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The N -body problem appears in many computational physics simulations. At

each time step the computation involves an all-pairs sum whose complexity is quadratic,

followed by an update of particle positions. This cost means that it is not practical

to solve such dynamic N -body problems on large scale. To improve this situation,

we use both algorithmic and hardware approaches. Our algorithmic approach is to

use the Fast Multipole Method (FMM), which is a divide-and-conquer algorithm that

performs a fast N -body sum using a spatial decomposition and is often used in a time-

stepping or iterative loop, to reduce such quadratic complexity to linear with guaranteed

accuracy. Our hardware approach is to use heterogeneous clusters, which comprised of

nodes that contain multi-core CPUs tightly coupled with accelerators, such as graphics

processors unit (GPU) as our underline parallel processing hardware, on which efficient

implementations require highly non-trivial re-designed algorithms.

In this dissertation, we fundamentally reconsider the FMM algorithms on



heterogeneous architectures to achieve a significant improvement over recent/previous

implementations in literature and to make the algorithm ready for use as a workhorse

simulation tool for both time-dependent vortex flow problems and for boundary element

methods. Our major contributions include:

1. Novel FMM data structures using parallel construction algorithms for dynamic

problems.

2. A fast hetegenenous FMM algorithm for both single and multiple computing nodes.

3. An efficient inter-node communication management using fast parallel data

structures.

4. A scalable FMM algorithm using novel Helmholz decomposition for Vortex

Methods (VM).

The proposed algorithms can handle non-uniform distributions with irregular partition

shapes to achieve workload balance and their MPI-CUDA implementations are highly

tuned up and demonstrate the state of the art performances.
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Chapter 1: Introduction

TheN -body problem and its corresponding matrix vector product problems arise in

various applications, such as molecular dynamics, gravitation and fluid dynamics. Many

physics based simulations can be efficiently and accurately performed using particle

methods which, using analysis and geometric data structuring, focus computational

resources at the location of sources or discontinuities (particles), and allow evaluation

of relevant fields only at locations of interest. Compared to methods that use meshes

which result in large discretizations, particle methods are extremely efficient.

In general form, N -body problems evaluate the weighted sum of a kernel function

Φ(y,xi) centered at N source locations {xi} for all M receiver locations {yj} with the

strengths qi (Eq. 1.1). They can also be viewed as dense M ×N matrix vector products.

Direct evaluation has quadratic O(NM) complexity. Such direct evaluations cannot be

scaled to large sizes required by high fidelity simulations.

φ(yj) =
N∑
i=1

qiΦ(yj − xi), j = 1, 2, . . . ,M, xi,yj ∈ Rd. (1.1)

While large numbers of particles may still be necessary for high fidelity, which makes

normal direct computation methods impractical, hardware accelerations, such as [3]

using GPU parallelism and [4] using specially constructed hardware called the “Gravity

Pipe”(GRAPE), are often used but can only speedup the sum to some extent without
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reducing its quadratic complexity.

An alternative way to evaluate such sums for particular kernels is to use fast

approximation algorithms, for example, the Fast Multipole Method [5], the Barnes-Hut

Method [6] and the Particle-Mesh Methods [7], which have lower asymptotic complexity

when they are applicable. Because the FMM can achieve linear complexity while

guarantee the approximation accuracy up to machine precision, we only focus on this

method in this thesis, however the data structure techniques developed here may find

application in the other fast algorithms also, and indeed wherever computations involve

particles. Together with efficient parallel implementations on heterogeneous architecture

of GPUs and multi-core CPUs, we are targeting at the state-of-art N -body simulation

performance. Because of our collaboration with Prof. Leishman’s group, the application

problem is in fluid mechanics simulations using vortex methods. In this chapter, we will

introduce the FMM and hardware accelerators briefly.

1.1 Fast Multipole Method

The FMM was first introduced by Greengard and Rokhlin in [5] and has been

identified as one of the ten most important algorithmic contributions in the 20th

century [8]. Since the publication of [5], hundreds of papers on the FMM and applications

have been published, and the theory of the FMM has already been well established and

developed. The main purpose of FMM is to speed up the matrix-vector product Eq. 1.1.

In the context of vortex methods, Φ corresponds to the Biot–Savart kernel [9]. The

FMM acceleration is achieved because of the sum is computed approximately, but with a

2



guaranteed specified accuracy, which may be set, e.g. to the machine precision.

The main idea in the FMM is to split the sum in Eq. 1.1 into a near and a far field as

φ(yj) =
∑

xi 6∈Ω(yj)

qiΦ(yj − xi) +
∑

xi∈Ω(yj)

qiΦ(yj − xi), (1.2)

for j = 1, 2, . . . ,M where Ω is the set of points that neighbor the point yj . Computations

related to the second sum are said to be near-field, while those arising from the first sum

are far-field.

The most expensive computations are related to the first sum, which involvesO(N2)

interactions. The far-field sum term on the right hand side of Eq. 1.2 can be computed

exactly at O(N) cost given a fixed cluster size, i.e., the maximal number of data points

inside any neighborhood domain. To approximate it, the kernel function is factored into

a convergent sum, which is truncated at p terms using an error bound according to the

required accuracy, by using singular (multipole) spherical basis functions, Sl, and regular

(local) spherical basis functions Rl (Eq. 1.3). We call p the truncation number, which is

a function of the specified tolerance ε = ε(p) with the max degree of spherical harmonics

p− 1. These factorizations can be used to separate the kernel computations involving the

points sets either {xi} or {yj}, and consolidate operations for many points as

∑
xi 6∈Ω(yj)

qiΦ(yj − xi) =
∑

xi 6∈Ω(yj)

qi

p−1∑
l=0

Sl(yj − x∗)Rl(xi − x∗),

=

p−1∑
l=0

Sl(yj − x∗)
∑

xi 6∈Ω(yj)

qiRl(xi − x∗),

=

p−1∑
l=0

ClSl(yj − x∗),

(1.3)

where the p coefficients Cl for all xi are built in pN operations and then they can be used

in the evaluation at all yj in pM operations. This approach reduces the cost of evaluating

3



the far-field contributions as well as the memory requirement to O(N +M).

Figure 1.1: The Multi-Level FMM vs Direct Method. The straightforward method the

number of operations is O(MN). The number of operations (denoted by the connecting

lines) can be reduced to O(M +N) by using the FMM.

Because the factorization in Eq. 1.3 is not global, the split between the near and

far-fields must be managed, which requires appropriate data structures and a variety

of representations. This geometric structure that encodes much of these FMM data

information, such as grouping points and finding neighbors, is called a well-separated

pair decomposition (WSPD) [10], which is itself useful for solving a number of geometric

problems [11, chapter 2]. Assume all the data points are already scaled into a unit cube.

This WSPD is recursively performed to subdivide this cube into sub-cubes via octrees

until the maximal level lmax, or the tree depth, is achieved. The level lmax is chosen

such that the computational costs of the local direct sum and far field translations can be

balanced to the extent possible. Moreover, the total data structure construction must be

4



Figure 1.2: A Flow Chart of the Standard FMM.

completed at cost O(N +M) to be consistent with the overall FMM cost.

The FMM puts sources into hierarchical space boxes and translates the consolidated

interactions of sources into receivers. For the convenience of presentation, we call a box

containing at least one source point a source box and a box containing at least one receiver

point a receiver box. The FMM algorithm can be summarized as containing four main

parts: the initial expansion, the upward pass, the downward pass and the final summation.

1. Initial expansion (P2M):

(a) In the finest level lmax, all the source data points are expanded at their

box centers to obtain the far-field M expansion coefficients {Cmn } over p2

spherical basis functions.

(b) The obtainedM-expansion from all source points within the same boxes are

consolidated into a single expansion at each box center.

2. Upward pass (M2M): For levels from lmax to 2, theM expansion coefficients for

each box are evaluated via the multipole-to-multipole (M|M) translations from the
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source boxes to their parent source box. All these translations are performed in a

hierarchical order from bottom to top via the octree.

3. Downward pass: For levels from 2 to lmax, each receiver box also generates its

local or L expansion in a hierarchical order from top to bottom via the octree.

(a) M2L: Translate multipoleM expansion coefficients from the source boxes of

the same level belonging to the receiver box’s parent neighborhood but not

the neighborhood of that receiver itself, to local L expansion via multipole-

to-local (M|L) translations then consolidate the expansion coefficients.

(b) L2L: Translate the L expansion coefficients (if the level is 2, then these

expansions are set to be 0) from the parent receiver box center to its child

box centers and consolidate with the same level multipole-to-local translated

expansions.

4. Final summation (L2P) : Evaluate the L expansion coefficients for all the receiver

points at the finest level lmax; and perform a local direct sum of nearby source points

within their neighborhood domains.

Note that the evaluations of the nearby source point direct sums 4 (L2P) are

independent of the far-field expansions and translations and may be scheduled according

to convenience. It is important to balance the costs of these sums and the translations

to achieve better computation efficiency and proper scaling. Reference [12] gives more

details on the algorithm, Ref. [13] describes the translation theory, and Ref. [14] discusses

the different translation methods.
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1.2 Hardware Accelerators

There has been a revolution underway over the past decade or so in the use

of accelerators, such as graphics inspired hardware for accelerating general purpose

computation (GPUs, APUs) or INTEL Xeon PHI. Due to the current graphics processing

unit (GPU) tremendous evolution in terms of increased computation power at decreased

related energy consumption, the general purpose computing on GPU (GPGPU) is

getting more and more popular and well-accepted by the high performance computing

community. Nowadays, almost all high-end workstations or high performance computing

clusters are equipped one or more such highly parallel, many-core GPU accelerators.

Generally speaking, data on the many-core accelerators are processed as warps, i.e, a

group of threads executing the same instruction at the same time and thousands of threads

are spawn to run in parallel. Hence the parallel algorithms presented in this dissertation

are designed for performance efficiency under this massive thread executing context.

We particularly focus on the parallel programming on NVIDIA GPUs and CUDA.

Nevertheless, our algorithms could be implemented similarly by using OpenCL [15] or

OpenACC [16] on different many-core accelerators such as AMD GPU or INTEL Xeon

PHI.

1.2.1 Graphics Processing Unit

A graphics processing unit (GPU) is a highly parallel, multithreaded, many-core

processor with high computational power and memory bandwidth. GPUs were developed

originally for graphical rendering to efficiently process single instructions on multiple
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Figure 1.3: GPU Computation Power [1].

Figure 1.4: GPU Memory Bandwidth [1].

8



Local Memory 
register, shared memory 

~64 kB 

Device (GPU) 
global memory 

~1-8 GB 

Host (CPU) 
main memory 

~2-256 GB 

(a) Thread Blocks and Grids. (b) Host and Device Memory. 

Figure 1.5: CUDA Thread and Memory Hierarchy.

data (SIMD). Hence, more transistors on a GPU chip are devoted to data processing

rather than data caching and flow control. Modern GPUs are capable of both single

and double precision computations up to Tera-FLOPs on a single accelerator. Over the

years, GPU architectures have evolved tremendously (see Fig. 1.3 and 1.4). Because

GPUs are attached to the host (CPU) via PCI-Express bus, processing data on those

accelerators requires data transfer between host and device (GPU). The on-chip memories

are hierarchical and the programming focus is to best use these hierarchical memories

(see Fig. 1.5 (b)) in the threaded model efficiently given the trade-off between speed

and size [1, 17]. Moreover, these host-device memory communications are expensive

compared to GPU computations. Therefore, one GPU programming philosophy is to

minimize the data transfer while processing the data on the GPU as much as possible per

data transfer.
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It is important to understand the hierarchical memory architecture on GPU to

develop efficient codes. In the current NVIDIA Fermi architecture [18], on which the

simulations in the thesis were performed, there are four different kinds of memories:

1. Global memory: device DRAM memory with slow accessing speed but large size.

This is used to keep data and communicate with the host main memory.

2. Constant memory: 64 KB read only constant cache shared by all the threads. This

is mainly used to store constant values shared by all the threads.

3. Shared memory: 64 KB of fast on-chip memory for each steaming multiprocessor

(SM). It can be configured as 48 KB of Shared memory with 16 KB of L1 cache or

as 16 KB of Shared memory with 48 KB of L1 cache. Accessing shared memory is

much faster than global memory.

4. Registers: 32 KB fast on-chip registers for each SM. They are the fastest memory

among all the memory hierarchy and are mainly used to hold instructions, input

operands and values.

General purpose computing on graphics processing units (GPGPU) has become

popular in the scientific community since 2000. However, programming on the GPU

remained a technical barrier because it required deep computer graphics knowledge. In

2006, NVIDIA released a general purpose parallel computing architecture called CUDA

so that a programmer can more easily manipulate the GPU and use a large number of

parallel executing threads. Its scalable programming model allows the CUDA architecture

to span a wide market range by simply scaling the number of processors and memory
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partitions.

The CUDA programming is almost the same as C except that the programmer is

given techniques to handle:

1. A hierarchy of threaded groups (Fig. 1.5 (a))

2. Different kinds of memory

3. Synchronization mechanisms

such that the working problem can be divided into coarse sub-problems that can be

solved independently in parallel by blocks of threads, and each sub-problem into finer

pieces that can be solved cooperatively in parallel by all threads within the block. The

state of the art for GPGPU applications is discussed in [19]. Besides CUDA, OpenCL

(Open Computing Language) [15], DirectCompute by Microsoft [20] and OpenACC are

other ways to program GPUs using similar libraries and APIs. One more thing worth

noting is that OpenCL and OpenACC [16] are two different general frameworks on which

users could write programs that can execute across heterogeneous platforms consisting of

CPUs, GPUs, and other accelerator processors.

1.3 Related Work and Contributions

Since the invention of FMM, there are many research papers published regarding

its optimization, distributed algorithms on parallel hardware and applications to different

physical problems. The GPU parallelization of the FMM was first achieved in [21] and

continued in several papers published in SC 2009 and 2010, including the 2009 Gordon
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Bell prize winner [2]. In their work only the most expensive run of the algorithm was

implemented on the GPU, while the data structures required for the FMM were computed

on the CPU and transferred to the GPU. This is fine for single time step computation

or iterative methods which use the same FMM data structures over multiple iterations.

For dynamic problems, we need to seek more efficient way to re-build data structures

every time step. There are several different versions of distributed FMM algorithms in

the literature, such as [22–25]. The FMM was considered on a cluster of GPUs in [2,26],

and the benefits of architecture tuning on networks of multi-core processors or GPUs

was considered in [27–29]. In those papers including the recent Peta-Scale turbulence

simulation using FMM [30], the distributed FMM and tree code algorithms are mostly

related to more coarse-grained parallel algorithms and use homogeneous computing, in

which the potential powerful computing accelerators are not optimally utilized. Moreover

those algorithms commonly use the local essential tree (LET [27, 31]) to manage

communication among all the computing nodes. However, their implementation details

for import or export data via LETs are not explicitly described.

In this dissertation, our purpose is to develop efficient data structures and distributed

FMM algorithms with fine-granularity on massive parallel processing hardware to solve

dynamic problems. Our main contributions can be summarized as:

• Fast FMM data structures for both single and multipole nodes: Those data

structures include spatial data re-arrangements, interaction list constructions and

data distribution as well as communication management (for multiple compute
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nodes). Those data structures can be built on GPUs with 1 to 2 order of magnitude

speedup and substantially reduced algorithm overheads.

• Highly efficient heterogeneous FMM algorithms: Based on our algorithm profiling

analysis, we developed the first heterogeneous FMM algorithm by distributing

different FMM parts to different computing hardware to achieve the state of the

art performance.

• We further extend this algorithm to several distributed versions, which are capable

to solve billion size N -body on a 32-node cluster.

Publications related to this dissertation can be found in [32–37], in which [33] was a best

student paper finalist of SC’11. We will elaborate details in the following chapters.

1.4 Organization of the Dissertation

In Chapter 2, we introduce the FMM parallel data structures on GPU for a

single computing node. This fast data structure enables the efficient solutions of large

dynamic problems. Next, in Chapter 3, we present a simulation case study using the

FMM and the novel data structures on GPU with on-the-fly rendering. Based on the

parallel data structure, in Chapter 4, we will look at how to implement the FMM on

the heterogeneous architectures efficiently by performing translations and local direct

sums to CPUs and GPUs respectively as well as how to develop a practical distributed

version for very large size problems. In Chapter 5, the scalable FMM data structures for

multiple computing nodes communication management are developed. We then construct

a scalable distributed FMM algorithm using those structures and demonstrate the reduced
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communications and overheads compared with a simple distributed FMM algorithm. In

Chapter 6, we show another distributed FMM algorithm using Helmholtz decompositions

for vortex methods. The performance gain of this algorithm combines improvements from

the mathematics (Lamb-Helmholtz decomposition), algorithm (fast multipole method)

and implementations (highly optimized MPI-CUDA code). Finally, we conclude this

dissertation and discuss the future research work in Chapter 7.
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Chapter 2: Parallel Algorithms for Constructing Data Structures for Fast

Multipole Methods

The complexity reduction of Eq. 1.1 is because of the summation splitting and

kernel decomposition. However, this factorization in Eq. 1.3 is not global, hence the

split between the near- and far-fields must be managed, which requires appropriate data

structures and the use of a variety of representations for the function. The efficiency with

which the data structures are constructed is very important for dynamic problems since

the source and receiver points change their positions at every time step.

Recall the fact that the local direct sum is independent of the far-field expansions

and translations, thus may be scheduled on different computing hardware concurrently

for high performance efficiency. Moreover, it is important to balance costs between

these pairwise kernel sums and the hierarchical translations to achieve high computation

throughput and proper scaling. Besides those algorithmic considerations, there is another

vital factor to achieve such desired high efficiency: low data addressing latency. In

our implementation, both translations and local direct sums have their special auxiliary

interaction lists used to address data directly. Therefore, the FMM algorithm requires the

following special data structures:

1. Octree to ensure WSPD that ensures error bounds.
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Figure 2.1: A Well Separated Pair.

2. Interaction lists for fast data addressing.

3. The communication management structures.

The construction of these data structures must be done via algorithms that have the same

overall complexity with the summation. Previous work on the FMM often does not

provide details of the data structures used, or their construction algorithms. A purpose

of this chapter is to provide these details. Our second goal is to develop novel parallel

algorithms for the data structures for both single and multiple heterogeneous nodes on

GPUs.

2.1 Well-separated Pair Decomposition

The need to construct spatial data structures arise from a need to provide an error

controlled translation of the FMM function representations (discussed below in Section

2.3). This is achieved by using a well-separated pair decomposition (WSPD) (see

Fig. 2.1), which is itself useful for solving a number of other geometric problems [11,

chapter 2]. In the context of FMM, given the distance between the two sphere centers d,
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with radii are rA and rB respectively, the translation error ε (from cA to cB) is bounded by

ε(p) < Cηp(rA, rB), η(rA, rB) =
max(rA, rB)

d−min(rA, rB)
(2.1)

where p is the truncation number. Note that the p is determined based on the worst case,

i.e., when η(rA, rB) achieves its minimal value this ε still satisfies the prescribed error

bound. Refer to [13, 38] for a discussion on the optimization of multi-level FMM for the

very details.

2.2 Treecode and Its Data Structures

Similar to the FMM, there is also another well-known fast N -body simulation

algorithm, Barnes-Hut-Method [6], which uses the similar spatial data structures as

FMM and is often called a treecode. As in the FMM, the whole space is hierarchically

subdivided via an octree. Each spatial box has an pseudo-particle that contains the total

mass in the box located at the center of mass of all the particles it contains. Whenever

force on a particle is required, the tree is traversed from the root. If a certain box is far

away from that particle, the pseudo-particle is used to approximate the force induced by

that box, otherwise it is subdivided again or is processed particle–by–particle directly. The

complexity of treecode is in O(N). However, unlike FMM, the control on the accuracy is

less precise.

Treecode requires the octree structures to re-arrange spatial data, which are similar

to part of our FMM data structures. In the most recent GPU treecode development [39],

algorithms for the octree traversing, particle sorting and data compaction (skip empty

boxes) on GPU based on the CUDA scan algorithm [40]. Such algorithms, are similar to
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Figure 2.2: The E1, E2, E3, E4 Neighborhoods of Dimension 2. Red division at level 1;

blue division at level 2; black division at level 3. The shaded box in E1 sub-figure has its

Morton index as 40 at level 2.

the approaches in Section 2.5.1 and which we first presented in [32]. The other work in the

treecode space that is similar, is [41], in which a GPU-based construction of space filling

curves (SFC) and octrees were presented. Although those two data sorting algorithms

in [39,41] are similar to our grid sorting (Alg. 1 described later), they are not designed in

the context of FMM, and thus lack the costly constructions of neighbor interaction lists,

which will described in the following sections.

2.3 Multi-Level FMM Data Structures

Assume all of the data points are already scaled into a unit cube. The WSPD is

recursively performed by subdividing the cube into sub-cubes (spatial boxes) via an octree
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until the maximal level, lmax, or the tree depth, is achieved (The level lmax is chosen

such that the computational costs of the local direct sums and the far-field translations

can be balanced to the extent possible). To guarantee separation of spatial data points

by these sub-cubes and their minimal bounding spheres, we need to introduce several

different space neighborhood domains [13]. Given each spatial cubic box with the Morton

index [11, 42] n = 0, . . . , 2ld at level l = 0, . . . , lmax in d dimensions,

1. E1(n, l) ⊂ Rd denotes the spatial points inside the box n at level l. We call these

boxes as source or receiver box with index n at level l.

2. E2(n, l) ⊂ Rd denotes the spatial points in the neighborhood of the box with index

n at level l (“neighborhood” means all its immediate neighbor boxes). This list is

used for local direct summations for E1(n, l).

3. E3(n, l) = E2(n, l) ⊂ Rd denotes spatial points outside the neighborhood of the

box n at level l. This is the complement of E2(n, l).

4. E4(n, l) = E2(ParentIndex(n), l − 1)\E2(n, l) ⊂ Rd denotes spatial points

inside the neighborhood of the parent box ParentIndex(n) at level l − 1 but

which do not belong to the neighborhood of box n at level l. These are interaction

boxes whose contributions are accounted for by M2L translations for E1(n, l).

Consider any boxB with Morton index n at level l (see Fig. 2.2). All the translation

operations are performed box by box so the source data have to be viewed as spatial boxes

but not individual points. All the receiver data points inside B can not be well separated

with all the source boxes inside E2(n, l). Hence E2(n, l) is used to compute the near-
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field sum. Due to hierarchical translations, all the source boxes outside E4(n, l) have

already been translated to B’s center at the previous level. Thus only the influence of the

remaining source data needs to be translated. These are located in its E4(n, l) domain,

which corresponds to the most time consuming M |L translation to B.

While there are several implementations of the FMM and the closely related

treecode algorithms in the literature, the papers usually focus on reporting results of the

summation, and do not describe the details of the FMM data structures. Our focus is

on describing fast parallel algorithms for the multi-level FMM. In [38] and [13], they

described those FMM related octree data structures and their implementations in details.

Similar work on such hierarchical spatial data structures can be found [43] and [44].

In [32, section 5], we developed the parallel algorithms to construct FMM data structures

using the GPU but only for a single computing node. Basic concepts and operations

in these works are the fundamentals of our parallel GPU algorithms developed in this

chapter.

In the literature, the data structure research mainly focuses on load balancing and

data partition. In [45], several opportunities for parallelism in the FMM were discussed

and it was shown that it is possible to apply FMM on both shared memory or distributed

architectures. Compared to later work, the data distribution method in this pioneering

paper was simple, perhaps not practical in many applications. In [23], an efficient

parallel adaptive FMM with a “costzones” partition technique was developed based on

data locality. A multi-threaded tree construction was implemented in [46]. However,

in these papers the data structures were not built in parallel, i.e, the local tree of each

node was built by a single processor. In [31] and [26] they separated the computation and
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communication to avoid synchronization during the evaluation passes. Ref. [27] extended

the work of [31] by providing a new parallel tree construction and a novel communication

scheme, which scaled up to billion size problem on 65K cores. But all the GPUs were only

used for kernel evaluation, i.e. direct local sum and part of translations, while the data

structures alone were sequentially constructed within a single node on CPUs. In contrast,

our approach provides parallel algorithms to build data structures not only on the node

level, but also at a much finer granularity within a node, which allows their construction

algorithms to be efficiently mapped on SIMD architectures of GPUs. There are also many

other works focusing on a complementary problem: of partitioning the FMM data across

multiple processors, such as [47], which shown a provably and efficient good partition as

well as a load balancing algorithm, and [48], which presented a partition strategy based

on pre-computed parameters. Those optimal global partition strategy could be used in our

multiple node heterogeneous FMM algorithm given different application requirements.

2.4 Motivation for Fast Data Structure Algorithms

Because all the neighborhood relations are independent of FMM kernel evaluations,

but only determined by the initial source and receiver locations, all computations for

specifying neighborhoods can be implemented by pre-computing several interaction

lists for all non-empty spatial boxes, which can directly address the right data of their

E2 or E4 neighbor domains when it is needed. Hence, the major task of FMM data

structure constructions is to re-arrange the source and receiver data and compute all these

interaction lists efficiently with linear cost. This initial setup procedure can be treated
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as a separate module in any FMM algorithm, and by Amdahl’s law its cost should be

consistent with the cost of the FMM kernel evaluation.

Several papers in the literature as we mentioned before ( [39, 41], etc.) have been

published on fast Kd-tree and octree data structures that look similar to the spatial data

structures used here, however, they lack the functionality to construct these interaction

lists for the specific neighbor and box query operations, hence cannot be directly applied

in to the FMM framework. The typical way of computing these data structures is via

an O(N logN) algorithm, which is built upon spatial data sorting and is sequentially

implemented on the CPU [21]. For large dynamic problems (the particle positions change

every time step), this data structure construction cost would dominate the overall cost

by Amdahl’s law, especially when the FMM kernel evaluation is significantly speeded

up. Re-implementing the CPU algorithm for the GPU would not achieve the kind

of acceleration we sought. The reason is that the conventional FMM data structures

algorithm employs sorting of large data and operations such as set-intersection and

searching, that require random access to the global memory, cannot be implemented

efficiently on current GPU architectures.

2.5 Parallel FMM Data Structure Algorithm for GPU

The basic FMM data structures in our implementations are based on the octree [11,

Chapter 2]. At different octree levels, the unit cube containing all the spatial points is

hierarchically divided into sub-cubes via an octree and each spatial box is assigned a

global Morton index [42]. Basic concepts and operations on the octree data structures
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include: finding neighbor boxes, assigning indices and finding coordinates of the box

center via interleaving/deinterleaving, particle location (box index) query, etc. Refer to

[13, 38] for details of these basic concepts, operations and algorithms.

The algorithm is based on use of occupancy histograms (i.e., the counts of particles

in each box), assigning particles to their grid cells, and parallel scans [49]. A disadvantage

of this approach is the fact that the histogram requires temporary allocation of an array of

size 8lmax . Nonetheless this algorithm for GPUs with 4 GB global memory enables of data

structures up to a maximum level lmax = 8, which is sufficient for many problems. In this

case accelerations up to two orders of magnitude compared to CPU were achieved. Note

that the histogram is only needed at the time of data structure construction, all the empty

box information is skipped in the final data structure outputs, which are passed to the real

FMM kernel evaluation engine, to achieve both high memory and subsequent summation

efficiency.

We would first like to establish some notation. First of all, all the integers in our

implementation, such as box indices, histograms, are stored as unsigned int. We use

Src/Recv to represent source points/receiver points respectively. We define non-empty

source/receiver boxes as those boxes that contain at least one source/receiver data point

respectively, while empty source/receiver boxes have no points inside. Note that an empty

source box may contain receiver points and vice versa.
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Algorithm 1 PARALLEL-PSEUDO-SORT (P[], M): an algorithm to compute the sorted

index of each particle using the Fixed-Grid-Method.
Input: a particle position array P[] with length M

Output: a 2D index array sortIdx[]

1: for i=0 to M-1 parallel do

2: SortIdx[i].x←BoxIndex(P[i])

3: atomicAdd[Bin[SortIdx[i].x]]

4: SortIdx[i].y←Bin[SortIdx[i].x]

2.5.1 Pseudo-Sort Using Fixed-Grid-Method in Linear Time

To build the FMM data structures, we first need to reorganize the data points (both

source and receiver) into a tree structure according to their spatial locations, such that at

the finest level each octree box holds at most a prescribed number of points, the cluster

size. By adjusting the cluster size, we can try to ensure that the costs of the near-field

direct sums and the far-field approximated sums are roughly balanced (or take the same

time). Given the cluster size, we could determine the maximal level lmax of the octree.

The data reorganization is realized by a “Fixed-Grid-Method” algorithm, in which all

data points are rearranged according to their Morton box indices at level lmax but only

with linear computation cost, since the order of data points within a box, which share

the same Morton index, is irrelevant to the algorithm correctness. We do not use the

word “sort” here is because this pseudo-sort is a non-deterministic algorithm. In our GPU

implementation, the final sort order is determined by the run-time global memory access

order of CUDA threads.
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Figure 2.3: Bookmark List. Address the sorted data points by using bookmarks.

Since we have to pseudo-sort both source and receiver points, we use the term

“data points” to refer to both, and denote the array storing these data points by P[].

Firstly, each data point P[i] has associated with a 2D vector called sortIdx[i],

where sortIdx[i].x stores the Morton index of its box and sortIdx[i].y stores

its rank within the box. Secondly, there is a histogram array Bin[] allocated for the

boxes at the maximal level. Its ith entry Bin[i] stores the number of data points within

the box i, which is computed by the atomicAdd() function in the GPU implementation.

This CUDA function performs a read-modify-write atomic operation on one 32-bit or 64-

bit word residing in global or shared memory [1]. Let the number of data points be M .

Then the pseudo-code to compute sortIdx[] and Bin[] is given in Alg. 1.

Although atomicAdd() serializes those threads that access the same memory

address, the parallel performance of our implementation is good on average. This is

because most threads work on different memory locations at the same time. After this
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Figure 2.4: Neighbor Lists. The mapping relation among the neighbor bookmark, the

neighbor list and the source bookmark

pseudo-sort, all the data points are copied into a new sorted array according to their

sortIdx and their corresponding bookmark arrays (a pointer array described in details

in Sec. 2.5.2), which is used to find the data points given a box Morton index, are

constructed. Note that the cost to move data and write the pointer address into the

bookmarks are also linear and moving data on the device can take advantage of high

GPU memory bandwidth. We denote the pseudo-sorted source/receiver point arrays as

SortedSrc[]/SortedRecv[] respectively.

2.5.2 Interaction Lists

To access data efficiently, we use several pre-computed arrays, which are

also constructed by using parallel algorithms on the GPU: SrcBookmark[],

RecvBookmark[], NeighborList[], SrcNonEmptyBoxIndex[], and Neigh-

borBookmark[]. We call these interaction lists. Define numSrcNEBox and
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numRecvNEBox be the number of non empty source and receiver boxes respectively. We

describe these interaction lists below:

• SrcBookmark[]: its ith entry points to the first sorted source data point in the

ith source non-empty box in SortedSrc[] Its length is numSrcNEBox + 1.

• RecvBookmark[]: its jth entry points to the first sorted receiver data

point in the jth receiver non-empty box in SortedRecv[]. Its length is

numRecvNEBox + 1.

• SrcNonEmptyBoxIndex[]: its ith entry stores the Morton index of the ith non-

empty source box. Its length is numSrcNEBox.

• NeighborBookmark[]: to perform the local direct sum of the jth non-

empty receiver box, its E2 neighbor information can be retrieved from

the NeighborBoo- kmark[j]th to the NeighborBookmark[j+1]-1th

entries in the list Neighbo- rList[].

• NeighborList[]: given two indices i and j such that NeighborBookmark[j]

≤ i < NeighborBookm- ark[j+1] and denote k = i−NeighborBookmark[j],

then NeighborList[i] stores the index of the kth non-empty source box

adjacent to the jth non-empty receiver box (E2 neighborhood). Here the

index means the rank of that non-empty source box in the SrcNonEmpty-

BoxIndex[]. See figure 2.4.

• RecvPermutationIdx[]: its ith entry means the original position of data point

SortedRecv[i] in Recv[] is Rec- vPermutationIdx[i].
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Algorithm 2 ACCESS-SOURCE-E2-NEIGHBORHOOD (SortedSrc[],

SrcBookmark[], NeighborList[], NeighborBookmark[], i): an algorithm

to extract all the source data within the E2 neighborhood of the ith (non-empty) receiver

box.
Input: the ith receiver box and other interaction lists

Output: the source data tempSrcNei[] within its E2 neighborhood

1: count←0

2: tempSrcNei← ∅

3: B←NeighborBookmark[i+1]-1

4: for j=NeighborBookmark[i] to B do

5: v←NeighborList[j];

6: C←SrcBookmark[v+1]-1

7: for k=SrcBookmark[v] to C do

8: tempSrcNei[count++]←SortedSrc[k]
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Given the bookmark array, the data point can be accessed directly from the

sorted data list. For each receiver non-empty box, the source data points within its E2

neighborhood can be accessed as Alg. 2. The bookmarks are only kept for non-empty

boxes and the neighbor list is only kept for non-empty neighbors. No information of

empty boxes are passed to the FMM kernel evaluation engine. The last auxiliary array

RecvPermutationIdx[] is used to retrieve the input order of the original receiver

data points.

2.5.3 Parallel Data Structure Construction

In our implementation, the bookmark for the source/receiver box is the rank of

its first source/receiver point among all source/receiver points. The bookmark provides

a pointer to the data of any non-empty box among all boxes without search. A

reduction operation is needed to compute the entries of the bookmark arrays. The highly

efficient parallel prefix sum (or scan) [40] is used in our implementation. Given the

Bin[] obtained from Alg. 1, the Bookmark[] can be computed by removing the

repeated elements (corresponding to empty boxes) in the prefix sum of Bin[] using

Alg. 3. The same idea can also be used to address any non-empty source/receiver

box among all source/receiver boxes if we mark non-empty boxes by 1 and empty

boxes by 0 and apply the scan operation. With Bookmark[] and SortIdx[], data

points are copied to into a new sorted list. SrcNonEmptyBoxIndex[] is used

to construct NeighborBookmark[] and NeighborList[] in parallel as Alg. 5:

initially a thread computes the E2 neighbor box indices of a non-empty receiver box
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Algorithm 3 GET-BOOKMARK-AND-BOX-INDEX (Bin[]): an algorithm to compute

the bookmark and the non-empty box index of source/receiver boxes.
Input: the pseudo-sorted index array Bin[] of source/receiver boxes

Output: the bookmark array Bookmark[] and the Morton index array

NonEmptyIdx[] of source/receiver boxes . array indices depend on implementations

1: perform parallel scan on Bin[] to obtain its prefix sum ScannedBin[]

2: for i=0 to Bin[].length-1 parallel do

3: if Bin[i]>0 then

4: Rank[i]←1

5: else

6: Rank[i]←0

7: perform parallel scan on Rank[] to obtain its prefix sum ScannedRank[]

8: allocate memory for Bookmark[] and NonEmptyIdx[] . their lengths can be

derived from Bin[]

9: Bookmark[0]←0

10: Bin[-1]←0

11: for i=0 to Bin[].length-1 parallel do

12: if Bin[i]>Bin[i-1] then

13: Bookmark[ScannedRank[i]]←Bin[i]

14: NonEmptyIdx[ScannedRank[i]]←i
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Algorithm 4 GET-E2-NEIGHBOR-LIST-AND-BOOKMARK( Scanned- Rank[],

RecvNonEmptyBoxIdx[], numNonEmptyRecvBox): an algorithm to extract the

E2 neighborhood for all the (non-empty) receiver boxes.
Input: the ScannedRank[] from Alg. 3 for source, the receiver box index array

RecvNonEmptyBoxIdx[] with its length numNonEmptyRecvBox

Output: The E2 neighbor list array NeighborList[] (for receiver boxes) and its

bookmark NeighborBookmark[]

1: allocate a temporary array RecvE2NeiNEBoxIdx[] to store neighbor box indices

. each box can have 27 neighbors at most in 3D

2: for i=0 to numNonEmptyRecvBox-1 parallel do

3: ni ←0

4: k←RecvNonEmptyBoxIdx[i]

5: for all its non-empty E2 source neighbor box j do

6: NeighborIdx[27i+(ni++)]← j

7: NumRecvE2NeiNEBox[i]← ni

8: for j=0 to ni − 1 do

9: RecvE2NeiNEBoxIdx[27i+j]=ScannedRank[NeighborIdx[j]-1]
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Algorithm 5 GET-E2-NEIGHBOR-LIST-AND-BOOKMARK (CONTINUED)
10: perform parallel scan on NumRecvE2NeiNEBox[] to obtain its prefix sum

NeighborBookmark[]

11: allocate NeighborList[] . itself and its length can be derived from

RecvE2NeiNEBoxIdx[] and NeighborBookmark[] respectively

12: for i=0 to numNonEmptyRecvBox-1 parallel do

13: for j=0 to NumRecvE2NeiNEBox[i]-1 do

14: count ← NeighborBookmark[i]+j

15: NeighborList[count]←RecvE2NeiNEBoxIdx[27i+j]

and checks whether these source neighbor boxes are empty or not. Then this thread

increases the local non-empty source box count accordingly for its assigned receiver

box and store the neighbor indices temporarily. Finally after another parallel scan call,

the temporary neighbor indices are compressed and written to NeighborList[],

where the target address is obtained by reading the non-empty source box index from

SrcNonEmptyBoxIndex[]. Algorithm 6 summarizes all the steps to build the data

structures for a single computing node.

All the octree operations needed in Alg. 6, can be found in [38]. By using

the interleave and deinterleave operations, we can derive a 3D coordinate for any

given Morton index. Given this 3D vector, we can increase or decrease its coordinate

component to compute its neighbors’ 3D coordinates. Therefore, the algorithms of E2

and E4 neighbor queries can be easily obtained. Accordingly, they are not presented as

separate algorithms. Note that, given any spatial box, the computations of its neighbors’

coordinates and Morton indices are independent of other boxes and executed in parallel.
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Algorithm 6 BUILD-FMM-DATA-STRUCTURES (Src[], Recv[]): the single-node

algorithm to pseudo-sort data points and construct all the needed interaction lists on GPU.
Input: the source/receiver data Src[]/Recv[]

Output: all interaction lists and the pseudo-sorted source/receiver data

SortedSrc[]/SortedRecv[]

1: pseudo-sort Src[] by Alg. 1

2: get SrcNonEmptyBoxIndex[] and SrcBookmark[] by Alg. 3

3: copy sorted source data points to SortedSrc[]

4: pseudo-sort Recv[] by Alg. 1

5: get RecvPermutationIdx[] and RecvBookmark[] by Alg. 3

6: copy sorted receiver data points to SortedRecv[];

7: build NeighborBookmark[] and NeighborList[] by Alg. 2 and Alg. 5

8: pass SortedSrc[], SrcBookmark[], SortedRecv[], RecvBookmark[],

RecvPermutationIdx[], NeighborBookmark[] and NeighborList[]

to FMM kernel evaluation engine;

9: free all other allocated device memory;
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Figure 2.5: The Naı̈ve Prefix Sum (Scan) Algorithm.

2.5.4 GPU Implementation Considerations

Basic octree operations, such as box index query, box center query, box index

interleave/deinterleave and parent/children query, and more complex neighbor query

operations, such as E2 and E4 neighbor index query, are all implemented as inline CUDA

device functions. For efficiency, we minimize the use of global memory and local

memory accessing. Once input data is loaded into these device functions, we only use

local fast registers, or coalesced local memory if data can not fit into registers, to store

intermediate results. Moreover, we manually unroll many loops to further optimize the

code. Results shows that even for the costly computation ofE4 neighbors, its total running

time can be neglected in comparison with the kernel evaluation time in the FMM. When

we perform the FMM translation part on GPU, only these basic operations are used, in

which all other necessary translation data structures are constructed on the fly. Refer to
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section 2.6 for the experiment results.

2.5.5 Complexity

The complexity of these data structure algorithms is determined by the number of

source points N , the number of receiver points M and the maximal octree level lmax.

Since we use histograms, we can avoid all the searching operations on the device, which

makes our implementation fast and efficient. However, there is a memory consumption

trade-off for the processing speed since the size of histogram increases exponentially as

lmax. For the bucket sort Alg. 1, its complexity is linear O(N +M). All other algorithms

are related to the octree boxes, which total number is Nbox = 23l = 8l. Since we use the

canonical scan algorithm (see Fig. 2.5), Alg. 2 to Alg. 5 are in O(Nbox logNbox + N +

M) ∼ O(l8l + N + M). If we interpret the maximal level lmax as a prescribed constant,

then our parallel data structure construction Alg. 6 for single node is linear with respect

to particle size, i.e. in O(N +M).

2.6 Experimental Results

To test the data structure performance for a single node, we fix the problem size to 1

million and use the uniform distributed source and receiver. Here the source and receiver

points are different. The computation hardware used here are: NVIDIA GTX480 GPU

and Intel Xeon X5560 quad-core CPU running at 2.8GHz.

We firstly test the performance on the uniformly distributed data in a unit cube.

Note that, this would be most time consuming case since almost all the spacial boxes
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lmax CPU (ms) Improved CPU (ms) GPU (ms)

3 1293 223 7.7

4 1387 272 13.9

5 2137 431 13.0

6 8973 1808 34.6

7 30652 6789 70.8

8 58773 7783 124.9

Table 2.1: The Time Comparison of FMM Data Structure Computation. Tests are

performed on 220 uniform randomly distributed source and receiver particles using our

original CPU O(N logN) algorithm, the improved O(N) algorithm on a single CPU

core, and its GPU accelerated version.

are non-empty. The timing results are summarized in Table 2.1, in which the octree

depth was varied in the range lmax = 3, ..., 8. Column 2 shows the wall clock time

for a standard algorithm, which uses sorting and hierarchical neighbor search using set

intersection (the neighbors were found in the parent neighborhood domain subdivided to

the children level). Column 3 shows the wall clock time for the present algorithm on the

CPU. It is seen that our algorithm is several times faster. Comparison of the GPU and

CPU times for the same algorithm show further acceleration in the range 20-100.

In the second experiment, we generate all the source and receiver data on a sphere

surface and test how the algorithm scales and the performance gain. In Figure 2.6, we

show both the CPU and GPU time across the number of data points, which ranges from
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Figure 2.6: The Data Structure Construction Time for Non-Uniform Distribution. All the

source and receiver are distributed on a sphere. Each sub-figure corresponds to a maximal

level setting. All the tests are performed on a single node using one GPU.

1024 up to 8 millions, for different octree maximal levels. As the lmax increases, there are

more spatial boxes occupied which super linearly increases the overall costs. However,

once the number boxes become relative stable, i.e., increasing the number of particles only

changes the number of spatial boxes a little bit, the overall cost increases linearly. This

is because that all the boxes related constructions is more or less the same as a constant

and the particle related computation, such as bit interleaving and the fixed-grid-method

pseudo-sort that linearly scales as the amount of particle data, now dominates the overall

costs. In a whole, for this non-uniform distribution, our data structure algorithms also

demonstrate their linear complexity and our fast parallel implementations can achieve
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15-20 times speed-ups against the CPU performance.

As a conclusion of these tests on a single node, the FMM data structure step

is reduced to a small part of the computation time again, which provides substantial

overhead reductions and makes our algorithm suitable to solve dynamic problems.

2.7 Summary

Our algorithm makes generation of data structures on GPUs very efficient, which

are based on the use of occupancy maps, bin sorting, and parallel scans. Comparison of

the GPU and CPU times for the same algorithm show accelerations in the range 20-100

times. This shows the feasibility of the use of GPUs for data structure construction, which

satisfyingly reduce the data-structure step to a small part of the FMM overall computation

time.

For the single-node FMM, we are able to device a new algorithm, which also has

the advantage that it achieves the FMM data structure in O(N) time, bringing the overall

complexity of the FMM to this level for a given accuracy. Comparison of the GPU and

CPU times for the same algorithm show accelerations in the range 20–100 times. This

shows the feasibility of the use of GPUs for data structure construction, which satisfyingly

reduce the data-structure step to a small part of the FMM overall computation time.
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Chapter 3: GPU Accelerated Fast Multipole Methods for Dynamic N -

Body Simulation

The fast multipole method can be used to accelerateN -body simulations and matrix

vector products arising in various applications. These include fluid simulations [50,51] as

well as in scientific computing: in fitting implicit functions to point based representations

using radial-basis functions [52,53]; in radiosity computations [54] and in computing the

dynamics of attracting and repelling bodies such as those arising in molecular or stellar

dynamics. In fluid simulation, compared to methods that use meshes which result in large

discretizations, particle methods are extremely efficient. Despite this, large numbers of

particles may be necessary for fidelity.

Although particle methods avoid large mesh discretizations, the interactions among

particles appear for all pairs, which makes the computational complexity quadratic.

Because of such O(n2) cost given n particles, simulations on large scale problems can

not be completed within practical time. Generally speaking, without distributed systems

such as high performance clusters, the direct method can only work for the problem size in

the order of 104 on high end workstations. By parallelizing the computations on the multi-

core architecture, [3] developed a fast GPU-based parallel implementation, however, its

computation complexity is still quadratic. Recent work on particle methods using direct
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Figure 3.1: Vortex Rings and Particles Interaction.

computation has been shown in [55].

We use FMM as an alternative way to solve such N -body problems based on

particle methods. While our method can work for all applications of the FMM, for

specificity, we will consider the case of the simulation of the dynamics of vortex rings.

Readers may be familiar with the blowing of smoke rings by smokers. In these smoke

rings the lips blow a vortex ring, which traps the smoke particles, which help its

visualization. Particularly adept smokers can blow successions of vortex rings, which

then may exhibit behaviors such as leap-frogging.

To simulate interactions between vortices and particles, we apply particle methods

with the FMM. In [21, 26, 48], different GPU-based FMM implementations were

developed. Particularly, Ref. [56] compared the performances between treecode and

FMM on GPUs for a similar leapfrogging vortex ring simulations. However, in those

implementations, all the data structures need by FMM were built on the CPU, which

is too expensive for dynamic problems, where particle locations change every step.

Ref. [57] developed a CPU-GPU-Hybrid treecode to accelerate the computation, but its

overall performance does not outperform the implementation presented in [21], while
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Ref. [58] discussed the auto-tuning techniques of N -body simulations on heterogeneous

systems. In this chapter, we use the data structure on the GPU presented in Chapter 2 and

fully GPU-based FMM to simulate dynamic N -body problems with on-the-fly rendering.

Although it is applied in the context of fluid flow, such fast FMM parallel implementation

can also be used for molecular dynamics, stellar dynamics and RBF interpolation [52]

[53]. The FMM translations and expansions we use employ real number representations

as opposed to the usual complex spherical harmonic based representation. This allows for

GPU computation efficiency.

3.1 Interactions between Vortices and Particles

Our target application is to simulate the intensive interactions among vortex

elements and fluid governed by the so-called Biot-Savart law. Given N vortex blobs

(refer to [59] for details) of strength ωi, i = 1, . . . , N located at xi moving with the flow,

the velocity field can be evaluated by

v(y) =
N∑
i=1

vi(y), vi(y) =
ωi × (y − xi)

|y − xi|3
= ∇× ωi

|y − xi|
. (3.1)

While the vortex elements move with flow, vortex field also evolves according to the

vortex evolution equation. For inviscid flow, the vortex evolution can be described as

dxi
dt

= v|x=xi
,

dωi

dt
= ωi · ∇v|v=vi

, v(xi; t) =
∑
j 6=i

vj(xi; t). (3.2)

Here the right hand side for the vortex strength is the so-called vortex stretching term and

requires the evaluations of the gradient of the velocity. The velocity field in Eq. 3.1 can
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also be modified by using a smoothing kernel K(|y − xi; a) as

vi(y; a) =
ωi × (y − xi)

|y − xi|3
K(|y − xi|; a), (3.3)

where a is the radius of the vortex core and the smoothing kernel only has effect in

the near field of xi. As for the particles, their induced velocities are determined by the

vortex elements which is also described by Eq. 3.1. Given n vortex elements and m fluid

particles, we obtain an N -body problem to update all their space positions, and the total

computation cost is in O(n2 + nm).

3.2 GPU-Based Fast Multipole Method

The typical way of computing these data structures is via anO(N logN) algorithm,

which is built upon spatial data sorting and is sequentially implemented on the CPU [21].

Recall the fact that re-implementing this CPU algorithm for the GPU would not have

achieved the kind of acceleration we sought since the conventional FMM data structures

algorithm employs sorting of large data sets and operations such as set intersection on

smaller subsets, that require random access to the global GPU memory, which is not very

efficient.

First, we generate the FMM data structure on the GPU in O(N) time as in

Chapter 2, bringing the overall complexity of the FMM to O(N) for a given accuracy.

Second, we determine the interacting source boxes in the neighborhood of the receiver

boxes. In a whole, we rely on the histograms and parallel scan to achieve parallel

processing goal. This technique enables fast neighbor determination without sort,

search, or set intersection operations. Refer to Chapter 2 or [36] for the details of

42



interaction lists and their parallel constructing algorithms.

3.2.1 Real Representation

Although the FMM expansions and translations in the literature use complex valued

spherical harmonic representations, this can result in extra costs and the use of special

functions that use complex arguments. A real number version of these expansions and

translations can be derived by using their symmetry properties. A big advantage of the real

number representations is that GPU can process these real numbers much more efficiently.

In the following discussion, we will use both spherical coordinates (r, θ, ϕ) and Cartesian

coordinates (x, y, z) to establish real FMM expansions and translations. Let r = (r, θ, ϕ),

p be the truncation number and Bm
n (r) be the complex basis function with coefficient cmn .

Then B̃m
n (r), the real basis function obtained from Bm

n (r) with coefficient dmn , is defined

(see [21, (12)]) by

B̃m
n (r) =


Re{Bm

n },m ≥ 0,

Im{Bm
n },m < 0.

. (3.4)

It is already known that the basic kernel function

Φ(r) =

p∑
n=0

n∑
m=−n

cmn B
m
n (r) (3.5)

is real. Define Φn(r) =
∑n

m=−n c
m
n B

m
n (r), then by the conjugate property, Φn(r) is real,

which implies

Φn(r) =
n∑

m=−n

cmn B
m
n (r) = Φ̃n(r) =

n∑
m=−n

dmn B̃
m
n (r). (3.6)

From (5) and (7), the relation between cmn and dmn is

d−mn = c−mn + cmn , dmn = i(c−mn − cmn ). (3.7)
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The elementary solutions of the Laplace equations in 3D are

Rm
n (r) = αmn r

nY m
n (θ, ϕ), Smn (r) = βmn r

−n−1Y m
n (θ, ϕ), (3.8)

where αmn , β
m
n are normalization constants and Y m

n (θ, ϕ) are orthonormal spherical

harmonics. To obtain the real representation, define the normalization constants as

αmn = (−1)n
√

4π/[(2n+ 1)(n−m)!(n+m)!]

βmn =
√

4π(n−m)!(n+m)!/(2n+ 1),

(3.9)

then the following identity holds for Coulomb kernel in spherical coordinates system

Φ(r, r∗) =
1

|r− r∗|
=

+∞∑
n=0

n∑
m=−n

(−1)nR−mn (r∗)S
m
n (r). (3.10)

Together with the local R expansions of receiver points in the final summation, (11)

implies that the FMM only needs to compute R−mn (r) for both source and receiver points.

Now, shift to the truncated real number version of (11)

Φ(r, r∗) =

p∑
n=0

n∑
m=−n

(−1)nd−mn (r∗)S̃
m
n (r) + Errt. (3.11)

Given (8), the following recurrence relations can be derived to compute realR-expansions

(multipole) d−mn (r∗):

d0
0 = 1, d1

1 = −1

2
x, d−1

1 =
1

2
y,

d
|m|
|m| = −

xd
|m|−1
|m|−1 + yd

−|m|+1
|m|−1

2|m|
, m = 2, 3, . . . ,

d
−|m|
|m| =

yd
|m|−1
|m|−1 − xd

−|m|+1
|m|−1

2|m|
, m = 2, 3, . . . ,

dm|m|+1 = −zdm|m|, m = 0,±1,±2, . . . ,

dmn = −
(2n− 1)zdmn−1 + r2dmn−2

n2 −m2
,
n = |m|+ 2, |m|+ 3, . . . ,

m = −n, . . . , n.

(3.12)
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Figure 3.2: RCR Translation for the Fast Multipole Method. It replaces one O(p4)

translation with two O(p3) rotations and one O(p3) coaxial translation.

Our implementation uses the o(p3) RCR decomposition [60] (Fig. 3.2)to perform

the S|S, S|R and R|R translations. Details of translation formula can be found in [14].

To move to real numbers, one actually only needs to provide modifications to α-rotation

and β-rotation and an sign change for the coaxial translation. To keep the presentation

concise, we show the result. Let d̂mn be the transformed real coefficients of dmn after

rotation, then the α-rotation can be computed by

d̂−mn = sin(mα)dmn + cos(mα)d−mn , m = 1, . . . , n.

d̂mn = cos(mα)dmn − sin(mα)d−mn , m = 1, . . . , n.

(3.13)

For β-rotation, let

fmn = 1/2
√

(n−m)(n+m+ 1), m = 0, 1, . . . , n.

f−mn = 1/2
√

(n+m)(n−m+ 1), m = 1, . . . , n.

(3.14)

Hm′,0
n (β) = (−1)m

′

√
(n− |m′|)!
(n+ |m′|)!

P|m
′|

n (cos β) (3.15)
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where n = 0, 1, . . ., m′ = −n, . . . , n and Pm
n (µ) are the associated Legendre functions.

Hm,m′
n (β) satisfies the following relation:

fm−1
n Hm−1,m′

n − fmn Hm+1,m′

n = fm
′−1

n Hm,m′−1
n − fm′

n Hm,m′+1
n . (3.16)

Then, the β rotation can be computed by:

d̂−mn =
n∑

m′=1

d−m
′

n (H−m,−m
′

n −H−m,m′

n ), m = 1, . . . , n.

d̂mn =
n∑

m′=0

dm
′

n (Hm,m′

n +Hm,−m′

n ), m = 1, . . . , n.

d̂0
n =

1

2

n∑
m′=0

dm
′

n (H0,−m′

n +H0,m′

n ).

(3.17)

Finally, for the coaxial translation [14, (27)], the only modification is to change the sign

for different m as

d̂mn = (−1)m
n∑

n′=|m|

(S|R)mn,n′(t)dmn′ . (3.18)

Using (13), (14), (18) and (19), all the FMM expansions and translations can be performed

in real arithmetic with fast implementations on the GPU.

3.2.2 Adaption to the Biot-Savart 3D Kernel

The baseline FMM computes the Coulomb kernel Phi defined by Eq. 3.19, which

is defined as

Φ(y,x) =


1

|y − x|
, if x 6= y,

0, if x = y.

(3.19)
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So the possibly minimal modifications are preferred to adapt to the Biot-Savart kernel by

Eq. 3.1 based on the baseline codes. Notice that

∇y ×
qi

|y − xi|
= (∇y

1

|y − xi|
)× qi

= −(
y − xi
|y − xi|3

)× qi

=
qi × (y − xi)

|y − xi|3
.

(3.20)

So rewrite Eq. 3.1 using Eq. 3.20 as

V (y) =
n∑
i=1

qi × (y − xi)

|y − xi|3
=

n∑
i=1

∇y ×
qi

|y − xi|
. (3.21)

Based on Eq. , apply the baseline FMM three times with three coordinates components

of the vector weights qi = (q
(x)
i , q

(y)
i , q

(z)
i ) first. Then in the final evaluation step, the

following R-expansion coefficients for each non empty receiver box, which center is c,

are available:

{d(x),m
n } :

∑
i 6∈Ωc

q
(x)
i

|y − xi|
=

p∑
n=0

n∑
m=−n

d(x),m
n Rm

n (y − yc),

{d(y),m
n } :

∑
i 6∈Ωc

q
(y)
i

|y − xi|
=

p∑
n=0

n∑
m=−n

d(y),m
n Rm

n (y − yc),

{d(z),m
n } :

∑
i 6∈Ωc

q
(z)
i

|y − xi|
=

p∑
n=0

n∑
m=−n

d(z),m
n Rm

n (y − yc),

(3.22)

which form the vector expansion coefficients dmn = (d
(x),m
n , d

(y),m
n , d

(z),m
n ) i.e.,

{dmn } :
∑
i 6∈Ωc

qi
|y − xi|

=

p∑
n=0

n∑
m=−n

dmn R
m
n (y − yc) (3.23)

Therefore,

∇y ×
∑
i 6∈Ωc

qi
|y − xi|

=

p∑
n=0

n∑
m=−n

∇y × [dmn R
m
n (y − yc)]

=

p∑
n=0

n∑
m=−n

∇yR
m
n (y − yc)× dmn .

(3.24)
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While the direct summation is computed as the baseline FMM except by

replacing Coulomb kernel by the Biot–Savart kernel, the (x, y, z) components of the

gradient of the basis functions Rm
n (y − yc) needs to be computed according to (3.24).

However, by differentiating Eq. 3.30 with respect to x, y and z, these gradients can be

obtained recursively. In fact, the recursions for the derivatives of the basis functions

depend on the basis functions, while the recursion coefficients are very similar. In

implementation, a simple routine can be used to compute all the four sets of the basis

functions{dmn }, {d
(x),m
n }, {d(y),m

n }, {d(z),m
n }. The purpose of combining these calls is to

hide the extra computation (compared with one call) during the global memory access

time such that the extra computation can be performed for no cost.

3.2.3 The Recurrence Relations for Gradients

Denote

d(x),m
n =

∂dmn
∂x

, d(y),m
n =

∂dmn
∂y

, d(z),m
n =

∂dmn
∂z

. (3.25)

By skipping all the derivation details and using the same notations as Sec. 3.2.2 the

recurrence relations of gradient coefficients in Eq. 3.22 are given by:

d
(x),0
0 = 0, d

(x),1
1 = −1

2
, d

(x),−1
1 = 0,
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(3.26)
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N Coulomb kernel (ms) Biot-Savart kernel (ms)

1048576 1074.1 2159.1

262144 565.7 975.4

65536 418.3 669.6

16384 129.1 215.7

4096 97.8 153.1

1024 89.8 136.1

Table 3.1: The Time Comparison (on single precision) between the Coulomb and Bio-

Savart Kernels. The total run time of Bio-Savart kernel is only doubled but not tripled by

comparing with the baseline (Coulomb kernel) FMM.

3.2.4 Test and Error Analysis

As mentioned in Sec. 3.2.2, for the Biot-Savart kernel, three baseline FMM calls

are integrated into one call to use the similarities of those recursion coefficients. A big

advantage of this implementation is that extra computation costs can be hidden from

expensive GPU global memory access. In the downward-pass translation steps, both the

indices and the processing order of E4 neighbors for each receiver box are quite different

among active threads. Therefore, it is impossible to make the access to translation data

coalesced for threads in the same warp, which results in much reduced data fetching time.

However, combining three calls into one call reduces three memory accesses to one. Even

though the data fetched is the same, the total access time is reduced. Our experiments (see
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Figure 3.3: The Profiling of FMM for Biot-Savart Kernel.

Table 3.1) show that the full FMM computation time of Biot-Savart kernel is not tripled

but less than doubled compared with the baseline FMM. The profiling of all parts of FMM

for Biot-Savart kernel are also provided in Fig. 3.3. Note that for the small number of data

points, only one level of expansions and translations are performed.

Another experiment is performed to compare with normal direct methods on both

single and double precision. The CPU implementation is double precision. The GPU

direct method implementation is also optimized and the test results for Coulomb kernel

are summarized in Fig. 3.4. The GPU-based FMM shows the linear computation cost for

large number of data points, in which case the overhead and latency can be neglected,

while the direct methods on both CPU and GPU show the quadratic cost. As for the

Biot-Savart kernel, its GPU implementation has the similar performance, in which the

evaluations of 10 million particle interactions takes about 7 and 16 seconds for the single
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Figure 3.4: The Time Comparisons for Coulomb Kernel Between GPU-Based FMM and

Direct Methods.

and double precision respectively.

The error introduced by FMM is determined by the truncation number p. Theory on

FMM error analysis can be found in [13]. In this experiment, we will validate our GPU

implementation satisfy the accuracy requirement controlled by the truncation number.

The relative error is defined as

ε =

√√√√∑k
j=1 |φexact(yj)− φapprox(yj)|2∑k

j=1 |φexact(yj)|2
(3.29)

are computed by picking k = 100 testing points for each test cases. The exact values

to measure the FMM error are computed by the direct method on CPU using double

precision. In Fig. 3.5, we show the relative errors on both single and double precision

for Coulomb kernel. Since the single precision round-off errors are accumulated in the

recursive calls, the extra R expansion coefficients obtained from p = 8 to p = 12, are no
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Figure 3.5: Relative Error Analysis. The relative errors on both single (on the left) and

double (on the right) precision for Coulomb kernel.

longer accurate enough to improve the overall translation accuracy. Moreover, the kernel

evaluations within neighborhood also introduce floating point number truncation errors.

Hence the single precision case in Fig. 3.5 shows no accuracy improvement from p = 8

to p = 12. However, for the double precision, the accuracy of can be improved by adding

extra multipole expansion terms.

3.3 Vortex Ring and Particle Interaction Simulation

The mathematical model to simulate vortex ring and particle interactions is based

on vortex particle method [61]. In [50], they showed smoke, water and explosion visual

effects using vortex particle method but the number of vortex elements used were only in

order of hundreds or thousands. With the GPU-based FMM, the same kind of simulations

can be scaled to large size problems in which there are O(105) vortex elements and

millions of particles.
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3.3.1 Smoothing Kernel

A big challenge of the simulation is the integration stability. In the large scale

simulation, many particles are very near to each other, hence the round-off errors of their

distance are enlarged dramatically due to the kernel singularity, which makes the direct

time step integration of the particle displacement not stable. For Biot-Savart kernel, the

vortices have dipole singularities, so the field grow as 1/|r|2 near the source location.

Based on our experiments, even the direct CPU computation using double precision

will blow up within several time steps on small size problems. An effective solution

to this problem is to introduce smoothing kernel K(d, ε) to reduce the computation kernel

singularity as

V (y) =
n∑
i=1

qi × (y − xi)

|y − xi|3
K(|y − xi|, ε), (3.30)

Mathematically, the smoothing kernel is used to preserve the algorithm propagation

stability. Physically, it corresponds to the vortex blob cut-off. Different smoothing kernel

implementations are discussed in [61] and an algebraic implementation, where

K(d, ε) =


d2

ε2
if d ≤ ε,

1 if d > ε.

(3.31)

is used in this chapter because it is fast to compute on the GPU while it has little effect on

the results. Given the minimal distance dmin between source points and receiver points

and the side length u of the box at the maximal level, the control threshold ε needs to

satisfy dmin � ε < u. It guarantees that the error enlarged by kernel singularity is

cut off by enforcing dmin � ε while it still makes modifications of FMM simple, i.e.,

by setting ε < u, which means that only the local kernel evaluations of the direct sum
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need to be modified. Other smoothing kernel functions can also be used, however, since

the transcendental functions computation are expensive on the GPU, simple polynomial

smoothing kernels are preferred.

As for the numerically integration, both Euler and Runge-Kutta 4 methods are

implemented. Euler method with one FMM evaluation at each time step is fast while

Runge-Kutta 4 requiring four FMM evaluations is robust. The simulation results reported

in this chapter used the Euler method.

3.3.2 Interactive Computational Visualization

The visualization of the particle positions and movements during the simulation is

realized via OpenGL and the OpenGL Extension Wrangler Library (GLEW). Since the

computations are performed on the device using CUDA, the rendering can be performed

directly on the GPU (without data transfer between GPU and CPU) by the CUDA

OpenGL interoperability [1].

To visualize the interactions, the particles are drawn as OpenGL points with certain

size in a 3D cube. Vortex elements are only computed but not rendered. Although the

simulation is performed on a large number of particles, it does not deliver a good visual

effect to render them all. This is because that the number of pixels within the range

of particles on the final screen is much less than the number of particles. In that case,

rendering all the particles will result in a very bright region, hence part of the depth and

density visual effects will be lost. Instead, in our implementation, only part of particles are

rendered with blending enabled and the full particle information are used in ray tracing
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Figure 3.6: Collision of Two Vortex Rings.

[62, Chapter 10] to compute the opacity for each pixel, which is used to adjust the pixel

brightness to reflect particle density for a better realistic visual effect.

Recall the array bin[] described in Sec. 2.5.1 in which its ith entry keeps the count

of the number of data points in the box i. Given the ray from the eye to certain pixel, a

thread keeps an particle count and samples k points along that ray to find which the boxes

in the maximal level that intersect with the ray. Once a box index j is returned, the thread

increases the count by bin[j]. After the opacities of all the pixels are obtained, they are

further smoothed by averaging the opacities of nearby pixels. The opacity information is

computed and smoothed by CUDA threads then is passed to the rendering function as a

texture map. After rendering part of the particles as point, a fragment shader is used to

reset the pixel values according to that opacity information.
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Figure 3.7: The Leap-Frog of Two Rings with 215 Particles Rendered.

Figure 3.8: The Leap-Frog of Two Rings with 218 Particles Rendered.

3.3.3 Experimental Result

We used a workstation with INTEL Xeon E5504 CPU 2.0GHz, 12GB RAM and

a single NVIDIA Tesla C2050 (it is capable for graphic rendering) to perform all the
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Figure 3.9: The Leap-Frog of Two Rings with 220 Particles Rendered.

experiments. Our FMM is double precision (ECC disabled), and the truncation number

was set to 12. All the data are generated within a unit cube and only Euler integration is

used for simulations. The vortex rings are constructed with the radius being 0.3 and the

fluid particles are generated randomly around these two vortex rings.

Figure 3.1 and Fig. 3.6 were captured frames from the demonstration video, in

which two vortex rings with totally 212 discretized elements and 218 particles, in which

214 particles were rendered. Figure 3.1 shown the leap-frog of two vortex rings while

Fig. 3.6 shown the collision of two rings. In Fig. 3.7 and Fig. 3.8, there are 215 vortex

elements and 218 fluid particles generated in total, we have 215 and 218 particles were

rendered respectively. The last visualization was shown in Fig. 3.9, in which we have 215

vortex elements and 220 fluid particles with all particles rendered. Since the computation

and rendering share the same hardware and the overheating issue due to large time steps,

the performance is much inferior compared with testing results Sec. 3.2.4. But the total

running time for each frame is still around 1.4 ∼ 2.5 seconds on double precision data
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Figure 3.10: The Accuracy of Vortex Ring Simulation Using FMM for Each Time Step.

along the whole simulation process.

In another test of the FMM implementation, a vortex ring colliding with a ground

plane was simulated using double precision. This problem can be viewed as a highly

simplified case of a rotor operating in ground effect where a vertical flow interacts with

the flow at the wall, providing for the same essential features of radial vortex stretching

and vortex/wall interaction that are produced below a rotor hovering in ground effect.

The advantage of simulating this problem is that it produces a simplified but still highly

representative test flow suitable for the evaluation of the FMM and GPU implementations,

and the approach can also be extended to the two-phase flow environment. In this case,

500000 fluid particles were computed with 32768 discretized vortex ring elements. The

computational results were visualized by OpenGL, as shown in Fig. 3.11. For each time

step, it was found to take around 1.2–2.5 seconds for the computation in which both FMM
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Figure 3.11: The Simulation Snapshots of A Vortex Ring Colliding with Ground Plane.

computation and data visualization share the same GPU hardware resource, compared to

around 90 seconds on the CPU.

Moreover, a simple test case of the accuracy of the FMM implementation for fluid

dynamic problems has been studied where a convecting vortex ring comprising fluid

particles has been simulated. In total, 16384 discretized ring elements and 32768 fluid

particles were simulated. Because the CPU double precision data needed to be computed

as the “exact” solution, it is not practical to use a large number of vortex elements. The

relative errors were computed at each time step by comparing the FMM GPU results with
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the CPU results. To test the errors, the whole simulation was run for 500 time steps with

Euler integration and the results are summarized in Fig. 3.10. All of the computations

used double precision.

3.4 Summary

FMM has complex data structures and translation schemes. Using parallel

algorithms allows this efficient but complicated algorithm to take advantage of the GPU

hardware. It can achieve good speedup compared with other sequential implementations.

The errors introduced by its approximation of far field interactions almost have no effect

on the simulations. Problems of large size can be computed on a single GPU equipped

desktop, which currently can only be completed otherwise in practical time on expensive

clusters.

In this chapter, the GPU-based FMM with parallel data structures are developed

for dynamic problems. This enables us to fully off-load computations and visualizations

to the GPU. The development of real coefficient representations and the adaptation to the

Biot-Savart kernel allows us to implement highly efficient FMM expansion and translation

calls on the GPU. Our novel GPU implementation is capable of both single and double

precision computation and demonstrates the superior timing and error bounds to direct

methods for practical simulations on a desktop with single GPU. Successful visualizations

to long times with large number of particles and vortex elements are also demonstrated.
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Chapter 4: The Scalable FMM on the Heterogenous Architecture

Because of the popularity of heterogeneous CPU-GPU architecture over the past

decades, we will reconsider the FMM algorithm on such system with multi-core CPU(s)

and one or more GPU accelerators, as well as on an interconnected cluster of such

nodes to achieve a significant improvement over recent implementations and to make the

algorithm ready for use as a workhorse simulation tool for both time-dependent vortex

flow problems and for boundary element methods. In this chapter, our goal is to perform

large rotorcraft simulations [32] using coupled free vortex methods with sediments and

ground effect [63] as well as develop fast methods for simulation of molecular dynamics

[64], micro and nanoscale physics [26], and astrophysics [65].

We consider essentially similar hardware of the same power consumption

characteristics as discussed in recent papers, and our results show that the performance

can be significantly improved. Since GPUs are typically hosted in PCI-express

slots of motherboards of regular computers (often with multi-core processors), an

implementation that just uses GPUs or multi-core CPUs separately wastes substantial

available computational power. Moreover, a practical workstation configuration currently

is a single node with one or more GPU-accelerator cards and a few CPU sockets with

multi-core processors. With a view to providing simulation speed-ups for both a single
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node workstation and a cluster of such interconnected nodes, we develop a heterogeneous

version of the algorithm.

To achieve an optimal split of work between the GPU and CPU, we performed a

cost study of the different parts of the algorithms and communication (see Fig. 4.1). A

distribution of work that achieves best performance by considering the characteristics

of each architecture is developed. More exactly, using the observation that the local

summation and the analysis-based translation parts of the FMM are independent, we map

these respectively to the GPUs and CPUs. The FMM in practical applications is required

to handle both the uniform distributions often reported on in performance testing and

the more clustered non-uniform distributions encountered in real computations. We are

developing strategies to balance the load in each of these cases.

Since our algorithm is to be used in time-stepping where the data distribution

changes during the simulation, we wanted to improve scalability in the algorithms for

creating the FMM data-structures and interaction lists by using algorithms presented

in Chapter 2. In this chapter, we first develop a single node version where the CPU

part is parallelized using OpenMP and the GPU version via CUDA. Next, we present

an simplified approach for clusters consisting of several heterogeneous nodes. This

algorithm is sufficient for the number nodes we have access to. We also briefly consider

the case of even larger numbers of nodes.
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4.1 Single Heterogeneous Node

Our efficient algorithm is based on use of occupancy histograms (i.e., the counts

of particles in all boxes), bin sorting, and parallel scans [49]. We have pointed out a

potential disadvantage of this approach in Chapter 2 while we can achieve accelerations

up to two orders of magnitude compared to CPU, which accounts for our preference of

it. For problems that required greater octree depth, we developed a distributed multi-

GPU version of the algorithm, where the domain is divided via octrees spatially and

distributed to the GPUs, each GPU performs independent structuring of data residing in

its domain, and global indexing is provided by applying prefixes associated with each

GPU. The problem decomposition needed for load balancing can also be done with this

data structure.

Different stages of the FMM have very different efficiency when parallelized on

the GPU (Fig. 4.1). The lowest efficiency (due to limited GPU local memory) is for

translations. On the other hand, computation of Φ(sparse)q on the GPU is very efficient

(making use of special instructions for the reciprocal square root and multiply-and-add

operations), as well as the generation of M-expansions and evaluation of L-expansions.

In fact, anything having to do with particles is very efficient on the GPU, and translations

are relatively efficient on the CPU.

Figure 4.2 illustrates the work division between the CPU cores and GPU(s) on a

single node. The large source and receiver data sets are kept in GPU global memory,

and operations related to particles are performed only on the GPU. This makes dynamic

simulations (where particles change location) efficient, since particle update can be done
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Figure 4.1: The Relative Cost and Speedup of Different Steps of the FMM. We tested

uniform data on a GPU (NVIDIA GeForce 8800GTX) vs a 4 core CPU (Intel Core 2

extreme QX, 2.67GHz). The relative cost of steps is given for the GPU realization (lmax =

4, p = 8, N = M = 220). The CPU wall clock time is measured for the same settings as

for GPU (not necessarily optimal for the CPU [21]).

efficiently on the GPU minimizing CPU-GPU data transfer. The GPU does the jobs

that it can do most efficiently, specifically, generating the data structure, generating M-

expansions for source boxes at the finest level, performing the sparse MVP, evaluating L-

expansions for the receiver boxes at the finest level, and producing final results. Because

the result is obtained on the GPU, it can be used immediately for the next time step.

The CPU performs all work related to operations with boxes. It receives as input

the box data structure from the GPU, which is used to generate a translation data structure

(note that we use the reduced translation stencils described in [21], instead of the standard
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Figure 4.2: Flow Chart of the FMM on A Single Heterogeneous Node. Such node is

equipped a few GPUs and several CPU cores. Steps shared in dark gray are executed in

parallel on the CPU and the GPU.

189 per box), and M-expansion coefficients for the non-empty source boxes at the finest

level. Then the CPU performs the upward and downward passes of the FMM and returns

L-expansions for the non-empty receiver boxes at the finest level.

This strategy has several advantages

1. The CPU and GPU are tasked with the most efficient jobs they can do.

2. The CPU is not idle during the GPU-based computations and our tests show the

loads on CPU and on GPU are reasonably balanced.

3. Data transfer between the CPU and GPU includes only p2 expansion coefficients

for each non-empty box, which usually is smaller than the particle data.
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4. The CPU code can be better optimized as it may use more complex data structures,

e.g., for complex translation stencils. More efficient automatic compilers are

available for the CPU.

5. We use double precision without much penalty on the CPU. This is helpful since

translation operations are more sensitive to round off.

6. If the required precision is below 10−7 single precision can be used for GPU

computations. If the error tolerances are more strict, then double precision can

be used on GPUs that support them.

7. The algorithm is efficient for dynamic problems.

8. Visualization of particles for computational steering is easy, as all the data always

reside in GPU RAM.

4.2 Several Heterogeneous Nodes

For distributed heterogeneous nodes, the above algorithm can be efficiently

parallelized by using the spatial decomposition property inherent to the FMM (see

Fig. 4.3). The separation of jobs between the CPU cores and GPUs within a node remains

the same. The M2L translations usually are the most time consuming and take 90%

or more of the CPU time in the single node implementation. However, if we have P

nodes and each node serves only N/P sources located compactly in a spatial domain

Ω
(s)
j , j = 1, ..., P covered by N (s)

j ≈ N (s)/P source boxes at level lmax such that Ω
(s)
j

do not intersect, then the number of the M2M and M2L translations for all receiver boxes

67



Figure 4.3: Illustration of Separation of the M2M and M2L Translation Jobs between Two

Nodes. Two nodes handle sources allocated in two light gray source boxes and compute

L-expansions for the darker gray receiver boxes. Solid lines with arrows show M2M

translations, the dashed lines show M2L translations, and bold solid lines with arrows

show L2L translations. M2M and M2L steps do not overlap, and the same (adaptive,

empty box skipping) algorithm with different inputs can be executed on each node. L2L

translations for the same boxes are duplicated by each node for the simplified algorithm

in Sec 4.2.1 and are not duplicated in the general algorithm proposed in Sec 5.2.2.

due to sources in Ω
(s)
j is approximately (CM2M + CM2L) /P , where CM2L and CM2M are

the numbers of all M2L and M2M translations for the entire domain, respectively, and

N (s) the number of source boxes. This is achieved because our implementation of the

FMM skips empty source boxes.

To achieve scalability for the L2L translations, we introduce an intermediate

communication step between the nodes at levels l = 2, ..., lmax. This is between the CPUs

alone, and does not affect the parallel computation of the sparse MVP on the GPU. For
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each node we subdivide the receiver boxes handled by it into 4 sets. These are built based

on two independent criteria: belonging to the node, and belonging to the neighborhood

containing all source boxes assigned to the node. “Belonging” means that all parents,

grandparents, etc. of the box at the finest level for which the sparse MVP is computed by

a given node also belong to that node. Receiver boxes that do not satisfy both criteria are

considered “childless” and the receiver tree for each node is truncated to have that boxes

as leaves of the tree.

During the downward pass a synchronization instruction is issued after

computations of the L-expansion coefficients for receiver boxes in the tree at each level.

The nodes then exchange only information about the expansions for the leaf boxes, and

each node sums up only information for the boxes which belong to it. These steps

propagate until level lmax at which all boxes are the leave boxes and information collected

by each node is passed to its GPU(s), who evaluate the expansions at the node source

points and sum the result with the portion of the sparse MVP computed by this node.

4.2.1 Simplified Algorithm

If the number of nodes is not very large, the above algorithm can be simplified to

reduce amount of synchronization instructions and simplify the overall data structure.

In a simplified algorithm, each node performs an independent job in the downward

pass to produce the L-expansion coefficients for all receiver boxes at level lmax. These

coefficients are not final, since they take into account only contribution of the sources

allocated to a particular node. To obtain the final coefficients, all expansions for a given
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Figure 4.4: A Flow Chart of the FMM on Two Heterogeneous Nodes. The single

heterogeneous node algorithm (see Fig. 4.2) is executed in parallel on CPU cores and

GPUs available to the node.

receiver box must be summed up and sent to the node that computes the sparse MVP for

that receiver box. This process for all nodes can be efficiently performed in parallel using

hierarchical (golden) summation according to the node indices.

In contrast to the general algorithm, in the simplified algorithm some L2L

translations are duplicated (see Fig. 4.3), which deteriorates the algorithm scalability and

increases data transfer between the nodes. However, even in the worst case when all L2L

translations are repeated on all nodes, the effect of L2L-translation duplication may have

a substantial effect on the overall complexity only if the number of all L2L translations
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violates the restriction CL2L � (CM2M + CM2L) /P. This inequality holds for moderate

clusters. Indeed, if we use a scheme with a maximum of 119 or 189 M2L translations per

box and one L2L translation then for P . 100 the scheme is acceptable, though sufficient

memory per node is needed to keep L-expansion coefficients for all boxes in the tree.

Our tests show that satisfactory performance for N . 109, which is comparable with the

number of particles used in any FMM realizations we are aware of.

For illustration, the flow chart in Fig. 4.4 shows the algorithm for two heterogeneous

nodes. Each node initially has in memory the sources and receivers assigned (randomly)

to the node. Based on this, each node builds an octree. After that, all nodes are

synchronized and receiver hierarchy data is scattered/gathered, so each node has complete

information about all receiver boxes.

Since initial source/receiver data is redistributed between the nodes, each node

takes care of a spatially compact portion of particle data. This distribution is done by

prescribing weights to each box at a coarse level of the tree and splitting the tree along

the Morton-curve to achieve approximately equal weights to each part. Then the single

node heterogeneous algorithm described in the previous section is executed with some

small modifications. The sparse MVP is computed only for the receiver boxes handled

by a particular node, and the dense MVP is computed only for source boxes allocated

on that node but for all receiver boxes (i.e. influence of a portion of the source boxes

on all receivers is computed). The data on the L-expansions at the finest level is then

consolidated for the receiver boxes handled by each node. The final summation consists

of evaluation of the L-expansions and summation with partial sparse MVPs.
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4.3 Implementation Issues

We use OpenMP for intra-node CPU computation (as implemented in Intel

FORTRAN/C v.11) and MPI for inter-node communication. As shown in Fig. 4.4, on

each computing node we launch a single process, within which multiple OpenMP threads

are used to control multiple GPUs and compute FMM translations on the CPU. MPI calls

for communicating with other nodes are made from the master thread of this process.

CUDA 3.2, which we used, allows only one active GPU device in a single

CPU thread. Hence, to parallelize the multi-threaded CPU translation and multi-GPU

direct sum, OpenMP threads have to be divided into two different groups. To avoid

performance degradation due to the nested OpenMP parallel regions performing quite

different computational tasks, the threads that control GPUs are spawned first. After a

thread launches its GPU kernel function call, it immediately rejoins the master thread. At

this point the threads for CPU translations are spawned, while the GPUs perform the local

direct summation in the mean time.

After initial partition, each node has its own source and receiver data. The receiver

data are mutually exclusive among all the nodes; however, the same source data might

repeatedly appear on many nodes since they belong to the interaction neighborhood of

many receiver boxes. As shown in Fig. 4.2, the main thread spawns multiple threads

to copy data onto different GPUs and performs initial data structure building. Then

each thread sends information on the receiver boxes to the master thread. The master

thread computes the global receiver box information and broadcasts it to all other nodes.

Based on the previous data structures and the global receiver box information, each GPU
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then builds its own data structure for the CPU translations, performs initial multipole

expansions, and copies them to CPU. Next, the CPU translation and GPU direct sum are

performed simultaneously using the scheme described above.

For the simplified algorithm described above, the master thread collects the local

expansion coefficients as a binary tree hierarchy within l rounds given 2l processes. When

it finishes, the master process has the local expansion data for all receiver boxes and sends

the corresponding data to all other processes.

4.4 Performance Tests

Partitioning times: Our algorithm takes some time for global partition of the data.

However, in a dynamic problem, this step is only needed at the initial step, and this time

is amortized over several time steps, after which the global repartitioning may again be

necessary. Accordingly, we report the partitioning time separately from the total run time.

The run time, however, includes the cost of generating the entire FMM data structure on

each node since this will have to be done at each time step. In the tests we measured the

time for potential + force (gradient) computations and also for a faster version where only

the potential was computed.

Most cases are computed with p = 8, which is sufficient to provide single precision

accuracy (relative errors in the L2-norm are below 10−5). When comparisons are made

with [2], we set p = 10 to match their choice. The benchmark cases include random

uniform distribution of particles inside the cube and on the surface of a sphere (spatially

non-uniform). In our wider tests we varied the number of sources and receivers N and
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M . In all the reported cases, N = M , while the source and receiver data are different.

4.4.1 Single Heterogeneous Node

The algorithm for a single node was extensively tested. The first test was performed

on a single node of the Chimera cluster using one and two GPUs with spatially uniform

random particle distributions. Table 2 shows the measured performance results in optimal

settings (in terms of the tree depth lmax) for potential + force computations (the total

run time for potential only computations is also included). Fig. 4.5 plots data only for

potential computations in optimal settings. Even though these timing results appear to

outperform the results of other authors on similar hardware which we are aware of, one

may question whether the algorithm is scalable with respect to the number of particles and

number of GPUs since the run time changes quite non-uniformly. An explanation of the

observed performance is that the GPU sparse MVP has optimum performance for certain

data cluster size s(sparse)
opt [21], and when clusters with s < s

(sparse)
opt are used, this increases

both the GPU and CPU times (due to increase of lmax). Cluster sizes with s > s
(sparse)
opt

can be optimal, and this can be found from the balance of the CPU and GPU times. Since

lmax changes discretely and the CPU time depends only on the number of boxes, or lmax

(for uniform distributions), the CPU time jumps only when the level changes. Increase

of lmax by one increases the CPU time eight times, and such scaling is consistent with

the observed results. On the other hand, the GPU time for fixed lmax and s > s
(sparse)
opt is

proportional to N2. So there is no way to balance the CPU and GPU times for a fixed

lmax, except perhaps increasing the precision of CPU computation.
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Time (s) \ N 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216

Num of GPUs 1 2 1 2 1 2 1 2 1 2

CPU wall clock 0.13 0.13 1.06 1.08 1.07 1.11 1.02 1.10 8.53 8.98

C/G parallel region 0.58 0.30 1.06 1.08 1.58 1.11 4.38 2.21 8.55 8.98

Force+Potential total run 0.71 0.39 1.23 1.22 1.96 1.34 5.11 2.63 10.3 10.1

Potential total run 0.40 0.24 1.16 0.89 1.27 1.25 2.94 1.52 9.76 6.30

Partitioning – 0.14 – 0.32 – 0.58 – 1.14 – 3.09

Table 4.1: Performance on A Single Heterogeneous Node. Force with potential (best

settings). For potential computations, only the total run time is provided.

If the GPU time dominates, then use of the second GPU reduces the time, as seen

for the cases N = 220 and N = 223. Note also that the parallelization efficiency for 2

GPUs is close to 100%. On the other hand, if the CPU time dominates, then the second

GPU does not improve performance if lmax remains the same (see case N = 222 for the

potential). Cases N = 221 and N = 224 show a reduction of the time due to the use of the

second GPU because of a different reason. For these cases optimal lmax is different when

using one or two GPUs. This causes reduction of the CPU time and increase of the single

GPU time for two GPUs compared to the case with one active GPU.

We also performed tests with spatially non-uniform distributions (points or the

sphere surface). This requires deeper octrees to achieve optimal levels (usually increase

of lmax by 2) and provides more non-uniform loads on the GPU threads, which process

the data box by box (the number of points in the non-empty boxes varies substantially).
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Figure 4.5: The Wall Clock Time for the heterogeneous FMM Running on A Single Node

with One and Two GPUs. The computation is only for potential. The CPU part (using 8

CPU cores) is plotted by the thin dashed lines. The thick dashed line shows linear scaling.

This results in the increase of both CPU and GPU times. In some cases this increase is

not substantial (e.g., for N = 220 the CPU/GPU parallel region time is 0.44 s and the

total run time is 0.56 s), while we never observed increase more than 2.5 times (e.g., for

N = 222 the CPU/GPU parallel region time is 2.82 s and the total run time is 3.26 s for

potential only computations) (compare with Table 4.1).

4.4.2 Double Precision GPU Performance

Accepted wisdom in scientific computing often requires double precision

computations for many problems. We accordingly demonstrate our algorithm with double
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Prec p = 4 8 12 16

Time (s) S 0.37 0.62 1.48 2.92

D 1.36 1.40 1.49 2.95

Error S 2.8·(−4) 1.4·(−6) 2.5·(−7) 1.2·(−7)

D 1.6·(−4) 6.9·(−7) 4.3·(−8) 4.3·(−9)

Table 4.2: Performance and Error Results for Single and Double Precision Computations.

Tests are performed on the GPU, where “(−m)” means “10−m”.

precision on the CPU, and both single and double precision on the GPU. Table 3 shows

results of our tests for potential computation for N = 220 using different truncation

numbers p and algorithms with different GPU precision. We used a workstation with

a Tesla C2050 and a 4 core Intel E5504 2.00 GHz CPU (which explains the difference in

run times in comparison with Tables 4.1 and 4.2). The error was measured in the relative

L2-norm using 100 random comparison points. Direct double precision computations

were used to provide the baseline result. It is seen that for p 6 8 there is no need to use

double precision (which slows down the GPU by at least a factor of two). The CPU time

grows proportionally to p3, and the GPU time depends on p as A+ Bp2 with a relatively

small constant B. This changes the CPU/GPU balance of the heterogeneous algorithm

and reduces the optimal tree depth lmax as p increases.
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4.4.3 Multiple Heterogeneous Nodes

On heterogeneous clusters we varied the numbers of particles, nodes, GPUs per

node, and the depth of the space partitioning to derive optimal settings, taking into account

data transfer overheads and other factors.

The weak scalability test is performed by fixing the number of particles per node to

N/P = 223 and varying the number of nodes (see Table 4.3 and Fig. 4.6) for a simplified

(small cluster) parallel algorithm. For perfect parallelization/scalability, the run time in

this case should be constant. In practice, we observed an oscillating pattern with slight

growth of the average time. Two factors affect the perfect scaling: reduction of the

parallelization efficiency of the CPU part of the algorithm and the data transfer overheads.

The results in Table 4.1 for 2 GPUs were computed with lmax = 5 for cases P = 1 and

2 and lmax = 6 for cases P = 4, 8, 16. In the case of the ideal CPU algorithm the time

should reduce by a factor of two when the number of nodes is doubled at constant lmax and

increase eight-fold when lmax increases by one. In our case, P is constant, so when lmax

increases and P doubles the CPU time should increase by factor of 4. Qualitatively this

is consistent with the observed pattern, but the simplified algorithm that we used is not

perfectly scalable due to overheads (e.g., due to L2L-translations and related unnecessary

duplication of the data structure) becoming significant at large sizes. The deficiency of

the simplified algorithm also shows up in the data transfer overheads. The amount of such

transfers depends on the number of boxes and the table clearly shows that the overhead

time increases with lmax. Figure 4.6 shows that for relatively small number of nodes this

imperfectness is acceptable for practical problems.
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Time (s) \ N (P ) 8,388,608 (1) 16,777,216 (2) 33,554,432 (4) 67,108,864 (8) 134,217,728 (16)

Num of GPUs 1 2 1 2 1 2 1 2 1 2

CPU wall 1.02 1.10 4.49 0.61 2.71 2.80 1.41 1.75 0.85 1.22

CPU/GPU 2.45 1.23 4.49 2.91 2.71 2.80 2.67 1.75 6.25 3.17

Overhead 0.50 0.30 1.03 0.36 0.95 0.85 1.12 0.96 1.31 1.07

Total run 2.95 1.53 5.46 3.27 3.66 3.65 3.79 2.71 7.56 4.24

Table 4.3: Performance for P Heterogeneous Nodes with N/P = 223. Results are for

potential only.

We also performed the strong scalability test, in whichN is fixed and P is changing

(Fig. 4.7). The tests were performed for N = 223 and P = 1, 2, 4, 8, 16 with one and two

GPUs per node. The deviations from the perfect scaling can be explained as follows. In

the case of one GPU/node, the scaling of the CPU/GPU parallel region is quite good.

We found that in this case the GPU work was a limiting factor for the parallel region.

This is consistent with the fact that the sparse MVP alone is well scalable. In the case of

two GPUs, the CPU work was a limiting factor for the parallel region. Scalability of the

algorithm on the CPU is not as good as for the sparse MVP part because of the reasons

explained above when the number of nodes increase. However, we can see approximate

correspondence of the times obtained for two GPUs/node to the ones with one GPU/node,

i.e. doubling of the number of nodes with one GPU or increasing the number of GPUs

results in approximately the same timing. This shows a reasonably good balance between

the CPU and GPU work in the case of 2 GPUs per node (so this is more or less the optimal
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Figure 4.6: Contribution of the CPU/GPU Parallel Region Time and the Overhead to the

Total Run Time for Two GPUs per Node. The overhead is due to data transfer between

the nodes and CPU/GPU sequential region. The data size increases proportionally to the

number of nodes. The time is measured for computations of potential only on UMIACS

Chimera cluster.

configuration for a given problem size). More significant imperfections are observed for

the total run time at increasing P , which is related to the data transfer overheads between

the nodes (we also saw that in the weak scalability tests).

We did similar tests on the Lincoln cluster, which produced almost the same results.

These best results are obtained for optimal settings, when the GPU(s) reach their peak

performance (in terms of the particle cluster size). For such sizes the UMIACS cluster is

limited byN = 228. For larger problems a sub-optimal performance is obtained; however,
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thin lines connect pairs of data points for which the same total number of GPUs was used.

The thick dashed line shows perfect scalability t = O (1/P ). The time is measured for

potential only computations on the UMIACS Chimera cluster.

such cases are still of practical importance, as solving billion-size problems in terms of

seconds per time step is quite useful. Fig. 4.8 presents the results of the run employing

32 nodes with one or two GPUs per node, which shows a good scaling with N (taking

into account that the FMM has jumps when the level changes). In the figure, we plot the

best of one-GPU and two-GPU run times (as it was shown above, the use of the second

GPU in the heterogeneous algorithm is not always beneficial and may create additional

overhead). The largest case computed in the present study is N = 230 for 32 two-GPU
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to the load balance between CPU and GPU(s) in the parallel region. The thick dashed lines

show the linear scaling and the computation results are for potential only.

nodes. For this case, the CPU/GPU parallel region time was 12.5 s and the total run time

21.6 s.

Figure 4.9 compares the wall clock time required by the potential+force

computations for the present algorithm with the velocity+stretching timing reported in [2].

The present algorithm (Sec. 4.2.1) was executed with two GPUs per node for 2 and 8

nodes and one GPU for a single node (the total number of GPUs employed is shown in
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Figure 4.9: A Comparison of the Simplified Distributed FMM Implementation for N -

Body Force+Potential Calculations with the 2009 Gordon Bell Prize Winner [2]for

Velocity+Stretching Calculations. Velocity+stretching computation theoretically requires

about 5.5 times more computation for the sameN (see Fig. 12 there) than Force+Potential

computations. In all cases the truncation number p = 10.

the figure).

4.5 Performance Assessment

There are several ways to assess the performance of our algorithm (see http:

//folding.stanford.edu/English/FAQ-flops for a discussion). One way

to assess this performance is to look at the actual number of operations performed in
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the FMM. This yields much more modest numbers of flops, but may be more useful

in comparing the performance of different implementations of the FMM. The most

arithmetically intensive part of the FMM is performed by the GPU during the sparse

MVP. For uniform distributions and cluster size s, the number of operations at max. tree

depth lmax is approximately N (sp)
op = 23lmax27s2x, where x is the number of operations

per direct evaluation and summation of the potential or potential+force contribution. For

a cluster of size s = 28 and lmax = 5 we have N (sp)
op = 23127x. This corresponds to

N = 23lmaxs = 223. Our tests show a very consistent GPU/CPU parallel region time

per GPU for this problem size, which is strongly dominated by GPU, t(sp) = 2.45 s (two

GPUs do the same job for 1.23 s). This means that a single GPU performs at peak rate not

less than R = N
(sp)
op /

(
230t(sp)

)
= 22x GFlops. The estimation of the x is rather tricky,

and somewhat controversial, since a larger value tends to indicate better performance for

one’s algorithm. For potential only computations it can be estimated either as x = 9

in terms of GPU instructions, or as x = 27 in terms of CPU instructions, which is the

commonly accepted way of counting. The latter value, which is consistent with the tests

of the algorithms using standard CPU counters provides Rmax = 594 GFlops while x = 9

results in Rmin = 198 GFlops. Both these numbers are within the limit of the GPU used

(933 GFlops peak performance reported by NVIDIA). Similar numbers can be computed

for the potential+force computations by using x = 38 or x = 15, and the timing data

from Table 2.

The contribution of the CPU part of the algorithm in the parallel region improves

this marginally. We count all M2M, M2L, and L2L translations, evaluated the number of

operations per translation, and used the measured times for the GPU/CPU parallel region
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at lmax = 5. That provided as a estimate of 27 GFlops per node for 8 CPU cores. Thus

we can bound the single heterogeneous node performance for two GPUs between 423

and 1215 GFlops. We used at most 32 nodes with two GPUs each, and our cluster’s

performance bounds are [13.2, 38] TFlops.

Following [66], several authors, used a fixed flop count for the original problem and

computed the performance that would have been needed to achieve the same results via a

“brute-force” computation [2, 67–70]. For N = 230 sources/receivers and a computation

time of 21.6 s (total run), which we observed for 32 nodes with two GPUs per node, the

brute-force algorithm would achieve a performance of 1.25 Exaflops.

4.6 Summary

Perhaps our biggest contribution is the use of the neglected resource (CPU) in

heterogeneous CPU/GPU environments, allowing a significant improvement in hardware

utilization. A user with a gaming PC worth less than $3000 (2 graphics cards and two-

quad-core CPUs plus 16 GB RAM) can achieve FMM performance comparable with the

2009 Bell prize winner, at one percent of the cost and power, and a performance of 405

MFlops/dollar. Our algorithm can tackle two orders of magnitude larger problems of

interest in fluid, molecular and stellar dynamics due to vastly improved handling of data

structures and algorithmic improvements compared to current state-of-the-art algorithms.

It also scales well, allowing the user to add more CPU cores and GPU cards to further

improve the price/performance ratio. The Chimera machines cost $220K and achieve a

performance of 177 MFlops/dollar—the best performance reported so far on the FMM
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reported in [2].

We believe that the achieved total run times, up to 230 & 1 billion particles was

performed with this algorithm on a mid-size cluster (32 nodes with 64 GPUs), are

among the best performance results reported for the FMM for the sizes of the problems

considered (e.g, comparing with [2, 8, 28, 67, 71]).
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Chapter 5: Parallel Algorithms for FMM Data Structures on Multiple

Nodes

Since all the data structures are constructed based on the locations of source and

receiver data points, there are two main issues for distributed systems with multiple

nodes. First, for problems running on a single computing node, source and receiver data

points for direct sum and translation are the same. However, on multiple nodes using the

algorithm of [33,35], only receiver data points are mutual exclusively distributed. Source

points which are in the halo regions have to be distributed on several nodes, i.e. source

points which are in the boundary layers of partitions have to be repeated among several

computing nodes because of the direct sum region overlap. Hence on each computing

node, the source data points for direct sum and translation are no longer the same. When

we build the translation data structure, these repeated source data should be guaranteed to

translate only once among all the nodes.

Second, since any translation stencils may require coefficients from many

source boxes which are on other nodes, there will be many translation coefficient

communications among different nodes. Moreover, due to the partition, from a certain

level on, the octree box coefficients on a single node might be incomplete up to the root

of the octree. This is because if one of any box’s children is distributed on one or several
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Figure 5.1: Problems Due to Partition. Left: blue boxes are Partition I and orange boxes

are Partition II; dark green line shows the partition boundary line and light blue dash line

shows the source regions which are needed by Partition I. The boxes with gradient orange

color are in Partition II but they have also to be included in Partition I to compute full local

direct sum. Right: blue boxes belong to Partition I and green boxes belong to Partition II.

The S-data of the yellow box center bounded by the orange line is incomplete due to one

alien child box. Hence its parents (the blue and orange dots) in the tree up to the minimal

level are all incomplete.

different nodes, all its ancestors coefficients are incomplete. In figure 5.1, we show such

an example. Lastly, all information related to these boxes are stored in a compressed way

because we skip all empty boxes. Therefore it is a non-trivial task to pack all non-empty

boxes’ data and address any requested box to fetch its coefficients efficiently in which

many searching and rearranging data operations are needed. Good partition and data

communication algorithms are crucial to reduce the communication overhead in terms of

both data transfer size and data packing time.
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5.1 Global Data Structure and Partitioning

In [33] FMM algorithms for the heterogeneous CPU-GPU architecture were

explored and it was concluded that a good strategy is to distribute the FMM computation

components between CPUs and GPUs: expensive but highly parallizable particle related

computations (direct sums) are assigned to the GPU, while the extensive and complex

space box related computations (translations) are assigned to CPU. This way one can take

the best advantages of both CPU and GPU hardware architecture, we design our data

structures for this mapping. Below are our requirements/ideas for the distributed data

structure:

1. There are P computing nodes. Each node handles a certain amount of sources

and receivers. There is a master process which manages all computations and data

distribution/transfer.

2. Algorithms for data partitioning/redistribution (based on the cost balance) are

available, and these provide size of the computational cube D, octree of depth lmax

and global Morton indexing of all boxes in the source and receiver trees. This

algorithm also determines the halo regions induced by the space partition and takes

care of data distributions of these halo regions.

3. Such algorithm is parallel, so that each computing node handles some part of the

data, generates sub-trees of data belonging to it. The master process manages

exchange of information, prefixing of local node data, and tools for global Morton

indexing.
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Figure 5.2: Global Data Structure with K Trees with Roots at Level 2 and Partitioned

Data Structure with Roots at Any Level.

4. The spatial distribution of data affects the amount of communications between

the nodes. However, the algorithm works correctly even if the distribution is

substantially non-uniform.

5. We assume also that the partitioning is done in the way that each node has

information about the sources and receivers it needs to compute the local sum. We

assume also that tools to generate M -expansions and evaluate L-expansions for the

boxes handled by each node are available. So communication between the nodes

includes only exchange of the information about expansions related to the M and

L boxes.

The FMM data structure is based on two data hierarchies for sources an receivers.

Figure 5.2 shows only one of them. This can be viewed as a forest ofK trees with roots at

level 2 and leaves at level lmax. In the case of more or less uniform data distributions and
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number of nodes less than K ≤ 64 (for the octree), each node may handle one or several

trees. If the number of nodes are more than 64 and/or data distributions are substantially

non-uniform, partitioning based on the work load balance can be performed by splitting

the trees at levels > 2. Such partitioning can be thought as breaking of some edges of the

initial graph. This increases the number of the trees in the forest, and each tree may have

a root at an arbitrary level l = 2, ..., lmax. Each node then takes care for computations

related to one or several trees. At this point we assume that there exists some work load

balancing algorithm which provides an efficient partitioning. At this point we also do not

put any constraint to interaction between the receiver and source trees, so formally this

can be considered as two independent partitions.

For presentation purposes, we define two important concepts although they are

related to each other in our implementation:

• Partition level lpar: at this level, the whole space are partitioned among different

computing nodes. On a local node, all the sub-trees at this level or below are totally

complete, i.e., no box at level ≥ lpar is on other nodes.

• Critical level lcrit: at this level, all the box coefficients are broadcasted such that

all boxes at level ≤ lcrit can be treated as local boxes, i.e., all the box coefficients

are complete after broadcasting. In our implementation, lcrit = max (lpar − 1, 2).

One thing to notice here is that: normally the number of computing nodes in current high

performance clusters are in the order of hundreds or even thousands, that is considered

much smaller than the number of spatial boxes of the global octree. Hence, the partition

level is usually quite low, such as lpar = 2, 3, 4. Hence broadcasting the coefficients at the
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Figure 5.3: Source Box Type. Blue boxes are Partition I and green boxes are Partition II.

The partition level is 3 and critical level is 2. Solid line boxes correspond to level 2 and

dash line boxes correspond to level 3. As partition II, boxes with yellow boundary lines

are export boxes. Boxes with orange boundary lines are import boxes. Box with black

boundary lines are root box. Box with pink boundary lines are domestic box. Box with

dark blue boundary lines are other box.

critical level lcrit only requires a small amount of data communication with neglectable

overheads given the major cost of kernel evaluations.

To better organize data communications, on each node, we classify all

the source boxes into five categories and store them into a box type array

SrcNonEmptyBoxType[]. From the finest level lmax to 2, we list all the global source

box Morton indices in an increasing order. Note that some local empty source boxes

might be in the list since this box may contain source points which are located on other

nodes and this global source boxes information is obtained from the initial global octree
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construction. Given those box types, we could determine which boxes need to import or

export their M -coefficients. For any node, say J , these five box types are:

1. Domestic Boxes: The box and all its children are on J . All domestic boxes are

organized in trees with roots located at level 1. All domestic boxes are located at

levels from lmax to 2. The roots of domestic boxes at level 1 are not domestic boxes

(no data is computed for such boxes).

2. Export Boxes: These boxes need to send data to other nodes. At lcrit, the M-data

of export boxes may be incomplete. At level > lcrit, all export boxes are domestic

boxes of J and their M-data are complete.

3. Import Boxes: Their data are produced by other computing nodes for importing

to J . At lcrit, the M-data of import boxes may be incomplete. At level > lcrit,

all import boxes are domestic boxes of nodes other than J and their M-data are

complete there.

4. Root Boxes: These are boxes at critical level, which need to be both exported and

imported. For level > lcrit there is no root box.

5. Other Boxes: Boxes which are included in the data structure but do not belong to

any of the above types, e.g. all boxes of level 1, and any other box, which for some

reason is passed to the computing node (such boxes are considered to be empty and

are skipped in computation, so that affects only the memory and amount of data

transferred between the nodes).
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Figure 5.4: The Heterogenous CPU-GPU Computing Architecture of Chimara at

UMIACS.

Refer to Fig. 5.3 for an example. Note that there are no import or export boxes at

levels from lcrit − 1 to 2. All boxes at these levels are either domestic boxes or other

boxes after the broadcast and summation of incomplete M -data at lcrit. In our algorithm,

we only need compute M-data and box types from level lmax to lcrit and exchange the

information at lcrit. After that we compute the M -data for all the domestic boxes up to

level 2 then produces L-data for all receiver boxes at level lmax handled by the computing

node.

5.2 FMM Algorithm on Multiple Nodes

Our multiple node algorithm involves three main parts:
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1. Global source and receiver data partition: the partition should keep work balance

among all the computing nodes.

2. Single node evaluation: a single node performs the translations upward/downward,

compute the export and import data and the local summations.

3. Multiple node data exchange: The data communication manager collects and

distributes the data from/to all the computing nodes accordingly.

Parts (2) and (3) are mutually inclusive because the translations on a single node require

the missing data from other nodes while the data communication requires import and

export information from each computing node. Part (1) depends on the application. For

dynamic problems, the FMM evaluation is performed for every time step and the data

distribution can be derived from the previous time step. It is very likely that all the

nearby data are stored on the same node, in which case the partition to keep work balance

only requires a small amount of data communications. For problems only performing

a single FMM evaluation, the data appear on each node might be dependent on some

geometric properties but it is also possible that the initial data on each node is totally

random, in which case a large amount of the inter-node communications is inevitable. In

our implementation, we assume the worst case that all the data on each node are random.

5.2.1 Global Partition

The architecture of our computing system (see figure 5.4), and perhaps of most

current and near future systems, is heterogeneous. Each computing node has several

multi-core CPUs and many core GPUs. While the CPU cores on the same node share the
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main memory, each GPU has its own dedicated device memory, which are connected to

host via PCI-Express bus. To perform the computations on GPUs, the data for a single

node have to be divided again for each GPU. As mentioned before, we perform direct

sums on GPUs and FMM translation on CPUs, hence we need two level partition: divide

the data for nodes first (translation) then further divide data of each node for each GPU

(direct sum). Given the prescribed cluster size, we construct the global octree then split

it, i.e., the partition of all the data is performed by boxes but not by particles.

Assume the same number g of GPUs on each computing node, then we implement

this two level partition as follow: we assign a unique global ID (ig+ j) to the jth GPU on

the node i and compute our finer partition with respect to those GPUs. From lpar = 2, our

algorithm tries to distribute all the boxes at level lpar among GPUs such that the amount

of receiver points satisfy the prescribed balance conditions. It increases the lpar by 1

until the work load balance is roughly achieved. Once this finer partition is done, we

automatically obtain the balanced coarse partition with respect to computing nodes (this

is because each node has the same number of GPUs). To identify all the box locations, we

use an auxiliary array BoxProcId[], in which ith entry stores the GPU ID where the ith

box at lpar resides in. Dividing BoxProcId[i] by g, we can obtain the node ID where

the ith box resides in. Note that, for any given box at any level, we can easily answer its

location query by shifting that box’s Morton index and examining BoxProcId[], i.e.

by checking its ancestor/children’s location. Initially, we use GPUs and Alg. 1 to pre-

process data, i.e. to get the number of receiver points in each box. Then all nodes send

their Bucket[] array to the master node. The master node then computes the balanced

partition and derives the value of lpar such that each GPU is assigned several spatial boxes
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at lpar with consecutive Morton indices. Finally, the master node broadcasts this partition

information to all the nodes and each nodes distributes its own source and receiver data

based on the partition to others.

5.2.2 The Distributed FMM Algorithm

Assuming that the balanced global data partition and distributed data are available.

On one hand, the data structure constructions of local neighbor interaction lists for direct

sum are the same as Chapter 2. On the other hand, the data structures of translations

are for the coarse partition (with respect to node), hence they need to be recomputed by

merging the octree data structures obtained from multiple GPUs on the same node. The

merging steps are conducted as follow

1. Extract all the global source box information across all the computing nodes: after

all GPU calls the data structure construction call of section 2.5, each node collects

these non-empty source box indices from all its GPU, merges to one list and send to

the master node. Then the master node merges all the lists to one global non-empty

source box array and broadcasts to all nodes.

2. Extract the local receiver box information for each node: each node collects these

non-empty receiver box indices from all its GPU, merges to one list. Because each

GPU deals with consecutive receiver boxes, this merging is actually equivalent to

copy operations.

Once these two box index arrays are available, we can construct the necessary data

structures, i.e. the interaction lists for translation stencils, in parallel on GPU. Except
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the source box type, of which the algorithm will be described later, all other needed

information arrays, such as neighbor lists/bookmark etc, can be obtained by using the

similar algorithms presented in section 2.5.

Given the global partition and the node-wise local merging algorithms, now lets

assume all the necessary data structures for the translations, such as box’s global Morton

indices, the neighbor, export/import box type lists and those initial M-expansion data, are

available, then each node J executes the following translation algorithm:

1. Upward translation pass:

(a) Get M-data of all domestic source boxes at lmax from GPU global memory.

(b) Produce M-data for all domestic source boxes at levels l = lmax −

1, . . . ,max(2, lcrit).

(c) Pack export M-data, the import and export box indices of all levels. Then send

them to the data exchange manager.

(d) The master node, which is also the manager, collects data. For the incomplete

root box M-data from different nodes, it sums them together to get the

complete M-data. Then according to each node’s export/import box indices,

it packs the corresponding M-data then sends to them.

(e) Receive import M-data of all levels from the data exchange manager.

(f) If lcrit > 2, consolidate S-data for root domestic boxes at level lcrit. If lcrit >

3, produce M-data for all domestic source boxes at levels l = lcrit − 1, . . . , 2.

2. Downward translation pass:
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(a) Produce L-data for all receiver boxes at levels l = 2, . . . , lmax.

(b) Output L-data for all receiver boxes at level lmax.

(c) Redistribute the L-data among its own GPUs.

(d) Each GPU finally consolidates the L-data, add the local sums to the dense

sums and copy them back to the host according to the original inputting

receiver’s order.

Here all boxes mean all boxes handled by each node. A simple illustration of this

algorithm for a 2D problem is shown in Fig. 5.5. Because lcrit = 2, no further M |M

translations are needed therefore the direct M |L and L|L translation are performed

directly after the data exchanging.

Packing the M -data inside the manager is simple. When each node outputs its

import box index array, they are listed in an increasing order from lmax to lcrit. The

manager processes the requesting import box index array one after another. Given the ith

requested source box index ImportSrcIdx[i], the manager first figures out its level

l∗. If l∗ < lcrit, the manager derives ImportSrcIdx[i]’s ancestor in the partition

level and check the array BoxProcId[] to find which node it belongs to. If l∗ == lcrit,

the manager will check all its children’s node address (l∗ can not exceed lcrit since all the

boxes above the critical level are marked as domestic box). Once the manager identifies

the node ID, where that box belongs to or its children belong to, it searches the export

box index array from that node for ImportSrcIdx[i] at level l∗ then makes an copy

of the corresponding M -data in the sending buffer.
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MASTER NODE 

SLAVE NODE 

DOWNWARD UPWARD   AT CRITICAL LEVEL 

MANAGER 

Figure 5.5: A Simple Multiple Node 2D FMM Algorithm Illustration (lcrit = 2). The top

rounded rectangular is the MASTER NODE which is also chosen as the data exchange

manager. The bottom rounded rectangular is the SLAVE NODE. From left to right is how

the algorithm proceeds. Each node perform upward M -translations from lmax to lcrit. At

critical level the manager collect and distribute data from and to all the nodes. Those

isolated boxes in this figure are export boxes. After this communication, all the nodes

perform downward M |L and L|L translations only for its own non-empty receiver boxes.

Even though each node handles a large number of spatial boxes, the amount

information exchanged with the manager is actually small since only boxes on the

partition boundary layers (for example, the total number is proportional to O(4l) in the

case of the uniform distribution) need to be transferred back and forth. In our current

implementation, the manager is responsible for all the collecting and redistributing M -

data work, which involves searching operations, the total run time is still smaller by

comparing with the communication scheme of [33], where all the box’s L-data (O(p28l)

in the case of uniform distribution) at the finest level lmax are broadcast from the master
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node.

5.2.3 Source Box Type

The type of a source box k is determined by the M2M and M2L translation because

its children or neighbors might be missing due to the data partition, which have to be

requested from other nodes. However, once the parent box M-data is complete, the L2L

translations for its children are always complete. Hence, based on this observation, we

can summarize the key idea of Alg. 8, which computes the type of each box, as follows:

• At the critical level, we need all boxes to perform upward M2M translations. If one

child is on a node other than J , its M-data is either incomplete or missing, hence

we mark it an import box. We also check its neighbors required by M2L translation

stencil. If any neighbor is not on J , then the M-data of these two boxes have to be

exchanged.

• For any box at the partition level or deeper levels, if this box is not on J , then it is

irrelevant to this node, in which case it is marked as other box. Otherwise we check

all its neighbors required by M2L translations. Again if any neighbor is not on J ,

these two boxes’ M-data have to be exchanged.

We compute all box types in parallel on the GPU. For each level from lmax to 2, a group of

threads on the node J are spawned and each thread is assigned by one source box index at

that level. After calling Alg. 8, all these threads have to be synchronized before the final

box type assignment in order to guarantee no race conditions. Note that some “if-then”

conditions in Alg. 8 can be replaced by OR operations so that thread “divergent branches”
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Algorithm 7 GET-SOURCE-BOX-TYPE(BoxIndex[],Partition,J): the algorithm

to compute the source box types on the Node J given the partition
Input: a source box index BoxIndex[i]= k at level l, the partition information and

the node ID J

Output: BoxType[i]

1: isOnNode←isImportExport←isExport←FALSE

2: if l<lcrit then

3: BoxType[i]←DOMESTIC

4: else if l=lcrit then

5: for any k’s child ci at partition level do

6: if ci is not on J then

7: isImportExport←TRUE

8: else

9: isOnNode←TRUE

10: if isOnNode=FALSE then

11: BoxType[i]←IMPORT

12: else

13: for any k’s neighbor of M2L translation ni do

14: if one of ni’s children at lcrit is not on J then

15: isExport←TRUE . update the type of a different box

16: ni’s box type←IMPORT
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Algorithm 8 GET-SOURCE-BOX-TYPE (CONTINUED)

17: else

18: if k’s ancestor at lcrit is not on J then

19: BoxType[i]←OTHERS

20: else

21: for any k’s neighbor of M2L translation ni do

22: if the ancestor of ni at lcrit is not on J then

23: isExport←TRUE . update the type of a different box

24: ni’s box type←IMPORT

25: synchronize all threads

26: if isImportExport=TRUE then

27: BoxType[i]←ROOT

28: else if isExport=TRUE then

29: BoxType[i]←EXPORT

30: else

31: BoxType[i]←DOMESTIC
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Term Description

a0(Ni +Mi) each node derives the local box Morton indices based its

source and receiver points and send

a1B
recv
i,lmax

each node sends its receiver box indices at the finest level to

the master node

a2B
recv
all,lmax

The master node collects all the receiver box indices and

builds the global indices

a3B
recv
all,lmax

logP The master node broadcasts the global receiver box indices

and the partition information

a4(N +M) All nodes exchange the source and receiver data according

to the partition, which includes a node-wide synchronization

Table 5.1: Description of Equitation 5.1

can be reduced.

5.2.4 Complexity

Lets assume that we have P computing nodes and each node has g GPUs. We only

count non-empty boxes here and all symbols are used as follow: Bsrc
i,l and Brecv

i,l are the

numbers of local source and receiver boxes at level l on the ith node respectively; Bsrc
all,l

is the number of global source boxes at level l; Ni and Mi are the numbers of source and

receiver points on the ith node respectively; N and M are the total numbers across all the

nodes.
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Firstly, we estimate the running time of our global partition given the worst case

(the initial data are totally random):

T1 = a0(Ni +Mi) + a1B
recv
i,lmax

+ a2B
recv
all,lmax

+ a3B
recv
all,lmax

logP + a4(N +M). (5.1)

Each term within the equation (5.1) is described in table 5.1. Note that, movingO(N+M)

data points is inevitable if the initial data on each node are random, however in many

applications, this communication cost can be avoided or reduced substantially if this

initial distribution is known. Also there are many publications on this initial partition (tree

generation) and optimized communication in the literature such as [31,47,48], which can

be used for different applications accordingly.

Secondly, Alg. 8 examines the occupancy status of each source box’s E4 neighbors.

Note that the number of E4 neighbors for any octree box is upper bounded by 27 and for

each neighbor such check operation is in constant time. Hence the total cost to compute

all source box types can be estimated as:

T2 = b0B
src
all,lmax

+ b1B
src
all,lmax−1 + . . .+ blmax−2B

src
all,2 ≤ b∗B

src
all,lmax

. (5.2)

Lastly, let’s denote Bsrc
all =

∑lmax

j=2 B
src
all,j . There is no clean mathematics model to

derive the number of sending export boxes and receiving import boxes, and the cost of the

master node finding and packing M -data for each node. However, the boundary layers

are nothing but the surface of some 3D object. Given the uniform distribution case, in

which we can simplify the model, it is reasonable to estimate the exchanged box number

as µ22lmax = µ4lmax with some constant µ for all the nodes ( [27] estimate this number

as O((Brecv
i,lmax

)2/3), which is similar as ours). Therefore, at the critical level lcrit, the
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Term Description

c0B
src
all each node examines its source box types and extracts

import and export source box indices

c1µ4lmaxp2 each node sends the export box’s M -data to the master

node

c2µ4lmax log(µ4lmax) the master node addresses all the requested import box

indices of each node

c38lcritp2 the master node packs all the import M -data and sends to

the corresponding node

Table 5.2: Description of Equitation 5.3

exchanging data cost can be estimated as:

T3 = c0B
src
all + c1µ4lmaxp2 + c2µ4lmax log(µ4lmax) + c38lcritp2. (5.3)

Each term in the equation (5.3) is explained in table 5.2. By combining some constant

coefficients, we can further simplify T3 as

T3 = c0B
src
all + c1µ4lmaxp2 + c2µlmax4

lmax log(4µ) + c38lcritp2,

= d0B
src
all + d1lmax4

lmax + d2(4lmax + d38lcrit)p2.
(5.4)

Because all the above three sections are executed in the sequential order, the total cost

T of our multiple node data structure related computation can be obtained by summing

them and rewritten as

T = T1 + T2 + T3 = Tgpu + Tcpu + Tcomm, (5.5)
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where

Tgpu ≤ a0Mi + a1B
recv
i,lmax

+ b∗B
src
all,lmax

= a0
M

P
+ a1

Brecv
all,lmax

P
+ b∗B

src
all,lmax

,

Tcpu = d0B
src
all + d1lmax4

lmax ,

Tcomm = d2(4lmax + d38lcrit)p2 + a2B
recv
all,lmax

+ a3B
recv
all,lmax

logP

+a4(N +M).

(5.6)

The ideal algorithm should have all the cost proportional to 1/P , i.e. all the

computations are evenly distributed. In our case, only the particle related terms but not all

the box related terms are amortized among all the computing nodes. However, in practice,

lmax can not be very large which is viewed as a constant in most cases. More sophisticated

schemes can be used so that these theoretical non-scalable terms can be amortized among

all the nodes. However, given our efficient parallel implementation, even the box number

could be large, the constant coefficients for each term are so small, hence Tgpu and Tcpu

are neglectable by comparing with kernel evaluations.

As for the communication part, except the last term a4(N +M), all other terms are

relative small given the limitation of our GPU implementation (lmax ≤ 8). For the M -

data, even though each box has p2 coefficients, the total number of exchanging boxes in

the halo regions is small, hence this communication time is acceptable by comparing with

kernel evaluations. The real killing communication comes from the last term a4(N +M)

since we target on billion scale problems. Exchanging all these particle data requires

much more time than the real kernel evaluations. However, this term is not necessarily

in our algorithm because it is obtained from the worst case, that is the totally random

distribution. In most application, based on the physical or geometric properties, this initial
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Figure 5.6: The CPU/GPU Concurrent Region Time and the Overhead of the Full FMM

Algorithm against the Simplified FMM. The overhead is due to data transfer between the

nodes and CPU/GPU sequential region. Tests are performed by using two GPUs per node

and the testing case size increases proportionally to the number of nodes (8M particles

per node). The time is measured for computations of the potential only.

data distribution can be configured such that only small amount of particle communication

is needed. Moreover, as mentioned before, we could use the parallel partition methods in

literature to minimize this cost.

5.3 Experimental Results

There is a simplified multi-node algorithm in Sec. 4.2.1 (also in [33]), which we

use as baseline to compare to the full FMM algorithm present in Sec. 5.2.2 (the same
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Figure 5.7: The Time Comparisons between the Full and Simplified FMM Algorithm.

The testing case has 8M particles and run on 1, 2, 4, 8, 16 nodes using 1 or 2 GPUs on

each node.

terms are used in all the figures of this section). The major difference between them

is the data communication scheme. In the simplified algorithm, the partition boundary

information is not available for computing nodes. Hence the master node has to collect

and broadcast all the box’s L-data in the end, which introduces big overheads. While in

the present algorithm, the global communication requires light-weight pre-computations

but exchanges much less amount of data. In this section, we will show that both the

overheads and scalability of our new algorithm can be well improved with the aid of those

new data structures. We define concurrent region here as the period when the GPU(s)

computes local summation and the CPU cores compute translation simultaneously.
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Figure 5.8: The Results of the Strong Scalability Test for 1 and 2 GPUs per Node of

the Testing Cluster. The thick dashed line shows perfect scalability t = O (1/P ). The

time is measured for potential only computations. In the top figure, it shows the present

algorithm’s performance and the problem size is fixed to be 16M running on 1 to 16

nodes. In the bottom figure, it shows the strong scalability comparison (total run time)

between the simplified and the full FMM algorithm . The problem size is fixed to be 8M

running on 1 to 16 nodes.

Firstly, the weak scalability of our algorithm was tested by fixing the number of

particles per node to N/P = 223 and varying the number of nodes (see Table 5.3). In

Fig. 5.6, we show our overhead vs. concurrent region time against the baseline algorithm

performance. For perfect parallelization/scalability, the run time in this case should be

constant. In practice, we observed an oscillating pattern with slight growth of the average

time. In [33], two factors were explained which affect the perfect scaling: reduction of the

parallelization efficiency of the CPU part of the algorithm and the data transfer overheads,
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Figure 5.9: The Data Manager and Data Structure Processing Time against the Total Run

Time. The problem sizes are fixed to be 8M (top) and 16M (bottom) running on 1 to 16

nodes. Each node uses 1 (left) or 2 (right) GPUs. The time is measured for potential only

computations.

which also applies to our results. We distribute L2L-translations among nodes and avoid

the unnecessary duplication of the data structure, which would become significant at large

sizes. Since our import/export data of each node only relates to the boundary surfaces, we

improve the deficiency of their simplified algorithm that also shows up in the data transfer

overheads, which increases with lmax.

111



Time (s) \ N (P ) 8M (1) 16M (2) 32M (4) 64M (8) 128M (16)

Num of GPUs 1 2 1 2 1 2 1 2 1 2

CPU wall 1.07 1.07 4.71 0.60 2.53 2.44 1.39 1.35 0.83 0.81

CPU/GPU 2.38 1.20 4.71 2.66 2.53 2.44 2.43 1.35 5.22 2.65

Overhead 0.45 0.24 0.59 0.30 0.64 0.37 0.54 0.42 0.58 0.47

Total run 2.83 1.44 5.30 2.96 3.17 2.81 2.97 1.77 5.80 3.12

Table 5.3: Performance for P Heterogeneous Nodes with N/P = 223. Results are for

potential only.

In Fig. 5.6, our new FMM algorithm shows almost the same parallel region time for

the cases with similar particle density (the average number of particles in a spatial box

at lmax). Moreover, the overheads of this algorithm only slightly increases in contrast to

the big jump seen the baseline algorithm when lmax changes. Even though the number

of particles on each node remains the same, the problem size increases hence results

in the deeper octree and more spatial boxes to handle, which also contributes to such

overhead increase (besides communication cost). As for the total run time comparisons,

we summarize the improvements in Fig. 5.7. Generally speaking, as the problem size

and octree depth increase, our algorithm shows substantial savings against the baseline

algorithm, which implies the much improved weak scalability.

Secondly, we also performed the strong scalability test, in which N is fixed and P

is changing (Fig. 5.8). The tests were performed for N = 223, 224 and P = 1, 2, 4, 8, 16
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with one and two GPUs per node. Even though, our algorithm demonstrates superior

scalability compared with the baseline algorithm, we still observe the slight deviations

from the perfect scaling for the 8M case. For 16M case, the total run time of both

1 and 2 GPU shows the well scaling because the GPU work was a limiting factor of

CPU/GPU concurrent region (the dominant cost). This is consistent with the fact that

the sparse MVP alone is well scalable. For 8M case, in the case of two GPUs, the CPU

work was a limiting factor for the parallel region. However, we can see approximate

correspondence of the times obtained for two GPUs/node to the ones with one GPU/node,

i.e. doubling of the number of nodes with one GPU or increasing the number of GPUs

results in approximately the same timing. This shows a reasonably good balance between

the CPU and GPU work in the case of 2 GPUs per node, which implies this is more or

less the optimal configuration for a given problem size.

Lastly, to validate the reduced cost of our communication scheme and the

computation of box type, we compare the data manager processing time including M-

data exchange time and the overall data structure construction time with the total running

time in Fig. 5.9. Given the problem size and truncation number fixed, our communication

increases as the number of nodes (roughly P 1/3 in Eq. 5.3). In our strong scalability tests,

such time is in the order of 0.01 seconds while the wall clock time is in the order of 1 or 0.1

seconds (contribute 1% ∼ 15% of overall time), even though GPUs are not fully occupied

in some cases. This implies such cost can be neglected in larger problems, in which the

kernel evaluations keep all GPUs fully loaded. Our implementation incorporate the box

type computation with other data structures, such as octree and translation neighbors,
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hence it makes more sense to report the total data structure cost. From Fig. 5.9 we observe

that our data structure time decrease similarly as the wall clock time (as 1/P ) and shows

good strong scalability.

However, it could be problematic if each node is only assigned a small number of

boxes, which would occur given a large number of nodes. Eventually the subdivision

of the domain would result in the number of boxes in the boundary region of each sub-

domain is more or less the same as that of domain itself. In this case, the number of boxes

to exchange is almost the same as the total global spatial boxes. Note that although the

data manager processes the box data searching and consolidating, its main cost comes

from the communication but not those processing. Hence, all the traffic (each box has

2p2 coefficients) that must go through the master node will become the bottleneck of

the entire system. However, this communication traffic issue is intrinsic to the splitting

of the global octree. One possible mitigation might be implementing a many-to-many

communication model. In fact, in our current implementation, each node is capable of

computing the sending/requesting address (node IDs) of each export/import box and this

further improvement by investigating communication cost is left for future work.

5.4 Summary

The need for a fast code for data structures is a manifestation of Amdahl’s law. In

a serial FMM code, generation of basic data structures usually takes a small portion of

the total algorithm execution time. In some applications of the FMM, such as for iterative

solution of large linear systems, this step is even less important as it is amortized over
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several iterations. The typical way of doing the data structures is via an O(N logN)

algorithm that uses sorting, which is usually done on the CPU [21]. However, for large

dynamic problems, when the particle positions change every time step, the cost of this step

would dominate, especially when the FMM itself is made very fast. The novel parallel

data structures developed here are designed to resolve this issue and enable the FMM

applications to large dynamic simulations.

The multiple node data structures developed here can handle non-uniform

distributions and achieve workload balance. In fact, our algorithm splits the global

octree among all the nodes and processes each sub-tree independently. Such a split

can be treated as an isolated module which is free to use different methods based on

different applications, to estimate workload. Moreover, since each node constructs its

own sub-tree independently, the limitation of the depth of octee constructed by GPU

only applies to the local tree, which implies such algorithm can handle deeper global

octrees. Our approach using import and export box concepts only exchange necessary

box data hence substantially reduces the communication overheads. We develop parallel

algorithms to determine the import and export boxes in which the granularity is spatial

boxes. Their parallel GPU implementations are shown to have very small overhead and

good scalability.
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Chapter 6: Scalable Vortex Methods Using Fast Multipole Methods

Fluid dynamics is commonly simulated on a stationary mesh (Eulerian), but can

also be treated by particle methods (Lagrangian). Among the Lagrangian methods,

vortex element methods (VEM) have the advantage of being able to directly capture the

dynamics of vortex structures by using vortex elements as the basis of discretization.

Lagrangian methods solve the convection term in the Navier-Stokes equation by explicitly

moving the points, instead of updating the value at that point. Therefore, they are

free from traditional time-integration constraints due to the Courant-Friedrichs-Lewy

(CFL) condition [72], and free from numerical diffusion and dispersion (Note that time

integration constraints are due to stability issues, and not diffusion/dispersion issues).

Unlike implicit methods, there is no need to solve a linear system so the algorithm is

highly parallel.

Another difference between vortex methods and conventional Computational Fluid

Dynamics (CFD) methods is in the formulation, where vortex methods use the vorticity-

velocity formulation, while conventional CFD use a pressure-velocity formulation. For

flows around bodies, the vorticity-velocity formulation results in large savings since the

vorticity has a much more compact support than the pressure. This is due to the fact that

the vorticity is confined to a thin region near the wall and possibly a vortical wake.
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Despite the advantages mentioned above, vortex methods have received only a

small amount of attention from the CFD community in general due to the lack of

validation in even the simplest turbulent flows. Vortex methods are a convergent method,

but have multiple and little understood sources of numerical errors. First, even if a high-

order diffusion scheme is used, there are often additional low-order sources of error.

For example, the effect of the particle overlap ratio and the frequency of remeshing

cannot be neglected. Another source of error is the stretching term calculation, which

is highly sensitive to the spatial and temporal resolution due to its non-linearity. Also, for

the regions with high shear, the stretching becomes intense and the flow field becomes

highly anisotropic. This may impose additional constraints on the spatial and temporal

resolution.

According to Helmholtz laws the vortex elements move with the local velocity of

the fluid. The velocity at locations yj, j = 1, . . . ,M induced by vortex elements at

locations xi, i = 1, . . . , N can be computed as

vj = v(yj) =
N∑
i=1

ωi × (yj − xi)

|yj − xi|3
= ∇× ωi

|yj − xi|
. (6.1)

This equation is derived from the definition of vorticity ω = ∇ × u and the

incompressibility condition ∇ · u, so calculating the velocity in this manner ensures

conservation of mass. For viscous flows, this singular kernel is smoothed by a Gaussian

for the vorticity field, leading to the modified form of Eq. 6.1

vj =
N∑
i=1

ωi × (yj − xi)

|yj − xi|3
Kσi , (6.2)
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where the cutoff function K(yj,xi) is defined by

Kσ(yj,xi) = erf

√ r2
ij

2σ2
i

−√ 4

π

√
r2
ij

2σ2
i

exp

(
−
r2
ij

2σ2
i

)
, (6.3)

where rij = |yj − xi|.

As mentioned earlier, convection is handled by moving the vortex elements, and

diffusion is calculated by spreading the Gaussian at a rate that satisfies the analytical

solution of the diffusion equation. As for the stretching term we insert Eq. 6.2 into

dωj

dt
= ωj · ∇vj, (6.4)

which results in another N -body computation. Note that this involves the contraction of

the vorticity pseudo-vector with the velocity gradient tensor, and this step has taken some

previous authors a time equivalent to six scalar potential computations [26].

Direct evaluation of Eq. 6.1 or Eq. 6.4 on all yj yields O(N2) cost, which cannot

scale to large size simulations in practice. However, since the Biot-Savart kernel is

composed of dipole solutions of Laplace equation, we can use FMM to approximate

these sums to any precision ε at O(N +M) cost [5, 32]. The FMM itself is a divide-and-

conquer approximation algorithm via well separated pair decomposition (WSPD) [10]

data structures. It divides the kernel sum (Eq. 6.1) into a far-field and near-field term.

The far-field term is approximated while the near-field term is evaluated directly. Such

approximation can achieve up to machine precision accuracy, controlled by the truncation

number p.

Regarding the FMM itself, the arithmetic intensity of the inner kernels and the

hierarchical communication patterns allow it to scale well to large size clusters. Efficient

parallel FMM algorithms [23,29,31] presented in the literature, including the 2009 winner
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of the Gordon Bell prize [2]. A scalable FMM using heterogeneous architectures was

developed which can calculated billion size problems on a small cluster (32 nodes) in [33].

References [2, 26, 30] present FMM algorithms on GPUs for vortex element methods to

simulate isotropic turbulence in large scale.

Comparing with the Laplace potential kernel 1/|yj−xi|, the computation of Eq. 6.1

and Eq. 6.4 require more operations. In this paper, we focus on the computational part

of vortex methods by developing an efficient FMM algorithm for “velocity+stretching”

evaluation on heterogeneous clusters, using the efficient new formulation.

We used FMM to speedup this computation and developed a new distributed

heterogeneous FMM algorithm which can compute “velocity+stretching” by taking

advantages of both algorithmic and hardware accelerations. This work combined

the mathematics (Lamb-Helmholtz decomposition), algorithm (heterogeneous FMM),

programming (highly optimized MPI-CUDA codes) and application (vortex element

method) to extract the full compute capability of large GPU-based systems for physics

simulations.

First, given the incompressibility constraint

∇ · v = 0, (6.5)

we provide an efficient FMM translation method to calculate “velocity+stretching” at

a cost of only two Laplace potential kernels by using Lamb-Helmholtz decomposition

[73, 74]. Based on this, we were able to develop a new heterogeneous FMM algorithm,

which can efficiently map the new expansion and translation procedures on the distributed

heterogeneous architectures.
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Second, earlier FMM implementations for dynamic problems on distributed

architecture shown both relatively large data structure and communication penalty. To

separate the computation and communication to avoid synchronization during GPU

computations, we developed new data structures build on the local essential tree (LET)

[29,31] concept but have a novel parallel construction algorithm, in which the granularity

is at the level of the spatial boxes (which allows finer parallelization than at the single-

node level). Together with the algorithms for FMM octree data structures and interaction

lists’ constructions [36], we are able to reduce all data structure-related overhead

substantially.

Finally, we improved the computation for Gaussian blob (used in the local sums)

based on comprehensive timing and accuracy analysis. There are several classically used

transcendental functions involved in the sum of the cutoff functions (Eq. 6.3) which are

expensive. We developed their accurate and inexpensive approximations on GPU and

demonstrate a large performance gain. Moreover, since Gaussian computations on GPUs

arise in other contexts, our contributions are likely useful widely.

6.1 FMM for Vortex Methods

6.1.1 Lamb-Helmholtz Decomposition

If the velocity field is not constrained, each Cartesian component of the velocity

is an independent harmonic function, which requires three harmonic FMMs in total to

determine the velocity field. However, given the divergence constraint in Eq. 6.5, the total
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velocity field can be described by only two harmonic scalar potentials, φ and χ as

v(r) = ∇φ(r) +∇× (rχ(r)), (6.6)

where ∇2φ = 0 and ∇2χ = 0. The theory of such decomposition and translation is

established in [73]. The FMM based on such decomposition is similar to normal harmonic

potential FMM. For presentation purposes, we define source/receiver box as the spatial

box containing at least one source/receiver points.

Initially, all source and receiver points are spatially grouped via octree space

division recursively (as spatial boxes) and sorted according to their locations (Morton

index). For each receiver point yj , its kernel sum is split into near and far-field terms

given a neighborhood Ω(yj)

v(yj) =
∑

xi 6∈Ω(yj)

∇× ω

|yj − xi|
+

∑
xi∈Ω(yj)

Kσ
ωi × (yj − xi)

|yj − xi|3
. (6.7)

The neighborhood Ω(yj) corresponds to the box containing yj at the maximal level lmax.

The latter term is called local direct sum (P2P) and evaluated at lmax directly for each yj .

For the former term, we compute its approximation by using expansions and

translations over spherical basis functions in four steps: data structure construction, initial

expansion, upward pass, downward pass, and final sum. We elaborate the stages of the

FMM in the following 7 steps:

1. Data structure construction: Build all interaction lists and translation stencils for

source/receiver boxes.

2. Multipole expansion of the Laplace Green’s function (P2M): At the finest

level lmax, all source data points are expanded to p2 terms at their box centers.
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The M-expansion coefficients {Mm
n } from all source points in the same box are

consolidated into a single expansion.

3. Multipole expansion conversion: Each source box converts {Mm
n } to {φmn , χmn }

at level lmax(see [73]).

4. Upward pass (M2M): For levels from lmax to 2, each child source box performs the

multipole-to-multipole translation on {φmn , χmn } to the parent box and all children

boxes’ contributions are consolidated into a single M-expansion.

5. Downward pass (M2L, L2L): For levels from 2 to lmax, local or L-expansions

corresponding to {φmn , χmn } are both created at each receiver box. Each source box

performs multipole-to-local (M2L) translations to receiver boxes according to the

special stencil (see [21]) which satisfies the WSPD. Each receiver box performs

Local-to-local translation (L2L) to its child boxes. All the L-expansion coefficients

are consolidated at each receiver box center.

6. Local expansion conversion: Each receiver box computes the coefficients of the

velocity local expansions {xvmn ,y vmn ,z vmn } for all three dimensions from {φmn , χmn }.

Each receiver box also computes local expansions coefficients of the gradient of

velocity from {xvmn ,y vmn ,z vmn }. Note that this new way to calculate the gradient

coefficients for a box is much less expensive than previous approaches.

7. Final summation (L2P, P2P): Evaluate the velocity and stretching components

by {xvmn ,y vmn ,z vmn } and their corresponding gradient expansion coefficients for all

receiver points at level lmax.
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6.1.2 Scalable Heterogeneous FMM Algorithm

Since the two most time-consuming parts in FMM, the local summation (P2P)

and multipole-to-local translations (M2L) can be performed concurrently, the FMM

algorithm can be accelerated by mapping these on different parts of a typical CPU-

GPU heterogeneous architecture and communication minimized. In [33], it was shown

that high efficiency can be achieved by assigning boxes-related computations (i.e., the

translations which require complex data structures and irregular memory access pattern)

to multi-core CPUs and the particle-related computations (i.e., the local sums of receivers)

to many-core GPUs. Because our FMM for vortex element methods is equivalent to

performing two potential FMMs, which has already been studied intensively in [33], we

can use the same strategy as there to distribute the algorithm components to CPUs and

GPUs for the best performance.

6.1.3 On A Single Node

A single heterogeneous computing node consists of one or more multi-core CPUs

and connects to one or more GPUs over a PCI-Express bus. Figure 6.1 shows how

each component of the algorithm in Sec. 6.1.1 is mapped onto the hardware. We

define the CPU/GPU concurrent region as the overlapped blocks where GPUs and

CPUs process their own data concurrently and the wall clock time is determined by

the slower task. The bottom concurrent region shown in Fig. 6.1 is the most time-

consuming part and reflects how well the overall algorithm performs. GPUs keep all

the source/receiver data in global memory and are responsible for time-step updates. All
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partition module distributes inputs: 
particle positions, source strength 

upward translations 

downward translations 
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translation stencils 
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Figure 6.1: The Single-Node FMM Algorithm. The light gray parts of the algorithm are

computed on the GPU while the dark gray parts are computed on the CPU. The rectangle

with dash lines represents the concurrent region, where concurrent steps are performed

on the CPU and GPU.

the data structures and interaction lists (such as neighbor lists for local summations),

M/L-expansions, expansion conversions and receivers’ local summation are performed

in parallel on GPUs. Computations on GPUs use single precision, since this precision

in the final results is often sufficient. CPUs only request the box information, such as

expansion coefficients and translation stencil list, and provide the translated coefficients

from/to GPUs before/after the concurrent region, which minimizes the cost of CPU-

GPU data transfer. Once these coefficients are in host main memory, CPUs execute
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translations in parallel on multi-threaded cores. Note that the CPU performs double

precision computations, which is helpful since the translations are more sensitive to

round-off errors.

6.1.4 Multiple Nodes

The essence of the FMM is to group source/receiver points and process them as

hierarchical groups. This inherent spatial decomposition property allows us to distribute

the FMM algorithm on multiple nodes efficiently. This distributed algorithm splits the

global octree structures based on global workload balance and uses a Master-Slave model

(Fig. 6.2), in which there is a one-time (initial) data distribution among all the nodes.

All the heavy computation steps are performed independently on each node without any

further inter-node communications. We use the concepts of partition level, critical level,

box types, introduced in Chapter 5.

These box types can be computed efficiently on GPUs with very small overheads,

once the partition is determined. See [35] for the algorithmic details. Note that this

classification enables each node to export and import only necessary data. More precisely,

only boxes on the boundaries of the partitions—which are 2D surfaces (in contrast to 3D

volumes)—need to be sent/received. There is also a data manager on the master node. Its

function is to collect/redistribute all the exported coefficients from/to slave nodes. Since

we skip all empty boxes, addressing a particular box’s data requires its identification

(using the box Morton index) and searching operation. We can avoid searching and thread

divergence by constructing a histogram [33], and implement this algorithm efficiently
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Figure 6.2: An Overview of the Distributed FMM Algorithm. The parts processed

on the GPU are shaded light gray, while the parts processed on CPU are shaded dark

gray. The two parts on the top represent the partitioning algorithm, where the temporary

local trees are also constructed on GPUs. This initial partitioning is independent of the

FMM algorithm and one can use any partitioning algorithm based on the application

requirements. There is a one time initial data exchange during the upward pass.

on GPUs. However, since the amount of data is quite small, it is counterproductive to

implement this data manager on GPUs given the data transfer cost between CPU and

GPU. Now assume all the necessary data structures for the translations, such as the box’s

global Morton indices, the neighbor lists, export/import box type lists and M-expansion
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data, are available on the CPUs. Then, each node J executes the following translation

algorithm:

1. Upward translation pass:

(a) Get the M-data (initial {φmn , χmn }) of all domestic source boxes at lmax from

global memory.

(b) Perform M2M translations for all domestic source boxes at levels l = lmax −

1, . . . ,max(2, lcrit).

(c) Pack M-data of export boxes and the import/export box indices of all levels.

Then send them to the data exchange manager.

(d) The master node, which is also the manager, collects data. For the incomplete

root box M-data from different nodes, it sums them together to get the

complete M-data. Then according to each node’s export/import box indices,

it packs the corresponding M-data and sends them back.

(e) Receive import M-data of all levels from the data exchange manager.

(f) If lcrit > 2, consolidate M -data for root domestic boxes at level lcrit. If lcrit >

3, produce M-data for all domestic source boxes at levels l = lcrit − 1, . . . , 2.

2. Downward translation pass:

(a) Produce L-data (translated {φmn , χmn }) for all receiver boxes at levels l =

2, . . . , lmax.

(b) Output L-data for all receiver boxes at level lmax.
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(c) Redistribute the L-data on GPU.

(d) Each GPU consolidates the L-data, adds the local sums to the dense sums and

copies them back to the host according to the original input order.

Each node separates the computations between CPU cores and GPUs as in the

single node case, except there is a one-time communication with the data manager during

the upward pass. Assume we have P nodes and the particle cluster size is cs. This

cluster size is the maximum number of particles at the finest level. On one hand, the

partition algorithm assigns N/P sources, which are located compactly in a domain

Ω
(s)
j , j = 1, . . . , P , covered by N

(s)
j ≈ N/(csP ) spatial boxes at level lmax to each

node J . In this algorithm, the node J only performs M2M, M2L and L2L translations

for its own assigned domain Ω
(s)
j , i.e. N

(s)
j octree spatial boxes. On the other hand,

the node J is also assigned M/P receivers and needs to evaluate the kernel function

directly for approximately 27csM/P source-to-receiver interaction pairs. Hence, there

are no repeated operations among nodes, and the total computation cost for each node,

dominated by either O(N/P ) or O(M/P ), is proportional to 1/P , which makes it truly

scalable.

6.2 Vortex Core Function Evaluation

The vortex blobs are often represented by Gaussian distributions with a core radius

σi. The cutoff function K(yj,xi) for velocity induced by the superposition of these

Gaussian distributions is in Eq. 6.3 while the cutoff function G(yj,xi) for the stretching
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Figure 6.3: Time Comparisons among Different Cutoff Implementations. All times

are normalized by the time of local summations without cutoff functions. “Direct”

means cutoff functions are implemented using the erf CUDA device-function-call on

GPUs; Low-order means the approximation by Eq. 6.9 while high-order means the

approximation by Eq. 6.10; “fast” appendix means using the less accurate but faster

compilation option.
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(6.8)

where rij = |yj − xi|. K(yj,xi) and G(yj,xi) need to be computed during the local

summation for velocity and stretching calculation. On the GPU, direct evaluations of the

transcendental function erf(x) in K(yj,xi) and G(yj,xi) are very expensive as shown in

Fig. 6.3.

In our efficient implementation of these terms, we use two computational schemes

to reduce this cost. Let us denote the more general form of K(yj,xi) as C(x) = erf(x)−
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Figure 6.4: The Relative Error Comparisons among Different Cutoff Implementations

with the Truncation Number p = 16. The legends are the same as Fig. 6.3. The top plot

shows the velocity errors while the bottom plot shows the relative errors of the stretching

term which is more singular.

e−x
√

4x/π. Firstly, since we only implement the single precision calculation on GPU,

there is no need to distinguish 1.0f from any function value v ∈ (0.999999, 1.000001)

due to round-off errors. Consider that C(x) is a monotonically increasing function with

C(+∞) → 1 and 1.0 − C(4.0) < 10−6. We can set C(x) = 1 for all x > 4.0f, so

that most function calls in Eq. 6.3 and Eq. 6.8 can be omitted. Secondly, instead of

directly evaluating erf(x), we can approximate it by using a low degree polynomial plus

an exponential term. Two options are shown in Eq. 6.9 and Eq. 6.10 with their error

bounds and all the coefficients are listed in [75]. Since we use CUDA, there is also a

compiler option use-fast-math to speedup the exponential and square root functions

by calling their intrinsic counterparts with less accuracy.
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Velocity only Velocity+stretching

Number of Particles Direct Cutoff Direct Cutoff

262144 0.492 1.177 0.814 1.787

524288 0.356 0.537 0.436 0.818

1048576 0.506 1.330 0.843 1.989

2097152 1.700 4.931 2.819 7.376

4194304 2.545 3.611 2.780 5.569

8388608 3.291 9.317 5.574 13.98

16777216 11.70 35.53 19.78 53.24

Table 6.1: Time Comparisons between with Cutoff and without Cutoff Functions. In all

the cases with cutoff function evaluations, it is the GPU local summation dominates the

overall time. However, in the case of N = 222, the maximal level increases from 4 to 5.

In the direct kernel evaluation version, it is the CPU translation that dominates the overall

time, which explains the time decreasing (compare with the N = 221 case).

erf(x) = 1− t(a1 + t(a2 + ta3))e−x
2

+ ε(x) (6.9)

where t = 1/(1 + d1x) and |ε(x)| ≤ 2.5× 10−5.

erf(x) = 1− t(b1 + t(b2 + t(b3 + t(b4 + tb5))))e−x
2

+ ε(x) (6.10)

where t = 1/(1 + d2x) and |ε(x)| ≤ 1.5× 10−7.

From Fig. 6.3, we can see that the approximations reduce the overhead caused by

the transcendental functions substantially, and the fast compilation option can further
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save about 15%. However, such fast evaluation methods are seen not to compromise

the overall accuracy. Figure 6.4 shows that all these approximations even with the less

accurate compilation option have no effect on the velocity accuracy. For the stretching

term computation, due to its higher singularity, the low-order approximation, Eq. 6.9,

introduces larger errors but the high-order approximation produces almost the same

accuracy as direct cutoff function evaluation. Given the small processing time difference

between Eq. 6.9 and Eq. 6.10 according to Fig. 6.3, our implementation uses Eq. 6.10

together with the fast GPU device function compilation option to evaluate K(yj,xi) and

G(yj,xi) during the local summation.

6.3 Performance Tests

In all of our tests, we assume the worst case, where all initial data is globally

distributed randomly. In such a case, exchanging O(N + M) data among nodes can

not be avoided. This assumption makes the initial partitioning expensive. However, in

most applications or dynamic problems, large inter-node communications only occur at

the initial step. Therefore, the timings of our algorithm exclude this initial partitioning

time. The kernel defined by Eq. 6.1 and Eq. 6.4 have larger singularity and based

on our accuracy tests, using p = 12 or larger yields the accepted accuracy for our

applications. Hence in most tests, we set the truncation number to p = 12. Even

though our implementation treats sources and receivers as different sets, our performance

benchmarks assume that they have the same size, i.e. N = M . To make the presentation

succinct, we abbreviate “potential computation” as potential, “velocity computation” as
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Time (s) \ N 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216 33,554,432

Num of GPUs 1 2 1 2 1 2 1 2 1 2 1 2

CPU wall clock 0.66 0.65 0.66 0.66 5.87 5.85 5.87 5.87 5.85 5.86 – 49.84

C/G concurrent region 1.43 0.75 5.64 2.96 5.87 5.86 10.98 5.87 43.07 49.84 – 49.84

Velocity+Stretching 2.11 1.18 6.93 3.73 7.82 6.93 14.64 7.85 50.01 25.47 – 61.13

Velocity 1.42 0.91 4.80 2.62 6.91 6.44 10.04 6.94 35.25 17.86 – 54.66

Potential 0.46 0.43 1.47 0.86 3.14 2.96 3.49 3.15 10.78 5.51 26.64 25.26

Table 6.2: The Single-Node Performance Profiling. All results are obtained in their

best settings with p = 12. The CPU translation and parallel region timings are for

velocity+stretching. The last three rows are for total run time.

velocity and “velocity+stretching computation” as velocity+stretching. We also define

the relative ratio rp(T ) of the velocity or velocity+stretching computation time T to the

potential computation time Tp as rp(T ) = T/Tp.

6.3.1 Hardware

We used a 32-node heterogeneous cluster (“Chimera”) at the University of

Maryland to perform tests. Each node has dual quad-core Intel Xeon X5560 2.8 GHz

processors, 24 GB of RAM per node, and two Tesla C1060 accelerators each with 4 GB

of RAM, interconnected via Infiniband.
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6.3.2 Single Node Performance

Compared to the potential+force, evaluations of the velocity+stretching expansion

coefficients have a noticeable increase in computational cost. However, the performance

of the heterogeneous algorithm is still dominated by the concurrent region (defined in

Sec. 6.1.3). The time profile by using one or two GPUs is summarized in Table 6.2, where

the results are reported in the optimal settings (in terms of the tree depth lmax). Note that

only when the local sums dominate the total time, using the second GPU can achieve

high parallelization efficiency, which implies the necessary condition to scale the number

of GPUs. Moreover, the detailed analysis in [33] can be applied here to show linear

scalability with respect to the problem size. We also test the algorithm for non-uniform

distributions, which requires deep tree depths and results in non-uniform loads for GPU

threads (This is not preferred by current hardware architectures in terms of performance.

However, in future, this non-uniform load perhaps provides possible power saving on the

green computing hardware, which could automatically turn on/off the cores based their

workload). However, the performances of both the velocity and stretching kernels remain

consistent with the potential kernel in [33] with respect to the time increase.

The second test is used to demonstrate the computational cost of velocity and

stretching by comparing with the potential. Figure 6.5 summarizes their relative ratios

to the potential where the timings are obtained by using two GPUs. Note that there is no

cutoffs for potential and its heterogeneous algorithm cost is also dominated by either the

local sum or translations.

In the simple circumstance when both FMMs (potential vs. velocity/stretching)
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Figure 6.5: Time Comparisons between the Potential and Velocity+Stretching

Computations Using 2 GPUs. All times are shown as the relative ratios to the scalar

potential FMM (no cutoff function involved), which is shown in the dark block with

height 1.0. In the top figure, the velocity and stretching are computed without cutoff

functions. In the bottom figure, the computation times include cutoff functions of Eq. 6.3

and Eq. 6.8. The cases where the overall time is dominated by the local summations

are denoted specially by the solid square blocks since their performance behaviors are

complicated. In other cases where the time is dominated by the translations, the cost jump

ratio of velocity+stretching is only as high as 2.5 times a single potential calculation even

with cutoff function calculations.

are dominated by translations, we expect the velocity/stretching cost to be twice that of

the potential plus some overhead for the coefficients’ conversion. This is confirmed in

Fig. 6.5. For velocity, the relative ratio rp is around 2 without cutoff computation, while
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with it this ratio jumps to 3. For velocity+stretching, this algorithm is still roughly as twice

slow as that for the potential kernel. Given the extra cost of the computation of expansion

coefficients, the relative ratio rp is about 2.4 regardless using the cutoff computations or

not. However, when local summation dominates the concurrent region, the behavior of

the algorithm is complicated. Recall that the GPU sparse matrix vector product (SMVP)

has an optimum performance for a certain data cluster size [21]. Hence, relative costs

vary depending on the kernel, the cluster size, and the hardware. The best performance

requires computation fine tuning. For example, kernels with and without cutoffs can be

considered as different which might result in different optimal settings. In Fig. 6.5, we

observe that under the current best settings without cutoffs, the cost increase can be 1.8

times for velocity or 3.3 times for velocity+stretching in the worst case. When calculating

the cutoff functions, the cost ratio to potential can be as high as 3.2 for velocity or 4.7 for

velocity+stretching, respectively. Note that the cases where the cluster sizes are the same

(such as N = 221, 224 or N = 222, 225 ) have a similar cost jump ratio.

6.3.2.1 Accuracy

To test the accuracy of the algorithm, we vary the truncation number p and the

problem size. Note that the data partitioning among nodes does not introduce any error,

hence it is sufficient to perform the error analysis on a single node. For each receiver

point, the “true value” is computed by directly summing the kernel values using double

precision on the CPU. The error of each testing case is measured by the averaged L2

relative norm based on 100 randomly selected receiver points (this number of samples is
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Figure 6.6: The Relative Errors of Velocity and Stretching Computation. All

computations on GPUs use single precision.

sufficient for the L2-norm error according to [12]).

The relative L2-norm error of both velocity and stretching are summarized in

Fig. 6.6 with the high-order cutoff approximation. Their singularities require much larger

truncation numbers than the Coulomb kernel for potential (p = 8 is sufficient to make

the relative error 10−6 [33]). It is clearly seen in Fig. 6.6 that the amount of error differs

between Eq. 6.1 and Eq. 6.4, and that the accuracy improves by increasing p. Furthermore,

we also observe the translation error propagation as the maximal level increases. For

example, in the case of stretching using p = 16, there is a discrete jump whenever lmax

changes (in our best settings, lmax = 4, 5 and 6 forN = {216, 217, 218}, {219, 220, 221} and

{222, 223, 224}). Note that this phenomena can only occur for the high-accuracy case, in

which the error introduced by the initial expansion truncation is much smaller than errors
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Time (s) \ N (P ) 8M (1) 16M (2) 32M (4) 64M (8) 128M (16) 256M (32)

Num of GPUs 1 2 1 2 1 2 1 2 1 2 1 2

CPU wall 5.86 5.87 3.13 3.09 13.38 13.38 7.13 7.14 4.04 4.07 18.03 17.86

CPU/GPU 10.91 5.87 21.36 10.69 13.38 13.38 11.89 7.14 23.61 11.81 18.03 17.86

Velocity+stretching 14.56 7.87 25.05 12.95 17.28 15.54 15.72 9.28 27.49 14.29 22.36 20.41

Velocity 9.98 6.90 17.61 9.02 15.50 14.74 10.85 8.35 19.43 10.08 20.27 19.83

Potential 3.47 3.11 5.89 3.08 7.09 6.79 4.21 3.92 5.92 3.21 9.74 9.46

Table 6.3: Performance Profiling for P Heterogeneous Nodes with N/P = 223 (8M).

The CPU translation and concurrent region timings are for velocity+stretching. Results

are obtained in their best settings using p = 12.

caused by translations.

6.3.3 Multiple-Node Performance

The performance evaluations in this section consist of four parts: weak scalability

test, strong scalability test, overhead analysis, and large size runs. In all tests, we tune

performance to obtain the best settings by varying the tree depths, problem sizes and only

results at the best settings are reported. Although our algorithm can handle non-uniform

distributions, the analysis of cost would be complex and problem-dependent but provide

less insight. Hence we assume the uniform distribution for all the tests with N = M . For

this case, the cost of each node can be estimated as

T = g0
N

P
+ g18l + g2

8l

P
+ max

(
c0

8l

P
+ Tc, g3

N

8l
N

P

)
(6.11)
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Figure 6.7: The Weak Scalability for N = M = 223 Particles per Node. The top figure

shows the timing results of velocity only, while the bottom figure shows the results of

velocity+stretching.

where gi and cj represent the cost ratio on GPU and CPU, respectively. Tc is the

communication cost of the data manager and its cost can be estimated by Tc =

(8lmax/P )2/3 (it is proportional to the 2D surface area of a 3D body). Note that the first

three terms in Eq. 6.11—the particle-related process (such as sort, expansion), global tree

construction and coefficient conversions—only take a small amount of the overall cost.

The max function represents the dominant term—the concurrent region cost.

6.3.3.1 Weak Scalability

In the weak scalability test, the number of source/receiver points on each node is

fixed to N = M = 223 and P varies from 1 to 32. The detailed profiling data is shown

in Table 6.3. The ideal case should have a constant run time for any P . However, from
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Fig. 6.7, we can observe time fluctuation caused by three factors according to Eq. 6.11.

Firstly, the global problem size increases as P , which also requires larger tree depth

lmax. Although each node is only in charge of a sub-domain (roughly 8lmax/P boxes

at lmax), the tree has to be constructed globally (top-down approach). The only difference

is that many empty boxes are skipped with less memory consumption but they have to

be processed with costs. Therefore, the overhead of spatial data structure constructions

increases with the number of nodes. Secondly, the translation cost is determined by the

number of non-empty boxes (Tt = c08lmax/P ). When the maximal level increases by

1 the number of cells increases 8 times while P is only doubled. This will increase Tt

by 4 times. However, further increase in P will reduce translation costs and change the

time dominance (from translation to the local sum). Thirdly, while the maximal level

remains the same, if we double P , the global size of the problem N is also doubled. As a

consequence, the cost of the local summation on each node Ts = g3N
2/(8lP ) is doubled.

All these factors result in the time fluctuation shown in Fig. 6.7.

6.3.3.2 Strong Scalability

To test strong scalability, we use two different problem sizes N = M = 224 and 225

and vary the number of nodes P from 1 to 32 using 1 or 2 GPUs per node. Since a single

GPU cannot handle more than 32M particles’ velocity updates because of its memory

size, the timing of 1 node using 1 GPU is skipped. The timing results of N = 224

are summarized in Fig. 6.8 for both velocity and velocity+stretching. Note that, except

for the data manager (which has very small asymptotic constant), the workload on each
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Figure 6.8: The Strong Scalability Test. The problem size N is fixed to be 224 and the

number of nodes vary from 1 to 32 using 1 or 2 GPUs each. In the top figure, it shows

the concurrent region and the total run time for velocity, while the bottom figure is for the

velocity+stretching.

node is proportional to 1/P since the maximal level and problem size are fixed. In the

case of N = 224, the local sum dominates the total cost, hence, using the second GPU

reduces the overall cost by around 50%. Note this nearly 100% parallel efficiency can

only be achieved when the hardware is fully loaded. As P doubles, its total time also

reduces by around half, which is consistent with the fact that the local summation alone is

scalable. For N = 225, translations dominate the overall cost. Hence the utilization of the

second GPU does not reduce the total time very much and the savings only come from

computations of the expansions and their efficient conversions. However as P increases,

the parallel efficiency deceases because of the increased workload of the data manager
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Figure 6.9: Overheads vs. the Total Time. The problem sizeN is fixed to be 224. The data

structure and data manager overheads are plotted to compare with the concurrent region

and the total run time. The two figures in the left column are for velocity, while the figures

in the right column are for velocity+stretching.

and the inter-node communications. In the case of 32 nodes, the parallel efficiency drops

to 76%. Even though its effect on the overall performance is small, further research efforts

should be devoted to this issue.

6.3.3.3 Algorithm Overheads

We use a master-slave model to manage the communication among all the nodes.

However, this scheme perhaps will raise many questions about scalability. In [35], we

found that this communication overhead has little effect on the scalability and its cost is
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shown in O(P 1/3). Moreover, since the data manager collects and distributes box data in

the translation module, its overheads can be hidden if the overall time is dominated by the

local summations on GPUs, therefore it has no effect on the scalability. In the Fig. 6.9,

the low cost of the data manager is confirmed (where it is still less than 10% in the worst

case) in comparison to the overall time.

However, it could be problematic if each node is only assigned a small number of

boxes, which would occur given a large number of nodes. Eventually the subdivision

of the domain would result in the number of boxes in the boundary region of each sub-

domain is more or less the same as that of domain itself. In this case, the number of boxes

to exchange is almost the same as the total global spatial boxes. Note that although the

data manager processes the box data searching and consolidating, its main cost comes

from the communication but not those processing. Hence, all the traffic (each box has

2p2 coefficients) that must go through the master node will become the bottleneck of

the entire system. However, this communication traffic issue is intrinsic to the splitting

of the global octree. One possible mitigation might be implementing a many-to-many

communication model. In fact, in our current implementation, each node is capable of

computing the sending/requesting address (node IDs) of each export/import box and this

further improvement by investigating communication cost is left for future work.

6.3.3.4 Billion-Size Run

By fully employing 32 nodes of Chimera, we vary the problem size N = M from

220 to 230 and compare the performance of potential, velocity and velocity+stretching.
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Figure 6.10: The Total Run Time on 32 Nodes Using 1 or 2 GPUs Each. Computations

are performed for potential only, velocity only and velocity+stretching with p = 12. For

each individual problem, only the best time between 1 and 2 GPUs is reported. The largest

size we run is 1 billion particles, in which case source and receiver points are different.

The timing results are summarized in Fig. 6.10, in which only the best time between

using 1 and 2 GPUs for each N is shown. As N increases, the wall clock time increases

linearly in all cases, while the run time has a jump when lmax is increased. Unlike for the

potential, where for the same lmax the time increases more or less at the same rate, both

velocity and velocity+stretching have a big time jump before lmax changes. This is due

to their local summations (with cutoffs) requiring much more floating point operations

than for a single potential. For N = M = 230, the velocity takes 39.9 s and the
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velocity+stretching takes 55.9 s, while the potential itself uses 12.6 s. Note that these

timings and their corresponding relative ratios to the potential are consistent with our

single node analysis (see Fig. 6.5). To estimate the floating operations, we use the same

operation counts as [26] for velocity (70) and stretching (115). In the billion-particle

case, the local summation dominates the total run time and the cost of each receiver

can be estimated by (70 + 115) × 27N/8lmax . Therefore, this yields 49.12 Tflop/s on

32 nodes with 64 GPUs (933 Gflop/s peak performance reported by NVIDIA) for the

1 billion velocity+stretching computation in total. The soundness of FMM-based VEM

using GPUs was validated in [26] and we run the same isotropic turbulence simulation as

there and observe the similar statistics to validate our implementation.

6.4 Summary

The FMM originally solves potential problems with free-field boundary conditions.

However, the method can be extended to handle periodic boundary conditions by placing

periodic images around the original domain and clustering them into large cells, [76].

There are two reasons why periodic FMMs add almost no computational overhead to the

original FMM. The first is the fact that further domains are clustered into larger and larger

cells, so the extra cost of considering another layer of periodic images is constant. The

second reason is that only the sources need to be duplicated and the evaluation points

exist only in the original domain. Since the work load for considering the periodicity

is independent of the number of particles, it becomes negligible as the problem size

increases. We have confirmed in an earlier study that periodic boundary conditions adds
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3 % more calculation time for a million particles [77]

In this chapter, we present both algorithmic and implementation improvements of

FMM for vortex element methods. First, the Lamb-Helmholtz decomposition allows us

to reduce the translation complexity in FMM to only two scalar potentials, which enables

calculation of velocity or velocity+stretching by only doubling the cost of a potential

FMM if the translation dominates the overall performance. This saving also allows us to

use a larger truncation number p for higher accuracy far-field approximation at a smaller

cost. Second, we develop an economical way to compute the cutoff functions without

compromising accuracy. In the case when the local summation dominates the overall

time, we reduce the cost of velocity+stretching from 6, which is reported in literature [26],

to 4.8 times at most. Finally, we extend this vortex element method FMM algorithm to

multiple heterogeneous nodes. We compute the communication data structure with box

level granularity in parallel on GPU and only necessary data are exchanged among nodes

with small overheads. Based on our performance tests, this multiple-node algorithm

demonstrates both good strong and weak scalability.

The heterogeneous model developed in the paper enables utilization of the current

popular multi-core high-performance computer hardware. A single workstation is capable

of calculating the velocity+stretching up to 32 million particles within 1 minute while

a small cluster with 32 nodes can compute 1 billion-particles in 55.9 s. Finally, we

demonstrate the state of the art performance of FMM for vortex method and the capability

of using this fast algorithm together with small or moderate heterogeneous clusters to

solve large-size practical problems in many fields.
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Chapter 7: Conclusions and Future Work

Algorithmic improvements presented in this dissertation substantially extend the

scope of application of the FMM for large N -body simulation problems, especially for

dynamic problems. In these problems, the fast algorithm for data structures are required

otherwise it would be a performance bottleneck since the entire source and receiver points

change their positions at every time step. Our proposed data structures in Chapter 2

which can be constructed in parallel efficiently on accelerators, such as GPUs or many-

core processors, enable application of FMM to high fidelity dynamic simulations. The

overall construction time of data structures was reduced dramatically by comparing with

the normal CPU sequential implementation. Moreover, the approaches for fast spatial data

hashing and interaction list constructions could be also useful in many other problems.

Based on those data structures, we developed a fully GPU-based FMM

implementation, which was illustrated a dynamic simulation of the interactions between

vortex rings in Chapter 3. Except for initial setup, our approach processed all the

computations and updates on a single GPU, which simultaneously providing interactive

visualization of the simulation as it proceeded. Since resources from OpenGL and

Direct3D could be mapped into the address space of CUDA, this pure GPU-based

approach could fully utilize graphics interoperability by dumping the computation results

147



on to screen with little host (CPU) interruption overheads. In multiple GPU environments,

Scalable Link Interface (SLI) interoperability could allow one GPU render other GPU’s

resources via SLI (without data transfer via PCI-Express bus and host interruption) hence

provided possible graphics rendering performance gain.

The single GPU algorithm was extended to heterogeneous architectures in

Chapter 4. This was done by substantially simplifying the GPU job and offloading some

tasks to the CPU. By decoupling translations and local direct sum, which are the two main

time consuming parts of FMM, to the CPU and the GPU separately. We could achieve

state of the art N -body computation performance. This also provided a full load on the

CPUs, enabled efficient double precision computations, and brought other benefits of

parallel use of the CPU cores and GPUs. With the present algorithm, dynamic problems

of the order of ten million particles per GPU can be solved in a few seconds per time step,

extending computation capabilities of single workstations equipped with one or several

GPUs and relatively small (several node) low-cost heterogeneous clusters.

The distributed heterogeneous cluster solution with special data structures,

developed in Chapter 5 can handle non-uniform distributions and achieve workload

balance. In fact, our algorithm splits the global octree among all the nodes and processes

each sub-tree independently. Such a split can be treated as an isolated module which

is free to use different methods based on different applications, to estimate workload.

Moreover, since each node constructs its own sub-tree independently, the limitation of

the depth of octee imposed by GPU memory only applies to the local tree, which implies

this algorithm can handle deeper global octrees. Our approach using the newly introduced

import and export box concepts only exchanges necessary box data hence substantially
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reduces the communication overhead. We developed parallel algorithms to determine

the import and export boxes in which the granularity corresponded to spatial boxes.

Their parallel GPU implementations were shown to have very small overhead and good

scalability.

Based on the work developed in Chapters 2–5, we proposed a new approach to

use FMM to evaluate the most time-consuming kernels—the Biot-Savart equation and

stretching term of the vorticity equation for incompressible flows simulations. We used a

mathematically reformulation in [73] so that only two Laplace scalar potentials are used

instead of six. This automatically ensured divergence-free far-field computation. Based

on this formulation, we developed a new FMM-based vortex method on heterogeneous

architectures, which distributed the work between multi-core CPUs and GPUs to best

utilize the hardware resources and achieve excellent scalability. The algorithm uses

new data structures which can dynamically manage inter-node communication and load

balance efficiently, with only a small parallel construction overhead. This algorithm can

scale to large-sized clusters showing both good strong and weak scalability. Careful

error and timing trade-off analysis was also performed for the cutoff functions induced

by the vortex particle method. This implementation can perform one time step of the

velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds,

which yields 49.12 Tflop/s.

In the following sections, we briefly describe the possible future research directions

and discuss other potential effective approaches regarding FMM data structures and

implementations.
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7.1 Single Node Data Structures

In Chapter 2, the parallel data structures use histograms which keep counts for all

the boxes (including empty boxes) at the maximal level. Also histograms are used to

retrieve the rank of any box among non-empty boxes directly without searching, which

keep an value for each empty box too. Since the number of boxes grows exponentially as

the level increases, this technique of using histograms cannot deal with data distributions,

which require lmax > 8, on current GPU hardware. In applications, the adaptive FMM

can go to level as deep as 15 or more. However, the data structure construction time or

efficiency analysis has not been reported and no parallel algorithms are developed either.

In our implementation, we use 32-bits integer to store the Morton index (space

filling curve). Therefore, in 3D problems, the maximal level we can compute the Morton

index is 10 (due to bit-interleaving). However, we might use long integers to store the

Morton index which allows the maximal level as large as 21. The ideal data structure

algorithm for FMM should also work for such a deep maximal level.

An interesting project would be to use other structures or re-implement histogram

by using both sequential and parallel algorithms such that we can eliminate this limitation

but not compromise performance. One possible idea is to develop a two-level algorithm:

• At a coarse level, which can be handled by GPU using histograms, we compute all

data structures.

• For each non-empty box at the coarse level, we further divide it into smaller boxes

at deeper levels.
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In such kind of two-level algorithms, resolving storage issues is straightforward while

counting or retrieving the rank of a box would become tricky, which may require

complicated structures. Other data integrating problems such as merging box coefficients

from different partitions (in the multi-GPU context) also need to be considered. It is

still not clear that whether this method can address needed data quickly. Much more

tuning and test experiments have to be performed. Such work should then be extended to

multiple computing nodes as well.

Another way to overcome the huge memory consumption of histograms is to

explore adaptive data structures and the corresponding adaptive FMM algorithms. To

the best of our knowledge, such data structures have only been implemented by using

sequential algorithms on CPU. The key idea of adaptive algorithm can be summarized as:

given a unit cube and prescribed cluster size s, the adaptive algorithm recursively divides

the cube into boxes. If certain boxes contain less than s data points, no further divisions

of the sub-tree are performed.

Even though GPUs are not good at recursive algorithms, we could still perform

such recursive calls on the CPU level by level, then let GPUs efficiently perform the data

structure computation below a certain level. However, some technical barriers of such

method can be expected and must be overcome:

• Many data transfers between CPU and GPU might be required, which might reduce

the efficiency.

• The neighbor domains are no longer uniform, i.e., neighbor boxes might be at

different levels of the tree. This might need quite different data structures from
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those presented in Chapter 2. Hence, big modifications or totally different data

structure algorithms are expected.

• How to quickly address the rank of non-empty boxes in parallel without search is

still unclear if we skip all empty boxes.

7.2 Automatic Balanced FMM Algorithms

The heterogeneous algorithm in [33] has a pre-defined maximal level. In that case,

the balance of CPU translation and GPU direct sum is not known to the algorithm itself

but is passed to the algorithm as an input parameter. The user needs to perform the

some experiments to determine the level such that CPU and GPU work are balanced, i.e.,

manually tune the input parameter such that optimal performance is achieved.

To our best knowledge, there is no work in literature has been done on automatic

work balance in FMM. Existing algorithms pre-define one cluster size, and then determine

the maximal level at which the direct local sums are performed. This is equivalent to pre-

defining the maximal level in [33]. For uniform distributions, such automatic balancing

can be realized by a naive method: starting from a prescribed level, for example level 3,

we can compute the data structure similar to Chapter 2 to obtain box information. Once

the non-empty receiver box and source box information are available, we can estimate the

work of translation as well as the local direct sum. If they differ much, we go to next level

until some maximal level (for example 10 if we use 32 bits to store the Morton index) or

the rough balance is achieved.

However, for non-uniform distributions, finding the balanced parameter is not
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trivial. For instance, it is likely that in some region the density of data points is high while

it is low in some other regions. In that case, the level to perform the local direct sum might

be different. Hence, this requires adaptive data structures, which we proposed in the above

section. In future work, we would like to explore current available adaptive fast multipole

methods, such as [13,23,78], and their corresponding data structures for possible solution

in our framework. More exactly, based on these existing methods, we might be able to

develop novel adaptive data structures and automatic balancing algorithms, and further

parallelize them on GPU or distributed systems.

7.3 Partition Methods and Dynamic Data Structure Updates

The multiple node data structures in Chapter 5 are designed in the context of FMM,

where it does not deal with the initial partitions. The partition method presented there is

naive and only for the worst case. The profiling results in [33] show that such partition

takes even more time than the FMM evaluation for very large size problems. This big

overhead is due to two factors: one is distributing the data points to different nodes;

the other is MPI data exchange. Even though the later factor has no big improvement

based on our current hardware, we might implement a fast packing function to reduce this

overhead. Possible approach can be developing fast parallel algorithm for GPU to pack

the data, where we can take advantage of its high memory bandwidth and large number

of cores to accelerate packing. However, similar histograms as Chapter 2 have to be used

since the reduction operations are needed. An interesting problem is to develop both

speed and memory efficient approaches to save this partition time.
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As for the practical simulations, in which the positions of data points or particles are

dynamically updated every time step, the data distributions actually do not change very

much, i.e., only a relative small number of particles leave or enter each box. Note that, our

FMM data structures are mainly lists of box related information. Once certain particles

are within the same box, their order or positions in a box are irrelevant to the correctness

of algorithms, which suggests that the algorithm should only care about whether the

particles leave or enter a box but not how they appear in that box. Hence, it is very

likely to balance the work among the nodes by exchanging only a small amount of data

given the fact that the majority of particles stay in the same region of the previous step.

Also within a node, such small changes will not affect the overall data structures much,

which implies possible saving due to cheap data structure update (but not reconstruction).

Since all the particle related information, such as position coordinates and its mass, are

stored in a compact format as described in Chapter 2, it is however not clear whether

the insert or delete operations can be performed sequentially or in parallel better than

our current fast reconstruction scheme. Such performance validation requires fine-tuning

experiments, code optimization and comprehensive analysis. Therefore, we can expect

significant future work on such efficient dynamic data structure updating techniques to

minimize this data exchange and construction overhead. Moreover, the ideal algorithm

should be able to determine when to update the data structure and when to reconstruct

it based on computation cost estimation. For this topic, we would like to consider the

partition methods in literature first, then look for effective dynamic updating algorithms

for vortex/particle simulations.
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