the

possibilities of “Multiple topologies” and “Different Intermediate Particles” (to be

explained below) for the same visible final state. Since even for the Z2 case it is

possible to obtain multiple edges, finding multiple edges is not any more a robust

discriminator between Z2 and Z3 unlike the off-shell decay case. We then discuss

a topology of the decay chain which does allow us to distinguish between the two

models.

2.3.1 Additional sources of multiple edges

Here we discuss how it is possible to obtain multiple edges even if we do not

combine decays of the mother particle into one and two DM particles.
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2.3.1.1 Multiple topologies

For Z3 models we can expect multiple endpoints from the decays of the same

mother particle into a given SM final state by combining the two decay chains with

one DM and two DM particles, respectively, just as in the case of the decays with off-

shell intermediate particles. However, this is not the only way of obtaining multiple

endpoints, i.e., such a combination of decay chains with one and two DM is not

essential. The reason is that there are multiple possible topologies even with the

completely identical final state if it contains two DM, due to the various possibilities

for the locations of two DM particles relative to the other SM particles in a decay

chain. For example, for the case of a 4-body decay process (i.e., two SM and two

DM particles) there will be three different possibilities:

(2.11)

(2.12)

(2.13)

Note that (as above) decay cascades involve a “charged-charged-charged” (under

Z3 symmetry) vertex (in addition to “charged-charged-neutral” vertices) in order to

contain two DM particles in the final state.

Assuming that the visible particles are massless, ma = mc = 0, the upper
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endpoints for each topology are given by (see Chapter A for details.):

(mmax
ca )2 =

2(m2
D −m2

C)(m2
B −m2

DM)

m2
B +m2

C −m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM)

(
for Eq. (2.11)

)
(2.14)

(mmax
ca )2 =

(m2
C −m2

B)(m2
B −m2

DM)

m2
B

(
for Eq. (2.12)

)
(2.15)

(mmax
ca )2 =

(m2
D −m2

C)(m2
C −m2

B)

m2
C

(
for Eq. (2.13)

)
(2.16)

where λ is the well-known kinematic triangular function given in the form of

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. (2.17)

The main point is that kinematic endpoints are functions of the masses of the

mother, the DM and the intermediate particles, and moreover, this dependence

changes according to different topologies. Thus, even if the intermediate particles

involved in these decays of a given mother particle are the same, one will still obtain

multiple endpoints.4 Finally, if we combine decay chains with one and two DM in

the final state (even if the latter has just one topology), the difference between the

two endpoints will not lead to a direct measurement of the DM mass like in the

off-shell decay case because again, the mass of intermediate particles is one of the

main ingredients to determine the endpoints.

In Z2 models the decay topologies must have a single DM particle and that

too at the end of the decay chain because the vertices in the decay cascade are of

the form “odd-odd-even” (under the Z2 symmetry).5 Nevertheless, there can still be

different topologies because of different ordering of the visible states. For example:

Obviously, the endpoints for a given invariant mass distribution, say mca, will be

different for each of these two topologies, and actually they can be obtained from

4Of course, the different possible decay topologies can, in general, have different intermediate
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.

.

.

(2.18)

(2.19)

Eqs. (2.14) and (2.15) by just replacing mDM in the denominator of Eqs. (2.14) by

mb and leaving Eqs. (2.15) unchanged (and where ma and mc are still assumed to

vanish).

2.3.1.2 Different intermediate particles for same final state

In addition, even if the topology and the order of visible particles are the

same, there is the possibility of multiple paths for the same mother particle to

decay into the same (SM and DM) final state by involving different intermediate

particles. We will obtain multiple endpoints in this case because of the dependence

of the endpoints on the masses of intermediate particles (as mentioned above). This

argument is valid for both the Z2 and Z3 models (and one or two DM for the latter

case): for a final state with two SM and one DM, we can have the situation shown in

Figure (2.20). For example, in SUSY, the decay chain χ0
2 → l+l−χ0

1 can proceed via

intermediate right- or left-handed slepton. Since the masses of intermediate right-

states.
5Note that a similar argument applies to decay chains in Z3 models with only one DM in the

final state.
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(2.20)

and left-handed sleptons are in general different, multiple endpoints are expected.

2.3.2 Cusp topology

So far, we have learned that for on-shell intermediate particle cases the multiple

edge signal is not a good criterion to distinguish Z3 from Z2. Instead, we focus on

the shapes of these distributions. Consider the topology which can be present in Z3

models (but absent in the Z2 case) with two visible SM particles separated by a DM

particle6, i.e.,

(2.21)

We assume massless SM particles (i.e., ma = mc = 0) and the mass hierarchy

mD > mC > mB > mA. Also, we neglect spin-correlation effects in this section.

We sketch the derivation of the distribution of the ac invariant mass here and refer

the reader to the Chapter A for details. The differential distribution
1

Γ

∂Γ

∂m2
ac

that

we want to study can be obtained for this “new” topology easily by noting that

6Note that in general D might come from the decay of another Z3-charged particle and similarly,

at the end of the decay, A might not be the DM, that is, it could itself decay further into DM

particles and other visible states as long as Z3-charge conservation is respected. The “...” to the

left of D and to the right of A signify this possibility.
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Figure 2.3: The panel on the left shows the distribution in mca while the
right hand panel shows the distribution in m2

ca from the decay chain of
Eq. (2.21). The masses of the mother particle, two intermediate parti-
cles, and DM particles are 800 GeV, 700 GeV, 400 GeV, and 200 GeV,
respectively and the SM particles are assumed massless. A “cusp” due
to the topology of Eq. (2.21) is clear in both distributions.

the differential distribution
1

Γ

∂2Γ

∂u∂v
must be flat, where the variables are defined as

follows

u =
1− cos θ

(C)
cDM

2
and v =

1− cos θ
(B)
ca

2
, (2.22)

with θ
(B)
ca being the angle between c and a in the rest frame of B, and θ

(C)
cDM being

the angle between c and DM in the rest frame of C [57]. In addition, we have

0 < u, v < 1. Thus, we can write

1

Γ

∂2Γ

∂u∂v
= θ(1− u)θ(u)θ(1− v)θ(v) (2.23)

One further finds that

m2
ca = mmax

ca (1− αu)v, (2.24)
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where mmax
ca is given in Eq. (2.14) with mDM in the numerator replaced by mA, and

so we can make a change of variables from the differential distribution of Eq. (2.23)

and obtain the distribution
1

Γ

∂2Γ

∂u∂m2
ca

, which can then be integrated over u to finally

obtain the distribution with respect to mca
7:

1

Γ

∂Γ

∂mca

=



2mca

(mmax
ca )2 α

ln
m2
C

m2
B

for 0 < mca <
√

1− α mmax
ca

2mca

(mmax
ca )2 α

ln
(mmax

ca )2

m2
ca

for
√

1− α mmax
ca < mca < mmax

ca

(2.25)

where mmax
ca is given in Eq. (2.14) and

α =
2λ1/2(m2

C ,m
2
B,m

2
DM)

m2
B +m2

C −m2
DM + λ1/2(m2

C ,m
2
B,m

2
DM)

. (2.26)

From these results we can easily see that the new topology introduces two different

regions in the mca distribution with a “cusp” at the boundary connecting both

regions, located at
√

1− α mmax
ca . Figure 2.3 shows the same distribution in both

panels, but with respect to mca on the left panel and with respect to m2
ca on the

right panel. As we will argue later, the second option seems better suited once spin

correlations are taken into account, but in both plots, one observes that the cuspy

feature is quite clear.

2.3.2.1 Two visible particles

Consider first the simple case of only two visible particles in a decay chain. In

the Z3 reaction of Eq. (2.21), D is then the mother particle and A is DM. Clearly,

we would find a cusp in the invariant mass distribution of the two visible particles in

7Note that
1

Γ

∂Γ

∂m
= 2m

1

Γ

∂Γ

∂m2
.
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the Z3 model, but not for the Z2 model since the two visible particles must always

be adjacent to each other in the latter case.8 Thus, the presence/absence of cusp

could be used to distinguish Z3 and from Z2 models.

2.3.2.2 Generalization to more than two SM particles in decay chain

Of course, in general in both Z2 and Z3 models there will be more than two

visible particles with possibly some of them being identical, and this will undoubt-

edly complicate the analysis. For example, in the reaction of Eq. (2.21), a, c, or

both can be produced at some other place of the same decay chain in addition to

the locations shown there, e.g.,

(2.27)

(2.28)

Here a′, which is an identical particle to a, is assumed to come from the immediate

left of D, and c′, which is an identical particle to c, is assumed to come from the

immediate right of A. Note that there is no DM between a′ and c (unlike between

a and c) in first reaction above (similarly between a and c′ vs between a and c in

second reaction above), and that a and a′, and c and c′ are identical. Therefore, in

8Note that we are considering decay of a Z3 or Z2-charged mother. A Z2-uncharged, i.e., even,

mother is allowed to decay into two DM and can give a cusp in the invariant mass of two visible

particles from such a decay [37].
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both these examples, it is clear that we will obtain a more complicated distribution

in mac than the one studied previously.

Nevertheless, the method described previously to disentangle the Z2 from the

Z3 cases (when having two visible particles), can still be generalized to the situation

of many visible particles in a decay chain. For example, let us consider the case

of three visible SM particles in the final state for both Z3 and Z2 models. We will

obtain a cusp even in the Z2 case when considering the invariant mass of two not

“next-door neighbor” visible particles such as in mac for the decay process in Eq.

(2.18). The reason is that, even though the precise topology of Eq. (2.21) is absent

in a Z2 model, a similar one is generated by the presence of a SM particle (i.e., b)

in-between two other SM particles (i.e., a and c) as in Eq. (2.18). Thus the analysis

performed earlier for Eq. (2.21) applies in this case, but with the DM mass set to

zero (assuming SM particle b is massless).

However, this type of degeneracy between Z2 and Z3 can be resolved by con-

sidering all of the three possible two-(visible) particle invariant mass distributions.

In the Z3 case with two DM particles in the final state, two of these three invariant

mass distributions will have cuspy features whereas only one such invariant mass

distribution will have a cusp in the Z2 case. The reason is again that in the Z3 case,

since one more particle is added to the decay products compared to the Z2 case (i.e.,

we have two invisible and three visible particles), there will be final state particles

(visible or not) in-between the two visible particles for two of the three pairings.

This feature remains true for more visible particles, i.e., in general we will obtain

more cusps in the invariant mass distributions in a Z3 model than in a Z2 model.
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2.3.3 Spin correlations

Once spin correlations are involved, the derivative discontinuity (cusp) might

appear unclear. Nevertheless, it may still be possible to distinguish a Z3 model from

a Z2 model by employing the fitting method which we will show in the rest of this

section. The basic idea is that the distribution dΓ/dm2
ca of three-body decays in

Z2 (i.e., one DM particle and two visible particles) can (almost) always be fitted

into a quadratic function in m2
ca, whereas the distribution of the new topology of Z3

cannot be fitted into a single quadratic function, that is, two different functions are

required for fitting each of the two sub-regions of the distribution. Let us see how

this works for a Z2 model (i.e., one DM and two visible particles) and a Z3 model

(i.e., two DM and two visible particles) in turn.

2.3.3.1 Z2 case: 1 DM + 2 Visible

We can again make use of the same angular variables considered earlier for the

case of this 3-body decay cascade, shown for example in Eq. (2.20). According to

the references [57] and [58], the normalized distribution including spin-correlations

is given by

1

Γ

∂Γ

∂t
= θ(t)θ(1− t)f(t) (2.29)

where again we have defined the variable t as

t ≡ 1− cos θ
(B)
ba

2
. (2.30)

38



Figure 2.4: Invariant mass distribution of particles a and c, from the
decay chain shown in Eq. (2.21), including spin correlations, and such
that the intermediate particle C has spin 1 and the intermediate particle
B has spin 1/2, and the couplings are chiral. The “cusp” in this distri-
bution appears more defined than in Figure 2.3 where spin correlations
were not considered.

Here f(t) is a function of t and θ
(B)
ba is the angle between particles a and b of

Eq. (2.20) in the rest frame of particle B. One then notes that m2
ba = (mmax

ba )2 t

which basically means that the distribution with respect to the invariant mass m2
ba

(which is of our interest) is essentially the same as the one with respect to t above.

This means that the distribution in m2
ba will have the functional form f . According

to the reference [59], such spin correlation functions are just polynomials of cos θba

(i.e., (1 − 2t)). Moreover, if we restrict our consideration to particles of spin-1 at

most, the maximum order in t of the polynomial is two, which means that the most
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general form of f will be

f(t) = c1 + c2t+ c3t
2. (2.31)

In turn, the invariant mass distribution we are interested in must therefore take the

form (in the region between the endpoints enforced by the θ-functions)

1

Γ

dΓ

dm2
ba

= c′1 + c′2m
2
ba + c′3m

4
ba. (2.32)

With the experimental data we can construct the invariant mass distribution, and

we will be able to determine the three constants c′1, c′2, and c′3 by fitting into a

parabola in the m2
ba variable. In other words, for any 3-body decay chain, with or

without spin-correlation, it is always possible to fit the invariant mass distribution

1

Γ

dΓ

dm2
ba

into a curve quadratic in m2
ba.

2.3.3.2 Z3 case: 2 DM + 2 visible

We now consider the new topology of Eq. (2.21) including the possibility of

spin correlations. As in Section 3.1, we use the same angular variables u and v.

However, the normalized distribution with spin correlations become a little more

complicated than before

1

Γ

∂2Γ

∂u∂v
= θ(v)θ(1− u)g(u)θ(v)θ(1− v)h(v) (2.33)

where again

u ≡ 1− cos θ
(C)
cDM

2
, v ≡ 1− cos θ

(B)
ca

2
. (2.34)
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Like in the previous section, g(u) and h(v) are spin-correlation functions (cf. g = h =

1 without spin correlation discussed earlier) and again the invariant mass squared

is given by

m2
ca = (mmax

ca )2(1− αu) v. (2.35)

where α is the same kinematical constant defined in Eq. (2.26). As in the analysis

without spin correlations, the two types of θ-functions will split the entire region into

two sub-regions, with a cusp at the separation point, whose location is independent

of the spin correlation effects (since it depends on purely kinematical constants α

and mmax
ca ). But unlike the scalar case (i.e., with no spin correlations), we have now

two functions g(u) and h(v) which can change the shape of the distribution and in

principle affect the derivative discontinuity (the cusp).

In detail, by the chain rule the previous normalized distribution can be modi-

fied and partially integrated to obtain

1

Γ

dΓ

dm2
ca

=

∫ umax

0

du

(mmax
ca )2(1− αu)

g(u) h

(
m2
ca

(mmax
ca )2(1− αu)

)
(2.36)

where

umax = Max

[
1,

1

α

(
1− m2

ca

(mmax
ca )2

)]
. (2.37)

The two possible choices in the definition of umax above arise when integrating

1
Γ

∂2Γ
∂m2

ca∂u
with respect to u due, in turn, to the integration limits enforced by the θ

functions. This leads to two different regions for the differential distribution such

that in the first sub-region, we have 0 < mca <
√

1− α mmax
ca and umax = 1, while for

the second region, we have
√

1− α mmax
ca < mca < mmax

ca and umax = 1
α

(
1− m2

ca

(mmax
ca )2

)
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[57]. So far, most of the steps are similar to the case of no spin correlations except

for the presence of the factors of spin correlation functions, g and h.

It would seem that we need to know the precise form of g and h in order to

proceed further, i.e., in order to perform the integration in Eq. (2.36). However,

for the purpose of determining whether or not there is a cusp, we will show that it

is sufficient to know the fact that those spin-correlation functions must be second

order polynomials in their argument as mentioned in the analysis of the Z2 case.

Using this fact we can write down the above integrand as

1

1− αu
g(u)h

(
t

1− αu

)
=

b1

(1− αu)3
t2 +

1

(1− αu)2
(b2t+ b3t

2)

+
1

1− αu
(b4 + b5t+ b6t

2) + (b7 + b8t) + b9(1− αu),(2.38)

where we have introduced the same variable t ≡ m2
ca/(m

max
ca )2 used for the 3-body

decays and where the kinematical constants bi will depend on the specific nature of

the couplings and particles in the decay chain (i.e., they must be calculated on a

case by case basis). The terms of the integrand are organized as a power series in

(1−αu) – instead of in u – because of the simplicity of the former form. Integrating

then gives

1

Γ

dΓ

dt
=


b′1 + b′2t+ b′3t

2 for 0 < t <
√

1− α

b′′1 + b′′2t+ b′′3t
2 + (b′′4 + b′′5t+ b′′6t

2) log t for
√

1− α < t < 1

(2.39)

where again, the kinematical constants b′i and b′′i are specific to each situation.

Thus, even with spin correlations, the functional dependence on t (∝ m2
ca) is quite

simple; however, the crucial point is that it is different for each sub-region of the
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distribution. In particular this simple dependence in the distribution of m2
ca (and

not mca) suggests that it may be more appropriate to consider the distribution of

m2
ca instead of the distribution of mca. In Figure 2.4 we show the m2

ca invariant mass

distribution for the decay chain of Eq. (2.21), but in the special case where particle

C has spin 1 and the intermediate particle B is a fermion, and some of the couplings

are chiral. We used MadGraph/MadEvent [60] to generate events taking the particles

a and c to be massless and taking mDM = 100 GeV. One can compare the shape of

this distribution with the one from the right panel of Figure 2.3 and see that in this

case, including the spin correlation makes the cusp even more apparent.

One of the main differences between the two subregions is that the first one

has no logarithmic dependence in t while the second (in general) does have it. Of

course, from Eq. (2.38), we see that this logarithmic term could be suppressed for

the case b4 = b5 = b6 ∼ 0. However, even in this special case we would still have to

employ different sets of coefficients in the two sub-regions as follows. The functional

forms in both the regions are now quadratic in t, i.e.,

1

Γ

dΓ

dt
=


b7 + b9

2
(2− α) +

(
b2

1−α + b8

)
t+
[
b1(2−α)
2(1−α)2

+ b3
1−α

]
t2

(
0 < t <

√
1− α

)

1
α

[
b2 + b7 + b1+b9

2
− (b2 − b3 + b7 − b8) t− (b3 + b8 + b1+b9

2
) t2
] (√

1− α < t < 1
)(2.40)

Considering just the constant terms, we see that it is possible to obtain identical

functions in the two regions only if α = 1 and b1 = b2 = 0. However, using Eq. (2.17)

and Eq. (2.26), it can be shown that α is always (strictly) less than 1. In other words,

it is impossible that the distribution in each sub-region can be fitted successfully to

the same polynomial of order two in t; the cusp will thus survive even in this case.
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Figure 2.5: Invariant mass distribution of particles a and c, as in Figure
2.4, but with different chiral couplings. The cusp position is less apparent
in this case but one can see (left panel) that a fit to a polynomial of
second order as shown in Eq .(2.32) is not very good (that is, the Z2

interpretation). On the right panel we show the same distribution, with
a different fitting function for the left side of the distribution and the
right side (see Eq. (2.39)), consistent with the existence of a cusp, i.e.,
the Z3 interpretation.

In Figure 2.5 we show the distribution (again obtained with MadGraph/MadEvent

[60]) for the same decay chain as in Figure 2.4, but where the chiral structure of some

couplings has been modified from before. We see that the cusp feature is now less

apparent, but one also sees that a full fit to a polynomial of order two (left panel)

is not as good as a multiple-region fit (right panel), where the first part of the

distribution is fitted to a polynomial of order two (see first line of Eq. (2.39)), and

the right side of the distribution is fitted to the functional form (with a logarithm)

given in the second line of Eq. (2.39).
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Figure 2.6: The generic decay topology under consideration.

Table 2.1: The number of inequivalent event topologies as a function of 1 ≤ Nv ≤ 4
and 1 ≤ Nχ ≤ 5.

Nχ

Nv 1 2 3 4 5
1 1 2 4 8 16
2 2 7 20 55 142
3 4 20 78 270 860
4 8 55 270 1138 4294

2.4 Shape analysis

As advertised in Chapter 1, the analysis with the invariant mass variable can be

generalized to more generic decay of a heavy resonance (denoted byA) intoNv visible

particles and Nχ invisible particles, which is schematically illustrated in Figure 2.6.

We consider the generic decay from Figure 2.6 without any prior assumptions about

the decay topology or the number of invisibles. As seen in Table 2.1, the number

of inequivalent decay topologies proliferates very quickly as we increase the number

of particles in the final state. Let us begin with the simplest and most challenging

case of Nv = 2, postponing Nv > 2 to a future study [61]. According to Table 2.1,
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Figure 2.7: The nine Nv = 2 topologies with Nχ ≤ 2.

there are 2 topologies with Nχ = 1, shown in Figure 2.7(a,b), and 7 topologies with

Nχ = 2, shown in Figure 2.7(c-i). Our main goal is to analyze and contrast the

invariant mass distribution formed by the two visible particles v1 and v2
9 in each of

those nine cases.

The differential distribution of the invariant mass m ≡ mv1v2 will be described

by an analytical formula

dN

dm
≡ f(m;MA,MBi ,Mχj), (2.41)

9We note that the resonance A is in general allowed to be produced fully inclusively, with an

arbitrary number of additional visible or invisible particles recoiling against A in the event. This

precludes us from using the E/T measurement, since it will be corrupted by the invisible recoils,

which leaves us with mv1v2 as the only viable observable to study. The related combinatorial

problem of partitioning the visibles in the event was addressed in [62,64,65,81].
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which is a function of the unknown masses. Given the general formula (2.41) for

f(m), we can easily obtain its kinematic endpoint

E ≡ max {m} (2.42)

and the location P of the peak of the f(m) distribution

f(m = P ) ≡ max {f(m)} . (2.43)

Let us also define the dimensionless derivative ratios

Rn ≡ −
(

mn

f(m)

dnf(m)

dmn

)
m=P

. (2.44)

By definition, R1 = 0, as long as f(m) is continuously differentiable at m = P , while

R2 parametrizes the curvature of f(m) at m = P .

The parameters E, P and Rn are in principle all experimentally measurable

from the distribution (2.41). Traditional studies [66, 67] have always concentrated

on measuring just the endpoint E, failing to utilize all of the available information

encoded in the distribution f(m). The endpoint approach gives a single measure-

ment (2.42), which is clearly insufficient to determine the full spectrum of resonances

involved in the decay chain of Figure 2.6. Here we propose to invoke the full shape

(2.41) in the analysis. We envision that in practice this will be done by performing

unbinned maximum-likelihood fits of (2.41) to the observed data. In order to illus-

trate the power of the method here, it is sufficient to consider just the additional

individual measurements of P and R2. Since they are obtained from the most pop-

ulated bins near the peak, we can expect that they will be rather well measured.

More importantly, the additional information about P and R2 might be sufficient
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to completely determine the mass spectrum (see Eqs. (2.52,2.53) below). But first

we need to present our results for (2.41-2.44) in each of the nine cases in Figure 2.7.

The topology of Figure 2.7(a). For a three body decay to massless visible

particles, one has

f(m;MA,Mχ) ∼ mλ1/2
(
m2,M2

A,M
2
χ

)
. (2.45)

In this case

E = MA −Mχ, (2.46)

P =
[
2MAMχ

(
2−
√

1 + 3α2
)
/(3α)

]1/2

, (2.47)

R2 = 6
[
1 +

(
1 + 3α2

)-1/2
]-1

, (2.48)

where

α ≡ 2MAMχ/(M
2
A +M2

χ). (2.49)

Contrary to popular belief, one can now solve for both masses MA and Mχ, given

two of the three measurements (2.46-2.48). For example, using the peak location P

and the endpoint E, we find

MA =
E

2

(
P

E

√
2− 3(P/E)2

1− 2(P/E)2
+ 1

)
, (2.50)

Mχ =
E

2

(
P

E

√
2− 3(P/E)2

1− 2(P/E)2
− 1

)
. (2.51)

Eqs. (2.50,2.51) offer a new method of determining both MA and Mχ, which is a

simpler alternative to the MT2 kink method of [7], since here we do not rely on the

E/T measurement at all, and do not require to reconstruct the decay chain on the

other side of the event.
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Figure 2.8: Distribution of MA and Mχ found by a maximum-likelihood
fit to Eq. (2.45) in 10,000 pseudo-experiments with 100 signal events
(left) or 1000 signal events (right). The input study point has MA = 550
GeV and Mχ = 50 GeV.

In fact, one does not even need an endpoint measurement, since the peak

location P and the curvature R2 are sufficient for this purpose:

MA =
P√

2

(
6−R2

4−R2

+

√
12−R2

4−R2

)1/2

, (2.52)

Mχ =
P√

2

(
6−R2

4−R2

−
√

12−R2

4−R2

)1/2

. (2.53)

To the best of our knowledge (2.52,2.53) represent the first and only method in the

literature which is capable of determining the complete mass spectrum in a short

SUSY-like decay chain, without relying on any kinematic endpoint measurements.

In order to get a rough idea of the precision of these mass determinations, in

Figure 2.8 on the left (right) we show the results from 10,000 pseudo-experiments

with 100 (1000) signal events each. In each pseudo-experiment, the two masses MA

and Mχ are extracted from a maximum-likelihood fit of the simulated data to the

full distribution (2.45). Figure 2.8 shows that, as expected, the mass difference is
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measured quite well, at the level of ∼ 1% with just 100 events. At the same time,

the mass sum (or equivalently, the absolute mass scale) is also being determined,

albeit less precisely: at the level of ∼ 30% (∼ 10%) with 100 (1000) events.

The topology of Figure 2.7(b). Here one obtains the celebrated triangular

shape

f(m) ∼ m, (2.54)

E = P =
√

(M2
A −M2

B)(1−M2
χ/M

2
B) , (2.55)

R2 = ∞. (2.56)

Unfortunately, the masses enter the shape (2.54) only through the combination

(2.55), which is the single effective mass parameter accessible experimentally.

The topology of Figure 2.7(c). The shape is more conveniently given in integral

form, which is easy to code up:

f(m) ∼ m

∫
(MA−m)2

(Mχ1+Mχ2 )2

ds

s

√
λ(M2

A,m
2,s)λ(s,M2

χ1
,M2

χ2
), (2.57)

E = MA −Mχ1 −Mχ2 . (2.58)

The explicit formulas for P and (2.57) will be shown in [61]. The important point

is that in principle all three masses MA, Mχ1 and Mχ2 can be simultaneously deter-

mined from a fit of Eq. (2.57) to the data, just like in Figure 2.8 [61].

The topology of Figure 2.7(d). The invariant mass distribution of the visible

particles v1 and v2 is not affected by the emission of invisible particles upstream and

so this case is equivalent to the topology of Figure 2.7(a). The corresponding results

can be obtained from (2.45-2.48) with the substitution A → B, since now the role
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Figure 2.9: The topology disambiguation diagram. The different color-
coded regions delineate the range of values for R2 and P/E spanned by
each decay topology from Figure 2.7.

of the parent resonance is played by the intermediate particle B. One would then

be able to determine independently MB and Mχ2 , while MA and Mχ1 would remain

unknown.

The topology of Figure 2.7(e). Similarly, this case is equivalent to Figure 2.7(b),

with the substitutions A → B1, B → B2 and χ → χ2. Once again, the emission of

the invisible particle χ1 upstream is not observable. The only measurable parameter

in this case will be the endpoint E.
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The topology of Figure 2.7(f). We find

f(m) ∼ m

∫ (MA−Mχ1 )2

M2
B(1+ m2

M2
B
−M2

χ2

)

ds

s

√
λ(s,M2

A,M
2
χ1

)

∼ −m

[
K+K− + ln

(
K+ +K−
K+ −K−

) 1
2

(X2
++X2

−)

+ ln

(
X−K+ −X+K−
X−K+ +X+K−

)X+X−
]
, (2.59)

where

X± ≡ MA ±Mχ1 , K± ≡
√
X2
± −K2(m), (2.60)

K2(m) ≡ M2
B

(
1 +

m2

M2
B −M2

χ2

)
, (2.61)

E =
√

((MA −Mχ1)
2 −M2

B)(1−M2
χ2
/M2

B). (2.62)

In this case, out of the 4 input masses entering the topology of Figure 2.7(f), one

can measure three independent degrees of freedom, e.g. MA/MB, Mχ1/MB and

M2
B −M2

χ2
.

The topology of Figure 2.7(g). The shape is described by

f(m) ∼ m

∫ M2
B(1− m2

M2
A
−M2

B

)

(Mχ1+Mχ2 )2

ds

s

√
λ(s,M2

χ1
,M2

χ1
) (2.63)

and it is easy to see that the results are obtained from (2.59-2.62) with the substi-

tution MA ↔ −Mχ2 . In particular, the three measurable parameters in this case

can be taken as Mχ1/MB, Mχ2/MB and M2
A −M2

B.

The topology of Figure 2.7(h). This is the “sandwich” topology studied in
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Section 2.3. The shape is given by

f(m) ∼


η m, 0 ≤ m ≤ e-η E,

m ln (E/m) , e-η E ≤ m ≤ E,

(2.64)

η ≡ cosh-1

(
M2

B1
+M2

B2
−M2

χ1

2MB1MB2

)
, (2.65)

and

E =
[
eη(M2

A −M2
B1

)(M2
B2
−M2

χ2
)/(MB1MB2)

]1/2
, (2.66)

P =


Ee-η, η < 1;

Ee-1, η ≥ 1;

R2 =


∞, η < 1;

1, η ≥ 1.

(2.67)

The distribution (2.64) exhibits a cusp at the non-differentiable point m = e−ηE.

In this case, there are 5 mass inputs: MA, MB1 , MB2 , Mχ1 and Mχ2 , but only two

independent measurable parameters: η and E.

The topology of Figure 2.7(i). This is the “antler” topology which was studied

in [37] for the symmetric case of MB1 = MB2 and Mχ1 = Mχ2 . Here we generalize the

result in [37] to arbitrary masses and find that f(m) is given by the same expression

(2.64), only this time

η ≡ cosh-1

(
M2

A −M2
B1
−M2

B2

2MB1MB2

)
, (2.68)

E =
[
eη(M2

B1
−M2

χ1
)(M2

B2
−M2

χ2
)/(MB1MB2)

]1/2
(2.69)

and identical expressions (2.67) for P and R2. Just like the case of Figure 2.7(h),

out of the 5 mass inputs, η and E are the only two measurable mass parameters.

Table 2.2 summarizes the final tally of input particle masses and independent mea-

surable parameters for each topology.
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Table 2.2: The number of mass inputs Nm for each topology in Figure 2.7 and the
number of independent measurable parameters Np in the definition of f(m).

Topology (a,d) (b,e) (c) (f,g) (h,i)
Nm 2 3 3 4 5
Np 2 1 3 3 2

Each topology from Figure 2.7 also maps onto a restricted region in the

(R2, P/E) plane, as shown in Figure 2.9 (for convenience, instead of R2 ∈ (0,∞),

in the figure we plot 2
π

tan-1R2 ∈ (0, 1)). For example, the cyan circle at (1, 1)

marks the prediction for the two topologies of Figure 2.7(b,e), while the magenta

dot at (0.5, 0.37) and the magenta vertical line correspond to the two topologies of

Figure 2.7(h,i). The blue (red, green, black) points refer to the topologies of Fig-

ure 2.7(a,d) (Figure 2.7(g), Figure 2.7(f), Figure 2.7(c)). Figure 2.9 demonstrates

that with the three measurements E, P and R2, one can already begin to constrain

qualitatively the allowed event topologies.
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Chapter 3: Stransverse mass/MT2

3.1 Overview

In this chapter, we investigate the way of determining the physical proper-

ties of invisible particles using the stransverse mass/MT2 variable. Again, like the

previous chapter we examine the decay of (pair-produced) heavy particles, which

are charged under the dark matter stabilization and SM symmetries, into DM can-

didate(s) plus the associated SM/visible particles (inside the detector). Therefore,

the MT2 variable will be constructed by the full information of all relevant visible

decay products along with the overall missing transverse energy/momentum. In

other words, for each event all available information on the transverse plane from

the two decay chains comes into play to give rise to a MT2 value. We emphasize that

in this sense the MT2 method can be complementary to the invariant mass method

discussed in Chapter 2, e.g., the case with only a single visible particle in a decay

chain, in which the information from the invariant mass is of no more interest.

We first begin with a short review of the stransverse mass/MT2 variable for

the Z2 case, and then apply the same idea to the Z3 case. Since the Z3 symmetry

allows two DM particles from the decay of a single mother particle, we categorize

each event according to the number of total DM particles in the final state (i.e.,
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two, three or four DM particles). Nevertheless, we expand the relevant argument

hypothesizing that there exists only a single DM particle in each decay side. We

then demonstrate that three MT2 distributions are available and their kinematic

endpoints provide independent pieces of information, i.e., richer structure than that

in Z2 models. We also provide the conditions to give rise to a kink structure in the

plot of the maximum MT2 value versus the trial DM mass for the cases with more

than two DM particles in the final state: obviously, such situations are absent in Z2

models.

Once the general theory consideration is completed, we move onto the detailed

applications. As the first example, we consider the easier case where the decay chains

with two DM particles involve a different SM/visible state from those with one DM

particle. In Z3 models, typically three separate MT2 distributions can be obtained

whereas in Z2 models, only one distribution is available. Also we mention the way

of measuring the masses of the mother and the DM particles based on the theory

argument previously. On the contrary, once the visible state associated with two

DM particles is indistinguishable from that associated with one DM particle, even

in Z3 models only a single MT2 distribution is available. We therefore come up with

another technique to separate each type of events, which enables us to distinguish

Z2 and Z3 models. In all examples above, we make the simple assumption that the

intermediate particles in the decay process are off-shell.
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3.2 A review of MT2 for Z2 models

For simplicity, in this chapter

• we consider pair-production of a single type of mother particle which is charged

under the DM stabilization symmetry.

We also assume that the total transverse momentum of the two mother particles

produced in an event is zero, for example, we neglect any initial/final state radia-

tion. In Z2 models, each such mother decays into SM/visible particle(s) and one

DM/invisible particle1. Furthermore, it is assumed

• we know which visible particle(s) originate from which decay chain.2 For exam-

ple, if the pair-produced mother particles are boosted sufficiently, their decay

products are likely to be collimated so that the visible particles coming from

the same decay chain are detected in the same hemisphere in the collider. For

alternate methods of determining the correct assignment of visible particles to

the two decay chains, see reference [64].

The MT2 variable [4] is a generalization of the transverse mass3 to this case. Specif-

ically, for each event, it is defined to be a minimization of the maximum of the two

transverse masses in each decay chain under the constraint that the sum of all the

1We assume that there is only one type of the DM particle in this (and similarly the Z3) model

so that the invisible/DM particles in each decay chain are identical.
2Of course, for Z3 models, we do not know which decay chain emits one or two DM particles.
3Of course, the usual transverse mass assumes only a single mother particle.
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transverse momenta of the visible and invisible particles vanishes [4]:

MT2 ≡ min
p
v(1)
T +p

v(2)
T +p̃

(1)
T +p̃

(2)
T =0

[
max

{
M

(1)
T , M

(2)
T

}]
(3.1)

where p
v(i)
T denote the vector sum of visible transverse momenta and p̃

(i)
T denote the

transverse momentum of the invisible particle in the ith decay chain (i = 1, 2): the

minimization is performed over the latter momenta. M
(i)
T is the usual transverse

mass:

(
M

(i)
T

)2

=
(
m
v(i)
T

)2

+ m̃2 + 2
(
E
v(i)
T Ẽ

(i)
T − p

v(i)
T · p̃(i)

T

)
(3.2)

where E
v(i)
T and m

v(i)
T are (respectively) the transverse energy and transverse mass

formed by all visible particles belonging to the same decay chain. The variables

with a tilde represent the corresponding quantities formed by the invisible particle

in the same decay chain. Note that the mass of the invisible particle m̃ should be

regarded as a unknown/free parameter because we are not aware of it in advance,

and henceforth we call it “trial” DM mass. In this sense MT2 should be considered

to be a function of the trial DM mass m̃, and its maximum value among many

events (which will be used extensively in the following) is defined as

Mmax
T2 (m̃) = max

many events
[MT2(m̃)] . (3.3)

Obviously Mmax
T2 (m̃) is also a function of the trial DM mass (see Chapter B for

details). An important result to be noted is that if there are a sufficient number of

events and the actual DM mass is substituted into m̃, then the above-given Mmax
T2

becomes the actual mass of the pair-produced mother particles [4]:

Mmax
T2 (m̃ = mDM) = M (3.4)
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where M and mDM indicate the true masses of the mother and the DM particles,

respectively.

In order to see how this MT2 analysis is applied to realistic situations, we first

take the case where there exists a single visible/SM particle in each decay chain,

and then move on to the case where there exist more than one visible/SM particle

in each decay chain. A similar analysis can be done for mixed case, i.e., one visible

particle on one side and more than one on the other.

3.2.1 One visible/SM particle in each decay chain

In this case the upper edge in MT2 distribution is obtained by the “bal-

anced” [4, 7] solution (see Chapter B for details).

Mmax
T2 = Mmax,bal

T2 =

√
(M2 −m2

DM)2

4M2
+

√
(M2 −m2

DM)2

4M2
+ m̃2 (3.5)

Here (and henceforth)

• we assume that all visible particles are massless for simplicity.

As mentioned earlier, the above-given upper edge is a function of the trial DM mass

m̃ and one can see that it reduces to the true mother mass M with m̃ equal to

the true DM mass mDM . The left panel of Figure 3.1 shows the above theoretical

prediction for the location of maximum MT2 for Z2 models as a function of the trial

mass m̃. We used 400 GeV and 100 GeV as mother and DM particle masses. As

expected from Eq. (3.5), the curve in the figure “smoothly” increases with m̃ (cf.

the following section), and that the Mmax
T2 value corresponding to m̃ = mDM (where
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Figure 3.1: Theoretical expectation of Mmax
T2 versus the trial mass m̃ for

Z2 events. The masses of the mother and the DM particles are 400 GeV
and 100 GeV, respectively. The left panel shows the case where there
exists only a single visible particle per chain.The right panel shows the
case where there exist more than one visible particle per decay chain.
In both panels, the solid black curve represents the overall/net upper
edge, Mmax

T2 . In the right panel, the dotted straight line which extends
into the right-hand part of the solid line is the Mmax

T2 for the unbalanced
solution, whereas the dashed line which extends into the left-hand part
of the solid line is that for the balanced solution.

here mDM = 100 GeV) is the same as the true mother particle mass (where here

M = 400 GeV: see the black dotted lines).

3.2.2 More than one visible/SM particle in each decay chain

Once there exists more than one visible particle per decay chain, another type

of solution to MT2, denoted by “unbalanced” [4, 7], arises. If

• we assume that the intermediate particles in the decay chains are off -shell
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(as we will for most of this chapter), the balanced solution in this case is still given

by Eq. (3.5), and the unbalanced solution is as follows4:

Mmax,unbal
T2 = M −mDM + m̃. (3.6)

Hence the overall upper edge in the MT2 distribution is determined by a “competi-

tion” between balanced and unbalanced solutions:

Mmax
T2 = max

[
Mmax,bal

T2 , Mmax,unbal
T2

]

=


M −mDM + m̃ for m̃ ≥ mDM

√
(M2−m2

DM )2

4M2 +

√
(M2−m2

DM )2

4M2 + m̃2 for m̃ ≤ mDM .

(3.7)

Note that the Mmax
T2 shows different functional behaviors depending on the relative

size of the trial DM mass to the true DM mass. As a result, Mmax
T2 is no longer

smoothly increasing with m̃ in contrast to the case with one visible/SM per decay

chain. Instead, there arises a “kink” at the location of the actual DM mass, with

the corresponding Mmax
T2 being the actual mother mass [7]5. This is illustrated in

the right panel of Figure 3.1 where the upper edges for the two possible types of

solutions Mmax,unbal
T2 and Mmax,bal

T2 are shown by a straight line (i.e., the dotted line,

which extends into the right-hand part of the solid line) and a dashed curve (which

4Of course, in general, one can find the expressions for both the balanced and the unbalanced

solutions in the case of on-shell intermediate particles [7].
5A similar kink also appears for the case of one visible particle in each decay chain if the total

transverse momentum of the two mother particles is non-zero, for example, in the presence of

initial/final state radiation (see first and second references in [9]), but (as mentioned earlier) we

neglect this possibility for simplicity.
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extends into the left-hand part of the solid curve), respectively. The upper edge in

the MT2 distribution is given by the larger of these two values, i.e., the black solid

curve, and shows a kink (indicated by the black dotted lines), at m̃ = 100 GeV and

Mmax
T2 = 400 GeV (as expected).

3.3 MT2 for Z3 models

For Z3 models, each mother particle can emit either one or two DM particles

so that there exist two, three, or four DM particles in the final state (for pair-

production of the mother particles) while there are only two DM particles for Z2

models. We therefore expect richer structures in the MT2 distribution for Z3 models.

Here

• we take as an ansatz only a single DM particle in each decay chain for the sole

purpose of defining MT , even if there could be two DM particles in either or

both of the two decay chains.

We do so for the following two reasons. Firstly, in the real collider experiment,

there is (a priori) no clear information on the number of invisible particles involved

in the decay process of interest so that each individual decay chain with only one

DM is a natural (starting) assumption. Moreover, one can naturally expect (and

we will show) that decay events from Z3 models will show different features in the

MT2 analysis compared with those for Z2 models. Therefore, starting with a Z2

assumption and deriving a “contradiction” in the MT2 analysis, we can distinguish

Z3 models from Z2 ones (which is our primary goal here). In this context, we call
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such an analysis imposing one-DM-per-chain assumption the “naive” MT2 analysis.

For a more systematic consideration let us define the three different events

having the different number of DM particles as E2, E3, and E4-type, respectively,

i.e., each subscript on E simply implies the total number of DM particles in the final

state: see Figure 3.2, where SM1, 2 denote the visible/SM final states (irrespective

of the actual number of particles in the state) in the decay chains with one and two

DM (respectively)6. Here the red dashed lines denote any particles charged under

dark matter stabilization symmetry (in this section Z3 symmetry) while the black

solid lines/arrows denote any visible/SM particles. One should note that E4 type

events represent the case with 2 DM particles in each decay chain. Also, both decay

chains (with one and two DM) might not exist for a specific mother so that all three

types of events might not occur. Like in Z2 models, we start with the case with one

visible/SM particle in each decay chain, and we consider the case with more than

one visible/SM particle in each decay chain in the following subsection. While doing

so, we see how the MT2 analysis applied to Z3 models contrasts with Z2 models.

3.3.1 One visible/SM particle in each decay chain

In this case the upper edge in the (naive) MT2 distribution is determined only

by the balanced solution like Z2 models, and the analytic expressions for the three

6These two SM final states might not or might be identical: we will return to these two possi-

bilities in the next two sections (respectively).
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Figure 3.2: The three types of events in Z3 models, based on the total
number of DM in the event. “M” denotes the mother particle. Each SM
final state can have more than one particle. Note that, based simply on
the Z3 symmetry, if a mother decays into DM, then the same mother
decays into two anti-DM in the other decay chain. Since DM and anti-
DM have same mass and are not detected, we neglect this distinction
between the two henceforth (we already did so thus far). For simplicity,
we will also henceforth not differentiate between SM and ¯SM or between
M and M̄ .

type events are given as follows (see Chapter B for details):

Mmax
T2,E2

= Mmax,bal
T2,E2

=

√
(M2 −m2

DM)2

4M2

+

√
(M2 −m2

DM)2

4M2
+ m̃2 for E2 (3.8)

Mmax
T2,E3

= Mmax,bal
T2,E3

=

√
(M2 −m2

DM)(M2 − 4m2
DM)

4M2

+

√
(M2 −m2

DM)(M2 − 4m2
DM)

4M2
+ m̃2 for E3 (3.9)

Mmax
T2,E4

= Mmax,bal
T2,E4

=

√
(M2 − 4m2

DM)2

4M2

+

√
(M2 − 4m2

DM)2

4M2
+ m̃2 for E4 (3.10)

As a reminder, the events with E2, E3 and E4 represents events with two, three and

four dark matter candidates. Note that Eq. (3.8) has the same form as Eq. (3.5) in

Z2 models because E2 type events also contain two DM particles in the final state

(just like Z2 models) whereas the other two types of events do not appear in Z2
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models so that the corresponding Eqs. (3.9) and (3.10) (and similar ones later) are

new/do not appear in previous literature. Substituting m̃ = mDM in Eq. (3.8) gives

the true mother mass M for the value of Mmax
T2 (as expected), but the other two

equations give a combination of the true mother and DM masses rather than the

true mother mass. Actually, this is not surprising because we have used the naive

MT2 variable for the E3 4-type events in Z3 models, whereas the actual physics is

different from the physics under which our MT2 variable is defined. For example,

for E3 type events there is an asymmetry between the final states of the two decay

chains, which is caused by adding one more DM to either of the two decay chains.

For E4 type events, even though the two decay chains have symmetric final states,

the “effective” DM mass is twice the true DM mass so that the true mother mass

(for the value of Mmax
T2 ) is in fact obtained by setting m̃ = 2mDM instead as clearly

seen from Eq. (3.10).

All of the theoretical predictions mentioned above are demonstrated in the left

panel of Figure 3.3. Again, we used 400 GeV and 100 GeV as mother and DM

masses. The black solid, the red dashed, and the blue dot-dashed curves represent

the theoretical expectations ofMmax
T2 for E2, E3, and E4 type events, respectively (the

curve for E2-type events is of course the same as in right-hand side of Figure 3.1).

As discussed above, the Mmax
T2 for E2 type events corresponds to the true mass of

the mother particle (here 400 GeV) with the trial DM mass equal to the true DM

mass (here 100 GeV) whereas E4 type events do it for twice the DM mass (here 200

GeV), as shown by the dotted/black lines.

In addition, there are a couple of features to be noted; there is no kink arising

65



Figure 3.3: Theoretical expectation of Mmax
T2 versus the trial mass m̃ for

Z3 model. The masses of the mother and the DM particles are 400 GeV
and 100 GeV, respectively. The left panel shows the case where there
exists only a single visible particle per chain. The black, red, and blue
curves are showing the corresponding Mmax

T2 values to E2, E3, and E4

type events over m̃, respectively. The right panel shows the case where
there exist more than one visible particle per decay chain. The overall
upper edges, Mmax

T2 for E2 and E4 type events, are given by the solid
black and blue curves, whereas the balanced and unbalanced solutions
are denoted by the dashed and dotted curves (respectively) which merge
into the solid curves on the right (left)-hand part. The corresponding
plot for E3 type events can be found in the next figure.

in the Mmax
T2 curves for E3,4 -type events just like the case of a single visible particle

per decay chain in Z2 models (or E2-type event in Z3 models). Secondly for any

given m̃, the Mmax
T2 values form a hierarchy of

Mmax
T2,E2

> Mmax
T2,E3

> Mmax
T2,E4

. (3.11)
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3.3.2 More than one visible/SM particle in each decay chain

Once more visible particle(s) are added in each decay chain, one could naturally

expect that a kink appears like in Z2 models. The reason is that, just like for Z2

models, the maximum unbalanced solutions take part in determining the overall

upper edge in the MT2 distribution together with the balanced solutions. It turns

out, however, that this expectation is true only for E2 and E4 type events which

we discuss to begin with. Again, assuming the intermediate particles are off -shell

the maximum values of the balanced solutions for E2 and E4 type events are simply

given (as for the one visible particle case) by Eqs. (3.8) and (3.10), respectively, and

those of the unbalanced solutions are given as follows:

Mmax,unbal
T2,E2

= M −mDM + m̃ for E2 (3.12)

Mmax,unbal
T2,E4

= M − 2mDM + m̃ for E4. (3.13)

Here Eq. (3.12) is of exactly the same form as Eq. (3.6) due to the similarity between

the decay structures for Z2 models and E2 type events while Eq. (3.13) for E4-type

events is relevant only for Z3 models, i.e., it is not present in Z2 models. More

quantitatively, the above-given two equations differ by mDM for any given m̃ because

one more DM particle is emitted in both decay chains for E4 type events compared

with E2 type events (see Eqs. (B.16) and (B.36) in the Chapter B).

As mentioned for Z2 models, the maximum MT2 values are given by the larger

of the balanced and unbalanced solutions: for E2 type events as in Eq. (3.7), and
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for E4 type events by:

Mmax
T2,E4

= max
[
Mmax,bal

T2,E4
, Mmax,unbal

T2,E4

]

=


M − 2mDM + m̃ for m̃ ≥ 2mDM

√
(M2−4m2

DM )2

4M2 +

√
(M2−4m2

DM )2

4M2 + m̃2 for m̃ ≤ 2mDM .

(3.14)

Note that there is also a kink for E4-type events as seen from Eq. (3.14), but at

m̃ = 2mDM (i.e., not mDM), because the effective DM mass for E4 is given by

2mDM .

The right panel of Figure 3.3 illustrates the above theoretical considerations for

E2 and E4 type events (of course the curve for E2-type events is same as right-hand

side of Figure 3.1). As before, the two straight dotted lines which extend into the

right-hand parts of the solid lines indicate the maximum values of the unbalanced

solutions while the two dashed curves which extend into left-hand parts of the solid

curve indicate the maximum values of the balanced solutions. The actual upper

edge in the MT2 distribution for any m̃ is given by the black (for E2 type events)

or blue (for E4 type events) solid curves. Identifying the location of the kink in

E2-type events and its corresponding Mmax
T2 enables us to determine the masses of

the mother and the DM particles separately (just like in Z2 models). The figure

also shows the kink for E4-type events, but located at m̃ = 200 GeV (i.e., 2mDM ,

as expected) and Mmax
T2 = 400 GeV. This observation can be used as a cross-check

for the determination of M and mDM based on E2-type events (again, this feature

is new in Z3 models relative to Z2).
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On the other hand, as far as E3 type events (which are absent in Z2 models))

are concerned, whether or not there exists a kink depends on the mass hierarchy

between mother and DM particles (see Chapter. C for details). Again, assuming

off -shell intermediate particles the maximum balanced solution is simply given by

Eq. (3.9) (just like the case of one visible particle per decay chain), whereas the

maximum unbalanced solution has the same form as that for E2 type events because

one of the two decay chains still emits a single DM particle in the final state (see

Eqs. (B.16) and (B.36) in the Chapter B).

Mmax,unbal
T2,E3

= M −mDM + m̃ for E3 (3.15)

If the ratio of the DM mass to the mother mass is larger than (
√

3− 1)/2, it turns

out that the maximum unbalanced solution given in Eq. (3.15) is always bigger than

the maximum balanced solution given in Eq. (3.9) so that

Mmax
T2,E3

= max
[
Mmax,bal

T2,E3
, Mmax,unbal

T2,E3

]
= M −mDM + m̃

for
mDM

M
≥
√

3− 1

2
and for all m̃. (3.16)

The left panel of Figure 3.4 clearly confirms our expectation (based on above equa-

tion) that there occurs no kink in the upper edge of MT2 as a function of the trial

DM mass, i.e., the upper edge in the MT2 distribution is always determined by the

unbalanced solution (black solid line), not by the balanced solution (red dashed

curve). Here we adopted M = 400 GeV and mDM = 150 GeV, and thus the ratio

between them is obviously larger than (
√

3− 1)/2.

On the other hand, once the ratio of the DM to the mother mass is smaller

than (
√

3−1)/2, the competition between the balanced and the unbalanced solutions
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Figure 3.4: Theoretical expectation of Mmax
T2 versus the trial mass m̃ for

E3 type events. The mass of the mother particle is 400 GeV for both
cases, but the masses of the DM particle to be used are 150 GeV and
100 GeV for the left panel and the right panel, respectively. For both
cases, the black solid lines give the maximum of MT2, whereas the dashed
curves give the maximum for the balanced solution. The maximum for
the unbalanced solution coincides with the solid line on the left panel,
whereas on the right panel, it is given by the dotted straight line (which
extends into the right-hand part of the solid line).

results in

Mmax
T2,E3

= max
[
Mmax,bal

T2,E3
, Mmax,unbal

T2,E3

]

=


M −mDM + m̃ for m̃ ≥ m′

√
(M2−m2

DM )(M2−4m2
DM )

4M2 +

√
(M2−m2

DM )(M2−4m2
DM )

4M2 + m̃2 for m̃ ≤ m′

and for
mDM

M
≤
√

3− 1

2
(3.17)

where

m′ =
(M −mDM)

(√
(M2 −m2

DM)(M2 − 4m2
DM)−M(M −mDM)

)
2M(M −mDM)−

√
(M2 −m2

DM)(M2 − 4m2
DM)

. (3.18)
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We see that there is a kink at m̃ = m′. Here m′ is not simply the true DM mass but

it is given by a combination of the true mother and DM masses (in fact, it is smaller

than the true DM mass), which is clearly different from that in Z2 models. The

functional behavior of Mmax
T2 for this case is shown in the right panel of Figure 3.4.

Here we took mDM = 100 GeV which makes the ratio smaller than (
√

3− 1)/2. As

before, the maximum MT2 for the balanced and unbalanced solutions are shown by

the dashed and dotted curves (which extend into the black solid curve to the RHS

and LHS). The final maximum MT2 is given by the larger of these two solutions

(black solid curve) which clearly shows a kink at a value of m̃ which is different from

the actual DM mass mDM = 100 GeV (shown by the vertical black dotted line) as

expected based on above discussion. Of course, we can still evaluate the masses of

the mother and the DM particles (using E3-type events only) by obtaining Mmax
T2

and m′ from the above MT2 analysis, substituting them into Eqs. (3.17) and (3.18),

and solving those two equations about M and mDM .

Next, let us investigate the hierarchy among the three Mmax
T2 values for E2,

E3, and E4 type events. Although a bit more complicated than the one visible

particle case, it is nonetheless straightforward to derive this hierarchy based on

above equations, We have a following hierarchy among the Mmax
T2 values for the

three types (cf. the one visible particle case shown in Eq. (3.11)):

Mmax
T2,E2

= Mmax
T2,E3

> Mmax
T2,E4

for m̃ ≥ mDM

Mmax
T2,E2

> Mmax
T2,E3

> Mmax
T2,E4

for m̃ ≤ mDM .

(3.19)
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Figure 3.5: The MT2 distributions for E2 (top left) and E3 (top right)
type events and E2+ν events (bottom). The mother and the DM particle
masses are 400 GeV and 150 GeV, respectively, and the trial DM mass
to be used is 6 GeV.

3.3.3 Shapes of MT2 distributions

Before closing the present section, let us examine the shape of theMT2 distribu-

tions for Z3 cases. For this purpose we simulated events using MadGraph/MadEvent

[60]. Here and in sections 3.5.1.1 and 3.5.1.2, we make the following assumptions

(mostly for simplicity): (a) effects of spin correlations are neglected; (b) the beam is

proton-proton with 14 TeV total energy in the center of mass frame (motivated by
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the LHC parameters); (c) the non-colored scalar mother particles are pair-produced

via s-channel and finally (d) only the relative values of the number of events (on

vertical scale) are meaningful.

For all the simulations in this section, the masses of the mother and the DM

particles used in the (toy) model are 400 GeV and 150 GeV, respectively, we took

a single visible particle per decay chain for simplicity. The upper left panel of

Figure 3.5 demonstrates the MT2 distribution for E2 type events. Obviously, this

is similar to the MT2 distribution for events in Z2 models [4, 7], which is not

surprising because E2 type events also has only two dark matter particles in the

final state like Z2. The (naive) MT2 distribution for E3 type events illustrated in

the upper right panel of Figure 3.5 has two notable features. As expected from

the analytic expressions given before, first of all, the location of the upper edge is

clearly lower than that for E2 type events (or for Z2 models). Secondly, the shape of

MT2 distribution for E3 type events shows a long tail near the upper edge compared

with E2 type events (which have relatively sharp upper edge): this is because more

physical constraints (e.g., rapidity) between decay products should be satisfied in

E3 type events in order that they form a kinematic configuration to give maximum

MT2, thereby reducing the corresponding number of events near Mmax
T2 .

This feature of a (relatively) long tail is also true for a special case in Z2

models with three invisible particles in the full event one of which is a (massless)

SM neutrino, i.e., with one DM in one decay chain, but one DM and a neutrino in

the other (henceforth we call it E2 + ν events)7. The bottom panel of Figure 3.5

7MT2 distributions for such events have been studied in second and third references of [4] and
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demonstrates the MT2 distribution for E2+ν events, assuming intermediate particles

are off-shell 8. At the upper edge it shows a tail which is longer than that for E2

type events (or neutrino-less events in Z2 models), but which is not as long as that

for E3 type events9. Such a shape is not surprising because the additional invisible

particle (neutrino) in E2 + ν vs. E2-type events is massless so that E2 + ν events

can be understood as a transitional type between E2 and E3 type events. However,

it is crucial to note that the location of the upper edge for the E2 + ν events is the

same as that for usual (i.e., neutrino-less) events in Z2 models with only a single

massive invisible particle per decay chain, because the effective DM mass in former

decay chains is also mDM . We can therefore distinguish the E2 + ν events from the

E3-type events in Z3 models by observing the location of the upper edge: the latter

events will have a smaller edge.

3.4 Applications: non-identical visible particles in the two decay

chains

Next, we apply the theoretical observations on the MT2 technique for Z2 and

Z3 models, which are described in the previous sections, for distinguishing Z3 models

from Z2 ones in some specific cases. Like in the previous sections, we assume (for

in [68].
8As for the events with three (or more) DM, we assume here that there is a single (massive)

invisible particle in each decay chain for the purpose of defining MT .
9This feature of a long tail in E2 + ν-type events is valid even for the case of more than one

visible particles in each decay chain.
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simplicity) pair-produced (same) mother particles and that all visible particles are

massless and use the naive MT2 analysis for all events. As mentioned earlier, in Z3

models each mother particle can decay into either one or two dark matter particles

along with visible/SM particle(s). Here,

• we consider a mother particle in a Z3 model for which both these decay chains

(with one and two DM, respectively) exist.

Similarly, in Z2 models the mother particles can only decay into a single dark matter

particle along with visible/SM particle(s). Here, we assume two such decay chains

for a Z2-mother which have the same visible final states as the above two Z3-mother

decay chains (respectively). The idea behind this choice is that such a Z2 model

could easily counterfeit a Z3 model (at least based on the identity of the visible

states). This motivates us to distinguish these two types of the DM stabilization

symmetry using the MT2 variable.

For later convenience, we divide the discussion into two cases based on whether

or not the visible state in the decay chain with one DM is identical to the one in

the decay chain with two DM in the Z3 model. We begin with the case where the

SM final states in the two decay chains are not identical (this includes the case

of partial overlap between these final states). Following the notation of previous

section, let us denote SM1, 2 to be these SM final state particles – whether they

consist of one or more SM particles – in the two decay chains. And, for the Z3

model, assume that SM1 comes with one DM particle and SM2 is associated with
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two DM particles.10 We thus have three distinct (based simply on identity of visible

states) types of events in both the Z3 and Z2 models, denoted by SM11, i.e., SM1

on each side/from each mother and similarly SM12, 22. Clearly, for Z3 models, these

three types of events correspond (respectively) to E2,3,4-type events mentioned in

the previous section and shown in Figure 3.2 (with SM1 6= SM2). Hence, we can

apply the formulae for the theoretical predictions of Mmax
T2 for E2, E3, and E4 type

events derived in the previous section to the SM11, 12, 22 events.

3.4.1 One visible/SM particle in each decay chain

As a further subcase, we assume that SM1,2 consist of only one particle.

Clearly, the upper edges of the MT2 variable for SM11, SM12, and SM22 are given by

Eqs. (3.8), (3.9), and (3.10), respectively. As is obviously seen from the left panel

of Figure 3.3 or equivalently Eq. (3.11), the location of the upper edge for SM12 or

SM22 is lower (for all trial DM mass m̃: cf. the case of more than one visible particles

below) than that for SM11 (for the same mother and DM masses). In contrast, in

Z2 model we have the same expression for Mmax
T2 given by Eq. (3.5) for all of SM11,

SM12, and SM22 because they all involve two DM particles in the final state. Thus,

• different edges for the SM11, 12, 22 events (in particular, larger for SM11) can be

evidence for Z3 models, i.e., they provide discrimination between Z2 and Z3

models11.

10Since a Z2 model does not allow 2 DM particles in each decay chain, SM1 and SM2 are both

emitted with only 1 DM in the final state in this model.
11unless multiple mother particles in the Z2 models decay into the identical final state.
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We can be further quantitative:

• for Z3 models we can measure the masses of the mother and the DM particles

separately as follows (in spite of the absence of a kink in the left panel of

Figure 3.3).

Note that the theoretical formulae for Mmax
T2 in Eq. (3.8) through Eq. (3.10) – con-

sidered as a function of trial mass m̃ – have a structure of
√
C +

√
C + m̃2 where

C is a constant. So, the idea is to choose an arbitrary trial mass, then calculate

the corresponding Mmax
T2 from the experimental data and thus determine the above-

defined C. Also, in our specific case where visible particles are assumed massless,

the theoretical formula for each C is written only in terms of the mother mass and

the DM mass:

(M2 −m2
DM)2

4M2
=

(
(Mmax

T2,E2
)2 − m̃2

)2

4(Mmax
T2,E2

)2
≡ CE2 (3.20)

(M2 −m2
DM)(M2 − 4m2

DM)

4M2
=

(
(Mmax

T2,E3
)2 − m̃2

)2

4(Mmax
T2,E3

)2
≡ CE3 (3.21)

Solving the above-given two equations, we obtain both mother and DM masses 12:

M =
2

3
√
CE2

(4CE2 − CE3) (3.22)

mDM =
2

3
√
CE2

√
(4CE2 − CE3)(CE2 − CE3) (3.23)

This situation is somewhat like the double edge signal for single mother decay dis-

cussed in Chapter 2, where it was again possible to obtain mother and DM masses

from the two edges in invariant mass distribution of visible/SM final state.

12The upper edge from SM22 provides redundant information, but of course can be a cross-check.
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On the other hand, for Z2 models, we obtain only a combination of the mother

and the DM masses from the (single) measurement of Mmax
T2 , given by

(M2 −m2
DM)2

4M2
=

((Mmax
T2 )2 − m̃2)

2

4(Mmax
T2 )2

≡ C, (3.24)

and thus it is not possible to determine mother and DM masses separately.

3.4.2 More than one visible/SM particle in each decay chain

In this case, there is more interesting behavior of Mmax
T2 than in the case of one

visible particle per chain 13. The upper edges of MT2 for SM11, 12, 22 events are now

obviously given by Eqs. (3.7), (3.16), (3.17) and (3.14), respectively. As discussed

in Eq. (3.19), the upper edge for SM12 is the same as that for SM11 (cf. one visible

particle case above) for m̃ > mDM , but is lower for m̃ < mDM than that for SM11.

And, the upper edge for SM22 events always lower than SM11. This fact enables

us to distinguish Z3 models from Z2 ones because in Z2 models the upper edges

for SM11, 12, 22 coincide for all m̃ (just like the case with one visible particle in each

decay chain).

Moreover, there occurs a kink in the upper edge of MT2 as a function of the

trial DM mass as discussed in the previous sections. Due to the existence of this

kink structure, SM11 itself is sufficient for the purpose of determining mother and

13In the SM12 events, the endpoints of the visible invariant mass distributions for the two sides

of the event/decay chains will be different in Z3 models, i.e., in E3-type events (vs. being the same

in Z2 models), already providing a discrimination between the two types of models. However,

developing another technique for distinguishing Z3 from Z2 models based on MT2 can still be

useful.
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DM masses (again, unlike one visible case): the trial mass which gives rise to a

kink is the true DM mass and its corresponding Mmax
T2 is the true mother mass. (Of

course this is how one can measure the masses of the mother and the DM particles

separately even in Z2 models.) Such a direct measurement of the mother and the

DM masses leads us to

• a prediction (cf. one visible case) on the location of the upper edges for the

other two types of events, namely SM12 and SM22, a confirmation of which

can provide evidence for Z3 symmetry as underlying physics14.

For SM12, i.e., E3-type events, actually, there are more interesting aspects of

the kink structure in Mmax
T2 due to the dependence on the ratio of the DM and the

mother masses: as discussed in section 3.3, the critical ratio is given by

mDM

M
=

√
3− 1

2
. (3.25)

The kink is present only when the ratio of the DM and the mother masses is less than

the above-given critical ratio. In this case, the kink location can be predicted by

substituting mother and DM masses measured from the kink in SM11 into Eq. (3.18)

so that it can provide a further verification for Z3 symmetry15.

Finally, note that another way to distinguish Z3 from Z2 models in this case

was discussed in Chapter 2. The idea is to use SM12, i.e., E3-type, events in Z3

14We can also predict (and then verify) location of kink in SM22 events. Alternatively, we can

use kink in SM22, i.e., E4-type events to determine the mother and DM masses and then make

predictions.
15Alternatively, this kink can be used to determine mother and DM masses, which are then used

to predict edges/kinks in other events.
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models, where edges in invariant mass distributions of visible particles on each side

are different, i.e., (M −mDM) and (M − 2 mDM) (vs. the two edges being the same

for Z2 models).

3.4.3 Signal fakes by an (effective) 2nd DM particle

In the two previous sections we have focused on decay processes with a single

type of the DM particle in the final state (for both Z3 and Z2 models). The crucial

observation for the sake of discriminating Z3 from Z2 models is that Z3 models have

more event-topologies (i.e., E2, E3, and E4 type events with different upper edges in

MT2 distributions) than the case of Z2 (which has a single upper edge), regardless

of the number of visible/SM particles in each decay chain. In turn, this contrasting

feature is due to the different possibilities in each decay chain in Z3 models, i.e.,

presence of one or two DM (unlike only one DM in Z2 case).

However, Z2 models can also acquire such different possibilities for decay chains

(and thus fake Z3 signals in the MT2 analysis) if we assume that there is a second

DM (obviously Z2-odd) particle (with larger mass) denoted by DM′ into which the

Z2-mother can decay, i.e., there are actually two (absolutely) stable DM particles in

a Z2 model [69–72]. Clearly, even with only one DM in a Z2 model, a similar effect

can arise from a mother decaying into an (Z2-odd) on-shell color/electrically neutral

particle which decays (into DM particle and SM, possibly visible), but outside the

detector (i.e., there exists a Z2-odd particle – other than the DM – which is stable

and invisible as far as detector is concerned). Another related possibility is that
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there is a Z2-odd (on-shell) neutral particle which decays inside the detector, but

invisibly, i.e., into DM and invisible SM, for example, neutrino. A classic example of

the last type is found in supersymmetry where sneutrino decaying into neutrino and

lightest neutralino (which is assumed to be the lightest supersymmetric particle,

i.e., DM). Even in the latter two cases, there is “effectively” (i.e., as far as the

collider analysis is concerned) a second “DM” and so we will denote it also by DM′.

In particular, in the last case mentioned above, i.e., even if there is an (on-shell)

neutral particle decaying invisibly inside the detector, the theoretical prediction of

the MT2 variable is same as with a DM′ of same mass as this neutral mother particle.

Here, we note that the reference [17] has studied such (asymmetric) events

using an MT2 type analysis, in particular, variants of the usual MT2 variable have

been developed. As before, we will instead apply the naive/usual MT2 variable, i.e.,

assume (again, just for the purpose of constructing MT2) that there is a single and

same DM in both decay chains.

In more detail, the above case in Z2 models give rise to “Z3-faking” signals

is as follows. As before, consider pair production of single mother such that decay

chains with DM and DM′ are both allowed. Consequently, we obtain three distinct

decay topologies for the full event: two DM, one DM and one DM′ and two DM′.

We will denote these three types of events by E ′2, E ′3, and E ′4 since they obviously

resemble (and thus can fake) E2, E3, and E4 type events being found in Z3 models,

respectively. In particular, we can expect three different upper edges for MT2 in

E ′2, E ′3, and E ′4-type events16. Explicitly, the maximum balanced MT2 solutions for

16An extreme case is when DM′ is massless, for example, SM neutrino. However, in this case,
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them (for both the cases with one visible particle per decay chain and more than

one visible particle per decay chain) are simply given as follows:

Mmax,bal
T2,E′2

=

√
(M2 −m2

DM)2

4M2

+

√
(M2 −m2

DM)2

4M2
+ m̃2 for E ′2 (3.26)

Mmax,bal
T2,E′3

=

√
(M2 −m2

DM)(M2 −m′2DM)

4M2

+

√
(M2 −m2

DM)(M2 −m′2DM)

4M2
+ m̃2 for E ′3 (3.27)

Mmax,bal
T2,E′4

=

√
(M2 −m′2DM)2

4M2

+

√
(M2 −m′2DM)2

4M2
+ m̃2 for E ′4, (3.28)

and the maximum unbalanced MT2 solutions (only for the case with more than one

visible particle per decay chain) are given as follows:

Mmax,unbal
T2,E′2

= M −mDM + m̃ for E ′2 (3.29)

Mmax,unbal
T2,E′3

= M −mDM + m̃ for E ′3 (3.30)

Mmax,unbal
T2,E′4

= M −m′DM + m̃ for E4′ . (3.31)

Here m′DM(> mDM) denotes the mass of the second DM-like particle. Again, all

three types actually contains two DM/DM-like particles, i.e., the subscripts on E ′

do not imply the number of DM particles in a full decay chain but rather indicate

the respective topologies in Z3 models which they fake. Note that if we set m′DM =

2mDM , then the above edges are exctly the ones in a Z3 model (see Eqs. (3.8)

as mentioned in section 3.3.3, the upper edges for E′
3 (denoted by E2 + ν event in section 3.3.3)

and E′
4-type events will be same as for E′

2-type events. Thus this case can be easily distinguished

from Z3 models.
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through (3.10) and Eqs. (3.12), (3.13), and (3.15) from previous sections. This

feature is as expected since for E3, 4-type events (in Z3 models) which are at the

edge of the respective MT2 distributions, the two DM from same mother are collinear

so that their invariant mass is 2mDM , i.e., the decay chain with two DM effectively

has single DM of this mass as far as MT2-edge is concerned.

Despite the fact that such Z2 events with second DM-like particle can introduce

three decay topologies, we can still differentiate Z3 and Z2 models. However, the

strategies to be applied depend on the number/identity of visible particles in each

decay chain. In this section, we consider the case where the visible particles in decay

chain with DM (denote by SM1, following the notation used earlier) is different than

the visible particles (denoted by SM2) that in decay chain with DM′ in Z2 model or

two DM (in Z3 model). Thus, the three types of events SM11, SM12 and SM22, i.e.,

distinguishable from the identity of SM visible particles, have different edges since

they correspond to the E ′2, E ′3, and E ′4-type events in a Z2 model or (as mentioned

in previous section) E2, E3, and E4-type events in a Z3 model. This case can be

further sub-divided into one and more than one visible particles in each decay chain.

In the case with one visible particle per decay chain, one may distinguish

Z2 and Z3 models by examining the shape of the above three MT2 distributions.

The idea is that, as explicitly mentioned above, E ′2, E ′3, and E ′4 all have only two

DM/DM-like particles, i.e., two DM, one DM and one DM′, and two DM′, and

therefore, they have a similar shape of the MT2 distribution as the E2-type event.

The implication of this observation is E ′2, E ′3, and E ′4 all give a sharp upper edge

in the MT2 distribution. On the other hand, in the decay chain with two DM in
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E3, 4-type events of Z3 models, in general (i.e., away from edge of MT2), the two DM

are not collinear so that their invariant mass of two DM is not 2mDM , in fact, this

invariant mass is not even fixed. Thus, even if the above three MT2-edges for Z3

models are identical to those for Z2 models with two different DM (with the second

one being twice as heavy as first one), the shapes are not expected to be similar. In

fact, E3 and E4 type events in Z3 models give a (relatively) longer tail as already

discussed in section 3.3.3. Hence, if one of the MT2 distributions for SM11, 12, 22

events – again, corresponding to the three different topologies – has a sharp upper

edge and two of which have a longer tail, then it is likely that such events originate

from Z3 models.

On the other hand, once there exists more than one visible particle in each

decay chain, the shape is no longer a useful discriminator. The reason is that, in

general, clear sharp edges in the MT2 distributions are not expected here (unlike the

cases with one visible particle per decay chain), i.e., the number of events/statistics

at the MT2-upper edge is small in this case: in turn, this feature is due to more con-

straints which need be satisfied (see section 3.3). Instead, we can take the advantage

of “kink” in the plot of Mmax
T2 versus the trial DM mass, which allows us to determine

the masses of mother and DM particles separately. Using the SM11 events, one can

evaluate M and mDM as mentioned in the previous section, assuming that it is a

Z3 model. Then we predict the locations of upper edge and the locations of kink

for the SM12, 22 events. If the underlying physics is a Z2 model (with two different

DM particles) instead, then these predictions do not match with the experimental

results from the associated MT2 analysis. This is because, in general, the mass of
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the second DM-like particle, m′DM is not equal to twice of the DM mass, 2mDM .

In other words, the cross-checking of mother and DM masses between SM11 and

SM12, 22 events enables us to separate Z3 models from Z2.

3.5 Applications: identical visible particle(s) in the two decay chains

Next, we consider the case of the visible particle(s) in the two decay chains

with one and two DM (for Z3 models) being the same. In this case, in the Z3

models, we can not separate E2,3,4 type events using simply the identities of the

visible particles, i.e., SM1 = SM2 in Figure 3.2 (unlike in the previous section).

Obviously, we add the three (i.e., E2, E3, and E4-type) distributions of MT2, whose

behaviors were discussed above (for non-identical case), to obtain the observable

MT2 distribution in Z3 models. Of course, for Z2 models (which could potentially

fake the Z3 models), there are then only E2-type and possibly E2 + ν events that

we discussed earlier.

If we have only one visible particle in each decay chain, the MT2 distribution

for the E3 type events always (i.e., for all m̃, cf. more than one visible case discussed

below) has a lower Mmax
T2 than for the E2 type events (see the left panel of Figure 3.3),

so that in principle their addition/combination would give rise to a “kink” in the

MT2 distribution17 (again for Z3 model, but not for Z2 model).18 It turns out,

17Such a kink in the MT2 distribution is not to be confused with that in the plot of Mmax
T2 as a

function of m̃.
18Adding events of E4 type, i.e., two DMs in each decay chain, will introduce another, but even

less visible, kink.
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however, that the visibility of this kink is not clear because the MT2 distribution for

E3 type events has a longer tail (that for E2-type events) as discussed in section 3.3

(see the right panel of Figure 3.5). It also turns out that the kink will get further

smeared out once uncertainties in measurements are taken into account. In other

words, this kink is not evidence for Z3 models since it could be faked by statistical

fluctuations in the distribution or experimental errors.

On the other hand, if there exists more than one visible particle in each decay

chain, the MT2 distribution for Z3 model shows somewhat different behavior. As

discussed in detail in section 3.4.2, for trial DM mass above the true DM mass, the

upper edge of MT2 distribution for E2 and E3 type events are the same. However,

the upper edge of MT2 distribution for E3 type events is increasingly lower than

that for E2 type for trial DM mass below the true DM mass19. We therefore expect

a “moving” kink (as we vary m̃) in the MT2 distribution – such a kink starts to

appear for trial mass below the true DM mass (i.e., no kink would appear in the

total MT2 distribution for larger trial masses) and the gap between the kink position

(i.e., corresponding to the E3 edge) and the overall upper (i.e., E2) edge is increasing

as the trial mass becomes smaller20. This “moving” feature of the kink in the total

MT2 distribution can be a further (i.e., beyond simply existence of kink) evidence

for the existence of E3 type events and thus a proof of Z3 models. However, even

19To be more precise, the gap between the two edges relative to mother/DM masses increases.
20In the one visible particle case, the gap between the edges in E2, 3-type events, again relative

to mother/DM masses, is roughly constant with trial mass so that kink in MT2 distribution does

not move.
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though the kink is “moving”, it is still hard to identify it in the MT2 distribution,

and thus we do not rely on these kinks as a way to distinguish between Z2 and Z3

models.

These observations motivate us to introduce new methods to separate E3 type

events from E2 type events.21 In the following (two) subsections, we develop such a

method, and then we apply them to the two specific cases (i.e., one visible particle

and more than one visible particles in each decay chain), and see how to use them

to distinguish between Z2 and Z3 models.

3.5.1 Separating E2 and E3 type events using Pt/Ht ratio

To separate E2 and E3 types of events, we can utilize the fact that E2 type

events have one DM per decay chain, and E3 type events have one DM in one decay

chain and two DMs in the other decay chain. In other words, for E3 type events,

the visible particle(s) in the decay chain having two DMs in the final state carry

less momentum/energy (than in the other decay chain). Thus the ratio between the

momentum/energy of visible particle(s) on the two decay chains are expected to be

(relatively) sizeable on average (compared to E2 type events). In order to find out

how this intuition plays out in real situations, we begin with the case where there

21Once we separate these two types, we can repeat the program described in detail in section 3.4,

i.e., either determine the masses of the mother and the DM particles from the the upper edges of

MT2 in these two types of events for the case of one visible particle in each decay chain or predict

the upper edge for E3-type events (using measurements in E2-type events) for the more than one

visible particle case.
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exists only a single visible particle per decay chain, and then move on to the case

where there exist more than one visible particles per decay chain.

3.5.1.1 One visible/SM particle in each decay chain

For the case with one visible particle per decay chain, we consider the Pt ratio

of the two visible particles as follows:

RPt =
Pmax
t

Pmin
t

, (3.32)

where Pmax
t is the larger Pt of the two visibles coming from two separate decay

chains, and Pmin
t is the smaller one. From our physical intuition mentioned above,

we expect the RPt for E3 type events to be larger (on average) than that for E2 type

events22. To verify this expectation, we did a simulation using MadGraph/MadEvent

for a (toy) model with mother mass M = 400 GeV and DM mass mDM = 150 GeV.

The RPt distributions for E2 and E3 type events are shown in Figure 3.6. We can

see clearly that RPt for E3 type events is generally larger than that for E2 type

events. For comparison, we also included the RPt distribution for E2 +ν events (i.e.,

two DM particles and an extra invisible, but massless, particle in the full event) in

Figure 3.6. One can easily see that the E2 + ν events have on average larger RPt

than that for pure E2 type events, but smaller RPt than that for E3 type events.

This observation agrees with our expectation: in the E2 + ν events, we have only

one extra massless invisible particle (relative to E2-type events), while in E3 type

events, we have one extra massive invisible particle so that the disparity between

22We neglect E4-type events and comment on this issue later.
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the visible particle momenta on the two sides in the former case should be relatively

smaller.

Figure 3.6: RPt distributions for E2 type events (upper-left panel), E3

type events (upper-right panel) and E2 + ν events (lower panel) for the
case with one visible particle on each decay chain. The mother mass is
M = 400 GeV, the DM mass is mDM = 150 GeV.

Due to different RPt distributions of E2 and E3 type events, we can try to

distinguish them by doing a cut RPt > Rmin
Pt

. The percentage of “surviving” events

in E2 and E3 type events according to different choice of Rmin
Pt

are shown in Table 3.1.

For comparison, we also include E2 + ν events in Table 3.1. We can see that the

survival rates for E2 type events are fairly independent of the mother and the DM
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Table 3.1: The percentage of surviving events in E2, E3 and E2 + ν events for
different choice of Rmin

Pt
for the case with one visible particle per decay chain. The

mother mass is M = 400 GeV and the DM mass is mDM = 150 GeV.

Rmin
Pt

2 3 4 5 6 7 8 9
E2 0.3375 0.1629 0.0957 0.0612 0.0413 0.0285 0.0225 0.0178
E3 0.7929 0.6105 0.4649 0.3696 0.303 0.2525 0.21 0.1774

E2+ν 0.5366 0.3323 0.2319 0.1733 0.1342 0.1101 0.0887 0.0738

masses, since in this type of events the energies of the visible particles in two decay

chains are always comparable. Therefore,

• if the survival rates for the events (after the RPt cut) are much larger than

that of E2 values shown in Table 3.1, then we can conclude that the events

are not purely E2 type, i.e., it is an evidence for existence of another/third

invisible particle (whether massless or massive).

In general, the survival rates for E3 type events are much larger than those of E2

type events, but the survival rates of E3 type events depend on the mother and DM

masses. In addition, the survival rates for E2 + ν events are larger than that of E2

type events as well (even though they are generally smaller than that of E3 type

events). In this sense, an observation of large survival rates might not (by itself)

provide a strong support that there exist E3 type events in the sample.

To get further confirmation of E3-type events (and thus to distinguish Z2 and

Z3 models), we can employ the RPt cut as above and then study the MT2 distribution

of the surviving events. The key idea is to compare the upper edges of the MT2

distributions before and after the RPt cut. If the underlying physics model is Z2

type, then clearly we can only obtain E2 type events (or E2 + ν) events before and
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after the cut, and the upper edge of its MT2 distribution is not altered. However,

if the underlying physics model is Z3, then (before the cut) the total events are an

admixture of E2 and E3 type. Since the upper edge of E3 (and E4)-type events is

smaller than those of E2-type events, the upper edge of MT2 distribution (again

before the RPt cut) should be that of E2 type events. On the other hand, after

the cut the upper edge of MT2 distribution should be lower than before since the

surviving events are mostly of E3 type.

To illustrate this technique, we apply the analysis outlined above to the pre-

viously simulated events using a model with M = 400 GeV, mDM = 150 GeV, and

we pick the trial mass to be m̃ = 25 GeV. Based on the survival rates shown in

Table 3.1, we choose Rmin
Pt

= 5. Before we do the analysis, we need to investigate

whether the RPt > 5 cut is “biased”, i.e., does the cut tend to remove more events

with a high MT2 value?23 For this we consult Figure 3.7, which shows separately

the MT2 distributions for both pure E2 and E3 type events before and after the RPt

cut. By comparing the left panels and right panels in Figure 3.7 we can easily see

that the upper edges for both E2 and E3 type events do not get modified after the

RPt cut, which suggests that the RPt cut is not “biased” 24. In addition, we see

that these upper edges in simulated events approximately agree with the theoretical

predictions (shown by vertical lines)25.

23If the answer is affirmative, then Mmax
T2 after the cut will be reduced even for purely E2-type

events.
24But a choice of larger Rmin

Pt
would introduce bias in the cut.

25But note that in experiments these predictions are a priori unknown since we do not know the

masses of the mother and DM separately.
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Figure 3.7: MT2 distribution for E2 (top two panels) and E3 type events
(lower two panels) for simulated events using a model with M = 400
GeV and mDM = 150 GeV and one visible particle per decay chain.
The trial mass is chosen to be m̃ = 25 GeV. The left panels are the
MT2 distributions before the RPt cut, and the right panels are the MT2

distributions after the RPt cut. The solid red (dashed blue) lines are the
theoretical prediction for the upper edges of MT2 distribution for E2 and
E3 type events, respectively.

Now we can demonstrate how to distinguish Z2 and Z3 models using a com-

bination of RPt cut and MT2 distributions. First we consider a Z3 model, where we

assume that the branching ratio for the mother to decay into one DM (and visible

particle) and into two DMs (and visible particle) are both 50%.26 Since we assumed

26In general, the decay into two DM should be phase-space suppressed relative to the decay into
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that the visible particles in these two decays are identical, we have to combine the

MT2 distributions for E2 and E3 type events in a 1 : 2 ratio to get the total MT2

distribution. The result is shown in the left panel of Figure 3.8. As expected, we

can see from this figure that the combined E2 and E3 type events have an upper

edge in MT2 distribution that agrees with the theoretical expectation for E2 type

events (the red solid line). As discussed earlier, we can also see that the total MT2

distribution has a kink near the theoretical Mmax
T2 for E3 type events, but it is hard

to identify such a kink because of statistical fluctuations. The right panel of Fig-

ure 3.8 shows the MT2 distribution for the combined events after the RPt cut. It

can be seen clearly that the upper edge of MT2 distribution gets reduced. In fact,

the new edge agrees with the theoretical expectation of the Mmax
T2 of E3 type events

(the blue solid line). This confirms our expectation that the RPt cut discards most

E2 type events while retaining a sizeable fraction of E3 type events, i.e., the events

which pass the RPt cut are mostly E3 type.

Of course, we do not know a priori where the Mmax
T2 for E3 type events (solid

blue line) lies due to the lack of knowledge of the mother and DM masses. Rather the

idea is that we can simply measure the upper edge in MT2 distributions after the RPt

cut (again, this approximately correspond to that of E3-type events). Combining

this edge with that before the cut (i.e., corresponding to E2-type event) then allows

us to evaluate the masses of the mother and the DM particles as described in detail

one DM. However, in some specific models, this suppression (for the decay chain with two DM)

could be compensated by larger effective couplings in that chain so that the two decay processes

can have comparable branching ratio as assumed here.
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in section 3.4.127. A complication arises (as follows) in obtaining the Mmax
T2 for

events after the RPt cut. As can be seen in the right panel of Figure 3.8, there

are still some events beyond the theoretical value of Mmax
T2 for E3 type events (the

blue solid line in the plot), for example from (a small number of) E2-type events

which passed the cut. So we need an algorithm to get rid of those “background”

events and do a fit to the MT2 distribution in order to find Mmax
T2 . The details of the

method we employed are discussed in Chapter D. We apply the above techniques

to the simulated events. The values of the mother and the DM masses we obtained

from this analysis are 394± 8 GeV and 142± 13 GeV, which agree quite well with

the theoretical values (400 GeV and 150 GeV). However, we expect that uncertainty

in energy measurements would introduce additional errors so that a more thorough

analysis taking into account these effects (which is beyond the scope of this thesis)

is needed in order to be more realistic.

For comparison, we consider now Z2 models. In these models, we have either

E2 or E2 + ν events. For pure E2 type events, we have already shown in the upper

panels of Figure 3.7 that the upper edge of MT2 distribution is not reduced after

the RPt cut (note that this would not be true if the RPt cut is “biased”). For

completeness, we also consider Z2 models where the mother can decay into one DM

or one DM plus neutrino, with the visible particle in the two decay chains being

identical. We again assume that both branching ratios are 50%. Thus, we will

obtain a combination of E2 and E2 + ν-type events. The MT2 distributions in this

case are shown in Figure 3.9. The left panel shows that before the RPt cut, the upper

27Note that this cannot be done in Z2 models as discussed in section 3.4.1.
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Figure 3.8: MT2 distribution for combined E2 and E3 type events (1 : 2
ratio) before (left panel) and after (right panel) the RPt > 5 cut for
the case with one visible particle per decay chain. The mother mass is
M = 400 GeV and the DM mass mDM = 150 GeV. The trial mass is
chosen to be m̃ = 25 GeV. The solid red (dashed blue) lines represent
the theoretical predictions for the upper edges of MT2 distributions for
E2 and E3-type events, respectively.

edge of MT2 distribution agrees with the theoretical prediction of E2 type events

and does not have a kink. And, by comparing with the right panels of this figure

(i.e., after the RPt cut, when mostly E2 + ν-type events survive) we can see that the

location of the upper edge for MT2 distribution also does not change. These two

observations are easily explained by the fact that, as discussed earlier, the Mmax
T2

for E2 + ν-type events is same as for (purely) E2-type events. Based on the above

discussions for Z2 and Z3 models, we conclude that

• by observing whether the upper edge of MT2 distribution changes (in particu-

lar, reduces) after the RPt cut, we can distinguish between Z2 (including those

with neutrino appearing in decay of a mother) and Z3 models.
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Figure 3.9: MT2 distribution for combined E2 and E2 + ν events (1 : 2
ratio) before (left panel) and after (right panel) the RPt > 5 cut for
the case with one visible particle per decay chain. The mother mass is
M = 400 GeV and the DM mass mDM = 150 GeV. The trial mass is
chosen to be m̃ = 25 GeV. The solid red (dashed blue) lines represent
the theoretical predictions for the upper edges of MT2 distributions for
E2 and E3-type events, respectively.

3.5.1.2 More than one visible/SM particles in each decay chain

Next let us consider the case with more than one visible/SM particles per

decay chain28 To be specific, we consider the case with two visible particles per

decay chain. A similar analysis can be done if there are more than two visible

particles. To separate E2 and E3 type events, we consider the ratio of Ht, where

H i
t =

∑
a |P

via
t | is the scalar sum of Pt’s of visible particles in the same decay chain

28Note that in this case, we will get a double-edge in the visible invariant mass distribution from

a single mother decay, which can already be used to distinguish Z3 from Z2 models in Chapter 2.

However, it is always useful to have more techniques – such as the one, using decays of both mothers

in the event, that we are developing here – for such discrimination.
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(assuming we know which particles come from which decay chain), and i = 1, 2

is the index for the decay chains. Ht gives a measure of how energetic the visible

particles are in each decay chain. We define the Ht ratio as follows

RHt =
Hmax
t

Hmin
t

, (3.33)

where Hmax
t = max(H1

t , H
2
t ) and Hmin

t = min(H1
t , H

2
t ). From similar reasons to the

one visible particle case discussed above, we expect RHt for E3 type events to be

larger than that for E2 type events on average. To illustrate this feature, we simulate

E2, E3 and E2 + ν events for a model with M = 400 GeV and mDM = 150 GeV

using MadGraph/MadEvent. The results for the RHt distribution for different types

of events are shown in Figure 3.10. It can be seen that these distributions are very

similar to the RPt distributions for the one visible particle case shown in Figure 3.6.

The RHt for E3 type events is on average larger than that of E2 +ν events, which in

turn is on average larger than that for E2 type events. The survival rates for E2, E3

and E2 + ν events for the cut RHt > Rmin
Ht

with different choices of Rmin
Ht

are shown

in Table 3.2. As in the one visible case discussed before, if the survival rates for the

observed events are much larger than the E2 value shown in Table 3.2, then we can

conclude that the events cannot be purely of the E2 type. But large survival rates

alone cannot be used as a convincing evidence for Z3 models.

Just like in the case with one visible particle per decay chain, we again use a

combined analysis of RHt cut and upper edges of MT2 distributions to distinguish

between Z2 and Z3 models. However, there is one major difference between the

case with two visible particles per decay chain and the case with one visible particle
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Table 3.2: The percentage of survival events in E2, E3 type events and E2 +ν events
for different choice of Rmin

Ht
for the case with two visible particles per decay chain.

The mother mass is M = 400 GeV and the DM mass is mDM = 150 GeV.

Rmin
Ht

2 3 4 5 6 7 8 9
E2 0.1542 0.0401 0.0142 0.0065 0.0028 0.0015 0.0009 0.0006
E3 0.7990 0.5181 0.3103 0.1905 0.1228 0.0838 0.0583 0.0422

E2+ν 0.3086 0.1192 0.0551 0.0279 0.0166 0.0104 0.0074 0.0052

Figure 3.10: RHt distributions for E2 type events (upper-left panel), E3

type events (upper-right panel) and E2 + ν events (lower panel) for the
case with two visible particles on each decay chain. The mother mass is
400 GeV, the DM mass is 150 GeV.

per decay chain. In the latter case, we cannot find the mother and DM mass just

based on the MT2 upper edges for events before RPt cut. On the other hand, in the
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case at hand, there is a kink structure in the Mmax
T2 vs m̃ plot for E2-type events

events which tells us both the mother and the DM masses (see section 3.2). And, as

mentioned for the one visible particle case, Mmax
T2 for E3 type events is always smaller

than that of E2 type events, so that, before the RHt cut, Mmax
T2 for the combined

events is given by that of E2-type events. Therefore, in the present scenario, we

can find out the mother and DM masses before we do any RHt cut. We can then

predict the edge in MT2 for E3-type events, i.e., after the RHt cut (again, the events

surviving the cut will be mostly E3-type).

We now demonstrate an application of the general strategy outlined above.

Based on the survival rates shown in Table 3.2, we choose Rmin
Ht

= 3 in this case.

Figure 3.11 shows the MT2 distributions for the simulated pure E2 and E3 type

events before and after the RHt cut. The trial DM mass is chosen to be 9 GeV.

By comparing the left and the right panels in Figure 3.11, we can see that RHt cut

does not alter the upper edge of MT2 distribution for both E2 and E3 type events.

Therefore the RHt cut is not “biased” 29. We then consider a Z3 model where

the branching ratios of the mother particle decaying into two DM particles (plus

two visible particles) and into one DM particle (plus two visible particles) are both

50%. We show the MT2 distributions for the combined events before (left panel)

and after (right panel) the RHt > 3 cut in Figure 3.12. As expected, we see that

before the RHt cut, the upper edge of MT2 distribution agrees with the theoretical

prediction of E2 type events (shown by the red line). And, the upper edge for the

MT2 distribution gets reduced after the RHt cut, which can serve as an evidence

29However, a choice of higher Rmin
Ht

will give rise to bias.
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for Z3 model (cf. discussion of Z2 model below). In addition, as mentioned earlier,

knowing the mother and DM masses from the kink in the plot of Mmax
T2 before the

cut as a function of trial DM mass , we can predict (shown by the blue line) the

upper edge for the MT2 distribution for the events that passed the RHt cut (it is

just the theoretical Mmax
T2 for E3 type events). From the right panel of Figure 3.12

we see that

• the observed Mmax
T2 for events that passed the RHt cut does agree with the pre-

diction (cf. one visible particle case above), thus providing additional evidence

that the underlying physics model is Z3.

We can compare the above result with Z2 models. If we just have pure E2

type events, then the RHt cut does not change the upper edge of MT2 distribution,

as already seen in the upper panels of Figure 3.11. As in the one visible particle

case, we can also consider the case where there are E2 + ν events in addition to E2

events: we assume that the branching ratios for mother to decay into one DM plus

neutrino (plus two visible particles) and into one DM (plus two visible particles) are

both 50%. We show the MT2 distribution before (left panel) and after (right panel)

the RHt cut for this case in Figure 3.13, from which we can see that the upper edge

of MT2 distribution before the cut agrees with the theoretical prediction for E2-type

events and that it again does not change after the cut (as expected: see the similar

discussion for the one visible particle case).
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Figure 3.11: MT2 distribution for E2 (top two panels) and E3 type events
(lower two panels) for simulated events using a model with M = 400
GeV and mDM = 150 GeV and two visible particles per decay chain.
The trial mass is chosen to be m̃ = 9 GeV. The left panels are the MT2

distributions before the RHt > 3 cut, and the right panels are the MT2

distributions after the RHt > 3 cut. The solid red (dashed blue) lines
are the theoretical predictions for the upper edges of MT2 distribution
for E2 and E3 type events.

3.5.2 A summary of the analysis and its limitations

Now we summarize the analysis needed to be carried out to distinguish between

Z2 and Z3 models when the visible particles on each decay chain are identical.

For the case with one visible particle per decay chain:
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Figure 3.12: MT2 distribution for combined E2 and E3 type events (1 : 2
ratio) before (left panel) and after (right panel) the RHt > 3 cut for
the case with two visible particles per decay chain. The mother mass is
M = 400 GeV and the DM mass mDM = 150 GeV. The trial mass is
chosen to be m̃ = 9 GeV. The solid red (dashed blue) lines represent the
theoretical predictions for the upper edges of MT2 distributions for E2

and E3-type events, respectively.

• We first find Mmax
T2 with different trial DM masses (m̃) for all the events. We

can then substitute this value into
√
CE2 +

√
CE2 + m̃2 = Mmax

T2 to find the

parameter CE2 (see the details in section 3.4.1).

• We apply the cut RPt > 5 and find Mmax
T2 with different trial masses (m̃) for

the events that passed the cut. If we observe that the Mmax
T2 is reduced after

the RPt cut (as compared to before), then we can conclude that the underlying

physics model is Z3 type, otherwise it is Z2 type. On the other hand, if the

Mmax
T2 is not changed after the RPt cut, then we conclude that the underlying

physics model is Z2 type.
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Figure 3.13: MT2 distribution for combined E2 and E2 + ν events (1 : 2
ratio) before (left panel) and after (right panel) the RHt > 3 cut for
the case with two visible particles per decay chain. The mother mass is
M = 400 GeV and the DM mass mDM = 150 GeV. The trial mass is
chosen to be m̃ = 9 GeV. The solid red (dashed blue) lines represent the
theoretical predictions for the upper edges of MT2 distributions for E2

and E3-type events, respectively.

• If we confirmed (as above) that the physics model is Z3, we can then substitute

the Mmax
T2 (for various trial DM masses) for events after the RPt cut into√

CE3 +
√
CE3 + m̃2 = Mmax

T2 to find the parameter CE3 . Based on the values

of CE2 and CE3 , we can find the mother and DM masses simultaneously (again

see the details in section 3.4.1).

For the case with two visible particles per decay chain:

• We first find Mmax
T2 with different trial masses (m̃) for all events. We then

draw a Mmax
T2 versus m̃ plot and find the location of the kink. This can give

us both the mother and DM masses.
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• We calculate the theoretical predictions of Mmax
T2 for E3 type events using the

mother and DM masses found in the first step.

• We apply the cut RHt > 3 and find Mmax
T2 with different trial masses (m̃) for

events that passed the RHt cut. If the edge in MT2 reduces as a result of the

cut, then we conclude that the underlying physics model is Z3. Otherwise,

it is a Z2 model. Furthermore, if the new Mmax
T2 agrees with the theoretical

prediction for E3 type events found in the second step, then we have additional

evidence that it is a Z3 model.

In the above analysis, we have ignored the E4 type events. However, including

these events would not affect our analysis. Specifically, the Mmax
T2 for E4 type events

are always smaller than that of E2 and E3 type events (see Eqs. (3.11) and 3.19)

so that they would not affect the upper edges of MT2 distribution for events both

before and after the RPt/RHt cut. However, the survival rates for events after the

cuts might be modified. In any case, we did not use the survival rates alone to

distinguish between Z2 and Z3 models.

The above method of separating E2 and E3 type events using RPt or RHt cut

has its limitations. If the DM mass is very light compared to the mother mass,

then the emitted extra DM might not carry away as much energy. Thus, in E3-type

events, the visible particles in the decay chain with two DM particles can be closer

(relative to the heavy DM case) in energy to those in the other decay chain. In

fact, the DM becomes similar to a neutrino in this case so that the RPt or RHt

distributions for E3 type events should be similar to those for E2 +ν-type events, in
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turn, not much different from that of E2 type events (cf. heavy DM case), and the

distinguishing power of the RPt or RHt cut is reduced. Therefore, in order for the RPt

or RHt cut to efficiently separate E2 and E3 type events (and hence to distinguish

between Z3 and Z2 models), we need the mass ratio between DM (mDM) mother

(M) masses mDM
M

to be sizeable30.

Finally, we note that the cut on ratio of momentum/energy on the two sides of

the full event can also be used – either by itself or in conjunction with edges in MT2

– for the non-identical visible particles case (discussed in the previous section) in

order to distinguish E2 and E3-type events. Of course, in that case, just the identity

of the visible particles was enough to separate E3 from E2-type events.

3.5.3 Signal fakes by an (effective) 2nd DM particle

Next, we discuss the strategy to distinguish Z2 models with two different DM

particles) from Z3 models, similar to the discussion in section 3.4.3. However, now

we consider the two decay chains with one and two DM, respectively, in Z3 models

or with the two different DM particles in Z2 models having identical visible particles

(unlike in section 3.4.3). In this case, there is a modification from the case discussed

earlier: we obtain one MT2 distribution by simply adding MT2 distributions for

E ′2, 3, 4-type events in Z2 models (and similarly, E2, 3, 4-type events in Z3 models).

Let us consider first the case with a single visible particle per decay chain. As

mentioned before, E ′2, E ′3, and E ′4-type events, i.e., “sub”-distributions in the case

30Of course, we needmDM/M < 0.5 in order for the decay chain with two DM to be kinematically

allowed.
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of Z2 models, all give a sharp upper edge in the MT2 distribution. This observation

leads to the expectation of two sharp “kinks” – at the location of the “would-

be” (smaller) edges of E ′3, and E ′4-type events – in the middle of the combined MT2

distribution31, in addition to the overall upper edge resulting from E ′2 type events.32.

Note that we had a similar discussion for Z3 models in the beginning of section

3.5. However, in the case of Z3 models only E2 type events give a sharp upper edge

and the other two type events, i.e., E3 and E4 give relatively longer tails (albeit

with smaller endpoints than E2-type events) so that two kinks in the combined MT2

distribution from E3 and E4 type events are not clear. Therefore, clear sharp kink(s)

in the MT2 distribution would suggest that the events are the result of a Z2 model

(as discussed earlier).

For the case with more than one visible particle in each decay chain, the

above idea of using kinks in MT2 distribution might fail since the edges of the sub-

distributions are not sharp, even in the case of Z2 models (as discussed in section

3.4.3). Instead, we can do cross-checks like in the case of non-identical visible

particle(s) in the two decay chains (discussed in section 3.4.3) i.e., we first measure

the masses of mother and DM particles by examining the location of the kink present

in the maximum MT2 as a function of the trial DM mass for E2 or E ′2-type events,

and then predict the location of edges in the other types of events. Of course, in

order to follow this strategy in the present case, one must first separate the events

31not to be confused with kink in edge of MT2 as a function of trial mass!
32The situation is similar to the double edge signal in the case of off-shell intermediate particles

studied in Chapter 2
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which are mixed, i.e., combination of E2, 3, 4 in the case of Z3 models and E ′2, 3, 4 for

Z2 models, into each individual type by applying Pt/Ht ratio cut (as explained in

detail in section 3.5.1 for Z3 models). Note that even mixed events in Z2 models with

a second DM-like particle can be separated by Pt/Ht ratio cut because the E ′3-type

events also have an imbalance in the energy/momentum of the visible on the two

decay chains due to the difference between mDM and m′DM .33 Of course, we can also

do a similar separation for the case of one visible particle in each decay chain (which

was just discussed above) and then repeat the strategy which we discussed in section

3.4.3 for the case of visible particle in the two decay chains being non-identical, i.e.,

consider the shape of the separated MT2 distributions in order to distinguish Z3

from Z2 models.

33Obviously, one cannot then use this cut on its own in order to distinguish Z3 from Z2 models.
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Chapter 4: Energy peak

4.1 Overview

In this chapter, we turn our attention to the energy spectrum of visible decay

products. The method here is predicated upon the physical implication of the

peak in the energy distribution of visible particles. Again, the signal processes of

interest are similar to those in Chapters 2 and 3, i.e., the decay of a heavy mother

particle, which is charged under the DM stabilization and SM symmetries, into DM

particle(s) along with the relevant SM/visible particle(s). The basic observable here

is the energy spectrum of such visible particle(s) as mentioned above.

We again emphasize that this technique can be complementary to the variables

described in the previous two chapters in that it takes care of the cases which cannot

be covered by either invariant or stransverse mass variables. To be more specific

we exemplify the situation in which the decay of a mother particle involves only

two DM particles and one SM/visible particle for Z3 models. Clearly, the invariant

mass discussed in Chapter 2 is not a good handle since there exists only one visible

particle in each decay chain. Also the MT2 method described in Chapter 3 is not

available since even Z3 models allow only a single decay topology like Z2 models so

that for both symmetries only a single type of MT2 distribution is available.
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Before studying the concrete model which will be described later in detail, we

first review the recent observation about the peak position in the energy spectrum

of a visible particle coming from a two-body decay process. Based on this review,

we then generalize the basic idea to the three-body decays and derive new results

about the energy spectrum. We point out that the energy peaks can be compared

with “reference” values obtained by another observable, one of which is the MT2

variable which is thoroughly discussed in Chapter 3. It turns out that for two-body

decays the peak position in the energy distribution is the same as the associated

reference value while for three-body decays the peak position is smaller than its

reference value. These new observations establish the general technique illustrated

later in order to discern decays into between one DM particle and two DM particles.

As a realistic model consideration, we employ the decays of bottom partners

at the LHC. There we show that the model process of interest satisfies the necessary

conditions to ensure the validity of the theory argument mentioned above: 1) the

visible decay product, the b quark, is relatively light compared with the expected

mass of the bottom partner so that it can be treated as effectively massless, and

2) the bottom partners are predominantly produced via QCD, which guarantees

unpolarized production of them. To be more realistic we identify the relevant back-

grounds mimicking the signal process. It turns out that they are actually under

control along with a suitable and reasonable choice of cuts, and thus one can see

that our technique proposed here performs well enough even with backgrounds.
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4.2 Theoretical observations on kinematics

As mentioned in the previous section, we begin first by reviewing the relevant

theoretical observations about the kinematics of two-body and three-body decays.

Specifically, we review the remarks on two-body decays described in [54]. We then

generalize this result to three-body decay kinematics and study the features that dis-

tinguish it from two-body decay kinematics. We also briefly review applications of

the kinematic variable MT2 to two-body and three-body decays and discuss the dis-

tinct features of the two different decay processes (see Chapter 3 and reference [4]).

For the two-body decay, we assume that a heavy particle A decays into a

massless visible daughter b and another daughter X which can be massive and

invisible:

A→ bX. (4.1)

On the other hand, for a three-body decay the heavy particle A decays into particles

b, X and another particle Y

A→ bX Y . (4.2)

Like particle X, particle Y can also be massive and invisible, but it is not necessarily

the same species as particle X.
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4.2.1 The peak of the energy distribution of a visible daughter

4.2.1.1 Two-body decay

It is well-known that the energy of particle b in the rest frame of its mother

particle A is fixed, which implies a δ function-like distribution, and the simple ana-

lytic expression for this energy can be written in terms of the two mass parameters

mA and mX :

E∗b =
m2
A −m2

X

2mA

. (4.3)

Typically, the mother particle is produced in the laboratory frame at colliders with

a boost that varies with each event. Since the energy is not an invariant quantity, it

is clear that the δ function-like distribution for the energy as described in the rest

frame of the mother is smeared as we go to the laboratory frame. Thus, naively it

seems that the information encoded in Eq. (4.3) might be lost or at least not easily

accessed in the laboratory frame. Nevertheless, it turns out that such information is

retained. We denote the energy of the visible particle b as measured in the laboratory

frame as Eb. Remarkably, the location of the peak of the laboratory frame energy

distribution is the same as the fixed rest-frame energy given in Eq. (4.3):

Epeak
b = E∗b , (4.4)

as was shown in [54,55].

Let us briefly review the proof of this result while looking ahead to the discus-

sion of the three-body case. As mentioned before, the rest-frame energy of particle
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b must be Lorentz-transformed. The energy in the laboratory frame is given by

Eb = E∗bγ(1 + β cos θ∗) = E∗b (γ +
√
γ2 − 1 cos θ∗) , (4.5)

where γ is the Lorentz boost factor of the mother in the laboratory frame and θ∗

defines the angle between the emission direction of the particle b in the rest frame of

the mother and the direction of the boost ~β, and where we have used the relationship

γβ =
√
γ2 − 1. If the mother particle is produced unpolarized, i.e., it is either a

scalar particle or a particle with spin produced with equal likelihood in all possible

polarization states, the probability distribution of cos θ∗ is flat, and thus so is that

of Eb. Since cos θ∗ varies between −1 and +1 for any given γ, the shape of the

distribution in Eb is simply given by a rectangle spanning the range

Eb ∈
[
E∗b (γ −

√
γ2 − 1), E∗b (γ +

√
γ2 − 1)

]
. (4.6)

It is crucial to note that the lower and upper bounds of the above-given range are

always smaller and greater, respectively, than Eb = E∗b for any given γ, so that E∗b is

covered by every single rectangle. As long as the distribution of the mother particle

boost is non-vanishing in a small region near γ = 1, E∗ is the only value of Eb to

have this feature. Furthermore, because the energy distribution is flat for any boost

factor γ, no other energy value has a larger contribution to the distribution than

E∗b . Thus, the peak in the energy distribution of particle b is unambiguously located

at Eb = E∗b .

The existence of this peak can be understood formally. From the fact that the

differential decay width in cos θ∗ is constant, we can derive the differential decay
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width in Eb for a fixed γ as follows:

1

Γ

dΓ

dEb

∣∣∣∣
fixed γ

=
1

Γ

dΓ

d cos θ∗
d cos θ∗

dEb

∣∣∣∣
fixed γ

=
1

2E∗b
√
γ2 − 1

Θ
[
Eb − E∗b

(
γ −

√
γ2 − 1

)]
Θ
[
−Eb + E∗b

(
γ +

√
γ2 − 1

)]
,(4.7)

where the two Θ(Eb) are the usual Heaviside step functions, which here merely de-

fine the range of Eb. To obtain the full expression for any given Eb, one should

integrate over all γ factors contributing to this Eb. Letting g(γ) denote the prob-

ability distribution of the boost factor γ of the mother particles, the normalized

energy distribution f2-body(Eb) can be expressed as the following integral

f2-body(Eb) =

∫ ∞
1
2

(
Eb
E∗
b

+
E∗
b

Eb

) dγ g(γ)

2E∗b
√
γ2 − 1

. (4.8)

The lower limit in the integral can be computed by solving the following equation

for γ:

Eb = E∗b

(
γ ±

√
γ2 − 1

)
(4.9)

with the positive (negative) signature being relevant for Eb ≥ E∗b (Eb < E∗b ). We

can also calculate the first derivative of eq. (4.8) with respect to Eb as follows:

f ′2-body(Eb) = − 1

2E∗bEb
sgn

(
Eb
E∗b
− E∗b
Eb

)
g

(
1

2

(
Eb
E∗b

+
E∗b
Eb

))
. (4.10)

The solutions of f ′2-body(Eb) = 0 give the extrema of f2-body(Eb), and given the

expression f ′2-body(Eb) in Eq. (4.10), these zeros originate from those of g(γ). For

practical purposes, one can take g(γ) to be non-vanishing for particles produced at

colliders for any finite value of γ greater than 1 1. As far as zeros are concerned, two

1It must be noted that due to the finite energy of the collider, there is a kinematic upper limit
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possible cases arise for g(1) (corresponding to Eb = E∗b ). If it vanishes, f ′2-body(Eb =

E∗b ) ∝ g(1) = 0, which implies that the distribution has a unique extremum at

Eb = E∗b . If g(1) 6= 0, f ′2-body(Eb) has an overall sign change at Eb = E∗b . As a result,

the distribution has a cusp and is concave-down at Eb = E∗b . Moreover, the function

f2-body(Eb) has to be positive to be physical, and has to vanish as Eb approaches

either 0 or ∞, which is manifest from the fact that in those two limits the definite

integral in Eq. (4.8) is trivial. Combining all of these considerations, one can easily

see that the point Eb = E∗b is necessarily the peak value of the distribution in both

cases.

4.2.1.2 Three-body decay

We now generalize the above argument to three-body decays. We denote the

energy of the visible particle b measured in the rest frame of the mother particle

A as Ēb. We also denote the normalized rest-frame energy distribution of parti-

cle b as h(Ēb). In the two-body decay, this rest-frame energy is single-valued (see

Eq. (4.3)), and so the corresponding distribution h(Ēb) was trivially given by a δ-

function. However, when another decay product is introduced, for instance, particle

Y in Eq. (4.2), then the energy of particle b is no longer fixed, even in the mother’s

rest frame: h(Ēb) 6= δ
(
Ēb − E∗b

)
. Although the detailed shape of this rest-frame

energy distribution is model-dependent, the kinematic upper and lower endpoints

are model-independent. Since particle b is assumed massless, the lower endpoint

for the boost factor γ of the heavy mother particles. However, this kinematic limit is usually very

large and can effectively be taken as infinite.
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corresponds to the case where energy-momentum conservation is satisfied by par-

ticles X and Y alone. On the other hand, the upper endpoint is obtained when

the invariant mass of X and Y equals mX +mY ,which corresponds to the situation

where X and Y are produced at rest in their overall center-of-mass frame. Thus,

we have

Ēmin
b = 0 , (4.11)

Ēmax
b =

m2
A − (mX +mY )2

2mA

. (4.12)

For any fixed γ, the differential decay width in the energy of particle b in the

laboratory frame is no longer a simple rectangle due to non-trivial h(Ēb). For any

specific laboratory frame energy Eb, contributions should be taken from all relevant

values of Ēb and weighted by h(Ēb). This can be written as

1

Γ

dΓ

dEb

∣∣∣∣
fixed γ

=

∫ Ē>b

Ē<b

dĒb
h(Ēb)

2Ēb
√
γ2 − 1

, (4.13)

where

Ē<
b = max

[
Ēmin
b ,

Eb

γ +
√
γ2 − 1

]
=

Eb

γ +
√
γ2 − 1

, (4.14)

Ē>
b = min

[
Ēmax
b ,

Eb

γ −
√
γ2 − 1

]
, (4.15)

with Eb running from 0 to Ēmax
b

(
γ +

√
γ2 − 1

)
. Again, since the visible particle

is assumed massless, Ēmin
b is zero and so the second equality in Eq. (4.14) holds

trivially.

Finding an analytic expression for the location of the peak is difficult because

of the model-dependence of h(Ēb), and it follows that the precise location of the
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peak is also model-dependent. Nevertheless, we can still obtain a bound on the

position of the peak for fixed γ. Suppose that we are interested in the functional

value of the energy distribution at a certain value of Eb in the laboratory frame;

according to the integral representation given above, the relevant contributions to

this Eb come from a range of center of mass energies which go from Ē ′b to Ē ′′b , where

these are defined by

Ē ′b(γ +
√
γ2 − 1) = Eb , (4.16)

Ē ′′b (γ −
√
γ2 − 1) = Eb . (4.17)

Each energy contributes with weight described by h(Ēb), as implied by Eq. (4.13).

Let us assume that Ē ′′b = Ēmax
b and denote the corresponding energy in the

laboratory frame as Elimit
b , given by

Elimit
b = Ēmax

b (γ −
√
γ2 − 1). (4.18)

From these considerations, it follows that all rest-frame energies in the range from

Ē ′b =
Elimit
b

(γ+
√
γ2−1)

to Ē ′′b = Ēmax
b contribute to a chosen energy in the laboratory

frame, Elimit
b . On the other hand, any laboratory frame energy greater than Elimit

b

has contributions from Ē ′b >
Elimit
b

(γ+
√
γ2−1)

to Ē ′′b = Ēmax
b ; the relevant range of the

rest-frame energy values will shrink so that the peak cannot exceed Elimit
b :

Epeak
b

∣∣∣
fixed γ

< Ēmax
b (γ −

√
γ2 − 1) ≤ Ēmax

b for any fixed γ. (4.19)

In order to ensure that the first inequality holds even for γ = 1, we assume in

the last equation that h
(
Ēmax
b

)
= 0, which is typically the case for a three-body

decay. In order to obtain the shape of the energy distribution of particle b in the
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laboratory frame, all relevant values of γ should be integrated over as with the two-

body kinematics in the previous section. Hence, the laboratory frame distribution

reads

f3-body(Eb) =
1

Γ

dΓ

dEb
=

∫ Ē>b

Ē<b

dĒb

∫ ∞
γmin(Eb, Ēb)

dγ
g(γ)h(Ēb)

2Ēb
√
γ2 − 1

. (4.20)

Since the argument leading to Eq. (4.19) holds for every γ, the superposition of

contributions from all relevant boost factors does not alter this observation. There-

fore, we can see that irrespective of g(γ) and h(Ēb), the peak position of the energy

distribution of particle b in the laboratory frame is always less than the maximum

rest-frame energy:

Epeak
b < Ēmax

b . (4.21)

To gain intuition on the magnitude of the typical difference between the peak

of the energy distribution in the laboratory frame and the maximum rest frame

energy, we show the ratio of the two as a function of γ in Figure 4.1. From the

figure, it is clear that as the typical γ increases beyond γ = 1, i.e., as the system

becomes more boosted, the location of the peak in the energy distribution becomes

smaller. An appreciable shift of order 10% is achieved for a modest boost of order

γ − 1 ' 10−2.

It should be noted that all results here for both two-body and three-body

decays are valid to leading order in perturbation theory. The presence of extra

radiation in the decay will effectively add extra bodies to the relevant kinematics.

Specifically, extra radiation can turn a two-body decay into a three-body one, which
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Figure 4.1: Relative separation of the peak of the laboratory energy
distribution from the maximal energy in the center-of-mass frame of
the three-body decay kinematics as per Eq. (4.21). The horizontal red
dashed line marks a 10% variation of the peak energy from the maximal
value in the rest frame.

for our investigation would constitute a fake signal of two DM particles being pro-

duced in the decay of a heavy new physics particle. Therefore, we have to remark

that in some cases, for instance, when the heavy new physics is typically produced

with very small boost, the differences between the two scenarios of DM stabilization

may be tiny and a study beyond leading order may be necessary. From Figure 4.1 it

seems, however, that the typical effect of the presence of two dark matter particles

per decay of the heavy new particle is to easily induce an order one effect on the

peak position. Therefore, we anticipate that such an effect would be much larger

than the expected uncertainty from higher order corrections, which we estimate to

be of order 10%.

Before closing this section, we emphasize that we shall use the right-hand sides

of Eqs. (4.4) and (4.21) as “reference” values to which the measurements of their

respective left-hand side values (extracted from the energy distribution) are to be
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compared. In the next section, we show that such a reference value can, in fact, be

extracted from an analysis of MT2.

4.2.2 The kinematic endpoint of the MT2 distribution

In this section, we quote some of the results provided in Chapter 3 and discuss

new observations for later usage. For the MT2 analysis, we make further assumptions

as follow:

1) all massive decay products, i.e., particles X and Y in Eqs. (4.1) and (4.2), are

invisible;

2) the mother particles A are produced in pairs;

3) the entire decay process is symmetric in the sense that the mother particles

are pair-produced and then decay to the same decay products, that is

pp→ AA , A→ X b or A→ b X Y , (4.22)

for the two-body decay and the three-body decay, respectively.

The last assumption is especially relevant to make contact with the problem of

distinguishing the Z2 and the Z3 dark matter interactions, as detailed in the intro-

duction.

As briefly reviewed in Chapter 3, for two-body decays, the MT2 distribution

has a kinematic endpoint

Mmax
T2,2−body(m̃) = C2−body +

√
C2

2−body + m̃2 , (4.23)
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where the C parameter is given by

C2−body =
m2
A −m2

X

2mX

. (4.24)

This C parameter can be deduced from Eq. (4.23) by substituting the experimental

value of the kinematic endpoint and the chosen trial DM mass. On the other hand,

for three-body decays, the MT2 distribution has a kinematic endpoint

Mmax
T2,3−body(m̃) = C3−body +

√
C2

3−body + m̃2 , (4.25)

where the C parameter is given by

C3−body =
m2
A − (mX +mY )2

2mA

. (4.26)

Before closing the Section, a critical observation is in order. According to

Eqs. (4.23) and (4.25), we see that the observed values of Mmax
T2 as a function of the

various chosen trial DM masses (m̃) can be fitted with the same equation in both

the two- and three-body cases:

Mmax
T2,obs. = C +

√
C + m̃2 , (4.27)

where the parameter C can be extracted from the fit. This will be used in the

following to extract the C parameter without making any assumption on the number

of invisible products in the decay.

The fact that the MT2 endpoint can be described with the same parametriza-

tion in terms of a generic C parameter, as in Eq. (4.27), is not surprising. In fact,

for the two-body case in events near the endpoint each mother needs to have its

decay products (b and X) emitted at the same rapidity (although the two moth-

ers A can be at different rapidities) [4]. Analogously for the three-body case, the
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two invisible decay products (X and Y ) and the particle b produced at the same

interaction vertex all need to share the same rapidity. In such a situation, the two

invisible particles are kinematically equivalent to a single invisible particle, and so

the decay can still be effectively reduced to a two-body decay. In this sense, Mmax
T2

for the three-body case corresponds to the same kinematic configuration that gives

the endpoint for the two-body case. However, it must be noted that the C param-

eter actually provides different information in the two cases. For two-body decays,

the C parameter in Eq. (4.24) is the same as the rest-frame energy of particle b in

Eq. (4.3), whereas for three-body decays, the C parameter in Eq. (4.26) is the same

as the maximum energy of particle b in the rest frame in Eq. (4.12) 2:

C =


E∗b for two-body decays

Ēmax
b for three-body decays.

(4.28)

This observation puts us in the position to extract the C parameter from the

MT2 distribution and compare it with the peak value in the energy distribution of

the visible particle so as to test the nature of the decay.

2Alternatively one can interpret the C parameter of the three-body decay as the analogy of the

two-body case where the mass of the single DM particle is replaced by the mass of the effective

single body made of the two DM, i.e. the sum of the mass of the two DM particles, as apparent

from the comparison of Eqs. (4.24) and (4.26).
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4.3 General Strategy to distinguish Z2 and Z3

We now apply the above theoretical observation to the determination of the

underlying DM stabilization symmetry. To pinpoint this stabilization symmetry, we

study the energy distribution of the particle b from the process defined in Eq. (4.22).

In particular, we exploit the relation between this energy distribution and the distri-

bution of the MT2 variable in the same process. As will be clear from the following

analysis, the correlation between features of the distribution of these two observables

will allow us to make a much firmer statement than merely utilizing one of them.

In point of fact, the MT2 distribution of the process Eq. (4.22) could itself in

principle be a good discriminator between Z2 and Z3 models. Indeed, as discussed in

Section 4.2.2, the kinematic endpoint in the MT2 distribution of the visible particles

from a duplicate three-body decay, which is realized under Z3 symmetry, develops

a longer tail than that of two-body decays, the latter being realized under Z2 sym-

metry. Therefore, a less sharp fall-off near the endpoint could be a sign of more

than one invisible particle in the decay (see Chapter 3 and reference [73] for more

details). However, shape analyses of the tail of the MT2 distribution are rather

delicate, especially in the presence of a background. Besides the issues raised by

the backgrounds, there are also some inherent complications in using only the shape

of the MT2 distribution to determine the underlying stabilization symmetry. For

example, the effects of spin correlation could change the shape of the MT2 distribu-

tion, particularly the behavior near the upper endpoint of the distribution. In other

words, a certain “choice” of spin correlation could alter the sharp edge of the MT2

122



distribution in Z2 models, mimicking the typical distribution shape characteristic of

Z3 models, and vice versa.

Alternatively, one could try to use the energy distribution of the b particles in

events from the process Eq. (4.22). Recall that the distribution of the visible particle

energy in their mother particle’s rest frame is δ function-like in Z2 models, whereas

the distribution in Z3 models is non-trivial. Therefore, once the decay products are

boosted to the laboratory frame from their mother particle’s rest frame, the energy

distribution for Z3 physics is expected to be relatively broader for a given mother

particle. However, it is very hard to quantify the width of the resulting energy

distributions in both Z2 and Z3 models because it is strongly model-dependent. In

particular, the shape of the energy distribution in the laboratory frame is governed

by the boost distributions of the mother particles, which are subject to uncertain-

ties. Such uncertainties come from the fact that we are not a priori aware of the

underlying dynamics governing the new physics involved in the process Eq. (4.22),

which affects, for instance, the production mechanism of the mother particles.

In order to overcome the difficulties described above, we propose here a com-

bined analysis of the two distributions. The goal is to obtain a more robust technique

that is sensitive to the differences between the Z2 and the Z3 models but largely in-

dependent of the other details of the models. Also, we aim at formulating a method

that is less demanding from an experimental standpoint and more stable against the

inclusion of experimental errors. The analysis proceeds in two steps as explained in

the following.

From the data, one first produces the MT2 distribution using a trial DM mass
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and extracts the kinematic endpoint Mmax
T2,obs.. Then, by substituting the measured

endpoint into the function given in Eq. (4.27), one obtains the C parameter. As

illustrated in Eq. (4.28), the C parameter has different physical implications depend-

ing on the stabilization symmetry of the DM. For the Z2 case, it is the energy of the

visible particle in the rest frame of its mother particle, and by virtue of [54, 55], it

is expected to be the value of the peak of the energy distribution in the laboratory

frame. Alternatively, for a Z3 model the C parameter is an upper bound to the

peak of the energy distribution in the laboratory frame. Therefore, the comparison

between the extracted C parameter and the peak position in the b particle energy

distribution enables us to determine whether the relevant physics is Z2 or Z3. This

observation can be summarized as follows:

Epeak
b,obs. = Cobs. =

m2
B′ −m2

χ

2mB′
for Z2

Epeak
b,obs. < Cobs. =

m2
B′ − 4m2

χ

2mB′
for Z3. (4.29)

Some remarks must be made about our proposal. First, the use of the dis-

tribution of MT2 is needed only to the extent that this is useful to extract the C

parameter. In fact, in order to find the reference value needed for the comparison

of Eq. (4.29), any other observable that is sensitive to the relevant combination of

masses could be used. Second, spin correlation effects do not change the location of

the peak in the energy distribution of the b particle as long as the bottom partners

are produced unpolarized, as discussed earlier. Additionally, although the overall

shape near the endpoint of the MT2 distribution could be affected by non-trivial

spin correlation effects, the endpoint value is not. Furthermore, substantial errors
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in the determination of the MT2 endpoint can be tolerated. In fact, as shown in

Figure 4.1, the difference between the reference value and the typical peak of the

energy distribution in a three-body decay is quite large.

For the above reasons, we believe that compared with other methods which

utilize only MT2, the method presented here is more general and more robust in high-

lighting the different kinematic behavior inherent to the two different stabilization

symmetries.

In order to demonstrate the feasibility of the proposed analysis, we work out

in detail an application of our method to the case of pair production of partners of

the b quark that decay into a b quark and one or two invisible particles in the next

section.

4.4 Application to b quark partner decays

In this Section, we study in detail the production of b quark partners, B′, and

their subsequent decay into b quarks and one or two DM particles. As mentioned in

the introduction, b quark partners occur in many well-motivated extensions to the

SM. In the following, we apply the results of Sections 4.2 and 4.3 with the underlying

goal of “counting” the number of DM particles in the above decay process. Although

we employ DM and a b quark partner with specific spin for the purpose of illustrating

our technique, we emphasize that our method can be applied for any appropriate

choice of spins for the involved particles. In fact, the choice of spins does not alter

our results so long as the mother particles are produced unpolarized.
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Figure 4.2: The signal processes of interest for Z2 (left panel) and Z3

(right panel) stabilization symmetry of the dark matter particle χ.

Because the b quark partners are charged under QCD, the dominant pro-

duction channel at hadron colliders would be via color gauge interactions, which

guarantee that the b quark partners would be produced unpolarized and in pairs.

Due to the fact that these particles are produced in pairs, the above results given

for MT2 are in force. Furthermore, the unpolarized production guarantees that the

results of Section 4.2 can be applied to the energy distribution.

In what follows, we consider the QCD pair production of heavy b quark part-

ners at the LHC running at a center-of-mass energy
√
s = 14 TeV, and we take as

signal processes:

pp→ B′B̄′ → bb̄χχ for Z2 , (4.30)

pp→ B′B̄′ → bb̄χχχ̄χ̄ for Z3 , (4.31)

where χ is the DM particle. Once produced, we assume that each B′ decays into a

b quark and either one or two stable neutral weakly-interacting particles (see also

Figure 4.2). These processes will appear in the detector as jets from the two b quarks
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and missing transverse energy

pp→ bb̄+ E/T for both Z2 and Z3. (4.32)

Note that our program is meant to be carried out only after the discovery of

the heavy b quark partner. In fact, our focus is not on discovery, but on determining

what type of symmetry governs the associated decays of such a particle once the

discovery is made, specifically in the bb̄+E/T channel. In order to achieve this goal,

a high integrated luminosity would be required to make a definitive determination

of the underlying symmetry. Likewise, compared with the criteria necessary to

claim the discovery of such a resonance, a different set of event selection conditions

would be likely have to be used in order to make a definitive determination of the

underlying stabilization symmetry.

For our proof-of-concept example, we take mB′ = 800 GeV and mχ = 100 GeV

while noting that searches for scalar b quark partners such as reference [74] are in

principle sensitive to our final state. Unfortunately, there is no available interpreta-

tion of this search in terms of a fermionic partner; a naive rescaling of the current

limits on a scalar partner with mass of about 650 GeV shows that our choice of

mass parameters might be on the verge of exclusion. However, we remark that our

choice is only for the purpose of illustrating our technique, and can just as easily be

applied to a heavier B′.

There are several SM backgrounds that are also able to give the same detector

signature as our signal. Since we require a double b-tagging, the main backgrounds

to our signal are the following three processes: i) Z + bb̄, where Z decays into two
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neutrinos, ii) W± + bb̄, where the W decay products are not detected, and iii) tt̄

where again the two W ’s from the top decay go undetected 3. The first background

is irreducible, while the latter two are reducible.

To reduce these backgrounds to a level that allows clear extraction of the

features of the b-jet energy and MT2 distribution, we put constraints on the following

observables:

• pT, j1 is the transverse momentum of the hardest jet in the event,

• E/T = |−
∑

i ~pT, i| is the missing transverse energy of the event and is computed

summing over all reconstructed objects,

• ST = 2λ2
λ1+λ2

is the transverse sphericity of the event. Due to the tendency of

QCD to produce strongly directional events, the background processes typi-

cally have small sphericity, while decay products of a heavy B′ are expected

to be significantly more isotropic and hence will preferentially have a larger

sphericity [75].

In general, the mismeasurement of the momenta of the observable objects used

to compute E/T can produce an instrumental source of E/T , as opposed to a “physical”

source of E/T which originates from invisible particles carrying away momentum.

The mismeasurement of E/T can grow as objects of larger pT are found in an event,

and it is therefore useful to compare the measured missing transverse energy with

some measure of the global transverse momentum of the event. For this reason, we

3By undetected we mean that the decay products do not pass our selection criteria or are

legitimately undetected.
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introduce the quantity 4

f = E/T/Meff where Meff ≡ E/T + |pT j1 |+ |pT j2| ,

which is expected to be small for events where the E/T comes from mismeasurements,

but should be large for events where invisible particles carry away momentum. Fur-

thermore, when the instrumental E/T originates mostly from the mismeasurement of

a single object, the E/T is expected to point approximately in the direction of one of

the visible momenta. Therefore, the events where the E/T is purely instrumental are

expected to have a small

∆φ(E/T , jets),

which is the angle between the direction of the missing transverse momentum and

any ~pT j.

To select signal events and reject background events, we choose the following

set of cuts:

0 leptons with |ηl| < 2.5 and pT l > 20 GeV for l = e, µ, τ , (4.33)

2 b-tagged jets with |ηb| < 2.5 and pT b1 > 100 GeV, pT b2 > 40 GeV,(4.34)

E/T > 300 GeV, (4.35)

ST > 0.4 , (4.36)

f > 0.3 , (4.37)

∆φmin(E/T , bi) > 0.2 rad for all the selected b-jets bi . (4.38)

4Sometimes a slightly different quantity f ′ = E/T /
∑

i |pT,i| is used in the same context of our

f . The two variables have the same meaning and give similar results.
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Note that the our cuts are of the same sort used in experimental searches for new

physics in final states with large E/T , 0 leptons and jets including 1 or more b-jets (see,

for instance, [76]). However, notice that in our analysis, we privilege the strength of

the signal over the statistical significance of the observation. As already mentioned,

we imagine this investigation being carried out after the initial discovery of a B′

has taken place. Hence, we favor enhancing the signal to better study the detailed

properties of the interaction(s) of B′. For this reason, we cut more aggressively

on E/T and ST than in experimental searches and other phenomenological papers

focusing on the discovery of B′s (see, for example, [77]).

We consider quarks separated by ∆R > 0.7 as jets. With this as our condition

on jet reconstruction, the cuts of eq. (4.33)–(4.38) can be readily applied to the

signals and to the Z + bb̄ background; the resulting cross-sections are shown in

Table 4.1. These cross-sections are computed from samples of events obtained using

the Monte Carlo event generator MadGraph5 v1.4.7 [78] and parton distribution

functions CTEQ6L1 [79]. For the sake of completeness, we specify that in generating

these event samples we assumed a fermionic B′ and a weakly interacting scalar χ.

However, as already stressed, we anticipate that different choices of spin for these

particles will not significantly affect our final result because the production via QCD

gives rise to an effectively unpolarized sample of b quark partners.

The estimate of the reducible backgrounds requires more work, as it is partic-

ularly important to accurately model the possible causes that make

pp→ tt̄→ bb̄+X and pp→ W± + bb̄

130



Table 4.1: Cross-sections in fb of the signals and the dominant background Z + bb̄
after the cuts of Eqs. (4.33)–(4.38). The mass spectrum for the signals is mB′ = 800
GeV and mχ = 100 GeV. The line “No cuts” is for the inclusive cross-section of the
signal. The line “precuts” gives the cross-section after the cuts E/T > 60 GeV, pT,b >
30 GeV, ηb < 2.5,∆Rbb > 0.7 that are imposed solely to avoid a divergence in the
leading order computation of the background. In the last line, the rate of tagging b
quarks is assumed 66% [80].

Cut Z2 (B → bχ) Z3 (B → bχχ̄) Z + bb̄ (Z → νν̄)
No cuts 159.75 159.75 –
Precuts 139.89 136.73 2927

pj1T > 100 GeV, pj2T > 40 GeV 139.64 133.76 971.9
E/T > 300 GeV 101.73 69.01 19.93

f > 0.3 89.66 65.21 19.40
∆φmin > 0.2 88.95 64.31 18.81
ST > 0.4 30.03 16.07 1.96

2 b-tagged jets 13.29 7.18 0.87

a background to our 2b+E/T signal. In fact, these processes have larger cross sections

than Z+bb̄. However, they also typically give rise to extra leptons or extra jets with

respect to our selection criteria in Eqs. (4.33)–(4.38). Therefore, in order for us to

consider them as background events, it is necessary for the extra leptons or jets to

fail our selection criteria. Accordingly, the relevant cross-section for these processes

is significantly reduced compared to the total. In fact, we find that tt̄ and W±bb̄ are

subdominant background sources compared to Z + bb̄. In what follows, we describe

how we estimated the background rate from tt̄ and W±bb̄.

An accurate determination of the proportion of tt̄ andW±bb̄ background events

that pass the cuts in eq. (4.33)–(4.38) depends on the finer details of the detector

used to observe these events. However, the most important causes for the extra jets

and leptons in the reducible backgrounds to fail our jet and lepton identification

criteria can be understood at the matrix element level. We estimate the rate of
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the reducible backgrounds by requiring that at the matrix element level, a suitable

number of final states from the tt̄ and W + bb̄ production fail the selections of

Eqs. (4.33)–(4.38) for one of the following reasons:

• the lepton or quark is too soft, i.e., pT,l < 20 GeV, pT,j < 30 GeV

• or the lepton or quark is not central, i.e. |ηl,j| > 2.5 .

Additionally, when any quark or lepton is too close to a b quark, we consider

them as having been merged by the detector, and the resulting object is counted

as a b quark (i.e., ∆Rbl < 0.7, ∆Rbj < 0.7), or if any light quark or lepton is too

close to a light jet, they are likewise merged, and the resulting object is counted

as a light quark (i.e., ∆Rjl < 0.7, ∆Rjj < 0.7). In the latter case, the light ”jet”

resulting from a merger must then also satisfy the pT and η criteria given above for

going undetected.

Using our method to estimate the results on the backgrounds in reference [77],

the analysis of which was carried out with objects reconstructed at the detector

level, we find that our estimates agree with reference [77] within a factor of two.

Because we successfully captured the leading effect, we did not feel the necessity of

pursuing detector simulations in our analysis.

Estimating the reducible background after the selections in Eqs. (4.33)–(4.38),

we find that tt̄ and W + bb̄ are subdominant compared to Z + bb̄. The suppression

of the reducible backgrounds, and in particular, of tt̄, comes especially from the

combination of the ST and E/T cuts. This is shown in Figure 4.3, where we plot

the E/T distributions of the three backgrounds under different ST cuts: ST > 0,
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Figure 4.3: E/T distributions for the three backgrounds (Z+ bb̄, W±+ bb̄,
and tt̄) with ST cuts of increasing magnitude, ST > 0.0, > 0.2, and > 0.4
from the left panel to the right panel. In each plot, the black solid, blue
dotdashed, and red dashed curves represent Z + bāb, W± + bb̄, and tt̄,
respectively.

ST > 0.2, and the cut ST > 0.4, which is used in our final analysis. Clearly, one can

see that for a E/T as large as our requirement in Eqs. (4.33)–(4.38), the dominant

background is Z + bb̄, and that in particular, the tt̄ is significantly suppressed by

simultaneously requiring a large E/T and moderate ST cut (rightmost panel in the

figure).

As the first step in our analysis, we compute the MT2 distributions expected

at the LHC for our two potential cases of new physics interactions, Z2 and Z3. The

distributions for the two cases are shown in Figure 4.4. Since we found that with the

selections of Eqs. (4.33)–(4.38), the Z + bb̄ process is the dominant background, as

seen in the figure, we consider it the only background process. The two distributions

have been computed assuming a trial mass m̃ = 0 GeV and have an endpoint at

787.5 GeV and 750 GeV for the Z2 and the Z3 cases, respectively. Interpreting the

distributions under the näıve assumption of one invisible particle per decay of the
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B′, we obtain from Eq. (4.27) a C parameter that is 383.75 GeV and 375 GeV for

Z2 and Z3, respectively. These are the reference values that we need for the analysis

of the energy distributions 5.
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Figure 4.4: MT2 distributions after the cuts of Eqs. (4.33)–(4.38). The
chosen masses for the new particles are mB′ = 800 GeV and mχ = 100
GeV. The left panel is for the Z2 signal while the right panel is Z3 (both
in blue). In both cases, the background is Z + bb̄ (red). In both panels,
the black line represents the sum of signal and background. The black
vertical dashed lines denote the theoretical prediction for the endpoints.

As the final step in our analysis, we need to compare the obtained reference

values with the peaks of the energy distributions. These distributions are shown in

5We remark that as apparent from the figure, the signal rate is much larger than that of the

background, and therefore the shape of the distribution expected at the LHC largely reflects the

features of the signal. In this case, it seems particularly straightforward to extract the endpoint

of the distribution. In other cases where the background is larger, the extraction of the endpoint

may require a more elaborate procedure, especially for the Z3 case where the endpoint is much

less sharp (see, for example, Chapter 3 and references [8, 81,82]).
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Figure 4.5: Energy distributions of the b quarks after the cuts of
Eqs. (4.33)–(4.38). The chosen masses for the new particles are mB′ =
800 GeV and mχ = 100 GeV. The left panel is for the Z2 signal, while the
right panel is Z3 (both in blue). In both cases, the background is Z + bb̄
(red). In both panels, the black line represents the sum of signal and
background. The black vertical dashed lines denote the reference values
extracted from the MT2 distributions of Figure 4.4 using Eq. (4.27).

Figure 4.5. We clearly see that the location of the peak in the energy distribution

in the Z2 case coincides with the associated reference value, whereas for the Z3

case the peak is, as expected, at an energy less than the associated reference value.

We remark that in the Z3 case, the peak of the energy distribution is significantly

displaced with respect to the reference value. Therefore, we expect our test of the

Z2 nature of the interactions of the B′ to be quite robust under the inclusion of both

experimental and theoretical uncertainties, such as the smearing of the peak due to

the resolution on the jet energy, the errors on the extraction of the reference value

obtained from the MT2 analysis, and the shift of the peak that is expected due to

radiative corrections to the leading order of the decay of the B′.
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Chapter 5: Conclusions

The WIMP is a well-motivated dark matter paradigm since its mass scale is

naturally connected to the weak scale. Particle physics also motivates new physics

at the weak scale by different reasons like the (famous) gauge hierarchy problem.

Given this energy scale, the ongoing LHC experimental program is anticipated to

prove the existence of such a dark matter candidate. Once dark matter is discovered,

one of the next stages in investigating the DM is to determine its various physical

properties such as mass, DM stabilization symmetries, spin, coupling constants and

so on. In this thesis, we proposed various ways of achieving such a goal at hadron

colliders. In particular, of them we have focused on mass and DM stabilization

symmetries.

Various cosmological and astrophysical observations and the relevant theory

consideration advocate that the DM particle must be massive so that pinning down

its mass is interesting per se. Due to its massiveness, the DM particle would be

destined to decay into lighter particles, which would lead to inconsistency with the

current observation for the DM relic abundance. In order to protect the DM particle

from decaying, many new physics models with a DM candidate introduce a new

unbroken symmetry under which DM is non-trivially charged while the known/SM
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particles are charged neutral so that DM becomes stabilized. Surprisingly enough, in

most cases a parity type (Z2) symmetry is employed. However, we emphasize that in

principle any discrete or continuous global symmetries can be used for stabilizing the

DM particle. It is therefore important to identify the DM stabilization symmetries

in experiment. As a concrete example, we have chosen Z3 symmetry, which is the

simplest non-Z2, to contrast with the Z2 symmetry. We then pointed out that the

decay of a single (Z3-charged) mother particle contain one or two DM particles

whereas a Z2-charged one does only one.

Since the DM particle is not directly observable by construction, typically its

intrinsic properties are deduced by the introduction of various kinematic variables

rather than the direct reconstruction. We here employed the invariant mass distri-

bution, the stransverse/MT2 distribution and the peak in the energy distribution

of visible particles as our main toolkits. We again stress that the three kinematic

variables play a complementary role to one another, i.e., cases that are not covered

by one variable can be taken care of by others.

Invariant mass: In Chapter 2 we discussed how to determine the DM properties

using the invariant mass distribution. Specifically, when a mother particle decay via

off-shell intermediate states into the same visible particles along with one and two

DM (for the case of Z3 symmetry), it may be possible to observe a double-edge in the

distribution of these visible particles (vs. single edge for Z2 symmetry). In fact, the

difference between the location of the edges will be a direct measure of the mass of

the dark matter particle for Z3 models. On the other hand, when the intermediate
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particles are on-shell, we also pointed out the possibility of a very distinctive feature

appearing in the invariant mass distribution of two visible particles in the case of

Z3 symmetry: a cusp dividing the distribution into two regions. This happens when

two DM particles emerge from the same chain, with one of these DM particles being

situated in-between the two SM particles.

We further generalized the idea of extracting information with the invariant

mass variable to the generic decay of a mother particle into any number of invisible

particles along with two visible particles. We there utilized full information from

the associated invariant mass distribution: 1) overall shape, 2) kinematic (upper)

endpoint, 3) location of the peak, and 4) curvature near the peak. They enable us

to measure the mass spectrum of the new particles including the DM candidate as

well as differentiate the decay topology. We also showed that the relevant invariant

mass distribution can be categorized by its endpoint, peak position and curvature.

It turned out that typically they suffice for discriminating among the competing

decay topologies. In each case, we enumerated the effective mass parameters which

can be extracted in experiment. For some of the cases, the shape information of the

invariant mass distribution is enough to determine the masses of new particles/DM,

including the overall mass scale.

Stransverse mass/MT2: In Chapter 3 we moved to the MT2 distribution as the

second tool to identify the DM properties. For simplicity, we studied pair production

of the same mother, followed by decays to SM particles and DM which involve only

off-shell intermediate particles (i.e., which are heavier than their mother particle).
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Clearly, in a Z3 model, the events can be classified into three types depending on

the total number of DM particles (i.e., two, three or four) vs. only two DM particles

for Z2 model. We showed that the edges of the MT2 distributions are different in

these three types of events in a Z3 model, again even if the same mother is produced

(vs. only one edge for Z2 model). This feature allowed us to distinguish Z3 from Z2

models. Moreover, we gave predictions for the values of the edges in the two new

cases, namely, three and four DM in each event, as functions of the mother and the

DM masses. Thus, we can extract the mother and DM masses separately using the

measurements of these different edges for a Z3 model. This achievement is especially

noteworthy for the case of single visible particle in each decay chain since a similar

measurement of the mother and DM masses is not possible in a Z2 model, based

solely on using the MT2 variable.

We emphasized that there are two subcases in the above analysis, namely,

the visible particles in the decay chain with one DM being identical or different

(respectively) to those in the decay chain with two DM (for Z3 models). In the case

of the visible particles not being identical, it is easy to separate the events of the three

types mentioned above so that one can then plot the respective MT2 distributions.

However, in the case of the visible particles being identical, one obviously has only

a single MT2 distribution (i.e., combination of the above three types) to begin with.

Therefore, we developed a new method to separate out the candidate events with

three DM vs. two DM in this case, using the observation that the visible particles on

the side with two DM will have smaller energy/momentum that the visible particles

on the side with one DM in the same event. This feature is to be compared to

139



the visible energy/momentum being more “balanced” in the case of one DM on

each side. We observed that the above imbalance in the energy/momentum on the

two sides by itself provides a hint for the appearance of three DM in the event.

However, combining it with edges in MT2 distributions provides a more powerful

discriminator.

Energy peak: In Chapter 4 we turned our gear to the peak in the energy distri-

bution of visible particle(s). We there proposed a new strategy to count the number

of DM particles resulting from the decay of a single mother particle, which depends

on the nature of the DM stabilization symmetries. To illustrate the technique, we

compared a two-body decay of a mother particle into one DM and one visible par-

ticles with a three-body decay into two DM and one visible particles. The latter

decay topology is present in Z3 models but not in Z2 models.

The technique begins with measuring the kinematic endpoint of the associated

MT2 distribution (assuming the other decay side undergoes the same decay process),

which will be used to be compared with the peak position in the energy distribution

of the visible particle. The next theoretical observation is that the peak of the

energy distribution of the visible particle in the laboratory frame is the same as the

energy measured in the rest frame of the mother particle for the two-body decay,

but is smaller than the maximum value in such rest frame energy for the three-body

decay. The crux is that the rest frame energy that is used as a reference value

in this comparison is precisely the parameter obtained in the above MT2 analysis.

Combining the above two facts, we showed that the peak of observed energy of the
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visible particle being smaller than (vs. same as) the reference value obtained from

the MT2 endpoint provides evidence for two (vs. one) DM particles in the decay of

a mother particle, and thus a Z3 symmetry can be distinguished from Z2.

Determining the DM properties by experiment is important to understand dark

matter itself as well as dark matter phenomena, and thus provides rich subjects in

research. Certainly, other kinematic variables/techniques deserve to be examined

along the line of studying the DM properties, and moreover they may probe cases

which were not covered by this series of research projects. We also plan to extend

this program of study to other DM properties such as spin, coupling constants and

so on.
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Chapter A: The distribution for the new topology

Most of the intermediate steps in the derivation of the cusp in Eq. (2.25) are

similar to the analysis in reference [57] of the reaction in Eq. (2.18), except for the

fact that a DM (i.e., massive) particle is situated in-between two SM particles in

the new topology (See Eq. (2.21)). Based on the algebra and the notations found

in reference [57], we will derive a few useful relations.

Basically, the invariant mass formed by the two SM particles in this topology

is given by

m2
ca = (pc + pa)

2 = 2EcEa(1− cos θca) (A.1)

where θca is the opening angle between two visible particles. Note that this relation

is always valid in any frame so that we can rewrite the above relation as

m2
ca = 2E(B)

c E(B)
a (1− cos θ(B)

ca ). (A.2)

Here and henceforth the (particle) superscripts on θ’s (in this case B) imply that

those angles are measured in the rest frame of the corresponding particle. Using

energy-momentum conservation, we can easily obtain the energies for a, DM, and

c, which are measured in the rest frame of particle B.
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E(B)
a =

m2
B −m2

A

2mB

(A.3)

E
(B)
DM =

m2
C −m2

B −m2
DM

2mB

(A.4)

E(B)
c =

(m2
D −m2

C)mB

m2
B +m2

C −m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM) cos θ

(B)
c DM

(A.5)

Inserting these relations into Eq. (A.2), we obtain

m2
ca =

2(m2
D −m2

C)mB

m2
B +m2

C −m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM) cos θ

(B)
c DM

· m
2
B −m2

A

2mB

(1− cos θ(B)
ca ).(A.6)

We easily see that the maximum of m2
ca occurs when cos θ

(B)
c DM = 1 and cos θ

(B)
ca = −1.

We want to express the invariant mass mca in terms of variables which have flat

distributions: this is the case for cos θ
(B)
ca , but not for cos θ

(B)
c DM. So, we need to

express cos θ
(B)
c DM in terms of cos θ

(C)
c DM (i.e., the same angle in the rest frame of

particle C) for which the distribution is also flat. This relation can be found by

calculating m2
c DM in the rest frames of particle C and B:

m2
c DM = m2

DM + 2E(C)
c E

(C)
DM − 2E(C)

c

√
(E

(C)
DM)2 −m2

DM cos θ
(C)
c DM (A.7)

= m2
DM + 2E(B)

c E
(B)
DM − 2E(B)

c

√
(E

(B)
DM)2 −m2

DM cos θ
(B)
c DM (A.8)

Again, the energy-momentum conservation in the rest frame of C gives the following

relations:

E
(C)
DM =

m2
C −m2

B +m2
DM

2mC

(A.9)

E(C)
c =

m2
D −m2

C

2mC

(A.10)

Substitution of EDM and Ec in the rest frame of C and B into Eq. (A.7) and Eq.
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(A.8) gives the relation between cos θ
(B)
cDM and cos θ

(C)
cDM:

2m2
B

m2
C +m2

B −m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM) cos θ

(B)
c DM

= 1− m2
C −m2

B +m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM) cos θ

(C)
c DM

2m2
C

(A.11)

Next, we introduce the variables u and v:

u ≡ 1− cos θ
(C)
c DM

2
, v ≡ 1− cos θ

(B)
ca

2
(A.12)

and using Eq. (A.11), we express m2
ca in terms of u and v:

m2
ca = (mmax

ca )2(1− αu)v (A.13)

where

(mmax
ca )2 =

2(m2
D −m2

C)(m2
B −m2

A)

m2
B +m2

C −m2
DM − λ1/2(m2

C ,m
2
B,m

2
DM)

. (A.14)

Note that the differential distributions for u and v (0 ≤ u, v ≤ 1) are also flat:

1

Γ

∂2Γ

∂u∂v
= θ(u)θ(1− u)θ(v)θ(1− v) (A.15)

where θ(x) is the usual step function. Replacing u and v by u and m2
ca by using Eq.

(A.13) gives the differential distribution

1

Γ

∂2Γ

∂u∂m2
ca

= θ̂

(
m2
ca

(mmax
ca )2(1− αu)

)
θ̂(u)

(mmax
ca )2(1− αu)

(A.16)

where a “top-hat” function θ̂(x) ≡ θ(x)θ(1− x). The next step is to integrate over

u to find the distribution in m2
ca:

1

Γ

∂2Γ

∂m2
ca

=

∫ ∞
−∞

1

Γ

∂2Γ

∂u∂m2
ca

du

=

∫ 1

0

θ̂

(
m2
ca

(mmax
ca )2(1− αu)

)
1

(mmax
ca )2(1− αu)

du

=

∫ umax

0

1

(mmax
ca )2(1− αu)

du (A.17)
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for 0 ≤ mca ≤ mmax
ca , where

umax = max

(
1,

1

α

[
1− m2

ca

(mmax
ca )2

])
. (A.18)

Now the above integral is easy to evaluate, and we finally obtain the distribution

which was given earlier in Eq. (2.25):

1

Γ

∂2Γ

∂m2
ca

=



1
(mmax

ca )2α
ln

m2
C

m2
B

for 0 < mca <
√

1− αmmax
ca

1
(mmax

ca )2α
ln (mmax

ca )2

m2
ca

for
√

1− αmmax
ca < mca < mmax

ca .

(A.19)
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Chapter B: The location of Mmax
T2

In this Chapter we will derive the analytic expression for the location of the

upper edge in the MT2 distribution. We begin with deriving the general expression

of the MT2 solution for a given set of kinematic configuration, then move on to

obtaining the maxima of the balanced/unbalanced MT2 solutions, and close with

giving the global maximum of the MT2 distribution, followed by a simple application.

B.0.1 The general expression for the MT2 solution

The usual MT2 variable [4] is defined as a generalized transverse mass such

that each of pair-produced mother particles decays into visible particles and one

dark matter particle of the same type. However, we do not restrict ourselves to such

cases, i.e., we extend our consideration to the cases with more than two DM in a

full decay chain (e.g., E3 and E4 type events in Z3 models). Nevertheless, in the

analysis of MT2 variable, we still hypothesize that two dark matter particles with

equal mass (i.e., one DM per chain) are involved in the full decay process, i.e., we

employ the “naive” MT2 method (as mentioned at the beginning of section 3.3).

The left diagram of Figure B.1 illustrates the decay process of pair-produced

mother particles that we are taking into consideration. Here the “blob” denotes off-
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Figure B.1: The left panel illustrates the decay process of interest which
pair-produced mother particles go through. M , m

(a)
v , and m

(a)
i (a = 1, 2)

denote the mass of mother particle, total invariant masses of visible
particles and invisible particles in the same decay chain, respectively.
The right panel illustrates the effective configuration of such a decay
process.

shell intermediate particles or an (on-shell) point interaction. The red dashed lines

represent any particles charged under dark matter stabilization symmetry whereas

the black solid lines represent any visible/SM particles. M is the mass of the mother

particle, which must be charged under DM stabilization symmetry. As mentioned

above, each mother particle can decay into the multiple number of invisible/DM

particles as well as the multiple number of visible/SM particles, and this extended

possibility is explicitly depicted by the multiple number of red dashed and black solid

arrows behind the two small blobs. Each visible/invisible multi-particle state can

be collapsed effectively to a(n) visible/invisible single particle state by introducing

invariant (transverse) mass, which will be manifest in the detailed formulae later.

In this sense, m
(a)
v and m

(a)
i can be understood as the total invariant masses formed

by visible or invisible particles belonging to the same decay chain.
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For defining the MT2 variable one should be noted that we are not aware of

the DM mass in advance. Hence, the best we can do is to introduce trial DM mass.

Since we perform the naive MT2 analysis as mentioned above, i.e., we assume a

single type of DM in each decay chain even if the actual physics could be different,

we employ only one type of trial DM mass m̃ and construct the MT2 variable as

follows [4]:

MT2

(
p
v(1)
T ,m

v(1)
T ,p

v(2)
T ,m

v(2)
T ; m̃

)
≡ min

p
v(1)
T +p

v(2)
T +p̃

(1)
T +p̃

(2)
T =0

[
max

{
M

(1)
T ,M

(2)
T

}]
(B.1)

Here each transverse mass of the decay product M
(a)
T (a = 1, 2) is given by

(
M

(a)
T

)2

=
(
m
v(a)
T

)2

+ m̃2 + 2
(
E
v(a)
T Ẽ

(a)
T − p

v(a)
T · p̃(a)

T

)
(B.2)

where m
v(a)
T , p

v(a)
T , and E

v(a)
T are the total transverse invariant mass, transverse

momentum, and transverse energy of visible particles:

(
m
v(a)
T

)2

=
(
t
v(a)
1 + · · ·+ tv(a)

n

)2

=
∑
α

(
mv(a)
α

)2
+ 2

∑
α>β

(
E
v(a)
αT E

v(a)
βT − p

v(a)
αT · p

v(a)
βT

)
(B.3)

p
v(a)
T =

∑
α

p
v(a)
αT (B.4)

E
v(a)
T =

∑
α

E
v(a)
αT , (B.5)

and p̃
(a)
T and Ẽ

(a)
T are the transverse momentum and energy of the (assumed-to-

be-one) trial DM particle in each decay chain. Here m
v(a)
α indicates the mass of

αth visible particle in ath decay chain (a = 1, 2) and t
v(a)
l indicates the (1+2)

momentum on the transverse plane which is defined as

t
v(a)
l ≡

(
E
v(a)
lT ,p

v(a)
lT

)
=

(√(
p
v(a)
lT

)2

+
(
m
v(a)
l

)2

,p
v(a)
lT

)
, (B.6)
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and the metric for this type of momentum is diag(1,−1,−1). There arise two

noteworthy things:

• As far as the range is concerned, the transverse and the regular invariant

masses have the same lower and upper limits. Moreover, since the MT2 solu-

tions of interest arise at either of the two limits, one may consider the MT2

where m
v(a)
T are replaced by the regular invariant masses of visible particles

m
(a)
v :

(
m(a)
v

)2
=

(
p
v(a)
1 + · · ·+ pv(a)

n

)2

=
∑
α

(
mv(a)
α

)2
+ 2

∑
α>β

(
Ev(a)
α E

v(a)
β − pv(a)

α · pv(a)
β

)
. (B.7)

• As advertised earlier, the entire visible states in the same decay chain can

be understood effectively as a single visible particle whose “effective” mass

is given by m
(a)
v . On the other hand, the corresponding “effective” quantity

for invisible particles m
(a)
i does not seem to be contained in the MT2 variable.

In fact, the MT2 variable depends implicitly on m
(a)
i , which will be cleared

shortly.

From these two observations we can reduce the decay of pair-produced mother parti-

cles into two multi-particle states (left panel of Figure B.1) to an effective kinematic

configuration where there exist two simple 2-body decay chains shown in the right

panel of Figure B.1.

For such MT2, there are two types of solution which are called the “balanced”

MT2 solution and the “unbalanced” MT2 solution, and the fact that there always ex-

ist some events to give such solutions was proven [4,7]. The balanced solution arises
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Figure B.2: Graphical configurations to give rise to a balanced MT2 so-
lution (the left panel) and an unbalanced MT2 solution (the right panel).
The dashed line indicates the solution for the MT2 variable to take.

when M
(a)
T ≥ M

(b)
T for both a(= 1, 2) with the trial DM momentum having the

value to accommodate M
(b)
T (b 6= a) at their global (or so-called “unconstrained”)

minimum which will be defined shortly (see the left panel of Figure B.2), and other-

wise, the unbalanced solution arises (see the right panel of Figure B.2).1 The global

minima for M
(1)
T and M

(2)
T are easily evaluated by differentiating Eq. (B.2) with

1If the total invariant masses of visible states in both decay chains are the same, only the bal-

anced solutions arise. The reason is because the unconstrained minima for both MT are identical,

there is no possibility that the kinematic configuration like the right panel of Figure B.2 is made.

As an example, if there exists only one massless visible particle in each decay chain, the MT2 values

are always given by the balanced solution.
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respect to the trial DM momentum and finding the stationary point [4]:

(
M

(1)
T

)
min

= m(1)
v + m̃ (B.8)(

M
(2)
T

)
min

= m(2)
v + m̃ (B.9)

The balanced and the unbalanced MT2 solutions for a given set of the “effective”

visible and invisible masses which are shown in the right panel of Figure B.1 are as

follows [4, 7]:

(
M bal

T2

)2
= m̃2 + A+

√√√√√√
1 +

4m̃2

2A−
(
m

(1)
v

)2

−
(
m

(2)
v

)2

(A2 −
(
m

(1)
v m

(2)
v

)2
)

(B.10)

Munbal
T2 = m̃+m(a)

v (a = 1, 2) (B.11)

for

A = E
v(1)
T E

v(2)
T + ~p

v(1)
T · ~pv(2)

T . (B.12)

Note that the unbalanced solution is simply given by the unconstrained minimum

of M
(a)
T , and for a fixed set of visible and invisible masses the balanced solution is

bounded above at

A = Ev(1)Ev(2) + qv(1)qv(2). (B.13)

In fact, if we take an adequate number of events, we can always find some event which

corresponds to such an upper bound [7]. Since we are interested in the M bal
T2 equal

to its own upper bound, we henceforth assume that A is understood as Eq. (B.13)

unless there arises any confusion. Here
(
Ev(a)

)2
=
(
qv(a)

)2
+
(
m

(a)
v

)2

and qv(a) is
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the magnitude of the total momentum of visible particles seen in the rest frame of

their mother particle. The explicit expression for qv(a) can be easily determined in

terms of the masses of mother, visible, and invisible particles as follows:

q(a)
v =

1

2M

√{(
M +m

(a)
v

)2

−
(
m

(a)
i

)2
}{(

M −m(a)
v

)2

−
(
m

(a)
i

)2
}
. (B.14)

One thing to be emphasized is that the dependence of the MT2 variable on the

effective invisible/DM mass m
(a)
i first appear in q

(a)
v . In other words, MT2 is an

implicit function of m
(a)
i via q

(a)
v as mentioned before. Furthermore, we include

the possibility that multiple (massive) invisible particles are emitted in each decay

chain unlike the previous studies (which considered the cases with two invisible

particles having non-identical masses). Hence m
(a)
i as well as m

(a)
v have their own

range once multiple visible and invisible particles are involved in the given decay

process. For off-shell intermediate particles the respective ranges are given by (See,

for example, [56])

∑
α

mv(a)
α = m

(a)
v, min ≤ m(a)

v ≤ m(a)
v, max = M −

∑
β

m
i(a)
β (B.15)∑

β

m
i(a)
β = m

(a)
i, min ≤ m

(a)
i ≤ m

(a)
i, max = M −

∑
α

mv(a)
α . (B.16)

The lower limit corresponds to the situation in which particles described by p
v(a)
α

(
p
i(a)
β

)
are at rest in their center of mass frame so that they move with the same velocity

in any frame. The upper limit corresponds to the situation in which particles de-

scribed by p
i(a)
β

(
p
v(a)
α

)
are at rest in the overall center of mass frame of the final

state described by p
v(a)
α and p

i(a)
β .
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B.0.2 The maximum balanced and unbalanced MT2 solutions

For the decay with visible/invisible multi-particle final states, it is obvious

that balanced/unbalanced MT2 solutions have their own range due to the existence

of the range in either m
(a)
v or m

(a)
i or both of them. As far as the upper edge in

the MT2 distribution is concerned, either the maximum balanced or the maximum

unbalanced solution appears as the global maximum. For the unbalanced solution,

one can easily derive the following relationship from Eqs. (B.11) and (B.15).

Mmax,unbal
T2 = m̃+ max

[
m(1)
v,max, m

(2)
v,max

]
(B.17)

For the balanced solution, however, it is not easily seen which values of m
(a)
v

and m
(a)
i (a = 1, 2) will form the maximum balanced solution because of the com-

plication in the corresponding expression
(
M bal

T2

)2
given in Eq. (B.10). In order to

identify those values, we are required to carefully investigate the functional behavior

of
(
M bal

T2

)2
according to the changes in m

(a)
i and m

(a)
v , which will be considered in

order.

B.0.2.1 The change in m
(a)
i

To see the dependence of
(
M bal

T2

)2
onm

(1)
i , we simply take the partial derivative:

∂
(
M bal

T2

)2

∂
(
m

(1)
i

)2 =
D

2X
√
B3C

(B.18)

where

B ≡ 2A−
(
m(1)
v

)2 −
(
m(2)
v

)2
, C ≡ A2 −

(
m(1)
v

)2 (
m(2)
v

)2
, X ≡

√
B + 4m̃2 (B.19)

D ≡ (BC ′ −B′C)X2 + 2A′
√
B3CX +B′BC (B.20)
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with the following notations:

A′ ≡ ∂A

∂
(
m

(1)
i

)2 , B′ ≡ ∂B

∂
(
m

(1)
i

)2 = 2A′, C ′ ≡ ∂C

∂
(
m

(1)
i

)2 = 2AA′. (B.21)

One can easily see that A, B, and C are always positive for any set of m
(a)
v and m

(a)
i ,

and that only positive X is allowed by construction. Also, one can easily prove that

A′ is negative.

The solutions to D = 0 are given as follows:

X1 = −
√
BC

A−
(
m

(1)
v

)2 (B.22)

X2 = −
√
BC

A−
(
m

(2)
v

)2 . (B.23)

For m
(1)
v 6= m

(2)
v it can be proven that either A −

(
m

(1)
v

)2

or A −
(
m

(2)
v

)2

must

be positive and the other is positive or negative depending on the parameter space

formed by m
(1)
v and m

(2)
v [7]. Hence, one of the two solutions given above must be

negative, which is unphysical, the other is either physically allowed or not. Actually,

it turns out that the signs of A −
(
m

(1)
v

)2

and A −
(
m

(2)
v

)2

are connected to the

coefficient of X2 in D in the following way:

BC ′ −B′C = 2A′
(
A−

(
m(1)
v

)2
)(

A−
(
m(2)
v

)2
)
. (B.24)

Let us assume that m
(1)
v is larger than m

(2)
v . In this case, A −

(
m

(2)
v

)2

is always

positive, i.e., X2 is always unphysical. Since A′ < 0 as mentioned above, if A −(
m

(1)
v

)2

is positive as well, then D, which is a quadratic function in X, becomes

a parabola bounded above, and the two solutions X1 and X2 all are negative, i.e.,

unphysical. Therefore, D < 0 for arbitrary (physically-allowed) X or m̃. On the
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other hand, if A−
(
m

(1)
v

)2

is negative, then D turns into a parabola bounded below,

and X1 becomes a physically allowed solution. Therefore, D < 0 for 0 < X < X1

and D > 0 for X > X1. However, in [7] it was shown that X1 gives rise to

M bal
T2 (X = X1) = m̃+m(1)

v , (B.25)

which is simply the unbalanced solution for m
(1)
v > m

(2)
v . Moreover, they showed that

this implies that X1 corresponds to the boundary between the balanced domain and

the unbalanced domain. In other words, with X being larger than X1 the balanced

solution is reduced to the unbalanced solution. One can make the same argument

and lead the same conclusion for the opposite configuration, i.e., m
(1)
v < m

(2)
v . Also,

the dependence on m
(2)
i can be easily checked by following similar arguments. Based

on hitherto observations, we have

∂
(
M bal

T2

)2

∂
(
m

(a)
i

)2 < 0 (B.26)

Mmax,bal
T2 = M bal

T2

(
m

(1)
i = m

(1)
i,min, m

(2)
i = m

(2)
i,min

)
(B.27)

for any set of m
(a)
v (a = 1, 2).

B.0.2.2 The change in m
(a)
v

The early work on the dependence of
(
M bal

T2

)2
on m

(a)
v was made in [7]. Here

we simply provide the final results and mention some modification from the original
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expression.

∂
(
M bal

T2

)2

∂
(
m

(a)
v

)2


≤ 0 for m̃ < m′

≥ 0 for m̃ ≥ m′

(B.28)

Mmax,bal
T2 =


M bal

T2

(
m

(1)
v = m

(1)
v,min, m

(2)
v = m

(2)
v,min

)
for m̃ < m′

M bal
T2

(
m

(1)
v = m

(1)
v,max, m

(2)
v = m

(2)
v,max

)
for m̃ ≥ m′.

(B.29)

Here the “kink” location m′ can be identified as the true dark matter mass mDM

if only a single type of DM is involved [7]. However, in general, it differs from

mDM because we do not restrict our consideration to the case with one single-typed

DM emitted in each decay chain. Therefore, its expression is written in terms of

all parameters (i.e., M , m
(a)
v , and m

(a)
i ), and it can be calculated by solving the

following equation [7]:

√
B + 4m′2 =

√
BC(1− 2Ā)

2Ā
(
A− (m>

v )2)+ A− (m<
v )2 (B.30)

where m>
v and m<

v denote the heavier and the lighter (invariant) visible masses

between the two decay sides, respectively, and Ā is defined as

Ā =
∂A

∂ (m>
v )2 . (B.31)

B.0.3 Discussions and application

It is a well-known fact that there arises a “kink” in the Mmax
T2 as a function of

the trial mass once there exist more than one visible particle in each decay chain
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and its location is at m̃ = mDM for the cases with a single identical DM particle

per decay chain. For more extended case, i.e., m
(1)
i 6= m

(2)
i , one can simply solve

Eq. (B.30). In turns out, however, that this is not the only way of obtaining the kink

location. An alternative and simpler way is to find the intersecting point between

the maximum balanced and unbalanced solutions. In other words, the solution to

satisfy Eq. (B.30) also satisfies the relation Mmax,bal
T2 = Mmax,unbal

T2 . For simplicity,

let us assume that m
(1)
v,max > m

(2)
v,max. We then have

(
Mmax,unbal

T2

)2

=
(
m̃+m(1)

v,max

)2
(B.32)

and

(
Mmax,bal

T2

)2

= m̃2 + A+

√
C

B
(B + 4m̃2) (B.33)

where A is evaluated at m
(a)
i = m

(a)
i,min as discussed before. Letting Eqs. (B.32)

and (B.33) be equated and doing some tedious algebra, one can end up with

A2 =
(
m(1)
v

)2 (
m(2)
v

)2
, (B.34)

which is valid only with m
(a)
v being their maximum. Note that Mmax,bal

T2 at m̃ = m′

arises when m
(a)
v = m

(a)
v,max from Eq. (B.29). Hence, the above-given relationship

holds, and the location of the kink can be evaluated by finding the intersection

between the maximum balanced and unbalanced solutions.

This observation, actually, leads us to the expressions forMmax,bal
T2 andMmax,unbal

T2 .

Note that it was proven that the balanced solution contributes to the upper edge

of the MT2 distribution at m̃ < m′ in [7]. Also, it is straightforward to prove that

the maximum unbalanced solution is larger than the maximum balanced solution
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at m̃ ≥ m′. Therefore, as long as the values to give the upper edge of the MT2

distribution are concerned, it can be (effectively) understood that the maximum

balanced solutions occur at m
(a)
v = m

(a)
v,min and m

(a)
i = m

(a)
i,min and the maximum

unbalanced solutions do at the maximum of the two m
(a)
v,max (a = 1, 2) for any m̃.

As an example, if all visible particles are assumed massless, the maximum balanced

and unbalanced solutions are given as follows:

Mmax,bal
T2 =

√√√√(M2 −m(1)2
i,min

)(
M2 −m(2)2

i,min

)
4M2

+

√√√√(M2 −m(1)2
i,min

)(
M2 −m(2)2

i,min

)
4M2

+ m̃2 (B.35)

Mmax,unbal
T2 = m̃+ max

[
m(1)
v,max, m

(2)
v,max

]
= m̃+M −min

[
m

(1)
i,min, m

(2)
i,min

]
(B.36)

Obviously, the upper edge in the MT2 distribution is determined by the max-

imum value among many events for a given trial DM mass.

Mmax
T2 (m̃) = max

many events
[MT2(m̃)] (B.37)

Based on the above-discussed understanding, one could expect that taking the maxi-

mum betweenMmax,bal
T2 andMmax,unbal

T2 will result in the same value as the above-given

Eq. (B.37).

Mmax
T2 = max

[
Mmax,bal

T2 , Mmax,unbal
T2

]
(B.38)

It turns out, however, it is true only for the case where there exist more than one

visible particle on each decay chain. In the case where there is only one visible

particle per decay chain, one can prove that the maximum unbalanced solution is
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less than the maximum balanced solution for any m̃ so that the Mmax
T2 is simply

governed by the Mmax,bal
T2

(
m

(a)
i = m

(a)
i,min

)
.
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Chapter C: The existence of a kink in Mmax
T2 versus m̃

As discussed in Chapter B, it is obvious that for the cases where there is only

a single visible particle in each decay chain, the Mmax
T2 as a function of the trial

DM mass behaves like a smoothly increasing curve because the upper edge is solely

governed by the “balanced” solution in Eq. (B.10). However, if there exist more

than one visible particle per decay chain, the competition between the “balanced”

and the “unbalanced” solutions, which is explicitly given in Eq. (B.38), gives rise

to the possibility of a kink (i.e., no longer smooth) in the plot of Mmax
T2 versus m̃.

In fact, this approach, the competition between the two types of solutions, enables

us to examine easily whether or not there exists a “kink” on the function of the

location of Mmax
T2 .

In order to have a kink in Mmax
T2 as a function of m̃, the two functions of

the maximum balanced and unbalanced solutions over the trial DM mass, i.e.,

Mmax,bal
T2 (m̃) and Mmax,unbal

T2 (m̃), must cross each other. From Eqs. (B.10) and (B.11)

they are monotonic functions in m̃, and the slope of Eq. (B.10) is not greater than

that of Eq. (B.11)(= 1) over the entire range. These two observations tell us that

once a cross-over is made, no additional cross-overs are made. Therefore, it is suf-

ficient to check whether or not the relative sizes of their corresponding functional
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Figure C.1: The kinematic regions to have kink or no kink in the graph
of m2

M
versus m1

M
.

values at m̃ = 0 and m̃ → ∞ are flipped for ensuring such a cross-over. Let us

assume that the visible particles are massless for simplicity.1 From Eqs. (B.35)

and (B.36) one can easily prove that Mmax,unbal
T2 is larger than Mmax,bal

T2 at m̃→∞,

and thus Mmax,bal
T2 should be larger than Mmax,unbal

T2 at m̃ = 0 to obtain a kink. Their

functional values at m̃ = 0 are expressed as follows:

Mmax,bal
T2 (m̃ = 0) =

√
(M2 −m2

1)(M2 −m2
2)

M2
(C.1)

Mmax,unbal
T2 (m̃ = 0) = M −m1 (C.2)

where m
(1)
i,min ≡ m1 and m

(2)
i,min ≡ m2, and we assumed m1 < m2 without loss of

generality. Therefore, the condition to have a kink is simply√(
1− m2

1

M2

)(
1− m2

2

M2

)
> 1− m1

M
, (C.3)

1One can easily apply the same argument for the case of massive visible particles.
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which can be further simplified to

m1

M
<
m2

M
<

√
2m1

M +m1

. (C.4)

Likewise, one can easily find the condition to have no kink as follows:

m2

M
>

√
2m1

M +m1

. (C.5)

Figure C.1 shows the regions for kink or no kink pictorially; the red area represents

all possible kinematic configurations for the existence of a kink while the gray one

all possible kinematic configurations for no kink. Elsewhere is not physically allowed

due to the assumption that m1 < m2.

There is a special case where each decay chain emits only one single-typed DM

particle, i.e., m1 = m2. The Z2 models or the E2 type events of Z3 models belong

to this case. The range to satisfy Eq. (C.5), i.e., the condition to have no kink, is

m1

M
> 1 or m1

M
< −2 both of which are not physically allowed. Therefore, we always

obtain a kink in Mmax
T2 as a function of the trial DM mass as expected [7].

As another concrete example, let us take E3 type events of Z3 models, where

one of the two decay chains emits a single dark matter particle whereas the other one

emits two dark matter particles with intermediate particles off -shell. Like before,

we assume that all DM particles to be emitted in the full decay process have the

same mass so that the minimum of the effective dark matter mass of the two DM

side to give the maximum balanced solution is meff
DM = 2mDM , i.e., m1 = mDM and

m2 = 2mDM . From Eqs. (C.4) and (C.5) the conditions to have kink or no kink
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become

A kink: 0 <
mDM

M
<

√
3− 1

2
(C.6)

No kink:

√
3− 1

2
<
mDM

M
< 1, (C.7)

which was mentioned in section 3.3.2 and demonstrated in Figure 3.4.
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Chapter D: Algorithm to find the upper edge of MT2 distribution

In this Chapter, we describe an algorithm to identify the Mmax
T2 for events after

the RPt cut. As we discussed in section 3.5.1.1, in Z3 models where there is only one

visible particle per decay chain, and the visible particles in the decay chains with one

DM and two DM are identical, the total MT2 distribution becomes a combination

of the distributions of E2 and E3 events. So the idea is to apply an RPt cut (a cut

on the ratio of Pt’s of visible particles on the two decay chains in the same event)

to “remove” the E2 events. This in principle can give us a relatively pure sample

of E3 events, which has a smaller Mmax
T2 . But in practice/reality, there is still a

small number of E2 events that survive the RPt cut. Therefore, the upper edge of

MT2 distribution for events after the RPt cut is hard to be determined due to the

“contamination” of E2 type events. This is shown in the right panel of Figure 3.8,

which shows clearly that there are small number of events which has MT2 beyond

the Mmax
T2 of E3 type events. Here we propose an algorithm to identify/extract the

“would-be” Mmax
T2 for E3 events by removing E2 contamination events and then do

a fitting to the resulting distribution.

First, we need to “subtract” the contaminating events. To do this, we calculate

the moving average of the number of events per bin including the last n bins in the
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MT2 distribution: An. The choice of moving average makes this quantity rather

stable under statistical fluctuations as we increase n. However, as we increase n

to the point below Mmax
T2 for E3 type events, we start to get a sharp rise on An.

Based on this, we define nmax to be the bin such that Anmax+1 ≥ 2.5Anmax . This bin

is considered as a rough separation point between “contaminating” E2 type events

and the start of E3 type events. And we treat Anmax as a rough estimate for the E2

type events contribution to the number of events per bin.

Next, we pick events with n > nmax and subtract Anmax from the number of

events in each bin. This gives us an approximate MT2 distribution for pure E3 type

events. Since we do not have an analytical formula for the MT2 distribution for E3

type events, we can only do a fitting for events near and to the left of the bin nmax

to find the upper edge of the MT2 distribution. We choose two fitting functions,

one linear function and one quadratic function, and did the fitting separately. Our

final answer for the Mmax
T2 is given by the average of the values obtained by these

two fitting methods, and their difference is regarded as the error due to fitting.
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