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CHAPTER 1: INTRODUCTION

The ability to evaluate quantitative information properly is viewed as an
important skill, and the study of probability and statistics provides conceptual tools for
individuals to deal with quantitative information intelligently. In recent years,
discussions regarding statistical literacy, reasoning, and thinking have been prominent in
educational, mathematical, and statistical communities (Ben-Zvi & Garfield, 2004).
Increased attention has been given to the teaching and learning of probability, data
analysis, and statistics at all levels of education.

Large numbers of university students study probability and statistics, and
enrollment in introductory statistics courses is increasing, however, what students
understand after completing a college-level course varies (Artigue, Batanero, & Kent,
2007; Moore & Cobb, 2000; Shaughnessy, 2007). Investigations of college-level
students’ understandings show many students exhibit difficulties in learning and applying
probabilistic and statistical concepts (Artigue, et al., 2007; Garfield & Ben-Zvi, 2007,
2008; Jones, Langrall, & Mooney, 2007; Shaughnessy, 1992; Zieffler, et al., 2008).
These students also struggle with probabilistic and statistical reasoning. Research has
repeatedly revealed students’ inconsistencies in thinking about concepts in probability
and statistics, and this inappropriate reasoning is widespread and persistent across all age
levels (Hirsch, L., & O’Donnell, 2001; Metz, 1998). While the desired result of all
introductory probability and statistics courses is that students have the ability to think
statistically (Garfield et al., 2005), research investigating college-level students’
statistical reasoning shows that many students continue to exhibit difficulty applying

statistical concepts after instruction (Artigue, et al., 2007; Shaughnessy, Garfield, &
1



Greer, 1996). Research reveals that it is difficult for students to reason about variability
and to recognize the different aspects of variability involved in statistical thinking
(Garfield & Ben-Zvi, 2005; Garfield, delMas, & Chance, 2007; Konold & Pollatsek,
2002). Research also shows that after a first course in probability and statistics, many
college-level students are able to perform the procedures involved in making a statistical
inference, but the majority of students neither understand the reasoning involved in
making a statistical inference nor the reasoning required for interpretation of the results
(Batanero, Tauber, & Sanchez, 2004; Meletiou-Mavrotheris & Lee, 2002; Reaburn, 2011,
Smith, 2008; Thompson, Liu, & Saldhana, 2007).
Background and Rationale

The study of probability and statistics focuses on real-world phenomena that
involve uncertainty (Jones, et al., 2007). Notions of probability entail dualistic aspects
(Hacking, 1975). One aspect of probability is associated with a degree of belief and the
other aspect is associated with the tendency of some chance devices to produce relatively
stable frequencies in the long run. Thus, one aspect involves assessing reasonable
degrees of belief in propositions and the other aspect encompasses stochastic
considerations of processes involving chance. Assessing degree of belief is associated
with a subjective view of probability, whereas stochastic considerations are connected to
notions of randomness and are associated with classical view of probability and a
frequentist view of probability (Batanero, Henry, & Parzysz, 2005). The subjective view
of probability underscores the idea that considering the possibility of an event is related
to some system of knowledge and not necessarily the same for all people. Bayesian

approaches to probability arise from the subjective view and utilize a priori information



to determine the probability of an event. Stochastic considerations of probability are
statistical in nature and involve connections between a classical view (i.e. theoretical
probability) and a frequentist view involving stabilization of long run frequencies of
repeated trials (i.e. experimental probability).

A main goal of an introductory college-level probability and statistics course is
for students to understand the basic ideas of statistical inference and make appropriate
use of statistical inference (Garfield et al., 2005). Statistical inference is multifaceted and
involves coordination of probabilistic and statistical thinking. Data analysis techniques
focus on describing and representing data and gleaning information about specific
collections of data. Statistical inference involves taking a specific collection of data and
using information from that collection to make a generalization about the population from
which the data was drawn. In order to make a generalization, one must consider the
nature of random variability impacting selection of the data, random variability within the
data collection, and random variability of possible sample selections.

Statistical methods arise from the omnipresence of variability in data (Cobb &
Moore, 1997). Statisticians recognize the role of random variability in involved in
making a statistical inference: anticipation of variability when formulating a question,
acknowledging variability when collecting data, accounting for variability when
analyzing data, and attending to the nature of variability when interpreting the results and
looking beyond the data. When making a formal statistical inference, probability is used
to modal random variability resulting from underlying processes inherent to the situation

at hand.



Coordination of probabilistic and statistical thinking requires making conceptual
connections between probability and statistics, which are grounded in the notion of
randomness. Outcomes of a stochastic process are synonymous with the outcomes
observed as a result of a random process. Furthermore, random sampling can be
considered a stochastic process. Thompson et al. (2007) argue, “... to conceive of
sampling as a stochastic process is key of all statistical inference” (p. 208). However,
understanding sampling as a stochastic process is challenging. Understanding stochastic
processes is difficult for students because this notion is fundamentally related to
randomness and research shows that understanding notions of randomness is problematic
for people of all ages (Batanero & Serrano, 1999; Falk & Konold, 1997; Metz, 1998).
Making a statistical inference requires use of probability models, which model outcomes
of stochastic processes, and coordination of probabilistic and statistical thinking. This
presents a huge conceptual hurdle for students in a first course in probability and statistics
(Pfannkuch, 2005).

Jones et al. (2007) describe the complementary role probability has in informing
statistics and quantifying chance phenomena: “Statistics uses characteristics of random
processes and probability models of such processes to make inferences about problems
involving data; ... probability focuses on directly describing, quantifying, modeling and
illuminating random processes” (p. 910). Research has revealed the critical
underpinnings that stochastic reasoning supplies to coordination of probabilistic and
statistical thinking. Liu and Thompson (2007) found that stochastic conceptions of
probability supported an understanding of statistical inference. Thompson et al. (2007)

found high-school mathematics teachers’ difficulties in understanding and employing



statistical inference was due in part to their compartmentalized knowledge of probability
and of statistical inference.

This analysis points to the need for research on how to facilitate learners’
conceptual connections between probability and statistics. “Research in students
informal and formal inferential reasoning would suggest that there are huge gaps in
current knowledge about how best to enable learners to make the connection between
probability and statistics” (Pfannkuch, 2005, p. 268). Furthermore, research addressing
students’ understanding of the connections between frequency distributions of empirical
data and theoretical probability and the potential for technology tools to support students’
understanding of probability concepts is needed (Jones, 2005; Jones, et al., 2007). When
summarizing research on students’ understanding of probability, Shaughnessy (2003)
states:

Although this chapter focuses on probability, | point out that a separation of

research discussions of probability and statistics is artificial, just as artificial as

the separation of data and chance when teaching. ... I believe the most interesting
research questions for the future reside in the joint realm of the areas of
probability and statistics, just as the most interesting teaching challenges for the

future lie in making interconnections between these two areas (p. 216).

Shaughnessy (2003) recommends an instructional approach that builds on
students’ primary intuitions and emphasizes notions which support understanding related
to probability distribution models. Shaughnessy also recommends making connections
between probability and statistics through use of examples and questions that are both
statistical and probabilistic as well as connecting two big ideas in stochastics, sample
space in probability and the nature of variation. Shaughnessy also advocates introducing

probability through data, thus starting with statistics to get to probability. Finally,

Shaughnessy suggests a problem-solving approach to learning probability that gives



students opportunities to investigate probability problems or chance situations on their
own.
Stochastic Conception of Probability

Stochastic reasoning is vital to understanding connections between probability
and statistics and is a critical aspect of a conceptual frame connecting notions within
probability and statistics. A stochastic conception of probability requires understanding
the stochastic nature of random phenomena, understanding how probability is used to
model random phenomena, and understanding how probability models are used to make
formal statistical inferences.

Stochastic reasoning is grounded in conceptual connections between probability
and statistics. One reason many people experience difficulty with stochastic reasoning is
that learning about random experiments through simulation or experimentation is not
connected to learning about combinatorics and representations in probability (Batanero,
Godino, & Roa, 2004). Research has found evidence of disconnections between
individuals’ intuitive thinking about probability based on experiences with random
generators and formal mathematical thinking about probability (Abrahamson, 2007,
2009b, 2009c). Research also shows that the complementary nature of empirical
probability and theoretical probability is not salient to learners and that their probabilistic
thinking can be compartmentalized (Batanero et al, 2004). This compartmentalization of
probabilistic thinking may be related to students’ conception of probability and stochastic
reasoning. Research shows that individuals exhibit differing perceptions of probability
depending on the context of a probability situation and these differing perceptions result

in different ways of understanding the problem at hand, as well as different solution



approaches to the problem (Liu & Thompson, 2007). This research revealed that a
probability situation may be interpreted stochastically or nonstochastically. Other
research shows inconsistencies between students’ thinking about probability in school
versus out of school (Rubel, 2007). Hence, not only the problem context of a given
probability situation, but also how and where the problem solving is situated may
influence perceptions of probability and approaches to solving the problem.

Many conceptual connections between probability and statistics are connected to
stochastic notions of probability. However, development of stochastic reasoning is
wrought with challenges. Heitele (1975) advocated for instruction aimed at the
development of stochastic reasoning to focus fundamental ideas. He argued that
stochastic notions are rarely made concrete to the learner and stressed the importance of
connecting instruction in stochastics to students’ intuitive experiences: “A large number
of paradoxes in stochastics which can be confusing even for experts, show that intuitive
pre-establishment is more urgent in stochastics than anywhere else,” (Heitele, 1975, p.
189). Hietele took a view of learning aligned with Bruner (1960) that stressed
development of foundational ideas and understanding of fundamental concepts. Hietele
suggested that instruction in stochastics should provide learners with explanatory mental
models. At an elementary level, these explanatory mental models connect to intuitive
experiences and promote development of normative conceptions along with deeper
understanding of stochastic notions. Hietele gives an example of an explanatory mental
model for the notion of random variable. At an elementary level, conceptions are
developed through playful activities with two dice. An individual intuitively assigns a

better chance to obtaining a sum of dots equal to seven rather than two. This model can



be developed to arrive at a quantitative model involving outcomes and sample space. A
still more elaborate model would consist of interpreting the sums of dots as a stochastic
(i.e. random) variable and an image of a probability distribution model. Hence, the
concept of probability distribution is an arguably critical concept involved in
development of stochastic reasoning.

A stochastic conception of probability and a stochastic understanding of
probability distribution are important to development of a deep understanding of
connections between probability and statistics. Furthermore, stochastic reasoning is vital
to probabilistic and statistical thinking and to development of principled understanding
(Greeno, 1978) in both content domains. These ideas point to the need for research
regarding development of students’ stochastic understanding of probability distribution.
The Importance of Probability Distribution

Conceptual connections between probability and statistics are grounded in an
understanding of probability distribution models (Inzunsa, 2008; Wilensky, 1997). A
stochastic conception of probability distribution includes understandings that are
important to development of conceptual connections between probability and statistics
which undergird an understanding of statistical inference. Because the notion of
probability distribution affords development of critical connections between probability
and statistics, the concept of probability distribution can be considered a key
developmental understanding (Simon, 2006) in both the probability domain and the
statistical domain.

The concept of probability distribution can be a powerful springboard for

development of stochastic reasoning and learning probability in ways that facilitate



making deep conceptual connections around probabilistic understandings related to
variability, notions of independence versus dependence, notions of sample space, and
notions of distribution (Liu & Thompson, 2007). Understanding probability distributions
can facilitate thinking about probability in relation to outcomes of stochastic processes
rather than simply static values assigned to likelihood. Furthermore, conceptual
understanding of probability distribution potentially impacts stochastic reasoning and the
ways learners think about the relationship between probability and statistics. A stochastic
consideration of probability distributions may help learners think about relationships
between experimental outcomes of chance experiments and theoretical probability.

The context of probability distribution facilitates thinking about a probability
situation as an expression of stochastic process. A stochastic process is a repeatable
process and a random process. Repeating the process will produce a collection of
outcomes. Although any given outcome is unpredictable in a stochastic process, the
long-run patterned nature of the process is evident. Because of this long-run tendency,
general predictions can be made with regards to the behavior of the stochastic process,
and outcomes of the process can be mathematically modeled. Understanding the nature
of the variability in individual outcomes, variability related to a collection of outcomes,
and understanding the long run stability inherent to a stochastic process are important to
stochastic reasoning and developing an understanding of connections between probability
and statistics. A stochastic conception of probability is related to thinking about
probability in terms of a distribution of outcomes.

Liu and Thompson (2007) found that a stochastic conception of probability

supports thinking about statistical inference. Making a statistical inference comprises



using probabilistic models to make inferences about a population based on sample data.
Statistics involves analyzing data, and inferential analyses about data necessarily involve
a model. In addition, statistics uses random processes and probability models to make
inferences about data. Probability describes, quantifies, models, and illuminates random
processes. Conceptions of probability and conceptions of statistics are intertwined in the
construct of statistical inference. Making a statistical inference requires a comparison of
a data-based understanding of reality with a theoretical stochastic-based probability
distribution model.

The concept of probability distribution is foundational to understanding
probability as a model used for making statistical inferences. Statistical models
developed through analysis of data are framed by an understanding of underlying
theoretical probability models. Probability distribution models describe and model the
nature of random variability observed in real phenomena. The concept of probability
distribution is central to an understanding of how random events can be both
unpredictable and modeled. Understanding probability distributions as models is a notion
which is important in the domain of probability and the domain of statistics.

Research on Post-Calculus Students’ Understanding of Probability

Although not many studies have been conducted with post-calculus students,
there is research showing these students exhibit difficulties in understanding probability
distribution and its related concepts. Several studies have determined that after
instruction in probability, many post-calculus students demonstrated merely instrumental
understanding (Skemp, 1976) and presented probabilistic notions that were not aligned

with formal probabilistic concepts (Barragues, Guisasola, &Morais, 2007; Batanero, et al,
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2004; Giulianno, et al., 2006). This research also showed that although post-calculus
students could use formulas and algorithms to work through problems involving
probability and statistics, they did not demonstrate an understanding of probabilistic and
statistical concepts.

In a study involving 75 post-calculus students in an introductory probability and
statistics course, after instruction the vast majority exhibited poor understandings of
random phenomena (Barragues, et al., 2006). These students also presented
misconceptions of random sequences, insensitivity to sample size, and a deterministic
bias. In addition, many of these post-calculus students revealed probabilistic thinking
indicative of the same heuristical biases evident in individuals of all ages with lesser
knowledge of mathematics (Metz, 1998). Other research indicates that post-calculus
students, who were either currently enrolled in or had recently completed an introductory
probability and statistics course, demonstrated evidence of probabilistic thinking that was
aligned with novice thinking evidenced by high school students and college-level
students in algebra-based introductory probability and statistics classes (Abrahamson,
2007; Abrahamson & Wilensky, 2007; Barragues, et al., 2007; Hernandez, Heurta, &
Batanero, 2006; Ives, 2007; Lunsford, Rowell, & Goodson-Espy, 2006; Wilensky, 1997).

Research investigating undergraduate post-calculus students’ conceptions of
probability distribution found that learners exhibited difficulty understanding probability
models and struggled to discriminate between empirical distributions and theoretical
distributions (Abrahamson, 2007; Batanero, et al., 2004; Lunsford, et al, 2006, Wilensky,
1997). Noll and Shaughnessy (2012) found that despite their strong statistical and

mathematical knowledge of theoretical probability distributions, graduate teaching
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assistants experienced difficulty resolving differences between theoretical models and
empirical distributions. The teaching assistants also had difficulty explaining conceptual
ideas of probability. There is further evidence that undergraduate post-calculus students
have difficulty coordinating notions of random variable and sample space (Hernandez, et
al., 2006). Prior research indicates that post-calculus students were comfortable with
mathematical procedures and had mastered algorithmic techniques to use probability
distributions. However, these students appeared to lack stochastic conceptions of
probability and a deep conceptual understanding of probability distribution.

A study of post-calculus, engineering students’ conceptions of probability
revealed that conventional teaching can have a poor effect on students’ probabilistic
reasoning (Barragues, et al., 2007). In spite of the research-based evidence of students’
difficulties in understanding probability distribution and its related concepts, some
research shows that particular kinds of instruction can have a positive impact on students’
understandings. Although not conducted in a classroom, the work of Abrahamson (2007)
indicates that post-calculus learners can consolidate their intuitive notions of probability
with their formal mathematical knowledge in the context of probability distribution.
Abrahamson (2007) found that individuals were able to coordinate their thinking about
relationships between empirical distributions and theoretical distributions as a result of
engaging with interactive models in a computer environment.

Batanero and Diaz (2007) suggest, “A genuine knowledge of probability can only
be achieved through the study of some formal probability theory and the acquisition of
such theory should be gradual and supported by the students’ stochastic experience” (p.

124). Virtual environments offer simulations tools which can support stochastic
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experience. Research related to instruction in probability and statistics points to the
promise of learners’ engagement in tasks utilizing a computer-based, dynamic statistical
environment as a means towards facilitating development of notions of sampling
distribution, variability, and inferential reasoning (Meletiou-Mavrotheris, 2003; Sanchez
& Inzunsa, 2006). Prodromou (2012) found that specific software tools enabled students
to operationalize variation and subsequently to coordinate a data-centric perspective of
distribution with a modeling perspective of distribution. Instructional supports in a
virtual environment helped students connect theoretical probability to simulated
phenomena.
Learning with Understanding

A synthesis of research concerning how people learn revealed that students at all
levels come to classrooms with preconceptions (Bransford, Brown, & Cocking, 2000).
This research also found that effective teaching elicits students’ pre-existing
understandings and builds on that understanding. If students’ pre-existing understandings
are not engaged in their learning experiences, learners tend to compartmentalize the new
knowledge and subsequently revert to their original preconceptions when encountering
problem situations outside of the classroom. An implication of these findings is that
those who aim to teach for understanding must recognize that students bring a plethora of
understandings to a learning situation and elicit those pre-existing understandings.
Effective teaching for understanding in probability and statistics begins with instruction
that draws on students’ intuitive probabilistic and statistical understandings and builds on
these notions to support development of formal understanding in probability and

statistics.
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Bransford et al. (2000) found that in order to develop competence in a content
domain, students need a deep foundation of factual knowledge, an understanding of facts
and knowledge within the context of a conceptual framework, and the ability to organize
knowledge in ways that facilitate retrieval and application. These findings imply that
supporting learners’ movement toward more formal understanding in probability and
statistics involves development of foundational understandings of big ideas in these
content domains as well as development of a conceptual frame for connecting these big
ideas. Formal understanding in probability and statistics also requires a conceptual frame
that includes connections between probability and statistics.

Teaching for understanding in probability and statistics in ways which undergird
development of these aspects of competence described by Bransford, Brown, and
Cocking (2000) should aim to support development of principled knowledge (Greeno,
1978; Spillane, 2000). Greeno (1978) described principled knowledge as mathematical
knowledge that includes understanding of mathematical skills and procedures integrated
with understanding of the ideas and concepts which support mathematical procedures.
Thus, principled knowledge in probability and statistics refers to understanding the ideas
and concepts which support mathematical and statistical procedures, as well as
understanding the connections between and within probability and statistics. In order to
support development of principled knowledge, learning supports in probability and
statistics should not focus on algorithms, formulas, and memorization. Rather, learning
supports should focus on development of conceptual connections between and within

probability and statistics with an aim of deepening those connections.
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Curriculum and Instruction in Probability and Statistics

The intended curriculum of introductory college-level probability and statistics
courses typically culminates with instruction in formal statistical inference. Making
formal statistical inferences requires application of advanced stochastic thinking for
correct interpretation (Batanero, 2006), which includes making conceptual connections
between probability and statistics and a stochastic understanding of probability
distribution. Probability distribution is an important curricular topic in probability and
statistics because understanding statistical inference requires a stochastic conception of
probability distribution. A stochastic understanding of probability distribution is
essential to development of deep understandings in probability as well as development of
formal understanding of statistical inference. Thus, instruction in probability and
statistics should support development of stochastic reasoning and lay foundations for
formal inferential reasoning.

Along with the development of technological tools, statistical practice and
instruction in probability has changed in recent years. In a report published by the
Mathematical Association of America, Cobb (1992) recommended that instruction in
probability and statistics should emphasize statistical thinking, emphasize data and
concepts as opposed to theory and calculations, and foster active learning. Moore (1997)
argued for curricula reforms focused on more data analysis and less probability,
pedagogical reforms focused on fewer lectures and more active learning, and
technological reforms focused on data analysis and simulations. In 2005, the American
Statistical Association endorsed curricular guidelines for assessment and instruction in

college-level courses, as well as for K — 12 education (Franklin, et al., 2005; Garfield, et
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al., 2005). As a result, reformed-based curricula, which favor a data analysis approach
with less probability, have been developed and are widely used, while traditional
curricula, which favor more mathematics and probability, also remain in use. At the
present time, there are generally two different approaches to instruction in probability and
statistics at the college level: one favors a data analysis approach to instruction and the
other favors a more traditional, mathematical approach to instruction.

There is widespread dissatisfaction with a traditional, mathematically oriented
approach to teaching probability and statistics, which emphasizes teaching of formulas
for calculating statistics and lacks interpretive activities and simulations (Artigue, et al.,
2007). On the other hand, there is also dissatisfaction with a data analysis approach to
instruction that tends to mitigate probability and omits many topics in probability
(Biehler, 1994; Meletiou-Mavrotheris, 2007). Research indicates that despite recent
curricular reforms, at the end of an introductory course in probability and statistics, most
college-level students demonstrate an instrumental understanding of statistics inference
and struggle with understanding key concepts related to statistical inference.

Recommendations for a data analysis approach to learning statistics include a lack
of emphasis on probability. The reform curriculum tends to include one chapter
addressing formal probability, and this is the only consideration of probability in the
curriculum. Reform curricula focus on data and distributions of data and aim for students
to develop an understanding of statistics based on data analysis. However, these
curricula do not support development of conceptual connections between probability and
statistics. A serious concern with the data analysis approach to learning statistics is that it

requires students to make a major conceptual leap from analyzing data sets to considering
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the data as random samples from population. Biehler (1994) argued that both positions,
an instructional approach aimed at purely formal probabilistic conceptions and an
instructional approach aimed at a probability-free conception of data analysis, present
obstacles to learning probability and statistics.

Meletiou-Marvotheris (2007) argues that students’ persistent difficulties with
stochastic reasoning may be the result of traditional mathematics curriculum that leads to
compartmentalization of knowledge and fails to communicate the interconnectedness of
probabilistic and statistical notions. Developing an understanding of probability is
challenging for most learners, and there is substantial research documenting evidence of
persistent probabilistic misconceptions from childhood through adulthood,
misconceptions that are resistant to change (Artigue, et al., 2007; Batanero, et al., 2005;
Jones, et al., 2007; Metz, 1998; Shaughnessy, 1992). Research addressing instruction in
probability for young learners advocates supporting development of connections between
data and chance, and this research could inform an instructional approach that is viable
for adult learners as well (Abrahamson, 2007, 2009a, 2009b Konold & Kazak, 2008).
Research indicates that building notions of chance which are connected to data can help
children develop connected understandings of probability and variability (Konold &
Kazak, 2008; Shaughnessy, Cianetta, & Best, 2004; Shaughnessy & Cianetta, 2002).
These studies showed that by building on intuitive understandings of chance, and then
analyzing the data collected from probability experiments, young learners were able to
perceive the empirical law of large numbers and to begin building notions of probability

as a distribution.
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Research involving high school and college-level students has demonstrated that
particular instructional models which include students’ utilization of dynamic software
simulations can support development of conceptual connections between empirical
distributions of data and probability distribution models (Biehler & Prommel, 2010;
Budgett, Pfannkuch, Regan, & Wild, 2012; Maxara & Biehler, 2006; Prodromou, 2012;
Wild, Pfannkuch, Regan, & Horton, 2010). The implication is that a curricular approach,
which is neither purely formal nor probability-free but engages the learner in connecting
intuitive probabilistic notions with distributions of data and with formal ideas and
theorems, could promote stochastic reasoning and foster deeper understanding of
conceptual connections between probability and statistics.

Statement of Purpose

The purpose of this study was to investigate the impact of an instructional
intervention designed to support development of stochastic reasoning in the context of
probability distribution. Probability distribution encompasses foundational stochastic
ideas and is a key developmental understanding in both statistics and probability; a
stochastic conception of probability distribution affords critical connections between
probability and statistics. As described earlier in this chapter, research investigating
individuals’ understandings related to the notion of probability distribution indicates that
many learners experience difficulties thinking and reasoning about stochastic events.
This research also points to challenges learners experience conceptualizing and applying
the concept of probability distribution.

The analysis presented in this chapter suggests the need for a study which

investigates the impact of instruction on students’ understanding of probability
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distribution. The analysis also points to the need to develop an instructional model which
promotes the development of stochastic reasoning in the context of probability
distribution and to design instruction validating a hypothetical learning trajectory. Very
limited research exists addressing probabilistic conceptions held by students who have
strong backgrounds in mathematics, specifically those who have completed calculus.
Among these studies, only a few investigated students’ stochastic conceptions of
probability and only a few involved participants who had earned college-level credits for
calculus. This study aims to contribute to knowledge of post-calculus students’
stochastic understandings of probability distribution after instruction in a one-semester,
calculus-based, introductory probability and statistics course.
Theoretical Perspective

The theoretical perspective for this study frames a view of how understanding of
probability distribution develops in a learning environment and provides a hypothetical
model of connections between student learning and development of understanding of
probability distribution (see Figure 1.1). Central to development of understanding is a
viewpoint of how students’ learn. This viewpoint draws on constructivist and situated
perspectives and focuses on individual understanding that is built through learning
experiences, which are impacted by the learner, the teacher(s), the instructional material,
and peers. Learners’ understandings are developed throughout the process of learning.
This learning process is dependent on particular kinds of reasoning. In the case of
probability, stochastic reasoning is crucial for development of understandings, which
ground probabilistic and statistical thinking that is essential to understanding statistical

inference. Notions of stochastic reasoning are built on previous experiences with
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stochastic processes, which also inform development of current stochastic reasoning. As
notions of stochastic reasoning develop, learning results in the formation of probabilistic
and statistical concepts. Thus, reasoning about the stochastic informs an understanding
of probability distribution, and understanding of probability distribution informs
stochastic reasoning. This research seeks to measure and describe students’
understandings of probability distribution, which result from instruction designed to

support development of stochastic conceptions of probability.

Instructional
Material

Teacher

Student Stochastic Understapgjing
Learning Reasoning P_rob_abll _|ty
Distribution
(Learner) Peers Measured Learning
Outcomes

Figure 1.1. Model of theoretical framework for development of stochastic understanding
of probability distribution.
Student Learning

Learning experiences shape the development of understanding. This study draws
on two perspectives of learning, a constructivist view and a situated view. A situated
view of learning informs knowledge of how learners interact with the learning
environment and offers implications for design of instructional interventions. Student
learning is influenced by engagement with instructional material, and this study sought to

impact student learning via supplemental tasks designed to support development of
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stochastic understanding of probability distribution. Research investigating development
of post-calculus students’ understanding of probabilistic concepts indicates that teaching
IS an important factor related to students’ understandings of probability (Barragues,
Guisasola, & Morais, 2006; Sanchez & Inzunsa, 2006). Teaching, which emphasizes
procedures tends to result in instrumental understanding. Teaching which facilitates
learner explorations of conceptual notions of probability as a distribution and its
connection to mathematical the theorems offers opportunities for students to build
relational understanding (Skemp, 1976) in probability and statistics.

A constructivist view of learning informed the development of student
understanding for purposes of this study. Student learning is viewed as an active and
recursive process whereby understanding is developed as a result of previous
understanding, and new understandings are built from current understanding (Martin,
2008; Piaget, 2001; Pirie & Kieren, 1994). In this study, student learning was examined
from an individual viewpoint and was understood to be impacted through interactions
with self, interaction with peers, and interactions with instructional materials, and
interactions with teachers. A hypothetical learning trajectory (Simon, 1995) for
understanding probability distribution was adapted from Liu and Thompson’s work
(2007). The learning goal for the hypothetical learning trajectory was a stochastic
understanding of probability distribution.

Development of Stochastic Reasoning

Development of stochastic reasoning is an important component for

understanding probability distribution because stochastic reasoning is grounded in

conceptual connections between probability and statistics. This study assumes that
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development of stochastic reasoning will impact learners’ understandings of probability
distribution. Stochastic reasoning provides conceptual tools for individuals to deal
intelligently with random phenomena. To reason stochastically means conceiving of an
observed outcome as but one expression of an underlying repeatable process that will
produce a stable distribution of outcomes in the long run (Liu & Thompson, 2007).

Heitele (1975) suggested that instruction aimed at the development of stochastic
reasoning should focus on fundamental stochastic ideas rooted in intuitions of random
phenomena. Heitele maintained that stochastic notions link conceptions of empirical
distributions with theoretical probability distributions, and it is necessary to distinguish
and coordinate thinking about an empirical law of large numbers from a purely
mathematical law of large numbers. These ideas are in agreement with those purported
by Steinbring (2006) who proposed that developing stochastic conceptions of probability
are manifested by structural connections that arise from gradual changes in stochastic
meaning, resulting from interplay between an empirical object/reference context and a
formal mathematical sign/symbol. In this characterization, the empirical object/referent
context consists of “real” situations (i.e., chance experiments, sampling, simulations)
which result in an empirical distribution of relative frequencies and the formal
mathematical sign/symbol refers to probability distribution models (see Figure 1.2). The
meaning of a stochastic conception of probability cannot be conceived by only
considering of one of the vertices (i.e. only empirical distributions or only theoretical
distributions), but requires a balance among all vertices of the epistemological triangle.
The implication of this characterization is that development of stochastic reasoning

requires coordination of thinking about empirical probability and theoretical probability,
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as well as coordination of thinking about relationships between empirical objects and
formal mathematical signs, which should be developed simultaneously. Thus, a
stochastic conception of probability distribution includes coordination of thinking about

empirical probability distributions and theoretical probability distributions.

Referent Context / < » Mathematical Sign/

»

Object Symbol

Concept
of Probability

Figure 1.2. Epistemological triangle illustrating a stochastic conception of probability
(adapted from Steinbring, 2006).

Research confirms that development of stochastic conceptions involves
coordination of relational thinking about empirical probability and theoretical probability.
Liu and Thompson (2007) investigated probabilistic understandings of eight secondary
mathematics teachers and found that stochastic conceptions were developed through a
series of ways of thinking that include: (1) conceiving of an underlying repeatable
process, (2) understanding the conditions and implementations of this process in such a
way that it produces a collection of variable outcomes, and (3) imagining a distribution of
outcomes that are developed from repeating this process. This research illustrates that
developing notions of probability as a distribution are central to building stochastic

conceptions.
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Understanding Probability Distribution

Understanding probability distributions can be difficult for students because this
construct is a complex mathematical entity. Probability distributions are mathematical
models of results of random processes. At one level of the model, outcomes of random
phenomena are modeled by random variables. The next level of the model is comprised
of random variables, which are functionally mapped onto the probabilities associated
with the outcomes of the random variable. Random variables are the independent
variables, and probability is the dependent variable in this functional relationship. The
function represents probabilities associated with a distribution of outcomes of the random
variable. These outcomes may be discrete or continuous.

Three overarching constructs frame an understanding of probability distribution:
probability, variability, and distribution (Table 1.1). Notions of probability, which are
important to an understanding of probability distribution, are understandings of sample
space, independence, random variable, coordination of empirical and theoretical
probability, and models for inference. Important notions and theorems related to
variability, which connect to an understanding of probability distribution, are
randomness, the law of large numbers, unit-to-unit variability, sampling variability, and
the central limit theorem. Distributions of random variables, parameterization of
distribution models, distributions of sample data, population distribution, and sampling
distribution are notions of distribution that are associated to understanding of probability

distribution.

24



Table 1.1

Framework for Understanding of Probability Distribution

Probability Distribution

Probability Variability Distribution
Coordination of empirical ~ Randomness and random Distribution of random
and theoretical probability  variability variable
Random variable Law of large numbers Parameterization of
Sample space Unit-to-unit variability distribution model
Independence versus Sampling variability Distribution Of. sample
dependence o versus population

Variability of sample distribution
Model for inference statistics and the central sampling distributi
limit theorem ampling distribution

Understanding probability distribution means understanding connections between
the constructs of probability, variability, and distribution, as well as understanding
connections among notions within each construct and across the constructs. This means
that understanding variability is not exclusive of understanding probability. Furthermore,
understanding variability involves an understanding of randomness and random
variability that is connected to the law of large numbers, unit-to-unit variability in a set of
data/values, sampling variability, and variability of sample statistics. In addition, a deep
understanding of randomness involves understandings associated with the notions found
within the constructs of probability and distribution, and this deep understanding is
fostered by connected conceptions of probability, variability, and distribution. Deep
conceptual connections, such as those described by this theoretical framework for
understanding random variable, are cultivated through development of stochastic
reasoning. Thus, development of stochastic reasoning builds understandings about

probability distribution.
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Liu and Thompson’s (2007) research about the development of stochastic

conceptions of probability informs a hypothetical learning trajectory (Simon, 1995) for

developing stochastic understandings of probability distribution:

1.

Conceiving of a probability situation as stochastic process that has an
underlying in repeatable process: developed through notions of randomness,
the law of large numbers, and unit-to-unit variability of random phenomena;
Understanding the conditions of a stochastic process: developed through
notions of randomness and independence versus dependence;

Understanding implementations of a stochastic process and anticipating that
repeating a stochastic process would produce a collection of outcomes:
developed through notions of sample space, random variable and sampling
variability;

Imagining a distribution of outcomes that are developed from repeating a
stochastic process: developed through notions of distribution of random
variable and of coordination of empirical and theoretical distribution;
Conceiving of probability distribution as a model: developed through
parameterization of distribution, distribution of data, population distribution,
and sampling distribution; and through the central limit theorem, and a model

for inference.

This hypothetical learning trajectory anticipates that learners will connect their intuitive

notions of randomness and variability to more formal conceptions of these ideas. Each

phase of the learning trajectory connects to development of stochastic conceptions, which

were framed by Liu and Thompson (2007), and aims to move the learner toward a
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modeling perspective of probability in various contexts of probability distribution. The
hypothetical learning trajectory builds on an intuitive knowledge base and progresses
towards building connections of more formal mathematical understandings of probability
distribution. This research-based trajectory informed the design of instructional tasks for
supporting students’ learning with understanding. These tasks were aimed at
development of stochastic reasoning in the context of probability distribution.

This hypothetical learning trajectory was based on a small-scale study, which the
researchers described as highly exploratory (Liu &Thompson, 2007, p. 157). The sample
size in Liu and Thompson’s (2007) study does not support making broad claims related to
emergent understanding of probability. The implications are that a larger study involving
more mathematically-advanced learners is needed to illuminate understandings of
probability in the general population of mathematically-advanced learners, and to inform
a hypothetical learning trajectory for developing stochastic understanding of probability
distribution.

Research Questions

Given the evidence that many students in probability and statistics are not
learning with understanding, additional research is needed to investigate students’
understandings resulting from instruction designed to support development of principled
knowledge. A quasi-experimental study with comparison groups was designed to
investigate the impact of instruction on post-calculus students’ understandings of
probability distribution. The study employed mixed methodologies to investigate the
impact of an instructional intervention aimed at supporting a stochastic understanding of

probability distribution. This study focused on investigating students’ understandings of
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probability distribution as a result of an instructional intervention in a control-treatment
design.

The aim of this study was to contribute to current knowledge of college students’
understandings of probability by addressing the following research question: What is the
impact of an instructional intervention designed to support the development of stochastic
understanding of probability distribution of undergraduate students enrolled in an
introductory, calculus-based, probability and statistics course? The study also addressed
four research sub-questions. Qualitative research methodologies were used to address
research sub-question 1 and three components of this question. Quantitative research
methodologies were used to address research questions 2, 3, and 4.

1. What is the nature of students’ reasoning when confronted with a probability
situation?
a) How do students characterize a probability situation in terms of an image
of a repeatable process?
b) How do students characterize a probability situation in terms of
specification of conditions of a repeatable process?
c) How do students characterize a probability situation in terms of an image
of a distribution of outcomes?
2. Does instruction designed to support development of stochastic understanding of
probability distribution impact students’ stochastic conceptions of a probability

situation as evidenced on a conceptual assessment?
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3. Does instruction designed to support development of stochastic understanding of
probability distribution impact students’ understanding of confidence intervals as
measured by the ARTIST assessment?

4. Does instruction designed to support development of stochastic understanding of
probability distribution impact students’ understanding as evidenced on final
course examinations administered in an introductory, calculus-based, probability
and statistics course?

Significance

The study aims to contribute to knowledge of post-calculus students’
understanding of probability distribution after instruction in a one-semester, introductory,
calculus-based probability and statistics course and may inform mathematics and
statistics educators as to the probabilistic conceptions held by students who have earned
college-level credits for two semesters of calculus and have strong backgrounds in
mathematics. While the field has some evidence of post-calculus students’ understanding
of probability distribution, only one study of 117 students majoring in pedagogy,
psychology, and economics was conducted in conjunction with course instruction
(Batanero, et al., 2004). Other studies involving post-calculus students were either case
studies (Abrahamson, 2009b; Hernandez, et al., 2006; Wilensky, 1997) or studies
involving only a small number of students, which took place outside of the classroom
(Abrahamson, 2007; Inzunsa, 2008).

The study may also provide insights into characteristics of students’
understanding resulting from the instructional intervention designed to support

development of stochastic reasoning. The study could also provide evidence related to
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the impact of this kind of instructional intervention on students’ understanding. Prior
research suggests that tasks designed to foster the development of stochastic reasoning in
the context of probability distribution could potentially promote students’ thinking about
connections between probability and statistics.

The study potentially offers important contributions to knowledge about how best
to foster the development of students’ stochastic understandings of probability
distribution in the context of instruction. This study aims to utilize a hypothetical
learning trajectory positing development of a stochastic understanding of probability
distribution. Because statistical inference is the capstone of a typical college introductory
course in probability and statistics and statistical inference builds on a stochastic
conception of probability, a learning trajectory that intentionally supports development of
stochastic reasoning appears to be crucial to the development of probabilistic
understandings that ground statistical inference. This study could inform the usefulness
of the proposed hypothetical learning trajectory and provide validity for a framework to
support development of stochastic understanding of probability distribution.

Additional research is needed to inform educators about how best to approach
teaching for understanding in probability and statistics in ways that build on students’
pre-existing understandings and support development of principled knowledge of
concepts and connections between and within probability and statistics. Research, which
informs statistics educators about students’ understandings of probability distribution,
could help instructors understand how best to help learners make connections between
probabilistic and statistical concepts. This study may inform development of an

instructional model which promotes the development of stochastic reasoning in the
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context of probability distribution. As a result, this investigation of students’
understanding of probability distribution in the context of instruction aimed at the
development of stochastic reasoning may also provide valuable evidence about effective
curricular approaches for learning probability and statistics with understanding.
Knowledge of how instruction aimed at supporting and fostering students’ stochastic
understandings of probability distribution impacts that understanding could inform
development of curriculum and instruction in probability and statistics.
Overall Design of the Study

The study employed a treatment-control design to investigate the impact of an
instructional intervention designed to support students’ stochastic understanding of
probability. The study involved 184 students enrolled in two large-lecture classes of a
calculus-based, introductory probability and statistics course at a large, public university.
Participants in the study were students who had completed at least two semesters of
college-level calculus and were majoring in computer science, engineering, mathematics,
economics, and other scientific fields. Based on prior research it was assumed that prior
to instruction, students’ thinking would likely be more aligned with statistical novices
than experts (Abrahamson, 2007; Hernandez, et al., 2006; Lunsford, et al., 2006;
Wilensky, 1997). The study extended research investigating the impact of learning
supports (Abrahamson & Wilensky, 2007) on college-level students’ understanding of
probability distribution in an interview setting (Abrahamson, 2007, 2009c) to a large-
scale investigation of the impact of learning supports in an actual course setting.

All students enrolled in the calculus-based, introductory probability and statistics

course received supplemental lab assignments. These assignments were completed
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outside of regular classroom instructional time. For purposes of this study, students were
assigned to either a treatment or control group. Students in the control group received lab
assignments that consisted of a review of calculus content which students would be re-
encountering in this course. Students in the treatment group received technology-
supported lab assignments designed to support development of stochastic reasoning.
These learning supports were designed as anticipatory tasks (Simon, 2013) to elicit
stochastic conceptions of probability along a hypothetical learning trajectory aimed at
development of a stochastic understanding of probability distribution. The aim of the
anticipatory tasks was to promote stochastic conceptions of probability and impact
students’ stochastic understanding of probability distribution. These supplemental lab
assignments utilized bridging tools (Abrahamson, 2007, 2009a, 2009c) to facilitate
development of connections between tacit and formal mathematical knowledge related to
stochastic conceptions of probability distribution. In this study, students engaged in the
anticipatory tasks (supplemental lab assignments) prior to class-based instruction in
probability theory. The aim of these tasks was development of anticipations related to
stochastic conceptions of probability, thus preparing students to learn from their lecture
and discussion classes (Schwarz & Bransford, 1998).

Both groups completed written work for their respective lab assignments, and this
written work was due prior to receiving lectures on the specific course topic related to lab
assignment tasks. After completing the written portion of each lab assignment, students
in both the treatment group and the control group received explicit instruction via video
lessons connecting knowledge that their respective lab assignment was designed to

initiate with course specific content related to the lab assignment. For students in the
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treatment group, this explicit instruction connected foundational stochastic conceptions
related to probability distribution with topics in probability theory that students would
encounter in the course. Students in the control group received explicit instruction which
connected calculus-review practice problems with calculus content students would be
using in this particular introductory probability and statistics course.

The instructional intervention for the treatment group consisted of supplemental
lab assignments aimed at the development of stochastic reasoning in the context of
probability distribution. The design of lab assignment tasks for this intervention was
based on a hypothetical learning trajectory of students’ stochastic conceptions of
probability developed by Liu and Thompson (2007) which was adapted by the researcher
for use in the context of probability distribution. These lab assignments required students
to create and analyze virtual simulations which were designed to elicit students’ prior
understanding of probability and then deepen and extend that understanding. Lab
assignment tasks required students to consider juxtaposed constructs relevant to
understanding probability distribution, such as theoretical versus empirical probability
and independent versus dependent events (Abrahamson & Wilensky, 2007; Batanero,
Biehler, Maxara, Engel, & Vogl, 2005). The aim of the stochastic reasoning lab
assignments was to have the learner decompose domain constructs into idea components
and then use conceptual bridging tools to recompose the constructs using their intuitive
and analytic resources.

This instructional intervention was designed to impact development of students’
stochastic conceptions. Lab assignments for the treatment group were designed to

engage students in contrasting and analyzing probabilistic and statistical notions

33



connected the development of stochastic reasoning. The instructional intervention was
designed to prepare students to learn from the lectures and therefore to provide greater
opportunity for students to make deeper conceptual connections and to develop
knowledge of probability distribution (Schwartz & Bransford, 1998; Schwartz & Martin,
2004). During the latter part of the course, all students’ understandings were measured
by a conceptual assessment of their stochastic understanding, an assessment of their
understanding of confidence intervals, and the final course examination.
Limitations of the Study

This study has five main limitations. First, this study was conducted in a
mathematics department at a large public university in conjunction with traditional
lecture-recitation instruction, limiting the generalizability of these findings to other
instructional settings. A second limitation is the duration of the supplemental
probabilistic and statistical learning experiences in this study. Changes in understanding
may take years to develop rather than weeks or months. As such, it would be impossible
to assess the full impact of an instructional intervention which occurred during the course
of a one-semester class (Dunbar, Fugelsang, & Stein, 2007). Student engagement with
the lab assignments could be another limiting factor. Students may or may not have
perceived the lab assignments as being worthwhile because lab assignment questions
differed from the type of questions typically asked on homework or examinations. All
lab assignments were completed outside of regular class time, but students in the
treatment group were required to go to an on-campus computer lab to complete the
stochastic reasoning labs, while completion of the calculus review labs did not require

students to go to a special location. The fourth limitation of this study related to
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implementation was the role of peer interaction. Some students may have worked on the
lab assignment individually, while others may have worked on the lab assignments in
small, self-selected groups. Finally, beliefs are related to understanding and can be very
difficult to change, and prior research indicates these beliefs may be of particular concern

in the domain of probability (Fischbein, 1997; Greer, 2001).
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Definitions of Terms

Explanatory mental model. An explanatory mental model is a developmentally
appropriate model which connects intuitive notions and experiences to deeper conceptual
understanding and supports development of more integrated, normative conceptions
(Heitele, 1975).

Heuristic. A heuristic is mental shortcut which eases the cognitive load and aids
problem solving (Kahneman, Slovic, and Tversky, 1982).

Inferential reasoning. Inferential reasoning supports’ thinking about statistical
inference and involves coordination of probabilistic and statistical thinking which
includes images of data, distributions of data, randomness and random variability,
probability distribution models, sampling and sampling variability, and sampling
distribution models, as well as notions of the law of large numbers and the central limit
theorem (Pfannkuch & Wild, 2012).

Key developmental understanding. A key developmental understanding is a
conceptual advance that changes one’s ability to think about and/or perceive particular
mathematical relationships; and without completing the developmental process, the
learner lacks a particular mathematical ability (Simon, 2006).

Principled understanding. Principled understanding includes understanding of
mathematical skills and procedures integrated with understanding of the ideas and

concepts which support mathematical procedures (Greeno, 1978).
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Stochastic conception. Stochastic conceptions involve: (1) understanding the
nature of random phenomena, (2) understanding how probability is used to model
random phenomena, and (3) understanding connections between probability and
statistics. (Steinbring, 1991).

Stochastic process. A stochastic process is a repeatable process that produces a
collection of outcomes, and although any given outcome is unpredictable, the long-run
patterned nature of the process is evident.

Stochastic reasoning. Stochastic reasoning involves conceiving of the probability
of an outcome in relation to the process that produced that outcome and coordination of
intuitive notions of chance with formal mathematical knowledge of probability

(Steinbring, 1991).
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CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW
This chapter provides a review of literature and the theoretical background for the
study. The first section presents a conceptual analysis of stochastic reasoning. It
describes conceptions of stochastic processes, stochastic conceptions of probability, and
development of stochastic reasoning. The second section presents analyses of three
conceptual components comprising an understanding of probability distribution and a
review of literature addressing understanding for each of these conceptual components.
This section begins with an overview of the historical development of mathematical
models and notions related to probability distribution. The historical overview is
followed by subsections which present analyses of aspects of conceptual components
related to understanding probability distribution: probability, variability, and distribution.
This subsection is includes a review of literature addressing understanding for each of the
three conceptual components. The final subsection included under the section addressing
understanding of probability distribution provides a review of literature addressing
inferential reasoning. The third section of Chapter 2 presents an analysis and review of
literature addressing the theoretical perspective of learning used for this study. The final
section addresses use of technology in learning probability and statistics.
Conceptual Analysis of Stochastic Reasoning
Stochastic reasoning is grounded in the conceptual connections between

probability, statistics and data, and offers conceptual tools for individuals to deal
intelligently with quantitative information. The foundation of stochastic reasoning
involves consideration of both probabilistic and statistical notions. Statistics uses random

processes and probability models to make inferences about data, and probability

38



describes, quantifies, models and illuminates random processes (Jones, et al., 2007).
Hacking (1975) states the statistical side of probability concerns itself with “stochastic
laws of chance processes” (p. 12). Statistical notions of probability are exemplified by
experiments in which long run frequencies stabilize on repeated trials. Outcomes from
these experiments result in data, which are produced by a random or stochastic process.
Thus, stochastic reasoning means conceiving of an observed outcome as but one
expression of an underlying repeatable process that will produce a stable distribution of
outcomes over the long run (Liu & Thompson, 2007).

Stochastic reasoning is an important notion which undergirds a principled
understanding of probability distribution that incorporates consideration of both empirical
and theoretical distributions. Stochastic reasoning includes stochastic conceptions of
probability that are characterized by the coordination and linking of intuitive notions of
chance with formal, mathematical knowledge of probability (Steinbring, 1991). A
stochastic conception of probability means conceiving of the complementary relationship
between empirical probability, which results from real-world observations, and
theoretical probability, which is an abstract mathematical model.

Statistical inference is grounded in a stochastic conception of probability (Liu &
Thompson, 2007). The observed statistic, which results from data, is interpreted in light
of a probabilistic model, and an inference is made based on a probabilistic statement.
Thus, engaging in statistical inference involves understanding of probability distribution
as a model and requires making conceptual connections between probability, statistics

and data.
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Conception of Stochastic Process

A stochastic process is random process that may be described in terms of
probability. The outcomes of a stochastic process are non-deterministic and may be
modeled by random variables. The distribution of a random variable is a probability
distribution; thus, a stochastic process can be mathematically modeled as a function of a
random variable. The probability distribution is an abstract model of observed
phenomena.

An observed phenomenon is a result of reality, is concrete, and can result in data.
Thus, although stochastic process is an abstract notion, concrete data may result from this
random process, and the data may be collected and analyzed. These data are complex
and involve aspects, which are both stochastic and patterned (Metz, 1998). Empirical
data, such as these, may be modeled using probability or analyzed using statistical
techniques. Inferences may be made about the phenomenon, and probabilistic models are
used to make formal statistical inferences about this stochastic situation. Hence, thinking
about a stochastic process involves interplay between data, probability, and statistics.
Stochastic Conception of Probability

A stochastic conception of probability provides a foundation for stochastic
reasoning and is a critical affordance for making connections between probability and
statistics. Thus, a stochastic conception of probability can be considered to be a key
developmental understanding in probability and statistics (Simon, 2006). An individual
who holds a stochastic conception of probability exhibits the ability to perceive the
complementary relationship between empirical probability (which results from real-world

observations) and theoretical probability (which is an abstract mathematical model). This
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person is also able to discern stochastic notions present in statistical problems, which
makes these problems understandable and solvable.

A stochastic conception of probability does not develop through merely hearing
explanations, but is built through multiple experiences and is a result of active reflection
on those experiences. As a key developmental understanding, a stochastic conception of
probability transforms the way one understands situations involving probability and
random events. Such a conception is essential to understanding probability. “A genuine
knowledge of probability can only be achieved through the study of some formal
probability theory; however, the acquisition of such formal probability theory by the
students should be gradual and supported by their stochastic experience” (Batanero, et al.,
2005).

Liu and Thompson (2007) describe a stochastic conception of probability as a
notion that entails conceiving of the probability of an outcome in relation to the process
that produced that outcome. Similarly, a stochastic conception of an event is conceived
as but one expression of an underlying repeatable process. Liu and Thompson (2007)
investigated probabilistic understandings of eight secondary mathematics teachers and
found that a stochastic conception is developed through a series of ways of thinking that
include: (1) conceiving of an underlying repeatable process, (2) understanding the
conditions and implementations of this process in such a way that it produces a collection
of variable outcomes, and (3) imagining a distribution of outcomes that are developed
from repeating this process. This research revealed that a stochastic conception of
probability incorporates five aspects:

1. Conceiving of a probability situation as the expression of a stochastic process;
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2. Taking for granted that the process could be repeated under essentially similar
conditions;
3. Taking for granted that conditions and implementation of the process would
differ among repetitions in small, yet perhaps important ways;
4. Anticipating that repeating the process would produce a collection of
outcomes;
5. Anticipating that the relative frequency of outcomes will have a stable
distribution in the long run (Liu & Thompson, 2007, pg. 122).
These researchers also found that a stochastic conception of probability supported
thinking about formal statistical inference.
Development of Stochastic Reasoning
One reason people may experience difficulty with stochastic reasoning is because
learning about random experiments through simulation, or experimentation, is not
connected to formal mathematical learning about probability and to representations in
probability (Batanero, et al., 2004). Research indicates there are disconnections between
an individual’s intuitive thinking about probability that is based on experience with
random generators and formal mathematical thinking about probability (Abrahamson,
2007, 2009c, 2009d). For example, Rubel (2007) observed these disconnections were
evident in high school students’ thinking about probability in school versus out of school.
The complementary nature of empirical (frequentist) probability and classical
(theoretical) probability was not salient to learners, and as a result, their probabilistic
thinking was compartmentalized. Stochastic thinking involves coordination of empirical

and classical perspectives of probability, thus compartmentalization of probabilistic
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thinking could be related to difficulty in thinking about the random processes (Batanero,
etal., 2004).

Making statistical inferences requires application of stochastic thinking in order to
correctly interpret data in light of probabilistic models. However, many people with little
formal training in mathematics or stochastics are using statistical tools and engaging in
statistical analysis (Batanero, 2006). This statement implies that instruction in
probability and statistics aimed at helping learners develop conceptual connections that
will lay foundations for inferential reasoning is crucial. Having stochastic conceptions,
which foreground statistical inference, means the learner will understand probability
statistically and understand statistics probabilistically (Liu & Thompson, 2009). This
reciprocity of thinking is critical to understanding formal statistical inference. Instruction
should support learning aimed at developing connected notions of a stochastic conception
of probability and statistics in the context of data.

Stochastic reasoning involves both probabilistic and statistical thinking, but topics
in probability and statistics are typically compartmentalized in the curriculum. Teaching
should support learning, which conceptualizes the complementary relationship between
probability and statistics. Batanero and Diaz (2007, p. 124) state, “A genuine knowledge
of probability can only be achieved through the study of some formal probability theory,
and the acquisition of such theory should be gradual and supported by students’
stochastic experience.” Thus, a primary goal of statistics education should be to support
stochastic conceptions of probability, which are also conceptions that support thinking

about statistical inference (Liu & Thompson, 2007).
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Understanding Probability Distribution

An understanding of probability distribution includes understanding along three
important and interrelated conceptual components: probability, distribution, and
variability. Because probability distribution comprises a key developmental
understanding in the domain of probability and the domain of statistics, each of the three
conceptual components includes aspects of probability which support thinking about
probability distribution across these domains. Stochastic conceptions of probability
distribution include coordinated images of probability, distribution, and variability which
undergird understanding statistical inference.

Historical Development of Probability Distribution

Historically, early notions of probability distribution emerged through study of
observations of data. Early mathematicians struggled with ideas regarding coordination
of empirical observations, mathematical representation, and formalization of models for
probability. The origin of probability theory is connected to the binomial probability
distribution.

The work of Jacob Bernoulli is regarded as the beginning of the mathematical
theory of probability (Hacking, 1975). Bernoulli’s interest in games of chance involving
equally likely outcomes stimulated him to attempt formal mathematization of empirical
notions specifying that the accumulation of more evidence about an unknown proportion
resulted in being closer to certain knowledge about the that proportion. Bernoulli asserted
that even “the most stupid of men” (Stigler, 1986, p. 83) understand that uncertainty

decreases as the number of observations increases. The result of Bernoulli’s early work
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in this area is referred to as Bernoulli’s weak law of large numbers. 1t was the first
mathematical approach toward measurement of uncertainty.

Around 1721, De Moivre began efforts towards approximating terms of the
binomial expansion. Building on Bernoulli’s work, De Moivre found a function for a

large sample approximation P(X = "/2) where X was binomial distribution (symmetric

with n trials, n even). Although De Moivre did not develop the concept of a density
function, he viewed this exponential function as a curve that approximated the binomial
distribution. De Moivre’s approximation to the binomial distribution is taken to be the
original appearance of the normal curve (Stigler, 1986, p. 76). In this work, De Moivre
emphasized the law of large numbers rather than measurement of irregularity. His
approach was mathematical, and he perceived that chance lay in the data, not in the
underlying theoretical probabilities. However, during that period of time, the perspective
of probability was only from cause to effect, which thwarted application of the binomial
distribution as a model used for inference.

The idea of inversion of probability, which is probabilistic reasoning from effect
to cause, was developed by Laplace. This idea provided ways of thinking about
probability that could be applied to inference. Laplace took a more philosophical and
analytic approach to thinking about probabilistic ideas. Laplace found the tools he
needed for inference involving the binomial distribution and applied the notion of inverse
probability to binomial situations (Stigler, 1986).

Other developing mathematical ideas connected to binomial distribution were
rooted in interest about data. Quetelet was interested in fitting normal curves to data

observations. He viewed the normal curve as the end product of a binomial mechanistic
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model. Quetelet was interested in a connection between the normal curve and sums of
independent accidental causes, and this was an important link towards application of the
normal model. Quetelet constructed a table that was based solely on the binomial
distribution, with 1000 outcomes (p = 0.5, n = 999). Without using an analytic
approximation to the normal integral, he found an approximation to the normal
distribution.

In 1875, Galton devised the quincunx as a device for illustrating lectures. The
quincunx was an analogue for binomial experiments. Shot was dropped through a glass
funnel and cascaded through rows of equally spaced pins, which formed an array. At
each level (row), the shot had an equal probability of falling left or right. The shot was
collected in bin at the bottom of the devise. Dropping many shot resulted in a normal
shaped curve at the bottom. Development of the quincunx resulted in an extraordinary
visual representation of the binomial distribution and provided an analogue proof related
to ideas about independence.

Understanding Probability

One of three major conceptual components of probability distribution is
probability. The probability of an event is defined as a numerical measure of the
likelihood that an outcome for a chance experiment with a finite sample space will occur.
In a chance experiment, an event corresponds to a subset of the sample space, and a
subset of the sample space consists of one or more outcomes. Thus, we state that an
event A occurs if any one of the outcomes in A occurs. The probability of event A is
denoted by P(A). P(A) is a numerical value that gives a measure of the chance that A

will occur.
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Assigning a value to measure probability involves a different kind of thinking
than the logical or causal approach typical in other areas of mathematics (Kapadia &
Borvcnik, 1991). Probability is multifaceted and consists of meanings which are
dialectically and experimentally intertwined (Batanero & Diaz, 2007). Meanings of
probability include: (1) a priori mathematical degree of uncertainty, (2) evidence
supported by data, (3) a propensity, (4) a logical relation, (5) a personal belief, and (6) a
mathematical model. These meanings can be subsumed under three views of probability:
subjective, empirical, and theoretical. Subjective probability is often based on intuition
or experience and reflects a measure of personal belief (Ross, 2006).

Empirical probability is based on evidence supported by data. It is formalized by
estimation of the frequency of occurrence of events derived from relative frequencies.

The relative frequency of an event A is defined as the number of times the event occurs

divided by the number of repetitions of the experiment represented by f,,(4) = M)A

n

frequentist definition of probability is rooted in the law of large numbers, which describes
the long run stability of the relative frequency. According to the law of large numbers,
variations in the relative frequency with which event A occurs will fluctuate less as the
experiment is repeated, and the limiting number to which the relative frequency
converges as the number of repetitions increase is the probability of event A. The law of
large numbers confirms intuitions that the probability of an event in a repeatable
experiment can be estimated by the relative frequency of event A.

Theoretical probability is anchored in mathematical theory and can be defined via
a classical approach or via axiomization. Probability for finite sample spaces can be

determined using the classical approach, which is also called the Laplace model. The
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classical definition assumes all outcomes are equally likely. For example, if there are k
outcomes in the sample space, then each outcome is assigned the probability of %

(Devore, 2004; Ross, 2006; Tijms, 2007). The classical definition of the probability of

event A is the number of outcomes in event A divided by the number of outcomes in the
sample space (4) = % , where m represents the number of outcomes in event A. The

axiomatic approach to probability was not formalized until 1993 when Kolmogorov laid a
satisfactory mathematical foundation of probability theory (Tijms, 2007). The axioms of
probability hold for an experiment with a finite or countable infinite sample space, as
well as for an experiment with an uncountable sample space.

For a finite sample space, probability is defined as a measure and this measurable
function P assigns a numerical probability P(A) to each subset A of the sample space.
The probability measure P must satisfy the following conditions (axioms):

Axiom 1: P(A) = 0 for every event A

Axiom 2: P(A) = 1 when A is equal to the sample space

Axiom 3: P(AU B) = P(A) + P(B) for disjoint events A and B
These axioms require that probability values can only range between 0 and 1. A sample
space together with an assignment of probabilities to events in the sample space is called
a probability space (Koralov, 2007; Tijms, 2007).

The concept of probability is multifaceted and related to ideas about variability
and distribution. For the purpose of this study, five aspects of probability are envisioned
as being important to an understanding of probability distribution for a post-calculus
introductory probability and statistics course. These aspects are: coordination of

empirical and theoretical probability, notions of random variable, notions of sample
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space, notions of independence versus dependence, and understanding the use of
probability as a model for making statistical inferences. An understanding of probability
distribution requires understanding these distinctions and coordinating thinking about
empirical and theoretical probability.

Coordination of empirical and theoretical probability. Historical foundations
of probability began with games of chance and gambling, and are grounded in the
empirical dimension of probability. Evidence of this history is found in the use of
random devices throughout the historical record, some of which date as early as 3500
B.C. These devices point to the prevalent nature of chance games throughout human
history. However, it was not until the sixteenth century that the Italian physician and
mathematician, Cardano, quantified chance outcomes based on the concept of outcomes
of an experiment for cases when all of the outcomes are equiprobable (David, 1998;
Hacking, 1975). This quantification of probability was fore grounded by empirical
evidence based on observations of dice games, and Cardano’s subsequent naming of the
outcomes. The approach that Cardano used marks a great leap in the development of
probability theory and exemplifies the importance of the complementarity of the dual
natures of probability, empirical and theoretical.

A rich understanding of probability must acknowledge the complementarity
between empirical and theoretical natures of probability and requires an acceptance that
“probability is neither strictly an empirical nor mathematical property, but the
combination of these aspects bound to context” (Kapadia & Borvcnik, 1991, p. 20). This
kind of understanding includes a notion that a purely experimental approach to

probability is not sufficient (Batanero & Diaz, 2007). Empirical probabilities are
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evaluated in light of probabilistic models, and these models are theoretical constructs.
Additionally, the work of Piaget and Inhelder (1975) points to the importance of context,
in addition to combination of the complementary empirical and theoretical aspects of
probability, in order for individuals to development formal mental organization of
probabilistic concepts.

Random Variable. Quite often, we are interested in describing, summarizing,
modeling, and representing outcomes of chance experiments, and these endeavors are
more readily accomplished with numerical values. A numerical value is determined from
some characteristic pertaining to the outcome. For example, we may be interested in the
number of heads obtained in tossing four coins, which is a function of the outcome of the
experiment, rather than the actual outcome. Furthermore, the association of a number
with a chance outcome enables the employment of a host of mathematical tools. The rule
of association is called a random variable. It is a variable because different numerical
values are possible, and it is random because the values depend upon the result of the
experiment.

A random variable is defined as a mathematical function that maps (associates)
each outcome onto the set of real numbers. For each outcome, there is only one value of
the random variable. Thus, a random variable is a function, which assigns a numerical
value to each outcome of the chance experiment (Devore, 2004; Korolov, 2007). The
domain of this mathematical function is the sample space and the range is the set of real
numbers. A random variable is also a mathematical model comprised of real numbers,
which are dependent upon random outcomes. In this sense, a random variable models

“reality” given by the random events.
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Sample Space. A random variable is a function defined on the sample space of a
chance experiment (Devore, 2004; Korolov, 2007). The sample space is a set of elements
that corresponds with the set of all possible outcomes of the experiment (mathematically,
this is a one-to-one correspondence). In the example of the experiment described as
tossing four coins, the sample space consists of the union of the distinct outcomes, i.e. the
set of all possible combinations of four elements, where each element is either heads or
tails. Each outcome provides the input (domain) on which the random variable function
operates. Thus, an understanding of sample space is intimately connected to the concept
of random variable.

Piaget and Inhelder (1975) articulate the importance of sample space in addition
to an image of the distribution of all possible outcomes for a chance experiment:

Now with chance..., it is precisely a question of describing the sample space, that

is, all the possibilities, so that, on the one hand, the distribution of the total

number of cases becomes predictable and, on the other hand, each isolated case

acquires a probability expressed as a fraction of the whole.(p. 228).

This research shows that a rich conception of sample space is related to a consideration of
the distribution of possible outcomes, including the important notion of variability.

Piaget and Inhelder (1975) claim that one important aspect of formal probabilistic
thinking is the notion of the composite of individual outcomes coordinated with a whole
that is defined as all possible outcomes. The whole is determinable by a system of
multiple possibilities. A deep understanding of probability consists of judging isolated
outcomes in comparison to the whole set of possible outcomes. Thus, conceptions
related to outcomes of a random variable must be considered simultaneously with a

conception of the distribution of the random variable. Further implications that ensue

from the work of Piaget and Inhelder (1975) are: (1) sample space in an important
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construct in making probability judgments and assignment of probabilities, and (2)
sample space is a composite concept of individual outcomes along with the distribution
of possible outcomes must be considered simultaneously. Both of these implications are
also related to notions of empirical probability and theoretical probability. Experimental
outcomes of chance experiments result in frequencies, which may be transformed into
relative frequencies describing empirical probability.

Independence versus dependence. Understanding probabilistic notions of
independence versus dependence is important to understanding notions of randomness,
sampling, random variable, and distributions of random variables. Many probability
models assume trials are independent. Random sampling assumes that selection of any
element is equally likely and independent, i.e. the selection in any given trial or
occurrence does not depend on any other selection. The concept of independent random
variable is very important to understanding probability distribution. Independent random
variables are uncorrelated and this property undergirds many probability distribution
models. A sample statistic can be considered a random variable and sampling
distribution models are based assumptions of independence and random sampling.

Research addressing understanding of probability. There are differing
standards in terms of elements of abstraction that constitute the meaning of understanding
probability that are expected for individuals in various institutional settings or situations.
All students who are undertaking formal study of concepts of probability need to
distinguish between personal and institutional meanings of probability and appropriate
these meanings in a given context (Batanero & Diaz, 2007). Students in this study were

preparing for undergraduate degrees and subsequent scientific work, which requires
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knowledge of probability distribution and stochastic processes. Thus, during their study
and when accessing their knowledge of probability in applied contexts, the students will
need to integrate thinking about empirical distributions involving relative frequencies and
empirical probabilities with thinking about theoretical probability and probability
distribution models.

Personal meanings of probability arise from intuitions; studies show that intuitive
probabilistic notions may interfere with the development of normative mathematical
probabilistic notions (Fischbein, 1975). Fischbein (1987) defines probabilistic intuition
as a cognition that appears subjectively as self-evident. Fischbein (1997) argues that one
reason intuitive cognitive beliefs may conflict with reality is because experiences may be
limited. Individuals tend to seek coherence for cognitive organization and tend to
integrate information that is more easily available, ignoring information that requires a
more sophisticated effort. Fischbein (1997) investigated the evolution of intuitively-
based, probabilistic conceptions with age. Participants in this study were students in
grades 5, 7, 9, 11, and college-level students who were preparing to specialize in teaching
mathematics. Fischbein (1997) found that conceptions related to representativeness and
the independence of outcomes of a stochastic process improved with the age of the
student. However, other studies indicate that misconceptions related to
representativeness are common among college-level students from a variety of majors
(Barragues, et al., 2006, 2007; Batanero, et al., 1996; Hirsch & O’Donnell, 2001).
Studies show that students demonstrate inconsistent reasoning across a variety of
problems contexts, and misconceptions related to determining the probability of

compound and simple events are common and stable across all age groups (Fischbein,
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1997; Rubel, 2007). Fischbein (1997) reported that misconceptions related to the effect
of sample size were prevalent across all age groups and these misconceptions became
stronger with age for students “not trained in stochastics” (pg. 103). The findings from
other studies confirm that students indicate insensitivity to sample size and a tendency
towards belief in the law of small numbers (Barragues, et al., 2006, 2007). Similarly,
other research indicates that post-calculus students, who were either currently enrolled in
or had recently completed an introductory probability and statistics course, exhibited
probabilistic thinking that was aligned with the level of novice thinking evidenced by
high school students and college-level students in algebra-based introductory probability
and statistics classes (Abrahamson, 2007; Abrahamson & Wilensky, 2007; Barragues, et
al., 2007; Hernandez, et al., 2006; Ives, 2007; Lunsford, et al., 2006; Wilensky, 1997).
Studies demonstrate the benefits of supporting students’ intuitive expectations in
probability situations (Abrahamson, 2007, 2009c). Abrahamson (2009c) investigated the
capacity of 24 self-selected, mathematically trained, undergraduate and graduate students
(post-calculus) who were requested to model a simple binomial probability problem
situation. Abrahamson (2009¢) examined students’ connections between combinatorial
analysis and simulated probability experiments and was interested in whether these post-
calculus students understood how the binomial function is grounded in combinatorial
analysis. These students worked with innovative learning tools, which were designed by
Abrahamson and Wilensky (2007) to develop perspectives of modeling probability. The
researcher guided and observed students interactions with the tools so as to elicit
participants’ understanding (Abrahamson, 2007). The majority of participants alluded to

formulas for computing expected frequencies and referred to mathematical concepts,
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such as limit. Of the 24 participants, 18 described the nature of probability experiments
with examples, and 12 cited the law of large numbers. Only four participants correctly
employed combinatorial analysis before explicit prompting, while another six participants
used some form of combinatorial reasoning, but abandoned the procedure or could not
correctly complete the procedure. The remaining students did not mentioned
combinatorial analysis in any form. However, once students were prompted to construct
the sample space, all students expressed the implication of the sample space for the
experimental outcomes and indicated coordination of thinking about empirical and
theoretical probability. Abrahamson (2007, p. 22) asserted, ““... with their metacognitive
and ‘school-wise’ development, students come to regard their intuitive/experimental and
formal knowledge as separate resources, as though the former constitutes a possible
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impediment to ‘really learning.”” Abrahamson (2007) argued that learning environments
which allow students to experience the “power of modeling” should not be limited to
middle school, but rather should be sustained through secondary and post-secondary
education.

Shaughnessy and Cianetta (2002) assert that the concept of statistical variation is
closely connected to the concept of sample space for a probability experiment. The
concept of sample space is also connected to conceptions of random variable.

Hernandez, et al. (2006) found post-calculus students exhibited predominantly
deterministic thinking along with a tendency to focus on algebraic procedures and did not
link mathematical conceptions of random variable to the problem context. These

students demonstrated difficulties distinguishing between model and reality in a

probability situation and did not accept random variable as an aspect of a probability
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model (Hernandez, et al., 2006). Other studies also indicate students’ engagement with
probability simulation tasks can promote development of conceptual connections
between empirical and theoretical probability models (Meletiou-Mavrotheris, 2003;
Konald & Kazak, 2008). Corter and Zahner (2007) found that many students enrolled in
an introductory statistics course for graduate students spontaneously used visual
representations to reorganize information and list outcomes while solving probability
problems. Research indicates that appropriate tools can support development of an
outcome-based notion of sample space and coordination of notions of empirical and
theoretical probability (Abrahamson, 2009a, 2009c; Abrahamson & Wilensky, 2007;
Kuntze, Engel, Martignon, & Gundlach, 2010; Lee, Angotti, & Tass, 2010).

Statisticians must consider probability distribution models when making
inferences from data. However, research addressing post-calculus students’ conceptions
of probability distribution reveals that learners exhibit difficulty understanding
probability models and discriminating between empirical distributions of data and
theoretical probability distribution models (Abrahamson, 2007; Batanero, et al., 2004;
Lunsford, et al., 2006, Wilensky, 1997). Noll and Shaughnessy (2012) found that despite
their strong statistical and mathematical knowledge of theoretical probability
distributions, gr