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In this thesis we present methods for applying techniques from complex net-

work theory to analyze and interpret inferred biological interactions. With the

advent of high throughput technologies such as gene microarrays and genome-wide

sequencing, it is now possible to measure the activity of every gene in a cancer cell

population under different conditions. How to extract important interactions from

these experiments remains an outstanding question. Here we present a method to

identify these key interactions by focusing on short paths in a transcription factor

network.

We use a mutual information-based approach to infer the transcription factor

network from gene expression microarrays, which measure perturbations in a Diffuse

Large B Cell Lymphoma cell line. By focusing on the number of short paths between

transcription factors and signature genes in the inferred network, we find a set

of transcription factors whose biology is crucial to the continued survival of these

lymphoma cells and also show that a subset of these factors have a distinct expression



pattern in patient tumors as well.

As many networks of interest are reconstructed from data containing errors,

we introduce two simple models of false and missing links to characterize the effects

of network misinformation on three commonly used centrality measures: degree

centrality, betweenness centrality, and dynamical importance. We show that all

three measures are especially robust to both false and missing links when the network

has a power law in the tail of its degree distribution.
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dynamical importance (Ĩ) versus degree (k) in ER (left column) and
SF (right column) networks for α = 0.3, δ = 0.3. The solid curves for
the degree are derived from the theory described in 3.5. Results are
averaged over 500 independent realizations of the noise model with
the same underlying true network. . . . . . . . . . . . . . . . . . . . . 50

3.8 Model 1: Pearson correlation between the true degree centrality k and
the noisy degree n as a function of missing link fraction, δ, and false
link fraction, α. Markers reflect simulation results and theoretical
results are plotted as solid lines. . . . . . . . . . . . . . . . . . . . . . 54

3.9 Model 2: Pearson correlation between the true degree centrality k and
the degree noisy n as a function of missing link fraction, δ, and false
link fraction, α. Markers reflect simulation results and theoretical
results are plotted as solid lines. . . . . . . . . . . . . . . . . . . . . . 55

ix



List of Abbreviations

ABC DLBCL Activated B Cell-like Diffuse Large B Cell Lymphoma

BATF Basic leucine zipper transcription factor, ATF-like

cDNA complementary Deoxyribonucleic Acid

DNA Deoxyribonucleic Acid

ER Erdos-Renyi

GCB DLBCL Germinal Center B Cell-like Diffuse Large B Cell Lymphoma

ID3 Inhibitor of DNA binding 3
IRF4 Interferon Regulatory Factor 4
IRF7 Interferon Regulatory Factor 7
IRF9 Interferon Regulatory Factor 9

mRNA messenger Ribonucleic Acid
MI Mutual Information

NF-κB Nuclear Factor kappa-light-chain-enchancer of activated B cells
NF-κB1 Nuclear Factor kappa-light-chain-enchancer of activated B cells 1

R-CHOP Rituximab Cyclophosphamide Hydroxydaunomycin Oncovin Prednisone
RNA Ribonucleic Acid

SF Scale-Free
STAT3 Signal Transducer and Activator of Transcription 3
shRNA short hairpin Ribonucleic Acid

TCF4 Transcription Factor 4
TF Transcription Factor

x



Chapter 1

Introduction

The theory of complex networks—the intersection of graph theory, statistical

physics, and computer science—has provided a principled approach to understand-

ing patterns of connectivity in large biological and social networks [1]. Concurrently,

the development of high throughput technologies in biology [2] and the proliferation

of digital social interactions [3] have lead to an abundance of data on networked

systems. Web platforms such as Facebook and Twitter have millions of users who

interact with each other in real time, providing detailed, time-dependent social net-

works at an unprecedented level [4]. Similarly, genome sequencing is rapidly chang-

ing biology into a quantitative science in search of reliable analytic approaches for

interpreting the vast amounts of data [5].

As these networks have thousand and even millions of nodes, we are faced with

the challenge of finding effective tools to identify the key mechanisms and structures

therein. We are entering an era in which data is cheap, but insight is expensive.

However, this presents an exciting opportunity for physicists, who are accustomed

to working with very large data sets and identifying the core behavior of systems

with many variables.

This thesis aims to demonstrate that the ideas and techniques developed for

complex networks can provide valuable insight into complex biological networks.
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Using a data set measuring the gene regulatory network of a specific subtype of

cancer cells, we identify both known and novel genetic interactions based on the

underlying network structure, which we infer from the data using an information

theoretic approach. In addition, we put forward a first effort to characterize the effect

of link errors on network-based predictions that may arise in various applications

involving complex networks.

1.1 Chapter 2: Identifying Therapeutic Targets in a Lymphoma Reg-

ulatory Network

The ability of human cells to carry out various functions is an emergent be-

havior of hundreds and sometimes thousands of different genes working in concert

[6]. Many of these genes produce proteins that often only bind to a subset of other

genes, who then produce proteins that bind to their own subset of “neighbors” [7].

These genes and their gene-protein interactions can be naturally represented as a

network consisting of nodes (genes) and links (interactions) between genes.

In this thesis, we consider such a gene regulatory network inside a particularly

aggressive subtype of Diffuse Large B Cell Lymphoma (DLBCL) called Activated

B Cell like DLBCL. Patients with ABC DLBCL have only a ∼40% survival rate

after 5 years, and the aggressive nature of this subtype is driven largely by genetic

mutations and other changes in gene regulation that are unique to the ABC subtype

[8]. We hypothesize that genetic mutations in the cancer cells have rewired the

gene regulatory network in ABC DLBCL to enable new function abilities such as

2



preventing cell death. We believe these new functions are an emergent property

of the rewired regulatory network and that the connectivity of this network may

provide insight into new therapeutic targets in ABC DLBCL.

1.2 Chapter 3: Robustness of Network Measures to Link Errors

Much of the theory of complex networks assumes a complete and accurate

knowledge of the links and nodes in a given network. However, we often reconstruct

social and biological networks from incomplete or inaccurate data. The social net-

works on Facebook and Twitter, for example, may contain links between people who

do not actually interact. In addition, there may be missing links between people

whose face-to-face social interactions are significant. Biological networks are mea-

sured using experimental techniques, which have inherent systematic errors which

can lead to false and missing links [9, 10]. To explore the effect of these types of

link errors on three popular network centrality measures, we propose two simple

stochastic models of link error and measure their effect on the ranking of nodes

before and after introducing link errors. We develop a theoretical framework for

analyzing these types of errors that can be naturally extended to networks beyond

those discussed in this thesis.

1.3 Outline of Thesis

In Ch. 2, we discuss a network-based method to identify potential therapeutic

targets from data measuring a Lymphoma cell line. In Ch. 3 we address the effect

3



of link errors on node centrality measures in networks. In the conclusion (Ch. 4),

we summarize our findings and provide suggestions for future directions.
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Chapter 2

Identifying Therapeutic Targets in a Lymphoma Regulatory Network

2.1 Introduction

As the human genome project approached completion in the late 1990’s, it

became increasingly apparent that the number of genes involved in the function of

human cells was much larger than expected. Instead of a few thousand genes work-

ing together, there are tens of thousands interacting in a context-dependent manner.

In addition to broadening our understanding of the biological world, the complete

sequencing of the human genome provides the possibility of identifying mutations

within genes that cause cancer. If it were possible to identify those genes that were

mutated and inactivate them, one could kill the cancer cells. That hypothesis, unfor-

tunately, has proven too simplistic, and we now have a growing body of knowledge

about how mutated genes interact with one another, with unmutated genes, and

with the cellular environment as a networked system to give rise to cancerous tissue

[11]. Figure 2.1 illustrates the current understanding of genetic mutation in cancer.

The last ten years gave rise to technology that allows researchers to probe

the properties of all ∼25,000 genes in a population of cancer cells. Current high-

throughput experimental platforms can assess every gene’s protein and mRNA levels

across a cell population [12, 13]. These platforms make a systems approach to under-

standing cancer possible, and the cancer biology community has seen an explosion
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database instructions 

Structural and 
Functional  
building blocks 
of cells 

proto-oncogene normal 
protein 

oncogene abnormal 
protein 

mutation 

a change in the RNA 
 ‘instructions’ 

Figure 2.1: Each cell contains a complete set of DNA instructions that define the

organism. Specific sections of the DNA–called genes–are copied into RNA molecules

which are then used as instructions to make a specific protein. Changes to the DNA

through mutations (changing DNA base pairs) can lead to changes in the RNA

which then produce an abnormal protein that may acquire new functional abilities

that promote the cancer phenotype. (Courtesy of L. Staudt and A. L. Shaffer III)
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of such systems-level data as the cost of experiments has fallen. This rapid quan-

tification of cancer biology now requires analytic methods that can highlight the

relevant system behavior in a principled fashion. For example, the transcription

factor regulatory system, the “command and control center” of the cell, can be nat-

urally modeled as a network of genes that interact to perform cellular functions. In

this chapter, we adapt techniques from the field of complex networks to analyze the

transcriptional regulatory network in a lymphoma subtype and predict genes that

may contribute to the aggressive nature of this disease.

2.2 Background

2.2.1 The need for a quantitative approach to Diffuse Large B-cell

Lymphoma

Before the sequencing of the human genome, different cancer subtypes were

classified based solely on their morphology; that is, how they looked under the mi-

croscope. In the case of non-Hodgkin’s lymphomas, this kind of classification into

distinct subtypes was “widely believed to be imprecise” [14]. A single morpho-

logical subtype, Diffuse Large B Cell Lymphoma (DLBCL), constitutes 40% of all

non-Hodgkin’s Lymphomas with ∼23,000 new diagnoses per year, a ∼50% cure rate,

and ∼10,000 deaths per year [15]. With the development of microarray technology

[16], Alizadeh and coauthors classified these DLBCLs based on the similarity of gene

expression patterns between tumors [17]. By clustering gene expression of patient

samples, they were able to show that DLBCLs comprise two distinct subgroups
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(shown in Fig 2.2): an Activated B-cell-like (ABC) subtype, which has transcrip-

tional programming similar to activated B cells, and a Germinal Center B-cell-like

(GCB) subtype, which shares the same programming as healthy germinal center B

cells.

This gene expression based classification is clinically relevant as well, as pa-

tients with the ABC subtype who are treated with chemotherapy (R-CHOP) have

only a 40% progression-free survival rate after three years compared to 60% for those

with the GCB subtype as shown by the survival curves in Fig. 2.3 [18]. In addition

to comparing the mRNA levels of genes between patient samples, DNA microar-

rays have also proven to be an invaluable tool for measuring the changes in gene

expression across the whole genome [16]. From a network viewpoint, a microarray

measures the change in state for each gene in the regulatory network given a specific

perturbation.

The experimental details are as follows: The DNA microarray is a glass slide on

which small DNA fragments are fixed. Multiple copies of a given DNA fragment are

fixed within a specific spot on the slide such that each DNA fragment corresponds

to a specific mRNA. With the human genome completely sequenced, it is possible

to identify which mRNA fragments are produced by each gene. Spots correspond

to genes that are actively transcribed into mRNA.

Given this set-up, it is possible to compare the amount of mRNA produced

by every gene in the genome under two different conditions (for example, cells with

a drug treatment vs. cells without). First, the mRNA for cell population under

condition one is extracted and each mRNA molecule is copied and an additional

8



Figure 2.2: DLBCL patient samples that look identical under the microscope have

gene expression profiles which belong to different subgroups that reflect their under-

lying biology. Samples are clustered based on the similarity of the gene expression

between samples with yellow lines delineating the groups of coordinately expressed

genes in the different subtypes [17].
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Figure 2.3: Kaplan Meyer survival curves for patients classified as having either

ABC DLBCL (in blue) or GCB DLBCL (in orange). The biopsies of patients with

either subtype look identical under the microscope, but have distinctly different

gene expression profiles and survival outcomes after treatment with chemotherapy

(R-CHOP) [17].
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red fluorescent tail is added. Second, the cells in a second condition–exposure to a

drug, for example–are extracted and copied with an added green fluorescent tail. The

resulting complementary DNA (cDNA) is then placed on the slide and because of the

highly specific nature of the binding affinity between complimentary DNA fragments,

the tagged cDNA binds to the appropriate spot on the microarray. Finally, each

spot is illuminated and the log2 ratio of green/red fluorescence is reported as shown

in Fig. 2.4.

2.2.2 Different molecular mechanisms drive different subtypes

At their core, cancers are genetic diseases: through the alteration of exist-

ing transcriptional machinery by genetic aberrations, healthy cells transform into

cancer cells. From a network perspective, these aberrations lead to new network

links or removal of networks links which can reinforce multiple cellular functions

including the promotion of cell division and growth and the inhibition of cell death

[19]. In ABC DLBCL, this network rewiring often leads to interactions between

signaling pathways—or subnetworks in the network view—that do not exist in the

transcriptional network of healthy cells [20].

For example, mutations upstream of the NF-κB pathway lead to constituative

activitaton of the pathway. This pathway activation is considered a hallmark of

the ABC DLBCL subtype and endows cells with the ability to minimize cell death

via apoptosis (apoptosis is internally programmed cell death). This minimization

has been hypothesized as one of the reasons why ABC DLBCL is so resistant to
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Condi&on	  1	   Condi&on	  2	  

Figure 2.4: Method for profiling the log2 ratio of each gene’s mRNA levels—for all

23,000 genes—in cells under both conditions. The mRNA level for each gene under

both conditions is then measured by the microarray. The log2 ratio of those mRNA

levels is then calculated to determine the change in expression—i.e., mRNA—level

for each gene.
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chemotherapy, which attempts to kill cancer cells via apoptosis. In addition, the

NF-κB pathway interacts with the STAT3 pathway to further reinforce a survival

response as shown in Fig. 2.5 [21].

Another critical component of the ABC DLBCL network is the activity of the

transcription factor IRF4. While IRF4 gene expression is crucial to the survival of

ABC DLBCL cells (though not of the GCB DLBCL subtype), it is not structually or

genetically altered from copies of IRF4 in healthy cells [22]. It plays a complicated

role in the ABC DLBCL subtype, upregulating genes in the NF-κB pathway and

repressing genes associated with the interferon pathway, which tends to cause cell

death when activated [23]. As such, IRF4 appears to be a crucial hub for the

interaction between multiple pathways within ABC DLBCL.

These differences highlight the uniqueness of gene regulatory networks in spe-

cific cancer subtypes and the need to generate subtype specific networks if network

topology is to be a useful tool for predicting therapeutic targets.

2.2.3 Systematic Approaches to Constructing Gene Regulatory Net-

works

As the price of microarray platforms has fallen, researchers have amassed large

sets of microarrays measuring cancer cells under a host of different conditions. How-

ever, the best quantitative method for understanding these data has yet to be de-

termined. Early work focused on hierarchical clustering of data sets in which genes

that have highly correlated expression patterns are near each other in the result-

13



Figure 2.5: The NF-κB pathway is constitutively activated through upstream onco-

genic mutations and interacts with the transcription factors STAT3 and IRF4 to

promote pro-survival in ABC LDLBCL while IRF4 inhibits the interferon pathway

to prevent signaling promoting cell death.
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ing nested hierarchy [24]. This approach is computationally tractable for hundreds

of microarrays (experimental perturbations), each of which measures as many as

∼40,000 unique mRNA levels. However the resulting clusters provide only a crude

view of the transcriptional organization within human cells [6].

In light of this, work to develop methods that reflect the interactions between

genes has emerged [25]. While genes can produce proteins that bind together into

complexes before performing their cellular function, the amount of data required

for estimating these higher order interactions from microarrays is beyond what is

currently feasible for a single lab.

Instead, popular methods [26, 10, 27, 28] focus on the slightly idealized view

that a TF produces a protein which then binds to its target gene, causing the

target’s mRNA levels to increase or decrease. Because cooperative interactions

between multiple proteins may be required to influence a target gene’s expression,

the relationship between a TF’s mRNA levels and the target’s may not be linear.

For example, one might imagine an XOR circuit in which two TFs independently

activate the same target gene, but when both TFs are expressed their proteins

bind together into a complex that ultimately represses the target gene. In order to

capture such nonlinear relationships, the mutual information (MI) between pairs of
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genes is calculated:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (2.1)

H(X) = −
∑
x∈X

p(x)ln(p(x)) (2.2)

H(X, Y ) = −
∑

x∈X,y∈Y

p(x, y)ln(p(x, y)) (2.3)

where p(x) is the probability that the random variable X—associated with a gene’s

expression level—is in state x, and p(x, y) is the joint probability of X = x and

Y = y, for a gene pair. The best way to estimate the MI from a limited number of

measurements (N <∼ 500) remains an area of active research with methods for using

kernel density estimation [29], spline fitting [10], or bin width maximization [30] all

available.

Once a matrix of MI values is computed, a variety of methods for determining

the statistical significance of a given MI value can be used. Margolin and coauthors

[29] developed a shuffling scheme in which a gene’s expression values are randomly

reordered and the MI is recomputed. This is done many times for many (105) gene

pairs to produce a null distribution which can be used to assign a p-value to each

true MI value.

Faith and coauthors [10] put forward a simpler, less computationally intensive

method that determines, for a given gene, the distribution of its MI values across

all other genes, and calculates its mean and standard deviation. Using these, a

combined z-score can be computed for a gene pair’s particular MI value to determine

its statistical significance. For a reconstructed network in E. coli, this has been

shown to be more accurate in identifying true links and minimizing false positive
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links than the method of Margolin et. al. [10].

2.3 Methods

2.3.1 Microarray Data

We consider 168 two-color Agilent microarrays each measuring the change in

mRNA levels of every gene in the cell population in response to one of 23 different

perturbations at a specific time point. These perturbations come in two basic types:

(1) shRNA knockdowns which inactivate a specific node and all of its links and (2)

small molecule inhibitors which disrupt the links in a specific subgraph. From a

network perspective each microarray measures the response of each node (gene) to

a particular perturbation.

For the shRNA knockdowns, a short hairpin RNA (shRNA) is designed to bind

to the mRNA of a specific gene and bind or “knock down” the mRNA, effectively

preventing the mRNA from being translated into protein. If a gene’s protein is not

produced, it can no longer perform its designated functions. Because these shRNAs

inactivate the mRNA and not the protein of the targeted gene, it can take between

12 and 24 hours before existing protein is used up and the effect of the perturbation

is realized.

Consequently, for the shRNA experiments, the microarray measurements of

the change in gene expression are typically taken at 12, 24, 48 and 72 hours after

the induction of the shRNA. Multiple shRNAs are designed to target the same

gene and tested to make sure that any response by the cell is not the result of the
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shRNA indiscriminately binding to mRNA that is not produced by the target gene.

The cells are designed so that the shRNAs are not expressed until they are treated

with doxocyclin, which ensure that cells in the population experience the shRNA

perturbation at the same time.

In addition to the 13 shRNA knockdown experiments, there are 10 perturba-

tions using small molecule inhibitors, which target proteins within a specific path-

way. Because these inhibitors are taken up by the cells quickly and begin inactivating

the protein of interest, their effect is observed more immediately than the shRNA

perturbations. Microarray measurements for the small molecule inhibitors are typ-

ically taken at 1, 3, 6 and 24 hours after treating the cells. For the purposes of this

thesis, we treat each microarray as an independent “snapshot” of the cell and do

not attempt to model the time dependent nature of the perturbations.

2.3.2 Calculating Mutual Information and Z-scores

Given a set of relative changes in gene expression for all genes under different

conditions, we would like to identify gene pairs whose expression levels are sig-

nificantly correlated. Because of an abundance of nonlinear interactions between

gene expression levels [30], we choose not to use the traditional correlation coeffi-

cient, which identifies only linear relationships between random variables. Instead,

we choose the mutual information (MI) as a measure of the linear and non-linear

dependencies between gene pairs. Given random variables X and Y that repre-

sent the expression level of a pair of genes, their mutual information is given by
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Eqs. (2.1-2.3). In Eq. (2.2), p(x) is the probability that X has expression level x.

This probability is estimated from a histogram of the expression values with four

equally spaced bins ranging from the minimum to maximum value of X. The joint

probability p(x, y) (Eq. (2.3)) is estimated from a 16-bin histogram. Given 159

measurements for each gene, we chose the the number of bins such that the average

number of data points per bin in the joint histogram is approximately 10.

After calculating the matrix Mij containing the MI between genes i and j for

all ∼484 billion gene pairs, we generate a network in which links exist between two

genes if they have statistically significant mutual information. To determine this,

we calculate the z-score for the mutual information between the pair by combining

the z-scores for the individual genes. The z-score for an individual gene, i, is

z
(row)
ij =

Mij − µi
σi

(2.4)

z
(col)
ij =

Mij − µj
σj

(2.5)

where µi and σi are the mean and standard deviation of row i and µj and σj are

the mean and standard deviation of column j. A z-score for the pair ij is then:

Zij =

√(
z
(row)
ij

)2
+
(
z
(col)
ij

)2
We link the genes in the networks if and only if Zij ≥ 3.

2.3.3 Identifying Regulator Genes to Target

Given a network consisting of links reconstructed from gene expression mi-

croarray data, we want to identify those transcription factors (TFs) that are close
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Figure 2.6: Degree distribution of the 1201 transcription factors from the mutual

information derived network where TFs are connected to genes if they have a mutual

information value that is 3 standard deviations or more away from the mean.

in network space to sets of genes that are implicated in the aberrant behavior ABC

DLBCL cells. There are 1201 TFs that are expressed in the cells and included in the

network. Genes were designated as a TF by manually curating a list of known B-cell

TFs in addition to a general list of TFs included in Carro et. al [31]. We exclude

links that do not connect to a TF since those links would reflect post-translational

interactions, which are not reliably measured by the microarray experiments.

To determine the potential network drivers of different cell functions in ABC
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lymphoma, we focus on short paths from a TF to sets of genes whose coordinate

mRNA expression levels reflect important cell physiology (see Fig. 2.7). These sets

of genes, gene signatures, are compiled from the literature [32] and are derived from

two general types of gene expression microarray experiments: (i) profiling experi-

ments where patient samples are hierarchically clustered to determine differentially

expressed genes (as in [17]), (ii) perturbation experiments where the normal cell state

is altered via inactivation of a specific gene or pathway(s) and the resulting changes

in gene expression are captured with microarray measurements after induction of

the perturbation.

Those genes with similar expression levels are clustered together into a gene

signature, as shown in Fig. 2.8. The entire signature database includes 317 signa-

tures comprised of 14,000 unique genes. Signatures range in size from 10 to 4600

genes. Note that individual genes also show up in multiple signatures, reflecting the

biological reality that a single gene can be involved in multiple cellular functions.

2.3.4 Calculating p-values for First and Second Neighbors

We wish to use the gene interaction network topology to identify transcrip-

tional regulators who are significantly connected to genes in a specific signature.

By looking at the first and second neighbors—genes that are one or two links away,

respectively—of a regulator, we can ask how many of those neighbors are in a partic-

ular signature. Defining the set of first or second neighbors of regulator i as Ri and

the set of genes in a given signature j as Sj, the size of the intersection of those two
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1 

Associating TFs with Signatures via Short Paths 

1.  Pick a TF and a signature 

2.  Calculate short paths from the 
 TF to each gene in the  
 signature 

3.  Calculate short paths from the 
 TF to all genes in the network 

4.  Calculate p-value from (2) and 
 (3). 

5.  Repeat for all TFs and signatures 
-  signature gene 

-  non-signature gene 

- non-TF gene 

-  TF gene 

Figure 2.7: Schematic of the algorithm for choosing transcription factors to target

based on an inferred regulatory network. A total of 1201 transcription factors and

317 signatures are considered reflecting multiple aspects of lymphoma and B cell

biology.

22



Figure 2.8: Genes whose mRNA levels change coordinately in response to a specific

molecular perturbation are hierarchically clustered. Those genes in tightly correlated

clusters are identified as part of a signature. (Figure courtesy of the Staudt Lab)
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sets is then denoted Xij. Our goal is to estimate the significance of this intersection

by constructing an appropriate null distribution for signature j. The expectation

value of this distribution

〈Xij〉 = npij (2.6)

is written in terms of the n genes in signature j and the probability pij that a gene

in signature j is also in neighborhood i. We fit pij with a logistic regression:

pij =
1

1 + e−vij
(2.7)

vij = aj + bi (2.8)

where we assume vij is a linear combination of the weights aj and bi. aj reflects

the tendency of genes in signature j to appear in any given neighborhood, and bi

reflects how likely genes in neighborhood i will also appear in a signature, i.e., how

highly connected a regulator is in the network. If there were no correlation between

signature j and neighborhood i then pij → pi, indicating that the probability of

a gene being in neighborhood i and signature j does not depend on the specific

signature of interest and thus the probability distribution characterizing Xij would

follow a binomial distribution:

n = Sj (2.9)

k = Xij (2.10)

Binomial(n, k) =

(
n

k

)
pki (1− pi)n−k. (2.11)

However, the signatures are chosen for their biological relevance and include

genes whose mRNA levels are often coordinate, causing the same subset of genes
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from signature j to show up more frequently in a neighborhood. When this is the

case, the binomial distribution no longer applies as the signature genes do not appear

in a neighborhood independent of each other. Rather, the probability of one gene

being in Xij may be highly predictive of other signature genes also being in Xij.

Because this behavior is a product of how the signatures are constructed, we would

like to account for this effect in our null model of the probability of Xij occuring.

In [33] it is shown that a betabinomial distribution models the case where binomial

“trials”, i.e., signature genes are in neighborhood i, are correlated with each other.

The null model for a given signature j that accounts for all of these effects can be

written in terms of the following betabinomial distribution, f :

f(n, α, β) =

(
n

k

)
B(k + α, n− k + β)

B(α, β)
(2.12)

B(α, β) =

∫ 1

0

pα−1ij (1− pij)β−1 dpij (2.13)

where the shape parameters α and β allow the betabinomial distribution to take on

a variety of different concave and convex forms depending on how highly connected a

regulator is with the rest of the network and whether or not there is an all or nothing

effect with a given signature, i.e., a link to one signature gene is highly indicative of

links to many signature genes. Given the number of genes n in signature j, α, and

β, we can calculate a p-value for the significance of Xij:

p-value = Prob[f(n, α, β) ≥ Xij]. (2.14)

The only remaining task is to estimate α and β for each signature, which can be

accomplished using a logistic regression whose parameters we can relate to α and
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β. We choose to reparamaterize in terms of aj and β, which makes for more stable

computation as suggested in [34], with an estimate for bi in terms of pi and the total

number of genes in the network, N ,

pi =
Ri

N
(2.15)

bi = ln

(
pi

1− pi

)
. (2.16)

We can then equate the mean of the regression probability and the mean of the

betabinomial distribution to solve for α in terms of β and v:

v = aj + bi (2.17)

n
1

1 + e−v
= n

α

α + β
(2.18)

α = evβ. (2.19)

The probability of observing Xij is then:

P(Xij = k) =

(
n

k

)
B(k + βev, n− k + β)

B(βev, β)
. (2.20)

To finally fit the model, we find aj and β for each signature that maximizes the sum

of log likelihoods:

∑
Ri

ln[P(Xij = k)]. (2.21)

We then have a p-value for each signature and regulator neighborhood—for first

neighbors and second neighbors separately. The p-values for first and second neigh-

bors can be combined using Fisher’s method [35] to obtain a shortest path p-value,

ptot, as follows:

ptot = p1p2(1− ln(p1p2)) (2.22)
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where p1 and p2 are the p-values from the first and second neighbors. A supple-

mentary table containing the p-value results for the ABCDLBCL-4 signature vs. all

1201 TFs is included in Appendix 1.

2.4 Biological Results

The resistance of ABC DLBCL to chemotherapy emphasizes the need for new

therapies built on a better understanding of the molecular mechanisms that drive the

disease. In the context of this project, we aim to identify new transcription factors

(TFs), like IRF4, that are significantly connected to the set of uniquely expressed

genes in the ABC DLBCL. Even though we included over 300 gene signatures re-

flecting a wide range of cellular biology, we focus on the defining ABCDLBCL-4

signature which contains the 288 genes that are more highly expressed in the ABC

subtype than in the GCB subtype based on hierarchical clustering of patient gene ex-

pression, as we hypothesize that part of the molecular “programming” that uniquely

drives ABC DLBCL also enables its resistance to chemotherapy.

Given the reconstructed network, we rank TFs in by the p-value associated

with the number of first neighbors who are also in the ABCDLBCL-4 signature or

the p-value associated with combined number of first and second neighbors who are

also in the signature. Given these criteria, there are 75 TFs (out of a total of 1201

TFs in the network) who have an associated p-value < 0.025 with the ABCDLCBL-

4 signature. We chose to consider both 1st neighbors and 1st and 2nd neighbors

combined because we are interested in TFs that are locally or globally connected to
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the signature genes.

Within the network, one might consider the situation where a TF is not sig-

nificantly connected to signature genes directly, but through a secondary TF which

is highly connected to genes in the signature. We hypothesize that this may be the

case for the TF ID3, which does not have a significant number of first neighbors

(P < 0.14) but does have a significant number of second neighbors in the signature

(P < 0.005). In a previous study of Burkitt’s Lymphoma, ID3 was shown to have

mutations that prevented its normal inhibition of the factor TCF3 which lead to

activation of a pro-survival pathway [36]. It is possible that ID3 plays an important

role in ABC DLBCL as well.

In addition to ID3, there are multiple TFs out of the 75 predicted whose lym-

phoma biology is known, and show the robustness of this single cell line network

in predicting true tumor behavior. For example, IRF4 is a master regulator in the

ABC DLBCL subtype and its activity is critical to the survival of ABC DLBCL

cell lines [23]; STAT3 works in conjunction with the NF-κB pathway to promote

cell growth. In addition, a subset of ABC DLBCL patients show very high levels

of STAT3 [21], although the significance of this remains an unanswered question.

IRF7 and IRF9 are critical to the control of the interferon pathway in ABC DL-

CBL [23] and, furthermore, IRF7 and IRF9 are the second and third ranked TFs

associated with the interferon signature, which contains the list of genes involved

in the interferon pathway. Finally, NFKB1 is an important regulator in the NF-κB

pathways, which is a hallmark of the ABC subtype [8].

Beyond known regulators of the ABC DLBCL subtype, the top ranked TF
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associated with the ABCDLBCL-4 signature may prove an important part in the

pathogenesis of this disease. The role of BATF in ABC DLBCL is currently un-

known, but recent work [37] has shown that BATF works directly with IRF4 in

normal T cells. Experiments are ongoing to determine the role of BATF in ABC

DLBCL.

Given that the network was reconstructed from perturbations within one ABC

DLBCL cell line, it is possible that the network might reflect the fact that a cancer

cell line, while originally derived from a patient biopsy, has certain evolutionary

traits that allow it to live successfully in the lab but do not reflect the actual tumor

environment. To investigate this possibility, we compared the gene expression in

actual tumor biopsies for the 75 TFs predicted from the network. Of the 75 TFs, 24

had 1.3-fold higher (P < 0.01) gene expression in patients with the ABC subtype

compared to those with the GCB subtype and 8 TFs had 1.3-fold lower (P < 0.01)

gene expression in the ABC subtype as shown in Fig. 2.9. This would suggest

that the network has predicted TFs that are either activated or repressed in the

ABC phenotype. An shRNA screen is in progress to determine the dependence of

this tumor type on these factors by determining whether the knockdown of TFs

associated with ABCDLBCL-4 via the network leads to the death of ABC DLBCL

cells.
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Figure 2.9: log2 ratio of TF gene expression in ABC vs. GCB patient samples

for network predicted TFs (P < 0.025) where each TF had 1.3-fold higher gene

expression in either the ABC subtype or the GCB subtype (P < 0.01).
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2.4.1 Predicting Known TF Links

Ideally, we would have enough experimental perturbations such that the net-

work structure would remain very robust to the removal of one set of perturbation

experiments (typically measured over 4 time points). However, we instead have a

very limited set of unique perturbations (∼30). We imagine that the removal of a

particular perturbation may lead to the removal of a particular subset of links in the

network. Conversely, by adding new perturbations, we can improve the resolution

in the nework.

Unlike network reconstruction efforts in model organisms such as yeast and

E. coli, there is no gold standard to compare the accuracy of our network in ABC

DLBCL as we add/remove perturbations. Instead, as a first effort to test the net-

work’s predictive power, we remove the perturbations of TCF4, whose neighbors

were originally enriched for the ABCDLBCL-4 signature and highly expressed in

patient tumors as shown in Fig. 2.9. There were 12 microarrays measuring the

response to TCF4 perturbations including the shRNA knockdown of TCF4 (8 ar-

rays) and the over-expression of TCF4 protein (4 arrays). We then reconstructed

the network with the remaining 168 microarrays and reran the network signature

analysis focusing on the set of genes that have been experimentally validated as

TCF4 target genes, meaning that their gene expression levels change when TCF4’s

levels change and confirmation that TCF4 protein binds and regulates that gene as

well. These TCF4-dependent target genes were organized into a signature and were

significantly associated with TCF4 first neighbors. However, unlike the network
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reconstructed from the arrays that included direct TCF4 perturbations, there was

no longer a significant association between TCF4 and the ABCDLCBL-4 signature.

This suggests that TCF4 perturbations directly affect a subset of ABC DLBCL-

specific genes independent of other perturbations, and that our network resolution

is limited by the size of our perturbation set.

2.4.2 Conclusions and Future Work

We have shown that the topology of a gene regulatory network reconstructed

using an information theory approach from a single cancer cell line and a limited

number of network perturbations can capture important known tumor biology and

provide a principled way to predict the roles of previously unknown transcription

factors. The success of using simple network properties such as first and second

neighbors suggests more advanced techniques may provide further insight. We hope

that others will build on this work and continue to employ tools from graph the-

ory and complex networks, especially as the quality of gene regulatory networks

improves.
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Chapter 3

Robustness of Network Measures to Link Errors

3.1 Abstract

In various applications involving complex networks, network measures are em-

ployed to assess the relative importance of network nodes. However, the robustness

of such measures in the presence of link inaccuracies has not been well character-

ized. Here we present two simple stochastic models of false and missing links and

study the effect of link errors on three commonly used node centrality measures:

degree centrality, betweenness centrality, and dynamical importance. We perform

numerical simulations to assess robustness of these three centrality measures. We

also develop an analytical theory, which we compare with our simulations, obtaining

very good agreement.

3.2 Introduction

As applications of network science continue to grow and the cost of large

data sets decreases, complex network models are increasingly moving from a useful

means for building insights [38] to a powerful tool for control and prediction [39, 40].

However, the false and missing links that often plague these data sets may pose a

challenge to the application of complex network models. For example, networks
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based on mobile phone records [41] may miss important highly connected hubs

due to a lack of institutional phone numbers, while social media-based networks

may show friendships between people where no face-to-face friendship exists. Thus,

characterizing the reliability of network properties inferred from measured data with

link errors can be an important issue. This is a challenging problem as there is often

no “true” network to compare against and only an estimate of the link errors can

be made.

Biological networks, in particular, are often constructed from noisy data. For

example, recent high-throughput technologies such as yeast two-hybrid screening

now make it possible to test potential interactions between proteins in a organ-

ism; however, depending the stringency of the screening, the number of reported

protein-protein interactions can vary dramatically [42]. When the number of re-

ported interactions is on the high end, many false links are likely to be included,

and when the number of reported interactions is on the low end, many true links are

likely missed. Further, interactions can also be missed when they are conditioned

on other events in the cell. Link errors are also common in the reconstruction of

gene regulatory networks from gene expression microarray data; in particular, false

links are frequently inferred from non-causal correlations [10, 43].

While much attention has been devoted to improving network reconstruction

algorithms to limit the number of false and missing links [44, 10, 45, 46], in this

paper we aim to provide a step toward understanding the effect of these link errors

on the conclusions we draw from network analysis.
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3.3 Approach

We study the effects of false and missing links on three different network mea-

sures of node importance: degree centrality, betweenness centrality, and dynamical

importance, which are described below. In general, our goal is to understand the

extent to which a node importance measure calculated using a noisy network cor-

relates with its value in the true network. In particular, we wish to determine how

measures of node importance differ in their robustness to false and missing links.

In this section we describe the different measures of node importance considered,

the different types of “truth” networks studied, and the different models for false

and missing links employed. We limit our considerations to unweighted, undirected

networks with no self-links.

3.3.1 Centrality Measures

The number of links connected to a node is its degree, the most basic centrality

measure. The use of degree has been especially popular in identifying the function

of genes in genetic regulatory networks. Genes with many links can play important

roles in multiple biological functions [47]. In social networks a node’s number of

acquaintances or friends reflects the local influence of that node.

More global measures of node centrality account for a node’s neighbors, neigh-

bors of neighbors, and so on. Betweenness centrality is such a measure. The be-

tweenness centrality of a node i is defined as [48]

g(i) =
∑
j 6=l

σjl(i)

σjl
, (3.1)
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where σjl(i) is the number of shortest paths between nodes j and l going through i,

and σjl is the total number of shortest paths between j and l. By summing over all

pairs j,l we have the fraction of shortest paths that run through i.

One might consider a centrality measure that effectively takes into account all

paths instead of only shortest paths. There are multiple eigenvalue metrics [49] that

account for such paths. We focus on the dynamical importance. The dynamical

importance of node i is defined in terms of the decrease, −∆λi, of the largest

eigenvalue, λ, of the network’s adjacency matrix upon the removal of node i [50]:

Ii ≡
∆λi
λ
. (3.2)

The dynamical importance measure is motivated by the observation that the largest

eigenvalue of the adjacency matrix plays an important role in various processes

on networks, including synchronization of oscillators [51] and phase transitions in

boolean models of gene regulatory networks [52].

3.3.2 Model Networks

In our investigations of the effects of network noise in the form of link errors on

the aforementioned centrality measures, we two types of widely-studied networks as

our ”truth” networks. The first type is an Erdos-Renyi (ER) [53] random network.

To construct an ER network with M links we randomly choose M pairs of nodes and

draw an edge between each pair. This kind of network exhibits a Poisson degree dis-

tribution if the number of nodes is large. The other type of truth network we explore

is the scale-free (SF) network, which exhibits a power-law degree distribution. To

36



construct our SF networks, we start with a directed variant of the Barabasi-Albert

preferential attachment model [54]. Our network begins with a small random seed

network to which a single new node is added at every time step. When each new

node is added, two directed links originating from it are made to existing nodes

in the network. These connections are formed such that the probability of linking

to an existing node is proportional to its current in-degree. We then convert this

directed network to an undirected network.The resultant network exhibits a degree

distribution that is power law in its tail with exponent γ = −2.5 (in contrast to the

γ = −3 exponent for the original Barabási-Albert construction [54]).

3.3.3 Link Error Models

In order to explore how link errors affect centrality measures, we consider two

models for creating missing and false links.

For both of our link error models, denoted Model 1 and Model 2, we create

missing links by randomly selecting Mδ (0 ≤ δ ≤ 1) of the M true links and deleting

them. Models 1 and 2, however, differ in how false links are created. In Model 1

we create false links by connecting Mα node pairs randomly selected from among

the N2−N −M node pairs not connected by a true link. From the nodes’ point of

view, the expected number of its links that get deleted is proportional to its degree

in the truth network, while the expected number of links added is independent of

its degree. In our second model of noisy networks (Model 2) , both the deletion and

addition of links occur in proportion to node degree. Thus in Model 2 false links
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are added between node pairs where each node in the pair is randomly selected with

probability proportional to the node’s true degree. That is, we randomly choose

two nodes with probability proportional to their degree; if the two choices do not

already have a connecting link, we add a link between them. We repeat this process

until Mα links have been added.

In what follows we will vary the link deletion fraction δ and the link addition

fraction α to numerically (Sec. 3.4) and analytically (Sec. 3.5) explore the effects of

missing and false links. While 0 ≤ δ ≤ 1, note that α can be larger than 1. Here we

restrict ourselves to 0 ≤ α ≤ 1 and hence do not consider noisy networks for which

the number of false links exceeds the number of true links. Because some centrality

measures are not well-defined when there are multiple disconnected components in

a network, only nodes in the giant connected component (GCC) of both the true

and noisy network are considered.

3.4 Simulation Results

In this section, we report results of numerical simulations investigating the

robustness of network centrality measures in the face of link errors for the two

different types of truth networks and the two link error models considered. Using

the methods described in Section 3.3, we generated Erdos-Renyi networks with with

N = 2500 nodes and average degree 〈k〉 = 6 and scale free networks with 2500 nodes

and average degree 〈k〉 = 4. Starting with each of these truth networks, we then

produced noisy variants for different values of δ (the fraction of true links deleted)
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Figure 3.1: Model 1: Contour map of correlation before and after introduction of

link errors where δ is the fraction of missing links and α is the fraction of false links

for Erdos-Renyi and Scale-Free Networks. False links are added randomly (Model 1),

missing links proportional to the original degree. True and noisy network measures

are perfectly correlated when ρ is 1 (blue) and not correlated when ρ is 0 (red).
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Figure 3.2: Model 2: Contour map of correlation before and after introduction of

link errors where α is the fraction of missing links and α is the fraction of false links

for Erdos-Renyi and Scale-Free Networks. False and missing links are proportional

to the original degree. True and noisy network measures are perfectly correlated

when ρ is 1 (blue) and not correlated when ρ is 0 (red).
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and α (the fraction of false links added). For all values of α and δ, results from the

noisy networks were averaged over 25 realizations.

3.4.1 Centrality Correlations

To assess the effect of link noise on a node’s centrality measure C, we calculated

the Pearson correlation ρ between the true measure CT and noisy measure CN
1:

ρ(CT , CN) =
〈CTCN〉 − 〈CT 〉 〈CN〉√

(〈C2
T 〉 − 〈CT 〉

2)(〈C2
N〉 − 〈CN〉

2)
, (3.3)

where C denotes either the node’s degree centrality, betweenness centrality, or dy-

namical importance, and 〈...〉 indicates an average over nodes in the giant connected

component of the network. We used the standard definitions of degree centrality

and betweenness centrality from Section 2 when calculating the correlation ρ. In the

case of dynamical importance, we employed a perturbation-based large-N approx-

imation [50] of Eq. (3.2) using the left and right eigenvectors, u and v, associated

with the largest eigenvalue of the network adjacency matrix:

Îi =
viui
vTu

. (3.4)

The computational feasibility of Eq. (3.4) makes it amenable to application in very

large networks (N ≈ 50 000), and it extends naturally to directed networks (only

1We only consider the correlation for each individual centrality measure before and after link

errors are added. We do not study correlations between the different centrality measures, since

we regard the latter issue as being more context-dependent. E.g., it may be more appropriate

to choose a centrality measure because its character makes it more indicative of the particular

processes that the network is experiencing, than to choose it because it is (by some criterion) more

robust.
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undirected networks are considered in this work).

Simulation results are shown in ??. Figures 3.1 and 3.2 show heat maps of the

correlation ρ in α, δ-space for the three node centrality measures and the two types

of network considered, with Fig. 3.1 showing the system behavior for Model 1 link

errors and Fig. 3.2 showing the system behavior for Model 2 link errors. In order

to more quantitatively compare results from the various cases, Fig. 3.3 shows plots

of ρ versus δ with α held fixed at α = 0.5 (Figs. 3.3(a) and 3.3(c)) and of ρ versus

α with δ held fixed at δ = 0.5 (Figs. 3.3(b) and 3.3(d)).

In Figs. 3.1(a,b,c), which show Model 1 results for our ER network, we see

that for low link deletions δ <∼ 0.5 all of the centrality measure correlations decrease

as α and δ are increased, but that this decrease of correlation is somewhat faster

when δ is increases as compared to when α is increased. At higher false deletion

error, δ >∼ 0.5, the betweenness, and especially the dynamical importance, become

even less sensitive to false link additions (α).

Results using Model 1 link errors on SF truth networks (Figs. 3.1(d,e,f)),

show that all three centrality measures are significantly more robust to link errors

as compared to our results for the ER network, with very small error for values

of δ <∼ 0.7. In addition the insensitivity of ρ to α for betweenness centrality and

dynamical importance found for the ER network still applies.

Looking at Fig. 3.2, which shows results for Model 2 link errors, we again

see that the centrality measures for the SF network (Figs. 3.2(d,e,f)) are very much

more robust to link errors than is the case for the ER network (Figs. 3.2(a,b,c)) with

perceptible SF error only appearing near (α, δ) ≈ (0, 1). Furthermore, particularly
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Figure 3.3: The centrality correlation for the three measures studied: degree central-

ity (red), betweenness centrality (green), and dynamical importance (blue). Squares

correspond to results in which noise is added according to Model 1, circles corre-

spond to results in which noise is added according to Model 2. Panels (a) and (b)

are for Erdos-Reyni truth networks, and panels (c) and (d) are for scale-free truth

networks. In (a) and (c), the fraction of false edges is fixed at α = 0.5, and the

fraction of true edges deleted, δ is varied. In (b) and (d), the fraction of true edges

deleted is fixed at δ = 0.5 and the fraction of false edges added, α, is varied.
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for the ER network, we still see that the correlation between the centrality measures

of the true and noisy networks decreases when links are deleted (δ is increased). In

contrast, with false link additions (α increasing), we find that the correlation actually

increases. E.g., for the case of degree (Fig. 3.2(a)), this occurs because Model 2

noise is added in proportion to the signal we are measuring (the true degree), and

this effect can also be seen for the betweenness centrality and dynamical importance

measures (Figs. 3.2(b,c)).

Figure 3.3 shows graphs of the correlation ρ along two slices through α-δ space:

(i) α = 0.5 with δ varying from 0 to 1 (Figs 3.3(a) and 3.3(c)), and (ii) δ = 0.5

with α varying from 0 to 1 (Figs. 3.3(b) and 3.3(c)). Referring to Figs 3.3(a),

we see that for ER networks at α = 0.5, as true links are deleted, the correlation

decreases more slowly for Model 2 than for Model 1. As already seen in Fig. 3.2(a),

Fig. 3.3(b) shows a pronounced increase of the correlation for ER networks with

increase of Model 2 link error additions (α) at fixed δ = 0.5. Figure 3.3(c) shows

that for scale-free networks at α = 0.5 the correlations are relatively insensitive to

link deletion for Model 2, while Model 1 shows significant decrease only for relatively

large δ >∼ 0.6. Finally, we see from Fig. 3.3(d) that at fixed δ = 0.5 the scale-free

network is largely unaffected by the addition of false links for both Model 1 and

Model 2.
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3.4.2 Overlap of Highly Ranked Nodes

In addition to correlation robustness, we have also characterized the effect of

link errors on the overlap between the top 10% of nodes in the truth and noisy

networks when ranked based on a given centrality measure. This consideration of

overlap is motivated by the fact that node-ranking is often used to select nodes for

further study or experimental validation (e.g., see the gene network study of human

glioma in Ref. [55]).

With this motivation, we have studied the effects of missing and false links on

the ranking of the nodes based on the three centrality measures from Section 3.3. To

do this, we consider the overlap of the top 10% of the nodes in the giant components

of the true and noisy networks and average over 25 network realizations. Results

for Model 1 and Model 2 link errors are shown in Figure 3.4 and 3.5.

While the correlation results, Figs. 1-3, show a striking contrast between the

ER and the SF networks, with the SF networks being very much more robust to

link errors, this result is no longer true when we focus on overlap (Figs. 3.4 and

3.5) with the SF and ER networks now both showing substantial dependence of the

overlap on α and δ. Similar to the correlation for ER networks with Model 2 link

errors, Figs 3.2(a,b,c), we now see from Fig. 3.5 that the overlap with Model 2 link

errors shows substantial decrease with increasing δ, and increase with increasing α,

applying for both ER and SF networks.
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Figure 3.4: Model 1: Contour map of the overlap between the top 10% (250) nodes

in the true network and the top 10% in the noisy network as ranked by each node’s

centrality measure before and after introduction of link errors where α is the fraction

of missing links and α is the fraction of false links for Erdos-Renyi and Scale-Free

Networks. False links are added randomly, missing links proportional to the original

degree.
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Figure 3.5: Model 2: Contour map of the overlap between the top 10% (250) nodes

in the true network and the top 10% in the noisy network as ranked by each node’s

centrality measure before and after introduction of link errors where α is the fraction

of missing links and α is the fraction of false links for Erdos-Renyi and Scale-Free

Networks. The number of false and missing links for each node is proportional to

the original degree of that node.
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3.4.3 Centrality Changes for Individual Nodes

In sections 3.4.1 and 3.4.2 we explored the robustness of the three different

centrality measures by assessing the effect of link errors on centrality correlation

(Eq. (3.3)) and on overlap of highly ranked nodes, both of which are population-

wide characterizations. In some cases, however, we may be interested in how the

centrality of a specific node in the noisy network is related to its centrality in the

true network. In this section, we address such situations.

To assess the effects of link errors on the centrality of a specific node with true

degree k, we consider the set of nodes in the true network with degree k, and for

each node in that set, take the ratio of its centrality measure (e.g., betweenness) in

the noisy network to the same measure in true network. After repeating the process

for 500 realizations of the noisy network (constructed from a single underlying truth

network, randomly generated as described in section 3.3.2), we obtain a distribution

of the noisy/true centrality ratios for a given value of k. We do this for both ER and

SF true networks. For both models, we focus on an example in which the expected

number of false links added is equal to the expected number of true links deleted

(α = δ = 0.3). The first, second and third quartiles of this distribution are plotted

for the three centrality measures with noise generated according to Model 1 in Fig.

3.6 and noise generated according to Model 2 in Fig. 3.7.

For Model 1, in which false links are added independent of node degree and

true links are removed proportional to node degree, we see that, in both ER and

SF networks, the median noisy/true ratio exhibits a general downward trend as k
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Figure 3.6: Model 1: The first (lower blue), second (red) and third (upper blue)

quartiles for the ratio of noisy/true degree (D̃), betweenness (B̃), and dynamical

importance (Ĩ) versus degree (k) in ER (left column) and SF (right column) net-

works for α = δ = 0.3. The open circles are derived from the theory described in

3.5. Results are averaged over 500 realizations of the noise model with the same

underlying true network.
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Figure 3.7: Model 2: The first (lower blue), second (red) and third (upper blue)

quartiles for the ratio of noisy/true degree (D̃), betweenness (B̃), and dynamical

importance (Ĩ) versus degree (k) in ER (left column) and SF (right column) networks

for α = 0.3, δ = 0.3. The solid curves for the degree are derived from the theory

described in 3.5. Results are averaged over 500 independent realizations of the noise

model with the same underlying true network.
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increases. This trend occurs because low degree nodes are less likely to have links

removed than high degree nodes while being equally likely to have links added. For

the betweenness and dynamical importance measures (Figs. 3.6(c, d, e, and f)), we

see that for large degrees the median ratios are very close to 1. Since the first and

third quartile boundaries are also reasonably close to 1 at large k, this implies that

for higher degree nodes, the betweenness and dynamical importance of a specific

node in the noisy network are good predictors of its corresponding measure in the

true network, in the case (α = δ) that the total number of links in the noisy network

is approximately equal to the number of links in the true network.

For Model 2, in which both link additions and deletions are proportional to

the original degree, the median noisy/true ratio approaches one at large degree for

all centrality measures, as shown in Fig. 3.7. For degree and betweenness centrality,

we see that the first and third quartiles are roughly symmetric about the median,

whereas for dynamical importance, the third quartile is significantly further from

the median than the first, indicating a right-skewed distribution of noisy/true ratios

for a given value of degree k. The scatter observed for betweenness and dynamical

importance ratios in SF networks (Figs. 3.7(d and f)) occurs because the noisy

networks are built from a single random realization of the true network.

3.5 Analysis of Degree Centrality

In this section, we derive analytic approximations for the Pearson correlation

ρ of degree centrality before and after the addition of noise and for the probability
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distribution function of the noisy node degree. We derive our analytic approxima-

tions for both models of link errors studied and show that the predictions of our

analytic approximations are consistent with the numerical results presented in the

preceding section.

As described in Sec. 3.3.3 and employed in our numerical simulations (Sec.

3.4), for both Model 1 and Model 2 we use a micro-canonical procedure in which, for

given values of δ and α, the number of falsely deleted links is precisely Mδ (or rather

the integer nearest to Mδ) and the number of falsely added links Mα. However,

because this procedure is hard to analyze, to facilitate the theory we employ a closely

related canonical procedures that should yield results that are good approximations

to the actual Model 1 and Model 2 results. Specifically, for link deletion, each one of

the M true links is deleted with probability δ. Thus the average number of missing

links is Mδ with fluctuations whose ratio to the average decreases as (Mδ)−1/2, and

we expect a good approximation for link deletions when Mδ � 1. Similarly for

Model 1 link addition, each of the N2 − N −M pairs of truly unconnected node

pairs is connected with probability Mα/(N2 −N −M) , creating on average Mα

false links; while Model 2 addition of truly unconnected node pairs is done with a

probability that is proportional to the product of the true degrees of the node pairs.

With the canonical framework assumed 2, we first consider the creation of

missing links. If we delete each true link with a probability δ, then the probability

2While the canonical framework is more easily treated by theory, the micro-canonical framework

allows faster numerics, and that is why it is used in 3.4
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that s links are deleted from a node with true degree k is

pD(s|k) =

(
k

s

)
δs(1− δ)k−s. (3.5)

Next we consider Model 1 link addition. For large N , the probability of adding r

false links to a node is approximately given by a Poisson distribution,

pA(r) =
ur

r!
e−u, (3.6)

where u is the average number of false links per node, u = 2Mα/N , while for Model

2 the probability that a randomly chosen node has r false links is

pA(r|k) =

(
k

r

)
αr(1− α)k−r. (3.7)

From our knowledge of pA and pD, Eqs. (3.5,3.6,3.7), we obtain the joint

probability that a randomly chosen node has true degree k and noisy degree n.

Since n = k − s+ r,

p(n|k) =
∑
r

pA(r)pD(s = k + r − n|k), (3.8)

p(n, k) = p0(k)p(n|k) (3.9)

where p0(k) is the probability that a randomly chosen node has degree k. In partic-

ular for Model 1,

p(n|k) =
∑
r

ure−u

r!

(
k

k + r − n

)
δk+r−n(1− δ)n−r, (3.10)

while for Model 2,

p(n|k) =
∑
r

(
k

r

)
αr(1− α)k−r

(
k

k + r − n

)
δk+r−n(1− δ)n−r (3.11)
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Figure 3.8: Model 1: Pearson correlation between the true degree centrality k and

the noisy degree n as a function of missing link fraction, δ, and false link fraction, α.

Markers reflect simulation results and theoretical results are plotted as solid lines.

The Pearson correlation of ensemble averaged degree, between the true and

noisy networks is then:

ρ(k, n) =
〈kn〉 − 〈k〉 〈n〉√

(〈k2〉 − 〈k〉2)(〈n2〉 − 〈n〉2)
(3.12)

and we use our theory for p(n, k) along with

〈kxny〉 =
∑
k,n

kxnyp(n, k), (3.13)

to obtain an analytical prediction of ρ(k, n).

In order to compare our analysis to our numerical simulations, we take as our

p0(k) the specific numerically generated degree distributions obtained from building

our ER and SF networks. We then use the appropriate forms for p(n, k) from

Eq. (3.10) (for Model 1) and Eq. (3.11) (for Model 2) to calculate the expected

correlations for degree centrality (Eq. (3.12))
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Figure 3.9: Model 2: Pearson correlation between the true degree centrality k and

the degree noisy n as a function of missing link fraction, δ, and false link fraction, α.

Markers reflect simulation results and theoretical results are plotted as solid lines.

For Model 1, Fig. 3.8 shows comparisons between our numerical simulations

(plotted as symbols) and our theory (plotted as lines). We see that the analytical

results are in good agreement with the numerical calculations. In SF as compared to

ER networks, the degree remains strongly correlated in the presence of many false

and missing links, with the correlation being driven by the resilient ‘hub’ nodes in

the SF networks.

For Model 2, Fig. 3.9 shows the theory and simulation of correlation for the

degree centrality match well, with a slight discrepancy when δ → 1.

The derived forms of p(n|k) for the two models (Eqs. 3.10 and 3.11) provide

theoretical predictions for how the degree centrality n of a specific node in the noisy

network relates to its degree centrality k in the true network. In order to compare
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the theory to the simulation results discussed in Sec 3.4.3, we used Eqs. (3.10) and

(3.11) to find the first, second, and third quartiles of the distribution as a function

of k, again taking p0(k) as the specific numerically generated degree distributions

obtained from building the ER and SF networks. Figures 3.6(a,b) and 3.7(a,b) show

that the theoretical predictions (plotted as open circles) are in very good agreement

with the numerical results (plotted as solid diamonds).

3.6 Discussion and Conclusions

In this chapter we have investigated the effect of two types of link errors on

three node centrality measures. We propose two simple models of link error (labeled

Model 1 and Model 2) and study their effect for two types of network topology

(Erdos-Renyi and scale-free). In Model 1, the probability that a link is deleted

depends on the original number of links to which that link is connected, while false

links do not depend on the structure of the original network. Model 2 follows the

same formulation as Model 1 for deleting links, but in Model 2 the addition of false

links is performed with a probability that is proportional to the product of the true

degrees of the node pairs.

We have developed methods for assessing the robustness of node centrality

to link errors by comparing the centrality measure for each node before and after

link error. We compare in two ways: (i) by calculating the correlation between the

nodes’ centrality measures in the true and noisy network (Sec. 3.4.1 and 3.5), and

(ii) by calculating the overlap between the top 10% of the nodes as determined by
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their centrality measures in the true and noisy networks (Sec 3.4.2). In the case of

correlation we have obtained analytical results (Sec 3.5) which are in good agreement

with our numerical simulation results. The analytical and numerical results for the

correlation suggest that degree centrality, betweenness centrality, and dynamical

importance are relatively robust to the presence of false edges when the network is

scale-free. Our result for the relative insensitivity of SF networks to δ is consistent

with previous work showing that the size of the giant component in SF networks has

a high tolerance to the random removal of nodes [56]. We note, however, that when

considering the overlap between top ranked nodes in the true and noisy networks,

the much larger SF robustness as compared to the ER case no longer applies.

One common link error not addressed here is that of false edges which complete

triangles. This is a common problem in network reconstruction using microarray

data for gene regulatory networks [29, 43]. In addition to affecting node centrality,

these false links may substantially skew the enrichment for network motifs, which

are often of interest in biological networks [7, 57].
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Chapter 4

Conclusion

The number of large measurable networks now available has brought fresh op-

portunities and challenges for the field of complex networks. We are now able to

test many theoretical ideas on real world networks. However, errors in the measure-

ments of these networks makes clear the need for quantitative methods to test the

robustness of the theoretical techniques.

In Chapter 2, we have seen that the first and second neighbors of transcription

factors in a reconstructed gene regulatory network can provide valuable insight into

the biology of cancer cells. Furthermore, the network provided insight into patient

tumor biology despite the fact that the data was taken from laboratory isolated cell

lines. We hope this network based approach to predicting the role of transcription

factors in ABC DLBCL will advance the systematic study of gene regulation in

cancer.

In Chapter 3, we showed there is a reasonable expectation for success in rank-

ing genes based on their first and second neighbors in a network inferred from gene

expression, which has been shown to produce false links. For two simple stochastic

models of false and missing links, we demonstrated that ranking nodes based on

their centrality—degree, betweenness, or dynamical importance—remains relatively

robust for a large number of link errors as measured by correlating or ranking nodes
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between networks with and without errors. In addition we found centrality measures

in networks exhibiting a power law in the tail of their degree distribution to be very

robust.

We hope the applications of complex networks in this thesis will inspire other

scientists to tackle both the theoretical and applied challenges of elucidating the

key mechanisms in biological networks. While the network reconstruction method

in Ch. 2 is specifically designed for gene expression microarrays, the network method

and statistical model for identifying transcription factors can be applied to networks

measured from many of the newly emerging, more accurate technologies measuring

biological networks. The theory developed in Ch. 3 can be readily applied to directed

networks, and other, more application-specific stochastic models for link error may

be relevant where the experimental uncertainty is well characterized.
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Appendix A1

Transcription Factors associated with the ABCDLBCL-4 Signature
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Appendix	  1
TF 1st_neighbor_pval 2nd_neighbor_pval combined_pval
ESR2 0.003663264 0.006107323 0.000261933
LMO2 0.001067544 0.030189567 0.000365559
ZNF219 0.00129633 0.028168394 0.000409623
TCF7 0.001210298 0.035297307 0.000472522
BATF 0.000401573 0.128796858 0.000562193
CBFA2T3 0.000769215 0.115089227 0.000914692
RELB 0.016392025 0.00652693 0.001085172
POU2AF1 0.033312982 0.003453433 0.001158517
CEBPD 0.00032453 0.359743443 0.001173954
XBP1 0.083700015 0.002055746 0.001663471
MNDA 0.008905215 0.020043249 0.001719029
VGLL4 0.014673846 0.013937994 0.00194192
KLF6 0.002309483 0.093029853 0.002029388
ZNF215 0.001692226 0.150133343 0.00235715
ELK3 0.004881936 0.052703873 0.002383928
ZFAT 0.013667248 0.021153321 0.002644963
STAT3 0.002487039 0.119099324 0.002702708
RBPJ 0.067671152 0.004799907 0.002933814
TRIM22 0.009821305 0.034144771 0.003018232
ZEB2 0.002078057 0.181126117 0.003344185
C11orf9 0.014146995 0.028840797 0.003592214
TFAP2B 0.1784078 0.002368992 0.003706177
MTA3 0.009322245 0.049835656 0.004029944
ID2 0.020427185 0.023555367 0.004156966
TOX2 0.011181081 0.046750666 0.004472658
USP7 0.002035649 0.270561932 0.004683848
ZNF589 0.00303983 0.182643467 0.004717119
SMAD3 0.107305603 0.005746902 0.005174622
BCL3 0.006716707 0.095218698 0.005343322
PWWP2B 0.179604188 0.003571794 0.005357684
E2F2 0.008532861 0.076740055 0.005455347
JDP2 0.003556838 0.187136505 0.00553445
ID3 0.138463988 0.005309192 0.006039447
CREG1 0.008695977 0.088726504 0.006301431
TFAP2A 0.443126573 0.001759769 0.00636042
SUB1 0.015365853 0.052852392 0.006591069
NFKB1 0.054915572 0.015076573 0.006703464
PLAGL1 0.008126645 0.108445617 0.007080457
IRF9 0.160499088 0.005900539 0.007540431
IRF7 0.061651503 0.015466676 0.007585751
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TF 1st_neighbor_pval 2nd_neighbor_pval combined_pval
FOXC1 0.172899123 0.005526668 0.007599745
ZBTB32 0.007936692 0.151073551 0.009263958
PRDM1 0.025205709 0.049760674 0.009634187
NPAS1 0.01258378 0.109009178 0.010413854
CIITA 0.097014846 0.0146164 0.010718015
ELL 0.002661738 0.618855882 0.012203781
IRF5 0.004690171 0.355536772 0.012333728
JUN 0.028557139 0.058542171 0.012361026
SMARCA2 0.316424545 0.005484175 0.012766041
NFKBIZ 0.016056682 0.121585858 0.014131991
BPTF 0.021741833 0.093346258 0.014612447
E2F5 0.00538526 0.3925047 0.015132891
TCF4 0.023104891 0.091875335 0.015188488
NR4A3 0.057773055 0.039007756 0.015989785
NOTCH1 0.167948827 0.013746093 0.016324617
EGR3 0.14566512 0.015881054 0.016352998
NFE2L3 0.098437129 0.02515496 0.017335843
ZHX3 0.06683224 0.039979971 0.018503117
THRA 0.085814024 0.031719757 0.018799189
BCL11A 0.038066713 0.071828793 0.018871728
CRB3 0.019568895 0.145105358 0.019490992
SNAI3 0.103511258 0.027872191 0.019757645
MYOCD 0.006970942 0.445480074 0.021037975
EGR2 0.06161607 0.051418548 0.021399948
IFRD1 0.017527772 0.188371336 0.022165531
IRF4 0.008747722 0.379378418 0.022262427
TCF3 0.149540319 0.022291572 0.022346828
SOX4 0.499945704 0.006751379 0.022585179
NOTCH4 0.037061533 0.095163231 0.023444463
PRDM15 0.207801045 0.018326102 0.02502206
IRF8 0.124117346 0.030889582 0.025165415
VDR 0.058274271 0.068530253 0.026050228
ETV6 0.07092219 0.058706779 0.026985927
SETD8 0.075607094 0.060682082 0.029291197
POLE4 0.061651503 0.076319678 0.029920898
FOXL1 0.196933994 0.024387479 0.03044241
SFN 0.016026348 0.299859503 0.030458047
MYB 0.044865259 0.114293278 0.032167079
EGR1 0.113607641 0.047022871 0.033292997
ZNF710 0.026738274 0.205689223 0.034115367
CREM 0.019168721 0.288031946 0.034226823
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TF 1st_neighbor_pval 2nd_neighbor_pval combined_pval
EBF1 0.031858393 0.175060528 0.034517397
HOXA7 0.029620788 0.190819623 0.034906494
IKZF2 0.024313926 0.236601957 0.035425737
ATF5 0.008564434 0.678493676 0.035725601
SNAI1 0.024929863 0.237749527 0.036322385
ID1 0.032189896 0.189160947 0.037151005
STAT5A 0.011920315 0.526294669 0.038089558
TBX21 0.157109439 0.040012005 0.038153776
TSC22D3 0.10718155 0.06186796 0.039892615
ZHX2 0.137054243 0.050559196 0.041382016
HDAC4 0.048938722 0.148937465 0.043160065
FOSL2 0.104210726 0.070121148 0.043251415
SALL2 0.377333226 0.019456512 0.043419623
ELL3 0.025519466 0.292714697 0.044049167
MAFF 0.074793945 0.10640949 0.046427407
CHD1 0.204802846 0.039625637 0.047183077
FLI1 0.215203724 0.038409286 0.047905611
SIRT3 0.839181419 0.0098619 0.047954051
SHOX2 0.146515583 0.058187788 0.049146503
PHF21B 0.184424311 0.046421033 0.049316763
RCAN1 0.156479032 0.055013921 0.049542082
DNMT3A 0.105106059 0.082735166 0.049957426
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