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Molecular complexes with movable components form the basis of nanoscale

machines. Their inherent stochastic nature makes it a challenge to generate any

controllable movement. Rather than fighting these fluctuations, one can utilize

them by the periodic modulation of system parameters, or stochastic pumping. For

the no-pumping theorem (NPT), which establishes minimal conditions for directed

pumping, we present a simplified proof using an elementary graph theoretical con-

struction. Motivated by recent experiments, we propose a new class of “hybrid”

models combining elements of both the purely discrete and purely continuous de-

scriptions prevalent in the field. We formulate the NPT in this hybrid framework to

give a detailed justification of the original experiment observation. We also present

an extension of the NPT to open stochastic systems.

Next we consider the paradox of “Maxwell’s demon”, an imaginary intelligent

being that rectifies thermal fluctuations in a manner that seems to violate the second



law of thermodynamics. We present two exactly solvable, autonomous models that

can reproduce the actions of the demon. Of necessity, both of these models write

information on a memory device as part of their operation. By exposing their

explicit, transparent mechanisms, our models offer simple paradigms to investigate

the autonomous rectification of thermal fluctuations and the thermodynamics of

information processing.
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Chapter 1

Introduction

In 1959 Richard Feynman gave a visionary lecture describing a world of molec-

ular nanotechnology, where machines would be built with a few hundred atoms and

the entire Encyclopedia Britannica could be written on the head of a pin [1]. Tech-

nologies like scanning tunneling microscopy (STM), atomic force microscopy (AFM)

and electron beam lithography are all examples of this extreme miniaturization.

With the works of Eric Drexler [2, 3], among others, an alternative “bottom-up”

approach started being explored; the goal was to fabricate molecular components

of desired specifications and assemble them to build complex nanomachines. There

has been extraordinary growth in this field in recent years [4–11], with achievements

including molecular rings that can be shuttled between the ends of a molecular

axle [12] or rotated unidirectionally along a large molecular ring [13], nanoscale

structures that can perform translational motion along a predefined path on sur-

faces or tracks [8, 14, 15], a prototypical molecular factory [16], and a single molecule

electric motor [17]. Some of these systems are shown in Fig. 1.1.

The small (nanoscale) size of molecular machines has important consequences:

thermal fluctuations and viscosity of the environment play dominant roles in their

dynamics whereas the gravitational effects are negligible [7]. The thermal fluctua-
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(a) (b)

(c)

Figure 1.1: Artificial molecular machines. (a) Panman et al.’s molec-
ular shuttle, an example of rotaxanes. The macrocycle (ring) can be
shuttled back and forth along the axle by controlled application of UV
rays. Taken from Ref. [18]. (b) Leigh et al.’s [3]catenane. The smaller
rings rotate along the bigger ring unidirectionally through a sequence of
steps. Taken from Ref. [13]. (c) Pei et al.’s quadruped molecular walker
diffusing on a prescriptive landscape. Taken from Ref. [19].
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tions cause an unavoidable incessant movement, the so-called Brownian movement,

at this length scale. The goal in the design of molecular machines is to rectify and

harness these movements. Viscous effects dominate over inertial effects. Motion of

these molecular machines is solely determined by the instantaneous forces acting on

them rather than any previous “push”. Because of these differing principles, design

and control of molecular machines require fundamentally different frameworks than

their macroscopic counterparts.

It is useful to distinguish between two types of strategies to control these

molecular systems: the autonomous mode, where the machines execute their tasks

without any external intervention, and the non-autonomous mode, where external

interventions are necessary. Let us illustrate each of these modes with an example.

Consider the artificial multipedal molecules, or DNA walkers, that can walk on a

two-dimensional “origami” of folded DNA [8]. In Ref. [15] they are controlled by

completely autonomous means. Their intended path is first grafted with longer DNA

strands, with longer binding affinity compared to the other stands on the surface.

The walkers bind to these longer strands preferentially, cleave them short by enzy-

matic action, and then unbind to move towards the remaining longer stands. This

produces an average forward motion, without the need of any external intervention.

The walkers in Ref. [16], in contrast, need periodic injection of new DNA strands

for their locomotion. All strands on the surface are equal; depending on the type

of the added strand (“anchor” or “fuel”), the walkers may either bind to the path

strands or unbind from them. As constant monitoring of the states of the walkers

and addition of appropriate strands are necessary, these walkers are non-autonomous
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machines.

The theoretical framework of autonomous molecular machines is well-developed

from a somewhat different context. Many biomolecular processes in our body such

as intracellular cargo transport, muscle contraction or microtubule polymerization

are carried out by small biological entities called molecular machines [20–23]. These

highly evolved naturally occurring molecular complexes provided much of inspira-

tion for the development of artificial molecular machines [1, 7]. These biological

machines are autonomous, utilizing ATP hydrolysis, ion concentration gradient, or

transmembrane electrical potential, to carry out their tasks. Because of their similar

length scale and environment, the well-developed stochastic description of natural

molecular machines also applies to their artificial analogs. Refs. [24–26] and refer-

ences therein discuss this framework in detail.

The theoretical framework of non-autonomous molecular machines is relatively

less explored. Key results in this framework have been reported only recently [27–

50]. Two possible ways to control the non-autonomous machines are stochastic

pumping and feedback control. Stochastic pumping involves periodic variation of the

external parameters of the system. Feedback control, on the other hand, involves

making measurements on the system and then changing the external parameters

suitably according to the outcome. In this thesis, we shall be concerned with the

former mode of operation, namely stochastic pumping.

Of primary concern in theory of stochastic pumps is their average response

characterized by average probability currents. When the variation of external pa-

rameters is quasi-static (adiabatic pumping) the average probability currents are
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shown to have geometric aspects [27, 28, 32, 33], much like the Berry phase in quan-

tum mechanics [51]. For the more general case of non-adiabatic pumping Rahav,

Horowitz, and Jarzynski (2008) have derived an exact (formal) expression for the

probability current [29]. With this they have established a no-pumping theorem

(NPT) which explicitly states the minimal pumping protocols necessary to drive

non-zero average current; see the discussion related to Eq. 3.5. Chernyak and Sinit-

syn (2008) have derived a more general pumping restriction theorem (PRT) which

relates the number of independent currents to any given pumping protocol [30].

They have also discovered the quantized nature of the average current, the so-called

pumping quantization theorem (PQT), in the limit of low temperature [32, 37, 38].

Further developments noted supersymmetry [34], duality [35] and other attributes

of the current [28, 31, 36].

It is desirable that the above results are understood in simple terms, and

possibly in multiple ways, to provide us further insight into these results and a

plausible framework to unify them. With this goal in mind we devote the first part

of the thesis to a simple graphical derivation of the NPT of Rahav, Horowitz, and

Jarzysnki (2008) [29] and its extension to more general systems. The central relation

underlying the derivation is precursor to the derivation of PQT of Chernyak and

Sinitsyn (2009) [32].

In the second part of the thesis, we change to the topic of “Maxwell’s de-

mon”. This an imaginary intelligent being, introduced by James Clerk Maxwell,

that rectifies thermal fluctuations in a manner that seems to violate the second law

of thermodynamics. In his book “Theory of heat” [53], Maxwell wrote

5



“ . . . let us suppose that . . . a vessel is divided into two portions, A and

B, by a division in which there is a small hole, and that a being, who can

see the individual molecules, opens and closes this hole, so as to allow

only the swifter molecules to pass from A to B, and only the slower ones

to pass from B to A. He will thus, without expenditure of work, raise

the temperature of B and lower that of A, in contradiction to the second

law of thermodynamics. ”

He took it to be an illustration of the statistical basis of the second law of thermo-

dynamics. We have schematically depicted his setup in Fig. 1.2.

William Thomson, among others, emphasized that the intelligent being of

Maxwell’s, which he named “Maxwell’s demon”, provided a mechanism to system-

atically violate the second law of thermodynamics [54]. Subsequent questions and

confusions about the status of the second law have generated more than a century

of discussions [55–64]: “ If such a demon cannot defeat the second law, then why

not? And if it can defeat the second law, then how does that affect that law’s

status?” [52]. Several versions of the demon have been invented and several so-

lutions proposed. Consensus in the community now lies with the works of Rolf

Landauer [58], Oliver Penrose [59] and Charles H. Bennett [60]. They proposed

that the demon accumulates information about the molecules’ motion during its

operation, and discarding this information has a minimum entropic cost that com-

pensates the demon’s violation of the second law. In effect, information is seen as

being equivalent to thermodynamic entropy: accumulation of information by the de-

6



!"""#"""!"""!"$"%" &"

(a)

!"""#"""!"""!"$"%" &"

(b)

Figure 1.2: Maxwell’s demon. (a) Initially, both sides of the box have
the same temperature, therefore they have both fast (with jet) and slow
(without jet) particles. (b) The demon sorts the fast particles to the B
half and the slow particles to the A half. As a result, temperature goes
up in the B side and goes down in the A side.
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mon lets it decrease the thermodynamic entropy of the rest of the universe; as soon

as the memory is “full” and the demon needs to reset it, the minimum entropic cost

of information erasure (Landauer’s principle) compensates for the previous decrease

of thermodynamic entropy.

The past few years have seen an increased interest in the thermodynamics of

information processing [65–70]. Discussions of Maxwell’s demon, Landauer’s prin-

ciple and related topics arise in contexts such as quantum information theory [71],

the synthesis of artificial nanoscale machines [7], feedback control in microscopic

systems [39–50], and single-photon cooling of atoms [72]. Moreover the consensus or

“favored explanation” [64] described above is widely but not universally accepted,

as suspicions persist that it assigns an unwarranted thermodynamic significance to

random data [62–64, 73, 74].

In spite of this attention, the field has lacked tangible examples or model

devices of the demon. Discussions are often framed around general principles rather

than particular instances. Furthermore, the actions of measurement and information

accumulation, in themselves, do not require the demon to be intelligent; a computer

program, for example, can be made to do these tasks. One may therefore wonder if

it is possible to design an autonomous mechanical device, without any intelligence

or external intervention, which can behave like the demon. The second part of the

thesis is devoted to two such models. Specifically, in Ch. 5, we propose a stochastic

device that extracts energy from a single thermal reservoir and converts it into work

by raising a mass against gravity (in violation of the Kelvin-Planck statement of

the second law [75]); the device, however, requires a memory register to which it

8



can write information. In Ch. 6 we propose a similar device which can generate

a flow of energy against a thermal gradient without any external work, just like

the original Maxwell’s demon (in violation of the Clausius statement of the second

law [75]). We solve for the steady state behavior of these models exactly and draw

their non-equilibrium phase diagram. To the best of our knowledge, they are the

first models of their kinds in the field.

The structure of the thesis is as follows. In Ch. 2 we discuss the mathematical

framework of discrete state Markov processes, the mathematical basis of much of

the thesis. In Ch. 3 we discuss our graphical proof of the NPT. We also extend

the usual case of closed stochastic pumps to open stochastic pumps. In Ch. 4 we

extend this work furthermore to a new class of models, the “hybrid models”, which

combine elements of both diffusive and jump dynamics of Markov processes. We

shift the discussion to Maxwell’s demon in the ensuing chapters. In Ch. 5 we discuss

the engine model, and in Ch. 5 we discuss the refrigerator model. We conclude in

Ch. 7 by outlining the possible extensions of the thesis. A few appendices present

the details omitted in the main text.
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Chapter 2

Discrete state master equation

All model systems in this thesis are stochastic. Furthermore, they all fol-

low Markovian dynamics: their past states do not give any new information about

their future states if the present states are known to us [76]. The time evolution of

any such system is described by the so-called master equation: a linear differential

equation(s), first order in time, involving the (transition) probability distribution

of the system [76]. Apart from the systems in Ch. 4, all models of the thesis are

also discrete – they can access only a finite number of states. The corresponding

master equation is formed by a set of first order, linear, coupled differential equa-

tions involving the discrete state probabilities of the system. In this chapter, we

discuss the general properties of such discrete-state master equations to facilitate

our discussions in the rest of the thesis.

In Sec. 2.1 we discuss a convenient graphical representation of discrete state

master equations. In Sec. 2.2 we discuss the algebraic properties of their rate ma-

trices (Eq. 2.2). We describe how all initial conditions relax to a steady state dis-

tribution and the conditions under which this steady state is unique. In Sec. 2.3 we

consider time-periodic rate matrices i.e. stochastic pumps. We show how all initial

conditions now relax to a periodic steady state. Finally, in Sec. 2.4 we consider the

10



important restriction of detailed balance on the rate matrices.

2.1 General form and graphical representation

Consider a model system which has N discrete states i ∈ {1, . . . , N}. Let pi(t)

denote the probability to find the system in states i at time t. One can construct

a probability vector p(t) = (p1(t), . . . , pN(t))T for the instantaneous probability

distribution of the system. Let Rij denote the conditional transition rate from state

j to state i, for any distinct pair of state i and j. Rij = 0 if no direct transition

is possible from j to i. For the time being we assume that these rates are time-

independent. If we define

Rii = −
∑
j 6=i

Rji, (2.1)

for all i, we can construct a matrix R. The master equation for the system is then

given by

ṗ(t) = Rp(t). (2.2)

There is a nice physical way to describe these dynamics. Whenever the system

jumps into some state i, its subsequently waits for a time τi, which is an exponen-

tially distributed random variable with average 1/|Rii|, and then makes a sudden

transition to some other state j with probability Rji/|Rii|.

Eq. 2.2 can also be viewed as a continuity equation. Consider the quantities

Jij(t) = Rij pj(t)−Rji pi(t), (2.3)

for any pair of distinct states i and j. The quantity Jij(t) is the net rate of transition

from j to i,i.e. the instantaneous probability current in that direction. The master

11
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Figure 2.1: Graphical representation of discrete state master
equation 2.5. The system has N = 4 states and E = 4 edges. Therefore
it has C = E −N + 1 = 1 cycle in the graph: {2,3,4}.

equation 2.2 can be rewritten as

ṗi(t) =
∑
j 6=i

Jij(t), (2.4)

which implies that the rate of change of probability of any state i is the total

instantaneous probability current into it. This is the usual content of any continuity

equation.

In all subsequent discussions we assume that Rij = 0 if and only if Rji = 0.

This implies that the system is reversible: if a transition is possible in one direction

the reverse transition is also possible. Furthermore, we assume that any state can be

reached from any other state either directly or via intermediate states. This implies

the system is ergodic, the importance of which will become clear in the next section.

The dynamics under master equation 2.2 can be conveniently represented by

a graph whose nodes represent the discrete states of the system and the edges

represent the allowed transitions. Note that we do not need to add direction to

edges because the dynamics have been assumed to be reversible. Ergodicity, on the

other hand, implies that the graph is connected – any node can be reached from any

12



other node through intermediate edges and nodes. We have illustrated the graphical

representation in Fig. 2.1 for the following N = 4 state master equation

ṗ1

ṗ2

ṗ3

ṗ4


=



−1
2

1 0 0

1
2
−3 1 1

0 1 −2 1

0 1 1 −2





p1

p2

p3

p4


(2.5)

Note that the rates {R13, R31} and {R14, R41} are zero in pairs, because of reversibil-

ity. Also, the graph is connected because of the imposed condition of ergodicity; for

example, even though no direct transition is possible between 1 and 3, one can be

reached from the other via 2.

We can characterize the system furthermore from the graphical perspective.

Consider a graph with E edges. From Euler’s theorem it must have C = E−N + 1

independent cycles in the system [24]. By cycles we mean closed loops formed by

connected nodes. The system shown in Fig. 2.1 has only one cycle, {2, 3, 4}, because

it has N = 4 states, E = 4 edges, and therefore C = 4− 4 + 1 = 1 cycle. The cycles

will play an important role in our analyses.

2.2 Steady state distribution

If we multiply both sides of Eq. 2.2 from the left by the row vector 1T =

(1, . . . , 1), we must get a zero on the left because of conservation of probability:∑
i ṗi = 0. This is consistent with the right hand side because

1TR = (0, . . . , 0). (2.6)
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This follows from the fact that elements of each column of the rate matrix R add

up to zero by Eq. 2.1. Eq. 2.6 implies R has a left eigenvector with eigenvalue zero.

R should therefore have a right eigenvector with the same eigenvalue. If we denote

such a vector by ps we have

Rps = (0, . . . , 0)T (2.7)

i.e. ps is a stationary distribution. Because R has been assumed to be reversible

and ergodic, it can be shown that ps is unique [24, 86].

For simplicity of notation, we assume in the following that all eigenvalues of

R are non-degenerate (all explicit models in this thesis fall in this category). Let

λi (i = 1, . . . N − 1) be the ith eigenvalue of R and 〈i| (|i〉) the corresponding left

(right) eigenvector. If λ0 = 0, from our previous discussion we have

〈0| = 1T , |0〉 = ps. (2.8)

Both the left and right eigenvectors form a complete basis in their respective vector

spaces. Note, however, that 〈i| 6= |i〉†, i.e. left and right eigenvectors of an eigenvalue

λi need not be complex conjugate of the other. This is because the rate matrix R

need not be symmetric. The left and eigenvectors form a complete biorthogonal

basis

〈i|j〉 ∝ δij. (2.9)

As a result we can rewrite any initial probability vector |p(0)〉1 as the following

linear combination

|p(0)〉 =
∑
i

ci|i〉 , ci =
〈i|p(0)〉
〈i|i〉

. (2.10)

1Same as p(t = 0) of Eq. 2.2.
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Eq. 2.10 is useful in studying the time evolution of the system. The probability

vector at any time t later is given by

p(t) =
∑
i

ci e
λit |i〉, (2.11)

which follows from the formal solution of Eq. 2.2

p(t) = eRtp(0). (2.12)

Multiplying Eq. 2.10 from the left by 〈0| = 1T and then using the biorthogonality

relations (Eq. 2.9) and normalization condition (〈0|0〉 =
∑

i p
s
i = 1) we also note

that c0 = 1. Furthermore, from Perron-Frobenius theorem [86], it can be shown

that all the non-zero eigenvalues have negative real parts: Re(λi>0) < 0. It is then

easy to see from Eq. 2.11 that all initial probability vectors relax toward the unique

steady state vector |0〉 = ps.

2.3 Periodic steady state distribution

So far in our discussion we have assumed the rates Rij to be time-independent.

In the context of stochastic pumps, because of the periodic variation of external

parameters, these rates become time-dependent. In particular, the rates satisfy, for

some common period τ ,

Rij(t+ τ) = Rij(t). (2.13)

In this section we show that the stochastic pumps relax to time-dependent periodic

steady state distributions,

pps(t+ τ) = pps(t), (2.14)
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as opposed to time-independent steady state distributions, ps, discussed in the last

section. The superscript ps is used to denote values in the periodic steady state

distribution throughout this thesis.

The probability distribution of a stochastic pump satisfies the master Eq. 2.2

with a time-dependent periodic rate matrix

R(t+ τ) = R(t). (2.15)

If p(0) is the initial probability distribution of the pump, at any later time t, the

distribution is given by the formal solution

p(t) = T̂e
∫ t
0 dtR(t), (2.16)

where T̂ implies time ordering in the expansion of the following exponential. (The

time ordering is needed because the rate matrix may not commute with itself at

different times.) In particular, the distribution of the pump after a time period τ is

given by

p(τ) = T p(0) , T = T̂e
∫ τ
0 dtR(t). (2.17)

The matrix T can be interpreted as the transition matrix whose element Tij fixes the

transition probability to state i from state j over a time period τ . Because the rate

matrix is periodic, Eq. 2.15, the transition matrix T is the same for all subsequent

periods. Hence, the distribution of the system after n periods i.e. at t = n τ , for

any non-negative integer n, is given by

p(n τ) = T n p(0). (2.18)
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Because of the assumed ergodicity of the underlying dynamics all the elements of T

are all positive: there is a finite probability to reach any state i from any other state

j over a time period. The Perron-Frobenius theorem [86] then implies the existence

of a unique distribution q satisfy

T q = q, (2.19)

which is reached by the system at each moment t = n τ as n → ∞. In the same

limit, the distribution of the system at any other time nτ < t ≤ (n + 1) τ is given

by

pps(t) = T̂e
∫ u
0 dxR(x)q , u = t− nτ, (2.20)

where use has been made of the formal solution, Eq. 2.16, with tn = n τ as the initial

time. Note that pps(t) is actually independent of n, namely, the system attains the

same distribution T̂e
∫ u
0 dxq after time 0 < u ≤ τ from the beginning of any time

period (in the limit n → ∞). The stochastic pump relaxes to a time-dependent

periodic steady state distribution, given by Eqs. 2.19 and 2.20, after sufficiently

long time.

It is interesting to consider the net number of transitions between two states

over a complete time period τ in the periodic steady state. This quantifies the

amount of pumped current per period in the modeled system. For any pair of states

i, j this is given by

Φps
ij =

∫ τ

0

dt Jpsij (t) , Jpsij (t) = Rij(t) p
ps
j (t)−Rji(t) p

ps
i (t). (2.21)
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2.4 Detailed balance

Let us consider the time-independent rates for the moment. In all the Markov

models we are going to discuss in this thesis, the metastable states correspond to

coarse-grained positions (or configurations) of physical systems. With the excep-

tion of open systems considered in Sec. 3.2 and the model in Ch. 6, these systems

are (a) closed (with respect to mass exchange), (b) devoid of any external time-

dependent force, magnetic field or overall rotation, and (c) in contact with a single

thermal reservoir. Under these conditions the models (under their realm of validity)

can be shown to satisfy the so-called detailed balance condition (Eq. 2.23 in the

following) [76].

A system is said to satisfy detailed balance [76] if there is no net current in its

steady state, that is,

Jsij = 0 (2.22)

for all pairs of states i, j. In terms of the transition rates and steady state probability

distribution this implies

Rij p
s
j = Rji p

s
i . (2.23)

Note that detailed balance is solely an attribute of the rate matrix R because the

steady state distribution is completely determined by the rates Rij.

There is an equivalent definition of detailed balance expressed by the so-called

Kolmogorov cycle conditions [77]. This is stated in terms of cycle-affinities : the
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Figure 2.2: Effective free energies and barriers. Ei and Ej denote
the effective free energies of states i and j, respectively, and Bij denotes
the effective free energy barrier between them.

affinity of any cycle c = {i, j, k, . . .m, n} is defined as

A(c) = ln
RjiRkj . . . RnmRin

RijRjk . . . RmnRni

(2.24)

i.e., by the natural logarithm of the ratio of two quantities, the product of forward

rates along the cycle and that of the reverse rates. E.g., the affinity of the cycle

{2, 3, 4} in Fig. 2.1 is A = ln
(
R32R43R24/R23R34R42

)
. The system is said to satisfy

detailed balance if the affinity of each cycle in the graph is zero.

The equivalence of the two definitions of detailed balance is not hard to es-

tablish. Before we do so, let us introduce the useful notions of state energies (to

be denoted by Ei’s) and barriers (to be denoted by Bij’s) for a system satisfying

detailed balance. If we define the symbols

Ei = − ln psi (2.25)

for each state i, the steady state condition, Eq. 2.23, implies

Rij = e−(Bij−Ej) (2.26)
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where (crucially)

Bij = Bji. (2.27)

It is interesting to note the analogy of Eq. 2.26 to the Arrhenius expression for rate

constants per molecule:

Ae−Ea/kT , (2.28)

where A is some frequency parameter, Ea is the molecular activation energy, k is

Boltzmann constant, and T is the absolute temperature of the environment. Using

this analogy we can interpret (Bij −Ej) in Eq. 2.26 to be the activation barrier for

transitions from j to i, or equivalently, Ej to be the effective free energy of the state

j and Bij the effective free energy barrier between j and i, all in units of kT . (We

have chosen the value of the frequency parameter to be unity.) We have illustrated

this free energetic description in Fig. 2.2.

We now show that the steady state conditions (Eq. 2.23) lead to the Kol-

mogorov conditions. If we calculate the affinity of any cycle c and express it in

terms of the state energies Ei’s and barriers Bij’s introduced above, it is straight-

forward to see that the affinity satisfies A(c) = 0. Let us illustrate this in terms of

the cycle c = {2, 3, 4} in Fig. 2.1. We have, from Eq. 2.24,

A(c) = ln
R32R43R24

R23R34R42

= ln
exp(−B32 + E2) exp(−B43 + E3) exp(−B24 + E4)

exp(−B23 + E3) exp(−B34 + E4) exp(−B42 + E2)
.

Because by Eq. 2.27 the Bij’s are symmetric the fraction on the right is equal to

unity, and hence A(c) = 0. Thus, the Kolmogorov conditions follow from the steady

state conditions.
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Let us prove the reverse statement that the Kolmogorov conditions lead to the

steady state conditions. Consider a pair of states i, n and a path – a sequence of

connected states – from i to n, say l = {i, j, . . . ,m, n}. Then construct the ratio

rlni =
Rij . . . Rmn

Rji . . . Rnm

. (2.29)

This ratio is the same for all paths from i to n. This can be easily seen from the

Kolmogorov cycle conditions: two different paths l1 and l2 lead to a cycle; the affinity

of the cycle is zero from the Kolmogorov conditions; the product of the “forward”

rates along the cycle is therefore equal to the product of “reverse” rates; and by a

slight rearrangement it then follows that rl1ni = rl2ni. Because of this condition, we

drop the path superscript l in rlni from now on. We can use the rni’s to uniquely

assign a set of numbers E ′i (up to an additive constant) to each state i: we first

assign an arbitrary real number E ′1 to state 1, and then use the relations

E ′i − E ′1 = ln ri1 (2.30)

for all other states i. We now claim that the quantities

p′si =
e−E

′
i

N
, N =

∑
j

e−E
′
j (2.31)

give the steady state probabilities of the system. Clearly they are positive and sum

to unity. Furthermore, for any pair of connected states i and j

Rij p
′s
j

Rji p′si
= rjie

−(E′j−E′i) (2.32)

where we have used Eqs. 2.29 and 2.31 to arrive at the right hand side. A look at

Eq. 2.30 suffices to confirm that the right hand side of Eq. 2.32 is equal to unity
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and hence

Rij p
′s
j = Rji p

′s
i . (2.33)

Hence Rp′s = (0, . . . , 0)T , that is, p′s is the (unique) steady state of the system.

The conditions 2.33 are therefore identical to the steady state conditions 2.23, both

of which now follow from the Kolmogorov conditions.

Consider now the case of time-dependent transition rates. At any instant of

time, the system is said to satisfy instantaneous detailed balance if the values of

the transition rates at that instant satisfy the conditions of detailed balance. If

a stochastic pump, for which the transition rates are periodic functions of time,

satisfies instantaneous detailed balance at every instant of a time period, one has

Rij(t) = e−Bij(t)+Ej(t) , Ei(t+ τ) = Ei(t) , Bij(t+ τ) = Bij(t). (2.34)

In the following chapters, Eq. 2.34 will be considered as the expression of detailed

balance for discrete state stochastic pumps.

2.5 Local detailed balance

For systems satisfying detailed balance Eq. 2.26 implies

Rij

Rji

= e−∆E , ∆E = Ei − Ej. (2.35)

i.e., the ratio of the forward and the reverse rates is governed by the corresponding

(effective) free energy change. A similar relation holds even when the system does

not satisfy detailed balance. In the latter case, the ratio is given by

R′ij
R′ji

= e−∆µ, (2.36)
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where ∆µ is the change in the total (effective) free energy of the system and the

reservoir [24, 25]. We shall refer to Eq. 2.36 as the local detailed balance because of

its formal resemblance to Eq. 2.35. The individual rates can be parametrized in the

following general form:

R′ij = η (1 + ε) , R′ji = η (1− ε), (2.37)

where η > 0 sets the time-scale of the transitions, and

−1 < ε < 1 ,
1 + ε

1− ε
= e∆µ. (2.38)

encodes the effective energetics.
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Chapter 3

No-pumping theorem for discrete pumps

In the introductory chapter, we briefly mentioned several different strategies

to control artificial molecular machines. In this chapter and the next, we are con-

cerned with stochastic pumping, where external parameters of the system are varied

periodically in time. We have already discussed some general behavior of stochastic

pumps in Ch. 2. In particular, we have shown that such systems relax to peri-

odic steady states after sufficiently long time time (Sec. 2.3) and an effective free

energetic picture can be associated to their dynamics if the conditions of detailed

balance are satisfied by them (Sec. 2.4).

Many new theoretical results for stochastic pumps have been reported re-

cently [27–38], some of which were briefly mentioned in the Introduction. We are

interested in the particular case of the no-pumping theorem (NPT) which specifies

the minimal conditions under which there can be any directed current in the system.

This was first derived by Rahav et al. [29] by analyzing the algebraic properties of

the rate matrices. Shortly thereafter, Chernyak and Sinitsyn [30] showed that the

result follows from a quite general “pumping restriction theorem” related to the

topology of the stochastic pumps. Horowitz and Jarzynski [78] extended the result

to one-dimensional Brownian models. Maes et al. [79] obtained and extended the
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NPT by considering the embedded Markov chains associated with the stochastic

pumps. In the first part of this chapter, we are going to give an alternative and

simpler than the original proof of the NPT using an elementary graph theoretic

construction based on our discussion in Sec. 2.1.

All the works mentioned in the last paragraph are based on closed stochastic

pumps where no mass exchange is present between the system and its environment.

This is in contrast to open stochastic pumps where particles flow among various

chemical reservoirs through the system. Interestingly, the NPT for closed stochastic

pumps can be extended to the open stochastic pumps; this is the topic of our

discussions in the second part of this chapter. There is an important difference,

however, between the NPT for closed pumps and its extended form for the open

pumps that we are going to present: for the former, the NPT gives the conditions

under which there is no net integrated flow of probability, whereas for the latter, the

extended NPT gives the conditions under which there is no net integrated flow of

particles. 1

In the following, we first discuss the case of closed pumps in Sec. 3.1 borrowing

heavily from the machinery developed in the last chapter. We illustrate our proof

of the NPT with a simple example (Sec. 3.1.1) and then present the general proof

1Note that the simple condition that all the chemical reservoirs have the same potential always

is neither necessary nor sufficient to guarantee that all integrated currents are zero. Even with

different chemical potentials for different reservoirs, one can have zero integrated currents with some

simple restrictions, Eq. 3.27. On the other hand, system parameters can be varied to generate a

flow of particles (within the system) even when all the chemical potentials are all the same.
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(Sec.3.1.2). The case of open pumps is considered in Sec. 3.2. We first develop the

kinetic equations which describe the particle dynamics in these systems (Sec. 3.2.1),

then illustrate the proof of the extended NPT with a simple example (Sec. 3.2.2),

and finally give the corresponding general proof (Sec. 3.2.3).

3.1 Closed stochastic pumps2

Consider an N -state system which follows the dynamics described in Sec. 2.1

with the master equation

ṗi(t) =
∑
j 6=i

Jij(t), (3.1)

where

Jij(t) = Rij(t)pj(t)−Rji(t)pi(t) , Jji(t) = −Jij(t). (3.2)

The rates Rij(t) periodic functions of time (Eq. 2.13)

Rij(t+ τ) = Rij(t) (3.3)

and are assumed to satisfy detailed balance at each moment. As a result, these rates

can be expressed as (Eq. 2.34)

Rij(t) = e−Bij(t)+Ej(t) , Ei(t+ τ) = Ei(t) , Bij(t+ τ) = Bij(t), (3.4)

where the Ei(t)’s and Bij(t)’s are the time-dependent effective free energies of the

states and the barriers among them.

Under these dynamics the system relaxes to a periodic steady state, pps(t+τ) =

2This section is based on Ref. [90].
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pps(t) (Sec. 2.3), and we are interested in the integrated currents (Eq. 2.21)

Φps
ij =

∫
τ

dt Jpsij (t) , Φps
ji = −Φps

ij .

The integrated currents characterize the amount of directed motion achieved in the

modeled systems. In particular, Φps
ij 6= 0 for some pair of states i and j indicates

a net flow of probability, over each period of pumping, between states i and j.

Conversely, if Φps
ij = 0 for all pairs of states, then the probability current may slosh

back and forth, so to speak, but there is no net circulation of current.

The no-pumping theorem (NPT) now asserts that if either all the state ener-

gies {Ei} or all the barriers {Bij} are kept fixed in time during the pumping, then

the integrated probability current is zero along all edges, i.e.

Φps
ij = 0 for all pairs (i, j). (3.5)

Consequently one must vary at least one state energy Ei and at least one barrier

Bij to produce directed probability currents in the periodic steady state.

The case of fixed state energies {Ei} and time-dependent barriers {Bij(t)}

is straightforward: the system relaxes to a fixed steady-state distribution psi =

exp (−Ei) [29], which is also the periodic steady state in this case. Eqs. 3.2 and 2.34

then imply

Jsij(t) = e−[Bij(t)−Ej ]e−Ej − e−[Bji(t)−Ei]e−Ei

= e−Bij(t) − e−Bji(t) = 0

for all (i, j). Thus, the instantaneous currents vanish, and therefore so do the

integrated currents. In the following sections we focus on the less obvious case of
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Figure 3.1: A model [2]catenane. This depicts the [2]catenane system
studied in Ref. [13]. It consists of two unequal rings, the smaller ring
having three binding sites on the bigger ring. Because of thermal fluctu-
ations from the environment the smaller ring makes random transitions
among the three binding sites.

fixed barrier energies {Bij}, but periodically pumped state energies, {Ei(t)}.

3.1.1 Illustration

In this subsection, we illustrate our proof of the NPT with a simple model

inspired by the experimental studies in Ref. [13]. Generalization to more complicated

models is presented in the next subsection.

The first system used in Ref. [13] was a [2]catenane 3 – a mechanically in-

terlocked complex of two molecular rings (shown schematically in Fig. 3.1). The

smaller ring had three binding sites on the bigger ring, where the binding affinity of

any site was determined by the number and strength of hydrogen bonds between the

two rings in the corresponding configuration. In an effort to rotate the smaller ring

3An [n]catenane is a hydrocarbon having n rings “connected in the manner of links of a chain,

without a covalent bond.” [80]
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Figure 3.2: Graphical representation of an N = 3 state system
with a single cycle {1, 2, 3}. It is a simple discrete-state model of the
[2]catenane pictured in Fig. 3.1

unidirectionally along the bigger ring, the authors considered a sequential (relative)

strengthening of binding affinities, in sequence 1 → 2 → 3 → 1 corresponding to

Fig. 3.1, by photo-chemical, chemical and thermal means. Contrary to intuition,

this strategy did not work – even though the smaller ring shifted its position to

the maximally binding site each time, there was no directional bias in its motion.

This is actually a manifestation of the NPT: cyclic variation of the binding affini-

ties corresponds to a periodic variation of state energies {Ei(t)} while keeping the

barriers fixed {Bij}, and the NPT forbids any non-zero integrated current in this

situation. We illustrate this in the following with the help of a simple stochastic

pump modelling the [2]catenane in Fig. 3.1.

Consider the system in Fig. 3.2, with N = 3 states, E = 3 edges and a single

cycle c = {1, 2, 3}, and assume that all the Bij’s are fixed in time while one or more

of the Ei(t)’s are varied periodically. Combining equation 3.1 with the antisymmetry
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of Jij(t)’s, Eq. 3.2, we have

ṗ1(t) = J12(t)− J31(t)

ṗ2(t) = J23(t)− J12(t)

ṗ3(t) = J31(t)− J23(t)

(3.6)

From our discussion in Sec. 2.3, the system eventually relaxes to a periodic steady

state with no net change in state probabilities over a time period τ , i.e.
∫
τ

dt ṗpsi (t) =

0 for all i. As a result

0 = Φps
12 − Φps

31

0 = Φps
23 − Φps

12

0 = Φps
31 − Φps

23

(3.7)

where we have integrated Eq. 3.6 over one period of the periodic steady state. Since

normalization implies
∑

i ṗi = 0, only 2 of the 3 equations in either Eq. 3.6 or Eq. 3.7

are independent. The solution of Eq. 3.7 therefore contains a free parameter:

Φps
12 = Φps

23 = Φps
31 = Φ. (3.8)

These results are easy to understand: the currents along all the edges are equal

because they all belong to the same cycle, which is the only cycle in the graph.

(This intuition has been formalized and generalized to arbitrary graphs in Ref. [30]

to derive the so-called pumping restriction theorem (PRT).)

Detailed balance implies further constraints. From Eqs. 3.2 and 2.34 we have

eBij Jij(t) = eEj(t)pj(t)− eEi(t)pi(t).

Summing both sides of this equation over the edges along the cycle {1, 2, 3} we get

eB12 J12(t) + eB23 J23(t) + eB31 J31(t) = 0. (3.9)
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We have deliberately omitted the superscript ps to indicate that the above relation

holds whether or not the system has reached the periodic steady state. Indeed,

Eq. 3.9 remains true even if the external driving is not periodic, and even if the

barriers are time-dependent. (A generalized form of Eq. 3.9 for arbitrary graphs was

used in Ref. [32] to derive a pumping-quantization theorem (PQT) for integrated

probability currents.)

Returning to the periodic steady state with fixed barriers {Bij}, we integrate

Eq. 3.9 over one period τ to get

eB12 Φps
12 + eB23 Φps

23 + eB31 Φps
31 = 0. (3.10)

Combined with Eq. 3.8 this gives

(
eB12 + eB23 + eB31

)
Φ = 0. (3.11)

Hence Φ = 0, and all the integrated probability currents Φps
ij ’s in the system are

zero.

3.1.2 General Proof

Consider a connected graph G with N vertices and E edges. As before, we

assume that the 2E transition rates satisfy detailed balance at all times, hence they

can be written in the form Rij = e−(Bij−Ej) with Bij = Bji. We now imagine

that the state energies Ei(t) are varied periodically with time, while the barriers

energies Bij are held fixed. After the system has reached a periodic steady state,
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pps(t+ T ) = pps(t), integration of Eq. 3.1 over one period yields

∑
j 6=i

Φps
ij = 0 for all i. (3.12)

As with Eq. 3.7 only (N − 1) of these N equations are independent. Moreover,

Eq. 3.12 implies that if Φps
ij > 0 for a connected pair of states (i, j), then there must

exist at least one other vertex k such that Φps
ik < 0, as the flow of probability into

state i must be balanced by the flow of probability out of that state.

As in our illustration, detailed balance implies further constraints. Summing

over, and then integrating with time, the instantaneous currents along the edges of

any cycle c = {i1, . . . , iM} we get (compare with equation 3.10)

M∑
j=1

eBij ij+1 Φps
ijij+1

= 0 , iM+1 ≡ i1. (3.13)

This implies that if one edge (ij, ij+1) of c has Φps
ij ,ij+1

> 0 then there must exist at

least one other edge (ik, ik+1) in c with Φps
ikik+1

< 0. Thus, for any cycle, the non-zero

Φps
ilil+1

’s cannot all have the same sign. We now prove that Eqs. 3.12 and 3.13 jointly

imply Φps
ij = 0 for all edges. We establish this below by contradiction, assuming the

existence of at least one edge (m,n) with Φps
mn > 0.

To formulate our argument, let us introduce the following convenient construc-

tion on G. Along every edge, say (r, s), with non-zero Φps
rs, we draw an arrowhead

indicating the positive direction of the integrated probability current, as shown in

Fig. 3.3 (a). By assumption, G contains at least one arrow, pointing from n to m.

Eq. 3.12 then implies the existence of another edge (p,m), such that Φps
mp < 0, or

equivalently, Φps
pm > 0. Thus we must have another arrow pointing from m to some
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Figure 3.3: Part of an N state graph with arbitrary topology. (a)
Illustration of the construction of arrows. An arrow pointing along an
edge, e.g. from n to m, indicates a positive integrated probability current
from n to m, Φps

mn > 0. (b) One of the possible cycles, {m, p, v, q, n},
with all arrows pointing the same way.
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p 6= n. Similarly there must be another arrow from some q 6= m to n, to prevent

the depletion of probability from state n. Refer to Fig. 3.3 (a) for illustration.

Consider now the setDm of all vertices that can be reached from m by following

the arrows. In Fig. 3.3 (a) Dm = {p, r, . . .}. Consider also set Sn of all vertices from

which n can be reached by following the arrows. In Fig. 3.3 (b) Sn = {q, u, . . .}.

These two sets must have at least one element in common, otherwise there will be a

constant drainage of probability from Sn to Dm which is inconsistent with a periodic

steady state. Let v denote this common element.

The existence of a common element has an interesting consequence. Starting

from state m, we can reach state v by following the arrows (since v ∈ Dm), and from

there we can reach state n by continuing to follow arrows (since v ∈ Sn). Since an

arrow points from n to m, we conclude that there exists a cycle {m, . . . , v, . . . , n}

consisting of edges with arrows all pointing in the same direction {m→ . . .→ v →

. . .→ n→ m}. By construction, the Φps
ijij+1

’s along this cycle are all positive. One

such cycle {m, p, v, q, n} is shown in Fig. 3.3 (b).

However, this contradicts Eq. 3.13. We conclude that the existence of a non-

zero Φps
mn is inconsistent with our starting assumptions, and this completes our proof.

In summary, the proof is based on the idea that if a non-zero integrated current

is generated along some edge of the graph, then this edge must be part of a closed

loop along which probability is conveyed in one direction: all the Φps
ijij+1

’s along

the cycle have the same sign. This in turn is inconsistent with the assumption of

detailed balance with fixed energy barriers (which gives Eq. 3.13).
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3.2 Open stochastic pumps

Closed stochastic pumps, discussed so far, have a fixed number of constituents.

Now we consider the case of open stochastic pumps, where the system is connected

to several chemical reservoirs, thereby having a variable number of constituents.

E.g. consider a collection of quantum dots that are connected to each other and

also to several electrodes with time-dependent electrical potentials; in the limit

of high temperature the electronic transport through this collection is essentially

Markovian and therefore the whole setup is an open stochastic pump [81]. The rest

of this chapter is devoted to an extension of the NPT to such systems.

One particular way to arrive at an open stochastic pump is to connect a

closed stochastic pump to several chemical reservoirs. This passage is somewhat

analogous to the passage from the canonical to the grand canonical description in the

equilibrium statistical mechanics: there is a large accompanied enhancement in the

resulting state space. A complete stochastic description in this enlarged state space,

in terms of an appropriate master equation, is both cumbersome and unnecessary

for our purpose. We therefore rely on a kinetic level of description, instantaneous

(ensemble) average occupation numbers of the discrete states of the corresponding

closed system serving as the dynamical variables, in the same way that chemical

reactions are described by deterministic equations in lieu of stochastic means. 4 In

the following, we first derive the appropriate kinetic equations (Sec. 3.2.1), then

4A proof of the extended NPT in the complete framework has been recently obtained by Nikolai

Sinitsyn (private communications). Our treatment is independent of his.
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Figure 3.4: A simple open stochastic system with N = 3 states
and R = 2 reservoirs. It is an open system extension of the system in
Fig. 3.2. The boxes represent the reservoirs.

illustrate our proof with a simple example (Sec. 3.2.2), and finally, present the

general analysis (Sec. 3.2.3).

3.2.1 Kinetic equations

The kinetic description of an open system is similar to the complete stochastic

description of the corresponding closed system in many ways: we still have a finite

number of distinct states; in place of occupation probability of a state we have

its average occupation number; and in place of the probability currents between

the states we have particle currents between them. The presence of the reservoirs,

however, makes a crucial difference: there is no equivalent of the normalization

condition,
∑

i pi = 1, in the open systems.

Let ni(t) denote the average occupation number of any state i, and ri denote

the chemical reservoir connected to it with chemical potential µi. If µi = µj, then

the associated states i and j can be considered to be connected to the same reservoir.

We have depicted the setup with a simple open system in Fig 3.4. This is an open
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system generalization of the closed system depicted in Fig. 3.2. The reservoirs are

denoted by boxes. They have been drawn filled because the density of particles in a

reservoir is unaffected by the number of particles it may exchange with the system.

Let us now introduce the transition rates of a single particle. The conditional

rate of transition from a state j to a connected state i is denoted by Rij
5, with the

usual assumptions of reversibility, ergodicity and detailed balance, Rij = e−Bij+Ej .

The conditional rate of transition from the reservoir ri to state i and from i to ri

are denoted by αi and βi, respectively, with the detailed balance dictating

αi = e−(Bi−µi) , βi = e−(Bi−Ei), (3.14)

where Bi is the effective free energy barrier between i and ri (see Fig. 3.5 for an

illustration). These rates and free energy parameters are well defined if the particles

do not interact with each other. We can admit only those interactions which can

be effectively incorporated by simply making the energy parameters dependent on

occupation numbers.

These transitions lead to particle currents and therefore time evolution of

average occupation numbers ni(t). The instantaneous net current from j to i is

given by

Jij(t) = Rij nj(t)−Rji ni(t) , Jji(t) = −Jij(t), (3.15)

and that from a reservoir ri to state i by

Ji(t) = αi − ni(t) βi. (3.16)

5We use the same notation as for a closed systems because we do not return to the latter in the

rest of this chapter.
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Figure 3.5: Particle exchange with a reservoir. (a) αi and ni(t)βi
denote the instantaneous average particle currents in directions ri → i
and i → ri, respectively. (b) Under the assumption of (local) detailed
balance the free energy diagram of Fig. 2.2 can be extended to include
the reservoirs. µi is the chemical potential of the reservoir ri, Ei is the
effective free energy of state i, and Bi is the effective free energy barrier
between them.
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ni(t)’s evolve in time according to the kinetic equations

ṅi(t) =
∑
j 6=i

Jij(t) + Ji(t). (3.17)

(Compare Eq. 3.1 for a closed system.)

To make connection to the framework of stochastic pumps we now consider

periodic variation of the elements {Ei, µi, Bij, Bi}. We assume that the system

relaxes to a periodic steady state, npsi (t + τ) = npsi (t), just like the closed systems

considered before 6. We then consider the net integrated particle current over a

time period τ from one state j to another state i, Φps
ij , and from a reservoir ri to the

associated state i, Φps
i :

Φps
ij =

∫
τ

dt Jpsij (t) , Φps
i =

∫
τ

dt Jpsi (t). (3.18)

The extended NPT states that all integrated currents are zero if either

(i) all the energies and chemical potentials {Ei, µi} are held fixed, all chemical

potentials are the same, and only the barriers, {Bij(t), Bi(t)}, are varied peri-

odically in time, or

(ii) all the barriers {Bij, Bi} are kept fixed, energies and chemical potentials

{Ei(t), µi(t)} are varied periodically in time, and all the integrals
∫
τ

dt eµi(t)

are the same.

Note that the last condition in case (ii), namely the equality of all the integrals∫
τ

dt eµi(t), while restrictive, can still include realistic situations different from the

6This assertion actually needs an independent proof from that of Sec. 2.3 because of the reservoir

terms in Eq. 3.17.
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trivial case where all the µi(t)’s are equal. Consider for example the case of the

quantum dots discussed in the beginning of this section; if all the electrical poten-

tials are varied sinusoidally in time with the same amplitude and period but with

arbitrary phase difference, the above condition is still satisfied.

The relation of the extended NPT to the original NPT is essentially obvious.

One considers the limits Bi → ∞ in Eq. 3.14 so that all Ji = 0 in Eq. 3.17.

Then the fraction of total particles in states i, fi = ni/
∑

j nj, can be treated as

probabilities satisfying the same master equation as pi’s in Eq. 2.2. In the non-

interacting case, one may alternatively consider the dynamics of a single particle

and the corresponding probability distribution; the latter follows the same equation

as the fi’s (i.e. Eq. 2.2). It is also important that the limit Bi →∞ be taken at the

level of the evolution equation, and not the periodic steady state; this is because

the two limits t→∞ and {Bi} → ∞ do not commute with each other at the level

of the solution.

Case (i) above is easy to analyze. In absence of any variation in the free

energies Ei and the chemical potentials µi, the numbers ni relax to the equilibrium

distribution neqi = eµi−Ei (note that all µi’s are assumed to be equal in this case)

and all the instantaneous currents, and hence also the integrated currents are zero:

Jeqij = e−Bij+Ejeµj−Ej − e−Bij+Eieµi−Ei = 0,

Jeqi = e−Bi+µi − eµi−Eie−Bi+Ei = 0. (3.19)

Effectively, the system is immersed in a single chemical bath, and it relaxes to the

corresponding equilibrium distribution. In the next section we concentrate on the
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less obvious case of varying free energies and chemical potentials, i.e. case (ii).

3.2.2 Illustration

Consider the system depicted in Fig. 3.4. We assume that the barriers {Bij, Bi}

are kept fixed in time while one or more of the effective free energies and chemi-

cal potentials {Ei(t), µi(t)} are varied periodically in time. Furthermore, the two

chemical potentials are assumed to satisfy

∫
τ

dt eµ1(t) =

∫
τ

dt eµ3(t). (3.20)

From Eq. 3.17 we have the following equations for the time evolution of the

average occupation numbers

ṅ1 = J12(t)− J31(t) + J1(t)

ṅ2 = J23(t)− J12(t)

ṅ3 = J31(t)− J23(t) + J3(t).

(3.21)

Under the assumption of periodic steady state, the net change in the average oc-

cupation number over a time period τ is zero:
∫
τ
ṅpsi dt = 0. Hence, by integrating

Eq. 3.21 over τ in periodic steady state we get

0 = Φps
12 − Φps

31 + Φps
1

0 = Φps
23 − Φps

12

0 = Φps
31 − Φps

23 + Φps
3

(3.22)

Note that, unlike the case of closed systems (Eqs. 3.6 and 3.7), all three equations

in either Eq. 3.21 or Eq. 3.22 are independent.
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We can derive further restrictions on the integrated currents from the con-

ditions of detailed balance, Eqs. 2.34 and 3.14, and the additional condition in

Eq. 3.20. From Eqs. 3.15, 2.34 and 3.14

eBijJij(t) = eEj(t)nj(t)− eEi(t)ni(t).

Summing both sides over all three edges of the cycle c = {1, 2, 3} we get

eB12 J12(t) + eB23 J23(t) + eB31 J31(t) = 0, (3.23)

which is the analogue of Eq. 3.9. As in the analysis of the closed systems (Sec. 3.1.1),

we have deliberately omitted the superscript “ps” to indicate that Eq. 3.23 holds

whether or not the system has reached the periodic steady state. Indeed, Eq. 3.23

remains true even if the external driving is not periodic, and even if the barriers are

time-dependent.

In the periodic steady state with fixed barriers {Bij, Bi}, we can integrate

Eq. 3.23 over one period τ to get

eB12Φps
12 + eB23Φps

23 + eB31Φps
31 = 0. (3.24)

(compare Eq. 3.10). Eqs. 3.14 and 3.20 impose one further restriction on the inte-

grated currents. We can combine Eqs. 3.18, 3.15, 2.34, 3.14, and 3.20 to derive

eB3Φps
3 − eB1Φps

1 = eB31Φps
31. (3.25)

In the present case we have 5 integrated currents – {Φps
12,Φ

ps
23,Φ

ps
31,Φ

ps
1 ,Φ

ps
3 } –

and we have derived 5 linear homogeneous equations for them – Eqs. 3.22, 3.24 and

3.25. It is easy to verify that these equations imply that all the integrated currents

42



are zero:

Φps
12 = Φps

23 = Φps
31 = Φps

1 = Φps
3 = 0.

3.2.3 General Proof

Consider now a general open system with N states, E edges, and R reservoirs.

We assume the general detailed balance conditions

Rij = e−(Bij−Ej) , αi = e−(Bi−µi) , βi = e−(Bi−Ei) (3.26)

where we vary one or more of the state energies and chemical potentials {Ei(t), µi(t)}

periodically in time with the constraints∫
τ

dt eµi(t) =

∫
τ

dt eµj(t) for all i, j, (3.27)

and keep the barriers {Bij, Bi} fixed. The average occupation numbers ni(t) satisfy

Eq. 3.17 and are assumed to relax to a periodic steady state, npsi (t + τ) = npsi (t),

after sufficient time.

Integrating Eq. 3.17 over a time period τ in periodic steady state we get

Φps
i +

∑
j 6=i

Φps
ij = 0 (3.28)

for each state i. Eq. 3.28 has an interesting implication: If there is one non-zero

integrated current, there must also be another non-zero integrated current, with

opposite sign, associated with the same state; this is to ensure that the positive

incoming flow of particles due to one current is balanced by the positive outgoing

flow due to the other. To facilitate the proof we then carry out an exercise related to

this observation. If there is any non-zero integrated current, we add an arrowhead
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Figure 3.6: Flow from a source to a drain reservoir. A sample
directed path is shown. Note that, the two reservoirs rS and rD need
not be different.

to the corresponding edge to show the direction of the flow. E.g. Φps
i > 0 leads to

an arrow from ri to i; Φps
ij > 0 leads to an arrow from j to i; and so on. According to

the discussed implication of Eq. 3.28 there cannot be just one arrow in the system.

If there is no arrow associated with any reservoir, all non-zero integrated cur-

rents in the system, if any, can flow only inside the systems, and hence along just

cycles to ensure return to the same average occupation number at each state after

each period. We already considered this case in the context of closed systems in

Sec. 3.1.2 and derived NPT using detailed balance conditions. On the other hand,

if there is an arrow with a reservoir, there must be a reservoir with an opposite

arrow. More precisely, a reservoir with an arrow pointing from it (“source”) to the

system implies the existence of a reservoir with an arrow pointing to it (“drain”)

from the system; this is needed to ensure return to the same number of particles in

the system after each period. Furthermore, each source reservoir must be connected

to a drain reservoir through a directed path; one should be able to reach some drain

from any source by following the arrows. Let us assume one such directed path to be
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{rS → i1 → i2 → . . . → in−1 → in → rD}, rS and rD being source and drain reser-

voirs, respectively; see Fig. 3.6 for an illustration. Note that the two reservoirs rS

and rD need not be different as two states may be connected to the same reservoir.

Using the conditions of detailed balance, Eq. 3.26 and the definition of integrated

currents, Eqs. 3.18, 3.15, 3.16, one can derive the following

eBi1Φps
i1

+
n−1∑
j=1

(
eBij+1ijΦps

ij+1ij

)
+ eBin

(
−Φps

in

)
=

∫
τ

dt eµi1 (t) −
∫
τ

dt eµin (t) (3.29)

The right hand side of Eq. 3.29 vanishes because of the conditions 3.27. But each

term in the above summation is supposed to be positive: all integrated current

– Φps
i1

, {Φps
ij+1ij
}, and

(
−Φps

in

)
– are positive because of the arrows on them (see

Fig. 3.6), and the coefficients, being exponential of real numbers, are positive too.

The only resolution to this inconsistency is to have no source or drain reservoirs at

all. As NPT is already proven for this case, Sec. 3.1.2, our proof of extended NPT

is complete.
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Chapter 4

Hybrid pumps

1Until now, discrete state Markov processes have been considered to be ad-

equate for the description of molecular machines. They are assumed to reside in

one of their metastable states and make random instantaneous transitions driven

by thermal fluctuations. In reality, a transition between two metastable states in-

volves mechanical motion, and therefore can not be instantaneous. Recent experi-

ments [18, 82] using time-resolved vibrational spectroscopy to study the movement

of a molecular shuttle between two docking stations, provide evidence that this mo-

tion is described more accurately as a rapid, one-dimensional random walk than

as an instantaneous jump. This motivates us to introduce a new class of models

of molecular machines in which the system makes diffusive (rather than sudden)

transitions.

The incorporation of diffusive dynamics during the transitions introduces an

essential change in the state space of the system. Instead of being composed of

discrete points, as in Fig. 2.1, the state space itself is now represented by both these

discrete points and the continuous line segments joining them. The metastable

states still correspond to the discrete points whereas the mechanical pathways of

diffusion between the metastable states correspond to the continuous line segments.

1This chapter is based on Ref. [91].
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Because of this hybrid nature of state space in the resulting class of models, we will

refer to them as hybrid models. The purpose of the present chapter is to introduce

a consistent framework for this class of models.

How does one demonstrate the validity and utility of such a model? As a

first step, we choose to establish the no-pumping theorem (NPT) of the previous

chapter in this new framework. This will not only illustrate the feasibility and

usability of the model, but also provide a more refined theoretical justification of

the experimentally observed no-go conditions in Ref. [13].

A general description of the framework is notationally complicated, so we

defer it till the end of the chapter. First we consider a simple hybrid model in

Sec. 4.1, motivated by the [2]catenane complex of Ref. [13]. In Sec. 4.2 we discuss

the conditions of detailed balance in this model; as in the previous models, we see

a natural effective free energetic picture emerging out of these conditions. Sec. 4.3

gives the statement and proof of the NPT. Finally, in Sec. 4.4 we consider the general

discussion of the model.

4.1 Hybrid Model of a [2]catenane

The [2]catenane we are going to deal with was introduced schematically in

Fig. 3.1. It has two interlocked rings, the smaller ring having three binding sites

on the bigger ring. Because of thermal fluctuations the small ring makes random

transitions among these states. In the hybrid framework we assume these transitions

to be diffusive, namely, the small ring can jump out of a metastable state, perform
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Figure 4.1: Hybrid model of [2]-catenane. (a) The [2]catenane is
represented by a cycle with ns = 3 stations and nT = 3 tracks. (b) A
linear representation of the same model. Periodicity in the state space
is indicated by the dotted line.

diffusive motion along the arm of the large ring, and then gets captured by one of

the two metastable states at the ends.

We can represent the hybrid models graphically as in the case of discrete state

models. The metastable states are represented by the nodes of a graph. The edges

now, however, serve as diffusive pathways for the finite time transition dynamics.

Thus, in addition to providing the allowed transitions, the edges become part of the

system state space. An appropriate graph for the [2]catenane is given in Fig. 4.1.

To facilitate the discussion we designate the binding sites as the stations, and

the edges, or the diffusive pathways, as the tracks. Whenever in a station, the small

ring, or the system henceforth, makes jumps to the nearest ends of the adjacent

tracks at certain rates. Whenever in a track, the system performs diffusive motion

with the stations at the ends acting as sinks. In the [2]catenane model shown in

Fig. 4.1(a) there are three stations i = 1, 2, 3. There are three tracks, each track

being denoted by the same index as the preceding station in the clockwise sense.
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For simplicity we have represented the system in Fig. 4.1(b) as a linear system with

periodic boundary condition, as indicated by the dotted line.

Let Pi(t) denote the probability to find the system in station i at time t, and let

pi(x, t) be the probability density to find the system at a position x along track i at

time t. In our notation, a given track is designated by the same index as the station

on its left; x specifies the distance along a track; and for simplicity we assume each

track to be of length l. See Fig. 4.2(a) for an illustration. Because of the periodic

nature of the state space, we make the identifications: i+1 ≡ 1 if i = 3 and i−1 ≡ 3

if i = 1. The total probability is normalized to unity:

nS∑
i=1

Pi(t) +

nT∑
i=1

∫ l

0

dx pi(x, t) = 1. (4.1)

Here, nS = 3 is the number of stations and nT = 3 is the number of tracks, but in

general these need not be equal (see Sec. 4.4).

We now specify the dynamics of our model. When the system is in station i, it

has a probability per unit time αi to make a leftward transition to the location x = l

on track i − 1, and similarly a probability rate βi to make a rightward transition

to the location x = 0 on track i; see Fig. 4.2(b). When the system is on one

of the tracks, it performs diffusive motion with a fixed diffusion constant D, with

reflective (hard-wall) boundary conditions at x = 0 and x = l. Upon reaching either

end of the track the system might jump into the adjacent station. These jumps are

characterized by probability rates γi (for transitions from track i − 1 to station i)

and δi (from track i to station i). More precisely, the probability per unit time for

the system to make a transition from track i− 1 to station i is given by the product
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Figure 4.2: Elements of hybrid model for 2-catenane. (a) Proba-
bility at station i is denoted by Pi(t), and probability density on track
i by pi(x, t), where distance x is measured from station i. Each track
is assumed to be of length l. (b) Rate parameters of the model: αi
and βi denote the transition rates from station i to tracks (i − 1) and
i, respectively; lγi and lδi are associated with the reverse transitions, as
described in the text.
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l γi pi−1(l, t), where the factor l (length of each track) is introduced on dimensional

grounds, so that the parameter γi has units of (time)−1. A similar expression holds

for transitions from track i to station i; see Fig. 4.2(b).

These transitions give rise to a flow of probability between stations and adja-

cent tracks. The net current from track i− 1 to station i is given by

J→i(t) = lγipi−1(l, t)− αiPi(t), (4.2)

and that from station i to track i by

Ji→(t) = βiPi(t)− lδipi(0, t). (4.3)

(The subscripts “→ i” and “i →” indicate rightward probability current into and

out of station i, respectively.) The diffusive current at position x along track i is

Jdi (x, t) = −D ∂

∂x
pi(x, t), (4.4)

and the reflective boundary conditions imply that

Jdi (0, t) = Jdi (l, t) = 0. (4.5)

These currents generally lead to changes in the probability distribution. The

rate of change of the probability to find the system at station i is the difference

between the incoming and the outgoing currents,

dPi(t)

dt
= J→i(t)− Ji→(t), (4.6)

and that of probability density along track i obeys a diffusion equation with a source

and sink:

∂pi(x, t)

∂t
= − ∂

∂x
Jdi (x, t) + δ(x− 0)Ji→(t)− δ(x− l)J→i+1(t). (4.7)

51



The nature of the source and sink terms becomes clearer if we use Eqs. 4.2, 4.3 and

4.4 to express the currents and reorganize the terms on the right of Eq. 4.7 to get

∂pi(x, t)

∂t
= D

∂2pi
∂x2

+ [δ(x− 0)βiPi(t) + δ(x− l)αi+1Pi+1] (4.8)

−l [δ(x− 0)δi + δ(x− l)γi] pi(x, t).

The second term on the right is a source term, and the third is a sink term. Eqs. 4.6

and 4.7 form a set of six coupled, linear equations (taking i = 1, 2, 3) which col-

lectively constitute the master equation describing the stochastic evolution of the

system.

4.2 Constraints Imposed by Detailed Balance

Since our model is meant to represent a system immersed in a thermal reser-

voir, the dynamics described by our master equation should have the property that

when the rate parameters αi, βi, γi and δi are held fixed, the system relaxes to a

state of equilibrium in which all currents are zero. This condition of detailed balance

imposes constraints on the rate parameters, which we now explore.

Let P eq
i and peqi (x) denote, respectively, the station probabilities and track

probability densities in the equilibrium state. According to the condition of detailed

balance, when these values are substituted into the right sides of Eqs. 4.2, 4.3 and

4.4, the currents appearing on the left sides of those equations vanish. This leads to
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Figure 4.3: Free energies and barriers. Station i has energy Ei, and
track i energy εi. Track (i − 1) and station i are separated by barrier
Bi,L. Station i and track i by Bi,r.

the relations,

lγip
eq
i−1(l) = αiP

eq
i ≡ η exp[−Bi,L] (4.9)

lδip
eq
i (0) = βiP

eq
i ≡ η exp[−Bi,R] (4.10)

∂

∂x
peqi (x) = 0. (4.11)

Eqs. 4.9 and 4.10, together with an arbitrary frequency scale η, define the dimension-

less parameters Bi,L and Bi,R, while Eq. 4.11 implies that the equilibrium probability

density is uniform along each track. Introducing the dimensionless parameters

Ei ≡ − lnP eq
i and εi ≡ − ln (lpeqi ) (4.12)

now allows us to rewrite Eqs. 4.9 and 4.10 as follows:

αi = η e−Bi,L+Ei , βi = η e−Bi,R+Ei ,

γi = η e−Bi,L+εi−1 , δi = η e−Bi,R+εi .

(4.13)

As before, because of the resemblance of these expressions to the Arrhenius form

for chemical reaction rates, it is natural to interpret Ei (or εi) as the effective free
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energy of the small ring when it is at station i (or on track i); and Bi,L (or Bi,R) as

the height of the effective free energy barrier that separates station i from the track

immediately to its left (or right). These energies are given in units of kT .

4.3 Statement and Proof of NPT

Stochastic pumping corresponds to the periodic variation of the transition

rates {αi, βi, γi, δi}, subject to the constraints imposed by detailed balance. In the

energetic picture introduced above, this translates to the periodic variation of the

energies and barriers {Ei, εi, Bi,L, Bi,R}, that is, Ei(t + τ) = Ei(t), etc., where τ is

the period of the pumping. Under these conditions the system relaxes to a unique

periodic steady state,

P ps
i (t+ τ) = P ps

i (t) , ppsi (x, t+ τ) = ppsi (x, t), (4.14)

characterized by time-periodic currents passing through the stations, Jps→i(t) and

Jpsi→(t), and along the tracks, Jd,psi (x, t). We are interested in the integrated currents,

Φps
→i ≡

∫
τ

dt Jps→i(t) , Φps
i→ ≡

∫
τ

dt Jpsi→(t) , Φd,ps
i (x) ≡

∫
τ

dt Jd,psi (x, t), (4.15)

where
∫
τ

denotes an integral over one period of pumping. Here, Φps
→i represents the

net flow of probability from track i−1 into station i over one pumping cycle, and Φps
i→

and Φd,ps
i (x) have similar interpretations; the integrated currents thus measure the

extent to which the pumping of the energies and barriers drives a non-zero current

around the cycle depicted in Fig. 4.1(a). Physically, these currents measure our

ability to generate directed mechanical motion of the small macrocycle around the
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large macrocycle, by the periodic variation of external parameters, with positive and

negative Φ’s corresponding to clockwise and counterclockwise motion, respectively;

see Fig. 3.1.

These considerations apply to the time-periodic pumping of any combination

of the parameters {Ei, εi, Bi,L, Bi,R}. In the subsequent analysis, however, we will

assume that the track energies εi remain constant with time, while the station

and/or barrier energies (the E’s and B’s) are varied periodically. Thus, we treat the

tracks as fixed conduits for diffusive motion from one station to another; this is in

keeping with the relevant experimental studies [13, 18], which did not include any

time-dependent track energies. The no-pumping theorem (NPT) that we now prove

states that, in order to generate non-zero integrated currents, we must vary some

combination that includes both station energies (the Ei’s) and barrier energies (the

Bi,L’s and/or Bi,R’s). In other words: (1) if we vary only the barrier energies, while

keeping the station energies fixed, or (2) if we vary only the station energies, while

keeping the barrier energies fixed, then in either case all the integrated currents will

be zero. To prove the NPT we now consider these cases separately.

The first case is easy to analyze. Let the term instantaneous equilibrium dis-

tribution denote the equilibrium distribution corresponding to the instantaneous

values of the parameters. By Eq. 4.12, this distribution depends only on the state

energies, and not on the barrier energies. Thus when the Ei’s and εi’s are held fixed,

the instantaneous equilibrium distribution {P eq
i , p

eq
i (x)} is invariant with time and

is a stationary solution of the dynamics. Since the periodic steady state is unique

for any pumping protocol, it follows that when the state energies are held fixed the
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system relaxes to the fixed instantaneous equilibrium distribution, no matter how

the barrier energies are varied. In this state, all the instantaneous currents are zero,

and therefore the integrated currents also vanish. Note that similar observations

were made in the contexts of closed and open discrete pumps in Secs. 3.1 and 3.2.1,

respectively.

Now consider the situation in which the station energies are varied periodi-

cally in time, Ei(t + τ) = Ei(t), and the barriers {Bi,L, Bi,R} (together with the

track energies εi) are kept fixed. The NPT then follows from a combination of two

conditions: the detailed balance constraints, Eq. 4.13, and the periodicity of the

probability distribution, Eq. 4.14, as we now show.

Let us first explore the consequences of the detailed balance constraints. Com-

bining Eq. 4.13 with the expressions for the instantaneous currents, Eqs. 4.2 and

4.3, we derive for each station i,

eBi,LJ→i(t) + eBi,RJi→(t) = η l

[
eεi−1pi−1(l, t)− eεipi(0, t)

]
. (4.16)

Note that the superscript ps does not appear here, as this relation is valid whether

or not the system has reached a periodic steady state. Summing both sides over i,

we get

∑
i

[
eBi,LJ→i(t) + eBi,RJi→(t)

]
= η l

∑
i

eεi
[
pi(l, t)− pi(0, t)

]
. (4.17)

The definition of the diffusive current, Eq. 4.4, implies

− 1

D

∫ l

0

dx Jdi (x, t) =
[
pi(l, t)− pi(0, t)

]
, (4.18)
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which combines with Eq. 4.17 to give

∑
i

[
eBi,LJ→i(t) + eBi,RJi→(t) +

η l

D
eεi
∫ l

0

dx Jdi (x, t)

]
= 0. (4.19)

(This is the analogue of Eqs. 3.10 and 3.24 for closed and open discrete models,

respectively.) If we now assume the system has reached a periodic steady state, and

we integrate this relation over one period, we get

∑
i

[
eBi,LΦps

→i + eBi,RΦps
i→ +

η l

D
eεi
∫ l

0

dxΦd,ps
i (x)

]
= 0. (4.20)

Now we explore the implications of the periodicity of the probability distri-

bution, Eq. 4.14. Since the probability to find the system in station i returns to

the same value after each period, the integrated current that enters that station

from the left must be balanced by the integrated current that exits from the right:

Φps
→i = Φps

i→. This value is in turn equal to the integrated current entering track i

from the left. Along track i the integrated current Φd,ps
i (x) must be the same for

any two points x1 and x2, otherwise there would be a net accumulation or depletion

of probability in the interval between those points, over each period. Proceeding

in this manner around the entire circuit we conclude that the integrated current is

uniform all along:2

Φps
→i = Φps

i→ = Φd,ps
i (x) = Φps

→i+1 · · · ≡ Φ. (4.21)

2A derivation of Eq. 4.21 directly from the master equations requires a more careful treatment,

in which the source and sink terms in Eq. 4.7 are displaced slightly from the track-ends. As

this does not contribute conceptually to the main line of the proof we present the analysis in

Appendix A.
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It follows immediately from Eqs. 4.20 and 4.21 that all integrated currents are zero.

Thus the NPT is established for the three-state model depicted in Fig. 4.1.

4.4 Generalizations

We now generalize our discussion along two different directions. First, follow-

ing Ref. [18], we allow for a spatially non-uniform (but still time-independent) free

energy landscape along each of the tracks. Secondly, we move beyond the simple

three-station, three-track network shown in Fig. 4.1, and extend our model to en-

compass an arbitrary, finite network of stations and tracks. The analysis involved

in these more general situations is similar to that presented in Sec. 4.3; therefore,

to avoid repetition, we sketch only the key ideas in the following discussion.

First we allow a nonuniform energy landscape Vi(x) along each track i, instead

of constant εi, again in units of kT ; this leads to the expressions,

Jdi (x, t) = −D
[
∂pi(x, t)

∂x
+
∂Vi(x)

∂x
pi(x, t)

]
(4.22)

γi = η e−Bi,L+Vi−1(l) , δi = η e−Bi,R+Vi(0). (4.23)

(compare Eqs. 4.4 and 4.13, respectively). When all the state energies are held fixed

and only the barrier energies are varied with time, the arguments presented earlier

apply here without modification, and we can conclude that all currents vanish in the

steady state. When instead the barrier energies are fixed and the station energies

are varied periodically, in place of Eq. (4.16) we have

eBi,LJps→i(t) + eBi,RJpsi→(t) = η l

[
eVi−1(l)ppsi−1(l, t)− eVi(0)ppsi (0, t)

]
, (4.24)
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Figure 4.4: A generic hybrid model. There are nS = 4 stations and
nT = 5 tracks.

which leads to a modified version of Eq. (4.20),

∑
i

[
eBi,LΦps

→i + eBi,RΦps
i→ +

η l

D

∫ l

0

dx eVi(x)Φd,ps
i (x)

]
= 0. (4.25)

The periodicity of the probability distribution, Eq. 4.14, again implies a uniform

integrated current, Eq. 4.21. The combination of Eqs. 4.21 and 4.25 in turn imme-

diately implies that all integrated currents vanish, and thus the NPT is established.

Now consider a more general network, composed of nS stations and nT tracks,

which need not be equal. As before, we assume this network to be connected: for any

pair of stations i, j, there exists at least one path – a sequence of alternating tracks

and stations – that connects station i to station j.3 Fig. 4.4 illustrates a connected

network, with nS = 4 and nT = 5. The [2]catenane model analyzed in Sections 4.1

- 4.3 had only one cycle – a closed loop of stations and tracks (see Fig. 4.1) – but in

the more general case considered here there can be more than one cycle, as shown

in Fig. 4.4.

3This assumption is not restrictive, as any finite network can be decomposed into two or more

connected networks, each of which satisfies the NPT.
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Figure 4.5: Notations for a generic hybrid network. (a) origin o(α)
and destination (d(α)) of a track α, and associated currents. (b) Current
between a station and the adjacent tracks. Although we show a station
connected to two tracks, in general a station can be adjacent to as few
as one and as many as nT tracks. (c) Energetics for a hybrid network
with non-uniform free energy along the tracks; compare Fig. 4.3.

60



We will now use Roman indices i ∈ {1, . . . nS} to denote stations and Greek

indices α ∈ {1, . . . nT} to denote tracks. To each track α we assign an arbitrary

direction, such that the station at one end of the track is viewed as the origin

o(α) and the station at the other end is the destination d(α), as illustrated in Fig.

4.5(a). The integrated current from track α (or station i) to station i (or track

α) is given by Φps
α→i (or Φps

i→α); and the integrated diffusive current on track α

along the preassigned direction by Φd,ps
α (x). These conventions are illustrated in

Figs. 4.5(a) and (b). These assignments are made independently for the various

tracks, and a given station can simultaneously serve as the origin of some tracks

and the destination of others. Station and track energies are denoted by Ei and

Vα(x), respectively; the barrier between station i and track α is given by Bi,α. See

Fig. 4.5(c).

As earlier, under the time-periodic variation of station and/or barrier energies,

the system settles into a unique periodic steady state. Moreover, when all the state

energies are held fixed and only the barrier energies are varied with time, then

the entire system simply relaxes to a state of thermal equilibrium, in which all

currents vanish. To establish the NPT, it remains to show that the integrated

current vanishes when the barrier energies are kept fixed and the station energies

are varied periodically.

The periodicity of the probability distribution implies, for each station i,

∑
{α|d(α)=i}

Φd,ps
α→i =

∑
{α|o(α)=i}

Φd,ps
i→α; (4.26)

the sum on the left represents the net integrated current into station i from all tracks
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α for which it is the destination, and the sum on the right is the net integrated

current out of the station into all tracks to which it is the origin. For each track α

we have

Φps
o(α)→α = Φd,ps

α (x) = Φps
α→d(α) (4.27)

(compare with Eq. 4.21), which ensures that probability neither accumulates nor

depletes anywhere on the track, with each cycle. Eqs. 4.26 and 4.27 have an inter-

esting consequence: if there exists a non-zero integrated current in the system, then

it must be part of a cycle (of alternating stations and currents) along which all of

the integrated currents point in the same direction. The intuition is straightforward:

to prevent the systematic accumulation of probability within the network, current

must flow in a circle. We now formalize and establish this statement, and then use

it to prove that all integrated currents must be zero (when the barriers are fixed and

the station energies are varied periodically), following arguments similar to those

presented in Sec. 3.1.2.

Without loss of generality, suppose that a particular track α supports a positive

integrated current: Φd,ps
α > 0. (Equivalent arguments would apply if the sign were

negative.) Eq. 4.27 then implies positive integrated currents Φps
o(α)→α and Φps

α→d(α).

As probability cannot deplete on station o(α) over a complete cycle, o(α) must have

neighboring track(s) β such that Φps
β→o(α) > 0. Similarly, to avoid accumulation of

probability, d(α) must have neighboring track(s) γ such that Φd(α)→γ > 0. The

periodic conservation of probability in turn establishes the directionality of the in-

tegrated currents along these tracks: on track β, the integrated current must flow
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toward station o(α), and on track γ it must flow away from station d(α). Continuing

in this manner, we now construct a set D(α) of stations and tracks to which there

is a positive flow of current from α; this will consist of d(α), γ, and so on. Similarly,

we construct set S(α) of stations and tracks from which there is a positive flow to α;

this will consist of o(α), β, so on. In order to prevent the accumulation of probability

in the former set and its depletion in the latter with each complete cycle, D(α) and

S(α) must have a common element. This implies the existence of a cycle

c ≡ α→ d(α)→ γ → . . .→ β → o(α)→ α, (4.28)

along which all integrated currents flow in the same direction.

Now recall that each track in our network has been assigned a direction, point-

ing from its origin to its destination. By assumption, for track α this direction is

parallel to the direction of probability flow around the cycle c, indicated by Eq. 4.28.

However, since the assignment of track directions is arbitrary, each of the remaining

tracks in the cycle (β, · · · γ) might be directed either parallel or anti-parallel to the

flow along the cycle. Let us therefore introduce a factor sµ = ±1, defined for every

track µ in the cycle c, such that sµ = +1 (or −1) if track µ is oriented parallel (or

anti-parallel) to the flow in the cycle. Then Ψd,ps
µ ≡ sµΦd,ps

µ > 0 for each track µ in

the cycle c, and Ψps
o(µ)→µ ≡ sµΦps

o(µ)→µ and Ψps
µ→d(µ) ≡ sµΦps

µ→d(µ) are positive as well,

by Eq. 4.27. The analogue of Eqs. 4.20 and 4.25 for the cycle c is given by

∑
µ

[
eBo(µ),µΨps

o(µ)→µ + eBd(µ),µΨps
µ→d(µ) +

η l

D

∫ l

0

dx eVµ(x)Ψd,ps
µ (x)

]
= 0, (4.29)

where the sum is taken over all tracks µ in cycle c. Since all the Ψ’s are positive,

Eq. 4.29 cannot be satisfied. Hence our starting assumption, the existence of a
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positive integrated current along track α, must be invalid. This establishes the

no-pumping theorem.
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Chapter 5

Szilard’s engine

1In this chapter and the following we focus on the topic of Maxwell’s demon.

As discussed in the Introduction, this is a paradoxical thought experiment proposed

by James Clark Maxwell where an intelligent being “ whose faculties are so sharp-

ened that he can follow every molecule in its course” can generate a heat flow against

a thermal gradient without expenditure of work [53], in violation of the second law

of thermodynamics (specifically its Clausius statement [75]). This puzzle has lead

to nearly 150 years of debates and discussions [52, 53, 55–58, 60, 61, 73, 83]. A con-

sensus has developed based on the works of Rolf Landauer [58], Oliver Penrose [59]

and Charles H. Bennett [60], who concluded that the demon gathers information

about the molecular motion during its operations and discarding this information

has a minimum entropic cost that makes up for the violation.

Generically, the term “Maxwell’s demon” refers not only to the original setting

of Maxwell, but to any situation where the operations of an intelligent being leads to

a violation of the second law. An interesting example in this context was provided

by Leo Szilard in 1929 [56]. He considered a single-molecule gas in an isothermal

chamber and the following sequence of actions:

1This chapter is based on Ref. [92].
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Figure 5.1: Szilard’s engine. One starts with a one-molecule gas inside
an isothermal chamber. A frictionless partition is quickly inserted in the
middle of the chamber. If the molecule is trapped in the left, a mass is
attached from the left so that the mass is raised because of the pressure
of the gas. If the molecule is trapped in the right, the mass is connected
from the right. In both case a positive amount of work is extracted.
One can remove the partition, let the particle thermalize, and repeat
the whole process several times to gain as much work as desired.
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(i) A frictionless partition is inserted quickly in the middle of the chamber,

(ii) If the molecule is trapped in the left half of the chamber, a small mass is

attached to the partition from the left (as shown in Fig. 5.1) such that the

mass is raised as the partition moves to the right because of the pressure of the

gas. Alternatively, if the molecule is trapped in the right half of the chamber,

the mass is attached from the right. Again, the mass is raised because the

partition now moves to the left because of the pressure of the gas.

(iii) The partition is removed.

A positive amount of work is done in each sequence of actions. One can repeat the

sequence to perform as much work as desired. For a repetitive process the molecule

undergoes a periodic evolution and therefore has the same energy on the average.

The required energy for work must come from the surrounding reservoir. This is

puzzling because the sole result of the process seems to be the extraction of heat

from a single reservoir and its conversion into work, which is explicitly prohibited

by the Kelvin-Planck statement of the second law [75]. The puzzle is resolved by

noting the following set of facts: (1) taking the binary decision about connecting the

mass, whether from the left or the right, requires the knowledge about the molecule’s

whereabouts, (2) the molecule’s position must be measured and recorded prior to

this decision, and (3) erasure of the recorded information comes at a thermodynamic

cost, which is kT ln 2 per bit of information (Landauer’s principle) [58].

In this chapter we propose an exactly solvable autonomous model that can

achieve the same feat as the Szilard’s engine. Before we go into the details of the
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Figure 5.2: Our model akin to Szilard’s engine. The three-state
system (our demon) interacts with three other components: a mass that
can be lifted or lowered, a stream of bits (see footnote 2) that pass by
the demon in sequence, and a thermal reservoir, the surrounding.

model, let us have a brief overview. There are four principal components (Fig. 5.2):

(a) a three-state system which we will term as the demon, (b) a mass attached to the

demon, (c) a collection of two-state systems (the bits2), and (d) a heat reservoir in

which all the previous components are immersed. The model has three parameters:

(a) δ describing the initial statistical distribution of the bits, (b) ε characterizing

the weight of the mass, and (c) τ giving the duration of interaction of the demon

with each bit. For any set of values (δ, ε, τ) the model reaches a unique periodic

steady state distribution, characterized by an average rate of work performed on the

mass (by raising or lowering it), and an average rate of information written to the

bit stream (characterized by a change in their statistical distribution).

In the next section we specify the details of our model. In Sec. 5.2 we present

2Note the rather unconventional use of the term “bit”. Here it refers to two-state systems each

of which can encode one bit (in the sense of unit) of information. The meaning of the term should

be clear from the context.
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Figure 5.3: Models of our demon and each bit. (a) The demon
is shown as an arrow that can point to three directions: A, B and C.
In absence of a bit, transitions are allowed only along the continuous
lines (A↔ C are not allowed). (b) A bit is shown as an arrow that can
point either up (state 1) or down (state 0). No transitions are possible
in absence of the demon.

an outline of the analysis. In Sec. 5.3 we present the qualitative behavior of our

model through its phase diagram. We see that the model is versatile: in addition

to behaving like a Szilard engine, it can also act as a Landauer eraser. In Sec. 5.4

we discuss the modified expression of the second law.

5.1 Model

We now specify the details of our model. We represent the three states of the

demon as an arrow pointing in one of three directions (A, B, or C) on the face of

a dial; see Fig. 5.3(a). We model the transitions among the three states as Poisson
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processes: if the demon is in a state i ∈ {A,B,C}, its rate of transition to some

other state j is given by a real number Rji ≥ 0. We assume the transitions A↔ C

are not allowed in absence of bits, hence

RCA = RAC = 0. (5.1)

To keep our analysis simple, we assume all other rates to be unity

RAB = RBA = RBC = RCB = 1. (5.2)

In the following we refer to these transitions as intrinsic dynamics of the demon as

they do not involve the bits or the mass. Eqs. 5.1 and 5.2 imply that the effective

free energies of the three states A, B and C are equal.

Each bit has two states, 0 and 1, with equal effective free energies. One can

think of an arrow which can point either up (state 1) or down (state 0). We assume

that no transition is possible between these states in absence of a demon. In other

words, the bits do not have any intrinsic dynamics; left to themselves, they will

maintain their present state for an indefinite time. See Fig. 5.3(b) for an illustration

of the model.

We now specify the interaction between the demon and a bit: the demon can

make the transition from C to A if the bit simultaneously flips from 0 to 1; also, the

demon can make the reverse transition from A to C if the bit simultaneously flips

from 1 to 0. We have shown this in Fig. 5.4.

Fig. 5.4 also shows a mass m which is now attached to the demon such that the

mass is raised by a height ∆h if the demon goes from C to A, and is lowered by the

same amount if the demon goes from A to C. The presence of the mass favors the
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Figure 5.4: Detailed balance. Whenever the demon makes a transition
C → A, the interacting bit (closest to the demon) flips from 0 to 1,
and the mass gets raised. For the opposite transition, C ← A, the
bit flips from 1 to 0, and the mass gets lowered. The mass favors the
leftward transitions over the rightward transitions. If (1− ε) and (1 + ε)
denote the corresponding rates, respectively, this is reflected in the ratio
(1− ε)/(1 + ε) = exp (−mg∆h/kT ).

C to A transitions over the A to C transitions. This is reflected in the ratio of the

corresponding rates: if (1− ε) is the rate of transition from C to A (simultaneously

with 0← 1) and (1 + ε) is the rate of transition from A to C (simultaneously with

1→ 0), from local detailed balance (Eq. 2.36), we have

1− ε
1 + ε

= e−mg∆h/kT , ε = tanh
mg∆h

2kT
, (5.3)

where g is acceleration due to gravity. Rates associated with the intrinsic transitions

of the demon, A↔ B and B ↔ C, remain unaffected.

We can summarize the joint dynamics of the demon and an interacting bit by

the following master equation

ṗi =
∑
j 6=i

(Rijpj −Rjipi) , i, j ∈ {A0, . . . C1}. (5.4)

Here A0 indicates the joint state of the demon in state A and the bit in state 0,

similarly for the other combinations. All the rates have been discussed already: the
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Figure 5.5: Graph of the joint master equation. Solid lines indicate
allowed transitions. The numbers in blue indicate the associated rates.
The edge that connects A1 and C0 represents the coupling between the
demon and a bit. The mass goes up (down) whenever here is a joint
transition C0→ A1 (A1→ C0).

concerted rates are (1± ε), as shown in Fig. 5.4, and the rates for the intrinsic dy-

namics of the demon are unity (Eq. 5.2). We have given the graphical representation

of the joint dynamics in Fig. 5.5. The six joint states {A0, . . . C1} are represented

by six vertices; the allowed transitions are shown by the edges. The transitions

A0↔ B0, B0↔ C0, A1↔ B1 and B1↔ C1 are due to the intrinsic dynamics of

the demon; transitions C0↔ A1 correspond to the interaction of the demon with a

bit; the mass gets raised (lowered) in transitions C0→ A1 (A1→ C0).

As mentioned earlier, our setup involves a stream of bits, arranged at equally

spaced intervals along a tape that is pulled at a constant speed, for instance by

a frictionless flywheel. The demon remains at a fixed location, and interacts, in

a manner described above, only with the bit that is currently nearest to it. Let

τ−1 denote the rate at which the bits pass by the demon, each interacting with the
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demon for a time interval of duration τ , an interaction interval, before the next

bit in the stream takes its place. Thus τ determines the extent to which the joint

system of the demon and the interacting bit approaches equilibrium during one

such interaction interval. For τ � 1 the system hardly evolves during the interval,

whereas for τ � 1 the demon and the bit effectively reach equilibrium. The latter

is just the steady state solution of Eq. 5.10:

peqA0 = peqB0 = peqC0 =
1 + ε

2
, peqA1 = peqB1 = peqC1 =

1− ε
2

. (5.5)

When a new bit comes at the end of an interaction interval, the change may

show up as a transition in the joint state of the demon and the interacting bit, not

along any of the solid lines in Fig. 5.5. For the purpose of illustration, consider the

situation in Fig. 5.6. In subfigure (a) we have shown a possible situation at the

moment t−n i.e. just before the end of the nth interaction interval. The demon is in

state B, the outgoing (nth) bit is in state 1, and hence the joint state is B1. At the

moment t+n , the (n + 1)th bit is nearest to the demon and happens to be initiated

in state 0. The joint state at time t+n must be B0. This is because the demon does

not have any time to change its state during the instantaneous switching from the

old to the new bit. However, the switching appears as a vertical transition from

B1 to B0 in the second figure of Fig. 5.6(b). Clearly, there has been no physical

transition, and the vertical transition above is an artifact of the reduced description

of the demon and the stream of bits in terms of the demon and just the interacting

bit. There is no thermodynamic significance of these artificial transitions.

The incoming bits are statistically independent of one another, each with a
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Figure 5.6: Illustration of “unphysical” transitions. (a) At the
moment t−n the nth bit is nearest to the demon and the joint state is
B1. (b) At the moment t+n , the (n + 1)th bit is nearest, the demons
cannot not change its state during this instantaneous switch, and hence
the joint state is B0. This is not a physical transition, just an artifact
of the mode of description we have chosen.
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probability p0 to be in state 0 and p1 to be in state 1. The excess parameter

δ = p0 − p1 (5.6)

quantifies the excess of 0’s in the incoming bit stream. Let bn and b′n denote,

respectively, the incoming and outgoing state of the nth bit in the stream. The state

of the bit can change only when it is interacting with the demon.

The graph shown in Fig. 5.10 forms a linear chain. Because this chain has

no closed loops, the demon cannot perform continuous directed rotation, . . . A →

B → C → A . . . for clockwise (CW) rotation and . . . A→ C → B → A . . . for coun-

terclockwise (CCW) rotation, with a single bit. Yet, the “unphysical” transitions

discussed above provide a ratchet-like mechanism to make such a motion possible

when the demon interacts with a stream of bits. To understand how this works,

in the rest of this paragraph, we consider the case where every bit in the incoming

stream is set to 0. To keep track of the net clockwise (CW) rotation we introduce

an integer variable χ whose value increases by unity whenever the demon makes the

transition C → A and decreases by unity whenever the demon makes the transition

A → C. The demon interacts with the nth bit during the nth interaction interval,

tn = n τ ≤ t < tn+1. At the start of this interval, the composite system begins in

state A0, B0 or C0, since bn = 0. From t = tn to tn+1 the system evolves among

the network of states depicted in Fig. 5.5. It might repeatedly pass forward and

back along the edge connecting C0 to A1, resulting in alternating increments and

decrements of the counter χ(t). At the end of the interaction interval, if the system

is found in state A0, B0 or C0 (i.e. if b′n = 0) then we can infer that every transition
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C0→ A1 was balanced by a transition A1→ C0, hence ∆χn ≡ χ(tn+1)−χ(tn) = 0.

If the system instead ends in A1, B1 or C1 (b′n = 1), then the counter has advanced

by one net unit: ∆χn = +1. At t = tn+1, the nth bit is replaced by the (n+ 1)th bit,

and the next interval commences. Thus, if the composite system is in state B1 at

the end of one interval, then at the start of the next interval it is in state B0 (This

is the “unphysical transition” we referred to in the beginning of this paragraph.

Compare also Fig. 5.6). Over time, the demon interacts with a sequence of bits, all

initialized to 0, and the outgoing bit stream contains a record of the demon’s rotary

motion: each occurrence of an outgoing bit in state 1 indicates one full CW rotation,

∆χ = +1. Since the value of the counter can only increase or remain unchanged

from one interval to the next, in the long run χ(t) grows with time and the demon

undergoes directed CW rotation.

If the incoming stream were instead composed entirely of 1’s, then full CW

rotations would be prohibited; full CCW rotations would be documented as outgoing

0’s; and χ(t) would be decreasing in time.

For a more general distribution of incoming bits, the net change in the counter

during the nth interaction interval is

∆χn = b′n − bn, (5.7)

and the outgoing stream provides partial information regarding the demon’s gyra-

tions. The demon eventually attains a periodic steady state distribution in which

its statistical behavior is the same from one interval to the next (discussed in the

next section). If the outgoing bit stream is then characterized by values p′0, p′1 and
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δ′ ≡ p′0 − p′1, then the average number of full CW rotations per interaction interval

is

Φ ≡ 〈∆χn〉 = p′1 − p1 =
1

2
(δ − δ′). (5.8)

We will use Φ as our measure of directed rotation, and we will call it the circulation.

5.2 Analysis

In this section, we first prove that the demon relaxes to a periodic steady state

distribution when the incoming bits have the same initial distribution. Then we give

a brief outline of the derivation of Φ (as defined in Eq. 5.8).

Let pD(0) ≡ (pA0 , p
B
0 , p

C
0 )T be the initial (t = 0) probability distribution of the

demon. The joint distribution of the demon and the first bit at t = 0 is given by

pDB(0) ≡MpD(0) , M =



p0 0 0

0 p0 0

0 0 p0

p1 0 0

0 p1 0

0 0 p1



=

 p0 I

p1 I

 , (5.9)

where I is the 3× 3 identity matrix. M here encodes the initial distribution of the

bit. The joint distribution can be written in this product form (Eq. 5.9) because

all the incoming bits are assumed to be statistically uncorrelated to each other and

hence to the demon. The joint distribution evolves according to the master equation

d

dt
pDB(t) = RpDB(t) (5.10)
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where the explicit form of the rate matrix is given by

R =



−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 + ε 1 + ε 0 0

0 0 1− ε −2− ε 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1



. (5.11)

Elements of the rate matrix have already been discussed in the last section. The

joint state at the end of the interaction interval i.e., at t = τ is obtained by solving

the master equation 5.10 to obtain

pDB(τ) = eR τpDB(0). (5.12)

The distribution of the demon is obtained by summing over the final state of the bit

pD(τ) = PDpDB(τ) , PD =


1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 =
(
I I

)
. (5.13)

We can combine Eqs. 5.9, 5.12 and 5.13 to obtain

pD(τ) = T pD(0) , T = PDeRτM, (5.14)

so the distribution of the demon can be inferred from its initial distribution if we

know the matrix T (3 × 3) given in the second relation in Eq. 5.14. Clearly, T can

be interpreted as the transition matrix whose component Tij gives the probability

for the demon to make a transition to state i ∈ {A,B,C} from state j over the
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interaction interval. Because all the incoming bits are in the same distribution and

they interact with the demon according to the same rule (Eq. 5.10), the matrix T

is the transition matrix of the demon for any interaction interval. Therefore, the

distribution of the demon at the end on n interaction intervals (for any non-negative

integer n) i.e., at t = n τ is simply given by

pD(n τ) = T n pD(0). (5.15)

From its very interpretation T is a positive matrix: The demon can make a transition

to any state from any other state over an interaction interval with finite probability.

From the Perron-Frobenius theorem [86] we can infer that the distribution of the

demon at the end of an interaction interval in the limit of large n is given by the

unique steady state eigenvector of T :

lim
n→∞

pD(n τ) = q , T q = q. (5.16)

Because q is independent of n the distribution of the demon becomes periodic with

respect to time after a sufficiently large number of interaction intervals (n→∞):

pD, ps(n τ) = q , pD, ps(n τ ≤ t < (n+ 1)τ) = eRuq , u = tmod τ. (5.17)

We now give the method to obtain the circulation Φ. We solve for the peri-

odic steady state of the demon (Eqs. 5.16 and 5.17); then we use that solution to

determine the distribution of outgoing bits (p′0, p
′
1); and finally use Eq. 5.8. The

distribution (p′0, p
′
1) is obtained from the steady state q by p′0

p′1

 = PBeRτMq , PB ≡

 1 1 1 0 0 0

0 0 0 1 1 1

 . (5.18)
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Here, Mq gives the joint distribution of the demon and an incoming bit at the

beginning of their interaction interval (after the demon has reached the periodic

steady state distribution), the factor expR τ evolves it over the subsequent interac-

tion interval so that expR τMq is the joint distribution of the demon and the bit

at the end of their interaction interval, and finally PB sums over the states of the

demon to give the distribution of the outgoing bit.

This calculation involves a straightforward if tedious exercise in the spectral

decomposition ofR, which we detail in Appendix B. The final result is the following:

Φ(δ, ε; τ) =
δ − ε

2
η(δε, τ), η(δε, τ) =

[
1− 1

3
K(τ) +

εδ

6
J(τ, εδ)

]
, (5.19a)

where

K(τ) = e−2τ (1 + 8α + 4
√

3β)− (2 + 7α + 4
√

3β)e−2τ

3− (2 + α)e−2τ
, (5.19b)

J(τ, εδ) =
(1− e−τ )[2e−2τ (α +

√
3β − 1)]2

[3(1− εδe−τ )− (1− εδ)(2 + α)e−2τ ][3− (2 + α)e−2τ ]
, (5.19c)

and α = cosh(
√

3τ), β = sinh(
√

3τ). These results extend to negative values of ε if

we interpret these as indicating that gravity exerts a CW torque3.

There is an interesting feature in Eq. 5.19. The quantity η can be shown to

be non-negative from the irreversibility of dynamics. The sign of Φ is therefore

determined by the difference (δ − ε). One may think of two effective forces: the

bias induced by the incoming bit stream, which favors Φ > 0 when δ > 0, and the

gravitational force due to the mass, which favors Φ < 0 when ε > 0.

The thermodynamic behavior of our device is characterized by the the average

3For ε < 0, the mass is raised in A1→ C0 transitions and lowered in C0→ A1 transitions.
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work done by the demon per bit, namely,

W = mg∆hΦ = k T ln

(
1 + ε

1− ε

)
Φ, (5.20)

as the mass is raised (or lowered) by ∆h each time ∆χ = +1(or− 1). We have used

Eq. 5.3 to write down the second equation.

To discuss the information theoretic behavior of our device we introduce the

quantities

Sb = −
∑
i=0,1

pi ln pi and S ′b = −
∑
i=0,1

p′i ln pi
′. (5.21)

(Recall that p0 (p′0) is the proportion of 0’s in the incoming (outgoing) bit-stream,

and similarly for p1 and p′1.) For convenience we will call these the disorder (per

bit), although this terminology ignores correlations between successive bits in the

outgoing stream. The quantity Sb is the information content of the incoming stream,

and is related to its capacity to record new information, in the following sense.

When Sb = 0 the incoming stream is a blank slate composed entirely of 0’s (or

entirely of 1’s), and the outgoing stream contains a faithful record of CW (or CCW)

rotations, as discussed earlier. When Sb = ln 2 (its maximum possible value) the

incoming stream is saturated with an equal mixture of 0’s and 1’s, and in this case

the outgoing stream does not chronicle the demon’s rotations. We will interpret the

difference ∆SB ≡ S ′b − Sb as a measure of the degree to which new information is

written in the flow of bits, as it interacts with the demon. If we define the function

S(X) = −1−X
2

ln
1−X

2
− 1 +X

2
ln

1 +X

2
(5.22)

we can rewrite ∆SB as

∆SB = S(δ − 2Φ)− S(δ). (5.23)
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5.3 Modes of operation

Our device displays different “useful” modes of operation. It can act both as

an engine, W > 0, and memory eraser, ∆SB < 0. In the former case, it extracts heat

from the reservoir and converts into work by raising the mass against its weight.

In the eraser case, the mass gets lowered and the demon utilizes the corresponding

increase in reservoir entropy to decrease the information content per bit. We discuss

the details of each case in the following.

Consider the square region representing allowable values of the excess param-

eter δ and the weight parameter ε, depicted in Fig. 5.7 for τ = 1 and 10. The line

ε = δ is the contour of zero steady state rotation; to the left of this line rotation is

CCW (Φ < 0), and to the right of this line the rotation is CW (Φ > 0). Work per

bit is positive (W > 0) in the two lightly shaded triangles, and thus the device acts

as an engine. We can clearly see the interplay between the two parameters δ and

ε. For example, when δ > ε > 0 gravity exerts a CCW torque, but the excess of

incoming 0’s generates a greater CW torque.

Since the rotation of the demon couples tightly to the flipping of bits (Eq. 5.7),

the line ε = δ (where Φ = 0) is a contour along which ∆SB(δ, ε; τ) = 0; here, there

is no net rotation and no net change in the bit statistics: p′0 = p0 and p′1 = p1. The

other solid line depicted in Fig. 5.7, running from the upper left to the lower right,

is also a contour along which ∆SB = 0, representing the inversion of bit statistics:

p′0 = p1 and p′1 = p0. The two lines divide the (δ, ε)-square into four regions, with

the +’s and −’s in Fig. 5.7 denoting the sign of ∆SB in these regions.
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Figure 5.7: Phase diagram of the engine model. Behavior of the
model as a function of δ and ε, for τ = 1 and 10. The demon can act
as an engine (lightly shaded region), an eraser (darkly shaded) or a dud
(unshaded). These regions are delineated by the lines ε = 0 and ε = δ,
together with a third line (see text), shown passing through the second
and fourth quadrants, which depends on τ and is nearly but not exactly
straight. The symbols + and − indicate the sign of ∆S, the average
change in disorder per bit. The circulation Φ is positive (CW) in the
lower right half of the figure, and negative (CCW) in the upper left.
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We see in Fig. 5.7 that ∆SB > 0 whenever our device acts as an engine. This

is consistent with the proposition that a mechanical demon, in order to convert heat

to work, must write information to a memory register. Indeed, Fig. 5.7 shows that

the greater the storage capacity of the incoming bit stream, the larger the mass the

demon can hoist against gravity: when presented with a blank slate (δ = ±1) the

demon can lift any mass; but when the incoming bit stream is saturated (δ = 0)

the demon is incapable of delivering work. Thus, a blank or partially blank memory

register acts as a thermodynamic resource that gets consumed when the demon acts

as an engine.

In the above description, the demon is an active rectifying agent and the

bit stream merely a passive receptacle for information. From another perspective,

however, the interaction with the demon presents an opportunity for the bits to

evolve to a more disordered sequence of 0’s and 1’s. The bits’ role then appears

more assertive: their evolution toward greater randomness is what drives the engine,

and the demon simply facilitates the process.

In the darkly shaded regions in Figs. 5.7, the demon acts as an eraser, removing

information from the memory register: ∆SB < 0. For example, if δ = 0, mg∆h �

kT (i.e. ε ≈ 1) and τ � 1, then the bits arrive in an equal mixture of 0’s and 1’s,

but each bit has sufficient time to equilibrate with the demon, hence at the end of

each interaction interval the composite system is almost certainly in state A0, B0

or C0 (Eq. 5.5). As a result, the outgoing bits are nearly all 0’s, and the memory

is effectively wiped clean as the mass drops by a distance ∆h/2 (on average) per

interaction interval.
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Our model thus reflects the interplay between two effective forces, one asso-

ciated with the randomization of the bits and the other with the pull of gravity.

When our model acts as an engine, it consumes one resource – a blank or partially

blank memory register – to build up another: the gravitational potential of the

mass. When it acts as an eraser the roles are reversed. In the unshaded regions

in Figs. 5.7, both resources are squandered (the mass falls and the bits’ disorder

increases) and our model is a dud, accomplishing nothing useful.

5.4 Modified second law of thermodynamics

As will be proved shortly (beginning with Eq. 5.26) the model satisfies the

inequality

W ≤ kT∆SB, (5.24)

for any ε, δ and τ , with the equality holding only when ε = δ. Thus, the increase

in the information content of the bit stream places an upper limit on the work that

can be delivered, when the model is an engine. Analogous inequalities arise in the

context of feedback control, where an external agent manipulates the system on

the basis of outcomes of explicit measurements [39–50]. When our model acts as

an eraser (∆SB < 0), the relation 5.24 reveals the minimum amount of work that

must be supplied, by the falling mass, in order to reduce the information content

by a given amount. In the case of full erasure (S ′b = 0) this becomes Landauer’s

principle, |W | > kTSb. Note that if we are willing to assign thermodynamic meaning

to the randomness in a string of data, the relation 5.24 can be interpreted as the
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second law of thermodynamics (or rather as a weak statement of it, since S ′b ignores

correlations between outgoing bits): the decrease in the entropy of the reservoir,

−∆SR = W/kT , must not exceed the increase in the entropy of the bit stream:

∆SR + ∆SB ≥ 0. (5.25)

While both sides of the relation 5.24 approach zero as ε → δ, their ratio

approaches unity in that limit (The proof of this assertion is given at the end of

this section beginning with Eq. 5.36). Thus in the immediate vicinity of the line

ε = δ, the bound represented by the relation 5.24 becomes saturated, and our model

behaves with maximal efficiency, acting as a thermodynamically reversible engine

or eraser. Note however that the rate at which the demon either delivers work or

erases information approaches zero in this reversible limit. In the following, we first

give the derivation of Eq. 5.24 and then the proof of the reversible limit.

Recall from Eq. 5.20 that

W = kT ln

(
1 + ε

1− ε

)
Φ. (5.26)

To establish the inequality 5.24 we must prove the non-negativity of the dissipation

function:

Ω ≡ ∆SB − Φ ln
1 + ε

1− ε
≥ 0. (5.27)

We will first prove this for the quasistatic case τ →∞, and then extend it to finite

τ .

In the quasistatic limit (specified below by the subscript “∞”) we have

Φ −→ δ − ε
2
≡ Φ∞ , δ′ −→ ε , ∆SB −→ S(ε)− S(δ), (5.28)
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hence

Ω −→ S(ε)− S(δ)− δ − ε
2

ln
1 + ε

1− ε
≡ Ω∞. (5.29)

Now note that

Ω∞ = 0 for ε = δ and
∂

∂ε
Ω∞ =

ε− δ
1− ε2


> 0 if ε > δ

< 0 if ε < δ

. (5.30)

Thus for any fixed value of δ, the function Ω∞(δ, ε) is zero at the point ε = δ, and as

a function of ε it decreases when ε < δ and increases when ε > δ. This establishes

that Ω∞ ≥ 0.

We have verified by explicit numerical investigation that η(δε, τ) in Eq. 5.19

satisfies

0 ≤ η ≤ 1. (5.31)

While we have not been able to establish this analytically, we believe it is related to

the fact that all eigenvalues of the transition rate matrix R are real and non-positive

(Eq. B.2), with the consequence that the composite demon-and-bit system relaxes

monotonically toward equilibrium during each interaction interval.

For finite τ , the excess parameter δ′ for the outgoing stream is a linear average

of δ and ε:

δ′ = δ − 2Φ = (1− η) δ + η ε , (5.32)

using Eqs. 5.8, 5.31 and 5.28. Since S(X) (Eq. 5.22) is concave (d2S/dX2 < 0),

S ′b = S(δ′) ≥ (1− η)S(δ) + η S(ε)

= S(δ) + η
[
S(ε)− S(δ)

]
.

(5.33)
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From Eqs. 5.28, 5.29 and the non-negativity of Ω∞, we have

S(ε)− S(δ) ≥ Φ∞ ln
1 + ε

1− ε
. (5.34)

Combining Eqs. 5.33 and 5.34 we get

S ′b ≥ S(δ) + ηΦ∞ ln
1 + ε

1− ε
= Sb + Φ ln

1 + ε

1− ε
, (5.35)

which is the result we set out to establish (Eq. 5.27).

Finally, setting kT = 1 for convenience, we establish the result

lim
ε→δ

W

∆S
= 1 (5.36)

to prove the reversibility of our device near ε = δ line. Taking the partial derivatives

of the quantities

W = Φ ln
1 + ε

1− ε
and ∆S = S(δ′)− S(δ) (5.37)

with respect to ε, at fixed δ and τ , we get

∂W

∂ε
=
∂Φ

∂ε
ln

1 + ε

1− ε
+

2Φ

1− ε2

∂∆S

∂ε
=
∂Φ

∂ε
ln

1 + δ′

1− δ′

(5.38)

(using δ′ = δ − 2Φ). Along the line ε = δ we have W = ∆S = 0 as well as

∂W

∂ε
=
∂∆S

∂ε
. (5.39)

Eq. 5.36 then follows by l’Hôpital’s rule.
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Chapter 6

Maxwell’s refrigerator

1In the previous chapter a variant of Maxwell’s demon, the so-called Szilard’s

engine [56], was discussed and an exactly solvable, autonomous model of this vari-

ant [85] was introduced. More recently, an analogous model for the original demon

has been developed. Just as in Maxwell’s proposal, this new model can effect a heat

transfer against a thermal gradient without any external energy. This model too

is completely autonomous, exactly solvable, and, to the best of our knowledge, the

first of its kind in the field.

A schematic diagram of the model is shown in Fig. 6.1. Its consists of four

components: a two-state system that plays the role of Maxwell’s demon, a memory

register, and two thermal reservoirs at temperatures Tc and Th > Tc. The memory

register is a sequence of bits (two-state systems) spaced at equal intervals along a

tape that slides frictionlessly past the demon. The demon interacts with the nearest

bit and with the reservoirs, as we describe in detail in the following paragraphs, and

effects heat transfer between the reservoirs. If the the initial state of the memory

register contains a sufficient fraction of 0’s the demon is capable of transferring heat

from the cold to the hot reservoir by randomizing the state of the register. As in the

previous case, the present model is versatile: for certain combinations of the model

1This chapter is based on Ref. [93].
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Figure 6.1: Illustration of the setup. The device, or demon, interacts
with a sequence of bits, one at a time, while exchanging energy with two
thermal reservoirs.

parameters, the demon can also act as a memory eraser.

In Sec. 6.1 a detailed description of the model is given. Sec. 6.2 gives the

analyses of the model. In Sec. 6.3 the analytical results from the previous section

have been utilized to represent the qualitative behavior of the model with a simple

phase diagram. Sec. 6.4 addresses the irreversible behavior of our model and its

relation to an effective form of the second law of thermodynamics (Eq. 6.27).

6.1 Model

The demon in this model is a two-state system with states u and d; they

are characterized by an energy difference ∆E = Eu − Ed > 0. The demon can

make random transitions between these two states by exchanging energy with the

hot reservoir, as illustrated in Fig. 6.2(a). We will refer to these transitions as the

intrinsic dynamics of the demon, to emphasize that they involve the demon but not

the flow of bits. The intrinsic transition rates satisfy the requirement of detailed
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Figure 6.2: Illustration of the dynamics. (a) The demon makes
intrinsic transitions between states d and u, while exchanging heat with
the hot reservoir. (b) A bit cannot make intrinsic transitions between
states 0 and 1. (c) The demon and bit make cooperative transitions
0d ↔ 1u (diagonal arrows) by exchanging heat with the cold reservoir.
Vertical arrows correspond to intrinsic transitions of the demon.

balance2 [76],

Rd→u

Rd←u
= e−βh∆E, (6.1)

where βh = 1/kTh. We parametrize these rates as

Rd→u = γ(1− σ), Rd←u = γ(1 + σ), σ = tanh
βh∆E

2
(6.2)

where γ > 0 sets a characteristic rate for these transitions, and 0 < σ < 1.

Each bit (Please refer to footnote 2 in Chap. 5 for a clarification of the use of

the term.) has two states, 0 and 1, with equal energies. We assume there are no

intrinsic transitions between these two states (Fig. 6.2(b)). That is, the state of the

bit can change only via interaction with the demon, as we now discuss.

At any instant in time, the demon interacts only with the nearest bit. As

2If these were the only dynamics of the demon Eq. 6.1 ensures that the demon ap-

proaches an equilibrium distribution given by the appropriate Boltzmann distribution: pD, eq
u =

exp (−∆E/kTh)/N , pD, eq
u = 1/N , N = 1 + exp (−∆E/kTh).
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a result, it interacts sequentially with the bits as they pass by. The duration of

interaction with each bit is τ = l/v, where l is the spacing between bits and v is

the constant speed of the tape. During one such interaction interval, the demon

and the nearest bit can make cooperative transitions: if the bit is in state 0 and the

demon is in state d, then they can simultaneously flip to states 1 and u, and vice-

versa (Fig. 6.2(c)). We will use the notation 0d ↔ 1u to denote these transitions,

which are accompanied by an exchange of energy with the cold reservoir. The

corresponding transition rates must satisfy the detailed balance condition3

R0d→1u

R0d←1u

= e−βc∆E , (6.3)

where βc = 1/kTc, and we will parametrize them as follows:

R0d→1u = 1− ω, R0d←1u = 1 + ω, ω = tanh
βc∆E

2
, (6.4)

with 0 < ω < 1. For later convenience, we also define

ε =
ω − σ
1− ωσ

= tanh
(βc − βh)∆E

2
, (6.5)

whose value, 0 < ε < 1, quantifies the temperature difference between the two

reservoirs.

Finally, we assume that the incoming bit stream contains a mixture of 0’s and

1’s, with probabilities p0 and p1, respectively, with no correlations among the bits.

3If Tc were the only reservoir in the model Eq. 6.3 would have been a requirement for the model

to relax to the Boltzmann distribution with respect to Tc. We assume that the coupling of the

intrinsic transitions of the demon to a different reservoir Th does not affect this requirement. If

Th were made equal to Tc, Eq. 6.3 would be required to guarantee a relaxation to the Boltzmann

distribution of the joint system of the demon and the bit with respect to the common temperature.
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Let

δ ≡ p0 − p1 (6.6)

quantify the excess of 0’s among incoming bits.

We thus have the following dynamics. When a fresh bit arrives to interact

with the demon, its state is 0 or 1. The demon and bit subsequently interact for

a time τ , making the transitions shown in Fig. 6.2(c), thereby exchanging energy

with the reservoirs. The state of the bit at the end of the interaction interval is then

preserved as the bit joins the outgoing stream, and the next bit in the sequence

moves in to have its turn with the demon. The parameters γ, σ and ω define the

intrinsic and cooperative transition rates (Eqs. 6.2, 6.4), τ gives the duration of

interaction with each bit, and δ specifies the statistics of the incoming bits. Under

these dynamics, the demon evolves to a periodic steady state, in which its behavior

is statistically the same from one interaction interval to the next.

Before proceeding to the solution of these dynamics, we discuss heuristically

how our model can achieve the systematic transfer of heat from the cold to the hot

reservoir. For this purpose let us assume that each incoming bit is in state 0, hence

δ = 1. At the start of a particular interaction interval, the joint state of the demon

and newly arrived bit is either 0u or 0d. The demon and bit then evolve together

for a time τ , according to the transitions shown in Fig. 6.2(c). If the joint state at

the end of the interaction interval is 0u or 0d, then it must be the case that every

transition 0d→ 1u was balanced by a transition 0d← 1u, hence no net energy was

absorbed from the cold reservoir. If the final state is 1u or 1d, then we can infer
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that there was one net transition from 0d to 1u, and a quantity of energy ∆E was

absorbed from the cold reservoir. This amounts to thermal rectification: over the

course of one interaction interval, energy can be withdrawn from the cold reservoir

but not delivered to it. Moreover, a record of this process is imprinted in the bit

stream, as every outgoing bit in state 1 indicates the absorption of energy ∆E from

the cold reservoir. Since the demon also exchanges energy with the hot reservoir,

and since energy cannot accumulate indefinitely within the demon, in the long run

we get a net flux of energy from the cold to the hot reservoir, proportional to the

rate at which 1’s appear in the outgoing bit stream.

More generally, when the incoming bit stream contains a mixture of 0’s and

1’s, a simple rule emerges: over each interaction interval, the net change in the value

of the interacting bit (-1, 0 or 1) determines the net amount of energy absorbed from

the cold reservoir (−∆E, 0 or ∆E). As a result, an excess of 0’s in the incoming bit

stream (that is, δ > 0) produces a statistical bias that favors the flow of heat from

the cold to the hot reservoir, while an excess of 1’s (δ < 0) produces the opposite

bias. This bias either competes with or enhances the thermodynamic bias due to the

temperature difference between the two reservoirs. The demon thus affects the flow

of energy between the reservoirs, and modifies the states of the bits in the memory

register. We now investigate quantitatively the interplay between these two effects.

Once the demon has reached its periodic steady state, let p′0 and p′1 denote the

fractions of 0’s and 1’s in the outgoing bit stream, and let δ′ = p′0 − p′1 denote the
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excess of outgoing 0’s. Then

Φ ≡ p′1 − p1 =
δ − δ′

2
(6.7)

represents the average production of 1’s in the outgoing bit stream, relative to the

incoming bit stream. Since each transition 0→ 1 is accompanied by the absorption

of energy from the cold reservoir (Fig. 6.2(c)), the average transfer of energy from

the cold to the hot reservoir, per interaction interval, is given by

Qc→h = Φ∆E . (6.8)

A positive value of Qc→h indicates that our device pumps energy against a thermal

gradient, like the creature imagined by Maxwell.

To quantify the information-processing capability of the demon, let

S(δ) = −
1∑
i=0

pi ln pi = −1− δ
2

ln
1− δ

2
− 1 + δ

2
ln

1 + δ

2
(6.9)

denote the information content, per bit, of the incoming bit stream4, and define

S(δ′) by the same equation, for the outgoing bit stream. Then

∆SB ≡ S(δ′)− S(δ) = S(δ − 2Φ)− S(δ) (6.10)

provides a measure of the extent to which the demon increases the information con-

tent of the memory register. We will interpret a positive value of ∆SB to indicate

that the demon writes information to the bit stream, while a negative value indi-

cates erasure. (More precisely, since S(δ′) neglects the correlations that might arise

between the outgoing bits, ∆SB reflects the change in the Shannon information of

the marginal probability distribution of each outgoing bit.)

4This is the same function as in Eq. 5.22 in the last chapter.
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6.2 Analysis

As in the model of the last chapter, the demon in the present model also

relaxes to a periodic steady state distribution. As the proof of this assertion follows

the same line of logic as in the last chapter (given in Sec. 5.2) we will have only

a sketch of it in the present section. Then we will sketch the derivation of Φ, as

defined in Eq. 6.7.

Let pD(0) = (pu(0), pd(0))T be the distribution of the demon at t = 0. The

joint distribution of the demon and the first bit at the same moment is given by the

product distribution

pDB(0) ≡



pu0(0)

pd0(0)

pu1(0)

pd1(0)


=MpD(0) , M =



p0 0

0 p0

p1 0

0 p1


. (6.11)

The joint distribution evolves according to the master equation

d

dt
pDB(t) = RpDB(t) , R =



• γ(1− σ) 0 0

γ(1 + σ) • 1 + ω 0

0 1− ω • γ(1− σ)

0 0 γ(1 + σ) •


.

(6.12)

(Elements of R have already been discussed in the last section, and the dots are

determined by the normalization restriction that elements of each column should

add up to zero [76].) At t = τ we have

pDB(τ) = eR τpDB(0). (6.13)
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The marginal distribution of the demon at t = τ is given by

pD(τ) = PDpDB(τ) , PD =

 1 0 1 0

0 1 0 1

 . (6.14)

Combining Eqs. 6.11, 6.13 and 6.14 we get

pD(τ) = T pD(0) , T = PDeRτM. (6.15)

Clearly, T is the transition matrix of the demon whose component Tij gives the prob-

ability for the demon to make a transition to state i ∈ {u, d} from state j ∈ {u, d}

over the interaction interval. Because all bits are initiated in the same distribution,

are independent of each other, and interact with the demon according to the same

rules the matrix T is also the transition matrix of the demon for any interaction

interval. Then the marginal distribution of the demon at t = n τ is

pD(n τ) = T n pD(0). (6.16)

The matrix T must be positive because it is a transition matrix. From the Perron-

Frobenius theorem [86] we have

lim
n→∞

pD(n τ) = q , T q = q. (6.17)

As q is independent of n, the demon attains a periodic steady state distribution in

the limit of large n:

pD, ps(n τ) = q , pD, ps(n τ ≤ t < (n+ 1)τ) = eRuq , u = tmod τ. (6.18)

Solving for Φ (as defined in Eq. 6.7) involves first solving for the periodic

steady state distribution of the demon, then using it to determine the distribution
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of the outgoing bits (p′0, p
′
1)T , from which Φ follows by Eq. 6.7. After the demon

reaches its periodic steady state distribution, the joint distribution of the demon

and the outgoing bit is given by exp (Rτ)Mq: the joint distribution of the demon

and incoming bit is Mq and it evolves in the subsequent interaction interval to

exp (Rτ)Mq. (See Eq. 6.13.) The marginal distribution of the outgoing bit is then

given by

(p′0, p
′
1)T = PBeRτMq , PB ≡

 1 1 0 0

0 0 1 1

 . (6.19)

We performed these calculations using Mathematica [87], and then simplified

the results substantially by hand, finally obtaining

Φ =
δ − ε

2
η , η =

ν2P + ν3Q

P +Q
, (6.20a)

P = µ2 (µ4ν3 + µ1ν1) , Q = µ3 (µ4ν2 + µ1ν1),

ν1 = 1− e−2γ τ , µ1 = (δ + σ)ω,

ν2 = 1− e−(1+γ−α) τ , µ2 = α + γ + σ ω,

ν3 = 1− e−(1+γ+α) τ , µ3 = α− γ − σ ω,

α =
√

1 + γ2 + 2γσω , µ4 = 1− δ ω.

(6.20b)

We now give a quickly accessible analysis of our model in the limit γ →∞. In

this limit, the intrinsic transitions of the demon are fast compared to its cooperative

transitions with the current bit. In Fig. 6.2(c), this implies vertical transitions are

fast compared to the diagonal transitions. As a result the two pairs of states (u0, d0)

and (u1, d1) quickly “equilibrate” themselves with respect to the intrinsic rates,

pu0

pd0

= e−∆E/kTh =
pu1

pd1

. (6.21)
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(These relations are valid only up to O(1/γ0); smaller corrections of order O(1/γ1)

exist.) We can rewrite the associated probabilities as

pu0(t) =
e−∆E/kTh

1 + e−∆E/kTh
[ pu0(t) + pd0(t)] =

1− σ
2

p0(t), (6.22a)

and similarly for the others

pd0(t) =
1 + σ

2
p0(t) , pu1(t) =

1− σ
2

p1(t) , pd1(t) =
1 + σ

2
p1(t) (6.22b)

We have used the definition of σ from Eq. 6.2. Inserting these expressions in the

master equation 6.12 we get the following effective equation for the bit distributions:

d

dt

 p0(t)

p1(t)

 =

 −a b

a −b


 p0(t)

p1(t)

 , (6.23)

with a = (1− ω)(1 + σ)/2 and b = (1 + ω)(1− σ)/2. Integrating Eq. 6.23 over one

interaction interval, 0 ≤ t ≤ τ , with the initial conditions p0(0) = p0 and p1(0) = p1,

and then setting p1(τ) = p′1 in Eq. 6.7 we get, after some algebra,

Φ =
δ − ε

2
η , η = 1− e−(1−σω)τ . (6.24)

This result also follows from our general solution for η (Eq. 6.20), evaluated in the

limit γ →∞:

ν1, ν3 → 1 , ν2 → 1− e−(1−σω)τ , Q/P → 0 , (6.25)

hence η → 1− e−(1−σω)τ .

The quantity η in Eq. 6.20a is positive:

η > 0 (6.26)
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Our general expression for η (in Eq. 6.20), while exact, is sufficiently complex that

we are unable to derive this inequality directly. Instead we will show in Appendix C

that the inequality 6.26 follows from modified Clausius inequality :

Qc→h(βh − βc) + ∆SB ≥ 0 . (6.27)

(It will be derived in Sec. 6.4.) An important consequence of Ineq. 6.26 is that the

sign of Φ is the same as that of (δ−ε). We can think of two effective forces: the bias

induced by the incoming bit stream, which favors Φ > 0 when δ > 0 (as discussed

above), and the temperature gradient, quantified by ε, which favors Φ < 0 (Eq. 6.8).

When these compete, the winner is determined by the difference (δ − ε).

6.3 Phase diagram

Here we use the results obtained in the last section to investigate the behavior

of our model in the periodic steady state. To that end, we fix γ and ω and construct

a phase diagram that illustrates the dependence on δ and ε, for three different values

of τ , shown in Fig. 6.3. Let us consider the different regions of this diagram, working

our way from right to left.

From Eqs. 6.8, 6.20a and 6.26 it follows that Qc→h > 0 when δ > ε, shown as

the most darkly shaded region in Fig. 6.3. Here, a surplus of incoming 0’s prevails

over the temperature difference and our demon generates a flow of energy from the

cold to the hot reservoir. Moreover, Eq. 6.27 reveals that ∆SB > 0 in this region

(since βh < βc). This agrees with the consensus described earlier: in order for a

physical device to act in the manner of Maxwell’s demon, it must write information
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Figure 6.3: Phase diagram of our model at fixed γ = 1 and ω =
1/2. The parameter δ specifies the incoming bit statistics, and ε is a
rescaled temperature difference (Eq. 6.5). In the most darkly shaded
region the demon acts as a refrigerator (Qc→h > 0), while in the lightly
shaded regions it acts as an eraser (∆SB < 0). The left boundary of the
eraser region is shown for τ = 0.1, 1.0, 2.0 and ∞. In the blank region
at the lower left, our model exhibits neither behavior (see text).

to a physical memory register. In this sense, a bit stream with a low information

content can be viewed as a thermodynamic resource, which can be expended (by

writing to the available memory) in order to achieve refrigeration.

Now consider the region ε > δ > 0, in which the surplus of 0’s in the incoming

bit stream is not sufficient to overcome the temperature gradient, and energy flows

from the hot to the cold reservoir. Since Φ < 0 we get δ′ > δ > 0 (Eq. 6.7). This

in turn implies ∆SB < 0, as S(δ) is a concave function with a maximum at δ = 0.

In this region the demon acts as an eraser, lowering the information content of the

bit stream, but the price paid for this erasure is the passage of heat from the hot to
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the cold reservoir.

In the region δ < 0, energy flows from the hot to the cold reservoir (Eqs. 6.8,

6.20a and 6.26), but the value of ∆SB depends on all the model parameters. In

Fig. 6.3, for three different values of τ , we show the line corresponding to ∆SB = 0.

To the right of this line we have ∆SB < 0 and the device acts as an eraser. To the

left we have ∆SB > 0, indicating that the information content of the bit stream

increases.

Examining the phase diagram as a whole, we see that in the shaded regions our

model reaches a steady state in which one thermodynamic resource is replenished at

the expense of another. Either energy is pumped against a thermal gradient at the

cost of writing information to memory (the refrigerator regime), or else memory is

made available, by erasure, at the expense of allowing energy to flow from the hot to

the cold reservoir (the eraser regime). The boundary between these two behaviors is

the line δ = ε. In the unshaded region at the far left, both resources are consumed,

as energy flows down the thermal gradient and information is written to the bit

stream.

In summary, we have constructed a simple, solvable model of an autonomous

physical system that can mimic the behavior of the “neat-fingered being” in Maxwell’s

thought experiment, generating a systematic flow of energy against a thermal gra-

dient without the input of external work. While Maxwell’s creature accomplishes

this with intelligence, our inanimate device requires only a memory register to which

information can be written. Alternatively, our demon can harness the flow of energy

from hot to cold in order to erase information from the register.
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6.4 Modified Clausius inequality

We now place our model within the context of second law of thermodynamics.

In the periodic steady state we can derive the inequality 6.27

Qc→h(βh − βc) + ∆SB ≥ 0 . (6.28)

The first term on the left side is the steady-state change in thermodynamic entropy

due to the flow of heat, and the second term is the change in information entropy,

per interaction interval. Inequality 6.28 can be viewed as a modified Clausius in-

equality, in which the information entropy of a random sequence of data is explicitly

assigned the same thermodynamic status as the physical entropy associated with the

transfer of heat. Inequality 6.28 is actually a weak version of this inequality, as we

neglect correlations that might arise among the outgoing bits.5 Thus, our model

provides support for the consensus mentioned earlier [58, 59, 60], and in particular

the relation 6.28 is consistent with Landauer’s principle [58], which states that a

thermodynamic cost must be paid for the erasure of memory. In Landauer’s work

5It is not obvious a priori whether the outgoing bits would be correlated to each other or not.

However, a heuristic argument can be proposed in favor of correlation. The demon gets correlated

with the current bit because of their interactions; when the new bit comes, partial information

about the outgoing bit can be transmitted via the demon, thus correlating the new bit with the

previous bit. Intuitively, this correlation must be small for small interaction interval τ , because

the demon hardly has any time to correlate with the bit, and also for large τ , because the demon

and the bit reach a steady state distribution which is a product of their marginal distributions

(Eq. 6.31) thus devoid any correlation. We have checked these intuitions numerically. An indirect

analytical justification will be presented following the relation 6.40.
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this cost appears as the dissipation of energy into a single thermal reservoir, whereas

in our model it is the transfer of energy from a hot to a cold reservoir. In the fol-

lowing we present a derivation of the relation 6.28 based on the properties of the

dynamics.

During any interaction interval, the joint distribution of the demon and the

interacting bit evolves according to the master equation (Eq. 6.12),

d

dt
pDB(t) = RpDB(t), (6.29)

where R is given in Eq. 6.12. For very long interaction intervals (τ → ∞), the

combined system relaxes to the stationary state

pDB =
1

N
(
1, µ, µν, µ2ν

)T
, µ =

1 + σ

1− σ
, ν =

1− ω
1 + ω

, N = (1 + µ)(1 + µν) ,

(6.30)

which satisfies RpDB = 0. Note that pDB is actually a product of marginal distri-

butions pD and pB for the demon and bit:

pDBij = pDi p
B
j , i ∈ {u, d}, j ∈ {0, 1}, (6.31a)

pD = (1, µ)T/(1 + µ), pB = (1, µν)T/(1 + µν). (6.31b)

To keep our formula cleaner, we shall replace the joint distribution pDB by simply

p in the rest of this chapter. The irreversible approach of p(t) toward p is described

by the relative entropy [88],

D(p||p) =
∑
m

pm ln
pm
pm
≥ 0 . (6.32)

Here and in what follows, we use the index m to indicate a joint state of the demon

and the bit, m ∈ {0u, 0d, 1u, 1d}, reserving i and j for the demon and the bit,
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respectively, as in Eq. 6.31a. A standard calculation [76] shows that D is a Lyapunov

function, that is it satisfies

d

dt
D(p||p) ≤ 0 , (6.33)

where the equality holds only when p = p. Thus, as measured by relative entropy,

any initial p 6= p evolves monotonically toward p, although for finite interaction

intervals this relaxation is interrupted by the arrival of the next bit. We now use

these properties to derive the inequality 6.27.

Let p0 and pτ denote the joint distributions of the demon and a bit at the

beginning and end of a given interaction interval, respectively, and similarly define

pD0 , pDτ , pB0 and pBτ for the marginal distributions of the demon and the bit. Eq. 6.33

implies

D(p0||p)−D(pτ ||p) ≥ 0. (6.34)

Using Eqs. 6.32 and 6.31a we rewrite the left side of this equation as

Sτ − S0 −
∑

i∈{u,d}

(
pDτ,i − pD0,i

)
ln pDi −

∑
j∈{0,1}

(
pBτ,j − pB0,j

)
ln pBj , (6.35)

where S0 = −
∑

k p0,k ln p0,k and Sτ = −
∑

k pτ,k ln pτ,k are the information entropies

of the joint distributions of the demon and the bit at the beginning and end of the

interaction interval. Let us now evaluate Eq. 6.35, assuming the demon has reached

its periodic steady state.

The joint entropy S can be written as [88]

S = SD + SB − I(D;B) , I(D;B) ≥ 0, (6.36)

where SD is the marginal entropy of the demon, SB is the marginal entropy of

the bit, and the mutual information I(D;B) quantifies the degree of correlation
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between them. By construction, the demon and bit are uncorrelated at the start

of the interaction interval, hence I0(D;B) = 0. In the periodic steady state we

have SDτ = SD0 , because the demon starts and ends in the same distribution. Hence

the difference Sτ − S0 in Eq. 6.35 can be replaced by ∆SB − Iτ (D;B). We also

have pD0 = pDτ in the periodic steady state, so the first sum appearing in Eq. 6.35

vanishes.

Once the period steady state has been reached, the bit distributions pB0 and

pBτ correspond to the statistics of the incoming and outgoing bit streams:

pB0,j = pj , pBτ,j = p′j , j ∈ {0, 1} , (6.37)

hence pBτ,0 − pB0,0 = −(pBτ,1 − pB0,1) = Φ (Eq. 6.7). The last term in Eq. 6.35 can now

be rewritten, using Eqs. 6.30, 6.2 and 6.4, as

−
∑

j∈{0,1}

(
pBτ,j − pB0,j

)
ln pBj = Φ ln(µν) = Qc→h(βh − βc). (6.38)

Collecting these results, we get

D(p0||p)−D(pτ ||p) = ∆SB − Iτ (D;B) +Qc→h(βh − βc), (6.39)

which then combines with Eq. 6.34 to give us

Qc→h(βh − βc) + ∆SB ≥ Iτ (D;B) ≥ 0. (6.40)

An alternative derivation of this result can be constructed using the integral fluctu-

ation theorem for total entropy production [89].

The first inequality in 6.40 is stronger than the modified Clausius statement,

inequality 6.28. This underscores the fact that the inequality 6.28 is a weak state-

ment of the second law of thermodynamics (as it applies to our model), since it
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neglects correlations in the outgoing bits: the quantity ∆SB is defined in terms of

the marginal distribution of each bit. In reality the bits do develop correlations via

their interactions with the demon as discussed in footnote 5 in page 103. (Let it

be emphasized that explicit numerical simulations indicate that these correlations

are small, but not zero.) If these correlations were to be taken into account, then

the net change in the Shannon entropy per bit would have a value slightly lower

than ∆SB, and inequality 6.28 would be replaced by a somewhat stronger bound.

These considerations are reflected, somewhat indirectly, by the term Iτ (D;B) in the

relation 6.40.

Finally, note that

pB1
pB0

= µν =
1− ε
1 + ε

,
p1

p0

=
1− δ
1 + δ

, (6.41)

using Eqs. 6.30 and 6.31b, and the definitions of σ and ε, Eqs. 6.2 and 6.5, respec-

tively. Thus, when δ = ε, the incoming bits arrive in the stationary distribution

p. In this case, no relaxation occurs during the interaction interval; the equality

holds in Eqs. 6.33 and 6.34; the outgoing bits depart with the same distribution; and

Φ = 0. When δ 6= ε, Eqs. 6.33 and 6.34 are both strict inequalities, and therefore

so is the modified Clausius inequality (Eq. 6.28).
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Chapter 7

Summary and future outlook

We need a strong theoretical framework for the design and control of useful

efficient molecular machines. The theory of Markov processes provides the natural

setting because of the inherent stochastic motion of any molecular system. Fol-

lowing an often employed experimental strategy of periodic modulation of external

stimuli, a theoretical framework of stochastic pumping has been developed where

the dynamical parameters of a Markov model are periodic functions of time. Several

recent theoretical results were mentioned in the introduction. In the first part of the

thesis, we have been concerned with the result of the no-pumping theorem (NPT)

which states the minimal conditions necessary to generate any systematic proba-

bility current. We have given an alternative and simpler-than-the-original proof of

the NPT using an elementary graph theoretic construction (Sec. 3.1). Motivated

by recent experimental results, we have also proposed and analyzed a new class

of “hybrid” models combining elements of both the purely discrete and the purely

continuous descriptions prevalent in the field (Ch. 4). By proving the NPT for these

hybrid models we have also given a detailed theoretical justification of the original

experimental observation [13]. An extension of the NPT to open stochastic systems

has also been developed (Sec. 3.2).
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The second part of the thesis (Chs. 5 - 6) is concerned with the age-old puzzle

of “Maxwell’s demon”. This is a notorious thought experiment proposed by James

Clerk Maxwell where an intelligent being can systematically violate the second law

of thermodynamics by continuous rectification of thermal fluctuations. We have

proposed two exactly solvable, autonomous models that reproduce the actions of

the demon without any help from an external agent or an explicit thermodynamic

force. The first model can rectify the thermal fluctuations of a single heat reservoir

and convert them into work (Ch. 5), in (apparent) violation of the Kelvin-Planck

statement of the second law. The second model can create a heat flow against a

thermal gradient without expenditure of work (Ch. 6), in (apparent) violation of the

Clausius inequality. To the best of our knowledge, these are the first such models

in the field.

There are indications that the equations used in our proof of the NPT can

encompass some of the other theoretical results on stochastic pumps. It was noted

in the main text that the detailed balance restrictions, such as Eqs. 3.9 and 3.13,

are the starting relations for the derivation of the pumping quantization theorem

(PQT) of Refs. [32, 37, 38]. The periodicity conditions, such as Eqs. 3.7 and 3.12, and

the above detailed balance restrictions are also capable of determining the number

of independent currents in any given pumping protocol (This point has not been

discussed in the thesis). This result is strongly reminiscent of the pumping restriction

theorem (PRT) of Ref. [30]. It will be interesting to see if the two results are

equivalent to each other or one is stronger than the other.

Our discussions of the Maxwell’s demon were based on schematic models rather
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than realistic systems. As a continuation of the project we are presently investigat-

ing an explicitly mechanical system for the engine model (in Ch. 5) involving a

contraption with paddles, axles and pulleys, immersed in a gas of particles. It will

be interesting to come up with an equivalent system for the refrigerator model (in

Ch. 6). There are some interesting problems in the biological context in connection

with this research. Many biomolecular processes such as DNA replication and pro-

tein recognition involve information processing by small systems. Is it possible to

arrive at a thermodynamic description of these processes along the line of Maxwell’s

demon? Can the modified forms of the second law (Eqs. 5.25 and 6.27) give realistic

bounds for the efficiency of these processes? These are some interesting questions

to address in future.
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Appendix A

Derivation of Eq. 4.21

In Sec. 4.4 we motivated the validity of Eq. 4.21

Φps
→i = Φps

i→ = Φd,ps
i (x) = Φps

→i+1 · · · ≡ Φ.

on conceptual grounds. Here we establish it directly from the master Eqs. 4.6 and

4.7, evaluated in the periodic steady state, Eq. 4.14. We begin by assuming that

the source and sink terms in Eq. 4.7 are displaced away from the track-ends, as

illustrated in Fig. A.1; Eq. 4.7 then becomes

∂pi(x, t)

∂t
= − ∂

∂x
Jdi (x, t) + δ(x− ε)Ji→(t)− δ(x− l + ε)J→i+1(t), (A.1)

where ε > 0. We recover the situation described in the main body of the text in the

limit ε→ 0.

In the periodic steady state we have P ps
i (t + τ) = P ps

i (t) for each station i.

Equivalently,
∫
τ

dt dP ps
i (t)/dt = 0, which from Eqs. 4.6 and 6.7 implies

Φps
→i = Φps

i→. (A.2)

This is the first part of Eq. 4.21. Similarly, for each track i we have
∫
τ

dt ∂ppsi (x, t)/∂t =

0, which combines with Eq. A.1 and 6.7 to give

∂

∂x
Φd,ps
i (x) = δ(x− ε)Φps

i→ − δ(x− l + ε)Φps
→i+1. (A.3)
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Figure A.1: Details of source and sink. Source and sink terms are
moved away from the track-ends by a parameter 0 < ε < l/2.

From the reflective boundary conditions, Jdi (0, t) = Jdi (l, t) = 0, we have

Φd,ps
i (0) = Φd,ps

i (l) = 0. (A.4)

Finally, solving Eq. A.3 with boundary conditions Eq. A.4 we get

Φd,ps
i (x) =


0 for 0 ≤ x < ε,

Φps
i→ = Φps

→i+1 for ε < x < l − ε,

0 for l − ε < x ≤ l.

(A.5)

Eqs. A.2 and A.5, together with the limit ε→ 0, lead to Eq. 4.21.
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Appendix B

Derivation of Φ (as in Eq. 5.19)

As explained in Sec. 5.2 (pages 77-81) derivation of Φ involves a tedious exercise

in the spectral decomposition of the rate matrix

R =



−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 + ε 1 + ε 0 0

0 0 1− ε −2− ε 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1



. (B.1)

This matrix has six real, non-degenerate eigenvalues that are (surprisingly) inde-

pendent of ε:

{λi} = {0,−c,−1,−2,−3,−d} , (B.2)

with

a = 1−
√

3 , c = 2−
√

3 , x = 1 + ε

b = 1 +
√

3 , d = 2 +
√

3 , y = 1− ε.
(B.3)

The quantities a, b, x and y will be used momentarily.
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We have found the following spectral decomposition of R to be convenient:

R =
6∑
i=1

|i〉λi〈i|
〈i|i〉

= UN−1ΛV

=


↑ ↑

u1 · · · u6

↓ ↓




n−1

1

. . .

n−1
6




λ1

. . .

λ6




← v1 →

...

← v6 →

 .

(B.4)

Here, the columns of U are right eigenvectors of R, and the rows of V are its left

eigenvectors. We denote the right eigenvectors by ui or |i〉, and the left eigenvectors

by vTi or 〈i|. These form a biorthogonal pair of basis sets: vTi · uj = 〈i|j〉 = niδij,

i.e. V U = N . Explicitly,

U =



x 1 x 1 x 1

x −a 0 −1 −2x −b

x c −x −1 x d

y −c −y 1 y −d

y a 0 1 −2y b

y −1 y −1 y −1



, V =



1 1 1 1 1 1

y −ay cy −cx ax −x

1 0 −1 −1 0 1

y −y −y x x −x

1 −2 1 1 −2 1

y −by dy −dx bx −x



,

(B.5)

and {ni} = {6, 12c, 4, 6, 12, 12d}. Note that since R is not symmetric, its left and

right eigenvectors differ. The matrices N and Λ are diagonal. While it is usual to

normalize the left and right eigenvectors so that they are biorthonormal (ni = 1), we

have found that the choice of normalization given above leads to less cumbersome

expressions in the subsequent analysis.
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In terms of this decomposition, we have

T = PDeRτM =
(
I I

)
UN−1eΛτV

 p0 I

p1 I

 (B.6)

where I is the 3 × 3 identity matrix (see Sec. 5.2 for the definition and meaning of

all these matrices). An explicit evaluation yields

T =
1

12


F +G+ δH M − 2δL F −G+ δH

M M + 12σ3 M

F −G− δH M + 2δL F +G− δH



− ε

12


H + δ(G− 6σ) −2L H − δ(G− 6σ)

0 0 0

−H − δ(G− 6σ) 2L −H + δ(G− 6σ)



(B.7)

where σ = e−τ and

F = 4 + 2σ3 , G = 4σ2 + σc + σd , H =
√

3(σc − σd)

L = 2σ2 − σc − σd , M = 4− 4σ3

. (B.8)

Solving the equation T q = q (see Sec. 5.2) we obtain

q =
1

3


1 +N

1

1−N

 , N(δ, ε) =
(δ − ε)(H − L)

6−G+ εδ(G− 6σ)
. (B.9)

Combining this result with Eq. 5.18 of the main text yields the statistics of the

outgoing bits, (p′0, p
′
1), from which we then obtain the circulation using the relation

Φ = p′1 − p1.
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Appendix C

Derivation of inequality 6.26

We suggested the inequality

η > 0 (C.1)

in the relation 6.26. It is difficult to derive this inequality form the exact expression

of η (in Eq. 6.20). An alternative derivation is possible from the modified Clausius

inequality, Eq. 6.28 in the main text:

Qc→h(βh − βc) + ∆SB ≥ 0 . (C.2)

We present this alternate derivation in this appendix.

To investigate the sign of η, let us take δ 6= ε 1 and rewrite Eq. C.2 (Eq. 6.28

in the main text) in the form

f(δ′) > f(δ) , (C.3)

where

f(δ) = Kδ + S(δ) , K =
1

2
(βc − βh)∆E > 0. (C.4)

Eq. C.3 follows by the direct substitution of the relations

Qc→h = Φ∆E , Φ =
δ − δ′

2
, ∆SB = S(δ′)− S(δ) (C.5)

into Eq. C.2, using a strict inequality since δ 6= ε.

1When δ = ε, the value of η is inconsequential, by Eq. 6.20a.
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Figure C.1: Illustration of the nature of f(δ). (a) f(δ) is concave
and has a maximum at δ = ε, as illustrated for ε = 1/3. (b) For a given
δ1, we must have δ2 < δ′1 < δ1 to ensure f(δ′1) > f(δ1). Hence, both δ′1
and ε lie to the left of δ1.
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By construction, d2f/dδ2 < 0. Setting df/dδ = 0, the unique maximum of

f(δ) is easily shown to occur at δ = ε, as illustrated in Fig. C.1(a) for ε = 1/3.

Now let δ1 and δ2 denote two values of δ that correspond to the same value of f ,

with δ2 < ε < δ1, as shown in Fig. C.1(b). Let δ′1 describe the surplus of 0’s in the

outgoing bit stream, when the incoming stream is characterized by δ1. Because the

maximum of f(δ) occurs at δ = ε, Eq. C.3 implies that δ2 < δ′1 < δ1; see Fig. C.1(b).

If we instead consider incoming and outgoing bit streams described by δ2 and δ′2,

then the same argument gives us δ2 < δ′2 < δ1. We therefore conclude that the

incoming and outgoing bit streams necessarily satisfy

sign(δ − δ′) = sign(δ − ε) , (C.6)

in other words δ′ lies on the same side as ε with respect to δ. Since

δ − δ′

2
= Φ =

δ − ε
2

η , (C.7)

we must have η > 0.
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