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We reviewed literature about various multiple testing techniques, especially 

addressing microarray analyses and small sample sizes, and reanalyzed data from 

Yuen et al. (Physiological Genomics, 2006) which compared the effect of HgCl2 and 

Ischemia/Reperfusion injuries on rat kidney tissues.  Our analysis uses only 22 rats 

with small numbers of rats in each treatment group, and 9,501 genes under study.  We 

used empirical Bayes (EB) and permutation testing (implemented in Bioconductor) in 

an effort to identify differentially expressed genes.  EB identified a large number of 

genes as differentially expressed, including both previously identified and newly 

identified genes.  The newly identified genes appear to have biological functions 

similar to those previously identified.  We also recognized power differences between 

EB and permutation tests, possibly due to nonnormality of the data but also because 

permutation tests do not make use of all available information in the data. 
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Chapter 1: Overview 

 

Statistical methodology has advanced over the last 10 years in handling problems of 

multiplicity which inevitably arise in genomic research.  In this context, a large 

number of hypothesis tests (typically thousands) is carried out, potentially leading to 

a large number of falsely significant results due to an increased chance of committing 

at least one false positive, that is, at least one Type I error.  Small unadjusted p-

values, which would lead to the rejection of a single hypothesis, may no longer 

correspond to significant findings.  To control this multiplicity effect, classical 

multiple comparison procedures aim to control the probability of committing one or 

more type I error in families of comparisons under simultaneous consideration.  In 

this thesis, we are going to review that literature, emphasizing recent developments, 

and we will apply some of the new multiple testing methodology to an available 

dataset.   

 

This dataset consists of microarray analyses from kidney tissues obtained from 31 

Sprague-Dawley lab rats which were submitted to mercuric chloride (HgCl2) and 

ischemia reperfusion (IR) treatments, with approximately 10,000 genes per rat.   

 

The dataset had been previously analyzed by Yuen et al. (2006) using a combination 

of ad hoc data screening techniques and off-the-shelf statistical analyses.  We will 

take up the analysis of these data using several different approaches which have been 
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incorporated in the R Bioconductor ensemble.  The limma approach assumes 

normally distributed data, and relies on a combination of normal theory analysis of 

linear models together with an empirical Bayes approach and other shrinkage 

methods which borrow information across genes to stabilize the analyses even for 

experiments with small number of arrays (Smyth, 2004).  The multtest approach 

is permutation-based, and its algorithm makes no assumptions about the data 

distribution (Pollard, Dudoit and van der Laan, 2004).    

 

Our limma analysis identified a large number of differentially expressed genes, 

many of which were not identified by previous workers.  On the other hand, the 

multtest approach identified very few differentially expressed genes.  It appears 

as if the limma approach has much more power than has the multtest approach.   

 

Future chapters will review the literature of statistical methodology for handling 

multiple testing (Chapter 2), present our analysis and results (Chapter 3) and then 

summarize our findings and discuss our conclusions (Chapter 4).  The Appendix 

includes detailed documentation and numerical results of our differentially expressed 

gene findings, as produced by the limma and multtest procedures. 
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Chapter 2: Literature Review 
 
 

Statistical methodology has advanced over the last 10 years in handling problems of 

multiplicity which inevitably arise in genomic research.  In this context, a large 

number of hypothesis tests (typically thousands) is carried out, potentially leading to 

a large number of falsely significant results due to an increased chance of committing 

at least one false positive, that is, at least one Type I error.  Small unadjusted p-

values, which would lead to the rejection of a single hypothesis, may no longer 

correspond to significant findings.  To control this multiplicity effect, classical 

multiple comparison procedures aim to control the probability of committing one or 

more type I error in families of comparisons under simultaneous consideration.   

The dataset analyzed in this thesis is a microarray analysis of kidney tissues obtained 

from 31 Sprague-Dawley lab rats which were subjected to mercuric chloride (HgCl2) 

or ischemia reperfusion (IR) treatments, with approximately 10,000 genes per rat.   

In this Chapter, we review literature about the analysis of genomic data with a small 

amount of background from Biology.  In subsequent sections, we will review 

literature in the following topics: bioinformatics background; mathematical 

framework; permutation-based versus bootstrap-based tests (as advocated by Dudoit 

et al. (2004)), and packaged by the Bioconductor project into multtest); Smyth’s 

(2004) article – the basis for limma, where by fitting a linear model to the expression 

data for each gene, this package allows analyses of contrasts of interest analysis.  

Empirical Bayes and other shrinkage methods are used to borrow information across 
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genes making the analyses stable even for experiments with small number of array; 

Overview of Multiple Testing Procedures; The Bioconductor project;  Multtest 

package which mechanizes Dudoit’s approach and Limma package which 

mechanizes Smyth’s approach.   

In this chapter, we make extensive use of the following two books: Bioinformatics 

and Computational Biology Solutions Using R and Bioconductor by Robert 

Gentleman, Vincent J. Carey, Wolfgang Huber, Rafael A. Irizarry and Sandrine 

Dudoit; and Multiple Testing Procedures with Applications to Genomics by Sandrine 

Dudoit and Mark J. van der Laan.  Therefore these two books will not be cited 

individually.  Other references will be cited as needed. 

 

 

2.1  Bioinformatics Background 

Microarray technology takes advantage of hybridization properties of nucleic acid 

and uses complementary molecules attached to a solid surface, referred to as probes, 

to measure the quantity of specific nucleic acid transcripts of interest that are present 

in a sample, referred to as the target.  The molecules in the target are labeled (via a 

cascade of biochemical reactions), and a specialized scanner is used to measure the 

amount of hybridized target at each probe, which is reported as an intensity.  The 

biochemical reactions and optical detection are performed in parallel, allowing up to a 
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million measurements on one array.  The raw or probe-level data are the intensities 

read for each of these components.  

Subtle variations between arrays, in the reagents used, and in the environmental 

conditions lead to slightly different measurements even for the same sample.  The 

effects of these variations may be divided into two classes.  Systematic effects affect 

a large number of measurements (for examples, the measurements for all probes on 

one array, or the measurements from one probe across several arrays) simultaneously.  

Such effects can be identified and approximately removed.  Other kinds of effects are 

completely random, with no well understood pattern.  These effects are commonly 

called stochastic components or noise.  

Complementary DNA (cDNA) microarrays are used to compare gene expression in 

different samples of cells, and they permit us to study the expression of thousands of 

genes simultaneously.  They are now used in many different contexts to compare 

mRNA levels between two or more samples of cells.  The technique has a wide range 

of applications including learning how genes interact, which genes are used in 

different cell types, and which genes change their expression in cells due to disease or 

drug stimuli.  Microarray experiments typically yield expression measurements on a 

large number of genes, on a scale of 10,000-20,000, but with few, if any, replicates 

for each gene.  [Lönnstedt and Speed, (2002)]. 

Fundamental to the task of analyzing gene expression (microarray) data is the need to 

identify genes whose patterns of expression differ according to phenotype (e.g., 

normal cell vs. cancer cell) or experimental condition.  Gene expression is a well-
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coordinated system, and hence measurements on different genes are in general not 

statistically independent.  Given more complete knowledge of the specific 

interactions and transcriptional controls, it is conceivable that meaningful 

comparisons between samples can be made by considering the joint distribution of 

specific sets of genes.  However, the high dimension of gene expression space 

prohibits a comprehensive exploration, while the fact that that our understanding of 

biological systems is only at its infancy means that in many cases we do not know 

which relationships are important and should be studied.  In current practice, 

differential gene expression analysis will therefore at least start with a gene-by-gene 

approach, ignoring the dependencies among genes. 

A simple approach is to select differentially expressed genes using a fold-change 

(ratio of intensities) criterion.  This may be the only possibility in cases where no, or 

very few replicates, are available.  An analysis solely based on fold change, however, 

does not allow the assessment of significance of expression differences in the 

presence of biological and experimental variation, which may differ from gene to 

gene.  This is the main reason for using statistical tests to assess differential 

expression.   

Generally, one may look at various parameters of the distributions of a gene’s 

expression levels under different conditions, though most often location parameters of 

these distributions, such as the mean or the median, are considered.  One may 

distinguish between parametric tests, such as the t-test, and nonparametric tests, such 

as the Mann-Whitney test or permutation tests.   
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Parametric tests usually have a higher power if the underlying model assumptions, 

such as normality in the case of the t-test, are at least approximately satisfied. 

Nonparametric tests do have the advantage of requiring less stringent assumptions on 

the data generating distribution.  In many microarray studies, however, a small 

sample size leads to insufficient power for nonparametric tests.  A pragmatic 

approach in these situations is to employ parametric tests, but to use the resulting p-

values cautiously to rank genes by their evidence for differential expression.   

When performing statistical analysis of microarray data, an important question is 

determining on which scale to analyze the data.  Often the logarithmic scale is used in 

order to make the distribution of replicated measurements per gene roughly 

symmetric and close to normal.  A variance stabilizing transformation derived from 

an error model for microarray measurements may be employed to make the variance 

of the measured intensities independent of their expected value.  This can be 

advantageous for gene-wise statistical tests that rely on variance homogeneity, 

because it will diminish differences in variance between experimental conditions that 

are due to differences in the intensity level.  Of course, differences in variance 

between conditions may also have gene-specific biological reasons, and these will 

remain untouched.  One or two group t-test comparisons, multiple group ANOVA, 

and more general trend tests are all instances of linear models that are frequently used 

for assessing differential gene expression.  

The approach of conducting a statistical test for each gene is popular, largely because 

it’s relatively straightforward and a standard repertoire of methods can be applied.  
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However, this unguarded use of single-inference procedures results in a greatly 

increased false positive (Type I error) rate.  A large number of hypothesis tests 

(typically thousands) is carried out, potentially leading to a large number of falsely 

significant results due to an increased chance of committing at least one false 

positive, that is, at least one Type I error.  Small unadjusted p-values, which would 

lead to the rejection of a single hypothesis (e.g., p = 0.001), may no longer correspond 

to significant findings. 

To control this multiplicity (selection) effect, classical multiple comparison 

procedures (MCP’s) aim to control the probability of committing one or more type I 

error in families of comparisons under simultaneous consideration.  The control of 

this familywise error rate (FWER) is usually required in a strong sense, that is, under 

all configurations of true and false hypotheses. 

A common criticism of multiple testing procedures designed to control parameters of 

the distribution of the number of Type I errors (e.g., FWER) is their lack of power, 

especially for large-scale testing problems such as those encountered in biomedical 

and genomics research.  In many situations, control of the FWER can lead to unduly 

conservative procedures.  In microarray experiments, thousands of tests are 

performed simultaneously and a fairly large proportion of null hypotheses are 

expected to be false.  In this context, one may be prepared to tolerate Type I errors, 

provided their number is small in comparison to the number of rejected hypotheses.  

Error rates based on the proportion of false positives among the rejected hypotheses 

are especially appealing for large scale testing problems, compared to error rates 
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based on the number of false positives (FWER), as they remain stable with an 

increasing number of tested hypotheses.  These considerations have led Benjamini 

and Hochberg (1995), Genovese and Wasserman (2004a, b), Korn et al. (2004), van 

der Laan et al. (2004b, 2005), Lehmann and Romano (2005), Romano and Wolf 

(2005), among others, to consider controlling parameters of the proportion of false 

positives (PFP) among the rejected hypotheses.  For current high-dimensional 

applications, this less stringent Type I error control may be more appropriate than 

error rates based on the absolute number of Type I errors and therefore presents 

promising alternatives to FWER-controlling approaches. 

 

2.2  Mathematical Framework 

Let { }1 kX = X , ..., X
� � �

 be a random sample of k independent random vectors, where the 

data generating distribution P is an element of a particular statistical model M.  In a 

microarray experiment each iX
�

, i=1, …, k  is a vector of gene expression 

measurements, which we observe for each of k arrays. 

Define N null hypotheses H0(n) ≡  I[P∈ ( )nM ] in terms of a collection of 

submodels, ( )nM  , n=1, …., N, for the data generating distribution P.   

In a microarray experiment, 0 ( )H n would state that gene n is equally expressed on 

each of the k arrays.  A testing procedure is a data-driven rule for deciding whether or 

not to reject each of the N null hypotheses H0(n)  based on an N-vector of test 
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statistics, Tk = (Tk(n): n=1, …., N), which are functions of the observed data.  Denote 

the typically unknown (finite sample) joint distribution of the test statistic Tk by Qk = 

Qk(P). 

A multiple testing procedure (MTP) provides rejection regions, Ck(n), that is, sets of 

values for each test statistic Tk(n), that lead to the decision to reject the null 

hypothesis H0(n).  In other words, an MTP produces a random (i.e., data-dependent) 

subset Rk of rejected hypotheses that estimates the set of true positives,  

Rk = R(Tk, Qok, α) ≡  {n : H0(n)  is rejected } = { n : Tk(n) ∈  Ck(n)},  

where the long notation R(Tk, Qok, α)  emphasizes that the MTP depends on (i) the 

data through the test statistics Tk; (ii) the (estimated) null distribution, Qo , of the test 

statistic Tk, which is used to derive rejection regions; and (iii) the nominal level α, 

that is, the desired upper bound for a suitably defined Type I error rate. 

 

Given an MTP Rk (α) = R(Tk, Qok, α), the unadjusted p-value 0 0,( ) ( ( ), )
k k n

P n P T n Q= , 

for the single test of null hypothesis H0(n), is defined as  

0 ( )
k

P n ≡  inf { α ∈[0,1] : Reject H0(n) at single test nominal level α} 

= inf { α ∈[0,1] : Tk(n) ∈  Ck(n) },  n=1, …., N. 

That is, the unadjusted p-value 0 ( )
k

P n , for null hypothesis H0(n), is the smallest 

nominal type I error level of the single hypothesis testing procedure at which one 
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could reject H0(n), given Tk(n).  Unadjusted p-values may also be referred to as 

marginal or raw p-values. 

 

Let ( )
k

O n denote the indices for the ordered unadjusted p-values, 

0 0( ) ( ( ))
k k k

P n P O n≡� , so that 0 0( (1)) ( ( ))
k k k k

P O P O N≤ ⋅⋅⋅ ≤ . 

Given an MTP Rk(α) = R(Tk, Qok, α), the adjusted p-value   
~

okP (n) =  
~

P (Tk, Qok)(n) for 

null hypothesis H0(n), is defined as 

~

okP (n) ≡  inf { α ∈[0,1] : H0(n) is rejected at nominal MTP level α} 

= inf { α ∈[0,1] : n∈  Rk (α)} 

= inf { α ∈[0,1] : Tk(n) ∈  Ck(n) },  n=1, …., N. 

That is, the adjusted p-value
~

okP (n), for null hypothesis H0(n), is the smallest nominal 

type I error level of the multiple hypothesis testing procedure at which one could 

reject H0(n), given Tk(n).  

Let Vk be the number of Type I errors (false positives, or rejected null hypotheses that 

are true), while Rk is the number of rejected hypotheses. 
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Then the generalized family-wise error rate (gFWER), or probability of at least (r+1) 

Type I errors is: 

gFWER (r) ≡  Pr (Vk > r). 

When r=0, the gFWER is the usual family-wise error rate (FWER), or probability of 

at least one Type I error: FWER ≡  Pr (Vk > 0). 

The tail probabilities for the proportion of false positives (TPPFP) among the rejected 

hypotheses are defined by  

TPPFP(q) ≡  Pr (Vk /Rk > q),  0<q<1 .  

The false discovery rate (FDR), or the expected value of the proportion of false 

positives among the rejected hypotheses (Benjamini and Hochberg, 1995) is 

FDR ≡  E[Vk / Rk] .   (Vk / Rk is defined as 0 if Rk = 0). 

The false discovery rate (FDR) is the expected value E[Vn/Rn] of the proportion of 

false positives among the rejected hypotheses, while TPPFP controls tail probabilities 

for the proportion of false positives, Pr(Vn/Rn > q) among the rejected hypotheses.  

 

Error controls based on the proportion of false positives (e.g., TPPFP and FDR) are 

especially appealing for large-scale testing problems such as those encountered in 

genomics, compared to error control based on the number of false positives (e.g., 

gFWER), as they do not increase rapidly with the number of tested hypotheses. 
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One usually distinguishes between two classes of MTPs, single-step and stepwise 

procedures, depending on whether the rejection regions for the test statistics are 

constant or random (given a test statistic null distribution or an estimator thereof), that 

is, whether or not they are independent of the data. 

 

In single-step procedures, each null hypothesis is tested using a rejection region that 

is independent of the results of the tests of other hypotheses and thus not a function of 

the data Xn.  An example is the Bonferroni procedure.  Controlling the FWER at level 

α, the single-step Bonferroni procedure rejects any null hypothesis, H0(n) with 

unadjusted p-value Pok(n) less than or equal to the common single-step cut-off 

( ) /
n

a Nα α≡ . 

Improvement in power, while preserving Type I error control, may be achieved by 

stepwise procedures, in which the decision to reject a particular null hypothesis 

depends on the outcome of the tests of other hypotheses.  That is, the test procedure is 

applied to a sequence of successively smaller nested random (i.e., data-independent) 

subsets of ordered null hypotheses, defined by the ordering of the test statistics 

(common cut-off MTPs) or unadjusted p-values (common-quantile MTPs).  The 

rejection regions are therefore allowed to depend on the data Xn via the test statistics 

Tn.  An example is the Holm (1979) procedure.  For controlling the FWER at level α, 

the unadjusted p-value cut-offs for the step-down Holm (1979) procedure are as 

follows,  
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1
( )

1n
a

N n
α α≡

− +
,      n= 1, …, N,    

and the set of rejected null hypotheses is 

Rk (α) ≡  
1

( ) : ( ( )) ,
1k ok kO n P O h h n

N h
α

 
≤ ∀ ≤ 

− + 
� . 

The corresponding adjusted p-values are thus given by 

{ }{ }( ( )) max min ( 1) ( ( )),1ok k ok kP O n N h P O h= − +�                                n=1, ….,N. 

          h=1, …., n 

 

In step-down procedures, the most significant null hypotheses (i.e., the null 

hypotheses with the largest test statistics for common-cut-off MTPs or smallest 

unadjusted p-values for common-quantile MTPs) are considered successively, with 

further tests depending on the outcome of earlier ones.  As soon as one fails to reject a 

null hypothesis, no further hypotheses are rejected.  In contrast, for step-up 

procedures, the least significant null hypotheses are considered successively, again 

with further tests depending in the outcome of earlier ones.  As soon as one null 

hypothesis is rejected, all remaining more significant hypotheses are rejected.  

 

The main difference between step-down and step-up procedures is the order in which 

null hypotheses are tested: from most significant to least significant for the step-down 

approach vs. from least significant to most significant for the step-up approach. 
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The above single-step procedures are based solely on the marginal distributions of the 

test statistics.  In many situations, the test statistics, and hence the corresponding 

unadjusted p-values, have complex and unknown dependence structures.  This is the 

case, for example, in microarray data analysis, where groups of genes tend to have 

highly correlated expression measures due to co-regulation.  Gains in power may be 

achieved by taking into account the joint distribution of the test statistics. 

 

The next two procedures are less conservative multiple testing procedures that 

account for the dependence structure of the test statistics and that control the FWER 

for arbitrary test statistics joint null distributions.  These procedures are based, 

respectively, on minima of unadjusted p-values (common quantile minP MTP) and 

maxima of test statistics (common-cut-off maxT MTP).   

Let ( )
k

O n denote the indices for the ordered unadjusted p-values, 

0 0( ) ( ( ))
k k k

P n P O n≡� , so that 0 0( (1)) ( ( ))
k k k k

P O P O N≤ ⋅⋅⋅ ≤ . 

 

Definition: FWER-controlling common-cut-off maxT procedure 

 

The common-cut-off maxT procedure is based on the maximum test statistic, 

(1) max ( )nZ Z n≡� , for the N-vector 0( ( ) : 1,..., )Z Z n n N Q= = ∼ .  Adjusted p-values 

are given by 

0 1,...,( ) Pr (max ( ) ( )),ok Q n N kp n Z n t n== ≥�                  1,..., .n N=  
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Definition: FWER-controlling common-quantile minP procedure 

 

The common-quantile minP procedure is based on the minimum unadjusted p-value, 

0(1) min ( )nP P n≡� ,where 0 0,( ) ( ( ))nP n Q Z n≡  denote unadjusted p-values under the 

test statistics null distribution 0Q , i.e. for 0( ( ) : 1,..., )Z Z n n N Q= = ∼ .  Adjusted p-

values are given by 

0 1,..., 0 0( ) Pr (min ( ) ( )),ok Q n N kp n P n p n== ≥�                1,..., .n N=  

 

For common-quantile MTPs, the nth most significant null hypothesis refers to the 

hypothesis 0 ( ( ))
k

H O n with the nth smallest unadjusted p-value 0 ( )
k

P n
� , that is, to the 

hypothesis with p-value rank n; in contrast, for common-cut-off MTPs, the nth most 

significant null hypothesis is that with the nth largest test statistic. 

 

Single step common-cut-off maxT procedure and common-quantile minP procedures 

are based, respectively, on the distributions of the maximum test statistic and 

minimum unadjusted p-value over all N null hypotheses.  In contrast, the step-down 

common-cut-off maxT procedure and common-quantile minP procedures are based, 

respectively, on the distributions of maxima of test statistics and minima of 

unadjusted p-values over successively smaller nested random subsets of ordered null 

hypotheses. 
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2.3  Permutation-based versus Bootstrap-based Tests 

 

Parametric modeling for genomics data is not necessarily accurate.  This results in a 

need for procedures that produce p-values which are reliable in case where null 

hypothesis is true.  One way to accomplish this goal is to use permutation-based p-

values rather than parametric-based p-values. 

When performing a permutation test, the distribution of the test statistic under the null 

hypothesis is obtained by calculating all possible values of the test statistic under 

rearrangements of the labels on the observed data points.  If the labels are 

exchangeable under the null hypothesis, then the resulting tests yield exact 

significance levels.  The theory has evolved from the work of Fisher in the 1930s.   

The null hypothesis, under the permutations scheme, is that the data follow the same 

distribution, which is unknown.  In the classic case of the two-sample problem, where 

1,...., m
X X K∼ and  1,...., m

Y Y G∼ , the null hypothesis is 0 :H K G= . 

In order to perform the Fisher permutation test based on a test statistic 

1 1( ,..., ; ,..., )
m n

T X X Y Y , we combine n+m measurements, draw a sample 

1,..., m
Z Z without  replacement from the pool, each with probability 

1
n m

n

+ 
 
 

 and treat 

it as a control or X sample.  The remaining observations  1,...,m m n
Z Z+ +  are treated as a 

treatment or Y sample.  Under 0H , each set of n observations has the same probability 

of appearing in a treatment set.  Next, a test statistic 1 1( ) ,..., ; ,..., )
m m m n

T Z Z Z Z Z+ +=
∼

 is 
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computed.  The significance level is the proportion of  ( )T Z
∼

values such that 

1 1( ) ( ,..., ; ,..., )
m n

T Z T X X Y Y≥
∼

.  The permutation method works for any statistic. 

For the bootstrap testing, one would draw samples of size n+m from a combined pool, 

with replacement.  Assign the first m to control, the next n to treatment.  Then, 

compute the test statistic.  Repeat this process B times.  Next, compute the 

significance level, as above. 

When testing on the basis of permutations, the test statistic is computed for each 

permutation.  Since the number of all possible permutations is so huge, even for small 

sample sizes, the approach is to randomly sample possible permutations for each 

sample.  For the two sample problem, the only difference between permutation tests 

and bootstrap tests is that samples are drawn with replacement in the bootstrap case. 

 

When performing bootstrap testing, samples are drawn at random with replacement, 

whereas in the permutations case they are randomly sampled with no replacement.  

For this reason, when the permutation approach is appropriate, it tends to provide less 

variable estimators of the test statistic’s null distribution than the nonparametric 

bootstrap. 

 

The relative performances of the various MTPs differ for bootstrap- and permutation-

based test statistics null distributions.  Differences between the two can be attributed 

to the fact that the set { ( , ) : 1,..., }B

n
T b b B⋅ =  of B bootstrap test statistics does not 

necessarily include the observed test statistics Tn.  This allows bootstrap unadjusted p-
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values to be zero for some null hypotheses.  In contrast, for a null distribution based 

on all possible 
n m

B
n

+ 
=  
 

 permutations of the treatment and control labels, the 

observed test statistics Tn are included in the set of B permutations test statistics.  

 

 

2.4  Smyth’s 2004 Article – The Basis for limma 

 

The purpose of this paper is to develop the hierarchical model of Lönnstedt and Speed 

(2002) into a practical approach for microarray experiments with arbitrary numbers of 

treatments and RNA samples.  The first step is to reset it in the context of general 

linear models with arbitrary coefficients and contrasts of interest.  The second step is 

to derive consistent, closed form estimators for the hyperparameters using the 

marginal distributions of the observed of the observed statistics.  The estimators 

proposed by Smyth (2004) have robust behavior even for small numbers of arrays.  

The third step is to reformulate the posterior odds statistic in terms of a moderated t-

statistic in which posterior residual standard deviations are used in place of ordinary 

standard deviations. 

 

This approach makes explicit what was implicit in Lönnstedt and Speed (2002), that 

the hierarchical model results in a shrinkage of the gene-wise residual sample 

variances towards a common value, resulting in far more stable inference when the 

number of arrays is small.  The use of the moderated t-statistic has the advantage over 
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the posterior odds of reducing the number of hyperparameters which need to be 

estimated under the hierarchical model; in particular, knowledge of the non-null prior 

for the fold changes are not required.  The moderated t-statistic is shown to follow a t-

distribution with augmented degrees of freedom.  The moderated t inferential 

approach extends to accommodate tests involving two or more contrasts through the 

use of moderated F-statistics. 

 

In general we assume that we have a set of k microarrays yielding a response vector  

1,.....,
T

g g gk
y y y =   for the gth gene.   

Smyth’s hierarchical model is: 

= +g g gy Xα e
� � ��

  ;   Var Cov− 2
gσ= ge W

� �
  ,  , 

where X
�

 is the design matrix of full column rank, gα
�

 is a parameter vector, and gW
�

is 

a known non-negative definite weight matrix.  The vector gy
�

may contain missing 

values and the matrix gW
�

may contain diagonal weights which are zero. 

Certain contrasts of the coefficients are assumed to be of biological interest and these 

are defined by T
g gβ = C α
� ��

.  We assume that it is of interest to test whether individual 

contrast values 
gj

β  are equal to zero. 

 

We assume that the linear model is fitted to the responses for each gene to obtain 

coefficient estimators ˆ
g

α , estimators 2
gs of 2

gσ and estimated covariance matrices 

2ˆ( )g g gVar Cov V sα⋅ =  where gV
�

is a positive definite matrix not depending on 2
gs .   
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The contrast estimators are ˆ ˆT
g gβ = C α
� ��

.  The � gβ are normally distributed, 

ˆ ( , )N 2 T
g g ggβ σ C V Cβ

� �� �
∼

�
 with  Var Cov⋅ ˆ 2 T

g g gβ = σ C V C
� � ��

.   

 

The responses yg are not necessarily assumed to be normal and the fitting of the linear 

model is not assumed to be by least squares.  Nevertheless, the contrast estimators are 

assumed to be approximately normal and the sample residual variances 2
gs  are 

assumed to follow approximately a scaled chi-square distribution. 

Let 
gj

v be the jth diagonal element of T

gC V C .  The distributional assumptions made 

in this paper about the data imply 

  2 2
,

ˆ , ( )
gj gj g gj gj g

N vβ β σ β σ∼  

and 

  
2

2 2g

g dg

g

s
d

σ
χ∼  

where 
g

d is the residual degrees of freedom in the linear model for gene g.   

 

 

Prior information is assumed on 2
gσ , g=1, …., G, equivalent to having a prior 

estimator 2
0s with 0d degrees of freedom.  That is, the 2

gσ are i.i.d. with 
2

1

g
σ 0

2
2

0 0

1
d

d s
χ∼ ,  

and  
2 2

0 02 2 2

0

g g

g g g

g

d s d s
s E s

d d
σ

+
 = =  +

� .  
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Smyth defines the moderated t-statistic as 

  
ˆ

g

g g

t
s v

β
=�
� 0 gd d

t +∼  under 0 : 0
g

H β = . 

 The added degrees of freedom for t� over t  reflect the extra information which is 

borrowed, on the basis of the hierarchical model, from the ensemble of genes for 

inference about each individual gene.  Note that this distributional result assumes 

0d and 2
0s  to be given values.  In practice these values need to be estimated from the 

data. 

The article shows that t� and 2
s are independent with 

0

2 2
0 ,d ds s F∼  and 

0
0 d dt tβ +=� ∼ . 

 

2.5  Overview of Multiple Testing Procedures 

2.5.1  Bonferroni (1936) 

Bonferroni’s (1936) classical procedure for FWER is perhaps the best-known 

procedure in the multiple testing literature.  It controls the FWER  for arbitrary test 

statistics joint null distribution. 

The Bonferroni inequality is often used when conducting multiple tests of 

significance to set an upper bound on the overall significance level α (Miller, 1981, 

pp. 67-70).   

The Bonferroni inequality,  
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[ ] [ ]( / ) / / ( / )
n

i i i

true itrue

P P N P P N P P N N Nα α α α α
 

≤ ≤ ≤ ≤ ≤ = = 
 

∑ ∑∪  

(0 1)α≤ ≤ ,        

offers strong FWER control and ensures that the probability of rejecting at least one 

true hypothesis is no greater than α.   

Definition: FWER-controlling single-step Bonferroni (1936) Procedure 

If T1, …., Tn is a set of n statistics with corresponding p-values P1, …., Pn for testing 

hypotheses H1, ….., Hn, the classical Bonferroni multiple test procedure is usually 

performed by rejecting the combined null hypothesis H0 = { }1 2 nH H H⋅ ⋅ ⋅∩ ∩∩  if 

any p-value is less than α/N.  Furthermore, the specific hypothesis Hn is rejected for 

each n such that Pn ≤ α/N (n=1, ….,N).   

To control the FWER at level α, the single-step Bonferroni procedure rejects any null 

hypothesis H0(n) with unadjusted p-value Pok(n) less than or equal to the common 

single-step cut-off ( ) /
n

a Nα α≡  .   That is, the set of rejected null hypotheses is: 

Rk (α) ≡  0

1
: ( )kn P n

N
α

 
≤ 

 
. 

The corresponding adjusted p-values are thus given by 

~

okP (n)= min {N P0k , 1},         n=1, …., N. 
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 Although several multivariate methods have been developed for multiple statistical 

inference, the Bonferroni procedure is still valuable, being simple to use, requiring no 

distributional assumptions and enabling individual alternative hypotheses to be tested.   

Nevertheless, the procedure is conservative and lacks power if several highly 

correlated tests are undertaken. 

2.5.2  Šidák (1967)  

Closely related to the Bonferroni procedure is Šidák’s (1967) single-step procedure, 

which controls the FWER for test statistic null distributions Q0 that satisfy, for the 

true null hypotheses H0, an inequality known as Šidák’s Inequality. 

Consider a random N-vector Z =(Z(n):n=1,…, N), with joint distribution Q0, and an 

N-vector of constants c = (c(n) : n = 1, .., N) N∈� .  Then, under conditions described 

below, Šidák’s inequality states that  

PrQ0 { }
11

( ) ( )
N N

nn

Z n c n
==

 
≤ ≥ 

 
∏∩ PrQ0 ( ( ) ( )Z n c n≤ ). 

To control the FWER at level α, the single-step Šidák (1967) procedure rejects any 

null hypothesis H0(n) with unadjusted p-value Pok(n) less than or equal to the 

common single-step cut-off 1/( ) 1 (1 ) N

n
a α α≡ − −  .   That is, the set of rejected null 

hypotheses is: 

Rk (α) ≡  {n: P0k (n) ≤ 1/1 (1 ) Nα− − }. 
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The corresponding adjusted p-values are thus given by 

~

okP (n)= 1-(1- okP  (n))
N
,        n=1, …., N. 

Šidák’s inequality holds for independent test statistics and for test statistics with 

certain parametric distributions.  Specifically, the inequality was initially derived by 

Dunn (1958) for multivariate Gaussian distributions with mean vector zero and 

certain types of covariance matrices.  Šidák (1967) extended the result to multivariate 

Gaussian distributions with arbitrary covariance matrices and Jogdeo (1977) showed 

that the inequality holds for a larger class of distributions, including some 

multivariate t- and F- distributions.  

While the above single-step procedure is simple to implement, it tends to be 

conservative for control of the FWER.  Improvement in power can be achieved by 

stepwise procedures.  Stepwise multiple testing procedures apply the testing 

procedure to a sequence of successively smaller nested random subsets of null 

hypotheses, defined by the ordering of the test statistics (common cut-off MTPs) or 

unadjusted p-values (common quantile MTPs).  Step-down MTPs start with the most 

significant null hypothesis; as soon as one fails to reject a null hypothesis, no further 

hypotheses are rejected.  In contrast, step-up MTPs start with the least significant hull 

hypothesis; as soon as one rejects a null hypothesis, all remaining more significant 

null hypotheses are rejected.  

Note that single-step common cut-off maxT and common-quantile minP procedures 

are based, respectively, on the distributions of the maximum test statistic and 
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minimum unadjusted p-value over all N null hypotheses.  In contrast, step-down 

common cut off maxT and common-quantile minP procedures are based, 

respectively, on the distributions of maxima of test statistics and minima of 

unadjusted p-values over successively smaller nested random subsets of ordered null 

hypotheses. 

2.5.3  Holm (1979) 

For controlling the FWER at level α, the unadjusted p-value cut-offs for the step-

down Holm (1979) procedure are as follows:  

Let  P(1), …., P(N) be the ordered p-values for testing hypotheses H(1), …, H(N).  Then 

Hn is rejected if P(n) ≤  α /(N-n+1) for any n=1, …, N. 

Definition: FWER-controlling step-down Holm (1979) Procedure 

For controlling the FWER at level α, the unadjusted p-value cut-offs for the step-

down Holm (1979) procedure are as follows:  

1
( )

1n
a

N n
α α≡

− +
,      n= 1, …,N.    

The set of rejected null hypotheses is 

Rk (α) ≡  
1

( ) : ( ( )) ,
1k ok kO n P O h h n

N h
α

 
≤ ∀ ≤ 

− + 
� . 
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The corresponding adjusted p-values are thus given by 

{ }{ }( ( )) max min ( 1) ( ( )),1ok k ok kP O n N h P O h= − +�                                n=1, ….,N. 

          h=1, …., n 

Holm’s procedure is the step-down analogue of classical single-step Bonferroni 

procedure and also controls the FWER for arbitrary joint null distributions of the test 

statistics.  The step-down Holm p-value cut-offs, ( )
1n

a
N n

α
α =

− +
, are greater (i.e., 

less conservative) than the single-step Bonferroni cut-offs, ( ) /
n

a Nα α= .  

2.5.4.  Simes Inequality  

Type I error control for commonly used step-up procedures is typically established 

under the assumption that the test statistics satisfy the following inequality, known as 

Simes’ Inequality (Simes, 1986): 

Consider a random N-vector Z =(Z(n):n=1,…, N), with joint distribution Q0, 

unadjusted p-values P(0) = (P(0)(n): n = 1, …,N), and ordered p-values 0 ( )P n
° such 

that 0 0(1) .... ( )P P N
° °≤ ≤ .  Then, Simes’ Inequality states that 

0 0
1

Pr ( )
N

Q

n

n
P n

N
α α

=

  
≤ ≤  

  

�

∪ .  

Simes (1986) introduced a modified Bonferroni procedure:  

Let  P(1), …., P(n) be the ordered p-values for testing hypotheses H(1), …, H(N).  Then 

Hn is rejected if P(n) ≤ n α/N for any n=1, …, N. 
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This test procedure, based on the ordered p-values of the individual tests, has FWER 

equal to α for independent tests. 

The modified test procedure is conservative provided  

( )
1

N

n

n

n
Pr P

N

α
α

=

 
≤ ≤ 

 
∪ . 

This inequality is not true in general as counterexamples can be found.  Nevertheless, 

it may well be true for a large family of multivariate distributions as suggested by 

Simes’ simulation studies (Simes 1986).  In this paper, Simes proved the above 

inequality for independent test statistics, with equality in the continuous case.  

Although Simes’ inequality does not hold for all joint distributions 0Q , the 

simulations studies in Simes (1986) suggest that the inequality is conservative for a 

variety of multivariate Gaussian and Gamma test statistics distributions.   

The modified Bonferroni procedure should be advantageous by having an actual 

significance level much closer to the nominal level and consequently a lower type II 

error probability.  Since the Bonferroni procedure leads to a conservative test 

procedure, there have been several attempts to improve on the method.  Šidák (1968, 

1971) has shown that the significance level for each test, α/N, can be improved by 

using 1-(1- α)1/N under certain conditions, although the degree of improvement for 

N<10 and α = 0.05 is slight.  (Simes, 1986). 
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Sarkar (2005) notes that Simes’ Inequality also holds for test statistics that satisfy a 

positive regression dependence on subset (PRDS), as considered by Benjamini and 

Yekutieli (2001) in the context of FDR-controlling step-up procedures. 

The following property, which Benjamini and Yekutieli (2001) call positive 

regression dependency on each one from a subset 0I , or PRDS on 0I , captures the 

positive dependency structure for which our main result holds.  Recall that a set D is 

called increasing if x D∈ and y x≥ , implies that y D∈ as well. 

Property PRDS:  For any increasing set D, and for each 0i I∈ , ( )i
P X D X x∈ =  is 

nondecreasing in x.   

The PRDS property is a relaxed form of the positive regression dependency property.  

The latter means that for any increasing set D, ( )1 1,..., i i
P X D X x X x∈ = =  is 

nondecreasing in ( )1,..., ix x (Sarkar (1969)).  In PRDS the conditioning is on one 

variable only, each time, and required to hold only for a subset of the variables.   

 

2.6  False Discovery Rate (FDR)  

In a now classical article, Benjamini and Hochberg (1995) suggested a new point of 

view on the problem of multiplicity.  In many multiplicity problems the number of 

erroneous rejections should be taken into account and not only the question of 

whether any error was made.  Yet, at the same time, the seriousness of the loss 
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incurred by erroneous rejections is inversely related to the number of hypotheses 

rejected.  From this point of view, a desirable error rate to control may be the 

expected proportion of Type I errors among the rejected hypotheses, which Benjamini 

and Hochberg termed the False Discovery Rate (FDR).  This criterion integrates 

Spjøtvoll’s (1972) concern about the number of errors committed in multiple 

comparison problems, with Soriҫ’s (1989) concern about the probability of a false 

rejection given a rejection. 

 

Consider the problem of testing simultaneously N (null) hypotheses, of which n0 are 

true.  Let R be the number of hypotheses rejected.  Table 2.1 summarizes the situation 

in a traditional form. 

 

 

Table 2.1 

Number of errors committed when testing N null hypotheses 

 Declared  
non-

significant 

Declared  
significant 

Total 

True Null Hypotheses U V n0 

False Null hypotheses T S N-n0 

 N – R R N 
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The specific N hypotheses are assumed to be known in advance.  The quantity R is an 

observable random variable; U, V, S, T are unobservable random variables.  If each 

individual null hypothesis is tested separately at level α, then R = R(α) is increasing in 

α.   

 

In terms of these random variables, the per comparison error rate is E(V/N) and the 

FWER is P(V≥1).  Testing individually each hypothesis at level α guarantees that  

E(V/N) ≤ α.  Testing individually each hypothesis at level α/N guarantees that  

P(V≥1) ≤ α. 

Definition: False Discovery rate 

The proportion of errors committed by falsely rejecting null hypotheses can be 

viewed through the random variable Q = V/(V+S) – the proportion of the rejected null 

hypotheses which are erroneously rejected.  Naturally, Q is defined to be zero when 

 V + S = 0, as no error of false rejection can be committed.  The ratio Q is an 

unobserved (unknown) random variable, as we do not know V or S, and thus Q = 

V/(V+S), even after experimentation and data analysis.  The FDR Qe is defined to be 

the expectation of Q:  

Qe = E(Q) = E{V/(V+S)} = E(V/R). 

Two properties of this error rate are easily shown, yet are very important. 
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(a) If all null hypotheses are true, the FDR is equivalent to the FWER: in this 

case S = 0 and V = R, so if V = 0 then Q = 0, and if V>0 then Q = 1, leading to 

P(V≥1) = E(Q) = Qe.  Therefore control of the FDR implies control of the 

FWER in the weak sense.   

(b) When no<N, the FDR is smaller than or equal to the FWER: in this case, if 

V>0 then V/R≤1, leading to χ(V≥1)≥Q.  Taking expectations on both sides, the 

following is obtained: P(V≥1) ≥ Qe, and the two can be quite different.  As a 

result, any procedure that controls the FWER also controls the FDR.  

However, if a procedure controls the FDR only, it can be less stringent, and a 

gain in power may be expected.  In particular, the larger the number of the 

false null hypotheses is, the larger S tends to be, and so the larger the 

difference between the error rates tends to be.  As a result, the potential for 

increase in power is larger when more of the hypotheses are false. 

Benjamini and Hochberg (1995) propose the following FDR-controlling marginal 

step-up procedure, based on Simes’ unadjusted p-value cut-offs.  

Definition: FDR-controlling step-up Benjamini and Hochberg (1995) procedure 

For controlling the FDR at level α, the unadjusted p-value cut-offs for the step-up 

Benjamini and Hochberg (1995) procedure are as follows,  

( )
n

n
a

N
α α≡ ,      n= 1, …, N,   
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and the set of rejected null hypotheses is 

Rk (α) ≡  { ( ) :
k

O n h n∃ ≥  such that 0 ( ( )) }
k k

h
P O h

N
α≤ . 

The corresponding adjusted p-values are thus given by 

( ( )) min{min{( ( ( )),1}}
ok k ok k

N
P O n P O h

h
=�                                n=1, ….,N. 

          h=n, …., N 

Benjamini and Hochberg (1995) proved that their procedure controls the FDR for 

independent test statistics.  The subsequent article of Benjamini and Yekutieli (2001) 

established FDR control for test statistics with more general independence structures, 

such as positive regression dependence. 

Most FDR-controlling procedures proposed thus far do not exploit the dependence 

structure of the test statistics; That is, they are based solely on the (marginal) 

unadjusted p-values.  In addition, FDR control results are generally derived under the 

assumption that the test statistics are either independently distributed or have certain 

forms of dependence such as positive regression dependence (Benjamini and 

Yekutieli, 2001). 
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2.6.1  Tail Probability for the Proportion of False Positives (TPPFP) 

In contrast to FDR-controlling approaches which focus on the expected value of the 

proportion of false positives (PFP) among the rejected hypotheses, Genovese and 

Wasserman (2004 a,b), Korn et al. (2004), van der Laan et al. (2004b, 2005), 

Lehmann and Romano (2005), and Romano and Wolf (2005) proposed procedures 

that control tail probabilities for this proportion.  These authors argue that although 

FDR-controlling approaches control the PFP (proportion of false positives) on 

average, they do not preclude large variations in the PFP.  When one wishes to have 

high confidence (i.e. chance at least (1-α)) that the set of rejected null hypotheses 

contains at most a specified proportion q of false positives, control of the tail 

probability for the proportion of false positives (TPPFP) among the rejected 

hypotheses,  

( ) ( )/ /( ) 1 ( ) Pr /
n n n nV R V R n n

TPPFP q F F q V R q= Θ = − = > , is the appropriate form of 

Type I error control.  The parameter q confers flexibility to TPPFP-controlling MTPs 

and can be tuned to achieve an acceptable level of false positives. 

Multiple testing procedures proposed thus far for controlling a parameter of the 

distribution of the proportion of false positives among the rejected hypotheses suffer 

from one or both of the following limitations: (i) they are based solely on the 

marginal distributions of the test statistics; (ii) they rely on a number of assumptions 

concerning the joint distribution of the test statistics, such as independence, positive 

regression dependence or normality.  Van der Laan et al. (2004b) showed that any 

FWER-controlling procedure can be straightforwardly augmented to control the 
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TPPFP, for general data generating distributions and, hence, arbitrary dependence 

structures for the test statistics.   

Van der Laan et al. (2004a), and subsequently Dudoit et al. (2004a) and Dudoit and 

van der Laan (2004), proposed the augmentation multiple testing procedure (AMTP), 

obtained by adding suitably chosen null hypotheses to the set of null hypotheses 

already rejected by an initial gFWER-controlling MTP.  Adjusted p-values for the 

AMTP are shown to be simply shifted versions of the adjusted p-values for the 

original MTP.  Denote the adjusted p-values for the initial FWER-controlling 

procedure Rk (α) by 
~

okP (n).  Order the N null hypotheses according to these p-values, 

from smallest to largest.  That is, define indices Ok(n), so that  

~

okP [Ok(1)] ≤  …. ≤
~

okP [Ok(N)]. 

Definition: TPPFP-controlling augmentation multiple testing procedure (Van der 

Laan et al. (2004b) 

For control of TPPFP(q) at level α, given an initial FWER-controlling procedure Rk 

(α), reject the Rk (α) = ( )k
R α  null hypotheses specified by this MTP, as well as the 

next Ak (α) most significant hypotheses,  

Ak (α) = ( ){ }max 0, .,    :
( )

k

k

n
q

n R
n N R

α
α ≤

 
∈ … −

 +



 

= 
( )

( )min ,
1

 k

k

q

q

R
N R

α
α−

   
  

−   
,  
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where the floor function x    denotes the greatest integer less than or equal to x, that 

is,  x   ≤  x < x   +1.  That is, keep rejecting null hypotheses until the ratio of 

additional rejections to the total number of rejections reaches the allowed proportion 

q of false positives.  The adjusted p-values 
~

okP
+

[ Ok(n)] for the new TPPFP-

controlling AMTP are simply nq-shifted versions of the adjusted p-values of the 

initial FWER-controlling MTP.  That is,  

( )
~ ~

[ ] ( ( (1 ) ))
kok okk

P O OP q nn
+

= −   ,       n = 1, ….., N, 

where the ceiling function x   denotes that least integer greater than or equal to x. 

It is interesting to note the parallels between TPPFP-controlling step-down 

procedures and the FDR-controlling step-up procedures of Benjamini and Hochberg 

(1995) and Benjamini and Yekutieli (2001).  The penalty to guarantee Type I error 

control for general dependence structures tends to be more severe for FDR-

controlling procedures than for the TPPFP-controlling procedures. 

2.7  The Bioconductor Project 

Current statistical inference problems in biomedical and genomic data analysis 

routinely involve the simultaneous test of thousands, or even millions, of null 

hypotheses.  These testing problems share the following general characteristics: 

inference for high-dimensional multivariate distributions, with complex and unknown 

dependence structures among variables; a broad range of parameters of interest, for 
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example, regression coefficients and correlations; many null hypotheses, in the 

thousands or even millions; and complex dependence structures among test statistics. 

The Bioconductor project started in 2001, and is an open source, open development 

software project to provide tools for the analysis and comprehension of high-

throughput genomic data.  It is based primarily on the R programming language, and 

most of the Bioconductor components are distributed as R packages.  It provides 

widespread access to a broad range of powerful statistical and graphical methods for 

the analysis of genomic data.   Bioconductor’s software can be used for: microarray 

analysis (data import, quality assessment, normalization, differential expression 

analysis, clustering, classification, and many more applications); annotation (using 

microarray probe, gene, pathway, gene ontology, homology and other annotations); 

high throughput assays (importing, transforming, editting, analyzing and visualizing 

various types of assays); and Transcription factors analysis (finding candidate binding 

sites for known transcription factors via sequence matching).  

[www.Bioconductor.org]. 

2.7.1  Multtest 

Pollard, Dudoit and van der Laan (2004) developed the Bioconductor R package 

multtest, which implements widely applicable resampling-based single-step and 

stepwise multiple testing procedures (MTP) for controlling a broad class of Type I 

error rates.  Nonparametric bootstrap and permutation resampling-based multiple 

testing procedures (including empirical Bayes methods) for controlling the family-

wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability 
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of the proportion of false positives (TPPFP), and false discovery rate (FDR) are 

implemented. Permutation tests based on a variety of t- and F-statistics (including t-

statistics based on regression parameters from linear and survival models as well as 

those based on correlation parameters) are included.  Results are reported in terms of 

adjusted p-values, confidence regions and test statistic cutoffs. The procedures are 

directly applicable to identifying differentially expressed genes in DNA microarray 

experiments. 

2.7.2  Limma 

An alternative software package under Bioconductor is limma, which was developed 

by Smyth (2004).  It is designed to analyze complex microarray experiments 

involving comparisons between many RNA targets simultaneously.  By fitting a 

linear model to the expression data for each gene, this package allows analyses of 

contrasts of interest.  Empirical Bayes and other shrinkage methods are used to 

borrow information across genes, making the analyses stable even for experiments 

with small number of arrays (Smyth, 2004; Smyth et al., 2005). 

Limma uses linear models to analyze designed microarray experiments (Yang and 

Speed, 2003; Smyth, 2004).  This approach allows very general experiments to be 

analyzed nearly as easily as a simple replicated experiment.   

 

Mathematically, we assume a linear model E[yj] = Xαj, where yj contains the 

expression data for gene j, X is the design matrix, and αj is a vector of coefficients.  
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Here yj
T is the jth row of the expression matrix and contains either log-ratios or log-

intensities.  The contrasts of interest are given by βj = CT 
αj where C is the contrast 

matrix.  The coefficients component of the fitted model contains estimated values for 

the αj.  After applying the contrast step, the coefficients component now contains 

estimated values for the βj. 

 

With common reference microarray data, linear modeling is much the same as 

ordinary ANOVA or multiple regression except that a model is fitted for every gene.    

 

The basic statistic used for significant analysis is the moderated t-statistic, which is 

computed for each probe and for each contrast.  This has the same interpretation as an 

ordinary t-statistic except that the standard error is estimated by pooling variance 

estimates across genes, that is,  shrunk toward a common value, using a simple 

Bayesian model.  This has the effect of borrowing information from the ensemble of 

genes to aid with inference about each individual gene (Smyth, 2004).   

 

Moderated t-statistics (for specified t-tests among 2-groups) lead to p-values in the 

same way that ordinary t-statistics do except that the degrees of freedom are 

increased, reflecting the greater reliability associated with the smoothed standard 

errors.  These p-values are adjusted for multiple testing.  The most popular form of 

adjustment is “FDR”, which is Benjamini and Hochberg’s method to control the false 

discovery rate (Benjamini and Hochberg, 1995).   
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The B statistic (lods or B) is the log odds that the gene is differentially expressed 

(Smyth, 2004, Section 5).  The B statistic is automatically adjusted for multiple 

testing by assuming that 1% of all genes, or some other percentage specified, are 

expected to be differentially expressed.  The p-values and B-statistics will normally 

rank genes in the same order.   

 

The empirical Bayes step computes one more useful statistic.  The moderated F-

statistic (F) combines the t-statistics for all the contrasts into an overall test of 

significance for that gene.  The F-statistic tests whether all contrasts are non-zero for 

that gene against a general alternative.  The denominator degrees of freedom is the 

same as that of the moderated t.  It is similar to the ordinary F-statistic from analysis 

of variance except that the denominator mean squares are shrunken,  as described 

above. 
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Chapter 3: Analysis 

 

In this chapter, we analyze gene expression data on a study comparing the responses 

of kidney cells in rats exposed to ischemia and toxic assaults. 

3.1  Data Collection 

The data used in this paper were originally collected in Dr. Robert A. Star’s 

laboratory, at the National Institute of Diabetes and Digestive and Kidney Diseases, 

National Institutes of Health, Bethesda, Maryland.   The results of this study were 

published in Yuen et al. 2006 paper in the Physiological Genomics journal.   

The data is publically available at: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3219. 

 

In Yuen et al. (2006), the authors used microarrays to identify early biomarkers that 

distinguish ischemic from nephrotoxic acute renal failure or biomarkers that detect 

both injury types.  A total of 31 male rats were assigned to 9 different experimental 

groups, in which rat kidney transcriptomes were compared at 2 and 8 hours after 

ischemia/reperfusion and after mercuric chloride injection.  A control group was also 

included in the study.  The nine different experimental groups were: normal; volume 

depletion; sham (40 minutes sham surgery and then harvested after 2h or 8h); 

ischemia/reperfusion (40 minutes bilateral ischemia, 2h or 8h reperfusion, then 

harvest); ischemia/reperfusion +  α -melanocyte hormone (α -MSH), 2h; mercuric 

chloride (inject 4 mg/kg mercuric chloride, s.c., harvest after 2h or 8h); and cisplatine, 
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2h.  To minimize the effect of circadian rhythms in gene expression, all treatments 

began at the same time of day.  Processing of the total RNA and subsequent 

hybridization were performed in two lots, according to the CodeLink Gene 

Expression Bioarray user guide.  Five of the total RNA samples were processed in 

duplicate. 

3.2  Data Processing and Analysis Methods Employed by Yuen et.al 

3.2.1  Data Processing 

The scanned data were processed by CodeLink Expression Analysis software and the 

signal intensity of all genes on a microarray was normalized by median centering 

within each microarray (where the hybridization intensity for each gene in a 

microarray was multiplied by a scaling factor for that array, so that the median 

intensity became 1) and the signal intensities were log2 transformed. 

 

Genes with missing values were then removed (9,251 remained from the original 

9,988).  Quality control was initially assessed by a histogram analysis of all possible 

pairs of arrays and was confirmed by Bland-Altman analysis and principal component 

analysis (PCA).  PCA is a method used to transform gene expression information into 

variance-based information.  Even though 9,251-dimensional gene space is converted 

into 9,251 principal components, the first 3 principal components appeared to contain 

most of the variance-based information and could be visualized in 3-dimensional 

space.  Because the results from the first and second microarray lots were 

dramatically different and the second lot had larger animal-to-animal variation, Yuen 
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et al. (2006) normalized the second lot on a gene-by-gene basis to equalize the normal 

genes in both lots as follows: 

 

Adjusted signal intensitygene x(lot 2) = signal intensitygene x(lot 2)  

Ҳ mean normal signal intensitygene x(lot 1)/mean normal signal intensitygene x(lot 2) 

 

Yuen et al. (2006) used a dissimilarity matrix (Euclidian distance heat map) to rapidly 

assess the overall quality of each microarray, and this analysis also provided an initial 

estimate of microarray clustering.  The dissimilarity matrix, histogram, and Bland-

Altman analyses gave the same result, that there were three outlier microarrays (one 

normal, one volume depletion and one ischemia/reperfusion, 8h), which they 

removed from further analysis.  The three analyses also revealed that two biological 

groups, cisplatin 2h, and ischemia/reperfusion  + α-MSH, 2h. were not different from 

their corresponding control microarrays.  They removed these groups from further 

microarray analysis, and thus a total of 22 microarrays remained. 

 

3.2.2  Analysis Methods 

 

After lot normalization and removal of outlier microarrays and groups, the PCA and 

hierarchical clustering analyses were repeated, with improved outcomes (n=4, 

normal; n=3, sham; n=4, volume depletion; n=4, ischemia/reperfusion, 2h; n=2, 

ischemia/reperfusion, 8h; n=3, mercuric chloride, 2h; n=3 mercuric chloride, 8h).  

The normal groups from lot 1 and lot 2 were indistinguishable by either method.  

However, the PCA and hierarchical clustering analyses classified the injury groups 
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differently.  Hierarchical clustering showed more segregation by time (2 vs. 8 h) than 

type of injury (ischemia/reperfusion vs. mercuric chloride).  In contrast, PCA 

indicated that the mercuric chloride groups are closer to each other and to the 

normal/sham/volume depletion groups, and the ischemia/reperfusion groups are 

farthest from each other and from the normal/sham/volume depletion groups.  These 

results may be attributed to the different distance metrics used by the two methods. 

 

Two methods of filtering were applied to the lot-normalized data set (after removing 

outliers).  After removal of duplicate microarrays, an unsupervised one-way ANOVA 

was applied, gene by gene, to the remaining 22 microarrays, using a Dunn-Sidak 

corrected p-value of <0.001 as a cutoff.  The 615 genes showing significant effects 

were subjected to PCA, and the first three principal components accounted for 58% + 

14% + 10% = 82% of the total variation.  The Ischemia genes yielded a 3-

dimensional plot which appeared to be close to a straight line in the PCA space, while 

the Mercury result appeared to be very close to a distinct straight line in the PCA 

space.  

 

Because the PCA analysis suggested that the treatment groups were distinct, Yuen et 

al. (2006) performed a two-stage filtering protocol, where the first stage was an 

unsupervised gene by gene ANOVA with a less stringent cutoff of  P<0.05 (Dunn-

Sidak), resulting in 1,596 genes, followed by a series of pre-specified t-tests between 

the normal group and each injury group, with a cutoff of P < 0.01, combined with a 

twofold change in the mean level of gene expression.  The two stage filtering protocol 



 

 45 
 

culminated in a total of 728 genes, which were categorized by individual or combined 

conditions and summarized in a table.  Each condition was expressed as exclusive of 

other groups or nonexclusive.   

 

3.3  Data Processing and Analysis Methods employed in the present Research 

3.3.1  Data Processing  

The initial screening performed in this analysis of the data is different from the 

methods of  Yuen et al. (2006).  Both screening protocols started with signal intensity 

of all genes on a microarray being normalized by median centering within each 

microarray and log2 transformed.   

 

The data used for the analysis presented in this paper is based on the 22 microarrays 

that remained after the first stage of Yuen et al.’s preprocessing of the data, with only 

one significant difference: genes with missing values were removed from the 22 

microarrays (9,501 remained from the original 9,988) and not from the original 36 

microarrays (9,251 remained in Yuen et al.’s study).  This resulted in 250 more genes 

(roughly 2.5% of the original data collected) to analyze and compare in this analysis, 

information that was lost in Yuen et al.’s study. 

 
3.3.2  Methods of Analysis   

The analyses presented in this paper employed modern multiple-comparison 

procedures aimed to control the proportion of type I errors among the rejected 

hypotheses in families of comparisons under simultaneous consideration.   
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These analyses were performed using two Bioconductor R packages (refer to 

Bioconductor website), limma and multtest, which represent two different 

approaches of analysis.  The first relies on classical linear models theory while the 

second uses permutation-based tests.  

The Bioconductor R package, limma, is designed to analyze complex microarray 

experiments involving comparisons between many RNA targets simultaneously.  By 

fitting a linear model to the expression data for each gene, this package allows 

analyzing contrasts of interest.  Empirical Bayes and other shrinkage methods are 

used to borrow information across genes making the analyses stable even for 

experiments with small number of arrays.  Limma then adjusts for multiple testing by 

applying the False Discovery Rate (FDR) procedure [Benjamini and Hochberg 

(1995)].  (Smyth, 2004; Smyth et al., 2005),  

On the other hand, the multtest R package  implements widely applicable 

resampling-based single-step and stepwise multiple testing procedures (MTP) for 

controlling a broad class of Type I error rates.  False Discovery Rate (FDR) 

[Benjamini and Hochberg (1995)],  and the Tail Probability for the Proportion of 

False Positives (TPPFP) [van der Laan et al. (2004b, 2005)] procedures were applied 

and compared by their results yield.   
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3.4  Results 

 

3.4.1  Limma Analysis 

The differentially expressed genes found by Yuen et al. (2006) exclusively for each 

treatment had the following quantities: 417 IR genes, 90 mercuric chloride (HgCl2) 

genes, 0 genes for sham treatment and 0 genes for volume depletion.  Guided by the 

choice of Yuen et al. (2006) to focus attention on the ischemic (Ischemia 

Reperfusion) and nephrotoxic (mercuric chloride) treatments due to their biologically 

significant medical effects and also due to their genes comprising the vast majority of 

differentially expressed genes found in their study, the next step in this analysis was 

to study the different effects each of these two types of treatments had on the genes 

which reacted to them to the most significant extent.  Limma analysis was performed 

comparing normal groups to the 2 hour- and 8 hour- treatments of mercuric chloride 

(HgCl2) and Ischemia/Reperfusion (IR).  The limma procedure compared the 

average difference between treatment groups and normal arrays, yielding a list of top 

differentially expressed genes based on the adjusted p-values.  The default adjustment 

method used to adjust the p-values for multiple testing is the Benjamini-Hochberg 

method, which controls the expected false discovery rate).  The top 50 genes were 

clustered and plotted into the heatmaps depicted in Figures 3.1-3.3. 

 

The R function hclust was used for the hierarchical clustering to be performed.  

This function performs a hierarchical cluster analysis using a set of dissimilarities for 
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the n objects being clustered. Initially, each object is assigned to its own cluster and 

then the algorithm proceeds iteratively, at each stage joining the two most similar 

clusters, continuing until there is just a single cluster. At each stage distances between 

clusters are recomputed by the Lance–Williams dissimilarity update formula 

according to the particular clustering method being used.  

A number of different clustering methods are available through the hclust function. 

Ward's minimum variance method aims at finding compact, spherical clusters. The 

complete linkage method finds similar clusters, and is the clustering method that was 

chosen. The single linkage method (which is closely related to the minimal spanning 

tree) adopts a ‘friends of friends’ clustering strategy. The other methods can be 

regarded as aiming for clusters with characteristics somewhere between the single 

and complete link methods.  
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Figure 3.1: Heatmap for hierarchical clustering of top 50 differentially expressed genes 

yielded by limma comparison of HgCl2 at 2 and 8 hours (HG2 and HG8), IR at 2 and 8 

hours and Normal treatments.  Color scale ranges from white, transitioning through yellow 

and orange, to red, where white represents highest expression values and red represents the 

lowest expression values. 

 
The heatmap in Figure 3.1 shows the expression levels and clustering of the 50 most 

differentially-expressed genes based on contrasts that tested the average difference 

between the treatment groups (HgCl2 at 2 and 8 hours and IR at 2 and 8 hours) and 

the normal groups.  The clustering seems to separate well the IR treatment groups 



 

 50 
 

from the others, while not doing the same in separating the HgCl2 treatment groups 

from the controls.  In general, these top 50 differentially expressed genes seem to 

show a consistent pattern of up-regulation to the highest degree by the IR treatments 

and to a much lesser degree by the HgCl2 treatment.  The clustering of the genes 

reveals a very big separation of the first cluster from all the rest, which are not so 

diverse as measured by height.  The height of that cluster differs greatly from the 

height of the rest of the clusters of genes, indicating a significantly different pattern of 

expression for that clustered collection of 6 genes (NM_012912, AF149118, M55534, 

BF415939, M14050, NM_012904).  Three of these genes, AF149118, M55534, and 

BF415939 are differentially expressed genes newly discovered by this analysis.  Their 

p-values are very small (ranging between 1.62e-14 and 4.89e-09), and their 

corresponding fold changes are highly significant (ranging between +4.26 and 

+100.68).  Genes NM_012912 and AF149118 appear in the top 50 differentially 

expressed genes for HgCl2.  One of them, NM_012912 , also appears in an unusual 

cluster in the corresponding dendogram.  Genes M55534, BF415939, and M14050 

and NM_012904 appear in the top 50 differentially expressed genes for IR and also 

appear in the same unusual cluster in the corresponding dendogram. 

 

Among these top 50 differentially expressed genes for both IR and HgCl2 treatments, 

two genes (AW142654 and BF420059) also appear in Yuen et al.’s list of 23 genes 

found to be differentially expressed for the two treatments.   

 



 

 51 
 

A more detailed analysis was performed by testing the IR and HgCl2 arrays separately 

by limma, in order to study the effects of each treatment on the expression behavior 

as detected by the contrasts we tested (average difference between treatment groups 

and normal arrays). 

 
Figure 3.2: Heatmap for hierarchical clustering of top 50 differentially expressed genes 

yielded by limma comparison of IR 2 and 8 hours to the Normal treatments.  Color scale 

ranges from white, transitioning through yellow and orange, to red, where white represents 

highest expression values and red represents the lowest expression values. 
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Figure 3.2 shows the expression levels and clustering of the 50 most differentially-

expressed genes for the IR treatments. It shows that most genes are up-regulated by 

the IR treatment, with the exception of two genes (BE109510 and BF42004) which 

show an opposite pattern (down-regulated by the IR treatment).  A high percentage of 

the genes seem to be over-expressed to the highest degree at 2 hours, and to transition 

toward normal levels again at 8 hours.  Located in the Appendix section is Table A1, 

which is a complete, detailed list of the Top 50 differentially expressed genes for the 

IR treatment, and includes their p-values, biological identity/function, and their 

corresponding fold-changes in reference to normal.  The biological identity/function 

was searched in Entrez, which is NIH’s NCBI Life Sciences search-engine 

(http://www.ncbi.nlm.nih.gov/sites/gquery).  The fold-change is calculated as the 

ration of expression under treatment to expression under control circumstances.  If 

ratio<1, then its reciprocal with a negative sign is reported.  
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Figure 3.3: Heatmap for hierarchical clustering of top 50 differentially expressed genes 

yielded by limma comparison of HgCl2 at 2 and 8 hours (HG2 and HG8) to the Normal 

treatments.  Color scale ranges from white, transitioning through yellow and orange, to red, 

where white represents highest expression values and red represents the lowest expression 

values. 

 
 

Figure 3.3 shows the expression levels and clustering of the 50 most differentially-

expressed genes for the HgCl2 treatments.  It clearly shows different expression 

patterns for separate chunks of genes.  Some of them show over-expression to the 
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highest degree at 2 hours while transitioning back to close-to normal levels at 8 hours.  

Some show under-expression at 2 and 8 hours in response to the HgCl2 treatment.  

This clear and significant separation of the 50 most differentially-expressed genes 

into groups can be biologically interpreted as an indication for their common 

function.  Located in the Appendix section is Table A2, which is a complete, detailed 

list of the Top 50 differentially expressed genes for the HgCl2 treatment, and includes 

their p-values, biological identity/function, and their corresponding fold-changes in 

reference to normal.  .  The biological identity/function was searched in Entrez, which 

is NIH’s NCBI Life Sciences search-engine 

(http://www.ncbi.nlm.nih.gov/sites/gquery).  The fold-change is calculated as the 

ration of expression under treatment to expression under control circumstances.  If 

ratio<1, then its reciprocal with a negative sign is reported.  

 

The heatmaps in Figures 3.2 and 3.3 depict a very different image of the pattern of 

expression of the top 50 differentially-expressed genes for the two different 

treatments (IR and HgCl2). 

 

The clustering of these top 50 differentially-expressed genes (yielded by limma’s 

analysis and ranked by the toptable function) for each treatment is presented in 

Figures 3.4 and 3.5 (the hclust function is the clustering method, the same as in the 

heatmaps, and the information portrayed is identical in both the heatmaps and the 

dendograms).  
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Figure 3.4: Cluster dendogram of top 50 differentially expressed genes yielded by limma 

comparison of IR 2 and 8 hours to the Normal treatments.  Newly discovered genes are 

marked on the dendogram by a red star     . 

 

Figure 3.4 shows the Cluster dendogram of top 50 differentially expressed genes 

yielded by limma comparison of IR 2 and 8 hours to the Normal treatments.   Newly 

discovered genes are marked on the dendogram by a red star .  The cluster dendogram 

in this figure shows a clear separation of two right-most clusters from the rest of the 

clusters.  These two clusters contain newly discovered genes and hence the 

dendogram may serve as a potential tool for finding new genes and figuring out their 

function.  In the first cluster, five genes appear.  Three of these genes, L16764, 

M55534, and BF415939 are newly discovered genes by this analysis.  A search in 

Entrez, NIH’s NCBI Life Sciences search-engine, revealed that new gene L16764 is a 
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Heat shock 70kD protein 1A (Hspa1a), located on chromosome number 20 of the 

Rattus Norvegicus (Norway rat) genome.  The search also identified new gene 

M55534 as Crystallin, alphaB (Cryab), which seems to be highly similar to a heat-

shock protein that’s alpha-crystallin-related.  Within that same cluster appears gene 

M14050, which had been identified by Yuen et al. as Heat shock 70kD protein 

(Hspa5), located on chromosome number 3 of the Rattus Norvegicus genome.  The 

common functionality of the clustered genes demonstrates how the clustering served 

as a helpful tool in identifying the deciphering the function of newly discovered, 

unknown genes.  It also supports the validity of these results. 

 

The newly discovered gene BF415939 is identified as FBJ osteosarcoma oncogene 

(Fos), located on chromosome number 6 of the Rattus Norvegicus genome.  The 

limma procedure for top differentially expressed IR genes assigned a significantly 

small p-value to it (4.88e-06), and it shows impressive fold changes of +100.68 and 

+12.35 at IR 2 hours and 8 hours respectively. 

Another newly discovered gene, appearing in the second cluster, is AF149118.  

Entrez identifies it as ADAM metallopeptidase with thrombospondin type 1 motif.  It 

shows fold-changes of +7.63 and +9.69 at 2 and 8 hours of IR treatment respectively.  

It was also found as an HgCl2 differentially expressed gene, showing fold-changes of 

+5.68 and +1.44 at 2 and 8 hours of HgCl2 treatment respectively.  This gene is 

positioned next to gene NM_012912 (known as Activating transcription factor 3, 

Atf3), which is also a differentially expressed gene under both IR and HgCl2 

treatments (showing fold-changes of +14.6 at 2 hours of IR treatment and +11.9 and 
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+9.80 at 2 and 8 hours of HgCl2 treatment respectively).  The tight clustering of these 

two genes may hint at a common or related pathway shared by the two genes. 

 

Two genes, BE109510 (newly discovered gene) and BF420043, are the only two 

genes which showed an expression behavior opposite to the rest of the genes in the IR 

heatmap.  They are still grouped together with other genes (which show the opposite 

pattern) in the same cluster.  Gene BE109510 is identified by Entrez as 

Transmembrane and coiled-coil domains 6 (Tmco6).  Gene BF420043 had been 

found by Yuen et al. as an IR differentially expressed gene, but its function hasn’t 

been identified.  They both show a negative fold change at IR 2 and 8 hours (greater 

negative change at 8 hours).   

 

Two other interesting newly discovered genes are AF061873 and D86345, which are 

clustered together.  Entrez identifies them as having a similar function as receptors: 

Transient receptor potential cation channel, subfamily C, member 1, Trpc1, for gene 

AF061873, and Leukemia inhibitory factor receptor alpha, Lifr, for gene D86345. 
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Figure 3.5: Cluster dendogram of top 50 differentially expressed genes yielded by limma 

comparison of HgCl2 2 and 8 hours to the Normal treatments.  Newly discovered genes are 

marked on the dendogram by a red star     . 
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Figure 3.5 shows the Cluster dendogram of top 50 differentially expressed genes 

yielded by limma comparison of HgCl2 at 2 and 8 hours to the Normal treatments.   

Newly discovered genes are marked on the dendogram by a red star.  The cluster 

dendogram in this figure shows a clear separation of one cluster (located at the far 

right) from the rest of the clusters.  The first newly discovered gene belonging to this 

cluster is BF549650.  This gene is still unknown in terms of its identity and/or 

functionality.  It is positioned closest to genes AI179795 and AI233194.  Both genes 

are known as zinc transporters and are affected to a similar extent by the HgCl2 

treatment at 2 hours (approximately a +2.50 fold change).  (Note that zinc and 

mercury occupy the same column in the Periodic Table and hence share similar 

properties). Could this hint at a common or closely related functionality or pathway of 

these genes?      

As in the previous Cluster dendogram (Figure 3.4), for the top 50 differentially 

expressed genes under IR treatment at 2 and 8 hours, here in this Cluster dendogram 

(Figure 3.5) for the corresponding top 50 differentially expressed genes under the 

HgCl2 treatment, the newly discovered gene, AF149118, appears again (in the cluster 

on the far left).  Entrez identifies it as ADAM metallopeptidase with thrombospondin 

type 1 motif.  It shows fold-changes of +7.63 and +9.69 at 2 and 8 hours of IR 

treatment respectively.  It was also found as an HgCl2 differentially expressed gene, 

showing fold-changes of +5.68 and +1.44 at 2 and 8 hours of HgCl2 treatment 

respectively.  In this Cluster dendogram, similar to the Cluster dendogram for the IR 

treatment, this AF149118 gene is positioned, again, closest to another gene which has 
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the same function as in the previous dendogram, although not carrying the same 

accession number.  The M63282 gene, (which was also newly discovered by our 

analysis), is now identified by Entrez as Activating transcription factor 3, Atf3 (same 

as gene NM_012912 from Figure 3.4), which is also a differentially expressed gene 

under both IR and HgCl2 treatments (showing fold-changes of +72.52 and +38.78 at 2 

and 8 hours of HgCl2 treatment and +128.49 and +44.37 at 2  and 8 hours of IR 

treatment respectively).  The consistently tight clustering of the newly discovered 

gene, AF149118, with the two Atf3 (NM_012912 and M63282 genes) may hint at a 

common or related pathway shared by these genes. 

 

The dendogram also positions two single genes (appearing on the left) as separate 

than all the rest of the clusters.  These are considered outliers.  One of them, 

NM_012580 is known as Heme oxygenase (decycling)1 (Hmox1).  It is highly 

affected by the HgCl2 treatment, showing a +79.6 fold-change at 2 hours, and +91.2 

fold-change at 8 hours.  The gene next to it, U07971, is a newly discovered gene, 

showing a -2.23 fold-change at 2 hours and -2.61 fold-change at 8 hours of HgCl2 

treatment.  These two show opposite expression behavior both in terms of up versus 

down regulation and in terms of order of magnitude.  Their p-values are small, 3.57e-

05 for NM_012580, and 8.65e-04 for U07971.  While the NM_012580 gene is clearly 

an outlier, gene U07971 is not, and it is unclear why it was positioned as such.   
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In order to test for the effect of time on expression patterns of the genes, we 

compared the average difference between normal arrays (serving as time 0 hours 

measurements) and treatment groups at 2 hours and at 8 hours separately.  The results 

were first displayed as  Q-Q plots.  A Q-Q plot is a probability plot, which is a 

graphical method for comparing two sample probability distributions by plotting their 

quantiles against each other. First, the set of intervals for the quantiles are chosen. A 

point (x,y) on the plot corresponds to one of the quantiles of the second distribution 

(y-coordinate) plotted against the same quantile of the first distribution (x-

coordinate). A Q-Q plot is an order statistic plot, so information regarding the identity 

of genes is lost. 
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Figure 3.6: Q-Q plot comparing average difference between HgCl2 and IR treatment groups 

at 2 hours (HG2 and IR2) and Normal arrays (o hours) yielded by limma  

 

y=x 
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Figure 3.7: Q-Q plot comparing average difference between HgCl2 and IR treatment groups 

at 8 hours (HG8 and IR8) and Normal arrays (o hours) yielded by limma  

 

The line y = x is used as a reference indicating the case where the two distributions 

being compared are similar.  

The Q-Q plots for the 2 hour and 8 hours show very different patterns and the shape 

of distribution appears to be very different.   

 

The 2 hour Q-Q plot shows different effect for HgCl2 than for IR.  The 8 hour Q-Q 

plot shows no unusual behavior in its middle region, but out in the edges expression 

levels are up in first quadrant, and also the lines bend.  The graph is above the y = x 

line.  The slope of the y = x line represents the ratio of standard errors and the Q-Q 

y=x 



 

 64 
 

plot is indicating that there is a difference in variation.  IR8 has more variation than 

HG8 (HgCl2 at 8 hours). 

The difference in scale between the HgCl2 at 2 hours (-40 to +80) and the HgCl2 at 8 

hours (-50 to +100) may indicate that the effect of HgCl2 may be greater at 8 hours.  

The two densities also show obvious differences in terms of more outliers/genes that 

respond more strongly at 8 hours.   

 

The nature of response seems to be different between IR and HgCl2.  The graphs 

show that genes that are affected by IR are different than those affected by HgCl2. 

 

A normal Q-Q plot comparing randomly generated, independent standard normal data 

on the vertical axis to quantiles of a standard normal population on the horizontal axis 

will fluctuate randomly from the y = x (45º) line. The linearity of the points along the 

line would suggest in that case that the data are normally distributed.  The Q-Q plots 

in Figures 3.6 and 3.7 show a difference from what a normally-distributed graph will 

look like.  This may serve as indication to a departure from normality of the data.  

 

Whereas a Q-Q plot is an ordered statistic plot in which information regarding the 

identity of genes is lost, a scatter-plot portrays that information as well.   A scatter-

plot will tell us to what extent there might be an association between response and 

HgCl2 vs. IR. 
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Figure 3.8: Scatter plot comparing average difference between HgCl2 and IR treatment 

groups at 2 hours (HG2 and IR2) and Normal arrays (o hours) yielded by limma  

 

Figure 3.8 is a scatter plot comparing the average difference between treatment 

groups at 2 hours (HgCl2 and IR) and Normal arrays (o hours) yielded by limma. 

The scatter plot shows that there are outliers in both directions (far out in the 

diagonal).  The outliers located along the y axis are hardly affected by HgCl2.  Genes 

affected by either treatment are concentrated around the y=x line.  Appearing mostly 

in 1st and 3rd quadrants, most outliers seem to be either up- or down- regulated under 

both treatments at 2 hours.  The graph indicates that the tendency is for over-

expression (because of the asymmetry in the scatogram).  Scale is -40 to +80.   
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Figure 3.9: Scatter plot comparing average difference between HgCl2 and IR treatment 

groups at 8 hours (HG8 and IR8) and Normal arrays (o hours) yielded by limma  

 

Figure 3.9 is a scatter plot comparing the average difference between treatment 

groups at 8 hours (HgCl2 and IR) and Normal arrays (o hours) yielded by limma. 

The scatter plot shows that there are outliers in both directions (far out in the 

diagonal).  The outliers located along the y axis are hardly affected by HgCl2.  Genes 

affected by either treatment are concentrated around the y=x line.  Appearing in 1st , 

2nd, and 3rd quadrant, most outliers seem to be either up/down- regulated under both 

treatments at 8 hours, or up-regulated by HgCl2 and down-regulated by IR at 8 hours.  

The graph indicates that the tendency is for over-expression (because of the 

asymmetry in the scatogram).  Scale is -50 to +100.   
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The scatter plots show much more points in the second and third quadrants at 8 hours 

versus at 2 hours.  Also more extreme measurements on second quadrant appear on 

the 8 hours graph, though it has different scale (Scale of HG8 is -50 versus -40 in 2 

hours for x axis). 

  

These differences between the scatter-plots at 2 and 8 hours may be further explained 

as to their significance by biologists.   

 

 

Figure 3.10: Scatter plot comparing average difference between IR at 2 and 8 hours and 

Normal arrays (o hours) yielded by limma  
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Figure 3.11: Scatter plot comparing average difference between HgCl2 (HG) at 2 and 8 hours 

and Normal arrays (o hours) yielded by limma  

 

Figures 3.10 and 3.11 are time-effect graphs.  These scatter plots compare the average 

difference between a common treatment group (either IR or HgCl2) at 2 and 8 hours  

and Normal arrays (o hours) yielded by limma.  

 

The HgCl2 scatter-plot looks as expected.  It shows a response which is concentrated 

approximately along a 45 degree line.  This shape of the graph typically portrays a 

response mechanism in which a longer exposure to a toxin results in a more extreme 

response.  Given that the HgCl2 treatment protocol includes injecting 4 mg/kg 

mercuric chloride, and then harvesting after 2h or 8h, the graph seems to clearly be 

showing the expected response to that type of treatment.  
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The IR graph is surprisingly looking.  It looks very flat.  If it was a flat line 

completely it would have indicated not much correlation between x and y.  But the 

influence of outliers is substantial.  The bulk of the points are showing less difference.  

There seems to be much variation in IR8 scale, not much in IR2 scale, which may 

indicate a tendency for more variation at 8 hours versus 2 hours. 

 

There seem to be many outliers showing a peak at 2 hours and a decline at 8 hours, 

but at the same time, a significant amount of outlier genes show the opposite pattern 

(peaking at 8 hours and to a lesser degree at 2 hours). 

 

The IR treatment protocol includes 40 minutes bilateral ischemia, 2h or 8h 

reperfusion, then harvest.  Ischemia is a restriction in blood supply to tissues, causing 

a shortage of oxygen and glucose needed for cellular metabolism.  The ischemia is 

then followed by reperfusion, which is the tissue damage caused when blood supply 

returns to the tissue after a period of ischemia or lack of oxygen.  There could be a 

cell repair mechanism operating, in which some genes are needed for cellular 

pathways being completed within 2 hours, while other (repair?) genes get activated 

only after 8 hours.   Also, since the cells are then harvested at either 2 or 8 hours, at 

which point their gene expression is measured, we are only seeing the measurements 

of those two time points.  It is possible that if measurements had been taken at time 
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point = 6 hours, that information could supply additional details and insights as to 

how the cellular repair mechanism operates.   

While the two scatter-plots in Figures 3.10 and 3.11 both show that the extreme genes 

are mostly over-expressed, they, at the same time clearly depict two very different 

repair mechanisms for the IR and HgCl2 treatments. 

 

3.4.2  Multtest Analysis 

 

In the analysis based on multtest, step-down maxT was chosen for FWER control, 

and the test statistics’ null distribution was estimated by the permutation resampling 

method (the bootstrap option was not an available application yet).   

The MTP procedure performed compared the 22 treatments (Normal, n=4; HgCl2 at 2 

hours, n=3; HgCl2 at 8 hours, n=3; Volume Depletion, n=3; Ischemia/Reperfusion at 

2 hours, n=4; Ischemia/Reperfusion at 8 hours, n=2; and Sham, n=3) and found, at 

level alpha = 0.05, 928 rejections (equivalent to differentially expressed genes) under 

the TPPFP procedure (with q = 0.1, which is the default), and 622 rejections under 

the FDR procedure.   
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Figure 3.12: Comparison of TPPFP and FDR procedures, based on the FWER-controlling 

permutation-based step-down maxT procedure. 

 

Figure 3.12 depicts the comparison in performance between TPPFP and FDR.  It 

shows that for significant levels of alpha, TPPFP finds more rejected hypotheses than 

FDR, which seems to be more conservative.  This power advantage of TPPFP seems 

to persist up to Type I error rate of 0.65. 

 

In contrast to the FDR-controlling approach that focuses on the expected value of the 

proportion of false positives among the rejected hypotheses, the TPPFP procedure 

controls the tail probabilities for this proportion.  According to Genovese and 

Wasserman (2004a,b), Korn et al. (2004), van der Laan et al. (2004b, 2005), 

Lehmann and Romano (2005), and Romano and Wolf (2005), although FDR-
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controlling approaches control the proportion of false positives (PFP) on average, 

they do not preclude large variations in PFP.  When one wishes to have high 

confidence (i.e., chance at least (1-α)) that the set of rejected null hypotheses contains 

at most a specified proportion q of false positive, control of the tail probability for the 

proportion of false positives (TPPFP) is the appropriate form of Type I error control.  

The parameter q confers flexibility to TPPFP-controlling MTPs and can be tuned to 

achieve a desired level of false positives.  

 

The graphs in Figure 3.12 also show an interesting finding: for very small α’s, TPPFP 

seems to find a significantly greater amount of rejected hypotheses.  For example, 

running the MTP function with both TPPFP and FDR procedures at α level equal 

0.01, yielded 337 rejections under the TPPFP procedure and 23 rejections under the 

FDR procedure.   

 

The hypotheses rejected by either TPPFP or FDR procedures correspond to genes 

whose expression levels were found to be significantly different from the rest of the 

genes.  These are considered the differentially expressed genes and the ones with the 

respectively smallest p-values are the most significant ones.   

 

Table A3, found in the Appendix section, specifies the 50 most significant 

differentially expressed genes among the 22 arrays as found by the TPPFP procedure, 

at 0.05 alpha level (with q = 0.1, which is the default).  The table includes their p-

values, biological identity/function, and the corresponding fold-changes in reference 
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to normal.  The biological identity/function was searched in Entrez, which is NIH’s 

NCBI Life Sciences search-engine (http://www.ncbi.nlm.nih.gov/sites/gquery).  The 

fold-change is calculated as the ration of expression under treatment to expression 

under control circumstances.  If ratio<1, then its reciprocal with a negative sign is 

reported.  

 

 

All 50 genes appearing on this TPPFP-based multtest analysis seem to be 

different than their normal level measurements, showing significant differential 

expression both in terms of their fold-changes (ranging from 2.01 to 91.2) and in 

terms of their p-values (ranging from 0.002 to 0.007).  Since this is a permutation-

based test (with a finite number of permutations), a discrete significance level is 

observed.  Most of these genes are differentially expressed genes under the IR 

treatment, a fact which coincides with Yuen et al.’s findings as well. 

 

The majority of the genes appearing in Table A3 (36 out of 50 or 72%) were found by 

Yuen et al. as being differentially expressed genes.   The other 14 genes (28%) are 

new differentially expressed genes discovered by this analysis.  All of them showing 

significant differential expression both in terms of their fold-changes (ranging from 

2.38 to 100.68) and in terms of their p-values (ranging from 0.002 to 0.007).   

 

The second most significant gene in Table A3 is BF415939, which is a new 

differentially expressed gene discovered by this analysis.  Under the IR treatment, it 
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shows a fold-change of +100.68 at 2 hours, and a fold-change of +12.35 at 8 hours.  

The multtest procedure assigns it a p-value of 0.002, and Entrez identifies it as 

FBJ osteosarcoma oncogene.  This gene was actually identified also by the limma 

analysis for top differentially expressed genes for the IR treatment, as the most 

differentially expressed gene, with a p-value of 4.88e-06. 

 

Some other interesting new differentially expressed genes discovered by this analysis 

are:  gene L12025, which is ranked number 18 on Table A3.  It has a p-value of 

0.005, and the following fold-changes: +5.0 under IR2, +30.0 under IR8, and +4.60 

under HG8 (HgCl2 at 8 hours)  Gene AF149118, is ranked number 31 on this list.  It 

has a p-value of 0.007, and the following fold-changes: +7.63 under IR2, +9.69 under 

IR8, and +5.68 under HG2 (HgCl2 at 2 hours).  It is identified by Entrez as ADAM 

metallopeptidase with thrombospondin type 1 motif, 1, Adamts1.  This gene was 

identified also by limma as a differentially expressed gene for both the IR and 

HgCl2 treatments.  Gene AF269251, ranked number 33 on the list, has a p-value of 

0.007 and the shows fold-changes of +3.33 and +30.95 under the IR treatment at 2 

and 8 hours respectively.   

 

These genes clearly are highly significant differentially expressed genes, and may not 

have been identified  by Yuen et al. partly due to the loss of information of 250 genes 

incurred at the step where genes with missing values were filtered out from the 

original 36 microarrays, and not from the 22 microarrays (as was done by this paper’s 

analysis).  
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3.5  Difference in Performance between limma and multtest 

3.5.1  Difference in Performance 

Next, the relative performances of limma versus multtest were compared.  Both 

procedures were run using FDR as their Type I error control, and two sets of data 

were analyzed: HgCl2 treatments (2 hours and 8 hours) against the Normals, and 

comparison of all 22 treatments (HgCl2, IR, Volume depletion, Sham and Normal 

treatments).  The output of these analyses were compared, in terms of numbers of 

differentially expressed genes found, range of adjusted p-values, range of fold-

change, and genes identified as differentially expressed by the two procedures.  

 

Table A4, found in the Appendix section, specifies the 50 most significant 

differentially expressed genes among the 22 arrays as found by the limma procedure.  

The table includes their p-values, biological identity/function, and their corresponding 

fold-changes in reference to normal.  .  The biological identity/function was searched 

in Entrez, which is NIH’s NCBI Life Sciences search-engine 

(http://www.ncbi.nlm.nih.gov/sites/gquery).  The fold-change is calculated as the 

ration of expression under treatment to expression under control circumstances.  If 

ratio<1, then its reciprocal with a negative sign is reported). 

 

When analyzing the HgCl2 treatments against Normals, multtest found only 4 

rejections, equivalent to identifying only 4 differentially expressed genes, at the alpha 

= 0.05 level.  These genes are: AW251878, BF407511, NM_012580, and 

AW917197, and their adjusted p-values, as assigned by multtest, are: 0.022, 
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0.022, 0.022, and 0.030 respectively.  Limma’s analysis of the same data set yielded a 

list of genes, whose top 100 differentially expressed genes had an adjusted p-value 

range of 3.57e-05 to 2.69e-03.  Three of the four genes found by multtest, 

BF407511 (fold-change of +2.54 under HgCl2 at 2 hours), NM_012580 (fold-change 

of +79.6 under HgCl2 at 2 hours and +91.2 under HgCl2 at 8 hours), and AW917197 

(fold-change of -3.21 under HgCl2 at 8 hours) appear on the limma list as its first, 

second and seventh most differentially expressed genes, having adjusted p-values of 

3.57e-05, 3.57e-05, and 4.95e-04 respectively.  The gene found as the most 

differentially expressed gene by multtest, AW251878 (fold-change of +3.24 

under HgCl2 at 8 hours) does not appear in the top 100 differentially expressed genes 

found by limma.   

This comparison between multtest and limma revealed a significant difference in 

the number of genes identified as differentially expressed by the two procedures.  

Only 3% of limma’s list of top 100 differentially expressed genes were identified by 

multtest.  For the same genes found by both procedures as differentially 

expressed, their respective adjusted p-values are significantly smaller as assigned by 

limma relative to the multtest procedure.  

 

The analysis of all 22 treatments (HgCl2, IR, Volume depletion, Sham and Normal 

treatments) by limma and multtest revealed the following differences:  

At level alpha = 0.05,  multtest found 622 rejections. Its list of top 25 

differentially expressed genes had an adjusted p-value range of 0.004 to 0.014.  

Limma’s analysis of the same data set yielded a list of genes, whose top 25 had an 
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adjusted p-value range of 1.52e-14 to 3.28e-09.  The two lists of top 25 differentially 

expressed genes produced by the two different procedures had 9 genes (36%) in 

common.  Comparison of the top 50 differentially expressed genes’ lists had 21 genes 

(42%) in common, also following the same pattern of much smaller adjusted p-values 

range assigned by the limma procedure.  Both lists produced by the two procedures 

included significant differentially expressed genes to the same extent, in terms of 

their fold-changes. 

 

The output of limma, relative to that of multtest, seems to consistently have a 

very different order of magnitude in terms of its adjusted p-values.  Under the limma 

procedure, there is also a significant difference between the adjusted and unadjusted 

values for p (unadjusted p-values tend to be smaller than their respective adjusted 

values by an average order of 10-3).  The gene lists as produced by the two procedures 

were different.   At the very extreme, the two procedures don’t necessarily identify 

same genes, but some are significant enough to appear in both.  The ranking of 

significance levels between multtest and limma is different.  There appears to be 

a loss of power with multtest, which seems to be a more conservative procedure.  

 

3.5.2  The Difference in Mechanism 

 
The multtest package implements widely applicable resampling-based 

single-step and stepwise multiple testing procedures (MTP) for controlling 

a broad class of Type I error rates, in testing problems involving 

general data generating distributions (with arbitrary dependence structures 
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among variables), null hypotheses, and test statistics. In this study, the permutation-

based  estimator of the null distributions of the test statistics (t- or F-statistics) null 

distribution was chosen.  Procedures are provided to control Type I error rates defined 

as tail probabilities and expected values of arbitrary functions of the numbers of Type 

I errors and rejected hypotheses. These error rates include: the generalized family 

wise error rate, tail probabilities for the proportion of false positives among the 

rejected hypotheses, and the false discovery rate. Single-step and step-down common-

cut-off (maxT) and common-quantile (minP) procedures, that take into account 

the joint distribution of the test statistics, are implemented to control the FWER.  In 

addition, augmentation procedures are provided to control the gFWER, TPPFP, and 

FDR, based on any initial FWER-controlling procedure. 

[http://www.bioconductor.org]. 

 

Limma uses linear models to analyze designed microarray experiments (Yang and 

Speed, 2003; Smyth, 2004).  The approach requires two matrices to be specified, the 

design matrix and the contrast matrix.  The first step is to fit a linear model.  Each 

row of the design matrix corresponds to an array in the experiment and each column 

corresponds to a coefficient.  One purpose of this step is to estimate the variability in 

the data.  The contrast step allows the fitted coefficients to be compared in as many 

ways as there are questions to be answered, regardless of how many or how few these 

might be.  The comparison of interest is the average difference between treatment 

groups and normal arrays. 
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The most popular form of adjustment is “FDR”, which is Benjamini and Hochberg’s 

method to control the false discovery rate (Benjamini and Hochberg, 1995).   

 

3.5.3  Discussion 

The limma and multtest procedures are clearly different.  The F-test performed 

by the two procedures is not the same.  The multtest procedure permutes the 

9,900 dimensions of gene expression, yielding a calculated F statistic for the data.  

Then, it adjusts for multiplicity. 

Limma, on the other hand, has an empirical Bayes step (that multtest does not) 

which shrinks the dnominators of the F statistics making them smaller testing 

significance.  Its approach improves on the t-statistic in terms of not giving high rank 

to genes only because they have small sample variances. The empirical Bayes 

(eBayes) step also has an effect of down-weighing an outlier, so that the wilder p-

values tends to get shrunk.  Limma first modify p-values by eBayes, then identify 

significance among them by FDR. 

 

Multtest uses permutation-based tests performed on ANOVA-like statistics.  

Limma performs ANOVA-like analyses, based on classical linear models theory.  

Permutation tests are valid under any distribution of the Y’s when the null hypothesis 

is true.  Therefore P(Type I error) =  under non normality.  With nonnormal data, F = 

MST/MSE may not follow the theoretical F distribution, so that we’re not sure if we 

control P(Type I error).  This is the appeal of permutation tests.  Empirical Bayes is 

applied to the denominator of F = MST/MSE, shrinking MSE toward a prior value 
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and increasing the denominator degrees of freedom.  Hence values of Fmod are more 

significant than F. 

 

 

The two procedures also represent two different approaches: limma assumes 

normally distributed data (classical linear model), and multtest is permutation-

based.  The Q-Q plots analyzing the data showed departure from normality in 

extremes.  It can be speculated that one thing affecting the performance of limma 

and multtest is the non normality of the data.  The loss of power occurring with 

multtest is a consequence of a protection against type I errors in non-normal data.  

The price one pays is reduced power (small sample size in our case).  Are we finding 

such a severe nonnormality in data that limma is finding false findings?  On the 

other hand, if we knew normality assumptions were met, then it could be concluded 

that limma is superior to multtest. 

 

Is the difference in performance of the two procedures evidence of conservatism of 

permutations or liberalism of the linear models –based test?  Since it is not known 

how much the apparent distribution affected the results, it is not possible to determine 

whether the reason for the difference in performance between limma and 

multtest is due to the superiority of the limma mechanism or to an inherent bias 

of limma.   
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Table 3.1 - Selected Newly  Discovered Genes 

 

 Accession # Adj_p Found 
by  

Yuen 
 et al 

Description Fold Change 

1 BF415939  4.88e-06 NOT FBJ osteosarcoma oncogene (Fos) 
 

+100.68 IR2 
+12.35 IR8 

2 AF269251 0.007 NOT Interleukin 24 Il24 +3.33 IR2 
+30.95 IR8 

3 AB032419 7.61e-09 NOT Early growth response 2 (Egr2) +21.02 IR2 
+11.81 IR8 

4 AI179538  7.36e-09 NOT Kruppel-like factor 4 (gut) (Klf4) +9.54 IR2 
+4.16 IR8 

5 AF065147 
 

0.005 NOT Cd44 molecule (Cd44) +8.71 IR8 
 

6 U95368 0.005 NOT Gamma-aminobutyric acid (GABA-A) 
receptor, pi 
 

+7.71 IR8 

7 AF001417 3.25e-08 NOT Kruppel-like factor 6 (Klf6) +16.67 IR2 
+12.05 IR8 
+4.21 HG2 
+5.62 HG8 

8 L12025  2.54e-08 NOT Poliovirus receptor (PVR) +8.50 IR2 
+25.37 IR8 
+4.93HG8 

9 AF149118  4.07e-09 NOT ADAM metallopeptidase with 
thrombospondin type 1 motif, 1 (Adamts1) 

+7.63 IR2 
+9.69 IR8 
+5.68 HG2 

10 BF408391  1.60e-10 NOT BMP and activin membrane-bound 
inhibitor, homolog (Xenopus laevis) 
(Bambi) 

+5.39 IR2 
+4.01 IR8 
+2.42 HG2 

 
The table above portrays a selection of 10 most differentially expressed genes, which 

were discovered in the course of this paper’s analysis.   

 

In the top of the list, gene BF415939 (FBJ osteosarcoma oncogene, Fos), showing an 

enormous fold change under IR treatment, of +100.68 at 2 hours and +12.35 at 8 

hours.  It was identified by all types of multiple testing procedures employed in our 

study as either first or second most differentially expressed gene either among all the 

IR treatments and/or among all treatment groups.   



 

 82 
 

 

Next on the list, genes AF269251 and AB032419, affected by the IR treatment at both 

2 and 8 hours, and showing impressing fold changes at both time points.  Their fold 

change pattern is opposite, one peaking at 8 hours (+30.95 fold change) while the 

other peaking at 2 hours (+21.02 fold change). 

 

Another couple of interesting genes is gene AI795538 and gene AF001417 (the forth 

and seventh on the list).  The first of which is affected by the IR treatment only at 2 

and 8 hours, which the second is affected under both IR and HgCl2 treatments, both to 

a significant degree.  While their description characterizes them as closely related in 

functionality, Kruppel-like factors 4 and 6, both are significantly affected by the IR 

treatment but differently affected by the HgCl2 treatment. 

 

Gene AF065147, is identified as Cd44 molecule.  Another gene, having the same 

function, had been identified by Yuen et al (and by another study – Huang Q et. al), 

accession number NM_012924.2, showing a similar fold change +8.22 under the 

same treatment (IR) at the same time point (8 hours).  Could the two genes be 

related? 
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Chapter 4: Summary and Conclusions 

 

4.1  Summary 

 
In this dissertation, we have reviewed methods for dealing with multiple testing that 

arise in microarray analysis, involving thousands of genes and few subjects.  We 

applied newly developed multiple testing methods to a real world microarray data set 

that was originally collected in Dr. Robert Star’s NIH laboratory and was then 

analyzed by Dr. Star and his colleagues (Yuen et al. 2006), in an effort to identify 

differentially expressed genes serving as biomarkers that distinguish ischemic from 

nephrotoxic injury types.  In the study, a total of 31 male rats were assigned to 

different experimental groups, in which rat kidney transcriptomes were compared at 2 

and 8 hours after ischemia/reperfusion and after mercuric chloride injection.   

 

After collecting the data, Yuen et al. (2006) preprocessed the data using classical 

statistical methods combined with a heuristic data-screening approach.  

Understanding the need for multiple testing, they eliminated genes that they thought 

were obviously non-differentially expressed and then subjected each of the remaining 

genes to several ANOVA-based analyses.  Their protocols reduced the data to a total 

of 728 genes, which were categorized by individual or combined conditions and 

summarized in a table.   
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Our goal was to analyze the same data using more sophisticated tools.  The analyses 

presented in this paper employed modern multiple-comparison procedures designed 

to control the proportion of type I errors among the rejected hypotheses in families of 

comparisons under simultaneous consideration.  Our approach is entirely statistical, 

so it reduces any type of subjectivity in preprocessing the data.  We eliminated genes 

where the data were incomplete, as did Yuen et al. (2006), but we used a more refined 

method so that we were able to include additional genes.  We were then able to 

identify differentially expressed genes using well developed statistical methodologies, 

applying both the limma and multtest procedures in the R Bioconductor software 

ensemble, while addressing error control in the form of false discovery rate. 

 

4.2  Conclusions 

 
Limma analysis was performed comparing normal groups to the 2 hour- and 8 hour- 

treatments of Mercuric Chloride (HgCl2) and Ischemia/Reperfusion (IR).  The 

limma procedure compared average differences between treatment and normal 

groups, yielding a list of most differentially expressed genes, based on the adjusted p-

values.   

 

Our statistical analysis yielded a collection of differentially expressed genes, under 

both treatments and for each treatment separately as well.    Many of these have been 

previously identified by Yuen et al. and other researchers, but others are new.  The 

top 50 differentially expressed genes for the Mercury Chloride and Ischemia 
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Reperfusion treatments were found to show distinct patterns of expression, while 

presenting a substantial difference in magnitude.  Their heatmap plots showed a clear 

distinction between the two groups.  These genes were clustered using a hierarchical 

clustering algorithm, which yielded a notable separation between the clusters, while 

presenting a different expression pattern as well.  Normal quantile plots and 

scatterplots both indicate different mechanisms operating for the two different 

treatments, as well as hints of non-normality of the data. 

 

Limma analysis comparing HgCl2 at 2 and 8 hours (HG2 and HG8), IR at 2 and 8 hours 

and Normal treatments yielded several newly discovered differentially expressed genes, 

among which are AF149118, M55534, and BF415939, which were clearly classified as 

belonging to a separate cluster by the clustering algorithm.  The height of that cluster 

differs greatly from the height of the rest of the clusters of genes, indicating a 

significantly different pattern of expression for that clustered collection of genes.  

Their p-values are very small (ranging between 1.62e-14 and 4.89e-09), and their 

corresponding fold changes are highly significant (ranging between +4.26 and 

+100.68). 

 

The Cluster dendogram of top 50 differentially expressed genes yielded by limma 

comparison of IR 2 and 8 hours to the Normal treatments describes two of these 

genes, M55534 and BF415939, as clustered together.  A search in Entrez, NIH’s 

NCBI Life Sciences search-engine identified new gene M55534 as Crystallin, alphaB 

(Cryab), which seems to be highly similar to a heat-shock protein that’s alpha-

crystallin-related.  Within that same cluster appears gene M14050, which had been 
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identified by Yuen et al. as Heat shock 70kD protein (Hspa5), located on 

chromosome number 3 of the Rattus Norvegicus genome.  And a another newly 

discovered gene within the same cluster, L16764, identified by Entrez as  a Heat 

shock 70kD protein 1A (Hspa1a), located on chromosome number 20 of the Rattus 

Norvegicus (Norway rat) genome.   

The common functionality of the clustered genes demonstrates how the clustering 

served as a helpful tool in identifying the deciphering the function of newly 

discovered, unknown genes.   

 

The newly discovered gene BF415939 is identified as FBJ osteosarcoma oncogene 

(Fos), located on chromosome number 6 of the Rattus Norvegicus genome.  The 

limma procedure for top differentially expressed IR genes assigned a significantly 

small p-value to it (4.88e-06), and it shows impressive fold changes of +100.68 and 

+12.35 at IR 2 hours and 8 hours respectively.  This gene is also the second most 

significant gene in multtest’s top 50 differentially expressed genes list, where it 

was assigned a p-value of 0.002. 

 

Gene AF149118 was identified by Entrez as ADAM metallopeptidase with 

thrombospondin type 1 motif.  It shows fold-changes of +7.63 and +9.69 at 2 and 8 

hours of IR treatment respectively.  It was also found as an HgCl2 differentially 

expressed gene, showing fold-changes of +5.68 and +1.44 at 2 and 8 hours of HgCl2 

treatment respectively.  This gene is positioned next to gene NM_012912 (known as 

Activating transcription factor 3, Atf3), which is also a differentially expressed gene 



 

 87 
 

under both IR and HgCl2 treatments (showing fold-changes of +14.6 at 2 hours of IR 

treatment and +11.9 and +9.80 at 2 and 8 hours of HgCl2 treatment respectively).  

The tight clustering of these two genes may hint at a common or related pathway 

shared by the two genes. 

In the HgCl2 top 50 differentially expressed cluster dendogram, similar to equivalent 

IR treatment, this AF149118 gene is positioned, again, closest to another gene which 

has the same function as in the previous dendogram, although not carrying the same 

accession number.  The M63282 gene, (which was also newly discovered by our 

analysis), is now identified by Entrez as Activating transcription factor 3, Atf3 (same 

as gene NM_012912 from Figure 3.4), which is also a differentially expressed gene 

under both IR and HgCl2 treatments (showing fold-changes of +72.52 and +38.78 at 2 

and 8 hours of HgCl2 treatment and +128.49 and +44.37 at 2  and 8 hours of IR 

treatment respectively).  The consistently tight clustering of the newly discovered 

gene, AF149118, with the two Atf3 (NM_012912 and M63282 genes) may hint at a 

common or related pathway shared by these genes.  Gene AF149118 was also ranked 

number 31 on the multtest list showing a p-value of 0.007. 

 

By using purely statistical analyses of the microarray results we are able to point out 

differentially expressed genes that went unrecognized before, that is, previous false 

negatives. Different types of assaults yield cell damage which can be detected in 

DNA.  We conclude that once such a treatment is applied, technology can detect its 

effects.  Using microarray technology and sophisticated multiple testing machinery 

we can pinpoint and quantify these effects. 
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4.3  Comparison of limma and multtest 

In the course of our analysis, we came across an interesting finding regarding the 

relative performance of the limma versus the multtest procedures.  

 

Application of  multtest and limma to the same data  revealed a significant 

difference in the numbers of genes identified by the two procedures as differentially 

expressed.  While limma identified a large number of genes as differentially 

expressed, at a given overall FDR level, multtest identified only a few.  For the 

genes identified by both procedures as differentially expressed, their respective 

adjusted p-values are significantly smaller as assigned by limma relative to the 

multtest procedure.  When analyzing the HgCl2 treatments against Normals, for 

example, only 3% of limma’s list of top 100 differentially expressed genes were 

identified by multtest.  Multtest identified only 4 differentially expressed 

genes, having adjusted p-values, as assigned by multtest, ranging between 0.022 

and 0.030.  On the other hand, limma’s analysis of the same data set yielded a list of 

genes, whose top 100 differentially expressed genes had an adjusted p-value range of 

3.57x10-5 to 2.69x10-3.  Three of the four genes found by multtest appeared on the 

limma list as its first, second and seventh most differentially expressed genes, having 

adjusted p-values of 3.57x10-5, 3.57x10-5, and 4.95x10-4 respectively.  The gene 

found as the most differentially expressed gene by multtest, AW251878 (fold-
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change of +3.24 at HgCl2 8 hours) does not appear among the top 100 differentially 

expressed genes found by limma.   

 

The output of limma, compared to that of multtest, consistently has very 

different orders of magnitude of its adjusted p-values.  The gene lists produced by the 

two procedures were different.   The ranking of significance levels between 

multtest and limma is different.  There appears to be a loss of power with 

multtest, which seems to be a more conservative procedure.   

 

The two procedures are based on very different principles and represent two different 

approaches: limma assumes normally distributed data.  It relies on a combination of 

normal theory analysis of linear models together with an empirical Bayes approach 

and other shrinkage methods used to borrow information across genes making the 

analyses stable even for experiments with small number of arrays (Smyth, 2004).  

The multtest algorithm makes no assumptions.  It is permutation-based and as 

such, it has reduced power (Pollard, Dudoit and van der Laan , 2004).  The Q-Q plots 

analyzing the data showed departure from normality in extremes.  It can be speculated 

that one thing affecting the performance of limma and multtest is the 

nonnormality of the data.  The loss of power occurring with multtest is a 

consequence of a protection against type I errors in non-normal data.  The price one 

pays is reduced power, particularly in our small sample study.  Are we finding such a 

severe nonnormality in data that limma is finding false findings?  On the other hand, 
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if we knew that normality assumptions were met, then it could be concluded that 

limma is superior to multtest. 

 

Is the difference in performance of the two procedures evidence of conservatism of 

permutations or liberalism of the linear models –based test?  Since it is not known 

how much the apparent distribution affected the results, it is not possible to determine 

whether the reason for the difference in performance between limma and 

multtest is due to the superiority of the limma mechanism or to an inherent bias 

of limma.   

 

4.4  Future Research 

 

Multiple testing procedures allow one to assess the overall significance of the results 

of a family of hypothesis tests.  They focus on specificity by controlling type I error 

rates such as the family-wise error rate or the false discovery rate (Dudoit et al., 

2003).  Still, multiple testing remains a problem, because an increase in specificity, as 

provided by the p-value adjustment methods, is coupled with a loss of sensitivity, that 

is, a reduced chance of detecting true positives.  Furthermore, the genes with the most 

drastic changes in expression are not necessarily the “key players” in the relevant 

biological processes.  This problem can only be addressed by incorporating prior 

biological knowledge into the analysis of microarray data, by Bayesian techniques, 

which may lead to focusing the analysis on a specific set of genes.   
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In summary, microarrays are used in a wide variety of experimental settings for the 

detection of differential gene expression.  Although the goals and design concern of 

these experiments vary, concepts including gene filtering, multiple comparisons 

adjustment, and gene selection according to the appropriate test statistic apply in 

general to these experiments.  The Bioconductor packages help to address these 

concerns, thereby providing insight into biological pathways and providing a platform 

for future hypothesis development. 
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Appendix 
 

Table A1 – Top 50 DE genes under IR treatment at_2 and 8 hours as found by  
limma procedure 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

1 BF415939  4.88e-06 NOT FBJ osteosarcoma oncogene (Fos) 
 

+100.68 IR2 
+12.35 IR8 

2 AW915240  5.73e-06 � V-fos FBJ murine osteosarcoma viral 
oncogene homolog (Fos) 

+ 63.70 IR2 
+ 8.13 IR8 

3 L16764  5.02e-05 NOT Heat shock 70kD protein 1A (Hspa1a) +69.24 IR2 
+58.04 IR8 

4 BF285303   5.93e-05 � Enigma homolog (Enh)  + 2.59 IR2 
+ 2.68 IR8 

5 AI236772 5.93e-05 �  +3.78 IR2 
6 D86345   5.93e-05 NOT Leukemia inhibitory factor receptor alpha 

(Lifr) 
+3.99 IR2 

7 BE117902   5.93e-05 �  + 3.70 IR2 
8 X06769  6.03e-05 � c-Fos + 27.6 IR2 

+ 3.48 IR8 
9 BF282554   6.30e-05 �  

 
+ 5.51 IR2  
+ 4.26 IR8 

10 AI406660  8.74e-05 �  + 3.34 IR2 
11 AI411375   8.74e-05 � V-ets erythroblastosis virus E26 oncogene 

homolog 2 (avian) (Ets2) 
+ 2.66 IR2 
+ 2.79 IR8 

12 NM_012548   9.98e-05 � Endothelin 1 (Edn1)  + 9.31 IR2 
13 AA799331   1.11e-04 � Pelota homolog (Pelo)  + 2.34 IR2  

+ 2.44 IR8 
14 AW919666   1.11e-04 � Similar to LIM and cysteine-rich domains 

1  
+ 2.58 IR2 

15 NM_019361 1.11e-04 � Activity regulated cytoskeletal-associated 
protein (Arc)  

+ 4.79 IR2  
+ 2.35 IR8 

 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A1 – Top 50 DE genes under IR treatment at_2 and 8 hours as found by  
limma procedure – cont. 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

16 M14050  1.11e-04 � Heat shock 70kD protein 5 
(Hspa5)/Immunoglobulin heavy 
chain binding protein (BiP) 

+ 2.71 IR2 
 

17 AW142654   1.11e-04 �  + 5.16 IR2  
+ 4.17 IR8 

18 BF408391   1.26e-04 NOT BMP and activin membrane-bound 
inhibitor, homolog (Xenopus laevis) 
(Bambi) 

+5.39 IR2 
+4.01 IR8 

19 BF406752   1.26e-04 � Similar to uridine phosphorylase  
 

+ 4.33 IR2  
+ 5.79 IR8 

20 AA875261   1.26e-04 � CSX-associated LIM (Cal)  + 2.42 IR2 
+ 3.93 IR8 

21 AF061266   1.38e-04 � Transient receptor protein 1 (Trrp1)  + 2.75 IR2 
22 AI012356   1.38e-04 NOT Signal transducer and activator of 

transcription 3 (acute-phase response 
factor) (Stat3) 

+1.95 IR2 
+1.91 IR8 

23 AI175031  1.38e-04 � Similar to DnaJ homolog subfamily B 
member 4 

+ 4.88 IR2 

24 NM_019372   1.38e-04 � Protein phosphatase 2C, magnesium-
dependent, catalytic subunit (Ppm2c) 

+ 2.23 IR2  
+ 3.14 IR8 

25 BF420043  1.38e-04 �  - 2.40 IR2  
- 4.35 IR8 

26 BE099875  1.38e-04  � Inositol 1,4,5-trisphosphate 3-kinase C 
(Itpkc)  

+ 10.0 IR2 

27 NM_013091   1.38e-04 � Tumor necrosis factor receptor 
superfamily, member 1a (Tnfrsf1a) 

+ 2.27 IR2   
+ 3.27 IR8 

28 AW251324   1.38e-04 � Similar to methylenetetrahydrofolate 
dehydrogenase (NAD) 
(EC 1.5.1.15) methenyltetrahydrofolate 
cyclohydrolase (EC 3.5.4.9) precursor – 
mouse 

+ 8.02 IR2  
+ 12.5 IR8 

 

29 BE109510  1.38e-04 NOT Transmembrane and coiled-coil domains 6 
(Tmco6) 

-1.43 IR2 
-1.74 IR8 

 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A1 – Top 50 DE genes under IR treatment at_2 and 8 hours as found by  
limma procedure – cont. 

 
 Accession # Adj_p Found 

by  
Huen 
 et al 

Description Fold Change 

30 AF061873   1.38e-04 NOT Transient receptor potential cation channel, 
subfamily C, member 1 (Trpc1) 

+2.75 IR2 

31 NM_012912  1.38e-04 � Activating transcription factor 3 (Atf3)  + 14.6 IR2 
32 NM_013052   1.38e-04 � Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase 
activation protein, eta polypeptide 
(Ywhah) 

+ 2.06 IR8 

33 D31838   1.40e-04 � Wee1 tyrosine kinase + 3.20 IR2 
34 BE101108   1.40e-04 �  + 2.43 IR2  

+ 2.12 IR8 
35 NM_012904  1.52e-04 � Annexin A1 (Anxa1)  + 3.33 IR2 
36 AF149118  1.52e-04 NOT ADAM metallopeptidase with 

thrombospondin type 1 motif, 1 (Adamts1) 
+7.63 IR2 
+9.69 IR8 

37 AW916618   1.56e-04 NOT Sphingosine kinase 1 (Sphk1) +4.60 IR2 
+3.15 IR8 

38 BE097102   1.62e-04 � Similar to neuronal tyrosine threonine 
phosphatase 1 

+ 5.69 IR2  
+ 3.15 IR8 

39 AB032419  2.00e-04 NOT Early growth response 2 (Egr2) +21.02 IR2 
+11.81 IR8 

40 BE114586  2.00e-04 � Cyclin-dependent kinase inhibitor 1A 
(Cdkn1a) 
 

+ 6.89 IR2 
 

41 NM_021836   2.05e-04 � Jun-B oncogene (Junb) + 10.1 IR2 
42 AI179988   2.05e-04 � Ectodermal-neural cortex 1 (Enc1)  + 5.32 IR2  

+ 7.80 IR8 
43 X63369  2.05e-04 NOT  +6.08 IR2 

+2.99 IR8 
44 AA848828   2.05e-04 �  + 2.04 IR2 
45 AA799400   2.44e-04 � Similar to UDP-Gal:betaGlcNAc beta 1,3- 

galactosyltransferase III 
+ 2.10 IR2 
+ 2.51 IR8 

46 AF030091   2.46e-04 NOT Cyclin L1 (Ccnl1) +4.42 IR2 
+3.24 IR8 

 
 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A1 – Top 50 DE genes under IR treatment at_2 and 8 hours as found by  
limma procedure – cont. 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

47 AI113186   2.46e-04 � Ras association domain family 1 (Rassf1)  + 4.45 IR2 
+ 3.62 IR8 

48 M55534  2.46e-04 NOT Crystallin, alpha B (Cryab) +4.00 IR2 
+4.26 IR8 

49 BE101099   2.48e-04 NOT Zinc finger protein 36, C3H type-like 2 
(Zfp36l2) 

+1.99 IR2 
+1.89 IR8 

50 AW433959   2.52e-04 NOT Myeloid-associated differentiation marker 
(Myadm) 

+3.41 IR2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A2 – Top 50 DE genes under HG treatment at_2 and 8 hours as found by   
limma procedure 

 
 

 
 Accession # Adj_p Found 

by  
Huen 
 et al 

Description Fold Change 

1 BF407511    3.57e-05 � Ubiquitin specific protease 36 (predicted)  + 2.54 HG2 
2 NM_012580   3.57e-05 � NM_012580.1 Heme oxygenase 

(decycling) 1 (Hmox1) 
+ 79.6 HG2 
+ 91.2 HG8 

3 BF408391    1.29e-04   NOT Bambi: BMP and activin membrane-bound 
inhibitor, homolog (Xenopus laevis) 

+ 2.42 HG2 
+ 1.29 HG8 

4 BE096387    4.95e-04   �  + 2.12 HG8 
5 NM_019203   4.95e-04   � NM_019203.1 Testis specific X-linked 

gene (Tsx)  
-2.69 HG2 

6 AW526160    4.95e-04   � Myocyte enhancer factor 2D (Mef2d)  + 2.07 HG8 
7 AW917197   4.95e-04   �  - 3.21 HG8 
8 AF052042    4.95e-04 � AF052042 Zinc finger protein Y1 (RLZF-

Y) (Rlzfy)  
 

+ 2.33 HG2 

9 AF016387   4.95e-04   NOT Rattus norvegicus retinoid X receptor 
gamma (RXRgamma) mRNA, partial cds 

-1.69 HG2 
-1.78 HG8 

10 AI179795   4.95e-04   � AI179795 Solute carrier family 30 (zinc 
transporter), member 1 
(Slc30a1) 
 

+ 2.62 HG2 

11 AA946485    4.95e-04   � AA946485 Similar to TG interacting factor 
(Tgif)   

+ 2.86 HG2 
+ 2.21 HG8 

12 AI236753    7.20e-04   NOT EST233315 Normalized rat ovary, Bento 
Soares Rattus sp. cDNA clone ROVDK16 
3- end, mRNA sequence 
 

+1.52 HG2 
+1.65 HG8 

13 AI175031    7.20e-04   � Similar to DnaJ homolog subfamily B 
member 4  

+ 2.43 HG2 
+ 2.35 HG8 

14 BF420059    7.20e-04   �  + 3.07 HG2 
+ 3.22 HG8 

15 AA944278    7.20e-04   � AA944278 Similar to Isoleucyl-tRNA 
synthetase, cytoplasmic 
(Isoleucine--tRNA ligase) (IleRS) (IRS) 

+ 2.37 HG8 

16 BF420064    7.20e-04   NOT Lkap: Limkain b1 +1.48 HG2 
+1.04 HG8 

17 BF396191    7.20e-04   �  + 2.34 HG2 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A2 – Top 50 DE genes under HG treatment at_2 and 8 hours as found by   
limma procedure – cont. 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

18 AW918999   7.20e-04   NOT Dguok: Deoxyguanosine kinase -1.79 HG2 
-1.52 HG8 
 

19 NM_012603   7.20e-04   � V-myc avian myelocytomatosis viral 
oncogene homolog (Myc) 

+ 4.46 HG2 
+ 13.7 HG8 

20 AF149118   8.14e-04   NOT ADAM metallopeptidase with 
thrombospondin type 1 motif 

+5.68 HG2 

21 BE111769    8.27e-04   NOT Trafficking protein, kinesin binding 1 
(Trak1) 
 

+1.84 HG2 

22 AI599104    8.27e-04   �  + 5.17 HG2 
+ 6.12 HG8 

23 BF555544    8.27e-04   NOT Membrane protein, palmitoylated 5 
(MAGUK p55 subfamily member 5) 
(Mpp5) 

+1.29  HG2 
+1.17 HG8 

24 AA891690   8.27e-04   NOT Tumor necrosis factor (ligand) 
superfamily, member 13 (Tnfsf13) 

-1.67 HG2 
-1.73 HG8 

25 NM_012912   8.27e-04   � Activating transcription factor 3 (Atf3)  + 11.9 HG2 
+ 9.80 HG8 

26 AF220760    8.61e-04   NOT Thioredoxin reductase 1 (Txnrd1) +2.85 HG2 
+4.00 HG8 

27 AI137233   8.65e-04   � AI137233 Similar to sudD, suppressor of 
bimD6 homolog  

+ 2.17 HG2 
+ 3.99 HG8 

28 BE110525    8.65e-04   NOT  +1.54 HG2 
29 M63282   8.65e-04   NOT Activating transcription factor 3 (Atf3) +72.52 HG2 

+38.78 HG8 
30 AI176298    8.65e-04   NOT  +1.73 HG2 
31 BE102889    8.65e-04   NOT Zinc finger protein 451 (Zfp451) +1.70 HG2 
32 AI599284    8.65e-04   NOT Similar to hypothetical protein MGC30618 

(RGD1305572) 
+1.72 HG2 
+1.64 HG8 

33 U07971  8.65e-04   NOT Glycine amidinotransferase (L-
arginine:glycine amidinotransferase) 
(Gatm) 

-2.23 HG2 
-2.61 HG8 

34 X53773   8.77e-04   NOT Adaptor-related protein complex 2, alpha 2 
subunit (Ap2a2) 

-1.60 HG2 
-1.28 HG8 

35 AI407490    8.77e-04   � Similar to tyrosyl-tRNA synthetase  + 2.32 HG2 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A2 – Top 50 DE genes under HG treatment at_2 and 8 hours as found by  
limma procedure – cont. 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

36 AF081941   9.34e-04   NOT Adenylate cyclase 10 (soluble) (Adcy10) -1.90 HG2 
-1.33 HG8 

37 BE101448   9.34e-04   � Similar to Cartilage-associated protein 
precursor  

- 2.57 HG2 
- 3.24 HG8 
- 2.26 IR8 

38 AW917596  9.34e-04   NOT Transcribed locus, strongly similar to 
XP_003754401.1 PREDICTED: keratin, 
type II cytoskeletal 7 [Rattus norvegicus] 

-1.71 HG2 
-1.72 HG8 

39 AI233194   9.56e-04   � Solute carrier family 30 (zinc transporter), 
member 1 
(Slc30a1) 

+ 2.47 HG2 
+ 2.09  HG8 
 

40 BE109637   9.82e-04   � BE109637  - 3.19 HG8 
41 BE112768    9.82e-04   NOT  +1.48 HG2 
42 BE118465    1.09e-03 NOT  +1.91 
43 AW142654    1.09e-03 �  + 3.42 HG2 

+ 2.52 HG8 
44 AF249673    1.12e-03 NOT Solute carrier family 38, member 2 

(Slc38a2) 
+2.18 HG2 
+1.94 HG8 

45 AA892366   1.12e-03 �  - 2.98 HG8 
46 AI180454    1.12e-03 NOT Insulin-like growth factor 2 mRNA 

binding protein 2 (Igf2bp2) 
+1.85 HG2 

47 BF549650   1.12e-03 NOT  +2.06 HG2 
+1.46 HG8 

48 D90404   1.12e-03 NOT Cathepsin C (Ctsc) -1.82 HG2 
-1.37 HG8 

49 M98820    1.12e-03 NOT Interleukin 1 beta (Il1b) +3.00 HG2 
+1.91 HG8 

50 BE118450   1.35e-03 NOT Retinoid X receptor gamma (Rxrg) -1.73 HG2 
-2.27 HG8 

 
 

 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A3: Top 50 DE genes as found by multtest comparing all 22 treatments 
 TPPFP-based procedure at α = 0.05 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

1 AA851327 0.002 � Similar to membrane protein expressed in 
epithelial-like lung adenocarcinoma 

+ 10.1 IR8 
+2.22 HG8 

2 BF415939 
 

0.002 NOT FBJ osteosarcoma oncogene (Fos) 
 

+100.68 IR2 
+12.35 IR8 

3 NM_012992 0.003 � Nucleophosmin 1 (Npm1) + 2.72 IR8 
4 AF031483 

 
0.005 NOT Basic leucine zipper and W2 domains 2 

(Bzw2) 
+4.24 IR8 

5 AF035963 0.005 � Kidney Injury Molecule 1 (Kim1) + 15.6 IR8 
6 AF065147 0.005 NOT Cd44 molecule (Cd44) +8.71 IR8 
7 AI169903 0.005 �  +2.39 HG8 

+2.14 IR8 
8 AI236772 0.005 � Testis derived transcript (Tes) +3.78 IR2 
9 AI406499 0.005 � S100 calcium binding protein A16 

(S100a16) 
+3.94 IR8 

10 AI575026 
 

0.005 NOT SH3 domain binding glutamic acid-rich 
protein-like 3 

+3.52 IR8 

11 AA875261 0.005 � CSX-associated LIM (Cal) 
 

+ 2.42 IR2 
+ 3.93 IR8 

12 AW915240 0.005 � V-fos FBJ murine osteosarcoma viral 
oncogene homolog (Fos) 
 

+5.70 HG8 
+ 63.7 IR2 
+ 8.13 IR8 

13 BE113365 0.005 � Ribosomal RNA processing 15 homolog 
(S. cerevisiae) (Rrp15) 

+3.10 IR8 

14 BE117902 0.005 �  +2.07 HG2 
+3.70 IR2 

15 BF282554 0.005 �  +5.51 IR2 
+4.26 IR8 

16 BF417071 0.005 � Similar to RING finger protein +2.94 IR8 
17 BF550451 0.005 � Similar to retinoic acid inducible protein 3 +11.0 IR2 

+25.9 IR8 
 
 
 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A3: Top 50 DE genes as found by multtest comparing all 22 treatments 
 TPPFP-based procedure at α = 0.05 – cont. 

 
 Accession # Adj_p Found 

by  
Huen 
 et al 

Description Fold Change 

18 L12025  0.005 NOT Poliovirus receptor (PVR) +8.50 IR2 
+25.37 IR8 
+4.93HG8 

19 NM_012548 0.005 � Endothelin 1 (Edn1) +9.31 IR2 
20 NM_012580 0.005 � Heme oxygenase (decycling) 1 (Hmox1) + 9.93 IR2 

+ 23.2 IR8 
+ 79.6 HG2 
+ 91.2 HG8 

21 NM_017022 0.005 � Integrin beta 1 (Itgb1) +2.30 IR8 
22 NM_019372 0.005 � Protein phosphatase 2C, magnesium-

dependent, catalytic subunit (Ppm2c) 
+ 2.23 IR2 
+ 3.14 IR8 

23 U22893 0.005 � Cold shock domain protein A (Csda)
  

+3.81 IR8 

24 U95368 0.005 NOT Gamma-aminobutyric acid (GABA-A) 
receptor, pi 
 

+7.71 IR8 

25 X06769 0.005 � CFos + 27.6 IR2 
+ 3.48 IR8 

26 AI406660 0.006 �  +3.34 IR2 
27 AF061266 0.007 � Transient receptor protein 1 (Trrp1) +2.75 IR2 
28 AF061873 0.007 NOT Transient receptor potential cation channel, 

subfamily C, member 1 
Trpc1 

+2.73 IR2 

29 AF063447 0.007 NOT DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 39A, Ddx39a, RNA helicase 

+1.84 IR2 
+3.44 IR8 

30 AF063939 0.007 NOT Trophoblast glycoprotein 
Tpbg 

+1.89 IR2 
+4.05 IR8 

31 AF149118 0.007 NOT ADAM metallopeptidase with 
thrombospondin type 1 motif, 1 
Adamts1 

+7.63 IR2 
+9.69 IR8 
+5.68 HG2 

32 AF248543 0.007 NOT Alpha 1,3-galactosyltransferase 2 
A3galt2 

+4.74 IR8 

33 AF269251 0.007 NOT Interleukin 24 Il24 +3.33 IR2 
+30.95 IR8 

34 AI009780 0.007 NOT Hypothetical protein LOC682999 +2.38 IR8 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A3: Top 50 DE genes as found by multtest comparing all 22 treatments 
 TPPFP-based procedure at α = 0.05 – cont. 

 
 Accession # Adj_p Found 

by  
Huen 
 et al 

Description Fold Change 

35 AI012474 0.007 � Estrogen-regulated protein CBL20, 20.4kD +4.69 IR8 
36 AI013474 0.007 � Similar to alpha/beta hydrolase-2 fold 

protein 
+4.49 IR8 

37 AI113186 0.007 � Ras association domain family 1 (Rassf1) + 4.45 IR2 
+ 3.62 IR8 

38 AI137233 0.007 � Similar to sudD, suppressor of bimD6 
homolog 

+ 2.17 HG2  
+ 3.99 HG8 

39 AI175031 0.007 � Similar to DnaJ homolog subfamily B 
member 4 

+ 2.43 HG2 
+ 2.35 HG8 
+4.88 IR2 

40 AI177706 0.007 �  +2.19 IR2 
+3.77 IR8 

41 AI179795 0.007 � Solute carrier family 30 (zinc transporter), 
member 1 (Slc30a1) 

+2.62 HG2 

42 AI179988 0.007 � Ectodermal-neural cortex 1 (Enc1) +5.32 IR2 
+7.80 IR8 

43 AI180454 0.007 � Similar to IGF-II mRNA-binding protein 2 + 2.84 IR8 
44 AI406520 0.007 NOT  +3.44 IR8 
45 AI407064 0.007 � Nucleolar protein 12 (Nol12) +3.03 IR8 
46 AI409108 0.007 � Transcribed locus, strongly similar to 

NP_001102090.1 nuclear pore complex 
protein Nup205 [Rattus norvegicus] 

+2.14 IR8 

47 AI411375 0.007 � V-ets erythroblastosis virus E26 oncogene 
homolog 2 (avian) (Ets2) 

+2.66 IR2 
+2.79 IR8 

48 AI579555 0.007 � Seryl-aminoacyl-tRNA synthetase (Sars1) +2.01 HG2 
+3.21 HG8 

49 AJ011811 0.007 � Claudin 7 (Cldn7) +3.00 IR2 
+8.63 IR8 

50 AW523504 0.007 � Similar to putative protein, with at least 9 
transmembrane domains, of eukaryotic 
origin (43.9 kD) (2G415) (RGD1309228) 

+2.30 IR8 

 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A4: Top 50 DE genes as found by limma FDR-based procedure  
comparing all 22 treatments 

 
 

 Accession # Adj_p Found 
by  

Huen 
 et al 

Description Fold Change 

1 BF415939 1.52e-14 NOT FBJ osteosarcoma oncogene (Fos) 
 

+100.68 IR2 
+12.35 IR8 

2 AW915240  3.00e-14 � V-fos FBJ murine osteosarcoma viral 
oncogene homolog (Fos) 

+ 63.7 IR2 
+ 8.13 IR8 
+ 5.70 HG8 

3 X06769  1.74e-11 � CFos + 27.6 IR2 
+ 3.48 IR8 

4 BF282554   2.57e-11 �  + 5.51 IR2 
+ 4.26 IR8 

5 AI236772  4.24e-11 � Testis derived transcript (Tes) + 3.78 IR2 
6 BE117902  5.15e-11 �  + 3.70 IR2 

+ 2.07 HG2 
7 NM_012548  1.16e-10 � Endothelin 1 (Edn1) + 9.31 IR2 
8 AI406660  1.44e-10 �  + 3.34 IR2 
9 BF408391  1.60e-10 NOT BMP and activin membrane-bound 

inhibitor, homolog (Xenopus laevis) 
(Bambi) 

+5.39 IR2 
+4.01 IR8 
+2.42 HG2 

10 D86345  2.27e-10 NOT Leukemia inhibitory factor receptor alpha 
(Lifr) 

+3.98 IR2 

11 BE099875  2.27e-10 � Inositol 1,4,5-trisphosphate 3-kinase C 
(Itpkc) 

+ 10.0 IR2 

12 NM_019361  2.27e-10 � Activity regulated cytoskeletal-associated 
protein (Arc) 

+ 2.06 HG8 
+ 4.79 IR2 
+ 2.35 IR8 

13 AI175031 2.49e-10 � Similar to DnaJ homolog subfamily B 
member 4 

+ 2.43 HG2 
+ 2.35 HG8 
+ 4.88 IR2 

14 M14050  6.34e-10 � Heat shock 70kD protein 5 
(Hspa5)/Immunoglobulin heavy 
chain binding protein (BiP) 

+ 2.71 IR2 

15 AF061266   8.92e-10 � Transient receptor protein 1 (Trrp1) + 2.75 IR2 
16 AW916618 1.09-09 NOT Sphingosine kinase 1 (Sphk1)  
17 NM_012904 1.10e-09 � Annexin A1 (Anxa1) + 3.33 IR2 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A4: Top 50 DE genes as found by limma FDR-based procedure  
comparing all 22 treatments – cont. 

 
 
18 AF061873   1.25e-09 NOT Transient receptor potential cation channel, 

subfamily C, member 1 (Trpc1) 
+2.73 IR2 

19 AW142654  1.27e-09 �  + 5.16 IR2 
+ 4.17 IR8 
+ 3.42 HG2 
+ 2.52 HG8 

20 AI411375  1.80e-09 � V-ets erythroblastosis virus E26 oncogene 
homolog 2 (avian) (Ets2) 

+ 2.66 IR2 
+ 2.79 IR8 

21 AI113186 1.80e-09 � Ras association domain family 1 (Rassf1) + 4.45 IR2 
+ 3.62 IR8 

22 AW433959 2.56e-09 NOT Myeloid-associated differentiation marker 
(Myadm) 

+3.40 IR2 

23 BF285303 2.56e-09 � Enigma homolog (Enh) + 2.59 IR2 
+ 2.68 IR8 

24 NM_019372   2.68e-09 � Protein phosphatase 2C, magnesium-
dependent, catalytic subunit (Ppm2c) 

+ 2.23 IR2 
+ 3.14 IR8 

25 BF420059 3.29e-09 � Immediate early response 2 (Ier2) + 3.07 HG2 
+ 3.22 HG8 
+ 7.14 IR2 
+3.83 IR8 

26 AF149118 4.07e-09 NOT ADAM metallopeptidase with 
thrombospondin type 1 motif, 1 (Adamts1) 
 

+7.63 IR2 
+9.69 IR8 
+5.68 HG2 

27 AF030091  4.85e-09 NOT Cyclin L1 (Ccnl1) 
 

+3.52 IR2 

28 D31838  5.07e-09 � Wee1 tyrosine kinase + 3.20 IR2 
 

29 NM_021836 5.57e-09 � Jun-B oncogene (Junb) + 10.1 IR2 
+ 2.96 HG8 

30 NM_012912 7.19e-09 � Activating transcription factor 3 (Atf3) + 11.9 HG2 
+ 9.80 HG8 
+ 14.6 IR2 

31 AI179538  7.36e-09 NOT Kruppel-like factor 4 (gut) (Klf4) +9.54 IR2 
+4.16 IR8 

32 AB032419 7.61e-09 NOT Early growth response 2 (Egr2) +21.02 IR2 
+11.81 IR8 

33 AI179988 9.63e-09 � Ectodermal-neural cortex 1 (Enc1) + 5.32 IR2 
+ 7.80 IR8 

 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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Table A4: Top 50 DE genes as found by limma FDR-based procedure  
comparing all 22 treatments – cont. 

 
 
34 AA799400 1.00e-08 � Similar to UDP-Gal:betaGlcNAc beta 1,3- 

galactosyltransferase III 
+ 2.10 IR2 
+ 2.51 IR8 

35 NM_021846 1.17e-08 � Myeloid cell leukemia sequence 1 (Mcl1) + 2.97 IR2 
36 U78875 1.52e-08 NOT Kruppel-like factor 10 (Klf10)  
37 BF550451 1.60e-08 � Similar to retinoic acid inducible protein 3 + 11.0 IR2 

+ 25.9 IR8 
38 AI103943 1.60e-08 NOT Ras association (RalGDS/AF-6) domain 

family member 1 (Rassf1) 
+5.23 IR2 
+4.64 IR8 

39 AA875261  1.60e-08 � CSX-associated LIM (Cal) + 2.42 IR2 
+ 3.93 IR8 

40 M55534 1.75e-08 NOT Crystallin, alpha B (Cryab) +4.00 IR2 
+4.26 IR8 

41 BF406752 1.94e-08 � Similar to uridine phosphorylase + 4.33 IR2 
+ 5.79 IR8 
+ 2.47 HG8 

42 NM_013091  2.06e-08 � Tumor necrosis factor receptor 
superfamily, member 1a (Tnfrsf1a) 

+ 2.27 IR2 
+ 3.27 IR8 

43 AA848828 2.16e-08 �  + 2.04 IR2 
44 L12025  2.54e-08 NOT Poliovirus receptor (PVR) +8.50 IR2 

+25.37 IR8 
+4.93 HG8 

45 X59601 2.62e-08 NOT Plectin (Plec) +3.05 IR2 
46 NM_012633 2.91e-08 � Peripherin 1 (Prph1) + 4.25 IR2 

+ 3.71 IR8 
+ 2.82 HG8 
+ 2.66 VD 

47 AW434670 3.02e-08 � Similar to Xin + 13.4 IR2 
+ 5.84 IR8 

48 AI176298  3.06e-08 �  +2.74 IR2 
49 X13722 3.22e-08 � Low density lipoprotein receptor (Ldlr) + 3.49 IR2 
50 AF001417 3.25e-08 NOT Kruppel-like factor 6 (Klf6) +16.67 IR2 

+12.05 IR8 
+4.21 HG2 
+5.62 HG8 

 
 
 
 
 
 
 
1. Adj_p value is defined as the smallest Type I error level α at which one could reject H0(n), 

given an  MTP Rk (α) = R(Tk, Qok, α). 
 
2. Blank entries in the Description column represent an unidentified gene. 
 
3. Fold Change is calculated as the ratio of expression under treatment to expression under 

control circumstances.  If ratio<1, then its reciprocal with a negative sign is reported.  
 
4. Blank entries in the Fold Change column indicate a non-significant fold change.  
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