
ABSTRACT

Title of dissertation: Compilation and Binary Editing

for Performance and Security

Tugrul Ince, Doctor of Philosophy, 2013

Dissertation directed by: Professor Je�rey K. Hollingsworth

Department of Computer Science

Traditionally, execution of a program follows a straight and in�exible path

starting from source code, extending through a compiled executable �le on disk,

and culminating in an executable image in memory. This dissertation enables more

�exible programs through new compilation mechanisms and binary editing tech-

niques.

To assist analysis of functions in binaries, a new compilation mechanism gen-

erates data representing control �ow graphs of each function. These data allow

binary analysis tools to identify the boundaries of basic blocks and the types of

edges between them without examining individual instructions. A similar compila-

tion mechanism is used to create individually relocatable basic blocks that can be

relocated anywhere in memory at runtime to simplify runtime instrumentation.

The concept of generating relocatable program components is also applied at

function-level granularity. Through link-time function relocation, unused functions

in shared libraries are moved to a section that is not loaded into the memory at

runtime, reducing the memory footprint of these shared libraries. Moreover, function

relocation is extended to the runtime where functions are continuously moved to

random addresses to thwart system intrusion attacks.

The techniques presented above result in a 74% reduction in binary parsing

times as well as an 85% reduction in memory footprint of the code segment of shared

libraries, while simplifying instrumentation of binary code. The techniques also

provide a way to make return-oriented programming attacks virtually impossible to

succeed.

Compilation and Binary Editing for Performance and Security

by

Tugrul Ince

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Je�rey K. Hollingsworth, Chair/Advisor
Associate Professor Ahmet Aydilek, Dean's Representative
Professor Ashok Agrawala
Associate Professor Atif Memon
Professor Alan L. Sussman

c© Copyright by

Tugrul Ince

2013

To my lovely wife �imal,

To my parents Feriz and Halime,

And to the rest of my family:

Mehmet, �ükran, Kür³at, Nurgül, Ça§r�, Hilal, and I³�l.

ii

Acknowledgments

I want to �rst thank my advisor Prof. Je�rey K. Hollingsworth for all the

support and guidance he has provided. Thanks to him, I now feel prepared to take

on challenges that lie ahead.

I also want to extend my gratitude to all members of my dissertation committee

for �nding my work interesting enough to sit through a presentation on a beautiful

June day through lunch.

I was lucky enough to meet some great people along the way. A big thank

you to all of you guys. A.T., you taught me how to be passionate about research.

Geo�, you showed me mental and physical �tness can go hand-in-hand, and made

me think outside the box (and the bun). Nick, you kept showing me what to expect

two years down the road, and that things turn out OK in the end. Mike, you kept

me up-to-date with everything going around and with all the �oating-point `stu�'.

Ray, you taught me `ls ' and how to enjoy good food. Things I will remember the

most are the long-gone public phone in front of the A.V. Williams, the wind tunnel

e�ect near the University View, the long list of movies I have to watch at one point,

the graphs passed around on Fridays, and that a four-door car is a luxury.

I also met many wonderful people who, for some reason, do not enjoy trying

to make sense of 1's and 0's as much as I do. A big shout out to Ali Fuad, Bar�³,

Bedrettin, Bengü, Burcu, Ça§da³, Elif, Evren, Faz�l, Ferhan, Füsun, Günay, Okan,

Rezarta, Serap, T�k�r, Tu§ba, and U§ur. You all left your marks on this document.

I owe many thanks to my family. I can never pay you back for all the support

iii

you have been providing all these years. Dad, I know you would be proud. Mom,

Kür³at, and Ça§r�, thank you for supporting me in pursuing my goals. A big thank

you to my in-laws Mehmet, �ükran, Nurgül, Hilal, and I³�l. This world would be

quite boring without you.

Finally, I want to thank my wife, �imal, for always being there for me. Without

you I would have long lost my way along the treacherous hallways of graduate school.

You held my hand and pulled me to safety. Thank you for having the most amazing

dimples in the world.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Work 7
2.1 Compilation Techniques for Binary Analysis and Debugging 7
2.2 Binary Analysis and Editing Tools 9
2.3 Binary Parsing . 12
2.4 Memory Footprint Minimization . 13
2.5 Randomization for Security . 15

3 Instrumentation with Relocatable Basic Blocks 21
3.1 Overview . 21
3.2 Relocatable Basic Blocks . 22
3.3 Compilation . 26
3.4 Instrumentation . 27
3.5 Bene�ts . 29
3.6 Experimental Results . 30
3.7 Discussion . 35
3.8 Conclusion . 35

4 Compiler Help for Binary Analysis Tools 37
4.1 Overview . 37
4.2 Di�culties of Binary Parsing . 39
4.3 Compiler Help . 41

4.3.1 Basic Block and Edge Tables 42
4.3.2 Compilation Process . 44
4.3.3 Reconstruction . 48

4.4 Evaluation . 50
4.4.1 Environment . 51
4.4.2 Experimental Results . 52

4.4.2.1 Experimental Parsing Results 53
4.4.2.2 Build Time Metrics 55
4.4.2.3 Running Time Metrics 57

4.5 Discussion . 58
4.6 Conclusion . 60

v

5 Pro�le-driven Selective Program Loading 61
5.1 Overview . 61
5.2 Architecture . 63
5.3 Target Applications and Platforms 64
5.4 System Design . 64

5.4.1 Pro�ling . 65
5.4.2 Rewriting . 66

5.4.2.1 Avoiding Loading Unused Functions 66
5.4.2.2 Update Relative Calls 68
5.4.2.3 Update Symbols . 68
5.4.2.4 Update Jump Tables 69
5.4.2.5 Update Function Address Transfers 70

5.4.3 On-demand Mapping . 71
5.5 Experimental Results . 71

5.5.1 Environment . 72
5.5.2 Results . 72

5.6 Conclusion . 77

6 Security through Runtime Function Relocation 79
6.1 Overview . 79
6.2 NINJA: Runtime Function Relocator 81
6.3 Relocatable Functions . 82

6.3.1 Function Calls and Function Table 84
6.3.2 Initial Function Location . 85
6.3.3 Indirect Branches That Use Tables 86
6.3.4 Accessing Parameters Stored on Stack 87

6.4 Runtime Function Relocation . 87
6.4.1 Relocation Strategies . 89
6.4.2 Memory Management . 90

6.5 Security Implications of NINJA . 91
6.6 Security Evaluation . 95
6.7 Model of NINJA Security . 98
6.8 Performance Evaluation . 102
6.9 Conclusion . 105

7 Future Work 107
7.1 Short-term Road Map . 107

7.1.1 Compile-time Support for Function Relocation 107
7.1.2 Compile-time Support for Reducing Memory Overhead 108
7.1.3 Secure Portable Devices . 108
7.1.4 Analyzing E�ects of Function Relocation to ICache and TLB . 109
7.1.5 Post-link-time Function Inlining 109

7.2 Long-term Road Map . 110
7.2.1 Live Virtual Machine Migration 110
7.2.2 Decoupling Execution from Physical Mediums 111

vi

7.2.3 Use of Hardware Performance Counters for Runtime Code
Modi�cation . 112

8 Conclusion 115

Bibliography 119

vii

List of Tables

3.1 Relocatable Basic Block Generation Operations on Edges 25

4.1 Properties of Executables Built with Basic Block and Edge Tables . . 55
4.2 Firefox Performance with Tables using V8 JavaScript benchmark . . . 58

5.1 Program Loading: PETSc Results for snes Package 73
5.2 Program Loading: PETSc Results for ksp Package 74
5.3 Program Loading: GS2 Results . 75

6.1 Parts of Functions Modi�ed by NINJA 83
6.2 Time Required for a Successful Attack with/without Runtime Func-

tion Relocation . 97
6.3 Runtime Overhead of Runtime Function Relocation on SPEC CINT

2006 . 104

viii

List of Figures

3.1 Relocatable Basic Block Creation Techniques 24
3.2 Relocatable Basic Block Compilation Mechanism 26
3.3 Runtime Patching with Relocatable Basic Blocks 28
3.4 Running Time Comparison of Relocatable Basic Block Techniques . . 31
3.5 Normalized Running Times with Relocatable Basic Blocks 32
3.6 Running Times of Instrumented Binaries with Relocatable Basic Blocks 33
3.7 Instruction Counts with Relocatable Basic Blocks 34

4.1 A sample CFG and associated Basic Block and Edge Tables 41
4.2 Formats of Basic Block and Edge Tables 42
4.3 Compilation Mechanism for Basic Block and Edge Table Creation . . 45
4.4 Regular vs. Augmented Assembly Files 47
4.5 Interaction between Compilers and Binary Analysis Tools 49
4.6 SPEC CINT2006 Benchmarks: Normalized Parsing Times 53
4.7 PETSc Example Applications: Normalized Parsing Times 54
4.8 Firefox Executables: Normalized Parsing Times 55

5.1 Overview of the Selective Program Loading System 63
5.2 Running Times with Selective Program Loading 75

6.1 Overview of Runtime Function Relocation System 81
6.2 Non-patched Linux Kernels Provide Only 12-16 bits of Entropy . . . 93
6.3 Reduced Entropy on Little-endian Architectures 94
6.4 Probability of a Successful Attack with ASLR and NINJA 97
6.5 Likelihood of a Successful Attack in 24 Hours 101
6.6 Duration a Function Occupies the Same Address 102
6.7 Probability of a Successful Attack with Varying Relocation Parameters103
6.8 Relocation Overhead with Varying Relocation Frequencies 105

ix

Chapter 1

Introduction

The evolution in computing has made it possible to run programs at consis-

tently increasing speeds. We are now at a point where contemporary supercomputers

can execute programs at a rate higher than 10 petaFLOPS. This execution speed

is achieved by carefully optimizing underlying infrastructure such as the operating

system, executable �le format, and even the Instruction Set Architecture (ISA);

resulting in tightly packed code that is free from redundancies.

Consequently, executables tend to be very strict about their layout and execu-

tion environment. Linkers position every piece of code at a speci�c location inside

a module. Their o�sets are �xed throughout the lifetime of the executable. After

a program is fully-compiled, it cannot be modi�ed without extensive operations on

the binary, since code is only meaningful at its assigned location. During execution,

the loader places each associated module into its assigned memory location. Once

a module is loaded, its address is �xed throughout the execution. Even parts of

relocatable code that do not have absolute locations before execution are mapped

to �xed locations at launch-time and cannot be moved afterwards. While some

execution environments such as the Java Virtual Machine provide some level of �ex-

ibility in this process such as generating machine code just-in-time, others are very

restrictive about this compile-link-load-execute cycle.

Quite often, a program needs to be modi�ed and patched even after the com-

1

pilation phase is long over. Such cases sometimes arise due to the need to maintain

legacy programs whose source code is not available any more. Other times, binary

code has to be modi�ed at runtime to apply security patches, or to instrument exe-

cution at various points such as function entry and exit points. When a basic block

in a function is instrumented, it needs to be relocated. This process involves updat-

ing addresses inside that basic block, inserting a branch instruction at the original

location, and adding adding a branch instruction to the end of that basic block. As

a result, instrumenting a basic block is error-prone and damages the performance.

Runtime instrumentation is not the �rst nor the only tedious task that involves

strict program layout. Before we can do anything with the binary in hand, we need

to analyze the code and identify various parts such as functions and basic blocks

inside these functions. These structures are recognized after a thorough analysis of

the binary, examining it instruction-by-instruction, a process called binary parsing.

Any operation with binaries turns out to be extremely costly due to this instruction-

by-instruction parsing operation.

Strict layout of code also has drawbacks in memory usage. If demand paging

is not available, programs have to be loaded into the memory at launch time along

with the shared libraries they use to enforce that all functions that may be used

during execution are available in the memory at runtime. Some of these functions

may never be called, yet they still occupy memory. In addition to the unnecessary

memory overhead, these functions also damage the instruction cache since they also

potentially use up precious instruction cache space.

The fact that code has to live at �xed locations also exposes serious security

2

risks. Many remote attacks bene�t from injecting malicious code at critical locations

in the memory space of the target process. The location of critical code is easy to

guess when it has to live at a �xed location. O�-the-shelf and open-source software

are especially vulnerable: When the attacker can obtain an exact copy of the target

software, �nding addresses of critical functions is much easier. Even shared libraries

tend to be loaded at the same address across multiple executions. After locating a

target function, a typical return-oriented attack can be carried out by exploiting a

bu�er-over�ow to make a vulnerable program execute this target function.

We believe these restrictions, especially the fact that code has to reside at a pre-

determined location throughout its existence, are overly-conservative. To provide

more �exibility to the users as well as developers, code should be usable wherever

it is loaded. That brings us to the thesis of this work:

Relocatable program components, generated by binary rewriting of

programs, results in executables with enhanced security and more e�-

cient memory usage.

We make the following contributions in this dissertation:

We introduce a system that generates fully-relocatable functions:

Correct execution of several types of instructions in executables depends on

their locations: Branches require the target code to be present at its expected ad-

dress, table-based branches read their targets from a branch table that stores ad-

dresses of the target code, call instructions include a target address where the callee

should reside, etc. Even shared libraries that are compiled into position-independent

code (PIC), and hence are considered `relocatable', are only relocatable at the gran-

3

ularity of whole libraries and any smaller chunk of code cannot be relocated by

itself. The reason is that any call instruction that targets a given function will not

work if that target function is moved to an arbitrary location. Therefore, position-

independent code alone is not enough for arbitrary function relocation. A function

can only be relocatable if it is decoupled from the location it occupies. In this work

we present a way to convert any executable to be fully relocatable at the function

granularity, along with a technique for self-relocation of functions at runtime without

requiring user input.

We provide an execution environment that is more resistant against

malicious attacks: Relocating the critical pieces of code provides resistance against

malicious attacks as attackers cannot easily determine the correct location of a func-

tion they want to execute. As part of my dissertation, we develop a system that con-

tinuously relocates functions at runtime so that attackers cannot identify functions

they want to execute forcibly. Our mechanism �rst converts binaries to include fully

relocatable functions, then allows programs to relocate their functions at runtime.

A combination of relocation strategies provides a high level of randomization while

limiting the runtime overhead introduced by the relocation operations. Programs

that continuously relocate their functions bene�t from a more secure execution en-

vironment.

We decrease the memory footprint of shared libraries through pro-

�ling and selective program loading: We created a system that prevents unused

functions from being loaded into the memory. Moreover, we grouped them so that

they also do not occupy space in the instruction cache. In the unlikely event of

4

a call to one of these unused functions, our system dynamically loads the target

function and satis�es the call operation. As a result, the overall memory footprint

of application drops drastically without incurring any performance overhead.

We introduce relocatability at the basic block granularity for easier

instrumentation: Another concept we introduce in this work is relocatable basic

blocks. They are used to simplify binary instrumentation process. Relocatable

basic blocks can be moved without having to deal with other basic blocks around

them. Similarly, we do not need to insert a branch instruction in the old location

after the relocation, removing the need to use traps when relocated basic blocks are

small in size. As a result, tool builders can create simpler and more manageable

instrumentation tools.

We improve binary analysis speeds through faster binary parsing

with the help of a new compilation infrastructure: As part of this work, we

create a new mechanism to aid with the parsing of binaries. We store information

about the locations of basic blocks in a table inside the executable �le with the

help of a compiler extension. During parsing, any binary analysis tool can read this

table and identify functions and basic blocks bypassing the need to decode every

instruction in the binary. This mechanism considerably reduces binary parsing time

and improves the instrumentation experience.

We show that the above goals can be met with no performance

drawback in some cases, and with tolerable slowdown in others: We con-

centrated our e�orts to optimize the runtime performance of applications while pro-

viding these important functionalities. Our systems that deal with avoiding loading

5

unused functions and that generate tables to improve binary parsing do not intro-

duce any runtime overhead. Our runtime relocation operations and relocatable basic

block approach introduce only limited overhead.

6

Chapter 2

Related Work

In this chapter, we cover the related work in the area of binary analysis and

editing for security and optimization. We �rst cover some compiler features for

executable �le generation. Then we cover earlier work in the area of binary analysis

and binary editing tools. Binary parsing techniques and randomization strategies

for increased security are discussed next. Finally, we present previous work in the

area of reducing code size and the memory footprint of programs.

2.1 Compilation Techniques for Binary Analysis and Debugging

A compiler's most important task is to generate executable code. However,

compilers are also analysis tools that generate a wealth of information about the

program being created. Contemporary compilers store some of this information

inside binary �les in the form of debug information. Such compilers include the GNU

Compiler Collection [34], Intel C++ Compiler [41], The Portland Group compilers

[78], LLVM's Clang [53], Oracle's Java compiler [66], and Microsoft Visual Studio

compilers [62]. Debug information consists of a map from line numbers in source

code to addresses in binary or intermediate languages, explanation of data types,

function signatures, locations and types of variables, etc., and is either stored in a

separate �le (e.g. PDB) or is embedded into executable �les (e.g. DWARF, Java

class �les). Along with the debug information, compilers also emit a list of symbols

7

to show locations of functions and global variables while generating native code.

There are other data structures, also generated by compilers, that are vital

to the correct execution of programs: Exception handling tables contain a map-

ping from instruction addresses to exception handling routines; unwind tables are

generated to assist with call chain and stack analysis, and are instrumental during

exception handling; and virtual function tables are used in object-oriented program-

ming languages.

None of the compilers we analyzed have support for generating runtime relo-

catable functions; or marking basic block boundaries and the relationship between

them to assist with the analysis of binaries. The compiler feature that is the most

relevant to the work presented in this dissertation is the just-in-time compilation of

code, a technique used by the Java Runtime Environment and the .NET Framework.

In this technique, program code is stored in a position-independent way in an inter-

mediate language (Java Bytecode or Common Intermediate Language). At runtime,

the just-in-time compiler may choose to convert this intermediate representation to

the native code, positioning the resulting code anywhere in the memory. After the

initial compilation of code, the just-in-time compiler can invalidate those functions

and recompile them to occupy a new address.

Another compiler feature that is relevant to the work presented here is header

pre-compilation, a feature supported by all the compilers mentioned here that gen-

erate native code. Unlike the techniques described in this document to help with

the analysis of programs, header pre-compilation is used to assist with the initial

compilation of the source code.

8

Later in this work, a mechanism to improve the memory footprint of shared

libraries based on pro�ling is discussed. Compilers use a similar mechanism to

optimize the hot paths in a program using a feedback loop. Programs are pro�led

after the initial compilation. The pro�ling data is then fed back to the compiler to

optimize the instruction cache through function reordering, and to align basic blocks

on the hot path to avoid branching for a streamlined execution. Compilers can also

use this pro�ling data to emit code that makes the runtime loader skip loading

unused functions into the memory; however, this feature is not yet supported by

any of the compilers listed above.

2.2 Binary Analysis and Editing Tools

Analyzing programs is necessary for understanding the program code and im-

proving its quality. However, not all program analysis is performed at the source

code level. Analyzing binary code is crucial for performance analysis and identify-

ing malicious software. Since machine code is not easily understandable by software

developers, special tools are needed to analyze binary programs. In this section, we

cover several such tools.

Dyninst is a runtime code patching library [11]. It provides an interface for

tool developers to inject instrumentation code into a program while it is running.

Users create their instrumentation using Dyninst's C++ application programming

interface (DyninstAPI). This instrumentation code is injected into the target pro-

gram at runtime. In addition to runtime instrumentation, Dyninst provides useful

9

abstractions for modules, functions, control �ow graphs, basic blocks, instructions,

and so on. These abstractions are accessible even if the application is not launched.

Hence, Dyninst can also be used for static analysis of binary programs. Moreover,

using Dyninst's rewriting functionality, the binary can be modi�ed and then can

be rewritten to the disk so that the modi�ed binary behaves di�erently from the

original binary.

ATOM is another dynamic instrumentation tool that injects code into a run-

ning program and extracts information requested by the end user [76]. Its func-

tionalities are very similar to those of Dyninst. One di�erence between ATOM and

Dyninst is that, unlike Dyninst, instrumentation code in ATOM and original code

use two separate copies of the same function if they both need to use it. ATOM

provides two methods for memory allocation by the instrumentation code. One of

these methods preserves the locations of heap allocated data structures used by the

original program, but it is ine�cient. The more e�cient method intermingles heap

allocated memory by the original program and the instrumentation code. In this

second approach, data structures allocated by the original program may be placed

to distinct locations every time the program is run.

Vulcan is a dynamic instrumentation and binary rewriter tool from Microsoft

Research used for optimizations for code locality, procedure inlining, and cross-

component optimizations [75]. It is available on multiple architectures and pro-

vide many useful abstractions such as System, Program, Component, Procedure,

Basic Block, and Instruction. This tool has been used to merge Dynamic-Link

Libraries (i.e. DLLs), to apply aggressive cross-component optimizations, and to

10

realign branches in binaries. Vulcan-instrumented binaries can also be rewritten to

the disk.

Pin is an instrumentation tool developed by Intel [59]. Like other instru-

mentation tools, it provides an interface to add code to a process at runtime. The

di�erence in Pin's approach is that it applies just-in-time recompilation to the whole

executable. Whenever a new sequence of code is accessed, Pin compiles a copy of

that sequence along with all the instrumentation code and executes that copy. Pin

handles branching by intercepting taken branches, generating code for the branch

target, and executing this newly generated code. To reduce the performance penalty

of this approach, Pin performs optimizations such as trace linking (avoiding inter-

cepting code for known branch targets), inlining, and liveness analysis.

Another well-known instrumentation tool is Valgrind [65]. Like Pin, it executes

target programs using just-in-time compilation. Valgrind, too, provides various

abstractions and an intermediate language to hide platform-speci�c details from

end users. It is extensible through plugins called skins. One drawback of Valgrind

is that it runs target program on a simulated CPU hence it does not provide a high

execution speed. Besides, Valgrind has trouble working with self-modifying code.

Other dynamic instrumentation tools and rewriters include Shade [15], Dy-

namoRIO [9], EEL [52], and DELI [24].

11

2.3 Binary Parsing

Parsing binary code has been studied extensively in the past. Since parsing

binaries usually requires disassembling machine code, most earlier work focuses on

this aspect of binary analysis. Several researchers created higher level representa-

tions of machine code following the disassembly. Examples of this approach include

Cifuentes and Gough with their decompiler, dcc [14], and Emmerik and Wadding-

ton with their Boomerang-based decompiler [28]. More recent work concentrates

on disassembly of obfuscated code to identify malicious software [49, 80]. Some re-

searchers, such as Aaraj et al. [1] and Guo et al. [36], combine static disassembly

techniques with dynamic analysis to cope with malware. Similarly, Bruschi et al.

attempt to identify malware by building a CFG from binary code and comparing

it with those of the known malware [10]. Disassembly techniques also made their

way into the mainstream applications: Many common tools such as gdb, objdump,

and IDA (formerly known as IDA Pro) [39] generate disassembly of binary �les.

The work in Chapter 4 speci�cally targets applications where the source code is

available, so code obfuscation is not an issue for our parsing e�orts.

Many tools build CFGs once the executable �le is disassembled. De Sutter's

[20] and Theiling's [79] control �ow generation algorithms perform disassembly of

machine code followed by building basic blocks and �nally CFGs using the disas-

sembled instructions. Cifuentes et al. [13] and Kiss et al. [45] perform intra- and

inter-procedural static slicing on binary �les respectively, following disassembly and

CFG generation.

12

All these systems make use of the debugging symbols whenever possible. Many

tools also perform a best-e�ort approach to identify function locations if the symbols

are not present. In one example, Harris and Miller demonstrate their tool that �nds

and disassembles functions with a model that supports multiple entry points for each

function [37]. In another, Rosenblum et al. combine common recursive disassembly

of machine code with machine learning techniques to identify functions within the

gaps between known functions [70].

2.4 Memory Footprint Minimization

Reducing the memory footprint of programs has been extensively researched.

Earlier work includes a wide range of techniques from code compression [16, 21, 84,

55] to procedure abstraction [46, 47, 22] and dead code elimination [22].

Code compression is the act of reducing the size of program code by its equiva-

lent representation in another form [5]. It is usually applied to executables that run

on embedded systems. Xie et al. developed a system where only the instructions

that are the least frequently used are compressed [84]. Just like we do in Chapter 5,

they �rst pro�le the executable and identify the regions that are the least likely to

be used. These regions are then compressed. They leave frequently accessed regions

uncompressed to reduce the performance hit. A decompressor generates the original

uncompressed code if a block of code that was compressed is accessed at runtime.

Lefurgy et al. evaluate a hardware assisted code compression system from IBM

PowerPC 405 [55]. In this system all program code is compressed. They note that

13

they achieve performance increase in many situations thanks to faster prefetching of

instructions. Since their system relies on CodePack hardware support available on

PowerPC 405, it is restricted to this platform. Other approaches to code size reduc-

tion techniques include dead and redundant code elimination, procedure abstraction,

and instruction level modi�cations [22, 23]. These methods are demonstrated in the

binary-rewriting tool squeeze along with interprocedural constant propagation and

strength reduction. Developers of squeeze also perform procedure extraction for

single entry-single exit sections at the binary level. Moreover, they make use of

various optimizations such as instruction reordering and platform speci�c improve-

ments such as reducing the cost of function prologues and epilogues. Van Put et al.

propose optimizations including constant propagation and unreachable code elimi-

nation as well as procedure extraction in their binary rewriter tool, DIABLO [81].

They also demonstrate how their system can be used to rewrite Linux kernel for

speci�c embedded systems. Komondoor and Horvitz propose procedure extraction

at the source code level [46, 47]. Zmily and Kozyrakis propose BLISS which suc-

cessfully targets reducing text space, energy use and execution time [87]. They

selectively replace 32-bit instructions with 16-bit instructions. Since more instruc-

tions �t into the instruction cache, performance of the system increases. They also

remove repeated sequences of instructions leaving a single copy, just like procedure

extraction. Lau et al. show how echo instructions can be used to remove duplicates

of identical or similar regions of code [54]. `echo' is a proposed instruction that di-

rects processor to execute a sequence of instructions in the binary. Their proposed

system performs procedural abstraction and replaces similar sections of code with a

14

single echo instruction.

Zhang and Krintz propose a system that unloads code regions from a modi�ed

Java Virtual Machine after their execution is over [86]. They note that 61% of code is

only used at the start-up period and can be unloaded after their execution. Although

the system we describe in Chapter 5 currently does not unload code regions once

they are loaded, this functionality is a straightforward extension to our system.

One work that improves cache utilization and performance of the paging sys-

tem is carried out by Pettis and Hansen [68]. They present two strategies by carefully

repositioning code using execution pro�les. The �rst strategy they employ is group-

ing functions so that callers and callees are placed close to each other. The second

strategy is moving basic blocks inside a function using pro�ling data so that the

execution is streamlined and does not involve many jumps for the common case.

Basic blocks that are never used during training runs are then moved to the end

of the �le as if they were a separate function. The main motivation behind this

rearrangement is to reduce the number of taken branches to help branch predictors.

Calder and Grunwald improved the Pettis and Hansen algorithm by adding a cost

model that re�ects architectural properties [12].

2.5 Randomization for Security

In Chapter 1, we mentioned relocating whole programs or their parts (i.e.

randomization) provided resistance against malicious attacks. Randomization tech-

niques have been around for about 10 years now. In this section, we cover some of

15

the well-known techniques for program randomization.

The PaX Team were the �rst to introduce Address Space Layout Random-

ization (ASLR) [67], which has become the de facto standard for randomization.

The mechanism they developed loads segments of applications into random loca-

tions in the memory. Since attackers cannot easily guess where critical sections or

functions are located after this randomization, the likelihood of success diminishes.

However, ASLR has many limitations some of which are covered in Chapter 6. Xu

et al. worked on a similar system where randomization is provided by a modi�ed

dynamic program loader with their Transparent Runtime Randomization (TRR)

work [85]. Besides program code, their system also relocates the Global O�set Ta-

ble (GOT) during program launch to provide more resistance against attacks. On

Windows, address space randomization was introduced by Li et al. [57]. Giu�rida et

al. developed a mechanism to enable address space randomization for the operating

system kernel [33]. Their approach uses a background process which periodically

randomizes OS components stored in LLVM bitcode �le format1.

Address space randomization mechanism has also been applied to mobile de-

vices. Bojinov et al. introduced an ASLR-like system for Android devices [7]. Since

the Android OS prelinks shared libraries, applying address space randomization to

shared libraries at launch time does not work. On these devices shared libraries are

randomized every time prelinking is performed (i.e. during system updates). Since

then, Android 4.0 (Ice Cream Sandwich) introduced an early form of ASLR followed

by the implementation of full ASLR on Android 4.1 (Jelly Bean) [60].

1LLVM converts source code into an intermediate representation stored in its proprietary `bit-
code' �le format.

16

Shacham et al. evaluated the e�ectiveness of address space randomization

techniques on 32-bit and 64-bit architectures [72]. They showed that brute force

attacks are a big concern against services that fork many child processes. Since each

forked child retains the same memory layout as the parent process the attacker has

practically an in�nite number of processes to attack. This work also demonstrated

that the number of possible layouts on a 32-bit machine is only 216, making an

attack to succeed only in 216 seconds on average.

Randomization can also be applied to data. Kil et al. provided a system called

Data Space Randomization that can relocate stack, heap, and memory mapped re-

gions [44]. They also randomized program code as in ASLR. However, they need

speci�c relocation information attached to each binary �le which is not available

by-default, forcing a recompilation of programs with speci�c compiler �ags. An-

other work that focuses on data space randomization was conducted by Bhatkar

and Sekar [6]. Their system relies on keeping data �elds encrypted until they are

used. Even if attackers can access to critical memory locations, any data they write

is considered junk as it cannot be decrypted correctly. Lin et al. introduced a dif-

ferent approach where stack variables and data �elds in structures and classes are

randomized [58]. During compilation these �elds and variables are reordered, and

junk data are inserted between each �eld and variable to increase the power of the

obfuscation. However, distributing such software is problematic as the software has

to be compiled separately for each customer to provide more randomization.

Another defense approach is using canary values around the return addresses

stored on stack. StackGuard has been the �rst work to o�er protection for the

17

return addresses [17]. It was later extended by Etoh and Yoda with Propolice

that reorders the stack frame and prevents bu�er over�ows from overwriting return

addresses [29]. Wang et al. used a taint-based detection mechanism to identify cases

where the return address is overwritten [82].

Yet another randomization technique for security is the Instruction-Set Ran-

domization [42]. In this approach, instructions that will be executed are stored in an

encrypted form and are only decrypted by the processor right before execution. Any

code injected by an attacker will, therefore, be invalid as it will not be encrypted

properly and will cause a crash. However, this approach requires a processor that

can decrypt instructions before executing them, and to date no general purpose

processors have been built with this feature. Boyd et al. extended this work to

interpreted languages and SQL [8]. Their system encrypts all keywords in the tar-

get language. When a keyword that is not encrypted correctly is encountered, it is

marked as malicious and is rejected by the system preventing any damage it could

cause.

Antonatos et al. extended the randomization idea to network addresses to

prevent hit-list attacks2 with their Network Address Space Randomization (NASR)

work [3]. They indicated that services should obtain a new IP-Address periodically

so that when a hit-list attack is launched, the target will not be located at the

speci�ed IP-Address and, therefore, will be saved.

Wartell et al.'s work on Binary Stirring is similar to our work in the sense that

2To increase the speed of infection, some worms attack a list of potentially vulnerable machines
before employing random attacks. This attack style is named hit-list attack.

18

they also employ self-randomization of binary code [83]. However, the randomization

takes place only once at launch-time, leaving the executables vulnerable when they

spawn new children, just like the ASLR. Another similar work to ours is the recent

work by Curtsinger and Berger [18]. Their self-relocation system moves functions at

runtime to perform consistent performance evaluation. Since the main purpose of

this work is to create a performance analysis of applications, and not to introduce

randomization, relocated functions are still accessible from their initial locations.

Clearly, this approach will not enhance security. Moreover, unlike our work, this

system requires a recompilation of applications.

19

20

Chapter 3

Instrumentation with Relocatable Basic Blocks

This chapter explains our e�orts in creating individually relocatable basic

blocks. First, we discuss ways to make basic blocks relocatable. Then we talk

about how our compilation mechanism can create these basic blocks. We continue

to explain how these basic blocks are instrumented, and the bene�ts of using these

basic blocks. We end with our running time experiments and a discussion of the

techniques described in this chapter.

3.1 Overview

A basic block is a region of code that has a single entry and a single exit

point. Execution of a basic block can only start from the �rst instruction in the

basic block; there cannot be any jump targets inside a basic block except the very

�rst instruction. All instructions in a basic block are guaranteed to execute when

the �rst instruction is executed, as long as there are no exceptions.

The fact that all instructions in a basic block get executed either altogether

or not at all makes basic blocks a natural abstraction for many analyses and data

structures. Researchers have repeatedly selected basic block granularity in their

work. Examples include Control Flow Graphs where nodes represent basic blocks,

and rearrangement of basic blocks to minimize branching. In this chapter, we also

use basic block granularity to generate relocatable code segments.

21

We believe programs should be as �exible as possible. Code should execute

correctly wherever it is located. This �exibility can only be satis�ed if the code is

made relocatable. Relocatable code generation has been supported to some extent

by various compilers for decades. Shared library code is compiled into position inde-

pendent code (PIC) since a shared library can be loaded anywhere in the memory.

In this chapter we show bene�ts of making individual basic blocks relocatable. Our

system generates relocatable basic blocks not just for shared libraries but also for

statically linked executable �les.

Relocating a regular basic block is not a straightforward process: if a basic

block moves, addresses that are used inside that basic block and addresses that refer

to it have to be modi�ed with respect to the new location of that basic block. Clearly,

these modi�cations are una�ordable at runtime. In the following sections we �rst

describe how we generate relocatable basic blocks and then discuss the performance

of various techniques we investigated.

3.2 Relocatable Basic Blocks

A basic block can only be relocated if the code it contains is not position-

dependent. Therefore, any �le that needs to be relocatable has to be compiled into

position-independent code. Binary �les compiled into position-independent code

are only relocatable as a whole and any particular basic block in these �les is not

relocatable by itself. Branch instructions refer to other basic blocks and contain

some form of addressing even in position-independent code. If either the branch

22

instruction or the branch target is relocated, the target for that branch instruction

will not be computed correctly at runtime. Therefore, branch instructions in our

relocatable basic blocks do not contain addresses of targets. Instead, target addresses

are looked up at runtime. In our approach, addresses of basic blocks are stored in

a table. Branch instructions use this table to identify the locations of target basic

blocks.

We investigate three techniques to create relocatable basic blocks, as seen in

Figure 3.1. All of these techniques involve a table called Basic-block Linkage Table

(BLT) that is responsible for directing execution to the target basic block. This in-

direction introduces some level of runtime overhead. Our three approaches represent

di�erent points in the design space of trading ease of relocation and performance.

The �rst technique we tried makes branch instructions jump to the BLT, as

seen in Figure 3.1(b). Entries in the BLT contain branch instructions themselves.

These branch instructions read target addresses from another table called Target

Address Table (TAT). Branch instructions in the BLT can then transfer execution

to the correct target. We call this technique BLT with TAT.

The second technique avoids one level of indirection by using the BLT to store

target addresses and eliminating the need for the Target Address Table (Figure

3.1(c)). Each branch instruction jumps to the BLT which in turn jumps to the target

address encoded inside BLT. This technique is as powerful as the �rst technique with

better runtime performance, but addresses are intermingled with jump instructions.

This technique is called BLT Only.

The third technique, as seen in Figure 3.1(d), bene�ts from fall-through edges

23

Figure 3.1: Relocatable Basic Block Creation Techniques: (a) Unmodi�ed branch-
ing. (b) Basic Block Linkage Table (BLT) with Target Address Table (TAT). (c)
Basic Block Linkage Table Only. (d) Basic Block Linkage Table with Fall-Through

24

Table 3.1: Relocatable Basic Block Generation Operations on Edges

Name Fall-through or

Call

Unconditional

Branch

Conditional Branch

BLT
with
TAT

An unconditional
branch to BLT that
reads target from
TAT

An unconditional
branch to BLT that
reads target from
TAT

A conditional branch for
branch target & an uncondi-
tional branch for fall-through
both to BLT that reads targets
from TAT

BLT
Only

An unconditional
branch to BLT

An unconditional
branch to BLT

A conditional branch for
branch target & an uncondi-
tional branch for fall-through
both to BLT

BLT
with
FT

No modi�cation An unconditional
branch to BLT

A conditional branch for
branch target to BLT & a
fall-through edge

while decreasing �exibility for relocating basic blocks that terminate with one. In

this technique, branches that target the next instruction are removed and execution

falls-through into the next basic block. However, once we relocate the source or the

target basic block, we have to insert a branch instruction at the end of the source

basic block so that execution still follows the correct execution path. This technique

is called BLT with FT where FT is an abbreviation for Fall-through, and o�ers the

best performance among these three techniques.

Table 3.1 summarizes the actions taken during the generation of relocatable

basic blocks. In this table, we list the modi�cations to branch and call instructions as

well as to fall-through edges while using any of the three techniques we described ear-

lier. Our system treats call instructions as fall-through edges. Conditional branches

require special care as they have 2 targets. After our transformations, generated

basic blocks do not strictly obey the `basic block' de�nition for `BLT with TAT' and

25

Figure 3.2: Compilation mechanism: a) Regular compiler. b) Our compiler: It
generates an intermediate assembly �le and augments it with tables.

`BLT Only'; however, for simplicity, we still refer to them as `basic blocks'.

3.3 Compilation

In Sect. 3.2, we discussed the types of relocatable basic blocks. In this section,

we explain how they are created. An overview is given in Figure 3.2.

In order to create relocatable basic blocks, we �rst compile source code into

a position-independent intermediate representation using the -fPIC �ag. This in-

termediate representation allows us to operate on basic blocks and generate branch

instructions to/from a BLT as described in Table 3.1. We selected assembly code

as our intermediate representation to have more control on the �nal executable, but

we could have used any other intermediate representation as well. At this stage, we

only use labels to represent basic blocks as their �nal addresses are not known in

this intermediate representation. Then, this modi�ed intermediate representation is

compiled into an object �le just like any other assembly code. Object �les are then

in turn linked to create executables.

26

To allow seamless generation of relocatable basic blocks, we developed a wrap-

per for gcc and g++. This wrapper acts like a regular C/C++ compiler and supports

all �ags supported by gcc and g++. We also created a simple parser for the assembly

code. This parser identi�es boundaries of basic blocks and modi�es the assembly

code generated during the �rst phase of the compilation. In the assembly code, most

basic blocks are already labeled as they are usually targets of branch instructions.

However, there are often basic blocks that are only reachable through a fall-through

edge. As fall-through edges do not require any branching, these basic blocks are not

labeled. Our parser identi�es these basic blocks and appends labels to them so that

they can be used as targets from BLT.

3.4 Instrumentation

Code modi�cation, or code patching, is the act of updating program code out-

side of the compile-link-load-execute cycle. It can be performed at various steps of

the compilation process like pre-compile-time using source-to-source translators, or

compile and link-time through compiler passes. For this work, we are only interested

in post-link-time code modi�cation (i.e. launch-time and runtime). In post-link-time

code modi�cation, program code is modi�ed only after the executable is fully com-

piled and linked. Reasons for postponing code modi�cation until this phase range

from unavailability of source code for legacy and third party executables to the need

to observe the e�ects of compiler optimizations.

Code layout has been traditionally determined by compilers which arrange the

27

Figure 3.3: Runtime Patching of Basic Block B with regular basic blocks and Relo-
catable Basic Blocks. (a) Patching a regular basic block normally requires moving it
and modifying any address references. (b) With relocatable basic blocks, patching
is done in place. (c) If there is not enough room, the target of the patch is moved
with very little change in the original code.

layout of individual object �les, and linkers which arrange the layout of fully-linked

executable �les. After linking, all functions and global data have a �xed location

within the executable. There usually is not enough room to move any functions

or data in this packed layout. As a result, whenever code modi�cation is needed,

all basic blocks that are a�ected are usually moved to the end of the program text

and patched there, as seen in Figure 3.3(a). Unconditional branches targeting these

basic blocks are inserted at the original locations of these basic blocks. With this

approach, the execution can continue after a small disruption. This is the common

way tools such as Dyninst [11] perform runtime code modi�cation.

With our approach, these adjustments are mostly unnecessary. Since basic

blocks are relocatable, code patching operations do not have to deal with moving

the basic blocks and adding branching logic to jump to these blocks. The patch is

directly applied as shown in Figure 3.3(b). If basic blocks have to be moved to make

28

space for modi�cations as in Figure 3.3(c), they are simply moved to new locations

and associated BLT or TAT entry is updated to point to their new locations.

The �rst step to achieve runtime code modi�cation in our system is the same

as the �rst step of traditional instrumentation systems: Users identify the location

where instrumentation code will be inserted. Then, the space requirement for the

instrumented code is computed by our system. If the target basic block does not have

room to grow, it is moved to a new location and associated BLT entry is updated.

This step is fairly simple due to the relocatability property of basic blocks. Finally,

Instrumentation code is inserted in the target basic block.

Instrumentation is a broad topic, and dealing with some of the required com-

ponents of instrumentation such as parsing binary �les and generating instrumenta-

tion code is beyond the scope of the work presented in this chapter. Therefore, we

made use of Dyninst's already available features to analyze binary code and generate

instrumentation.

3.5 Bene�ts

In this work, we developed a simpler instrumentation mechanism than a com-

mon instrumentation tool employs. Our approach is based on Dyninst which is

already a fully-functional tool; therefore, we put our e�ort into simplifying this tool,

rather than adding new functionality.

During a traditional instrumentation, a basic block is relocated to new mem-

ory, and a branch instruction is inserted in the old location. If there are multiple

29

modi�cations at a given point, snippets of instrumentation are inserted into the

program image, and they are linked with branch instructions, forming a chain of

instrumentation snippets. Our system does not use this logic as it can easily relocate

basic blocks. Moreover, our tool can generate inlined instrumentation1. Inserting a

branch to the original location of an instrumented basic block can be problematic

when the relocated basic block is smaller than the required branch instruction. Tra-

ditional instrumentation tools set up a trap2 to redirect execution in these cases.

Since relocatable basic blocks do not need these branches, traps are also not neces-

sary. Therefore, relocatable basic blocks can be instrumented without complicated

trap logic.

Relocatable basic blocks can also decrease the number of branches if the binary

is instrumented heavily. Traditionally, if a basic block B is instrumented, execution

has to go through the original location of B to jump to the instrumented block.

With relocatable basic blocks, this jump might be unnecessary if the source basic

block already looks up the address of the target basic block from the BLT. If most

blocks are instrumented, the savings might be considerable.

3.6 Experimental Results

In this section, we present our �ndings about the overhead caused by relocat-

able basic blocks and how running times for instrumented binaries compare.

1Current version of Dyninst also inlines instrumentation code and performs full function relo-
cation for instrumented functions. We observed the improvement described here over an earlier
version of Dyninst that was the most recent release when this work was performed.

2A trap is set by using a speci�c instruction. Executing that instruction raises an operating
system signal.

30

Figure 3.4: Running Time Comparison of Relocatable Basic Block Techniques on
Quicksort. y-axis shows the amount of time each code version takes to �nish in
seconds.

First, we measured the overhead caused by relocatable basic blocks on four

versions of an implementation of the quicksort algorithm. To generate these four

executables, we �rst converted the source code into assembly language with gcc using

-fPIC �ag. We modi�ed the resulting assembly code with respect to the strategy

we used. We executed each version of the program, including the original. We took

an average of the running times across �ve runs of each version.

Figure 3.4 shows the running times for the original and three alternative code

generation techniques. The y axis shows the actual running times of each application

while the number inside each bar shows the normalized running time for that version

of the program. BLT with TAT performs the worst with a 25% slowdown. Programs

with BLT with FT are almost as fast as unmodi�ed programs (2% slowdown was

inevitable since our example program included some loops that required taking

branches using BLT), while the code is relocatable at the granularity of a small

number of basic blocks. However, in this approach, basic blocks that end with fall-

through edges have to be appended with branches to replace these fall-through edges

31

Figure 3.5: Normalized Running Times with Relocatable Basic Blocks

when they are relocated. We claim this slight restriction on �exibility is worth the

substantially reduced runtime overhead. Fully �exible code provided with BLT with

TAT is not as practical as other options due to the high cost on the performance.

Therefore, we stopped considering it as a practical option at this point, and we have

not run other tests using this strategy.

The next step in our evaluation was to measure the running times of the SPEC

CINT 2006 benchmarks compiled with and without relocatable basic blocks. Figure

3.5 shows normalized running times of these benchmarks on the reference data set.

Our results showed that BLT with FT performs about 9% slower on average than the

original executables built with gcc. BLT only, on the other hand, performs almost

60% slower on average. These results also show that the most practical strategy to

create relocatable basic blocks is to allow fall-through edges between basic blocks.

32

Figure 3.6: Running Times of Instrumented Binaries with Relocatable Basic Blocks

In our next experiment, we compared the running times of binaries instru-

mented with original Dyninst and our version of Dyninst that is capable of making

use of relocatable basic blocks. During instrumentation, Dyninst generates copies of

functions that contain both instrumentation code and original code. When a func-

tion is instrumented again, the instrumentation is applied to the original function

and not to the copies. Therefore, only basic blocks in the original function need to

be relocatable. Our instrumentation tool inlines instrumentation code and relocates

functions as a whole. Figure 3.6 shows the running times of original and instru-

mented mcf executables. We used three techniques to create these executables: We

compiled the program with gcc, with BLT with FT, and with BLT only. mcf with

BLT only takes more time to �nish than the one with BLT with FT, and even more

time than the one with gcc; however, after the instrumentation, all three versions

33

Figure 3.7: Instruction Counts with Relocatable Basic Blocks

of the instrumented mcf executable run at about the same speed. These results

show us that executables built with one of our techniques do not perform worse

after the instrumentation, and we should consider building executables with one of

our techniques if we expect to instrument them, as instrumentation of executables

built with our technique is simpler than instrumentation of executables built with

a regular compiler.

Inevitably, executables built with one of our compilation techniques perform

worse than executables built with a regular compiler when there is no instrumen-

tation. We wanted to make sure that this slowdown comes from the fact that we

execute more branches for executables built with our techniques. Therefore, we

measured the number of executed instructions and number of taken branches on the

34

mcf benchmark using the hardware counters available on the system. Figure 3.6

shows that the increase in the number of executed instructions matches the increase

in the number of taken branches, suggesting that the slowdown is merely a result of

executing these extra branch instructions.

3.7 Discussion

This work demonstrated the bene�ts of using relocatable basic blocks and

the overheads associated with using them. Instrumentation with relocatable basic

blocks is simpler, and tools for instrumenting these binaries are easier to build.

Moreover, instrumented executables with our mechanism run as fast as instrumented

executables with original Dyninst that is more complex than our system.

However, relocatable basic blocks can be impractical as the bene�ts may not

outweigh the drawbacks in all situations. In our work, we arrived at the conclusion

that tool builders prefer creating tools with better performance even though building

these tools takes more time due to their complexity. As a result, we did not take

relocatable basic blocks idea further and applied our ideas about relocatable code

to other program constructs in our later work as described in Chapters 5 and 6.

3.8 Conclusion

In this chapter, we introduced a novel mechanism to create individually relo-

catable basic blocks. Relocatable basic blocks provide more �exibility than shared

libraries that have to occupy a contiguous space in memory. Our relocatable basic

35

blocks can move around in the memory. This �exibility provides an easier runtime

instrumentation opportunity for tool builders.

Executables with relocatable basic blocks run slower than regular executables

due to the increased number of branches that provide relocatability. When instru-

mented, both executables with relocatable basic blocks and regular executables run

at about the same speed. Therefore, we believe executables should be built with

relocatable basic blocks if users anticipate to instrument them.

36

Chapter 4

Compiler Help for Binary Analysis Tools

In Chapter 3 we discussed one approach to simplify instrumentation via relo-

catable basic blocks. In this chapter, we introduce another approach towards the

same goal: a compilation mechanism that speeds up binary parsing operations. We

describe the di�culties of binary parsing, followed by our approach and how it sim-

pli�es the creation of Control Flow Graphs. Finally, we present our experimental

results.

4.1 Overview

Binary analysis is a common operation for performance modeling [51, 63],

computer security [27, 74], maintenance [14, 40], and binary modi�cation [19, 69, 80].

Each of these tasks requires parsing the executable �le to identify functions, data

segments, and their interaction with each other. However, parsing executables is

not a straightforward task and it is painfully slow since it usually requires decoding

every single instruction in the binary.

At the higher level, even distinguishing code and data is di�cult since they

are often stored in adjacent memory. It is usually hard to draw the conclusion that

a sequence of code constitutes a function, especially when it is not accessed via

a statically identi�able call or branch instruction. Therefore, even seemingly-easy

tasks such as locating functions might be daunting if the �le is stripped from its

37

symbols. At the lower level, identifying instructions in a binary is not a simple

task either, especially for the variable-length instruction set architectures such as

the x86. When the start of an instruction is not known for certain, the problem of

distinguishing data and code is even harder to solve. Various analyses use di�erent

methods and almost all of them make use of the available symbols included in the

executable �le.

All the information about functions and data locations is actually known dur-

ing various stages of compilation. Compilers decide where each of the components

in a binary should be located. They know what is data and what is program code.

They know where each function is placed, and they know the boundaries of the

instructions. They also have the complete information about the locations of basic

blocks and edges between them. They use all this information to build executable

�les, and then throw away most of the information used during this process. Only

some information is stored in the binary in the form of symbols. Binary analysis

tools that operate on these executables have to regenerate the information that is

thrown away by the compiler.

In this chapter, we propose a novel compilation mechanism that stores use-

ful information about the layout of executable �les in tables inside executable �les.

These tables enable identi�cation of basic blocks and provide support for reconstruc-

tion of edges between them. Binary analysis tools that make use of these tables can

parse executables faster and more reliably. We measured a speed-up in parsing up

to 4.4x with an average speed-up of 3.8x. Since these tables are stored in a section

that is not loaded into the memory during execution, the memory footprint of exe-

38

cutables do not change. Running times of these executables also remain unchanged

since we do not in any way modify the execution. The overhead in the compilation

time and the increase in �le size is manageable - both values measured to be 23%.

At the moment, this compilation mechanism and related binary analysis tools are

supported on the x86_64 architecture and with the gnu compiler suite.

4.2 Di�culties of Binary Parsing

Parsing is not trivial. To motivate our compiler based approach, we brie�y

review some of the parsing related challenges.

The �rst challenge in parsing the machine code is distinguishing code from

data. Since both code and data are stored the same way, there is really no easy way of

identifying whether a sequence of bytes correspond to code or data. Current parsing

techniques use hints to identify code and mark the remaining bytes as data. These

hints usually come in the form of symbols in the binary. Symbols that represent

functions indicate where those functions start. Binary analysis tools mark the bytes

addressed by these symbols as function entry points. From this point on, tools

either follow a sweeping or a recursive strategy [71]. In the sweeping strategy, tools

�rst use symbols to mark an initial set of functions, then sweep the remaining

bytes from the start of the �le and mark sequences of bytes that resemble code

as program code. In the recursive strategy, tools also start by using symbols to

mark the initial set of functions. Starting from these functions, tools then locate

other code sections following call edges1 and marking call targets as function entry

1Some function invocations are performed using branch instructions. The sequence of bytes

39

points, hence program code. In some cases, uncharted regions in the binary are then

plugged into machine learning algorithms to identify even more functions and code

regions [70].

Functions are composed of one or more, usually several, basic blocks. A basic

block is a sequence of instructions that contains no control �ow instructions except

as the last instruction of the block. If the �rst instruction in a basic block executes,

it is guaranteed that all following instructions will execute. It is an abstraction that

is used by many types of analyses.

Once the functions are identi�ed, their Control Flow Graphs (CFGs) are built.

A CFG is a graph whose nodes are basic blocks and whose edges represent the

interactions between basic blocks. It can be considered as a reachability graph

starting from the function entry point. A sample CFG can be seen in Figure 4.1.

The function in this sample contains an entry block, two blocks that represent an

If/Else (labeled True and False) structure, and an exit block. Building such a CFG

correctly depends on correct identi�cation of basic blocks and the edges between

these basic blocks. Therefore, it requires the analysis tool to inspect each instruction

in a function. This operation is error-prone, especially on variable-length instruction

set architectures where an error in decoding an instruction propagates downstream

and make decoding the following instructions harder, or even impossible. Since each

instruction has to be decoded and analyzed, building a CFG is very costly. This cost

matters because building a CFG is the �rst step for most binary analysis algorithms.

addressed by branch instructions is also considered code.

40

Figure 4.1: A sample CFG and associated Basic Block and Edge Tables of a function
with entry basic block, an If/Else structure, a loop, and an exit block.

4.3 Compiler Help

During the build process, compilers construct an internal representation of the

source code and generate machine code using this internal representation. However,

as soon as the executable �le is generated, this internal representation is thrown

away. In this chapter, we investigate the e�ects of storing some of this knowledge

about the program inside the generated executable.

In the previous section, we explained that building CFGs is a precursor to

most binary analysis algorithms and that building a CFG requires identifying basic

blocks and edges between them. Most of the time spent while parsing an executable

�le is used to gather this information. We demonstrate how storing this information

inside the executable �le speeds up the parsing process. Moreover, we show that

the extra information stored in the executable �le does not change the speed of

41

Figure 4.2: Formats of Basic Block and Edge Tables: The �rst line shows the format
of the Basic Block Table whereas the second line shows the format of the Edge Table.

execution of the program or the size of the memory image of the program. The

following subsections explain what extra information is stored and how it is used.

4.3.1 Basic Block and Edge Tables

To speed up building basic block abstractions inside binary analysis tools, we

developed a compilation framework that stores the start address2 and the address of

the last instruction of each basic block inside the executable in what we call a Basic

Block Table. The format of this table is shown in Figure 4.2 a). To create a basic

block abstraction, tools can read the �rst �eld and �nd out where that basic block

is located. The second �eld is used for gathering information about edges. A more

detailed discussion about this �eld will follow after we introduce the Edge Table.

CFGs also require the identi�cation of edges between basic blocks. Our system

stores the source basic block, the target basic block, and the edge type of each edge

in the Edge Table. In this table, a basic block is identi�ed by its start address. The

format of this table is shown in Figure 4.2 b). In some cases, target basic block

in an edge can only be known during the actual execution of the program. Such

cases occur when value of a function pointer or any sort of indirect branch target3

2The values used as address are o�sets from the start of the function. We leave the discussion
on using o�sets rather than absolute addresses to Section 4.3.2

3Although indexed jump tables also use indirect branches, targets of such indirect branch in-
structions can usually be identi�ed using heuristics. Targets cannot be identi�ed if heuristics do

42

depends on the program inputs. In these cases, we leave the target basic block �eld

blank during generation of the Basic Block Table. Such edges can be �lled in by the

parser after the program has launched and when the value of the target address can

be computed through the analysis of the last instruction of the source basic block.

The last instruction of a basic block is also accessed when binary analysis tools need

to modify the CFG. Updating the last instruction in a basic block to change the

target of that basic block modi�es the edge, and thus is a common CFG update

operation. Clearly, we need a quick way to access the last instruction of each basic

block. Therefore, we store the address of the last instruction in our Basic Block

Table along with the start address of that basic block.

Basic Block and Edge Tables shown in Figure 4.1 are based on the CFG from

the same �gure. For this example, assume a is the o�set of the last instruction

of the �rst basic block from the start of the function, c is the o�set of the last

instruction of the second basic block, and so on. Since there are 4 basic blocks in

the CFG, the Basic Block table has 4 rows. The �rst row represents the �rst basic

block: it starts at o�set 0, and its last instruction is located at o�set a. The second

basic block starts at o�set b, and its last instruction is located at o�set c, and so

on. The Basic Block Table is followed by the Edge Table which has 5 rows, one for

each edge between basic blocks. The edges from the entry basic block to the True

and False blocks are shown in the �rst two rows. The edge from the entry block

to the True block is represented with the triplet of <0, d, Conditional> since it is

accessed by taking a conditional branch. The edge from the entry block to the False

not work, or if indirect branch instructions do not use an indexed jump table.

43

block is traversed when the conditional branch is not taken and when execution

simply falls-through4 to the False block. The last row in the �gure represents the

edge originating from the return instruction. Since the target of a return instruction

cannot be determined statically, that �eld is left blank (marked with N/A in our

example).

4.3.2 Compilation Process

Our compilation mechanism mimics a standard compilation process from the

end-user's point of view as much as possible. We developed a tool that modi�es

assembly �les and generates Basic Block and Edge Tables. This approach was chosen

because no compilers we are aware of are able to generate the tables that we need.

We considered modifying an open-source compiler and generating the tables directly

using this compiler; however, this approach would require substantial development

time. Therefore, we decided to defer this task and instead modify the intermediate

binary �les. Using an LLVM [53] pass was another approach we considered but

did not take to avoid unintentional optimizations LLVM applies to binaries with its

standard passes.

Figure 4.3 shows an overview of our compilation process: a) shows regular

compilation where source code is converted into an object �le directly by the com-

piler. Our compilation process is shown in b). We �rst convert source code into an

assembly �le. Our assembly modi�cation tool then generates Basic Block and Edge

4`Fall-through' is a type of control transfer where the execution of an instruction is followed by
the execution of the next instruction in the address space of the executable.

44

Figure 4.3: Compilation Mechanism for Basic Block and Edge Table Creation: a)
Regular compiler. b) Our compiler: It generates an intermediate assembly �le and
augments it with tables: Basic Block Table (BBT) and Edge Table (ET).

Tables. The assembly code is then rewritten to disk and it is appended with one

Basic Block Table and one Edge Table per function. For our purposes, the critical

information about programs is still available at the assembly level. The formats of

these tables were discussed in Section 4.3.1. This augmented assembly �le is �nally

converted to an object �le.

In order to generate Basic Block and Edge Tables, our assembly modi�cation

tool has to go over the assembly code and identify functions. Figure 4.4 shows

original and augmented assembly �les. In the context of assembly �les, functions

are regions of code in the .text section and are identi�ed by @function markers. At

the end of the function block, a .size directive is used to calculate the size of the

function. Each function contains one or more, usually several, basic blocks. Basic

blocks either start at a label (when it is the target of some branch instruction),

or right after a call or a branch instruction as the fall-through target. Once the

boundaries of basic blocks are identi�ed, our tool also marks the last instruction in

each basic block.

45

Next, our assembly modi�cation tool identi�es the edges between basic blocks.

It reads the last instruction of each basic block, determines the type of the edge (e.g.

call, return, (un)conditional branch), and �nds out the target basic block if possible.

There may be more than one target for some instructions such as conditional branch

instructions which have a branch target and a fall-through target.

Once the basic blocks and edges are identi�ed, our tool rewrites the assembly

�le as shown in Figure 4.4 b). Our parser adds Basic Block and Edge Tables to the

end of the function in a section we call .edge_info. We mark this section with a �ag

to indicate it should not be loaded into memory during execution.

One minor trick in the implementation is the need to support position inde-

pendent code as well as position dependent code. Using absolute addressing does

not work for position independent code. To handle this, all the addresses in these

tables are stored as o�sets from the start of the function.

Another issue arises when duplicate function de�nitions are merged by the

linker. During the build process �les that are linked with the include directive from

a source �le are compiled along with the actual source �le. As a result all function

de�nitions included from a header �le are compiled into the resulting object �le. If

the same functions are linked from multiple source �les, these functions will appear

in multiple object �les that result from the compilation of these source �les. To

avoid linking problems, these functions are marked as weak. Linkers allow only

one copy of these weak functions to appear in the �nal executable - the remaining

ones are dropped. Although these functions are identical at the source code level,

since compilers perform optimizations individually on each copy of the function, the

46

Figure 4.4: Regular vs. Augmented Assembly Files: a) A function is shown in
assembly format. Anything between @function marker and .size directive is consid-
ered part of the function. b) The function is augmented with Basic Block and Edge
Tables, and a shadow symbol to store the �le name.

resulting machine code may be structurally di�erent. As a result, Basic Block and

Edge Tables for these functions may di�er slightly.

Unlike weak functions, tables with the same name cannot be merged. There-

fore, our compilation mechanism has to distinguish tables related to functions that

have the same name. Therefore, we generate table names using a combination of

the function name and the name of the �le that contains that function. At the end,

each table has a di�erent name. We also store a shadow symbol inside each function

that shows the name of the �le where this function is de�ned5.

When weak functions are merged, only one such symbol survives. We use that

symbol to identify the name of the �le that contains the weak function that made

its way into the �nal executable. Binary analysis tools can �nd the corresponding

5The shadow symbol for function foo in Figure 4.4 is foo_<�le_name> where <�le_name> is
the actual �le name of the source.

47

tables using the �le name and function name tuple.

When this rewrite operation of the assembly code is complete, it is assembled

into the requested output format such as an executable �le or an object �le, or

simply left as an assembly �le.

Our tool supports standard gcc �ags. Flags that are not used by our com-

pilation mechanism are passed to the underlying system-supported compiler. The

�ags that determine the requested output format such as -c, -o, and -S are handled

specially by our tool and are not passed to the system compiler to avoid creating

output �les prematurely. We also provide wrappers for standard compilers in gnu

compiler suite. These wrappers, along with the fact that we pass user-speci�ed �ags

directly to the underlying compiler, provide a seamless end-user experience.

4.3.3 Reconstruction

Parsing binaries is considerably easier when Basic Block and Edge Tables are

available. Any binary analysis tool �rst has to �nd the location of each table. At

that point, the name of the function that is being parsed is known by the tool.

Using the function name, the tool searches for the shadow symbol and extracts the

�le name from this shadow symbol once it is found. The tables are then located

using the combination of the function name and the �le name. Once the tables are

found, the tool reads in the information regarding the location of each basic block

and its last instruction. At the end of this step the basic blocks are created, and

the locations of their last instructions are known.

The tool then reads in the information about the edges. Each line in this

48

ExecutableSource Code
Instrumented

Binary

Compiler
Binary

Analysis

Figure 4.5: Interaction between Compilers and Binary Analysis Tools: Our compiler
creates executable �les with Basic Block and Edge Tables. Binary analysis tools
parse these executables using these tables.

table contains a triplet: the address of the source basic block, the address of the

target basic block, and the type of the edge. Since the start address of a basic block

uniquely identi�es that basic block, this triplet has all the information the tool needs

to build the edge abstraction.

As we mentioned earlier, all addresses in these tables are stored as o�sets from

the start address of the function in hand. To calculate the exact location of a basic

block, our tool adds the start address of this function to the value read from these

tables.

Figure 4.5 demonstrates the relationship between our compilation infrastruc-

ture and binary analysis tools: Our compiler converts the source code into executable

�les whereas binary analysis tools operate on executable �les directly. Binary anal-

ysis tools do not interact with our compiler. Therefore, any binary analysis tool can

implement the functionality to read the tables stored in these executable �les. We

built our binary analysis tool based on Dyninst [11] since it is a popular open-source

binary analysis library. We modi�ed the ParseAPI component and only rewrote a

few functions to allow Dyninst to use the data from our tool.

49

4.4 Evaluation

For evaluation, we used a simple binary modi�cation tool we built on top

of Dyninst. Our tool reads in a binary �le and rewrites it to disk with simple

instrumentation code for basic block counting. Since our analysis deals with every

single basic block in the executable, the executable �le has to be parsed from top

to bottom correctly locating every basic block.

We evaluated our system on a variety of benchmarks to determine how well our

system handles executables with di�erent properties. We �rst evaluated our system

on SPEC CINT2006 [38, 61]. SPEC CINT2006 contains a series of CPU-intensive

executables that are selected to evaluate the processor(s) and the memory system.

All together, SPEC CINT2006 has about 1,047,000 lines of code.

Our next benchmarks were the PETSc libraries and their sample applications

[4]. PETSc (Portable, Extensible Toolkit for Scienti�c Computation) �is a suite of

data structures and routines for the scalable (parallel) solution of scienti�c appli-

cations modeled by partial di�erential equations.� It uses MPI for parallelization.

It has linear and non-linear equation solvers and supports C, C++, Fortran and

Python. The PETSc suite is composed of about 872,000 lines of code.

Finally we evaluated our system on the popular web browser Firefox (version

9.0.1) [64] and all the shared libraries that ship with the Firefox source code. We

evaluated our system on Firefox because its executables are numerous and are rela-

tively large. Moreover, it contains hand-written assembly �les and the build process

involves using many uncommon compiler options. Therefore, building Firefox has

50

been a valuable test for the robustness of our compilation mechanism. The Firefox

suite contains approximately 5,335,000 lines of code.

4.4.1 Environment

All experiments were carried out on 64-bit x86 machines that run Linux oper-

ating system.

SPEC CINT2006 and PETSc benchmarks were tested on a system that has

4 Intel Xeon processors with 6-cores each, all clocked at 2.4GHz. It has a total

of 48GB main memory. All our executables except PETSc executables were serial

applications including our own analysis. Therefore, we ran most of our experiments

serially on a single core. Since the purpose of our work is not parallel evaluation, we

only used 6 cores for PETSc. Using 6 cores gave us enough parallelization to �nish

executions in a reasonable time. In our experiments, the extra cores were not used

and left to the operating system as a way to reduce operating system jitter. We used

gcc 4.1.2 for building reference executables and as a back-end to our compilation

mechanism.

Firefox experiments were run on a separate machine due to the idiosyncratic

requirements of the Firefox build environment. As a result, Firefox runs were taken

on a dual-core machine with an AMD Turion processor at 1.8 GHz with 2GB main

memory. Since we never compare results across these machines directly, the results

are not a�ected due to using two di�erent machines. On this system, we used gcc

4.6.1 for building reference executables and as our back-end.

51

4.4.2 Experimental Results

Our �rst experiment was designed to calculate the time it takes to parse a

speci�c executable using our analysis tool to show how much our tool improves

parsing speed. We then ran other experiments to evaluate properties of executables

built using our compilation mechanism and identify any trade-o�s. In this regard, we

compared the compilation times using our tool versus a standard compiler. Similarly,

we compared �le sizes after the compilation process. At the end, we tested the

runtime performance of these executables in terms of time and memory usage. We

ran each experiment that measures elapsed time 5 times and computed the mean.

We then normalized our �ndings with respect to the executables compiled with

regular gnu compiler suite.

In our experiments, we observed that using basic block and edge tables reduced

the parsing time between 58% and 77%, and on average by 73%. Although the �le

sizes increase by 23% on average, we believe this situation is not prohibitive since

the basic block and edge tables are not loaded into memory during the execution

of these binary �les. We also observed about 23% increase in the compilation time.

Since this is only a one time cost that appears while building executables, and it can

be improved drastically by integrating the creation of basic block and edge tables

into the compiler rather than leaving as a separate assembly pass, we believe this

increase is acceptable.

52

Figure 4.6: SPEC CINT2006 Benchmarks: Normalized Parsing Times

4.4.2.1 Experimental Parsing Results

Figure 4.6 shows the normalized parsing times with SPEC CINT2006 bench-

marks with respect to regular parsing6. We observed a high percentage of speed-up

across the board while the average binary parse speed-up is 3.7x (73% improvement

over original parsing time).

Our next tests were carried out on executables in the snes package of the

PETSc suite and the results are shown in Figure 4.7. One interesting characteristic

of PETSc executables is that PETSc libraries are statically linked into the executable

�les during compilation. As a result, each executable contains all functions in the

PETSc libraries. With the help of our compilation mechanism, we reduced the

6Note that gcc is a benchmark in SPEC CINT2006. We built this benchmark with our compi-
lation mechanism and compared parsing times with the parsing times of the same benchmark (i.e.
gcc) built with the system supported gcc compiler.

53

Figure 4.7: PETSc Example Applications: Normalized Parsing Times

parsing time 76% on average (4.2x speed-up). Due to static linking of all these

PETSc libraries in every executable, parsing time is more or less �at across all

executables in this set because our tool parses mostly the same set of functions for

each executable.

As a �nal set of executables, we decided to use the Firefox executable and all

shared libraries that ship with Firefox. Figure 4.8 shows the normalized parsing time

of executables from Firefox. For this set of runs, we operated on those executables

that reside in memory when the Firefox web browser is launched. We see a major

improvement in parsing time once more as expected. The average drop in the parsing

time is 71% (3.5x speed-up) with the worst case reduction of 58%.

As the previous results show, our system considerably increases the parsing

speed. Now we want to discuss other evaluation metrics such as �le size, compilation

time, and memory footprint of executables compiled with basic block and edge

54

Figure 4.8: Firefox Executables: Normalized Parsing Times

tables.

4.4.2.2 Build Time Metrics

Table 4.1 gives an overview of our experimental results regarding build time

and runtime metrics. In this section, we will discuss the build time metrics: �le size

and compilation time.

Table 4.1: Properties of Executables Built with Basic Block and Edge Tables (All
numbers are normalized)

Benchmark Set
File Size Compilation Running Memory

w/o Debug w/ Debug Time Time Footprint

SPEC CINT2006 2.21 1.38 1.25 0.97 1.00

PETSc 1.50 1.09 1.32 0.95 1.00

Firefox 1.17 1.21 1.13 0.94 1.00

Average 1.63 1.23 1.23 0.95 1.00

55

Since we are adding extra data to executable �les, the size on disk unavoidably

increases. On average, we are adding about 20 bytes of data to the executable for

each basic block, and two extra symbols to the symbol table for each function. Table

4.1 shows the normalized �le sizes across three sets of benchmarks along with the

overall average. The column `w/o Debug' shows the comparison of �le sizes when

they are built without the debug �ag on while the column `w/ Debug' shows the

comparison with the debug �ag (-g) on. We show both numbers since we realize

executables are often built with debug �ag on to improve debugging and other binary

analyses on these �les. The highest increase compared to the size of the original set of

executables, 121%, was observed while compiling the SPEC CINT2006 benchmarks

without the debug �ag on. The average �le size increase compared to the size of

the original set of executables was 63% while compiling without the debug �ag on,

and 23% while compiling with the debug �ag on. We assert that this increase is

manageable since it does not impact the memory used during execution.

Another evaluation metric we used is the compilation time. Since our compi-

lation mechanism uses an intermediate step to process the assembly code generated

by gcc, our compilations take more time than the original compilations. The bulk

of the increase in compilation time comes from the cost of processing an assembly

�le as text, and writing out a modi�ed assembly �le, again as text. We understand

this step is costly. To be more precise, our experiments showed a 23% increase in

the compilation time as seen in Table 4.1. We believe our system can easily be inte-

grated into a mainstream compiler such as gcc. Since compilers already keep track

of the information we generate using our own mechanism, the added cost would be

56

minimal: about the same as the cost of writing those tables to the binary. This

improvement remains as future work.

4.4.2.3 Running Time Metrics

The next set of metrics we looked at was the running times of the executables

built using our compilation mechanism and their memory footprint. The results are

presented in Table 4.1. For these experiments, we used workloads provided by the

benchmarks. SPEC CINT2006 benchmarks have well-de�ned workloads: We used

ref data sets for each benchmark. For PETSc, we used ex30 executable in snes

package since it runs long enough for consistent timing (for about 28 minutes on 6

cores on the platform described in Section 4.4.1).

Timing Firefox runs was trickier as it does not ship with any speci�c workloads.

The normalized times we report in Table 4.1 is the time it takes Firefox to �nish

execution when launched with --help �ag on the command line. Since this type

of execution may hide some of the properties of execution, we also benchmarked

Firefox with a JavaScript benchmark, V8 [35]. However, results of this benchmark

cannot be converted to running time directly. Therefore, we report these numbers

separately in Table 4.2. Readers should note that higher numbers represent better

performance in the V8 benchmark.

In our experiments we have not experienced any measurable increase of the

execution time of the benchmarks. The slight improvement we observed in the

running time after using our compilation mechanism is well within the noise of the

experiment. Similarly, V8 benchmark results indicate that performance of Firefox

57

Table 4.2: Firefox Performance with Tables using V8 JavaScript benchmark (Bigger
is better)

Firefox Version V8 Score

Built with system compiler (gnu compiler suite) 2549.2

Built with our compilation mechanism 2587.6

built with our compilation mechanism is almost identical to the performance of

Firefox built with the system compiler.

We expect no memory footprint change from our approach. To verify this, we

evaluated each executable under Valgrind's massif tool [65]. Standard execution

of this tool measures the heap memory used by the target executable. For these

experiments, we ran the tool with a �ag that also takes stack memory into account

(i.e. --pages-as-heap=yes). Table 4.1 shows no change in the memory footprint.

Results indicate that both stack and heap memory used by the programs remain

about the same.

4.5 Discussion

Parsing executable �les is the �rst step for any CFG-based binary analysis.

Our experimental results show that our mechanism clearly speeds up parsing ex-

ecutable �les. As a result, executables can be analyzed faster. It is not hard to

imagine bundling more information with the binary would be useful to speed up

other binary analyses, or improve their precision, such as liveness analysis of regis-

ters or dependency analysis.

However, there are also shortcomings of our work. One such shortcoming is

58

that our system adds 2n more symbols into the symbol table where n is the number

of functions. Since symbol table formats are highly-optimized for space e�ciency

and look-up speed, this issue is more like a nuisance than a technical problem.

Another shortcoming is that our tool is not fully reliable for processing hand-

written assembly �les when branch instructions do not identify targets with labels

but rather with o�sets from those branch instructions. This sort of assembly code

can only be produced by experts through hand-tuning for a speci�c target architec-

ture. Although this shortcoming can be alleviated with better analysis of assembly

code, we observed such cases were extremely uncommon7 to justify the e�ort.

Increased compilation times might also be annoying for large frameworks such

as Firefox. Although the increase in the compilation time was about 23% in our

experiments, this increase translates to approximately 20 minutes with such a long

build time. However, we expect that integrating our system with a full compiler

would substantially speed up compilation and minimize the extra time compilation

takes.

One improvement to our plain text table based system would be compressing

Basic Block and Edge Tables to reduce disk space demand. In our preliminary ex-

perimentations, we observed that compressing Basic Block and Edge Tables reduced

the size of these tables by about 78%. However, since binary analysis tools cannot

read compressed tables directly, they would need to decompress them before �rst

use. This approach incurs a runtime performance penalty, and our �rst aim is to

reduce the runtime costs.

7In our experiments we only came across 3 such �les in the Firefox suite of more than 37,000
source �les.

59

4.6 Conclusion

Parsing binary code is the �rst step for most binary analyses. However, it

is costly and imprecise especially on variable-length instruction set architectures.

Still, for situations where source code is not available, there is no chance but to

parse binaries.

In this chapter we introduced a novel compilation mechanism that improves

the parsing speed of binary �les when they are examined by binary analysis tools.

Our compiler creates intermediate assembly �les, augments them with information

about basic blocks and edges between them, and generates executable �les using

this augmented assembly code.

We implemented an instrumentation program for basic block counting that

rewrites a binary to the disk with the instrumentation code using the Dyninst li-

brary. We showed that running this analysis code on various benchmarks resulted

in up to 4.4x speed-up in parsing time, with an average of 3.8x. Although the size

of the binary �les increase with extra data in the tables we generate, since these

tables are not loaded into memory during execution, the size of the runtime memory

image of the executable remains the same as before. Moreover, there is no runtime

performance degradation due to these tables.

60

Chapter 5

Pro�le-driven Selective Program Loading

Chapters 3 and 4 were about simplifying the instrumentation process. Chap-

ters 5 and 6, on the other hand, are about improving properties of programs using

various instrumentation and binary editing techniques.

This chapter introduces a mechanism to reduce the memory footprint of shared

libraries by avoiding loading their unused functions. We talk about how shared

libraries are modi�ed so that loaders omit some parts while loading them. We then

talk about the reduction in the number of memory pages occupied by these shared

libraries, and show that the running time of applications do not change. We conclude

with a discussion.

5.1 Overview

Software systems have been constantly getting more functional and complex.

Most systems are not composed of a single executable �le any more; they are a

combination of many executables and shared libraries. These executables often use

components developed by others. Frequently, users of these general purpose shared

libraries are interested in only a fraction of a library's functionality.

Ideally, only the necessary parts of shared libraries should reside in main mem-

ory during execution. Traditionally systems have relied on demand paging to only

load those parts of libraries that are actually used into memory. However, systems

61

such as IBM's BlueGene and Cray XT series lack local disks on each compute node

and therefore avoid virtual memory and demand paging for performance reasons

[2, 43]. Thus the available memory on such systems is limited to what is physically

available. Moreover, this memory is shared between applications and their data.

Reducing the memory footprint of application text space is therefore crucial for

large and complex applications that deal with large datasets.

During launch of an application, the executable �le and all of shared libraries

are loaded into memory [56]. Typical applications today use several large shared

libraries and relatively small executable �les. A typical PETSc application takes over

16MB of memory to load the application and shared libraries although the actual

executable only occupies 0.02MB of that space. Many large US DOE applications

have text segment sizes of around 100 megabytes.

In this work, we propose a system that reduces the memory footprint of shared

libraries by eliminating unused parts of libraries from an executable. Our approach

relies on an e�cient pro�ling mechanism that lets us determine a list of functions

that are not executed in the common case. We then modify ELF program headers

so that these functions are not loaded into memory when the program is launched.

If, for some reason, any function that has not been loaded is accessed at runtime,

our system includes an error recovery mechanism that loads that function into the

memory and allows the application to continue execution.

62

Figure 5.1: Overview of the Selective Program Loading System: Executables and
shared libraries are pro�led and rewritten

5.2 Architecture

Figure 5.1 shows the architecture of our system. It is composed of a pro�ler,

and a program analyzer / rewriter.

Our design obeys the �make the common case fast� motto. A pro�ler is used

to get a trace of executed functions for a given application. Then, a list of functions

that are not used is generated for each shared library. Since code has to be loaded

in page-sized units, removing a single function does not save any pages since there

is usually other code around that function that still needs to be loaded. Therefore,

we need to re-arrange code and group unused functions so that we can remove them

from the loadable sections altogether. Our tool moves all unused functions to the

end of the code section and modi�es ELF program headers to make those parts

unloadable. Finally, our tool writes the modi�ed shared libraries to the disk to

make the changes permanent.

63

5.3 Target Applications and Platforms

Our prime target is applications that use a limited number of functions from

many shared libraries or frameworks, such as the PETSc. Our system can easily be

applied to any shared library on any ELF platform (e.g. most Unix-based systems).

For this work, we concentrated our development e�orts on one architecture, the

x86, since that was the most available cluster at the time. However, high end HPC

systems like BlueGene and Cray that do not support demand paging can bene�t

from our system the most since available memory is scarcer on these systems.

5.4 System Design

Our system is composed of three main components. Pro�ling is performed

to identify a list of functions that are used during training runs of the executable.

Pro�ling data is fed to our analyzer and a binary rewriter which uses Dyninst [11]

to access functions, their control �ow graphs, basic blocks, and �nally instructions.

For each shared library, our analyzer and binary rewriter performs the following

tasks:

1. Calculation of updated start addresses for each function that is being moved.

Functions that are used often will be placed before the functions that are rarely

or never used.

2. Code generation for moved functions. Call instructions, address calculations

for global o�set table (GOT), contents of jump tables, and function pointer

calculations are updated using the new locations.

64

3. Symbol updates so that cross library calls can be directed to the correct loca-

tion.

4. Rewrite of the updated shared library to a new �le.

In the following sections implementation details and challenges of each process

are discussed.

5.4.1 Pro�ling

In order to extract a list of functions that are usually not used by a program,

we �rst observe several executions of the program and obtain a list of functions that

are used by this program. A pro�ler is used to obtain a list of functions that are

used at a speci�c run of the program. We combine all training runs and note all

functions ever called.

There are various pro�lers that serve di�erent needs. For our analysis we

used sprof [26] and our own tool based on Dyninst [11]. sprof is a GNU pro�ling

tool for shared libraries. We used this tool to create a quick mechanism to pro�le

shared libraries, and used it for our initial tests. However, sprof can only pro�le

one shared library per execution. Since this limitation impeded our simultaneous

pro�ling e�orts, we switched to our own Dyninst-based pro�ler. Our pro�ler rewrites

shared libraries with instrumentation code and can pro�le all shared libraries at a

single run.

65

5.4.2 Rewriting

Once the shared libraries are pro�led, this pro�ling data is used to identify

functions that will always be loaded, and those that will only be loaded on demand

upon �rst call. Our system modi�es LOAD entries in ELF headers so that the loader

selectively loads functions that are known to be used. To maximize memory savings,

functions are split into two groups: Used and Unused. Grouping functions requires

moving around their machine code in the binary. Since the correct execution of

an instruction usually relies on where it is located in binary (e.g. a relative jump

instruction), extensive analysis is performed to make sure that the external behavior

of an instruction does not change once it is moved. The shared library is then

rewritten to the disk.

Binary code in static programs is not relocatable. Therefore, grouping unused

functions in these executables would require modifying a large number of instructions

to make them relocatable. Moreover, such executables are usually developed with

one task in mind and unused functions occupy little memory. Therefore, these �les

are not modi�ed: they are still loaded as a whole at runtime. Our tool links these

driver programs with a shared library that is responsible for signal handling to load

missing pages on-demand.

5.4.2.1 Avoiding Loading Unused Functions

To reduce the memory footprint of applications, we �rst need a mechanism

that will allow us avoid loading parts of shared libraries while enabling the process

66

to access these regions when necessary.

One way of getting around this problem is to split each shared library into two

shared libraries: one that contains functions that will likely be called, and one that

contains the remaining functions. If a function that is not currently available is called

during runtime, a signal handling mechanism could load the shared library that

contains this function and transfer control to that function. However, this scheme

requires loading this whole shared library even though there is a single function

that is used. As a result, it is not very e�ective in recovering from an unexpected

call. Moreover, splitting shared libraries is complex since it requires moving most

functions and symbols while regenerating the symbol table and procedure linkage

table so that cross-library calls can be satis�ed. It also requires adding a mechanism

to access global variables across shared libraries.

Our mechanism, on the other hand, is very simple and e�ective. During the

rewriting phase we modify appropriate ELF headers to accommodate selectively

loading chunks of the original program or shared library. Loaders rely on program

headers in ELF binaries and only load parts of the binary that has a matching

LOAD entry in the program headers. Our rewriting mechanism modi�es these

LOAD entries by changing the address ranges and adding new ones if necessary

so that it only loads desired (used) part of the library. The loader then loads the

appropriate regions in the binary, leaving out the parts that are unlikely to be used.

67

5.4.2.2 Update Relative Calls

In a shared library with position independent code, most call instructions

employ relative addressing. The exact target address is calculated using the current

program counter and the o�set that is stored in the call instruction. These o�sets

need to be updated during the function shu�ing process if either callee or caller is

moved. When the relative position of a call instruction changes with respect to its

target, the address computation generates an incorrect address for the target unless

the o�set in the call instruction is correctly updated. As a result, our rewriting

mechanism goes over every such instruction and updates the o�sets to match the

current layout.

5.4.2.3 Update Symbols

There is no guarantee that a given shared library will always be loaded at a

speci�c address each time a process launches. As a result, addresses of functions in

shared libraries cannot be known before launch time. Moreover, if a call instruction

and its target are in di�erent shared libraries, their relative position with respect to

each other cannot be known before launch time. In such cases, any call instruction,

rather than jumping directly to the callee, has to go through the procedure linkage

table. The dynamic linker looks up for the callee upon the �rst call to that function.

The look up process consists of matching the mangled name of the callee with a list

of symbols that appear in the shared libraries. When a matching symbol is found,

the address it contains is written to the corresponding procedure linkage table entry.

68

If a function is moved within a shared library without updating corresponding

symbols, the dynamic linker cannot correctly look up for the actual address of

this function since the symbol information still points to the old location of this

function. Our rewriting mechanism locates such symbols and updates them with

the new addresses of associated functions.

5.4.2.4 Update Jump Tables

Most current compilers make use of jump tables for n-way branches (e.g. switch

statements in C). During the compilation process, such control �ow structures are

converted into an indirect jump instruction that reads addresses of targets from a

table called jump table. In a shared library that contains position independent code,

jump tables contain o�sets rather than absolute addresses. These o�sets correspond

to the di�erence between the address of each target and the address of the global

o�set table of that speci�c binary.

If the function referenced in a jump table is moved, the jump table becomes

invalid because the relative o�sets of the function within the library have changed.

Our rewriting mechanism updates each jump table entry for moved functions. We

use Dyninst [11] to locate the jump tables for us since they are not marked by the

compilers. An o�set is computed such that it equals the displacement of the moved

function from its old location in the shared library to its new location. That o�set

is added to each entry in the jump table associated with an indirect jump in this

function.

69

5.4.2.5 Update Function Address Transfers

Function pointers are simply variables that contain addresses of functions. A

function pointer becomes invalid when the associated function is moved to another

address. Our tool recognizes writes to function pointers and updates them accord-

ingly if the target functions are moved.

Since addresses of functions in shared libraries cannot be known before run-

time, there has to be some runtime computation for writes to function pointers.

There are two ways these addresses are computed:

1. Computed by the loader: Each function pointer that resides in the data sec-

tion has an associated entry in the relocation table. The loader updates these

function pointers during relocation. Moving a function invalidates the asso-

ciated function pointer. Our tool checks each relocation entry and updates

the ones that point to moved functions so that they will point to the correct

location after relocation.

2. Using the global o�set table address at run-time: In some cases, function ad-

dresses are computed using relative displacement of a function from the start

of the global o�set table. Moving the target function to another location re-

quires updating this computation. This case requires thorough analysis since

the address computation might take place at any valid code region. Therefore,

an instruction-by-instruction analysis is performed to identify such computa-

tions. Once they are identi�ed, o�sets used in the address computation are

updated.

70

5.4.3 On-demand Mapping

Our system provides a mechanism to recover when a function we did not load

is called. As part of the o�ine analysis, the executable �le is linked with a new

shared library that contains a signal handler. During the execution if the control is

transferred to some instruction that is not available in memory, the process generates

a segmentation fault signal (SIGSEGV). Our signal handler, in turn, locates that

function and maps it into memory (In reality, the whole page that contains this

function is mapped since most systems only allow mapping an entire page). Systems

with local hard drives can directly map a page to the memory. However, on HPC

systems where compute nodes lack hard drives, load operations cannot be performed

directly. On such systems, I/O nodes assist the compute nodes to load the required

page over the network. Once the function is loaded, the execution resumes with the

function that has just been loaded.

5.5 Experimental Results

To demonstrate our system, we performed our analysis on two sample PETSc

applications (ex2 from the ksp package and ex5 from the snes package) [4] and GS2

[48, 25].

PETSc (Portable, Extensible Toolkit for Scienti�c Computation) is a suite of

data structures and routines for the scalable (parallel) solution of scienti�c appli-

cations modeled by partial di�erential equations. It uses MPI for parallelization.

It has linear and non-linear equation solvers and supports C, C++, Fortran and

71

Python. By default, PETSc generates statically linked libraries. For this work,

we forced PETSc to create shared libraries as well. The �rst PETSc program we

used, ex5 from the snes package, has 279 lines of code; whereas the second PETSc

program we used, ex2 from the ksp package, has 79 lines of code. PETSc suite is

composed of 879,772 lines of code in total.

GS2 is a physics application developed to study low-frequency turbulence in

magnetized plasma. It is typically used to assess the micro-stability of plasmas

produced in the laboratory and to calculate key properties of the turbulence which

results from instabilities. It is also used to simulate turbulence in plasmas which

occur in nature, such as in astrophysical and magnetospheric systems. GS2 is com-

posed of 53,105 lines of code and is linked with a total of 20 shared libraries.

All shared libraries we examined were compiled with the debug �ag on and

without optimization. We used Open MPI [32] for an implementation of message

passing interface.

5.5.1 Environment

We tested our system on a 64 node cluster owned and operated by UMIACS

at the University of Maryland. Nodes are connected using Myrinet. Each node has

two 32-bit x86 processors and runs Red Hat (version 4.1.2).

5.5.2 Results

Tables 5.1, 5.2 and 5.3 show how much saving one can achieve on a typical

application. In our experiments the space savings of the text space ranged from

72

Table 5.1: PETSc results for ex5 from snes package

Library Name
Original Modi�ed Reduction Reduction

in Pages in KB in Pages in KB in Pages (%) in bytes (%)

petsc 260 1034 68 266 73.85 74.24

petscdm 161 640 19 72 88.2 88.79

petscksp 335 1337 39 153 88.36 88.59

petscmat 772 3085 40 157 94.82 94.92

petscvec 204 813 52 205 74.51 74.76

petscsnes 20 77 20 77 0 0

mpi_cxx 10 36 5 16 50 54.93

mpi 142 564 37 144 73.94 74.45

open-pal 62 241 34 129 45.16 46.48

open-rte 55 215 34 131 38.18 39

m 28 108 3 8 89.29 92.27

X11 146 578 7 22 95.21 96.13

lapack 866 3458 2 2 99.77 99.94

blas 80 315 3 7 96.25 97.9

stdc++ 133 529 12 45 90.98 91.54

gcc_s 12 45 2 5 83.33 88.95

Xau 2 3 2 3 0 0

Xdcm 3 7 3 7 0 0

gfortran 123 485 4 9 96.75 98.13

dl 2 4 2 4 0 0

nsl 14 55 2 7 85.71 87.59

util 2 2 2 2 0 0

TOTAL 2021 13632 348 1472 82.78 89.2

73

Table 5.2: PETSc results for ex2 from ksp package

Library Name
Original Modi�ed Reduction Reduction

in Pages in KB in Pages in KB in Pages (%) in bytes (%)

petsc 260 1034 72 282 72.31 72.73

petscdm 161 640 3 8 98.14 98.75

petscksp 335 1337 49 193 85.37 85.56

petscmat 772 3085 49 193 93.65 93.74

petscvec 204 813 54 213 73.53 73.8

mpi_cxx 10 36 5 16 50 55.56

mpi 142 564 47 184 66.9 67.38

open-pal 62 241 37 141 40.32 41.49

open-rte 55 215 36 139 34.55 35.35

TOTAL 2001 7965 352 1369 82.41 82.81

34.6% to 100% for all shared libraries over 7KB of text space. The total weighted

average of space savings is 82.0%. There are some libraries that are used fairly often

such as libopen-rte.so, which is a library in the Open MPI suite. On the other hand,

some libraries such as libMdsLib.so are not used at all although they are linked with

the application.

Figure 5.2 shows a comparison of running times between the original and

modi�ed applications in logarithmic scale. Although, the di�erence in running

times is not large enough to make any conclusive statement, results support our

assertion that our tool does not cause any performance overhead for applications

that run more than a few seconds.

In our experiments, the modi�ed GS2 runs took 5 seconds less than the un-

74

Table 5.3: GS2 results

Library Name
Original Modi�ed Reduction Reduction

in Pages in KB in Pages in KB in Pages (%) in bytes (%)

MdsLib 21 80 0 0 100 100

MdsShr 21 80 0 0 100 100

TdiShr 220 875 3 9 98.64 98.97

TreeShr 38 150 0 0 100 100

�tw 70 276 25 96 64.29 65.22

r�tw 58 228 8 28 86.21 87.72

mpi_f77 13 48 2 4 84.62 91.67

mpi 142 564 40 156 71.83 72.34

open-pal 62 241 36 137 41.94 43.15

open-rte 55 215 36 139 34.55 35.35

TOTAL 700 2757 150 569 78.57 79.36

Figure 5.2: Running Times with Selective Program Loading in logarithmic scale

75

modi�ed program (36 minutes 33 seconds vs. 36 minutes 38 seconds). Functions

used by modi�ed binaries occupy fewer pages; therefore, cache misses might be less

frequent. Also, the paging system of the operating system might be spending less

time loading and unloading pages.

On the other hand, applications that run for only few seconds might experience

some slowdown due to initial signal handler registration. ex5 from PETSc's snes

package takes 1.05 seconds on average. In our experiments modi�ed executable

experienced about 19% slowdown since it did not run long enough to compensate

for the cost of initial signal handler registration. Conversely, ex2 from PETSc's ksp

package runs for about 2.7 seconds and the modi�ed executable experiences more

than a 6% speedup. This result shows that this application runs long enough to

compensate for the initial cost of running modi�ed binaries.

Since most HPC applications take several minutes to complete, our impression

is that modi�ed binaries will likely not cause any overhead and might cause some

speedup.

Just like any other on-demand tool, the performance of our system might su�er

due to mapping. However, this operation is rarely necessary. In our experiments,

the training runs accurately identi�ed all functions that were called and thus on-

demand mapping was never performed. Yet, we wanted to present the amount of

time it takes to map one page into the memory at runtime. For this experiment, we

created an executable with 100 functions where none of them were loaded into the

memory at the start of execution. Since functions were aligned at page boundaries,

these 100 functions occupy 100 pages. The executable �le was stored on a remote

76

server, and it was accessed through the network using the SSH Filesystem [77].

For this experiment, SSH Filesystem's caching support was turned o�. We ran

this executable 5 times, forcing on-demand loading of missing pages a total of 500

times. Our experiments showed that loading a page into the memory over the local

area network takes an average of 1.42 milliseconds. When the �le is stored on a

local drive, loading a missing page takes an average of 0.54 milliseconds. Loading

a page once enables execution of all functions in that page. Moreover, with proper

pro�ling, this operation is rarely necessary. Therefore, the cost of an occasional

page load operation is negligible when the whole execution is taken into account.

5.6 Conclusion

In this chapter we proposed a new system that reduced memory footprint

of executables linked with many shared libraries. After an o�ine rewriting phase,

we managed to reduce the number of loadable pages in target shared libraries by

an average of 85.0%. We also demonstrated that our tool causes no performance

overhead for reasonably long running programs. Upon a call to a function that is

not loaded into memory by the loader, our error recovery mechanism maps the page

which contains that function into memory and continue execution without a failure,

all in about 1.4 milliseconds. These properties show that our system performs

a desirable optimization for frequently executed applications with multiple shared

libraries.

77

78

Chapter 6

Security through Runtime Function Relocation

So far, we discussed ways to improve binary analysis and its uses. In this

chapter, we show a di�erent aspect of binary manipulation: improved security of

applications. This work introduces a binary rewriting mechanism to make functions

fully relocatable. Then, we show how these functions can be continuously relocated

at runtime to improve the overall security of vulnerable applications. We show that

programs rewritten by our mechanism are indeed more resistant against attacks. We

also provide a discussion about the runtime overhead of our system, and conclude

with a discussion of the security implications of our system.

6.1 Overview

Software security has long been a critical issue. Attackers exploit vulnerable

software to steal unauthorized �nancial information, to obtain trade secrets, and,

in some cases, just to have fun. Recent attacks carried out by the Stuxnet [50] and

Flame [73] worms suggest that such attacks might also be carried out for cyberwar-

fare. In such an environment, cyber defense is a priority both for �nancial industry

and national security.

In the center of successful system intrusion attempts, memory corruption vul-

nerabilities play a big role. Such vulnerabilities include bu�er and integer over�ows,

format string errors, double-free problems, etc. Attacks that target these vulnera-

79

bilities rely on the knowledge of the locations of critical program elements.

It is now common knowledge that diversity in computer systems enhance over-

all security [31]. From an administrative point of view, though, diversity can be

chaotic. To avoid problems with the administration of computer systems,there has

been a tendency to provide security through launch-time randomization. The PaX

Team was the �rst to introduce Address Space Layout Randomization [67]. This

randomization process involves rebasing program code and data with an o�set. Once

the address space is randomized, an attacker has to try addresses from a large pool

to �nd the location of a critical function. However, evaluating the e�ectiveness of

Address Space Layout Randomization, Shacham et al. showed that brute force at-

tacks are a big concern against services that fork many child processes [72]. In their

experiments it took them only 216 seconds on average to obtain a remote shell on

a target 32-bit machine. Evidently, just rebasing executable �les may not provide

the required level of security.

In this chapter, we present a novel approach for providing security through

continuous randomization by relocating functions at runtime. Executable �les are

�rst rewritten to make individual functions completely relocatable. When the pro-

gram is run, functions in that program and its shared libraries are relocated at

runtime to prevent attackers from guessing the locations of these functions. This ap-

proach makes programs more resistant against attacks since attackers cannot guess

the locations of critical functions. Even child processes that were once an exact copy

of the parent process evolve over time and show di�erent characteristics, reducing

the chances of brute force attacks to succeed.

80

Figure 6.1: Overview of Runtime Function Relocation System

6.2 NINJA: Runtime Function Relocator

Our system, NINJA1, provides runtime function relocation to prevent mali-

cious attacks. Unlike previous systems where entire executable �les are relocated

once with a �xed o�set for the entire duration of execution, our system continuously

relocates individual functions at runtime using a user-de�ned relocation strategy.

Relocating a function is not as straightforward as just copying the bytes of

that function; during relocation most of the addresses inside this function have to

be updated, such as addresses in branch and call instructions as well as the ones in

branch tables. This process requires analyzing the function and parsing its bytes to

identify instructions and operands of these instructions. If this function is relocated

again, all of these steps have to be repeated unless they are cached. Performing

these operations at runtime causes a huge runtime overhead and is not practical.

To avoid the high cost of analyzing and updating functions at runtime, we

analyze functions before execution and rewrite them to be completely relocatable, as

illustrated in Fig. 6.1: Our binary rewriter takes in an executable �le and produces

a completely relocatable executable. Functions are relocated at runtime by our

relocation module (aka Relocator) with no further modi�cation to the relocated

1NINJA: No INtrusion by Jumping Around

81

function. This module �rst evaluates whether the function in question should be

relocated with respect to a preselected relocation strategy; then copies the function

to a new memory location, and updates associated data structures. Usually, only

one memory location is updated during this process; the actual copy operation does

not modify the bytes of the function.

In the following sections we explain how we make functions completely relo-

catable, and then describe how they are relocated by our relocation module.

6.3 Relocatable Functions

Normally, functions are not relocatable. They contain hard coded addresses

that prohibit them from correctly executing at another location. Even functions

that are part of relocatable libraries2 are not individually relocatable because these

functions use relative addressing across function boundaries, and they break when

either the source or the target function moves to another location and thus change

the relative distance between them. Therefore, relocatable libraries are only relocat-

able as a whole.

Our runtime instrumentation tool relocates a function after analyzing it thor-

oughly and rewriting the addresses it uses. This requires creating the control �ow

graph of that function, going over its instructions one-by-one and updating the ones

that depend on addresses of other constructs. Moreover, any call instruction whose

target is this relocated function has to be updated. It is worth mentioning that these

call instructions can be anywhere in the program; therefore, all functions have to be

2Relocatable libraries are built with position independent code such as gcc's -fPIC �ag.

82

Table 6.1: Parts of Functions Modi�ed by NINJA during Pre-processing

Function Entry Initial function location is saved on the stack

Function Call Function calls are redirected through the Function Table.

rsp-based Addressing O�sets based on the stack pointer that point to parame-
ters to this function are updated

rip-based Addressing Addresses based on the instruction-pointer are modi�ed
to use the initial function location value instead.

Table-based Branch-
ing

Absolute addresses in branch tables are replaced with rel-
ative addresses. Current address is added to these o�sets
before branching takes place.

Function Exit Initial function location is removed from the stack. Re-
locator is invoked if this function needs to be relocated.

analyzed to move even a single function. These operations are costly, and certainly

una�ordable at runtime. To avoid this cost, we analyze functions before execution

and rewrite them to be completely relocatable. For this purpose, our system heavily

uses Dyninst's binary editing capabilities.

At the center of our approach is the Function Table, a table of function ad-

dresses. Each executable �le has its own Function Table. Call operations read the

addresses of target functions from this table. Another important mechanism to-

wards relocatable functions is the store operation of a constant value on the stack.

This value corresponds to the initial location of the function and is called initial

function location.

Table 6.1 summarizes some of the actions taken for editing functions. Our

binary rewriter updates all absolute addresses as well as all addresses based on the

instruction-pointer. Moreover, call operations are rewritten to use the Function

83

Table. Since we store information about execution on the stack, some instructions

that use the stack are also updated. In the following subsections we explain the

steps taken while creating completely relocatable functions.

6.3.1 Function Calls and Function Table

A traditional call instruction contains the address of the target function. Re-

locating the target function, however, renders this call instruction invalid, as the

control �ow cannot reach the start of a function if it is not where it is supposed to

be. Therefore, call instructions whose target is relocated have to be updated with

the correct address. However, as we pointed out earlier, this would be extremely

costly since such call instructions can be anywhere. To prevent this cost, each call

instruction is rewritten before the actual execution to use the Function Table.

Each entry in the Function Table contains the address of the initial location of

the function, its current location, its size, a counter of how many times it was called

since last relocation, and a counter of how many frames on the stack correspond

to this function. This last counter is required to avoid relocating a function when

there is another active frame on the stack associated with it, such as in the case

with recursive function calls. Otherwise, this relocation would cause a crash. When

a call is made, the current location of the callee is read from this table and the call

is carried out using this address. Each Function Table is stored in the data section

of the associated executable.

The location of the Function Table remains �xed throughout the execution.

Return-oriented programming attacks can only redirect control �ow to a speci�c

84

address, and forcing a jump to the Function Table will only result in a crash since

the Function Table does not contain executable code. For a successful attack, an

attacker �rst has to read the memory occupied by the Function Table, and then

use the addresses stored in that table to successfully attack a target function. If

an attacker can already read random memory in the address space of the attacked

process, the program must have already been compromised, and further damage can

be carried out by other means. The Function Table can be a source of vulnerability

if an attacker manages to exploit a bu�er over�ow and overwrite the entries in the

Function Table. These attacks can be prevented by storing the Function Table in

pages of its own and using unmapped guard pages on each end of the table. Any

attempt to overwrite entries in this Function Table will result in a crash when the

attacker touches the unmapped guard pages. As a result, the fact that the location

of the Function Table is �xed does not decrease the overall security of the application

as long as it is not already compromised by other means.

6.3.2 Initial Function Location

When a source �le is compiled into position independent code (PIC), compilers

emit code with an addressing method based on the instruction pointer3 and an o�set

representing the distance between the current instruction and the target address,

instead of using absolute addresses. Usually, there are many occurrences of this

addressing method in a function. When a function is relocated, o�sets in each such

instruction have to be updated since the value of the instruction pointer changes

3Instruction pointer is stored in the rip register on x86-64

85

due to relocation. However, we cannot a�ord to update every such o�set during

runtime function relocation.

To speed up this process, we rewrite each function in a way that o�sets do

not have to be updated during relocation. Instructions that use the instruction

pointer are rewritten to use a constant value called initial function location, stored

on the stack, and an o�set computed during the rewrite operation. Since the ini-

tial function location value is constant, the o�sets do not have to be updated. To

accommodate shared libraries, this initial function location value depends on the

actual location of the function when the program starts, calculated using the in-

struction pointer. When this function is relocated for the �rst time, the dependency

on the instruction pointer is removed, and the initial function location is set to the

address of the initial location of that function before the relocation. Hence, our ad-

dressing mechanism does not use instruction pointers, and o�sets remain the same

throughout the execution.

6.3.3 Indirect Branches That Use Tables

Compilers often convert switch/case statements into branches that use tables

called jump or branch tables. These branch instructions read the target address from

a table using an index calculated from the operand of the switch/case statement.

These jump tables contain absolute addresses. When a function is relocated, the

addresses stored in these jump tables become invalid. During the rewrite process,

our system identi�es jump tables and updates the entries in these tables to use o�sets

rather than absolute addresses. The o�sets read from these tables are updated just

86

before the branch operations take place using the current location of the function.

A similar operation is performed for indirect branches that deal with MOVAPS

tables4. These branches are also rewritten so that the target address is updated using

the current location of the function.

6.3.4 Accessing Parameters Stored on Stack

When there are more parameters than there are available registers for param-

eter passing, parameters are pushed to the stack before a function call takes place.

Functions that are made relocatable by our rewriter also use the stack to store the

initial function location value between the local variables and parameters passed

to this function. Although local variables can still be accessed as before, accessing

parameters stored on the stack requires us to modify the o�sets used to address

these stack locations. Parameters are usually accessed using either the stack pointer

or the base pointer. Our rewriter analyzes all instructions that use these registers

and updates their o�sets if they access these parameters.

6.4 Runtime Function Relocation

Our system performs �rst-party runtime function relocation, i.e. executables

are capable of and responsible for relocating their own functions, and there is no

external monitor program. At the end of each function execution, we check how

4When a set of registers need to be saved before certain kinds of operations, a sequence of
MOVAPS instructions are used. Depending on the parameters, the execution might save between
0 and 8 registers. Exactly how many of these registers will be saved are determined by an indirect
branch.

87

many times that function has executed since the last relocation. Depending on our

relocation strategy, our relocator decides whether we should relocate that function

at that given time.

Assume foo is called. The call to the relocator takes place at the end of foo's

execution just before it returns back to the caller. However, any code after the call

to our relocator will be inaccessible after foo is relocated since the old foo will be

overwritten with zeroes. Our relocator, therefore, �rst relocates foo, then executes

foo's epilogue without giving control back to foo, and returns back to foo's caller,

by-passing foo's own return instruction which has since moved.

The following steps are taken during relocation:

1. A chunk of memory that is large enough to store this function is obtained from

the memory manager.

2. The bytes that make up the rest of the function are copied without any mod-

i�cations.

3. The entry for the function in the Function Table is updated to re�ect that

function's new location.

If this is the �rst time this function is being relocated, the instruction that

stores the initial function location value will be replaced by an instruction that

pushes a constant value to the stack to be used as the initial function location as

described in Sect. 6.3.2.

In the end, calls to this function will be redirected to the new location of the

function with the help of the updated Function Table entry.

88

6.4.1 Relocation Strategies

Runtime function relocation is a costly operation. From a security point of

view, relocating functions as often as possible is preferable; however, this frequent

relocation incurs too much overhead to be practical. Therefore, we should be careful

about when we perform function relocation. In our work we tried to �nd the balance

between usability of our approach and the level of security we provide. In this

section, we describe a continuum of relocation strategies our system supports:

1. Always Relocate: In this strategy, whenever a function returns, it is relo-

cated. Our Relocator always relocates functions at the end of its execution.

This strategy introduces a heavy overhead to program execution.

2. Relocate After nth call Relocating functions after each execution is re-

dundant for most functions, and not desirable in terms of overhead. In this

strategy, functions are relocated after the nth execution of that function. The

number of relocations decrease by about n-fold, reducing the runtime overhead

dramatically, even for n as low as 10, as we determined empirically (see Table

6.3).

3. Relocate Randomly In this strategy, relocation is performed periodically on

a random function. When it is time to relocate a function, a separate thread

picks a random function and relocates it. This strategy is fundamentally

di�erent from and orthogonal to the previous ones; and relocation can be

performed on functions that are not yet called.

89

4. Adaptive Relocation Strategy Relocating functions too often may intro-

duce a huge overhead. In this strategy, the frequency of relocation is deter-

mined on a per-function basis: Functions that are called too often are relocated

less often per call than the functions that are called less often. To determine

how often each function needs to be relocated, we �rst pro�le the application

and gather a list of functions and how many times each of them was called.

Functions that are called less than a threshold (we used 1,000 in our examples)

are relocated every time they �nish executing. Other functions are relocated

after the nth call, where n is picked with respect to how many times that

function is called during our pro�ling runs and is in the [1 - 10,000] range.

In our test environment all functions that execute more than 100 times and

less than 10 million times are relocated a total of 100 to 1,000 times during

the entire execution. Functions that execute less than 100 times are relocated

every time they execute whereas functions that execute more than 10 million

times are relocated every 10,000th time they execute.

6.4.2 Memory Management

When a function is relocated, it is copied into a new chunk of memory, and

the old copy is dismissed. For a successful randomization e�ort, functions should be

copied into random memory chunks. A naïve approach would be to allocate memory

with malloc, and deallocate memory that holds the old location of the function with

free. However, this approach tends to provide very poor randomization as malloc

often returns recently freed memory.

90

We use a bucket approach to avoid the cost of allocating and deallocating

memory too frequently, and to introduce consistent randomness. Each bucket is

mapped to a random address in memory. Buckets can have one of 224 addresses.

Each bucket is 16 pages long and a function can be anywhere in a bucket, introducing

another 16 bits of entropy. As a result, the total number of addresses a function

may occupy is 240, i.e. NINJA provides 40 bits of entropy.

Our relocator initially allocates a �xed number of buckets. The �rst operation

during relocation is picking a random bucket. If that bucket is full, it is removed

from the available buckets list, and space for a new bucket is allocated to make sure

there are at least a �xed number of available buckets. When an available bucket is

found, a random gap is introduced. The function is copied right after this gap. The

old location of the function is zeroed out. If the bucket that contains the old version

of this function becomes empty, it is returned back to the list of available buckets.

We chose to provide 40 bits of entropy to match the amount of entropy

promised by the PaX patch on Linux. It is possible to con�gure NINJA to pro-

vide more entropy by selecting the addresses of buckets from a wider range than

224 unique addresses. Such a con�guration decreases the likelihood of a successful

attack.

6.5 Security Implications of NINJA

Up to this point, we described how functions are relocated at runtime. In

this section, we will explain how relocatable functions can prevent system intrusions

91

originated by return-to-libc attacks.

In return-to-libc attacks, the attacker exploits a bu�er over�ow vulnerability

by overwriting the return address stored on the stack. If the attacker knows the

location of critical functions on the remote system, he/she can make the program

return to one of these critical functions. This function in turn interprets values on

the stack as parameters. For example, if the attacker makes the program return

to the system() function5 with correct parameters, he/she will be able to execute

anything on the remote system accessible to the target process. It is not always

simple to guess the location of a critical function; however, if an attacker has access

to an exact copy of the program that is under attack (as in the case of open source

applications and widely available commercial products), he/she can examine the

program layout and determine the possible locations that a critical function might

occupy. This process drastically simpli�es the attack.

To make guessing the locations of critical functions harder, researchers in-

troduced randomization techniques. These techniques shu�e locations of program

components so that the critical functions might occupy di�erent addresses across

executions. What is shu�ed and at what frequency depends on the technique used.

The most common randomization technique is Address Space Layout Randomiza-

tion (ASLR) [67]. Traditionally, ASLR loads shared libraries at random o�sets at

launch-time; therefore, functions inside these shared libraries are shifted to �xed,

random addresses for the duration of the execution. The same technique can be ap-

plied to static executable programs through PIE (Position Independent Executable)

5system() function gathers the commands provided by the user through parameters and executes
them on a shell.

92

Figure 6.2: Non-patched Linux Kernels Provide Only 12-16 bits of Entropy

mechanism. To date, executables are not created to be PIE by default: programs

need to be compiled with speci�c compile �ags to create PIE executables.

ASLR provides a maximum of 40 bits of entropy with patched Linux kernels.

However, most Linux kernels lack this feature and thus ASLR can only provide 28

bits of entropy6. Since an application is only randomized once at launch time, a

brute force attack is expected to take up to 228 tries. Although ASLR rebases

executables separately, a few of the most signi�cant bytes of addresses remain the

same for each executable as shown in Fig. 6.2: Without the enhanced ASLR kernel

patch, the 24 high-order bits of all executables are 0x00007f. In our experiments,

we realized the next 12 to 16 bits also tend to be the same. Therefore, 24 to 28

bits remain for randomization. Of these remaining bits, 12 of the low-order bits

are not randomized as ASLR can only randomize executables at page boundaries.

That leaves us with 12 to 16 bits of randomization. Figure 6.3 illustrates how an

attacker can access a critical function by just guessing a few bytes and reusing the

6Some distributions such as Alpine Linux and Hardened Gentoo supports a patched version of
the Linux kernel out of the box.

93

Figure 6.3: Reduced entropy on little-endian architectures: a) Original return ad-
dress. b) Target is close to original return address. c) Target is far from the original
return address yet a number of the most-signi�cant bits are the same.

most signi�cant bytes on a little-endian architecture, e.g. the x86. Figure 6.3 a)

shows the original return address. If the target function is close to the original

return address, as is the case in Figure 6.3 b), then only guessing bits 13 through

16 correctly is enough to get to the target function (The least signi�cant 12 bits

can be obtained by analyzing the disk image of a copy of the executable). If target

function is further away, the number of di�erent bits that have to be overwritten

increases. However, in most cases, the most signi�cant bits remain the same, as

demonstrated in Figure 6.3 c). Being able to guess the address of a target function

by just overwriting few of the least signi�cant bits drastically reduces the search

space.

Apart from the above weakness due to limited entropy, ASLR is also extremely

vulnerable when a process keeps launching child processes during execution as the

Apache HTTP Server does. Since each forked child retains the same memory layout

as the parent process, the attacker practically has an in�nite number of processes

with the same memory layout to attack. Eventually, the address of a critical function

will be exposed.

94

Our system, on the other hand, relocates functions both post-link-time and

at runtime. Our system �rst shu�es functions, then rewrites them to be fully

relocatable. Every rewritten executable has a di�erent layout. Even if an attacker

has a copy of the original executable, he/she cannot easily guess where each function

is located after the rewrite. After the program is launched, functions are relocated

randomly, giving the executables a di�erent layout every time a function is relocated.

This relocation may take place as often as after every function execution. Even if

the attacker has access to an exact copy of the target executable after the rewrite,

he/she will not be able to identify function start addresses at runtime, as they change

continuously. If the attacker somehow manages to �nd the location of a function,

that function will be relocated soon, and the attacker may not be able to attack

that function in time. Since functions are randomly relocated, a parent process and

all of its child processes will all evolve into having separate memory layouts during

execution, making it much safer to fork new processes during execution.

6.6 Security Evaluation

To show the e�ectiveness of our system from the security point of view, we

experimented with a modi�ed version of the Apache HTTP Server[30]. It is devel-

oped and maintained by The Apache Software Foundation and is written in C. It

is composed of more than 400,000 lines of code. The modi�cation we applied to

this process is the introduction of a simple bug that can be exploited via an HTTP

request. Using this bug, we tried to perform a return-oriented attack to execute

95

a function that was not supposed to execute at that point during execution. We

launched our attack from a client that issues HTTP requests. In our experiments,

we assumed the attacker had an exact copy of the executables that we experimented

with.

The result of our experiments is given in Table 6.2. In our �rst set of exper-

iments, we attacked httpd executables that are only protected by the ASLR. For

the non-PIE httpd executable without runtime function relocation, we consistently

succeeded in executing a particular target function, foo, that resides in the httpd

executable (i.e. not in a shared library) in our �rst attempt during all of our 5

experiments by exploiting the bug we introduced. Since the address of the target

function can be obtained by looking at the symbols in the httpd executable, our

attack did not involve any guessing. Then, we attacked the PIE version of the httpd

executable. Attacking the same target function, foo, succeeded almost instanta-

neously using the technique described with Fig. 6.3, as we only had to perform 16

attacks. Attacking another function, bar, that resides outside the httpd executable,

namely in libapr-1.so, took more time as we had to try more addresses. Since ASLR

cannot really provide too much entropy even for shared libraries, we were able to

have bar executed in 4.9 hours on average. We believe this time frame is short

enough for successful attacks on systems that are not constantly monitored.

Then we tried attacking the httpd and libapr-1.so executables forti�ed by

NINJA. In this case, we also tried to bene�t from the little-endianness of the archi-

tecture. However, since functions are randomly spread in the memory, we observed

exploiting little-endianness of the architecture did not provide any solid bene�ts.

96

Table 6.2: Time Required for a Successful Attack with/without Runtime Function
Relocation

Non-PIE PIE - same exec PIE - library

ASLR Instant (single try) Instant (multiple tries) 4.9 Hours

NINJA > 24 Hours > 24 Hours > 24 Hours

Figure 6.4: Probability of a Successful Attack with ASLR and NINJA (logarithmic
scale)

With this approach, whether the target function is in the same executable or not, or

whether the executable �le is PIE or not did not matter as functions were relocated

by NINJA continuously in all three cases. For each run of our attack, we stopped

our experiments when the elapsed time reached 24 hours.

We show expected and measured probabilities of successful attacks with ASLR

and NINJA in Fig. 6.4. The rightmost curve shows the probability of a successful

attack on a system forti�ed with NINJA. As continuous function relocation pre-

vents any gain brute-force attacks may provide, this curve basically matches the

probability of a successful attack in a search space of 240 di�erent addresses with

replacement. The model we used to calculate the probability of a successful attack

97

on NINJA is given in Sect. 6.7. The second curve from right, ASLR, shows the

probability of a successful attack with ASLR that provides 28 bits of entropy, the

default setting for ASLR on unpatched kernels. However, in practice, ASLR can be

beaten with far less tries on little-endian architectures as described in Sect. 6.5. The

third curve from right, Far Target, shows the probability of a successful attack on

little-endian architectures as obtained by our attack simulation7 on system ASLR

when the target function is far from the original return address. Finally, the leftmost

curve shows the probability of a successful attack when the target function and the

original return address are close to each other, e.g. they are in the same executable

�le. This type of attack takes a maximum of 16 tries, e.g. an attacker only needs

to guess 4 bits.

6.7 Model of NINJA Security

In this section we provide a model that shows the enhancement of security

when two of the relocation strategies described in Sect. 6.4.1, Relocate After nth

call and Relocate Randomly, are applied together.

Assume it takes a function on average E seconds to execute as the leaf function

on the stack,and assume the relocation threshold, n, is set to N . On average, it takes

EN seconds for a relocation to occur with this strategy. Therefore: 1/EN relocations

occur in one second. Moreover, a random function is relocated every R seconds. As

7Our simulation calculated the number of tries to successfully attack the Apache HTTP Server
on a real unpatched Linux system. For each iteration of our simulation, we launched the Apache
HTTP Server, obtained the addresses of target functions and original return addresses, and fed
these addresses to our simulator to calculate the number of tries required to guess the target address
on the system. Note that an actual brute-force attack would take exactly the same number of tries.

98

a result, 1/R relocations take place due to our random relocation strategy. The total

number of relocations that take place in one second is then given by:

1

EN
+

1

R
=

R + EN

REN
(6.1)

If a single attack takes T seconds, and if there are F functions in the executable,

the probability of the relocation of a speci�c function between two attacks is:

Preloc =
T (R + EN)

FREN
(6.2)

A successful attack takes place when i) the target function is at the location

that will be attacked next, and if it does not get relocated, ii) the target function

is relocated to the address that will be attacked next. The total probability of a

success at a given try is:

Patck = (1− Preloc)
1

A
+ Preloc

(A− 1)

A

1

A
=

1

A
− Preloc

A2
(6.3)

Here, the �rst term shows the probability of the function being at the address

that will be attacked next (1/A) and the probability of that function not being

relocated (1 − Preloc). The second term, on the other hand, shows the probability

of that function being relocated (Preloc), the probability of the function being at

another address ((A−1)/A), and the probability of that function being relocated to

that address (1/A).

99

The likelihood of a successful attack during a series of attacks is:

Patck + Patck(1− Patck) + Patck(1− Patck)
2 + . . . = Patck

∞∑
i=0

(1− Patck)
i (6.4)

This is the geometric series. The probability of a successful attack in the �rst

n tries is then given by:

Patck

n−1∑
i=0

(1− Patck)
i = Patck

1− (1− Patck)
n

1− (1− Patck)
= 1− (1− Patck)

n (6.5)

The dominant term in Patck turns out to be
1/A, the probability of a successful

random attack. This observation shows that the probability of a brute force at-

tack is almost identical to the probability of a random attack, even slightly lower.

Therefore, a brute force attack will not increase the chances of a successful attack.

In our experiments, we observed that sweeping the whole 28-bit search space

ASLR provides takes about 200 days (about 16 addresses per second). Although an

uninterrupted attack that lasts 200 days is somewhat unlikely, the fact that there is

a .5% chance that ASLR can be defeated within a day shows that ASLR alone is not

very reliable. Moreover, in our experiments, we showed that we can have a critical

function executed in less than 24 hours in all of our attempts without exhausting

the full address space. NINJA decreases the likelihood of a successful attack in a

single day to 1.22e-4%, i.e. to about 1% of a 1% of a 1%. The comparison is

illustrated in Fig. 6.5. With NINJA, the probability of a successful attack is much

less than that of ASLR.

100

Figure 6.5: Likelihood of a Successful Attack in 24 Hours

Information leakage is a big concern for ASLR: When the location of a function

or a known o�set from a function is leaked, the security ASLR provides is compro-

mised. NINJA, on the other hand, relocates functions continuously: Even when the

location of a critical function is revealed, that function will soon be relocated by

NINJA, and attacks that follow will fail. The time it takes for a speci�c function

to relocate is 750 seconds when N = 100 and R = 1. When relocation is performed

more frequently, as when N = 1 and R = .1, it takes a given function about 14

seconds to relocate. Figure 6.6 shows the average duration a function occupies the

same address with various N and R values. Note that the smaller the duration, the

sooner that function will be relocated by NINJA.

To demonstrate increased security o�ered by NINJA against brute force at-

101

Figure 6.6: Duration a Function Occupies the Same Address, in Seconds

tacks, Fig. 6.7 shows the variation in the probability of a successful attack with

respect to the number of tries on a given set of relocation parameters. Although

NINJA normally provides 40 bits of entropy, we pretend we can only use 16 bits of

entropy for this graph to be able to show the variation more clearly. This graph

veri�es our expectation that relocating functions more often provides a higher level

of security.

6.8 Performance Evaluation

To evaluate the overhead of runtime function relocation, we applied our tech-

nique on benchmarks in SPEC CINT2006 [38, 61]. SPEC CINT2006 contains a

series of CPU-intensive executables that are selected to evaluate the processor(s)

and the memory system. All together, SPEC CINT2006 has about 1,047,000 lines

102

Figure 6.7: Probability of a Successful Attack with Varying Relocation Parameters

of code. We selected benchmarks written in C to evaluate the overhead of our sys-

tem. We ran each set of benchmarks on a 64-bit Linux machine with 2 Intel Xeon

processors with 6-cores each, clocked at 2.53 GHz, with a total main memory of

48GB.

Table 6.3 shows normalized running times of SPEC CINT 2006 benchmarks

with runtime function relocation at varying frequencies. The leftmost column, none,

shows the overhead of executing rewritten binaries without any runtime relocation,

demonstrating the runtime overhead introduced by our edits described in Sect. 6.3.

The columns that follow show the overhead of applying function relocation at run-

time: 10,000 means that functions are relocated every 10,000th time they are exe-

cuted.

Relocating functions often is clearly very costly. To improve the performance

103

Table 6.3: Runtime Overhead of Runtime Function Relocation on SPEC CINT 2006

Benchmark None 10,000 1,000 100 10 1 Adaptive

perlbench 1.50 1.61 2.52 3.15 15.17 119.39 1.62

bzip2 1.01 1.03 1.16 1.18 2.49 13.44 1.02

mcf 1.07 1.18 1.44 1.05 3.64 25.45 1.21

gobmk 1.10 1.15 1.42 2.09 8.99 70.05 1.15

hmmer 1.00 1.00 1.06 1.01 1.08 1.69 1.00

sjeng 1.28 1.33 1.73 2.17 7.52 59.38 1.32

libquantum 0.98 1.01 1.06 1.03 1.24 3.37 1.21

h264ref 1.61 1.64 2.19 2.11 6.26 46.47 1.65

AVERAGE 1.19 1.22 1.51 1.61 4.79 33.75 1.25

of runtime function relocation, we pro�led these benchmarks and created a custom

relocation period for each function using a simple formula. In our approach, any

function that executes less than 1,000 times is relocated every time it is called. Most

of the remaining functions are relocated 100 to 1,000 times during the execution of

the benchmark. Some functions which are called very frequently are relocated every

10,000th time, and they are relocated more than 1,000 times during the execution

of the benchmark. We call this technique Adaptive Relocation. Table 6.3 also shows

the overhead associated with this Adaptive Relocation strategy. This strategy proves

to be the most useful since it o�ers frequent relocation with a low overhead.

Figure 6.8 illustrates the e�ects of applying execution-based and time-based

relocation techniques on the performance of benchmarks from the SPEC suite. We

observe the least overhead when N = Infinite and R = Infinite, i.e. when no re-

location is performed. Using smaller N values increases the frequency of relocations

104

Figure 6.8: Relocation Overhead with Varying Relocation Frequencies

at the expense of increased runtime overhead. Using lower R values also tends to

increase the runtime overhead due to the increased relocation frequency. However,

performance e�ects in this case is not observed to be as dramatic.

6.9 Conclusion

In this chapter, we introduced a new security mechanism that reduces the

likelihood of successful attacks through continuous function relocation at runtime.

Our system �rst rewrites executable �les to be completely relocatable, linking them

with a relocator library. When we determine a function needs to be relocated,

we just copy the function to randomly selected vacant memory and update the

corresponding entry in the Function Table accordingly.

Our system does not require a change in the software distribution. O�-the-

105

shelf executables can be secured by system administrators after they are installed.

Runtime relocation is performed with no additional user interference.

We showed that our system dramatically reduces the likelihood of a successful

attack. Since locations of functions continuously change, malicious users can only try

random attacks. Unlike traditional randomization techniques, even child processes

that were once an exact copy of the parent process evolve over time by relocating

functions to di�erent locations in the memory. Attackers do not get any advantage

over the single process case. Our system greatly increases the di�culty of attack in

that respect compared to traditional randomization techniques where child processes

have identical layouts as the parent processes, and attackers get an arbitrarily large

number of processes with the same layout to attack.

Our system inevitably introduces some runtime overhead. In our experiments

we showed the overhead was observed at 25% on average, but varies with the user

controllable frequency of relocations. Our technique is able to change the ASLR

defeat success chances for a vulnerable HTTP server from 0.5% in 24 hours of

attack to 1.22e-4% chance of success in the same 24 hour interval. NINJA can be

con�gured to provide more than 40 bits of entropy to reduce this probability even

further.

106

Chapter 7

Future Work

Over the course of our work, we identi�ed some extensions to our current

research. These extensions are described in our short-term road map. Moreover, we

determined new directions our research can take, as described in our long-term road

map.

7.1 Short-term Road Map

Our short-term road map describes direct extensions to our current research.

Each of these projects are expected to take 4 to 6 months to complete.

7.1.1 Compile-time Support for Function Relocation

We demonstrated the bene�ts of using a mechanism to rewrite binaries with

fully-relocatable functions. However, analyzing and rewriting binaries is not the best

way to generate fully-relocatable code. We believe this work should be delegated

to the compiler, and binary rewriting for this purpose should only be used when

recompilation is not possible. Besides, a compiler may be able to allocate registers

more e�ciently whereas a rewriter can only use a register after saving the original

value and restoring that value back at the end of the generated code, unless the

register in question is dead.

107

7.1.2 Compile-time Support for Reducing Memory Overhead

Compiler support might also be bene�cial in reducing the memory overhead

of applications when there are many unused functions inside these applications.

Given an execution pro�le, many compilers know how to optimize the generated

executable when the code is recompiled. Using these pro�les, compilers can better

place functions to increase the instruction cache performance. Compilers can also be

modi�ed to place functions in groups so that functions that are unlikely to be used

can be put on the same page(s). These pages can then be left out at the loading

phase, reducing the memory footprint of the target applications. This approach

eliminates the extra pass performed by our rewriting operation.

7.1.3 Secure Portable Devices

Portable devices have become quite common with the introduction of smart

phones. Consumers store information about their email and bank accounts on these

devices. Moreover, they are also increasingly being used for business activities,

replacing Point-of-Sale equipment. The main drawback of these devices is that

they have limited computational power. Continuous function relocation or similar

strategies may not be practical for such devices as these operations would drain the

battery rather quickly. Our approach for securing such machines is to apply function

relocation only to critical functions. Since our current approach supports function

level granularity, our system can be extended to portable devices.

108

7.1.4 Analyzing E�ects of Function Relocation to ICache and TLB

As an extension to our work, we would like to investigate the e�ects of run-

time function relocation to instruction cache and TLB performance. In our system,

functions are relocated as a whole without changing the control �ow. Therefore,

we expect the e�ects of runtime function relocation to the instruction cache to be

negligible. On the other hand, functions are spread across many pages. Whenever

a function is accessed in a page that is not in the TLB, a TLB miss occurs. The

larger the number of pages used by the program, the higher the probability of a

TLB miss. An analysis of TLB performance might be important for later uses of

runtime function relocation.

7.1.5 Post-link-time Function Inlining

Function inlining is performed by compilers during code generation to avoid

costly function calls when the advantage of having a separate implementation of that

function is very limited. An inlined function is executed without a function call, and

optimizations on registers can be carried out from the encapsulating function to the

inlined function. However, functions cannot be inlined when their implementation

is not available during compilation. Such cases frequently happen when the im-

plementation of a function is compiled into a di�erent object �le than the �le into

which caller of that function is compiled. All of the functions except for the ones

that are in a shared library are linked together into one executable. At this point,

the implementation of a called function can be inserted into the caller function by

109

a post-link-time binary rewriter. We can use our expertise in binary analysis and

rewriting to provide a tool that supports post-link-time function inlining.

7.2 Long-term Road Map

In this section, we present research ideas to which our experience with runtime

code generation and program modi�cation can be applicable. These areas include

virtual machine migration, execution migration, and runtime code generation for

auto-tuning. We expect each of these ideas to take 12 to 18 months.

7.2.1 Live Virtual Machine Migration

In this dissertation, we presented techniques to relocate functions at post-link-

time and at runtime. A natural extension of our work is to apply runtime migration

techniques to processes. However, moving a process from one execution environment

to another might be problematic if the underlying systems di�er.

One abstraction to remove complications of system speci�c execution environ-

ments is virtual machines. Virtual machines hide the details of underlying systems

and provide an identical execution environment to processes even when they run

on di�erent architectures. They also provide sandboxing so that a process can only

a�ect the state of the virtual machine that it runs in. Moving the virtual machine to

another physical machine preserves the integrity of processes running on that virtual

machine. As part of our future work, we plan to tackle the challenges of relocating

a live virtual machine to a di�erent execution environment while still supporting

110

interactive applications that run on it.

7.2.2 Decoupling Execution from Physical Mediums

Tomorrow's computation devices will be tiny and gigantic. We already use

pocket-size portable computers in the form of �smart phones� and connect to cloud

services for most non-trivial tasks. We expect this trend to continue, dramatically

increasing the di�erences in size and computation power between the systems that

provide services and the end-user devices that display the results.

Currently, portable devices only carry out light-weight tasks, mostly to save

bandwidth and to avoid paying the round-trip cost of accessing a remote server. Us-

ing an adaptive execution strategy bene�ts users in terms of both response time and

availability. If wireless connectivity is not possible, more tasks should be performed

on the portable device. If wireless connectivity is possible, tasks can be migrated to

remote servers, and should be done so more liberally when the load on the portable

device is high. For seamless execution, this migration has to be quick and e�cient.

The virtual machine migration we discussed in the previous section may also

bene�t portable devices. Smart phones run applications in sandboxes that can be

copied to another execution environment at runtime, provided that the new execu-

tion environment can emulate the previous execution environment. Any application

that runs on such a sandbox can then continue execution at this new environment.

This approach can be useful to move execution from a portable device to a server,

or from one portable device to another one (e.g. to a device with a bigger screen).

Another way to achieve this migration is to develop common software devel-

111

opment frameworks for both consumer electronics and large scale systems. Users

can pick how much work should be done on their devices before migrating tasks

to back-end servers by choosing threshold values, either manually or through an

adaptive process. If execution should be migrated, current state of execution will

be transferred to remote system and execution will resume there. Results will be

returned and displayed on user's device once the operation is complete.

7.2.3 Use of Hardware Performance Counters for Runtime Code Mod-

i�cation

Processors are equipped with a set of registers called hardware performance

counters that can be programmed to count speci�c events that take place during

execution. Some of the supported operations include counting the number of in-

structions that have executed, the number of cache misses at various levels of the

cache hierarchy, or the number of branches. The values stored in these registers

can be read at runtime; therefore, application developers get a chance to tune their

programs at runtime.

Tuning of applications has been studied extensively in recent years. Re-

searchers have come up with mechanisms to support auto-tuning of programs at

runtime. The state of the art in auto-tuning is to measure the performance of a

given set of parameters and search the parameter space to �nd optimal con�gura-

tion. Hardware performance counters, however, can provide feedback to search the

parameter space in the correct direction. For example, if the application experiences

112

a high number of L1 cache misses, our search algorithm could try to limit the loop-

unrolling factor. With this approach, hardware performance counters may provide

auto-tuners a better search strategy with faster convergence.

113

114

Chapter 8

Conclusion

In this dissertation, we introduced new techniques for improving �exibility,

parsing speed, memory footprint, and security of executable �les. We evaluated our

techniques on real life applications and full-size benchmarks and showed that our

techniques can be adapted without considerable drawbacks.

First, we presented Relocatable Basic Blocks that can be moved around indi-

vidually without modi�cations to the rest of the system. Applications that bene�t

from Relocatable Basic Blocks include Basic-block Linkage Tables, and in some cases

Target Address Tables. Moving these basic blocks only requires copying the code to

new memory and updating corresponding entries in these tables. Relocatable Ba-

sic Blocks can be used for a simpli�ed runtime instrumentation approach. However,

overhead of using these basic blocks can sometimes hinder the bene�ts of using them

for increased �exibility.

We then introduced a new compilation mechanism for improved binary pars-

ing speed. Our compilation mechanism intercepts calls to the system compiler using

a wrapper, and creates executable �les with pre-computed Control Flow Graphs

(CFGs) stored inside the binary. These CFGs are computed at the assembly in-

struction level and are accurate when the executable �le is generated. They are

stored in a section that is not loaded into the memory at runtime; therefore, the

running time and memory footprint of applications compiled with this compilation

115

infrastructure are not a�ected.

Any binary analysis tool can bene�t from using these tables to build CFGs. To

demonstrate their e�ectiveness, we modi�ed Dyninst [11] binary analysis tool to read

in the information about CFGs. This approach drastically sped up the process of

building CFGs: we observed an average speed-up of 3.8x with a maximum speed-up

of 4.4x.

Another mechanism we introduced targets reducing the memory footprint of

code segments of shared libraries. This mechanism involves pro�ling shared libraries

for common use cases, then identifying functions that are not used in these common

cases, and grouping them together. Afterwards, our binary rewriting mechanism

modi�es the program headers in these shared libraries to make the loader skip these

unused functions during the loading of these shared libraries into the memory. If a

function that was deemed unused is called during execution, our on-demand function

loader �nds that function on the disk, and loads the page that contains that function

into memory.

Our mechanism that avoids loading unused functions of shared libraries is able

to reduce the number of pages occupied by the code segments of shared libraries

by 85.0% on average. Sometimes the code section of entire libraries need not be

loaded into memory (i.e. 100% reduction in number of pages that contain the

library). In our work, we also showed that our tool does not introduce any signi�cant

performance overhead for programs that run for at least a few seconds.

Finally, we show that applications enjoy greater security when their functions

are relocated at runtime. In this work, we �rst rewrite executable �les to make

116

their functions completely relocatable, then link them with a relocation library that

is responsible for moving functions at runtime. Relocation takes place either on

random functions at timed intervals or at the end of the execution of a function

when that function has executed more than a speci�c number of times. We present

a mathematical model that shows the likelihood of a successful attack is reduced

when our technique is applied to executables. Moreover, our experimental results

show that executables enhanced by our tool are more secure than regular executable

�les: Remotely forcing execution of a target function in a regular executable �le

takes 4.9 hours on average whereas we were not able to have that same function

executed in a forti�ed executable in 4 days during any of our experiments. Although

this approach introduces some runtime overhead - 25% on average with the default

settings - factors that cause this overhead are adjustable, and the overhead can be

reduced to about 19%.

In conclusion, this thesis shows that binary rewriting improves memory per-

formance of applications and increases overall security of critical functions while

also demonstrating modi�ed compilation mechanisms can assist in making binary

analysis easier.

117

118

Bibliography

[1] N. Aaraj, A. Raghunathan, and N. Jha. Dynamic binary instrumentation-based
framework for malware defense. In D. Zamboni, editor, Detection of Intrusions
and Malware, and Vulnerability Assessment, volume 5137 of Lecture Notes in
Computer Science, pages 64�87. Springer Berlin / Heidelberg, 2008.

[2] N. R. Adiga et al. An overview of the bluegene/l supercomputer. In Supercom-
puting '02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1�22, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[3] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. Defending
against hitlist worms using network address space randomization. In Proceed-
ings of the 2005 ACM workshop on Rapid malcode, WORM '05, pages 30�40,
New York, NY, USA, 2005. ACM.

[4] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2009.
http://www.mcs.anl.gov/petsc.

[5] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. Karsisto. Survey of
code-size reduction methods. ACM Comput. Surv., 35(3):223�267, 2003.

[6] S. Bhatkar and R. Sekar. Data space randomization. In Proceedings of the 5th
international conference on Detection of Intrusions and Malware, and Vulnera-
bility Assessment, DIMVA '08, pages 1�22, Berlin, Heidelberg, 2008. Springer-
Verlag.

[7] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev. Address space random-
ization for mobile devices. In Proceedings of the fourth ACM conference on
Wireless network security, WiSec '11, pages 127�138, New York, NY, USA,
2011. ACM.

[8] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis.
On the general applicability of instruction-set randomization. IEEE Trans.
Dependable Secur. Comput., 7:255�270, July 2010.

[9] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In CGO '03: Proceedings of the international symposium
on Code generation and optimization, pages 265�275, Washington, DC, USA,
2003. IEEE Computer Society.

[10] D. Bruschi, L. Martignoni, and M. Monga. Detecting self-mutating malware
using control-�ow graph matching. In R. Buschkes and P. Laskov, editors, De-
tection of Intrusions and Malware & Vulnerability Assessment, volume 4064 of

119

Lecture Notes in Computer Science, pages 129�143. Springer Berlin / Heidel-
berg, 2006.

[11] B. Buck and J. K. Hollingsworth. An API for runtime code patching. Int. J.
High Perform. Comput. Appl., 14:317�329, November 2000.

[12] B. Calder and D. Grunwald. Reducing branch costs via branch alignment.
SIGPLAN Not., 29(11):242�251, 1994.

[13] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executa-
bles. In Proceedings of the International Conference on Software Maintenance,
ICSM '97, pages 188�, Washington, DC, USA, 1997. IEEE Computer Society.

[14] C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software:
Practice and Experience, 25(7):811�829, 1995.

[15] B. Cmelik and D. Keppel. Shade: a fast instruction-set simulator for execution
pro�ling. In SIGMETRICS '94: Proceedings of the 1994 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages 128�137,
New York, NY, USA, 1994. ACM.

[16] K. D. Cooper and N. McIntosh. Enhanced code compression for embedded risc
processors. SIGPLAN Not., 34(5):139�149, 1999.

[17] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, et al. Stackguard: Automatic adaptive detection
and prevention of bu�er-over�ow attacks. In Proceedings of the 7th USENIX
Security Symposium, volume 81, pages 346�355, 1998.

[18] C. Curtsinger and E. Berger. STABILIZER: Enabling statistically rigorous per-
formance evaluation. Technical report, University of Massachusetts, Amherst,
2012.

[19] B. De Sutter, B. De Bus, and K. De Bosschere. Link-time binary rewrit-
ing techniques for program compaction. ACM Trans. Program. Lang. Syst.,
27(5):882�945, Sept. 2005.

[20] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen.
On the static analysis of indirect control transfers in binaries. In Proceedings of
the International Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA 2000, June 24-29, 2000, Las Vegas, Nevada, USA,
pages 1013�1019, 2000.

[21] S. Debray and W. Evans. Pro�le-guided code compression. In PLDI '02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 95�105, New York, NY, USA, 2002. ACM.

[22] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for
code compaction. ACM Trans. Program. Lang. Syst., 22(2):378�415, 2000.

120

[23] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for
code compaction. ACM Trans. Program. Lang. Syst., 22(2):378�415, 2000.

[24] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher. Deli:
a new run-time control point. In MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 257�268, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[25] W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers. Electron tem-
perature gradient turbulence. Phys. Rev. Lett., 85(26):5579�5582, Dec 2000.

[26] U. Drepper. Using elf in glibc 2.1. Technical report, Cygnus Solutions, Sunny-
vale, CA, 1999.

[27] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware anal-
ysis. In 2007 USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, ATC'07, pages 18:1�18:14, Berkeley,
CA, USA, 2007. USENIX Association.

[28] M. Emmerik and T. Waddington. Using a decompiler for real-world source
recovery. In Reverse Engineering, 2004. Proceedings. 11th Working Conference
on, pages 27 � 36, nov. 2004.

[29] H. Etoh and K. Yoda. propolice: Improved stack-smashing attack detection.
Transactions of Information Processing Society of Japan, 43(12):4034�4041,
2002.

[30] R. Fielding and G. Kaiser. The apache http server project. Internet Computing,
IEEE, 1(4):88�90, 1997.

[31] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In
Operating Systems, 1997., The Sixth Workshop on Hot Topics in, pages 67 �72,
Los Alamitos, CA, USA, may 1997. IEEE Computer Society.

[32] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In Proceedings, 11th Eu-
ropean PVM/MPI Users' Group Meeting, pages 97�104, Budapest, Hungary,
September 2004.

[33] C. Giu�rida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating system
security through e�cient and �ne-grained address space randomization. In
Proceedings of the 21st USENIX conference on Security symposium, Security'12,
pages 40�40, Berkeley, CA, USA, 2012. USENIX Association.

[34] GNU Project. GCC, the GNU Compiler Collection - GNU Project - Free
Software Foundation (FSF). http://gcc.gnu.org/. Retrieved: June, 2013.

121

[35] Google, Inc. V8 benchmark suite - version 7. http://code.google.com/p/v8/.
Retrieved: March, 2012.

[36] H. Guo, J. Pang, Y. Zhang, F. Yue, and R. Zhao. HERO: A novel malware
detection framework based on binary translation. In Intelligent Computing and
Intelligent Systems (ICIS), 2010 IEEE International Conference on, pages 411
� 415, October 2010.

[37] L. C. Harris and B. P. Miller. Practical analysis of stripped binary code.
SIGARCH Comput. Archit. News, 33:63�68, December 2005.

[38] J. L. Henning. Guest editor's introduction. SIGARCH Comput. Archit. News,
35(1):63�64, Mar. 2007.

[39] IDA: About. http://www.hex-rays.com/products/ida/. Retrieved: March 21,
2012.

[40] T. Ince and J. K. Hollingsworth. Pro�le-driven selective program loading. In
Proceedings of the 16th international Euro-Par conference on Parallel process-
ing: Part I, EuroPar'10, pages 62�73, Berlin, Heidelberg, 2010. Springer-Verlag.

[41] Intel. Intel C and C++ Compilers | Intel Developer Zone.
http://software.intel.com/en-us/c-compilers/. Retrieved: June, 2013.

[42] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In Proceedings of the 10th ACM conference
on Computer and communications security, CCS '03, pages 272�280, New York,
NY, USA, 2003. ACM.

[43] S. M. Kelly and R. Brightwell. Software architecture of the light weight kernel,
catamount. In In Cray User Group, pages 16�19, 2005.

[44] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout per-
mutation (aslp): Towards �ne-grained randomization of commodity software.
In Proceedings of the 22nd Annual Computer Security Applications Conference,
pages 339�348, Washington, DC, USA, 2006. IEEE Computer Society.

[45] A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy. Interprocedural static slicing of
binary executables. 2003.

[46] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source
code. In SAS '01: Proceedings of the 8th International Symposium on Static
Analysis, pages 40�56, London, UK, 2001. Springer-Verlag.

[47] R. Komondoor and S. Horwitz. E�ective, automatic procedure extraction. In
IWPC '03: Proceedings of the 11th IEEE International Workshop on Program
Comprehension, page 33, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

122

[48] M. Kotschenreuther, G. Rewoldt, and W. M. Tang. Comparison of initial value
and eigenvalue codes for kinetic toroidal plasma instabilities. Computer Physics
Communications, 88(2-3):128 � 140, 1995.

[49] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of
obfuscated binaries. In Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13, SSYM'04, pages 18�18, Berkeley, CA, USA, 2004.
USENIX Association.

[50] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security and
Privacy, 9(3):49�51, May 2011.

[51] J. R. Larus and T. Ball. Rewriting executable �les to measure program behav-
ior. Software: Practice and Experience, 24(2):197�218, 1994.

[52] J. R. Larus and E. Schnarr. EEL: machine-independent executable editing. In
PLDI '95: Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation, pages 291�300, New York, NY, USA,
1995. ACM.

[53] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master's
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[54] J. Lau, S. Schoenmackers, T. Sherwood, and B. Calder. Reducing code size with
echo instructions. In CASES '03: Proceedings of the 2003 international con-
ference on Compilers, architecture and synthesis for embedded systems, pages
84�94, New York, NY, USA, 2003. ACM.

[55] C. Lefurgy, E. Piccininni, and T. Mudge. Evaluation of a high performance
code compression method. In MICRO 32: Proceedings of the 32nd an-
nual ACM/IEEE international symposium on Microarchitecture, pages 93�102,
Washington, DC, USA, 1999. IEEE Computer Society.

[56] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[57] L. Li, J. E. Just, and R. Sekar. Address-space randomization for windows
systems. In Proceedings of the 22nd Annual Computer Security Applications
Conference, pages 329�338, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[58] Z. Lin, R. D. Riley, and D. Xu. Polymorphing software by randomizing data
structure layout. In Proceedings of the 6th International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment, DIMVA '09,
pages 107�126, Berlin, Heidelberg, 2009. Springer-Verlag.

123

[59] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI '05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation,
pages 190�200, New York, NY, USA, 2005. ACM.

[60] S. Mans�eld-Devine. Android malware and mitigations. Network Security,
2012(11):12 � 20, 2012.

[61] H. McGhan. SPEC CPU2006 benchmark suite. Microprocessor Report, 2006.

[62] Microsoft. .NET Framework. http://msdn.microsoft.com/en-
us/vstudio/aa496123. Retrieved: June, 2013.

[63] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance mea-
surement tool. Computer, 28(11):37 �46, nov 1995.

[64] Mozilla Corporation and Mozilla Foundation. Mozilla �refox web browser -
free download. http://www.mozilla.org/en-US/�refox/new/. Retrieved: Feb
22, 2012.

[65] N. Nethercote and J. Seward. Valgrind: A program supervision framework. In
In Third Workshop on Runtime Veri�cation (RV'03), 2003.

[66] Oracle. Oracle and Java | Technologies.
http://www.oracle.com/us/technologies/java/overview/index.html. Retrieved:
June, 2013.

[67] PaX Team. PaX address space layout randomization, Mar. 2003.
http://pax.grsecurity.net/docs/aslr.txt. Retrieved: March 15, 2013.

[68] K. Pettis and R. C. Hansen. Pro�le guided code positioning. SIGPLAN Not.,
25(6):16�27, 1990.

[69] M. Prasad and T. Chiueh. A binary rewriting defense against stack based
over�ow attacks. In Proceedings of the USENIX Annual Technical Conference,
pages 211�224, 2003.

[70] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt. Learning to analyze binary
computer code. In Proceedings of the 23rd national conference on Arti�cial
intelligence - Volume 2, AAAI'08, pages 798�804. AAAI Press, 2008.

[71] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revis-
ited. In Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE'02), WCRE '02, pages 45�, Washington, DC, USA, 2002. IEEE Com-
puter Society.

124

[72] H. Shacham, M. Page, B. Pfa�, E.-J. Goh, N. Modadugu, and D. Boneh. On
the e�ectiveness of address-space randomization. In Proceedings of the 11th
ACM conference on Computer and communications security, CCS '04, pages
298�307, New York, NY, USA, 2004. ACM.

[73] sKyWIper Analysis Team. sKyWIper (a.k.a. Flame a.k.a. Flamer):
A complex malware for targeted attacks. Technical report, Labora-
tory of Cryptography and System Security (CrySyS Lab), Budapest
University of Technology and Economics, Budapest, Hungary, 2012.
http://www.crysys.hu/skywiper/skywiper.pdf.

[74] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer
security via binary analysis. In R. Sekar and A. Pujari, editors, Information
Systems Security, volume 5352 of Lecture Notes in Computer Science, pages
1�25. Springer Berlin / Heidelberg, 2008.

[75] A. Srivastava, A. Edwards, and H. Vo. Vulcan binary transformation in a
distributed environment. Technical report, Microsoft Research, 2001.

[76] A. Srivastava and A. Eustace. ATOM: a system for building customized pro-
gram analysis tools. In PLDI '94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 196�
205, New York, NY, USA, 1994. ACM.

[77] M. Szeredi. Ssh �lesystem, 2005. http://fuse.sourceforge.net/sshfs.html. Re-
trieved: April 16, 2013.

[78] The Portland Group. PGI | Products | PGI Workstation.
http://www.pgroup.com/products/pgiworkstation.htm. Retrieved: June,
2013.

[79] H. Theiling. Extracting safe and precise control �ow from binaries. In Pro-
ceedings of the Seventh International Conference on Real-Time Systems and
Applications, RTCSA '00, pages 23�, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[80] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse engi-
neering obfuscated code. In Proceedings of the 12th Working Conference on
Reverse Engineering, WCRE '05, pages 45�54, Washington, DC, USA, 2005.
IEEE Computer Society.

[81] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere. Di-
ablo: a reliable, retargetable and extensible link-time rewriting framework. In
Proceedings of the 2005 IEEE International Symposium On Signal Processing
And Information Technology, pages 7�12, Athens, 12 2005. IEEE.

125

[82] L. Wang, C. Fang, B. Mao, and L. Xie. TMAC: Taint-based memory protection
via access control. In Proceedings of the 2009 Second International Conference
on Dependability, DEPEND '09, pages 19�27, Washington, DC, USA, 2009.
IEEE Computer Society.

[83] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. 2012.

[84] Y. Xie, W. Wolf, and H. Lekatsas. Pro�le-driven selective code compression.
In DATE '03: Proceedings of the conference on Design, Automation and Test
in Europe, page 10462, Washington, DC, USA, 2003. IEEE Computer Society.

[85] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for
security. Reliable Distributed Systems, IEEE Symposium on, 0:260, 2003.

[86] L. Zhang and C. Krintz. Pro�le-driven code unloading for resource-constrained
jvms. In PPPJ '04: Proceedings of the 3rd international symposium on Princi-
ples and practice of programming in Java, pages 83�90. Trinity College Dublin,
2004.

[87] A. Zmily and C. Kozyrakis. Simultaneously improving code size, performance,
and energy in embedded processors. In DATE '06: Proceedings of the confer-
ence on Design, automation and test in Europe, pages 224�229, 3001 Leuven,
Belgium, Belgium, 2006. European Design and Automation Association.

126

127

	List of Tables
	List of Figures
	Introduction
	Related Work
	Compilation Techniques for Binary Analysis and Debugging
	Binary Analysis and Editing Tools
	Binary Parsing
	Memory Footprint Minimization
	Randomization for Security

	Instrumentation with Relocatable Basic Blocks
	Overview
	Relocatable Basic Blocks
	Compilation
	Instrumentation
	Benefits
	Experimental Results
	Discussion
	Conclusion

	Compiler Help for Binary Analysis Tools
	Overview
	Difficulties of Binary Parsing
	Compiler Help
	Basic Block and Edge Tables
	Compilation Process
	Reconstruction

	Evaluation
	Environment
	Experimental Results

	Discussion
	Conclusion

	Profile-driven Selective Program Loading
	Overview
	Architecture
	Target Applications and Platforms
	System Design
	Profiling
	Rewriting
	On-demand Mapping

	Experimental Results
	Environment
	Results

	Conclusion

	Security through Runtime Function Relocation
	Overview
	NINJA: Runtime Function Relocator
	Relocatable Functions
	Function Calls and Function Table
	Initial Function Location
	Indirect Branches That Use Tables
	Accessing Parameters Stored on Stack

	Runtime Function Relocation
	Relocation Strategies
	Memory Management

	Security Implications of NINJA
	Security Evaluation
	Model of NINJA Security
	Performance Evaluation
	Conclusion

	Future Work
	Short-term Road Map
	Compile-time Support for Function Relocation
	Compile-time Support for Reducing Memory Overhead
	Secure Portable Devices
	Analyzing Effects of Function Relocation to ICache and TLB
	Post-link-time Function Inlining

	Long-term Road Map
	Live Virtual Machine Migration
	Decoupling Execution from Physical Mediums
	Use of Hardware Performance Counters for Runtime Code Modification

	Conclusion
	Bibliography

