
ABSTRACT

Title of dissertation: DECLARATIVE CLEANING,
ANALYSIS, AND QUERYING
OF GRAPH-STRUCTURED DATA

Walaa Eldin Moustafa, Doctor of Philosophy, 2013

Dissertation directed by: Professor Amol Deshpande,
Professor Lise Getoor,
Department of Computer Science

Much of today’s data including social, biological, sensor, computer, and trans-

portation network data is naturally modeled and represented by graphs. Typically,

data describing these networks is observational, and thus noisy and incomplete.

Therefore, methods for efficiently managing graph-structured data of this nature

are needed, especially with the abundance and increasing sizes of such data.

In my dissertation, I develop declarative methods to perform cleaning, anal-

ysis and querying of graph-structured data efficiently. For declarative cleaning of

graph-structured data, I identify a set of primitives to support the extraction and

inference of the underlying true network from observational data, and describe a

framework that enables a network analyst to easily implement and combine new

extraction and cleaning techniques. The task specification language is based on

Datalog with a set of extensions designed to enable different graph cleaning prim-

itives. For declarative analysis, I introduce ‘ego-centric pattern census queries’, a

new type of graph analysis query that supports searching for structural patterns in

every node’s neighborhood and reporting their counts for further analysis. I define

an SQL-based declarative language to support this class of queries, and develop a

series of efficient query evaluation algorithms for it. Finally, I present an approach

for querying large uncertain graphs that supports reasoning about uncertainty of

node attributes, uncertainty of edge existence, and a new type of uncertainty, called

identity linkage uncertainty, where a group of nodes can potentially refer to the

same real-world entity. I define a probabilistic graph model to capture all these

types of uncertainties, and to resolve identity linkage merges. I propose ‘context-

aware path indexing’ and ‘join-candidate reduction’ methods to efficiently enable

subgraph matching queries over large uncertain graphs of this type.

DECLARATIVE CLEANING, ANALYSIS AND QUERYING
OF GRAPH-STRUCTURED DATA

by

Walaa Eldin M. Moustafa

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Amol Deshpande, Chair/Co-Advisor
Professor Lise Getoor, Co-Advisor
Professor Atif Memon
Professor Ashok Agrawala
Professor Eyad Abed

c© Copyright by
Walaa Eldin M. Moustafa

2013

Dedication

To my great parents.

To my wonderful wife, Ethar.

To my lovely kids, Yaseen and Maryam.

ii

Acknowledgments

The Arabic proverb says “Choose the companion before you choose the jour-

ney”. The PhD has been a long journey and I was fortunate to have the greatest

companions during that journey, without whom, I could not reach the end.

I am deeply indebted to my advisors, Prof. Amol Deshpande and Prof. Lise

Getoor, who provided me with enduring guidance and support. They inspired me

with their wisdom, righteous judgement, hard work, attention to detail and pursuit

of perfection. They challenged me to bring forth my best and pursue what is beyond

possible. I always found something to learn from them, far beyond what is in the

books, or on the boards. Their advice did not know boundaries and they were

always there ready to give.

I am greatly thankful to Prof. Atif Memon, Prof. Ashok Agrawala, and

Prof. Eyad Abed, who agreed to serve on my dissertation committee, and to Prof.

Nick Roussopoulos, who led the Database Design courses that I taught with him.

Throughout my PhD career, they all kindly spent informal time with me discussing

my research ideas and PhD life. Their words have always been reassuring and

encouraging.

If I want to thank my wife, Ethar, words will fall short of expression. She

always did before I expected. She always gave before I asked, and she always

sacrificed when she could have other options. She cared for everyone in our small

family, and preferred us to herself; that is where her name comes from, “ ”.

I would like to thank all my group mates and collaborators, Hossam, Galileo,

iii

Hui, Lilly, Angelika, Mustafa, Prithvi, Elena, Bhargav, Thodoris, Jayanta, Udayan,

Abdul, Ashwin, Steve, Ben, Jay, Bert, Alex, Shobeir, Arti, Souvik, Amit, for all

their insightful discussions and sparking ideas we shared together. I will always

miss my wonderful colleagues and the brightest teammates I have ever met.

I am lucky to have a group of great friends. M. Abdelkader, Hossam, Mostafa,

A. Khalil, M. Raafat, Omar, Tarek, M. Fahmi, Wael, Karim, T. Elsharnouby,

Hatem, A. Mansy, T. Elsayed, M. Hussein, Hazem, and M. Youssef are real brothers.

We shared a lot, and counted on each other a lot. They have always been my source

of strength and reinforcement.

I am grateful to my son and daughter, Yaseen and Maryam, whose smiles gave

me the light and the power to achieve.

I am in debt to my parents, and my parents-in-law, who spent endless efforts,

all over the years, providing me and our family with all the love, help, and care.

They always gave without return, and served when it was their turn to be served.

Thank you all and thank you God for all your countless blessings!

iv

Table of Contents

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Motivating Applications . 4

1.1.1 Scientific Publication Networks 4
1.1.1.1 Graph Data Cleaning 4
1.1.1.2 Graph Data Analysis 6
1.1.1.3 Graph Data Querying 8

1.1.2 Targeted Marketing . 10
1.1.2.1 Graph Data Cleaning 10
1.1.2.2 Graph Data Querying 11
1.1.2.3 Graph Data Analysis 12

1.2 Overview of Dissertation Research . 13
1.2.1 Graph Data Cleaning . 13
1.2.2 Graph Data Analysis . 15
1.2.3 Graph Data Querying . 16

1.2.3.1 Querying Certain Graphs 16
1.2.3.2 Querying Uncertain Graphs 17

1.3 Outline and Contributions . 19

2 Related Work 22
2.1 Graph Data Cleaning . 22
2.2 Graph Data Analysis . 26
2.3 Graph Data Querying . 28

2.3.1 Querying Certain Graph Databases 28
2.3.2 Querying Uncertain Graph Databases 29

3 Declarative Graph Data Cleaning 32
3.1 Introduction . 32
3.2 Specification Language and Data Model 32
3.3 Declarative Analysis Framework . 36

3.3.1 Defining Prediction Domains and Features 37
3.3.2 Iterative Inference and Updating 42

3.4 Implementation . 46
3.4.1 Rule-Based Query Optimizer 47
3.4.2 The Merge-Join Operator . 47
3.4.3 Top-K Ranking by Confidence 48
3.4.4 INSERT, DELETE and UPDATE Rules 49
3.4.5 Iterative Inference . 49

3.5 Incremental Maintenance . 49
3.5.1 Feature Definition Views . 51

v

3.5.2 DOMAIN Views . 53
3.5.3 Cascaded View Maintenance 57

3.6 Experimental Evaluation . 57
3.6.1 Synthetic Data Experiments 58

3.6.1.1 Synthetic Data Generator 58
3.6.1.2 Experiment Details 60
3.6.1.3 Attribute Prediction 61
3.6.1.4 Link Prediction . 62
3.6.1.5 Entity Resolution . 63
3.6.1.6 Varying Network Properties 63
3.6.1.7 Varying Update Size 65

3.6.2 Comparison with Derby . 66
3.6.3 Real-world Experiment . 66

4 Graph Data Querying and Analysis 68
4.1 Introduction . 68
4.2 Data Model and Language Specification 72
4.3 Subgraph Pattern Matching . 76

4.3.1 Enumerating Candidates of Each Pattern Node 77
4.3.2 Initializing the Candidate Neighbor Sets 78
4.3.3 Simultaneously Pruning the Candidates and Their Neighbors . 78
4.3.4 Extracting the Set of Matches from Candidate Sets 79

4.4 Ego-centric Pattern Census Query Evaluation Algorithms 80
4.4.1 Node-driven Algorithms . 81

4.4.1.1 Pivot Indexing (ND-PVOT) 82
4.4.1.2 Differential Counting (ND-DIFF) 85

4.4.2 Pattern-driven Algorithms . 87
4.4.2.1 Simultaneous Traversal 88
4.4.2.2 Distance Shortcuts 89
4.4.2.3 Best-first Ordering 89
4.4.2.4 Center-based Expansion 91
4.4.2.5 Pattern Match Clustering 92

4.5 Experimental Evaluation . 94
4.5.1 Experiments Using Synthetic Datasets 97

4.5.1.1 Comparison with GQL for Different Graph Sizes . . 97
4.5.1.2 Comparison with GQL for Different Patterns 97
4.5.1.3 Varying Graph Size – Unlabeled Graphs 98
4.5.1.4 Varying Graph Size – Labeled Graphs 99
4.5.1.5 Varying Focal Node Selectivity 100
4.5.1.6 Effect of the Number of Centers on Pattern-driven

Algorithm . 100
4.5.1.7 Effect of Pattern Clustering 101

4.5.2 Real-world Experiment . 102

vi

5 Uncertain Graph Data Querying 104
5.1 Introduction . 104
5.2 Motivating Example . 105
5.3 Uncertain Graph Modeling . 108
5.4 Subgraph Pattern Matching . 115
5.5 Algorithms . 118

5.5.1 Offline Phase . 120
5.5.1.1 Component Probabilities 122
5.5.1.2 Path Index . 122
5.5.1.3 Context Information 124

5.5.2 Online Phase . 126
5.5.2.1 Path Decomposition 126
5.5.2.2 Finding Path Candidates 130
5.5.2.3 Finding Join-Candidates 133
5.5.2.4 Joint Search Space Reduction 134
5.5.2.5 Finding Full Query Matches 140

5.6 Experimental Evaluation . 141
5.6.1 Offline Phase Performance . 142

5.6.1.1 Running Time . 143
5.6.1.2 Path Index Size . 145

5.6.2 Online Phase Performance . 145
5.6.2.1 Online running time 146
5.6.2.2 Search Space Performance 150

5.6.3 Performance on Real-world Data 152

6 Conclusions 154

Bibliography 159

vii

List of Figures

1.1 Example patterns used to query a scientific collaboration network . . 9
1.2 Example patterns used to query a social network for targeted marketing 12

3.1 (i) Illustrative workflow depicting the main steps in an iterative sta-
tistical inference task (using the example of entity resolution); (ii) An
example Datalog program that specifies an interleaved execution of
an ER task and an LP task. 38

3.2 Runtime performance, in seconds, of attribute prediction (AP), link
prediction (LP), and entity resolution (ER) using graphs of (a) vary-
ing sizes and (b) varying densities, and (c) by changing the percent-
age of predictions committed per iteration. (d) Comparison of feature
construction time with Derby. 64

4.1 (a) Pattern that captures two couples that are friends with each other
– such a pattern may be useful in a targeted marketing application;
(b) Example pattern used in the node classification application; (c)
Different brokerage patterns – the colors denote organizations, and
the function of the broker (the middle node) depends on the organi-
zations that the three nodes belong to (e.g., B is a coordinator if all
three are in the same organization). 70

4.2 (a) Example used to illustrate the advantage of best-first traversal
order. (b) and (c) Simultaneous node expansions around the pattern
match {m1,m2,m3} using breadth-first and best-first approaches, re-
spectively. 87

4.3 Query patterns used in the synthetic dataset experiments – the letters
inside the circles indicate the label of the node. 95

4.4 (a) Comparison with GQL for different graph sizes and (b) for dif-
ferent patterns; (c) Pattern census: varying graph size (unlabeled
graphs); (d) Pattern census: varying graph size (labeled graphs);
(e) Pattern census: varying node selectivity; (f) Effect of centers on
the pattern-driven algorithm; (g) Effect of clustering on the pattern-
driven algorithm; (h) Precision @50 and @600 of DBLP link predic-
tion using different structures and hop lengths. 96

5.1 (a) Reference-level network, (b), (c) the two possible entity graphs,
(d) a query graph . 106

5.2 Schematic diagram of offline phase algorithms and indexes 120
5.3 Schematic diagram of online phase algorithms 121
5.4 Context information example . 125
5.5 A query Q and its decomposition into two paths P1 and P2 that cover

Q. Letters inside node represent node IDs, and letters outside nodes
represent the node labels. The predicates associated with the path
decomposition are P1.v5 = P2.v9 and P1.v7 = P2.v10. 127

viii

5.6 Path degree and density example . 129
5.7 (a) An example query and its decomposition, (b) k-partite graph

construction, (c) reduction by structure, (d), (e), (f), reduction by
upperbounds . 139

5.8 (a),(b) Offline phase performance, (c) varying query size, (d) varying
query density, (e), (f), varying degree of uncertainty for queries with
5 and 10 nodes, respectively. A * above a bar indicates that the query
did not finish in the allocated time (15 minutes), or the process ran
out of memory. 143

5.9 (a),(b) Varying input graph size for queries with 5 and 10 nodes,
respectively, (c), (d) varying input query threshold for queries with
5 and 10 nodes, respectively, (e),(f) search space experiments, (h)
performance on real-world data, (g) running time performance on
the DBLP dataset. A * above a bar indicates that the query did not
finish in the allocated time (15 minutes), or the process ran out of
memory. 144

5.10 Collaboration pattern queries for real-world data. 152

ix

List of Abbreviations

GraphQL Graph Query Language
ICA Iterative Classification Algorithm
PRM Probabilistic Relational Model
RMN Random Markov Network
MLN Markov Logic Network
PSL Probabilistic Soft Logic
RDF Resource Description Framework
XML Extensible Markup Language
PGM Probabilistic Graphical Model
PEG Probabilistic Entity Graph

x

Chapter 1

Introduction

As more data is available from different information sources such as the Web,

social media, communication networks, software repositories, citation and collabo-

ration networks, there is an emerging need to query and analyze such data. Much

of the data in these domains expresses complex relationships between objects, mak-

ing it natural to model it as “graphs”. Existing relational database management

systems are inadequate for querying or analyzing graph data for a variety of reasons:

• Graph traversal: The vast majority of graph algorithms and operations rely

on traversing the graph structure. Relational models are not well suited for

such types of operations because in the relational model, graph traversals are

interpreted into joins, resulting in a large number of joins per query. Since joins

in relational databases are very expensive, evaluating graph-specific queries

over relational databases is usually inefficient.

• Indexing methods: Indexing techniques designed for relational data cannot

be applied directly to graph-structured data. In graph data, there is a need

to index sub-structures of a graph such as small paths, subtrees, or subgraphs

in order to use them as structural features of the graph containing them.

However, relational database indexes are designed to store primary data types

such as numbers and strings.

1

• Recursion: Graph queries are naturally recursive. For example, a graph path

is defined as being either an edge or an edge connected to a path (by recursion).

There are other graph concepts that are recursive too such as reachability,

connected components, and transitive closure. Although there are attempts

at extending relational databases to handle recursion, these solutions are still

unnatural and difficult to use.

At the same time, such data is often noisy and incomplete due to different

reasons:

• Missing information or errors from the source: Sometimes, the data

is missing from the source itself, or machine/human errors take place while

entering the data. For example, location information of mobile device users is

sometimes inaccurate or missing due to limitations in the technology used for

location determination. Another example is in social network data, where user

data is usually missing some of the details that users do not wish to disclose.

• Data extraction errors: Although much of the data existing on the Web

is publicly available, access to the underlying database sources is usually re-

stricted. To extract data directly from web pages, methods such as web crawl-

ing and screen-scraping are used. However, those methods suffer from being

slow, error-prone, and hard to maintain, leading to various problems in the

quality of the extracted data. Furthermore, even after extracting the raw data

by those methods, in order to make the data suitable for further analysis,

natural language processing techniques are utilized to convert the natural lan-

2

guage text into other more structured formats like RDF triples or relational

tables. Many of those approaches depend on domain knowledge, require hu-

man intervention, and are still open research problems, e.g., [1].

• Data duplication errors: Real-world objects may have multiple represen-

tations or references in the data. These references may be of different forms,

but in fact they all refer to the same real-world entity. For example, two ref-

erences to the same person may differ in their spelling, or the way the name is

abbreviated. Furthermore, a single user of an online service may have multiple

accounts, leading to the impression that there are multiple users, while there is

actually one. Before processing the data such duplicate references need to be

detected, resolved, and combined into one entry representing the underlying

real-world object.

• Data integration errors: When integrating data from multiple sources,

different sources may disagree on some facts, and hence, conflicts and uncer-

tainties arise.

Given the limitations of standard declarative database management systems

for dealing with graph data, and the quality issues occurring with this type of

data, in this dissertation, we address the problems of declaratively and efficiently

cleaning, analyzing, and querying large graph-structured data. Before discussing

the challenges facing these areas of research and the contributions made by this

dissertation, we begin by discussing some motivating applications.

3

1.1 Motivating Applications

There are various applications where cleaning, analyzing, and querying graph

data are important operations, such as analyzing call traffic between customers

of telephone companies, querying social networks for connections among people,

cleaning spam from email archives, etc. Below we discuss the motivating applications

for our research using examples in two domains.

1.1.1 Scientific Publication Networks

Consider a scientific publication network extracted from online bibliographic

information-archiving websites such as DBLP, CiteSeer, or PubMed. The publica-

tion network consists of different node and edge types. Nodes are of type scientist,

publication, and conference, representing the three types of objects in this net-

work. Edges are of type wrote between scientists and their publications, appeared in

between publications and the conferences they appeared in, and cites among publi-

cations indicating that a publication cites another. In the following paragraphs, we

discuss examples of cleaning, analyzing and querying tasks that are of interest over

such kinds of networks.

1.1.1.1 Graph Data Cleaning

Data cleaning is the process of correcting inaccurate entries and predicting

missing information in a database. Common types of graph data inaccuracies in-

clude missing nodes or edges, missing node or edge attribute information, and the

4

existence of multiple nodes that refer to the same real-world object. There has been

a significant amount of work in the database, machine learning, and information

retrieval communities to deal with these types of inaccuracies. Attribute prediction

is used for predicting values of node attributes in graph data. Link prediction is

used for inferring the existence of missing links between nodes. Entity resolution

is used for detecting multiple references in the data that refer to the same real-

world object. Below we discuss some examples of performing those operations on

collaboration network data.

• Attribute Prediction: Given a partially labeled publication network, we

may want to infer the research interests of the scientists from their publication

titles, or from the research interests of their collaborators. Other examples

include classifying publication topics using both the publication title and the

citations.

• Link Prediction: We may want to predict potential collaborations between

scientists based on the current information. Furthermore, we may be interested

in suggesting a candidate set of publications to cite by a new publication using

a seed set of citations. In case the observed data set is incomplete, we may

want to predict missing edges of different types in the graph.

• Entity Resolution: A common problem in online bibliographic archives is

the problem of listing the same author as two different authors just because

her name is spelled slightly differently on different articles. Performing entity

resolution on such entries helps gathering the same author’s information in

5

one place rather than being scattered at different locations. This problem

also occurs with conference names, especially when the data is gathered from

multiple sources – sometimes the names are abbreviated, and sometimes the

conference full names are stated. Figuring out sets of nodes that refer to the

same conference is an important step before performing any further analysis.

1.1.1.2 Graph Data Analysis

Generally, there are two main types of graph data analysis (a) global macro-

level analysis characterizing properties of the entire graph and its subgraphs, or (b)

local micro-level analysis characterizing properties of the nodes in the graph. Macro-

level analysis is important for characterizing graph properties and understanding

network evolution; examples of such analysis include measuring structural properties

like degree distribution, diameter, and graph cohesion [2], and discovery of patterns

or motifs in the network [3, 4, 5, 6, 7, 8]. Micro-level analysis focuses instead on

measuring properties of the nodes in a graph, e.g., degree centrality, second-order

degree, local clustering coefficient etc. This is often called ego-network analysis,

because it looks at the individual nodes and their neighbors in a graph. Although

global network analysis is well-understood and efficient computational tools are well-

developed, similar tools are not yet available for the harder problem of ego-centric

analysis that requires analyzing a very large number of small, largely overlapping

graphs. In this dissertation, we focus on the second type of graph analysis. Below

we discuss some of its motivating applications in the case of analyzing scientific

6

publication networks.

• Properties of individual nodes can be studied with respect to their neighbor-

hoods or ego-networks, where an ego network of a node is the local subgraph

surrounding this node. For example, to obtain information about conferences

and their attendees, we need to extract the two-hop neighborhoods around

conferences, which are referred to as two-hop ego-networks. We can study

the role scientists play with respect to their collaborators by extracting the

two-hop ego-network around each scientist consisting of publications of each

scientist, and the collaborators who worked on those publications as well. Dif-

ferent types of analysis can be performed on those ego-networks including

studying their size, density, and the central node’s centrality and brokerage

scores. We will discuss the details of these measures in Chapter 4.

• Local node neighborhoods contain valuable information that can be used for

predicting missing values in graph data. For example, the structure of node

neighborhoods affects values node attributes can take (e.g., if a scientist is

interested in Computer Science, then with a high probability, her collaborators

are interested in Computer Science as well, etc.). Furthermore, similarity

between neighborhood structures of pairs of nodes can indicate that the two

nodes refer to the same underlying object.

• Summaries of node neighborhoods, especially the occurrence of specific pat-

terns, can be used as a pre-processing step for evaluating graph queries. By

summarizing neighborhood information around a node, one can determine be-

7

forehand if a node can be a candidate for the results of a graph query, before

evaluating more complex conditions. For example by summarizing two-hop

information around scientists, we can obtain statistics that summarize the set

of conferences each scientist participates in. When querying for scientists who

participated in specific conferences, each scientist’s summary information can

be directly looked up instead of traversing the graph to evaluate the conditions.

1.1.1.3 Graph Data Querying

• Subgraph Pattern Matching Queries over Certain Graphs: There are

various types of queries that can be posed on graph-structured data. Querying

graph data ranges from explaining how a set of nodes are connected in a graph,

or finding a set of nodes that are most similar to a group of query nodes, or

searching graph data for keywords. In this dissertation, we focus on one of

the most widely used and studied type of graph queries, which are subgraph

pattern matching queries. Subgraph pattern matching queries find subgraphs

in a large graph that satisfy a specific criteria expressed by a pattern graph.

The criteria can be on the node types and attributes, edge types and attributes,

and the structure of the subgraph itself. For example, Figure 1.1 shows two

graph patterns that we may be interested in finding matches for in a scientific

publication network. The query in Figure 1.1(a) asks for all publications

written by a scientist whose last name is “Hellerstein” that were published in a

SIGMOD conference, and involved a collaboration with a scientist whose main

8

X Y

X.lastname=
‘Hellerstein’

Y.research=‘Machine
learning’

P

C

wrote wrote

appeared_in

C.name=‘SIGMOD’
X YP1

Z

P 3 P
2

wrote wrote

wrote

wr
ot

e
wr

ot
e

wrote

(a) (b)

Figure 1.1: Example patterns used to query a scientific collaboration network

area is Machine Learning. The query in Figure 1.1(b) asks for all triplets of

scientists where each pair of them has collaborated on a different publication.

Answers to that query may indicate that the three scientists may collaborate

together on a joint project.

• Subgraph Pattern Matching Queries over Uncertain Graphs: As dis-

cussed at the beginning of this chapter, graphs extracted from different sources

are likely to have different types of noise or errors. Furthermore, the data may

have duplicate information, i.e., sets of nodes that refer to the same real world

entity, while queries over such data require reasoning at the real-world en-

tity semantics. Therefore, it is useful to express and encode different types

of uncertainty in a probabilistic model, and perform soft querying over such

uncertain graphs, taking into consideration that multiple nodes may just be

references to the same entity. In that case, only matches whose probability

9

passes a given user-specified threshold are returned.

In the case of scientific collaboration networks, incorporating uncertainty is

useful, especially since some of the attributes are fuzzy by nature. Scientist

research interests are usually not very well defined, and there is a fine line that

distinguishes between them. The same applies to publication topics. Further-

more, a scientist or a conference may be represented by different nodes due

to name variations; thus linking scientists (or conferences) who have similar

names with probabilistic edges is a concise way to express uncertainty regard-

ing duplicate information. Therefore, there is a need to query graphs which

contain all those types of uncertainty, where only highly probable answers of

the queries are returned.

1.1.2 Targeted Marketing

In targeted marketing applications, advertising companies carefully pick some

customers to give them free samples or free goods so that they can attract other

customers to their advertised products. Consider a travel agency that provides

special trips for couples and obtains online social network information of some users

to utilize it for advertising.

1.1.2.1 Graph Data Cleaning

Several graph cleaning operations can be applied before the social network in-

formation can be used for further querying or analysis. Examples of these operations

10

are as follows.

• Attribute Prediction: One step towards identifying potential customers

is to find out some of their attributes if they are missing. For example, it is

beneficial to predict attributes such as living place, gender (male/female), etc,

that may be missing for some customer. In addition, we may be interested

in predicting unobservable attributes such as income-range or preferences for

vacation destinations.

• Link Prediction: It is also beneficial to predict the nature of relationships

between the social network users. It would be interesting to predict links

whose type is “engaged to” or “married to”.

• Entity Resolution: One factor negatively affecting the utility of using on-

line data for marketing is the fact that some users may have multiple accounts,

which are actually sometimes created to delude the service into thinking that

they are different users so that the same person can get additional benefits or

products. An effective way to overcome that is by performing entity resolution

on the social network data to discover which users have multiple identities.

1.1.2.2 Graph Data Querying

The company may be interested in searching for all instances of “couples” or

“pairs of couples”. Therefore, subgraph pattern matching queries in Figures 1.2(a)

and 1.2(b) can be issued on this network to search for all instances that have these

types of connections among them. If there is uncertainty in the data (e.g., because

11

X Y

X.gender=‘Male’ Y.gender=‘Female’

is_married
X Y

X.gender=‘Male’ Y.gender=‘Female’

is_married

Z W

Z.gender=‘Male’ W.gender=‘Female’
is_married

is_
friend

is_
friend

(a) (b)

Figure 1.2: Example patterns used to query a social network for targeted marketing

a portion of the network attributes was predicted), then subgraph pattern matching

queries over uncertain graph data are useful in determining only highly probable

matches to these queries.

1.1.2.3 Graph Data Analysis

The company may want to choose some consumers to get free trips or promo-

tions. These consumers must be chosen wisely to minimize the cost and maximize

the benefits of advertising. Simple criteria such as picking consumers with the most

friends, or consumers that are connected to many other consumers through short

paths, are typically used. However the ability to identify arbitrary structures is de-

sirable in many cases. For example, the travel agency may wish to identify couples

that have either the largest number of couples in their combined network, or the

largest number of couple pairs, i.e., couples who are friends with couples. The latter

structure is depicted in Figure 1.2(b).

12

1.2 Overview of Dissertation Research

In this section, we give a brief overview of our work in the areas of graph-

structured data cleaning, analysis and querying.

1.2.1 Graph Data Cleaning

To perform graph data cleaning tasks, we present the design and architecture of

a data management system that enables efficient, declarative cleaning of large-scale

information networks. The goal is to provide a declarative framework for common

operations required in cleaning and extracting networks, a mechanism for combining

them in various ways, and an implementation for efficiently applying them to large

observation networks. The challenges for building this system are:

• Network cleaning operations do not depend only on the local information avail-

able at the graph nodes or edges but also are heavily dependent on the actual

graph structure and typically require traversal of the node neighborhoods and

computation of structural features. The declarative language must be able

to express both local and structural information in an intuitive way, and the

implementation must take into consideration those types of computation.

• Most network cleaning techniques are inherently iterative, and require repeated

passes over the graph. Therefore, supporting fast iterative graph processing is

important.

• Network cleaning often needs to be “collective” (where a decision in one part

13

of the network affects the information flow in other parts of the network),

and therefore, there must be a means to determine the order of application of

cleaning decisions, as they will probably affect future ones.

• It is hard to find an open-source or easy-to-modify query engine that has all

or most of the required features of such a system. This necessitates building

the evaluation engine from scratch and implementing all of the optimizations

from the low level upwards.

• The system should be extensible to support different kinds of prediction models

such as logistic regression and Bayesian inference.

• Systems supporting graph data cleaning should be scalable to support graph

data with increasing sizes within a reasonable period of time.

We propose a declarative approach to efficiently perform a variety of graph

cleaning operations. The key to our approach is to decouple the graph traversal

operations from the modification operations; the traversal operations are typically

computationally expensive, especially for large disk-resident graphs. We present

a declarative language based on Datalog, and show how it can be used to cleanly

achieve such decoupling. This decoupling enables us to develop a framework for

declarative cleaning over large networks, and facilitates efficient execution, by al-

lowing us to push much of the computation inside a database system. Further, the

declarative framework allows us to efficiently incorporate, and propagate through

the cleaning task, dynamic updates to the network data. We have implemented a

14

system called GrDB that supports our declarative framework. Our results illustrate

the computational and usability advantages of our system.

1.2.2 Graph Data Analysis

For graph data analysis, we address a new problem in ego-centric analysis,

namely counting the number of structural patterns or motifs that occur either in

the k-hop neighborhoods of the nodes (for a given k), or in subgraphs defined by

intersections or unions of k-hop neighborhoods of pairs of nodes; k-hop neighborhood

of a node n is defined to be the incident subgraph on the nodes reachable from n in

k hops or less. We refer to this type of query as an ego-centric pattern census. To

achieve that, we devise a simple yet powerful query language to support this kind

of queries. The query language allows specifying predicates to select which nodes to

perform the analysis on, and allow specifying the neighborhood sizes to be searched.

Furthermore, it supports specifying arbitrary structural patterns to search for in the

neighborhoods. We develop efficient algorithms and indexing techniques to evaluate

this type of queries. The challenges for designing such a system are as follows:

• It is known that the problem of subgraph pattern matching is NP-complete.

Ego-centric pattern census problem is even harder because we need to perform

subgraph isomorphism in the local neighborhoods of |VG| nodes where |VG| is

the number of nodes in the graph.

• Currently existing system for ego-centric graph analysis only study very simple

measures, such as the node degree, two-hop reach, number of triangles, or ego-

15

centric betweenness. It is not easy to extend these systems to support more

complex and general analysis operations over the node neighborhoods, because

firstly, they are not declarative, and secondly, algorithms for finding subgraph

patterns in node neighborhoods require a completely different set of algorithms

and methods than those reporting simple neighborhood counts.

1.2.3 Graph Data Querying

1.2.3.1 Querying Certain Graphs

We develop an efficient algorithm for subgraph pattern matching over large

graphs. The algorithm finds all instances in of an input pattern query in a large

graph. The algorithm is highly scalable and outperforms a current state of the art

algorithm [9] by orders of magnitude. The challenges are as follows.

• Given the difficulty of the subgraph isomorphism problem, and the size of

today’s graphs in different applications, it is challenging to answer subgraph

pattern matching queries over large graphs in a timely fashion.

• Current systems such as relational databases are not suitable to support such

type of queries because both their query evaluation and indexing methods are

designed to deal with relational, tabular data, not data that is laid out as

graphs.

• The search space of this problem is prohibitively large. Without optimizations,

the search space is in the order of |VG||VQ|, where |VG| is the number of nodes

16

in the database graph, and |VQ| is the number of nodes in the query graph.

Therefore, effective optimizations have to be devised in order to reduce the

search space significantly.

1.2.3.2 Querying Uncertain Graphs

Although graph cleaning approaches can be used to handle uncertainty and

noise in graph data before querying or analyzing it, it is not always possible to re-

move all the uncertainties in the graph using such approaches. In that case, instead

of throwing away the uncertainties, a more desirable approach would be to model

the uncertain and noise directly by associating probability distributions with graph

data and then using a probabilistic model to query the uncertain graph directly.

Therefore, we address the problem of reasoning about and operating on uncertain

graphs with identity uncertainty and develop techniques for efficiently answering

subgraph pattern queries over them. Our graph model combines node attribute

uncertainty (i.e., nodes have probability distributions over attribute values), edge

existence uncertainty (i.e., edges have a probability of existence), and identity un-

certainty (i.e., the probability that a group of references combine to form a single

entity). We show that our model defines a probability distribution over possible

graphs describing entities, their labels and relations.

We then introduce techniques to find all matches of a subgraph pattern that

have a probability above a given threshold. Answering subgraph pattern match-

ing queries is NP-hard on non-probabilistic graphs. It becomes even harder when

17

adding uncertainty, especially identity uncertainty, which requires reasoning about

constraints on sets of nodes that can exist together, and thus makes the prob-

lem #P-complete. Nonetheless, we propose and systematically explore a range of

novel techniques to prune the search space and effectively perform subgraph pattern

matching over large-scale uncertain graphs. The challenges are as follows:

• Usually the observed data is at the reference-level, while when querying the

data, users are interested in the entity-level semantics. Sophisticated mod-

els have to be developed in order to define the entity semantics and enable

reasoning over them.

• Systems for query evaluation on probabilistic relational databases are not

suitable for querying uncertain (probabilistic) graph databases, due to the

huge search space that will be considered by these systems when dealing with

graphs. Furthermore, identity uncertainty introduces a special type of con-

straints and merge operations that have to be considered during query evalu-

ation. Probabilistic graph databases do not have a built-in support for such

type of operations.

• The search space for uncertain graph pattern matching is even larger than that

of certain graphs, because in addition to the complexity of solving subgraph

isomorphism problem, one has to solve in all the possible worlds of the input

database graph. There is an exponential number of possible worlds in terms

of the graph number of uncertain nodes, edges, and attributes. This makes

exploring all these possible worlds prohibitive, and therefore devising efficient

18

techniques is a requirement.

1.3 Outline and Contributions

In Chapter 2, we review related work on the problems of graph-structured

data cleaning, analysis, and querying (in both certain and uncertain domains).

In Chapter 3, we present our proposed approach for declarative graph data

cleaning based on Datalog. We propose a unifying framework to specify different

data cleaning tasks, and implement efficient algorithms to execute them. The main

contributions are:

1. We identify the commonalities between different graph extraction and cleaning

tasks and derive a decoupling that enables efficient integration of these tasks.

2. We propose an interface for specifying network cleaning tasks that makes it

easy for the users (network analysts) to experiment with different methods and

combinations of features to decide how to best analyze and clean a network.

The proposed framework supports defining prediction domains, features, and

functions, which allows a declarative interface for the coupled inferences re-

quired for network cleaning.

3. We present several extensions to Datalog giving it operational semantics rather

than fixed-points semantics, where necessary, to make it more suitable for

graph cleaning operations.

4. We develop algorithms for efficiently computing the features, and for incre-

19

mentally maintaining them in the presence of updates (a requirement given

the iterative nature of the algorithms used). The proposed techniques can

handle a wide variety of Datalog queries including aggregate and outer-join

queries.

5. We present the results of an experimental study over several real and synthetic

datasets.

In Chapter 4, we investigate ego-centric pattern census queries, and its closely

related problem, subgraph pattern matching over certain graphs. We develop effi-

cient techniques for executing both operations. The key contributions include:

1. We introduce a flexible declarative SQL-based query language for specifying

ego-centric pattern census queries. The proposed query language allows users

to specify the neighborhood size (k), the set of focal nodes (or pairs of

nodes), and the pattern to be counted.

2. We propose an efficient graph pattern matching algorithm, and show that it

outperforms GraphQL [9], a recent graph pattern matching system.

3. We introduce two query evaluation algorithms for the ego-centric census queries,

one based on searching from nodes to patterns (node-driven) and another

based on searching from patterns to nodes (pattern-driven).

4. We empirically evaluate the proposed algorithms on a variety of real-world

and synthetic data.

20

In Chapter 5, we study the problem of querying uncertain graphs with identity

uncertainty. We present our proposed approach for modeling graphs with attribute

uncertainty, edge existence uncertainty, and identity uncertainty. We propose an

efficient algorithm to perform subgraph pattern matching queries over such uncertain

graphs. The main contributions are:

1. We introduce probabilistic entity graphs, a general uncertain graph model that

captures label, edge and identity uncertainties.

2. We define the semantics of probabilistic entity graphs as a probability distri-

bution over possible entity graphs.

3. We develop scalable algorithms to answer subgraph pattern matching queries

over such uncertain graph data, based on query path decomposition.context-

aware path indexing, to capture information about the graph paths, their sur-

rounding structures, and their probabilities, enabling efficient retrieval of can-

didate matches.

4. We propose reduction by join-candidates, an algorithm that efficiently prunes

candidate answers by progressively propagating structural and probabilistic

information between the candidates. This approach reduces the search space

size by multiple orders of magnitude.

5. We demonstrate that the proposed approaches can evaluate complex queries

over graphs with millions of nodes and edges in seconds, outperforming a

baseline implementation by multiple orders of magnitude.

21

Chapter 2

Related Work

There has been much work on graph databases, with renewed interest in recent

years due to the popularity of social networks and other types of information that

can be represented as graphs, and the growth of graph sizes representing these

networks. That has led to much research in different areas related to processing,

storing, indexing, analyzing, querying, and learning over graph data. In this chapter,

we review related work to our proposed methods in declarative graph cleaning,

analysis and querying for both certain and uncertain graphs.

2.1 Graph Data Cleaning

We begin by discussing related work to the main three problems we are inter-

ested in in the context of data cleaning, i.e., attribute prediction, link prediction,

and entity resolution, then we discuss related work to declarative methods in these

areas.

• Attribute prediction: Missing attributes of nodes in graph data can be

predicted based on the values of other attributes of the node or based on

the predicted neighbors’ attribute values, i.e., collective classification. The

underlying assumption in collective classification is that the links between

nodes carry important information for inferring the attribute values. In many

22

cases, there is auto-correlation between the labels of the nodes [10], which

means that linked nodes are likely to share the same attribute values, but

other, more complex correlations can be modeled and exploited. A summary

of various methods used for attribute predication in relational settings can

be found in [11]. Generally, approaches for attribute prediction are divided

into local formulations and global formulations. Local formulations predict

the value of a node attribute based on the node’s information and its local

neighborhood information. The most common approach for local attribute

prediction is the iterative classification algorithm, ICA, (e.g., [12, 13, 14]).

ICA employs features calculated from the nodes’ neighborhoods and can use

any general classification function such naive Bayes or logistic regression for

the prediction. The algorithm proceeds iteratively until convergence or until

a specific number of iterations is reached. Some extensions of ICA such as

[15, 16] apply only a subset of the predictions after each iteration, where

predictions of higher confidence are chosen in earlier iterations. On the other

hand, global attribute prediction formulations depend on defining a global

function to optimize. Some formulations are based on Probabilistic Relational

Models (PRMs) , e.g., [17], Random Markov Networks (RMNs), e.g., [18],

Markov Logic Networks (MLNs), e.g., [19], or Probabilistic Soft Logic (PSL),

e.g., [20].

• Link prediction: The link prediction problem [21] can be formulated as a

classification problem where we associate a binary variable for each pair of

23

nodes which is true if a link exists between the two nodes and false otherwise.

The simplest approach is to predict new links based on similarity measures

between pairs of nodes [22] (e.g., number of common neighbors, Jaccard sim-

ilarity, Adamic/Adar [23], Katz measure [24], random walks with restart [25],

recursive similarity [26], etc.). Other link prediction formulations are based

on RMNs, e.g., [27], MLNs, e.g., [19], or PSL, e.g., [28].

• Entity resolution: Entity resolution is the task of identifying when two

nodes in the graph are referring to the same real-world entity. In this case,

the nodes should be merged, and their attributes and links should be up-

dated accordingly. Common approaches to entity resolution use a variety

of similarity measures, often based on approximate string matching criteria

[29, 30, 31]. These work well for correcting typographical errors and other

types of noisy reference attributes. More sophisticated approaches make use

of domain-specific attribute similarity measures and often learn such mapping

functions from resolved data. Other approaches take graph structure and sim-

ilarity into account [32, 33] and allow dependencies among the resolutions,

e.g., collective entity resolution [34]. Global entity resolution formulation are

based on MLNs, e.g., [35], or PSL, e.g., [20].

Namata et al. [36] propose a hybrid approach to perform joint inference between

the different types of tasks, where they use coupled collective classifiers to propagate

information among solutions to the problem.

24

The above approaches are related to the graph cleaning problem in general.

There are two lines of research that are specifically related to the declarative specifi-

cation aspect of our research; declarative entity resolution and Datalog-based declar-

ative specification. We discuss each type of related work below.

Declarative Entity Resolution: In [30], the authors consider the problem of

generic entity resolution, where they define entity resolution in terms of two func-

tions, match that matches two records and merge that merges two records if they

match. These two functions are treated as black-boxes, and the authors define

classes for their properties, studying efficient algorithms for different classes. Our

work is in a similar spirit, in attempting to define black boxes for the prediction prob-

lems; however we focus on a declarative specification for the interactions among the

predictions, and efficient incremental maintenance.

In other related work, Arasu et al. [37] employ Datalog to solve the problem of

collective entity resolution using domain-specific constraints. The constraints are in

the form of user-defined soft and hard rules. The system performs the deduplication

by satisfying all the hard rules and minimizing the number of violations to the soft

rules. Our approach also supports a declarative approach toward collective entity

resolution; however our approach is capable of performing a more general set of

network inferences.

Datalog: The language that we use to enable declarative graph cleaning is based

on Datalog [38]. Datalog has drawn the attention of many researchers since the in-

troduction of ideas of integrating databases with logic as a standalone area in 1978,

25

leading to the emergence of deductive databases. Since then, there has been exten-

sive research on Datalog, its semantics [39, 40], evaluation techniques [41, 42], and

optimization [41], which led the Datalog query model to be extensively studied and

well understood. The popularity of database models such as the relational model,

object-oriented databases, and XML had drawn the attention away from deductive

databases. However, recently there has been a renewed interest in this language be-

cause of its declarative nature, expressive power, and mathematical foundations. In

recent studies, Datalog has been the centerpiece in enabling declarative specification

in various domains, like network protocol specification [43], sensor networking [44],

recommendation in social networks [45], and deduplication [37]. Recently, Seo et

al. [46] proposed an approach for using Datalog to express graph analytics. They

show an efficient implementation based on semi-naive evaluation. They do not con-

sider issues of graph cleaning such as attribute prediction, link prediction and entity

resolution, and their related issues such as incremental maintenance.

2.2 Graph Data Analysis

Analyzing graph-structured data has been a very effective tool for gaining

insights regarding the graph properties, graph structure, node and link properties.

There are many types of graph analysis queries such as ranking (e.g. PageRank

[47], Hubs and Authority [48], and Betweenness Centrality [49]), clustering (e.g.

edge betweenness [50] and modularity optimization [51]), similarity using various

similarity measures (e.g. Jaccard coefficient, Lada/Adamic measure [23], and Katz

26

measure [24]), and local structural analysis, such as measuring node degrees, degree

of homophily, two-hop reach, clustering coefficient, and ego-centric betweenness [52].

Our work in ego-centric graph data analysis is closely related to several active

research topics that are being studied in different communities. As we discussed

in Chapter 1, in social network analysis, distinction is often made between socio-

centric analysis and ego-centric analysis. The former has seen much work over the

last two decades with focus on understanding how networks evolve (see, e.g., [2, 53]),

computing and reasoning about global or local properties of the networks, designing

visualization tools to help with analysis (e.g., NodeXL [54]) and so on. In ego-centric

analysis, instead the focus is typically on understanding how the structure of the

neighborhood around a node affects the node or dictates its function. For example,

structural holes in ego networks are considered indicative of the positional advan-

tage or disadvantage of individuals [55, 56]. Although computational techniques

for ego-centric analysis aren’t as well-developed yet, there is increasing interest in

understanding how to do ego-centric analysis more efficiently and several software

packages support reasoning over ego networks (e.g., EgoNet [57]). Another related

research area is the study of network motifs [3, 4, 5, 6]. Roughly speaking, network

motifs are subgraphs that occur more frequently than expected to appear in a ran-

dom network. Most real-world networks exhibit a small set of motifs that occur

repeatedly in the network, and can be considered building blocks of the network.

There is much work on efficiently counting the number of motifs that appear in a

given network [58, 59, 60]. Although similar in spirit, our focus on counting motifs

(generalized to allow predicates on the node or edge attributes) in all ego networks

27

requires us to develop new computational techniques to solve the problem.

2.3 Graph Data Querying

2.3.1 Querying Certain Graph Databases

In the area of certain graph databases, several query languages and query

evaluation technqiues have been proposed to query and manage graph data including

GraphLog [61], GOOD [62], GraphDB [63], GOQL [64], and PQL [65]. Also, there

has been much work on algorithms and indexing methods to answer distance and

reachability query, e.g., [66, 67, 68], connection subgraph queries, e.g. [69, 70], and

clustering large graphs [71, 72].

Subgraph pattern matching is perhaps the most common type of graph query.

There is much work on subgraph pattern matching with renewed interest in recent

years. Several researchers have proposed exact or approximate methods for searching

for patterns in graph databases consisting of several relatively small graphs as well

as a single large graph (e.g., [73, 74, 75, 76, 77, 78, 79]). Examples of exact methods

include GraphQL [9], GADDI [80], and SPath [81]. GraphQL [9] retrieves instances

of subgraph patterns from a large database graph by indexing node neighborhoods,

and using that to reduce the search space. GADDI [80] uses a distance index based

on the number of discriminating substructures between pairs of nodes. Zhao et

al. [81] propose an indexing technique that is based on neighborhood signatures

and shortest paths. Other work in this area has focused on variants of the pattern

matching problem. Fan et al. [82, 83] allow an edge in the pattern to represent

28

a short path in the database graph, and the matching is based on the concept of

bounded simulation. Similarly, Zou et al. [84] propose distance join where the query

is a pattern along with a distance δ. A match exists iff for two vertices vi and vj that

are connected by an edge in the pattern, the shortest path between their images v′i

and v′j is ≤ δ.

2.3.2 Querying Uncertain Graph Databases

Although there has been a lot of research studies addressing the problems of

representing and querying uncertain and probabilistic data, e.g., [85, 86, 87, 88],

the area of uncertain graph data processing is still new and gaining more interest

recently. Research in uncertain graph databases has covered different areas such as

finding shortest paths, reliable subgraphs, mining frequent patterns, and answering

graph queries. For example, in [89] Potamias et al. address the problem of finding k-

nearest neighbors in an uncertain graph. They extend the definition of shortest path

and random walk in order to define meaningful distance functions that are suitable

for uncertain graphs. Jin et al. [90] address a similar problem, which is distance-

constraint reachability queries over uncertain graphs. Given an uncertain weighted

graph, and a pair of nodes, a distance d and a probability threshold α, the question

is to find whether the two nodes can be connected by a d-path with probability

α or more. Furthermore, there has been work on extracting reliable subgraphs

from uncertain graphs, e.g., Jin et al. [91] find sets of vertices whose induced

subgraphs are reliable with some user specified threshold. Hintsanen et al. [92]

29

study the problem of fast discovery of reliable subnetworks in unreliable networks,

where given a probabilistic graph and a pair of nodes, they propose algorithms to

extract a subgraph with at most B edges such that the probability of a path existing

between the two nodes is maximized. On the other hand, Zou et al. [93] propose

efficient algorithms to find top-k maximal cliques in uncertain graphs, where top-

k cliques are selected according to their probability. There has also been work on

discovering frequent subgraphs in probabilistic graphs, i.e., given a graph database of

uncertain graphs, the task is to find subgraphs which exist in at least Φ graphs with

probability α or more [94, 95]. In the area of probabilistic graph querying, Chen et al.

[96] propose algorithms to extract answers of subgraph queries from continuously

changing graph streams. Since the problem is based on subgraph isomorphism

which is proven to be NP-complete, the authors propose some approximations to

the problem. Furthermore, the solutions are targeted for applications with large

number of small graphs (in the order of tens of nodes and edges) rather than a large

single graph. In addition, in our proposed work we plan to handle node attribute

uncertainty in addition to edge uncertainty, which is the only type of uncertainty

handled by that work. Yuan et al. [97] propose efficient algorithms to calculate

the support of a subgraph pattern in uncertain graphs using pruning methods and

deriving upper- and lower-bounds for the value of support. Our goal is different from

that work as we aim to find highly probable matches, not the expected support of the

query subgraph in the database graph. Udrea et al. [98] propose precise semantics

for probabilistic RDF graphs formed by associating probabilities to triplets, calling

them quadruples. They propose algorithms for answering queries consisting of one

30

quadruple with one variable at most. Huang el al., [99] propose algorithms for

query processing over probabilistic RDF graphs with edge uncertainty only. Lian

et al. [100] propose efficient algorithms for querying probabilistic RDF graphs with

node attribute correlations. All these works do not support all the three types of

uncertainty together, and do not support identity uncertainty at all.

Recently, there have been some studies that deal with identity uncertainty

in querying data. Ioannou et al. [101] propose query evaluation algorithms for

uncertain data with identity uncertainty. Hua et al. [102] propose a method for

evaluating aggregate queries over data with identity uncertainty. Both of these

approaches are not designed to handle graph data.

31

Chapter 3

Declarative Graph Data Cleaning

3.1 Introduction

In this chapter, we present our proposed approach for declarative graph data

cleaning based on Datalog. We propose a unifying framework to specify different

data cleaning tasks, and implement efficient algorithms to execute them.

Outline: We describe our specification language (Section 3.2). In the next sections,

we present our declarative framework for specifying network analysis tasks (Section

3.3), and discuss our system implementation (Section 3.4) along with our techniques

developed for incremental maintenance (Section 3.5). We then present the results

of an experimental study (Section 3.6).

3.2 Specification Language and Data Model

Our specification language for defining inference tasks builds upon Datalog.

A Datalog program consists of a set of rules and a set of facts. Facts represent

statements that are true, whereas rules allow us to deduce new facts from other

true facts that are already known (or deduced), and exist in the knowledge base. A

Datalog rule has the following syntax:

L0 :− L1, ..., Ln

32

where each of Li is a literal of the form Pi(X1, . . . , Xn), or ∼Pi(X1, . . . , Xn), where

Pi is a predicate symbol, and X1, . . . , Xn are terms. For the purposes of our GrDB

specification, we consider only definite clauses, in which there are no negations.

Also, in some places, we use the shorthand P (X) where X stands for X1, . . . , Xn.

Terms can be variable terms or constant terms. Informally, rules are read as ‘if

L1, ..., Ln are true, then L0 is true.’ L0 is called the rule’s LHS or head, and L1,

..., Ln are called the rule’s RHS, or body. Each Li on the rule’s RHS is called a

subgoal. A fact is a rule with an empty body and is always true. A fact that has all

its terms constant is called a ground fact. In database terminology, each predicate

symbol corresponds to a relation name. An extensional database (EDB) is the set

of relation names corresponding to ground facts. An intensional database (IDB) is

the set of relation names corresponding to inferred facts. Our graph is stored in an

EDB, while rules defining various inference tasks are expressed as IDBs.

We use Datalog as the base language for our graph analysis framework for

several reasons.

• Datalog can naturally capture both graph structure and properties of graph el-

ements (i.e., nodes and edges). For example, one may query two-hop neighbors

of node X using the rule TwoHops(X,Z):-Edge(X,Y),Edge(Y,Z).

• Datalog also enables querying the attributes of the queried elements. For ex-

ample, one may specify the list of nodes with first name “John” using the rule:

John(X):-Node(X,‘John’, Y), where each node has an ID (corresponding to the

X variable), a first name (‘John’ in this case), and a last name (corresponding

33

to the Y variable).

• Compared to SQL, Datalog is a natural language to answer path-based graph

queries because it is a recursive language.

• On the other hand, compared to XPath, Datalog deals with graph edges as

first-class citizens, where they can have identifiers and attributes that can be

queried. In XPath, an edge is just expressed by the “/” (slash) operator.

• Compared to RDF query languages like SPARQL, Datalog can be naturally

extended to handle concepts like feature domains (Section 3.3) and updates.

• Finally, compared to imperative languages, a declarative language like Datalog

relieves the user from the burden of specifying how to evaluate the query

by pushing this work to the evaluation engine. Furthermore, its algebraic

properties allow the system to incrementally compute the changes in query

results when the base graph changes, while in imperative languages, it is not

as clear how to track dependencies and perform incremental maintenance.

Our data model supports multiple node and edge types where each type has

its own set of attributes. Although our approach and framework can be applied to

any EDB schema representing a graph structure, for brevity, we will assume just

two EDBs, Node(X,A) and Edge(X, Y,B), where the Node relation contains a key,

X, along with a set of attributes A and the Edge relation contains a key (X, Y)

along with edge attributes B. We have the following shorthand: Node(X) stands for

Node(X, ,...)and means that node X exists in the EDB. Similarly, Edge(X, Y) means

34

that node X points to the node Y. Node(X,Att=V) stands for Node(X, ,..,V,..) and

means that node X has the value V for attribute Att, and similarly, Edge(X, Y, Att=V)

means that edge (X, Y) has the value V for attribute Att.

We extend Datalog with several constructs to enable our analysis framework.

Some bear close similarity to existing Datalog extensions (e.g. aggregation), whereas

others are more novel.

• Aggregates: An aggregate is a term of the form Agg〈Y 〉 where Agg is an

aggregation function, and Y are the aggregate function arguments. For a rule:

P (X,Agg〈Y 〉) :− P1(X1), . . . , Pn(Xn), where X,Y ⊆
⋃
iXi, a set is created

for each value of X, the aggregate operation Agg is applied on each set, and

a corresponding fact is added. In essence, this corresponds to the SQL group

by operation. In network analysis, aggregates form a central component that

enables feature definition to collect graph-wide, or element-based statistics.

• Update Rules: We use update rules to express graph updates that result

from inference operations. Since updates have side effects, the order in which

these side effects should take place must be specified explicitly in the program.

Hence, our programs are divided into two parts: (1) the non-update rules

(i.e.,query rules) where evaluation order does not matter, and (2) the update

rules where it matters. We use following syntax to express updates:

[INSERT | DELETE | UPDATE] P (X) :− P1(X1), . . . , Pn(Xn)

where the predicate name P corresponds to an EDB, where the changes will

take place. The semantics are that the rule is evaluated and the results are

35

then added or deleted from P ’s EDB for INSERT or DELETE, and updated (based

on their keys) for UPDATE.

• ITERATE Construct: We introduce the ITERATE construct as a looping construct

to allow updates to be performed iteratively:

ITERATE(N) { Block of Update Rules }

where N is either the number of iterations or ∗. The semantics of the ITERATE

construct are that it applies the update rules in its body in the specified or-

dering iteratively, and recomputes (or maintains) the results of any “query”

rules, until no change takes place or for at most N iterations, whichever hap-

pens first. If ∗ is specified, then the evaluation proceeds indefinitely until no

changes take place.

• Other extensions: There are other Datalog extensions specific to our frame-

work, like DOMAIN constructs, and top K ranking. We will discuss these

extensions as we encounter them.

3.3 Declarative Analysis Framework

While the three network cleaning operations described in Section 2.1 result in

different updates to the network, and can be combined in complex ways, network

analysis processes can be seen, at a high level, as interleaved application of three

basic modules as shown in Figure 3.1(i). In this section, we describe these compo-

nents in detail, and then present our proposed declarative language constructs for

specifying these components.

36

3.3.1 Defining Prediction Domains and Features

In order to define our graph inference tasks, we need to specify the prediction

elements, features, and domains. We refer to the relevant objects as prediction ele-

ments. These are either nodes (in the case of attribute prediction), or pairs of nodes

(in the case of link prediction and entity resolution). For our graph inferences, we

typically need to compute the values of various “features” of the relevant objects.

Depending on the nature of the features, this step is typically the most compu-

tationally expensive step in the overall inference process. Prediction domains are

used to constrain the set of prediction elements. Judicious selection of prediction

domains is essential to enable scaling.

Features: We can divide the features broadly into three categories based on their

complexity:

Local: Attributes of the prediction elements themselves can be used as features for

input to a prediction function. For nodes, these are node attributes; for pairs of

nodes, these can be binary features which describe whether the attribute values of

the nodes match, or real-valued features which measure the distance between the

nodes’ attribute values. The key distinguishing characteristic of these features is

that they require only local information about the attribute values of the nodes,

or pairs of nodes.

Local Structural: These are features that require exploration of a small fixed

neighborhood around the prediction element. For node predictions, commonly

used features include the degree of the node, the count of the number of neighbors

37

Enumerate Domains;

Compute Features

Make Predictions, and Compute

Confidence in the Predictions

Choose Which Predictions to

Apply

(n1, n2, fA, fB)

(n1, n3, ..., ...)

(n2, n4, ..., ...)

...

...

(n1, n2, T, 0.99)

(n1, n3, T, 0.10)

(n2, n4, T, 0.85)

...

...

G
ra

p
h

 u
p

d
a
te

s
:

M
e
rg

e
 n

o
d
e
s
 n

1
 a

n
d

 n
2

....

Input

Graph

Output

Graph

DOMAIN ER(X, Y) :- Node(X, Name=V1), Node(Y, Name=V2), dist(V1,V2) < !

{

 IntersectionCount(X, Y, COUNT<Z>) :- ...

 Adamic1(X, Y, Z, COUNT<N>) :- ...

 Adamic(X, Y, SUM<1 / log(N)>) :- ...

 Features-ER(X, Y, F1, F2) :- IntersectionCount(X, Y, F1), Adamic(X, Y, F2)

}

DOMAIN LP(X, Y) :- { ... }

DEFINE Merge(X, Y)

{

 INSERT Edge(X, Z) :- Edge(Y, Z)

 DELETE Edge(Y, Z)

 UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY), ANew=(AX+AY)/2

 UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX), BNew=max(BX,BY)

 DELETE Node(Y)

}

ITERATE(n)

{

 Merge(X, Y) :- Features-ER(X, Y, F1, F2, F3, ...), predict-ER(F1, F2, F3, ..) = true,

 confidence-ER(F1, F2, F3, ..) > 0.95

 INSERT Edge(X, Y) :- Features-LP(X, Y, G1, G2, G3, ...), predict-LP(G1, G2, G3, ..) = true,

 confidence-LP(G1, G2, G3, ..) IN TOP 5

}

(i) (ii)

(A)

(B)

(C)

!"#$%&'()*+&,(-##./

!-0#1$*+&,(-##./

!"#$%&'()#*+',(-.

)#"',&%,$/01&"$*#")',(-.

'(2#,0-%+"$3,-0&*+',(-.

',14%5(--(,'&*4,#"".
1"601)%5(-&"$*'&$. ',17%61"5$*4,#"".

1"601)%5(-&"$*+',(-.

',17%61"5$*'&$.

!"#$%&'()#*,"-.

!"#$$%&'#"($&)(*&

!"#$$%&+,-.(,&

!"#$$%&'#"($&)(*&

!"#$$%&'#"($&)(*&

!"#$$%&!"/(01&

!"#$$%&!"/(01&

!"#$%#"&'()(

!"#$%#"&'(*(

Enumerate Domains;

Compute Features

Make Predictions, and Compute

Confidence in the Predictions

Choose Which Predictions to

Apply

(n1, n2, fA, fB)

(n1, n3, ..., ...)

(n2, n4, ..., ...)

...

...

(n1, n2, T, 0.99)

(n1, n3, T, 0.10)

(n2, n4, T, 0.85)

...

...

G
ra

p
h

 u
p

d
a
te

s
:

M
e
rg

e
 n

o
d
e
s
 n

1
 a

n
d

 n
2

....

Input

Graph

Output

Graph

DOMAIN ER(X, Y) :- Node(X, Name=V1), Node(Y, Name=V2), dist(V1,V2) < !

{

 IntersectionCount(X, Y, COUNT<Z>) :- ...

 Adamic1(X, Y, Z, COUNT<N>) :- ...

 Adamic(X, Y, SUM<1 / log(N)>) :- ...

 Features-ER(X, Y, F1, F2) :- IntersectionCount(X, Y, F1), Adamic(X, Y, F2)

}

DOMAIN LP(X, Y) :- { ... }

DEFINE Merge(X, Y)

{

 INSERT Edge(X, Z) :- Edge(Y, Z)

 DELETE Edge(Y, Z)

 UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY), ANew=(AX+AY)/2

 UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX), BNew=max(BX,BY)

 DELETE Node(Y)

}

ITERATE(n)

{

 Merge(X, Y) :- Features-ER(X, Y, F1, F2, F3, ...), predict-ER(F1, F2, F3, ..) = true,

 confidence-ER(F1, F2, F3, ..) > 0.95

 INSERT Edge(X, Y) :- Features-LP(X, Y, G1, G2, G3, ...), predict-LP(G1, G2, G3, ..) = true,

 confidence-LP(G1, G2, G3, ..) IN TOP 5

}

(i) (ii)

(A)

(B)

(C)

!"#$%&'()*+&,(-##./

!-0#1$*+&,(-##./

!"#$%&'()#*+',(-.

)#"',&%,$/01&"$*#")',(-.

'(2#,0-%+"$3,-0&*+',(-.

',14%5(--(,'&*4,#"".
1"601)%5(-&"$*'&$. ',17%61"5$*4,#"".

1"601)%5(-&"$*+',(-.

',17%61"5$*'&$.

!"#$%&'()#*,"-.

!"#$$%&'#"($&)(*&

!"#$$%&+,-.(,&

!"#$$%&'#"($&)(*&

!"#$$%&'#"($&)(*&

!"#$$%&!"/(01&

!"#$$%&!"/(01&

!"#$%#"&'()(

!"#$%#"&'(*(

Figure 3.1: (i) Illustrative workflow depicting the main steps in an iterative statisti-
cal inference task (using the example of entity resolution); (ii) An example Datalog
program that specifies an interleaved execution of an ER task and an LP task.

38

within c hops with a specific property (where c is a constant), etc. Another

commonly used feature is the clustering coefficient. The clustering coefficient

C(x) of a node x in a graph is a measure of how close the node and its neighbors

are to forming a clique; more precisely, it is the ratio of edges observed over

the number of possible edges. In addition, for pairs of nodes, we often measure

some sort of neighborhood similarity. Common neighborhood similarity measures

include: No. of common neighbors; Jaccard coefficient, which is the No.

of common neighbors normalized by the size of the union of the neighbors of the

nodes; and, a related measure, introduced by Adamic and Adar [23], which gives

more weight to rare features (those that are not shared by many other entities).

Global Structural: Examples of features that depend on the global structure of

the graph include the Katz score, betweenness centrality, and PageRank.

The Katz score for a pair of nodes is computed based on the number of different

paths between the two nodes, with the shorter paths given higher weight than the

longer paths. See Table 3.1 for the formal definition. The betweenness centrality

of a node is determined by the number of shortest paths that contain that node; it

is the frequency with which a node appears along the shortest path between other

pairs. PageRank captures the probability that a random walk from one node will

end up at the other node.

The features can be specified using Datalog in a straightforward manner. In

Table 3.1, we show how the features discussed above can be expressed concisely and

declaratively using this language. For example, to count the number of common

39

neighbors for nodes X and Y, we simply find the set of nodes Z such that Edge(X, Z) and

Edge(Y, Z) are true, and we then count them using an aggregate rule. More complex

features often require multiple rules (e.g., the Jaccard coefficient for two nodes is

computed by finding the sizes of the intersection and the union of the neighborhoods

of the two nodes separately). Local structural features can be computed without

using any recursive evaluation. However, computation of global structural features

requires use of recursion. For example, to compute the Katz score for a pair of

nodes, we need to enumerate all paths between the two nodes.

Domains: While features may be defined for all prediction elements, often we want

to restrict our attention to only a subset of the elements to make analysis tractable.

We refer to such a subset of elements as the prediction domain. Prediction domain

constructs are used to enumerate the elements for which predictions are made and

feature values need to be computed. For attribute prediction, the prediction is

over attribute values of the nodes and we can use the domain construct to restrict

our attention to some subset of the nodes. This allows us, for example, to predict

attribute values only for nodes with missing attribute values, or to predict attribute

values only for nodes which have some percentage of neighboring values observed

(not missing). Judicious use of prediction domains is especially important for tasks

such as link prediction and entity resolution, where the prediction takes place over

pairs of nodes. For a reasonably-sized network, it is infeasible to check every possible

prediction element, and we must be able to limit the possible node pairs that are

considered.

40

Degree: Degree(x) =
|Γ(x)| Degree(X, COUNT<Y>) :− Edge(X, Y)

No. of neighbors w/ Att
= ‘A’

NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z)

Degree(X, COUNT<Y>) :− Edge(X, Y)

ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D),

C=2*N/D*(D-1)

Number of common
neighbors

IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)

Jaccard’s coefficient
Jaccard(x, y) = |Γ(x)∩Γ(y)|

|Γ(x)∪Γ(y)|

Degree(X, COUNT<Z>) :− Edge(X, Z)

IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)

UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3

IntersectionCount(X, Y, D3)

Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y,

D),

J=N/D

Adamic measure
Adamic(x, y) =∑

z∈Γ(x)∩Γ(y)
1

log Γ(z)

Degree(X, COUNT<Z>) :− Edge(X, Z)

Adamic1(X, Y, Z, N) :− Edge(X, Z), Edge(Y, Z), Degree(Z,N)

Adamic(X, Y, SUM<1/log(N)>) :− Edge(X, Z), Edge(Y, Z), Adamic1(X,

Y, Z, N)

Similarity based on a
func. f(v1, v2)

Similarity(X, Y, S) :− Node(X, Att=V1), Node(Y, Att=V1), S=f(V1,

V2)

Katz measure
Katz(x, y) =∑∞

l=1 β
−l.|paths(x, y)<l>|

Path(X, Y, 1) :− Edge(X, Y)

Path(X, Y, L1) :− Edge(X, Z), Path(Z, Y, L), L1=L+1

Path count(X, Y, L, COUNT<1>) :− Path(X, Y, L)

Katz1(X, Y, L, K) :− Path count(X, Y, L, N), K=N * power(β, -L)

Katz(X, Y, SUM<K>) :− Katz1(X, Y, L, K)

Table 3.1: Common relational features and their Datalog representation. We use
Γ(x) to indicate the set of neighbors of node x.

We use the keyword DOMAIN for defining a domain for features. The general

syntax for specifying a domain is:

DOMAIN D(X1, X2, ...) :− ...

{

〈 List of features to be computed 〉

}

For example, during entity resolution, we may want to restrict ourselves to pairs

41

of nodes that are sufficiently close to each other based on the string similarity

distance between their names. This can be specified as shown in Figure 3.1(ii)(A).

Although it may seem that this domain requires listing all the pairs of nodes and

filtering them, our framework supports efficient methods for avoiding that. The last

rule (with head Features-ER) combines all the features into a single predicate using

which we can do inference. Note that although we have focused on unary or binary

prediction domains thus far, our framework allows for using n-ary domains; this may

be needed for situations where we want to make predictions for groups of three or

more entities.

3.3.2 Iterative Inference and Updating

The next step in the analysis process is to perform the required inferences and

updates. For each prediction element, the prediction is made by applying a user

supplied function over the features computed in the previous step and returning a

prediction and a confidence (or score) value. This function can either be a user

defined function or a function that is the output of some machine learning system;

in the context of GrDB, we treat it as a black box. A key observation we make

here is that, at this point, the prediction can be done independently for each domain

element in parallel.

For attribute prediction, commonly used prediction functions include classifiers

like näıve Bayes, logistic regression, and decision trees. Similarly, for link prediction,

the problem of deciding whether to add an edge between a pair of nodes is often

42

treated as a binary classification problem, and the functions listed above can be

used as well. In some cases, especially for entity resolution, a similarity function

might be used instead to compute a similarity score for a pair of nodes, and then

a thresholding mechanism may be used to decide which nodes to merge or which

edges to add.

The next step depends on the nature of the inference task. In some cases, we

may just make one pass and commit all of the predictions made. In other cases, we

may only choose to commit a subset of the predictions, and may want to iteratively

recompute the features and perform inference on the updated graph. The updates

include attribute value changes (for attribute prediction), edge insertions/deletions

(for link prediction), and node merges (for entity resolution), and we must recompute

the values of the features in response to these updates. Such iterative application

often results in more accurate predictions and robust behavior. The most common

approach to choosing which predictions to commit is to choose either the top k of

the predictions (by score) or all predictions with confidence above a given threshold.

In general, for each individual inference task, the user must specify:

• Prediction function to be used and the predicate containing the features.

The prediction function is written as a user-defined function (UDF) Pre-

dict: FT → P , where FT is the feature vector and P is the set of possible

predictions.

• Confidence or score function to be used to choose a subset of the predictions

to commit. This is also typically written as a UDF Confidence: FT → [0, 1]

43

(or more generally, Score: FT → <).

• Prediction Confidence Cut-off: In addition, the user must specify how to

choose the subset of the predictions to be committed. A cut-off value for

the confidence is provided by defining a predicate over the confidence func-

tion. A predicate can take the form of a minimum given threshold (e.g.

confidence(FT) > C), or can be expressed by picking the top K predictions.

We define a Datalog extension for this purpose (confidence(FT) IN TOP K).

• Graph Update Operations to be performed as a result of the inference. These

are expressed as Datalog update rules.

• Number of Iterations used when updates are executed iteratively so that only

high confidence predictions are applied in each iteration. As we described

earlier, update rules are enclosed in an ITERATE block to achieve this control.

As an example, an entity resolution task where we only commit high-confidence

predictions can be specified as (Figure 3.1(ii)(C)):

Merge(X, Y) :− Features-ER(X, Y, F1, F2, F3, ...),

predict-ER(F1, F2, F3, ..) = true,

confidence-ER(F1, F2, F3, ..) > 0.95

Here Features-ER contains all the features that are needed for inference. predict-ER

and confidence-ER are the prediction and confidence functions respectively. To dif-

ferentiate between functions and predicates in our Datalog programs, we use upper

case initials for predicates and lower case initials for functions. Merge(X, Y) indi-

cates that the graph update operation to be performed is a merge (corresponding to

44

entity resolution or duplicate elimination). Other examples include INSERT Edge(X,

Y), indicating edge addition between nodes X and Y (for link prediction, see Fig-

ure 3.1(ii)(C)), and UPDATE Node(X,Att=V), indicating that the attribute value of Att

should be changed to V for node X, (for classification or attribute prediction).

Note that update operations corresponding to link prediction and attribute

prediction are simple (i.e.,a single rule). However, the Merge operation can be com-

posite, i.e., defined in terms of other operations. An example of Merge definition

is shown in Figure 3.1(ii)(B). This allows the user specify exactly how to update

the attribute values for the new node that is created. The semantics of composite

updates is that the update rules inside them are executed in order; however, there

is no need to recompute the features after each single update rule. Features are

recomputed only after the entire composite block is executed.

Finally, the user may specify an interleaving of two or more different inference

tasks. For example, the syntax for specifying an interleaving of entity resolution

and link prediction is as shown in Figure 3.1(ii)(C). Here for the second inference

task, we specify that only the TOP 5 of the predictions (based on the confidence-LP

function results) be committed at end of each iteration. Note that DOMAIN blocks do

not necessarily map to prediction tasks in the program according to a one-to-one

relationship. The case in the above program is just for illustration. Two prediction

tasks can use a set of features that have the same domain, and accordingly, all the

features can be defined inside the same DOMAIN block. Furthermore, DOMAIN blocks

may be defined for features that are not part of any prediction, but used as an

input for computing other features in the program (e.g., to compute Jaccard which

45

requires a domain of pairs of nodes, we define degree using a domain of nodes).

3.4 Implementation

To implement our framework, we built a deductive database system on top of

the Java Edition of the Berkeley DB key/value store. There are a number of rea-

sons we built our own system rather than using an existing deductive or relational

DBMS. Our initial system prototype was written on top of the H2 relational database

system. In doing that implementation, we realized that this approach would not

provide us with the fine-grained control over execution policies and, more impor-

tantly, storage policies, that we need to scale to large information networks with

peculiar access and storage patterns. We investigated the use an existing deductive

database system, but lack of an efficient open-source implementation that could be

readily modified to implement our extensions hampered our efforts. We decided

that implementing our own system, built using the solid indexing and storage foun-

dations provided by Berkeley DB key/value store, would be the most flexible option

for investigating new approaches for managing large-scale information networks.

Our implementation of a graph data analysis system involved two key com-

ponents. First, we implemented a full fledged non-transactional relational database

system that has a query parser, a rule-based query optimizer, a relational expres-

sion converter for converting Datalog rules to canonical relational expressions, and a

plan executor; the plan executor contains various database operators like scan, index

lookup, group by, different types of join operators, view materialization and mainte-

46

nance routine, and a top-k operator. We omit further details of this component due

to space constraints.

Second, we implemented the necessary special logic to enable our framework,

like incremental maintenance of various types of views, the DOMAIN, and the ITERATE

constructs. Next, we discuss some of these components in detail.

3.4.1 Rule-Based Query Optimizer

In our system, we use a simple rule-based query optimizer that converts the

relational expression, corresponding to each rule, to an execution plan. When han-

dling joins, merge-joins are used whenever possible, then hash-join if the left and

right tables (maps) fit in memory, and then index-based joins, and nested loop joins

otherwise. We are currently developing a more sophisticated query optimizer that

takes into account the special structure of the information networks and the Datalog

rules to construct query plans.

3.4.2 The Merge-Join Operator

The implementation of a merge-join operator is crucial to our implementation

for three reasons:

• Berkeley DB implements its key/value store as sorted maps where the sequen-

tial access of the map efficiently yields the tuples in their key order. Utilizing

this property by using merge-joins can boost the performance, with little added

query optimization cost.

47

• Many of the rules we saw in the previous sections are expressed in terms of

other simpler rules, where each rule calculates a portion of a feature value,

which are combined to yield a final value. For example, Jaccard coefficient

is computed by first calculating the values in its numerator and denominator

and dividing them. When evaluating the Jaccard rule, it is much faster to go

over the numerator list and denominator list in one pass together and divide

them, instead of joining them with nested loops or other methods.

• The same rationale applies to rules that combine multiple features for a given

task in one view; instead of doing a multiway join for all the features, a single

pass over them using merge join can give the desired results quickly.

To achieve maximum utilization of the merge-join operator, we introduce the

notion of primary keys for IDBs, where rules defining IDBs define their keys as well,

and where the user can precede a head variable by the # symbol to indicate it is

part of the key. When the results are materialized, they can be accessed using their

key.

3.4.3 Top-K Ranking by Confidence

Whenever ranking is required for the predictions, the view involving confidence

computation is materialized along with the confidence score values obtained from

the confidence function, sorted using the sorting operator, and the top K (or K

percent) tuples are selected.

48

3.4.4 INSERT, DELETE and UPDATE Rules

As we mentioned earlier, Datalog does not have constructs for updating the

base relations. However, since we need to change the graph to reflect the predictions

made based on the features, we need a way to specify these changes in our language.

Evaluation of INSERT, DELETE and UPDATE rules is identical to the evaluation of regular

rules, where the right hand side of the rule is evaluated normally, but with the

addition of applying the appropriate update to the base tables.

3.4.5 Iterative Inference

As in fixed-point Datalog semantics, where two approaches exist for evaluating

programs: naive and semi-naive, in our ITERATE-based operational semantics, we

support two evaluation techniques: naive and incremental. In naive, the views are

recomputed in each iteration from scratch, regardless of the changes that happened

to the base tables. In incremental evaluation, we take advantage of the small changes

that take place in each iteration and maintain views incrementally, where they are

updated by a small delta that is computed from the changes to the base tables. We

discuss our incremental maintenance approach in more detail in Section 3.5.

3.5 Incremental Maintenance

In our implementation, we materialize the result of every Datalog rule in the

system, and we treat these results as materialized views over the base relations. As

the base relations change in response to the predictions made during analysis, we

49

need to maintain these views. View maintenance has been an active area of research

in database systems for a long time. Some papers discuss its algebraic derivations

(e.g. [103]), while others discuss efficient maintenance [104, 105]. Noisy graph anal-

ysis requires defining feature rules (which contain aggregate constructs), and DOMAIN

rules, and we have developed a framework for maintaining views corresponding to

these rules. Our contributions for this part of the system are:

• Previous work on deductive database aggregate queries (e.g., [40]) focuses

more on mathematical properties of the aggregate programs and less on effi-

cient implementation. On the other hand, relational (as opposed to deductive)

systems have a rich literature on efficient implementation of incremental main-

tenance of materialized views. We extend the approach of Gupta et al. [104] to

our deductive framework, for efficient materialized view maintenance without

extra overhead over relational systems.

• We define an approach for efficiently maintaining DOMAIN-based views, which

require left-outer joins. Our technique utilizes the fact that the two input

tables are joined on their key attributes. Previous approaches for outer-join

view maintenance like [105] are over-complicated for our requirements, or have

been shown to be incorrect ([104]) (as discussed in [105]).

• We support cascaded view maintenance to handle the case where an incre-

mentally maintained (aggregate) view is used to define another aggregate,

non-aggregate, or DOMAIN view.

50

We note that, although our system can handle recursive feature rules, we currently

do not maintain the corresponding views incrementally. We plan to support that in

future work.

3.5.1 Feature Definition Views

Feature rules may result in aggregate or non-aggregate views. As described

in Appendix 3.4, non-recursive, non-aggregate rules correspond to SPJ views in

relational systems. We employ the change table technique [104] for incremental

maintenance of SPJ and aggregate views. In the change table approach, changes

to a view are derived and grouped together in one table. This approach is more

efficient than tuple based approaches, which identify tuples to be deleted from the

old view, and then identify new tuples to be added. Rather, when using the change

table approach, a REFRESH operator is employed to update the old version of the

table given the change table. For details of the REFRESH operator in case of SPJ and

aggregate queries, the reader is referred to [104].

To keep track of insertions and deletions on base relations, we create a change

table for base relations. The change table contains the changed tuples, appended

by one more field, which we refer to as the count field ; this field is set to −1 in case

of deletion from the base table, and to 1 in case of insertion. We use the notation

P (X)[C] to express a predicate P that corresponds to a table P with fields X and

the count field C.

To derive the change table for an SPJ view defined as:

51

P (X) :− P1(X1), . . . , Pn(Xn),

we apply the following set of rules:

∆P (X)[C] :− ∆P1(X1)[C1], P2(X2)[C2], . . . , Pn(Xn)[Cn], C =
∏
Ci

∆P (X)[C] :− P µ
1 (X1)[C1],∆P2(X2)[C2], . . . , Pn(Xn)[Cn], C =

∏
Ci

· · ·

∆P (X)[C] :− P µ
1 (X1)[C1], P µ

2 (X2)[C2], . . . ,∆Pn(Xn)[Cn], C =
∏
Ci

where P µ
i is the version of the table Pi after the delta has been applied. For brevity,

from now on, when the suffixes [C] and [Ci] do not appear, it means that their

relationship is C =
∏
Ci.

Therefore, in our incremental maintenance framework, after the first iteration,

we convert SPJ rules to the above set of rules and evaluate them using the same

underlying query evaluation system.

For aggregate view maintenance, given the rule:

P (X,Agg〈Y 〉) :− P1(X1), . . . , Pn(Xn),

we find the change table using the set of rules

Ṕ (X,Y) :− ∆P1(X1), P2(X2), . . . , Pn(Xn)

Ṕ (X,Y) :− P µ
1 (X1),∆P2(X2), . . . , Pn(Xn)

· · ·

Ṕ (X,Y) :− P µ
1 (X1), P µ

2 (X2), . . . ,∆Pn(Xn)

P̂ (X,F (Y))[1] :− Ṕ (X,Y)[1] (1)

P̂ (X,G(Y))[−1] :− Ṕ (X,Y)[−1] (2)

∆P (X, ´Agg(V))[SUM〈C〉] :− P̂ (X,V)[C]

52

Agg ´Agg F (Y) G(Y)
COUNT SUM 1 −1
SUM SUM Y −Y

Table 3.2: Corresponding values of ´Agg, F,G for COUNT and SUM aggregate functions

where Ṕ and P̂ are intermediate tables that are used for computing ∆P , and

´Agg, F,G are functions that depend on the original aggregate function Agg. In

Table 3.2, we show their values for the aggregates COUNT and SUM. Note according

to the values in the table, rules (1) and (2) can be expressed in one rule and be

efficiently evaluated using the following rules for the COUNT and SUM aggregates resp.

P̂ (X,C)[C] :− Ṕ (X,Y)[C] For COUNT

P̂ (X,Y × C)[C] :− Ṕ (X,Y)[C] For SUM

Again we refer the reader to [104] for the details of the REFRESH operator that

updates old versions of aggregate rule evaluation using the change table derived

above. In our implementation, we implement the REFRESH operation using the merge-

join operator, which makes the REFRESH operation linear in the size of both the change

table and the old version of the view.

3.5.2 DOMAIN Views

In GrDB, we expect the use of DOMAINs to be common for two reasons. First,

it enables us to restrict the number of objects (nodes, edges, or pairs of nodes) for

which features are computed. Second, it is required to keep track of the objects

whose values are required. For instance, we may use the number of neighbors as

a feature in some task. In a naive evaluation, the nodes without neighbors will be

53

dropped; we must carefully keep track of such nodes.

A DOMAIN rule of the form:

DOMAIN L(X) :− Subgoals of L {

P1(X,Y) :− Subgoals of P1

P2(X,Y) :− Subgoals of P2

}

is translated to the following set of rules in our system:

L(X) : −Subgoals of L

Ṕ1(X,Y) :− L, Subgoals of P1

Ṕ2(X,Y) :− L, Subgoals of P2

P1(X,Y) :− L(X) >> Ṕ1(X,Y)

P2(X,Y) :− L(X) >> Ṕ2(X,Y)

where >>, a new Datalog operator that we define, denotes left outer-join, which as-

sociates non-appearing keys in the right relation with zeros instead of nulls1. There-

fore, to maintain a DOMAIN view, we need to maintain all the rules in the rewritten

version. Among them are outer-join rules. To maintain the outer-joins incremen-

tally, we make use of the fact that the left and right relations are joined on their

primary keys.

Assume we are maintaining the following rule:

P (X,Y) :− L(X) >> R(X,Y)

where X is the primary key for both the left (outer) table L, and the right (inner)

1Generally speaking, this operator associates a default value that depends on the attribute
sought; however, we use zeros for clarity.

54

table R. We use the symbol Z to denote the set of zeros our left-outer join operator

produces in place of nulls.

Deriving the change when the left relation L changes: There are four pos-

sibilities to consider depending on whether a tuple is being inserted or deleted, and

whether a corresponding tuple (with the same key) is present in R. Say a tuple (X)

is deleted from L. If the corresponding tuple (X,Y) exists in R, then, the tuple

(X,Y) is deleted from the view; otherwise, (X,Z) is deleted. On the other hand,

say we are inserting a tuple (X) into L. If the corresponding tuple (X,Y) exists in

R, then, the tuple (X,Y) is inserted into the view; otherwise, (X,Z) is inserted.

Based on this discussion, the change table for an outer-join view when the

outer relation changes can be derived as follows:

∆P (X,Y) :− ∆L(X) >> R(X,Y)

Deriving the change when the right relation R changes: If only updates on

Y take place on the right relation R, then the view will be updated in the same way

updates took place on R. However, maintaining outer-join views becomes trickier

when inserting or deleting tuples from the right relation. In this case, the following

holds:

• If a tuple (X,Y) is inserted into R that did not exist before, then the tuple

(X,Z) that existed in the view should be removed and replaced with (X,Y).

• If a tuple (X,Y) is deleted from R, then the tuple (X,Y) that existed in the

view should be removed and replaced with (X,Z).

We use the following algorithm to adjust the change table ∆R so that normal SPJ

55

change table derivation can be applied to the case when an inner table of a left-outer

join is changed.

for each key X in ∆R do1

S = Sum of the count field values of all tuples with key X;2

if (S < 0) then3

Adjust R by inserting (X,Z) to it with a count value of 1;4

if (S > 0) then5

Adjust R by inserting (X,Z) to it with a count value of −1;6

We keep track of these changes so that they are rolled back after computing the

outer-join view change table. Thus, the rule for maintaining left outer-join views

when the inner relation changes is:

∆P (X,Y) :− L(X),∆Radjusted(X,Y)

Deriving the change when both the R and L relations change simultane-

ously: Based on the discussion above, the rules for deriving the change table for a

left outer-join view defined as:

P (X,Y) :− L(X) >> R(X,Y)

can be found by:

∆P (X,Y) :− ∆L(X) >> R(X,Y)

∆P (X,Y) :− Lµ(X),∆Radjusted(X,Y)

For refreshing the left-outer join view, we use the REFRESH operator defined in [104],

with the same parameters as used in the SPJ case.

56

3.5.3 Cascaded View Maintenance

A common situation in our framework is that views are not only based on

the base tables, but also based on other views that are themselves incrementally

maintained (a situation we refer to by cascaded view maintenance). Handling this

situation, however, requires a special procedure when using the output of an in-

crementally maintained aggregate view to incrementally maintain other views. By

looking closely at the nature of the count field associated with aggregate mainte-

nance, we find that it does not express a tuple-based count; rather it represents a

group-based count, where it indicates how many times the aggregation group occurs

in the relation. These two incompatible representations make the use of aggregate

change tables infeasible in maintaining other views that expect tuple-level counts.

To overcome this, while refreshing an aggregate view, we change the form of the

aggregate change table to reflect tuple based changes, rather than group-based.

This is performed by keeping track of the tuples actually deleted and inserted into

the aggregate table as a result of the refresh. It is clear that switching between the

group-based change table to the tuple-based change table does not impose additional

overhead, because it is piggybacked on the REFRESH operator, and at the same time

it enables use of aggregate change tables in future non-aggregate view maintenance.

3.6 Experimental Evaluation

In this section we discuss our experimental evaluation, where we report ex-

perimental results from three sets of experiments. First, we evaluate our framework

57

over a wide range of synthetically-generated graphs that emulate the topological

properties and attributes of real networks. We also compare the performance of the

recompute (RECOMP) approach with the incremental approach (INCR) under

different conditions and experimental configurations. We then compare the per-

formance of our feature construction sub-module with that of the well-established

Apache Derby Java DBMS. Finally, we describe a real-world classification problem

that we solved using GrDB and report the results. We run all of our experiments

on servers with two 3.4 GHz dual-core CPUs, 8 GB of RAM at 400 MHz, and a 7200

RPM 80 GB hard drive. We present our results for all experiments in Figure 3.2.

3.6.1 Synthetic Data Experiments

To perform experiments on synthetic data, we develop a data generator that

first creates a synthetic network with specific properties (e.g. size or edge density),

and then adds noise to it to generate an input graph for the system. The goal of

the network analysis is to try to reconstruct the original graph.

3.6.1.1 Synthetic Data Generator

Our synthetic data generator creates a noisy network with ambiguous refer-

ences which need to be assigned to entities, missing labels which need to be classi-

fied, and missing and spurious edges whose existence must be predicted. We create

the network topology using two widely used graph generation models, preferential

attachment [53] and the forest fire [106], to create networks whose topological prop-

58

erties (e.g., degree distribution, diameter) match those commonly found in various

real world networks. We use the forest fire model, with the parameters defined in

[106], to generate the network topology used for a majority of our experiments. Be-

cause it is difficult to control link density directly in the forest fire model, for the set

of experiments varying link density, we use the preferential attachment model where

the model parameters directly control the average degree of the nodes. We then gen-

erate attributes for the three types of inferences we perform on the network. The

first set is for use with attribute prediction and includes the labels and attributes

where the node labels exhibit high autocorrelation (i.e., nodes which share an edge

are likely to have the same label). The second set of attributes are binary features

used for link prediction where nodes with a similar set of attributes are likely to

share an edge. The last set of attributes are used for entity resolution and represent

attributes that imply, non-uniquely, the entity it refers to. The final phase of the

synthetic data generator adds noise to the topology and attributes of the network.

We add noise by first creating copies of the original set of nodes where the copies ini-

tially have the same sets of attributes and “equivalent” edges as the original. Next,

we randomly add noise to the attribute values of the nodes by randomly flipping

the value of a random subset of the binary attributes. We also remove label values

from all the nodes. Additionally, we add noise to the edges by randomly removing

and adding edges between pairs of nodes.

Using this approach, we generate synthetic input networks of varying prop-

erties for our experiments. Each network is designed to mimic a communication

network between online social network user accounts. The Nodes EDB has the

59

attributes (NodeID, AccountInfo, Country, Label, Committed). The AccountInfo

attribute is an encoding of some information regarding the corresponding account.

The Country attribute represents which country this user lists as her home. La-

bel is the attribute to be predicted in attribute prediction experiments, where it

can take one of two values, “A” and “B”. We discuss Committed attribute in the

next subsection. The Edges EDB has three attributes (SourceNodeID, DistNodeID,

Type). The Type attribute denotes whether the relationship is a communication or

friendship link.

We vary the network size by increasing both the number of nodes and edges,

and the network density by holding the number of nodes constant and increasing

the number of edges using the preferential attachment model [53].

3.6.1.2 Experiment Details

We evaluated our framework on attribute prediction, link prediction, and en-

tity resolution. Our attribute prediction model is based on a variant of the iterative

classification model (ICA) [15]. The ICA model requires a classifier to be run during

each iteration. We use a logistic regression classifier; the features we used included

a subset of the node attributes and the number of neighbors for each class label (the

relational features). For link prediction, we also use a logistic regression classifier

over pairs of nodes; the features here were the number of common neighbors and also

the local attribute similarities, where the similarity function computes the percent

of common attributes between the pair of nodes. In this experiment, we predict

60

friendship links using communication links. In this context, we set the prediction

domain to be those pairs of nodes that have at least one communication link. For

entity resolution, the relational feature we use in our experiments is the Jaccard’s

coefficient feature defined in Table 3.1 and define the domain as pairs of nodes that

match on a subset of the attributes. A complete listing of the programs is as follows.

For attribute prediction, we predict the Label attribute for each user. For link

prediction, we predict friendship links based on communication links. The task of

entity resolution is to merge user accounts referring to the same user to a single

node.

3.6.1.3 Attribute Prediction

The program used for attribute prediction is as follows (recall that we precede

a variable by # symbol to indicate that this variable is part of the key).
DOMAIN Uncommitted(#X):-Node(X,Committed=‘no’) {

ANeighbors(#X,Count<Y>):- Edge(X,Y),

Node(Y,Label=‘A’)

BNeighbors(#X,Count<Y>):- Edge(X,Y),

Node(Y,Label=‘B’)

Features-AP(#X,A,B,I):- ANeighbors(X,A),

BNeighbors(X,B),

Node(X,AccountInfo=I)

}
ITERATE(10) {

UPDATE Node(X, , ,P,‘yes’):- Features-AP(X,A,B,I),

P = predict-AP(X,A,B,I),

confidence-AP(X,A,B,I)

IN TOP 1%

}

The program specifies that we need to compute the number of neighbors with

A and B labels in each iteration, apply the top predictions, and mark those predic-

61

tions as committed (i.e., Committed=’yes’). Since our domain is the uncommitted

nodes (i.e., Committed=’no’), we do not change these predictions in later iterations.

Initially, before any iteration, all the nodes are marked as uncommitted.

3.6.1.4 Link Prediction

The program used for link prediction is as follows. The Bin IDB is used to

define the domain for the link prediction elements, which are node pairs that have

communication edges between them.
DOMAIN Bin(#X,#Y) :- Edge(X,Y,‘Communication’) {

IntersectionCount(#X,#Y,Count<Z>)):- Edge(X,Z),

Edge(Y,Z),X!=Y

Similarity(#X,#Y,S):-Node(X, AccountInfo=IX),

Node(Y, AccountInfo=IY),

S=sim(IX,IY)

LabelSimilarity(#X,#Y,S):-Node(X, Label=LX),

Node(Y, Label=LY),

S=sim(LX,LY)

Features-LP(#X,#Y,F1,F2,F3):-IntersectionCount(X,Y,F1),

Similarity(X,Y,F2),

LabelSimilarity(X,Y,F3)

}
ITERATE(10) {

INSERT Edge(X,Y,‘Friend’):-Features-LP(X,Y,F1,F2,F3),

predict-LP(F1,F2,F3)=true,

confidence-LP(F1,F2,F3)

IN TOP 1%

}

Here, sim is a string similarity function. The above program computes three

features; the number of common neighbors between pairs of nodes, the similarity

between their local info, and the similarity between their label. The DOMAIN is the

pairs of nodes having a communication link between them.

62

3.6.1.5 Entity Resolution

The ER program is as follows:
DOMAIN AllNodes(#X) :- Node(X) {

Degree(#X,Count<Y>):-Edge(X,Y)

}
DOMAIN Bin(#X,#Y):- Node(X, Country=C1),

Node(X, Country=C2), C1=C2 {
IntersectionCount(#X,#Y,Count<Z>):- Edge(X,Z),

Edge(Y,Z),X!=Y

UnionCount(#X,#Y,U):- Degree(X,DX), Degree(Y,DY),

IntersectionCount(X,Y,C),

U=DX+DY-C

Jaccard(#X,#Y,J):- IntersectionCount(X,Y,C),

UnionCount(X,Y,U), J=C/U

}
ITERATE(10) {

Merge(X,Y) :- Jaccard(X,Y,J), predict-ER(J)=true,

confidence-ER(J) IN TOP 1%

}
DEFINE Merge(X, Y){

INSERT Edge(X, Z,) :− Edge(Y, Z,)

DELETE Edge(Y, Z,)

DELETE Node(Y,)

}

The program calculates Jaccard coefficient of nodes having the same Country

attribute, and applying the Merge operation to node pairs satisfying the user-defined

function predict-ER.

3.6.1.6 Varying Network Properties

We begin by exploring the effectiveness of our system at applying attribute

prediction, link prediction, and entity resolution as the input graph size varies. We

increase the number of nodes in the noisy input graph from 27, 014 nodes with

247, 366 edges to 136, 396 nodes with 1, 322, 506 edges (corresponding original net-

63

500000 1000000 1500000
Graph Size (# Nodes + # Edges)

0

500

1000

1500

2000

2500

Ti
m

e
(s

ec
on

ds
)

(a)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

1 2 3 4 5
Graph Density

0

500

1000

1500

Ti
m

e
(s

ec
on

ds
)

(b)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

0 2 4 6 8 10
Percent Committed Per Iteration

0

200

400

600

Ti
m

e
(s

ec
on

ds
)

(c)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

Degree Clustering Common Jaccard
Feature

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

(d)

GrDB
Derby

500000 1000000 1500000
Graph Size (# Nodes + # Edges)

0

500

1000

1500

2000

2500

Ti
m

e
(s

ec
on

ds
)

(a)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

1 2 3 4 5
Graph Density

0

500

1000

1500

Ti
m

e
(s

ec
on

ds
)

(b)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

0 2 4 6 8 10
Percent Committed Per Iteration

0

200

400

600

Ti
m

e
(s

ec
on

ds
)

(c)

ER RECOMP
ER INCR
LP RECOMP
LP INCR
AP RECOMP
AP INCR

Degree Clustering Common Jaccard
Feature

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

(d)

GrDB
Derby

Figure 3.2: Runtime performance, in seconds, of attribute prediction (AP), link
prediction (LP), and entity resolution (ER) using graphs of (a) varying sizes and
(b) varying densities, and (c) by changing the percentage of predictions committed
per iteration. (d) Comparison of feature construction time with Derby.

works contained 20,000 to 100,000 nodes). The results are shown in Figure 3.2(a).

As expected, the run time increases with the network size. Further, we can see that

INCR greatly improves over RECOMP, by a factor of 2 on average for all the

tasks.

We next explore how link density affects performance. Increasing the link

density increases the number of edges that need to be considered during feature and

domain computation. With attribute prediction, for example, the increased density

64

results in a larger number of neighboring nodes whose labels must be counted.

In our experiment, we added noise to a 20, 000 node network of various network

densities. We show the results in Figure 3.2(b). Similar to the previous experiments

with AP and ER, INCR is outperforming than RECOMP by a factor of 2 on

average. However, in LP, the performance is greatly affected by increasing the

density, especially in RECOMP, while in INCR the rate of increase is much less.

This is a natural result, as LP is an edge-oriented problem, and hence is even more

sensitive to the increase in the number of edges.

3.6.1.7 Varying Update Size

Next, we look at the effect of varying the number of predictions committed

in each iteration. We use a graph with 27, 014 nodes and 247, 366 edges for this

set of experiments. The results are shown in Figure 3.2(c). While INCR continues

to outperform RECOMP, we observe that INCR’s time increases as the percent

committed is increased. This is to be expected; when the changes become large

enough, the overhead of keeping track of the deltas and refreshing the old views

will approach the overhead of recomputing everything. We also observe, although

we may expect RECOMP to be independent of the percent committed at each

iteration, its time actually decreases with the percent increase; this is because, in

each iteration, fewer elements are considered for prediction, resulting in less overall

running time.

65

3.6.2 Comparison with Derby

We also ran many micro-benchmarking experiments, focusing on different

pieces of the system. We report the result for one such experiment: here we com-

pare the performance of our feature construction sub-module with the performance

of Apache Derby Java DBMS, by comparing the execution time of computing the

following features over a noisy 20, 000 node graph: (a) the degrees, and (b) cluster-

ing coefficients for all nodes; (c) common neighbors between pairs of nodes, for all

pairs that share the value of a common attribute; and (d) Jaccard coefficients for

the same set of pairs.

For Derby, we express these features using SQL, and measure Derby’s execu-

tion time. The comparison results are shown in Figure 3.2(d). While computation

of a simple feature like degree is comparable in both systems, our implementation

outperforms Derby by factors of 4, 35, and 20, respectively, for the other more

computationally expensive features.

3.6.3 Real-world Experiment

We crawled the PubMed online dataset – a citation network in the medical

domain. The size of the network is 50, 634 papers and it has 115, 323 citation edges.

We used GrDB to infer the category (class label) of each paper. The dataset has

four categories describing the topic of the paper (Cognition, Learning, Perception,

and Thinking). We used 2-fold cross validation, where we trained a classifier using

about half of the network, and tested it on the other half. We used logistic regression

66

for the prediction function, which we supply with the presence of words of the paper

abstract (we use a bag of 1678 words) and the count of citations of each category.

When committing the top 10% of the predictions and iterating for 10 iterations,

INCR takes 28 minutes (average over the two folds) to finish, while RECOMP

takes 42 minutes. Note that the increased overhead in these experiments over that

of the synthetic data is due to the large number of local features (i.e., words of the

abstract) which logistic regression has to reason about for each node. Using this

approach leads to 84% accuracy on predicting the paper categories.

67

Chapter 4

Graph Data Querying and Analysis

4.1 Introduction

In the previous chapter, we proposed a unifying framework to perform declar-

ative graph cleaning over noisy graphs. The input for such a framework is a noisy

observed graph, and the output is an inferred graph that has the missing informa-

tion derived, and duplicate nodes detected and merged. In this chapter, we present

approaches for querying and analyzing such cleaned graphs. The contributions are

two-fold. First, we define ego-centric pattern census queries, a new type of graph

analysis query which searches for patterns in local node neighborhoods and reports

their counts, and we show efficient techniques for evaluating ego-centric pattern cen-

sus queries over large graphs. Second, we propose a scalable algorithm for evaluating

subgraph pattern matching queries, as efficient evaluation of ego-centric pattern cen-

sus queries relies on the existence of highly efficient evaluation methods for subgraph

pattern matching. Before presenting both techniques, we discuss further motivating

applications of the problem of ego-centric pattern census.

Targeted Marketing: Viral marketing is proving to be an effective tool for product

advertisement. Selected consumers are given the product with the hope that they

will like the product and recommend it to their friends. These consumers must be

68

chosen wisely to minimize the cost and maximize the benefits of advertising. Simple

criteria such as picking consumers with the most friends, or consumers that are con-

nected to many other consumers through short paths, are typically used. However

the ability to identify richer structures is desirable in many cases. For example, a

travel agency may wish to identify couples that have either the largest number of

couples in their combined network, or the largest number of couple pairs, i.e., couples

who are friends with couples. The latter structure is depicted in Figure 4.1(a).

Node Classification: In collective classification [11], a node’s neighborhood is used

to predict the node’s own class label. For example, in a collaboration network, a

scientist who collaborates mostly with scientists from a specific field (e.g., databases

or software engineering) is likely to be from the same field. In a family relationship

network (with “is married to” and “is parent of” relationships), for each child we

may wish to count the number of relatives up to 3 hops away who are smokers (or

obese), with their parents also being smokers (or obese). This could be a measure

of the risk of being a smoker (or obese) for the child, and can be used for predicting

that risk. The pattern of this query is depicted in Figure 4.1(b).

Structural Balance: In social balance theory, signed networks are networks that

have positive and negative signs on their links, denoting whether a link expresses a

positive tie (e.g., friendship) or a negative tie (e.g., foe) [107]. In signed networks,

triangles with an odd number of negative links (one or three) are considered unstable.

In such networks, we can measure the amount of instability in each node’s ego

network by counting the number of unstable triangles in its k-hop neighborhood.

69

Coordinator Consultant Gatekeeper Representative Liaison

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

M

F

M

F

is_friend

is_friend

is_married is_married

S

S S
is_married

(a) (b)

Coordinator Consultant Gatekeeper Representative Liaison

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

M

F

M

F

is_friend

is_friend

is_married is_married

(c)

Figure 4.1: (a) Pattern that captures two couples that are friends with each other
– such a pattern may be useful in a targeted marketing application; (b) Example
pattern used in the node classification application; (c) Different brokerage patterns
– the colors denote organizations, and the function of the broker (the middle node)
depends on the organizations that the three nodes belong to (e.g., B is a coordinator
if all three are in the same organization).

Brokerage Analysis: In organizational theory, management scientists are inter-

ested in the roles different individuals play, both within an organization, and across

organizations. For example, in a transaction network, the middle node in a directed

triad (e.g., node B in the triad A→ B → C) is called a coordinator if all three are

in the same organization, or a gatekeeper if A is in a different organization than B

and C. Figure 4.1(c) shows the different brokerage types. A brokerage score of a

70

given type can then be computed for a node x by counting the number of patterns

of that type that x participates in.

Graph Indexing: Finally, counts of specific structural patterns in every node’s k-

hop neighborhood in a large graph are regarded as node signatures and are often

used for subgraph pattern matching to prune the search space [80]. Our algorithms

can be used to efficiently build sophisticated signatures, that can be used when

searching for large, complex subgraphs.

The problem of ego-centric pattern census combines elements from micro-level ego-

centric network analysis, subgraph pattern matching, and motif counting. The

goal of subgraph pattern matching is to find all matches of a given query graph

in the database graph. While the general problem of pattern matching is NP-

complete, there is much work on designing efficient algorithms and index data

structures to answer those queries [9, 80, 81, 108]. Motif counting, on the other

hand, is the problem of counting specified structural patterns of small sizes in the

network [3, 4, 58, 5, 6, 7, 8]. Motif discovery typically does not take node or edge

attributes into account, but rather depends solely on the pattern structure. It is

commonly performed on naturally occurring graphs like biological networks [3], or

computational graphs such as software graphs [8] or computer network graphs [109].

In these works, motif profiles (i.e., counts of different motif structures in the graph)

have proven to be a strong indicator of a network’s function. Local motif counting

(i.e., counting motifs that a node is part of) has also been recently used as a tool

to classify a node’s role. For example, Kerrebroeck et al. [110] count the number of

71

loops a node is part of, and use it as a measure to quantify the node’s importance

in the network. Prüzlj [111] proposes the notion of local graphlet degree distribution

as a means for network comparison.

Several ego-centric measures can be expressed as ego-centric pattern census

queries with very simple input patterns, and can be seen as special cases of ego-

centric pattern census. For example, an ego-centric measure like node degree corre-

sponds to searching for a pattern of a node in a 1-hop neighborhood, and clustering

coefficient (and its k-clustering coefficient version [112]) can be expressed in terms

of counting edge patterns in 1-neighborhood (and k-neighborhood, respectively).

Similarly, Jaccard coefficient of a pair of nodes can be computed by counting a node

pattern in the nodes’ 1-neighborhood intersection and union.

Outline: The rest of chapter is organized as follows. In Section 4.2 we present the

data model and our language specification. In Section 4.3, we propose an efficient

pattern matching algorithm that is used as part of the algorithms in Section 5.5

that we propose for evaluating pattern census queries. In Section 4.5 we discuss

experimental performance evaluation through synthetic datasets and workloads. In

addition, we use our language to design a link prediction experiment over DBLP

and report its results.

4.2 Data Model and Language Specification

We begin with a brief discussion of the graph data model, and some basic

definitions. We denote the database graph by G = (VG, EG), where VG and EG

72

Table 4.1: Examples of patterns and pattern census queries
Row # Pattern Query

1 PATTERN SINGLE NODE {A;} SELECT ID, COUNT(SINGLE NODE, SUBGRAPH(ID, 2)) FROM NODES

2 PATTERN SINGLE EDGE {A-B;}
SELECT N1.ID, N2.ID,

COUNT(SINGLE EDGE, SUBGRAPH-INTERSECTION(N1.ID, N2.ID, 1))

FROM NODES AS N1, NODES AS N2

3

PATTERN SQUARE {

SELECT ID, COUNT(SQUARE, SUBGRAPH(ID, 2)) FROM NODES
A-B; B-C;

C-D; D-A;

}

4

PATTERN TRIAD {

SELECT ID, COUNTSP(COORDINATOR, TRIAD, SUBGRAPH(ID, 0))

A->B; B->C; A!->C;

[A.LABEL=B.LABEL];

[B.LABEL=C.LABEL]; FROM NODES

SUBPATTERN COORDINATOR {B}
}

denote the sets of nodes and edges respectively. The database graph may be di-

rected or undirected, and both the nodes and the edges can have arbitrary sets of

attributes (stored as attribute-value pairs). Similarly we denote the pattern graph

by P . A pattern graph may be associated with a set of predicates on the underlying

attributes.

Two graphs P = (VP , EP) and M = (VM , EM) are said to be isomorphic if

there is a bijective mapping µ : VP → VM such that (v, v′) ∈ EP if and only if

(µ(v), µ(v′)) ∈ EM . We say that a pattern graph P matches a database graph G if

there is a subgraph M of G that is isomorphic to P under a mapping µ, and the

predicate in P are satisfied under the same assignment µ. We say that M is a match

of P in G.

Next, we introduce our language for specifying pattern census queries. Our

pattern specification language is designed to be general and flexible. The language

is based on SQL, but our algorithms actually operate on an disk-resident adjacency-

list graph representation, and our system can be easily extended to support a visual

73

pattern specification language as well.

The pattern census SQL queries are written against a logical representation

of the graph as two relations: NODES(ID, NATTR1, ...) and EDGES(ID1, ID2,

EATTR1, ...), where ID is the node identifier. Attribute references in queries are

interpreted dynamically, and hence the list of attributes does not have to be pre-

specified.

For a pattern census query, we need to be able to specify three things:

Search Neighborhoods: We need to specify the neighborhoods in which to do

pattern census. We currently support specifying three types of search neighbor-

hoods:

• SUBGRAPH(N, k): This specifies an k-hop neighborhood around the node, i.e.,

the incident subgraph on the nodes that are reachable from N in k hops or

less.

• SUBGRAPH-INTERSECTION(N1, N2, k): Given two nodes N1 and N2 and a

radius k, this specifies the intersection of the k-hop neighborhoods of N1 and

N2.

• SUBGRAPH-UNION(N1, N2, k): Similar to above except we take union instead

of intersection.

Focal Nodes: We need to be able to specify for which nodes or for which pairs

of nodes to conduct the pattern census. We use standard SQL constructs for this

purpose, i.e., the user can specify predicates that should be satisfied by the nodes

74

or pairs of nodes. Predicates are given in the WHERE clause of the SQL statement.

Pattern: Our pattern specification language (see Table 4.1) allows the user to spec-

ify the nodes in the pattern, the connections (edges) between the nodes, and pred-

icates on either the node attributes or the edge attributes. The structural pattern

(nodes and edges) is specified using variables (e.g., A,B,C) that can be bound to

any node in the graph. The user can also specify the direction of each edge if de-

sired, and can specify that a particular edge should not exist. Table 4.1 (1-3) shows

three simple patterns and SQL queries that count the number of patterns in differ-

ent types of neighborhoods. Table 4.1 (4) shows a somewhat more complex directed

pattern, that also specifies that a particular edge (from A to C) should not exist

and requires all three nodes to have the same label (this pattern corresponds to a

coordinator in brokerage analysis).

We also allow the user to specify one or more subpatterns in the pattern,

where each subpattern is specified as a subset of the nodes in the pattern. This allows

the user to precisely dictate the types of matches that should be counted. Consider

the example shown in Table 4.1 (4). Here we specify a single subpattern containing

the middle node in the triad, and the census is done in the 0-hop neighborhood

around each node (which contains just that node). In other words, this query counts

the number of triads in which B is the coordinator. It is not possible to do this

type of census without the subpattern construct (if we simply count the number of

triads in the 1-hop neighborhood around each node, we would also count the triads

for which B is not a coordinator).

75

4.3 Subgraph Pattern Matching

A key component of both of our proposed query evaluation algorithms is a

pattern matching algorithm that is used to find all matches for the given pattern

in the graph. We adapt the algorithm proposed recently by He and Singh [9] (de-

noted GQL henceforth), by incorporating additional novel pruning steps that lead

to orders-of-magnitude performance improvements over that prior work. Our al-

gorithm consists of four steps: (1) enumerate candidate matches for each pattern

node, (2) initialize candidate neighbor sets for each candidate node, (3) simultane-

ously prune candidate nodes and their candidate neighbors, and (4) extract pattern

matches directly from the pruned set of candidates and the candidate neighbors.

Although similar in spirit to GQL, our algorithm differs from it in subtle but sig-

nificant ways. Our algorithm is centered around the idea of explicitly maintaining

candidate neighbors with each candidate node. This not only results in more efficient

pruning of the search space, but also results in orders of magnitude improvements

in the final stage of extracting patterns. Our algorithm is also much simpler. In the

description that follows, we assume both the pattern and database graphs have an

explicit attribute called label drawn from a finite label space; the unlabeled case is

equivalent to both the database and pattern graphs having the same label for all

nodes. Our algorithms are applicable to both directed and undirected graphs; how-

ever we focus on undirected graphs here for simplicity. Table 4.2 lists the notation

used in the following discussion.

76

Table 4.2: Notation used in the chapter
Notation Explanation
G = (VG, EG) Database graph
n, n′ Database graph nodes
P = (VP , EP) Pattern graph
v, v′ Pattern graph nodes
M Set of matches of P in G
Vσ(G) Focal nodes, i.e., result of the SQL node selection predicates
M A pattern match (i.e., a subgraph of G isomorphic to P)
m,m′ Nodes in a pattern match M
N(x) Immediate neighbors of node x
N l(x) Neighbors of node x with label l
Nk(x) Neighbors of node x in radius k
S(n, k) k-hop neighborhood subgraph of node n
µ(v,M) Image of v in a match M . M is not stated when it is clear from the context.
µ−1(m,M) The node in P which m matches. M is not stated when it is clear from the context.

4.3.1 Enumerating Candidates of Each Pattern Node

The first step of this algorithm is to enumerate the candidate database graph

nodes for each pattern node. We utilize node profiles [9, 81] for this purpose. A node

profile is a compact representation of a node’s neighborhood that contains the num-

ber of neighbors for each label. Let L = {l1, l2, . . . , lL} denote the L vertex labels.

Then, the profile P (n) of a node n is the vector: 〈|N l1(n)|, |N l2(n)|, . . . , |N lL(n)|〉,

where N li(n) denotes the set of neighbors of n having label li. A database graph

node n is a candidate for a pattern graph node v if and only if P (v) is contained in

P (n), i.e., for each label li ∈ L in N(v), |N li(n)| ≥ |N li(v)|. To make this filtering

process fast, each database node profile is calculated once and stored along with the

graph as an index. The result of this step is a set of database node candidates C(v)

for each pattern node v ∈ VP .

77

4.3.2 Initializing the Candidate Neighbor Sets

Let v be a pattern node and v′ be one of its neighbors in the pattern graph.

For each node n ∈ C(v) that is a candidate for v, we maintain a set of candidate

neighbors with respect to v′, denoted by CN(n, v, v′), i.e., neighbors of n that are a

possible match to v′. We initialize each such set by finding the neighbors of n that

have the same label as v′, i.e., CN(n, v, v′) = C(v′) ∩N(n).

4.3.3 Simultaneously Pruning the Candidates and Their Neighbors

Consider a pattern node v and a candidate node n ∈ C(v). For every neighbor

v′ of v in the pattern graph, we must have that CN(n, v, v′) is non-empty. We use

this observation to prune the candidate sets. We make passes over the candidate

sets; in each pass, we remove those nodes from the candidate sets that do not satisfy

this condition, and we then prune the candidate neighbor sets by identifying nodes

n′ such that n′ ∈ CN(n, v, v′) but n′ /∈ C(v′). It is not hard to prove that the

number of iterations is bounded by the number of nodes in the pattern graph (we

omit the proof because of space constraints). Our approach is much simpler to

implement than the approach based on semi-perfect matchings proposed by He et

al. [9], but does not prune as aggressively for some types of query patterns; however,

as we show in the experimental study, overall the performance of our approach is

superior to theirs.

78

4.3.4 Extracting the Set of Matches from Candidate Sets

The output of the previous step is the set of candidates for each pattern node,

along with their candidate neighbors. To find the final set of matches, we process

these sets of candidates in a forward manner. For this purpose, we first choose an

order of the pattern nodes such that each prefix of the order forms a connected com-

ponent. Let v1, · · · , v|VP | be that order. At step i, we produce the set of matches

for the pattern subgraph consisting of v1, · · · , vi (and all edges between them). In

step i + 1, we grow the matches by adding possible matching nodes to vi+1. Let

vj1 , · · · , vjl , where j1 < j2 < · · · < jl < i + 1, be the pattern nodes that are

connected to vi+1 that appear before vi+1 in the chosen order. Then we find the

possible matches for mi+1 efficiently by taking an intersection of candidate neigh-

bor sets: CN(nj1 , vj1 , vi+1), CN(nj2 , vj2 , vi+1), . . . , CN(njl , vjl , vi+1), and removing

nodes that already appear in n1, · · · , ni, if any. Since the candidate neighbor sets are

typically small, this step can be done very efficiently (as opposed to prior work [9]

where this check requires scanning over comparatively large candidate sets). If the

intersection of the candidate neighbor sets is empty, then the corresponding partial

match is discarded. In the experimental section, we show that utilizing candidate

neighbors leads to orders of magnitude savings in finding pattern matches. Our

proposed pattern matching algorithm is listed in Algorithm 1.

79

Input : Database graph G = (VG, EG); pattern P = (VP , EP); A
permutation of the pattern nodes v1, v2, ..v|VP | s.t. each prefix is a
connected component of P

Output: Matches of P in G

for v ∈ VP do1

C(v)← {};2

for n ∈ VG s.t. l(n) = l(v) do3

if profile(v) v profile(n) then4

C(v)← C(v) ∪ n;5

for v′ ∈ N(v) do CN(n, v, v′)← C(v′) ∩N(n);6

repeat7

for v ∈ VP , n ∈ C(v), v′ ∈ N(v) do8

if CN(n, v, v′) = {} then C(v)← C(v)− n;9

for v ∈ VP , n ∈ C(v), v′ ∈ N(v), n′ ∈ CN(n, v, v′) do10

if n′ /∈ C(v′) then11

CN(n, v, v′)← CN(n, v, v′)− n′;12

until no change in C and CN ;13

/* Let Mi denote the matches of pattern subgraph v1, . . . , vi. */

for n ∈ C(v1), n′ ∈ CN(n, v1, v2) do14

M2 ←M2 ∪ (n, n′);15

for i = 2 to |VP | − 1 do16

for (n1, . . . , ni) ∈Mi do17

for ni+1 ∈
⋂
vj∈N(vi+1),j<i+1CN(nj, vj, vi+1) do18

if ni+1 not in (n1, . . . , ni) then19

Mi+1 ←Mi+1 ∪ (n1, . . . , ni+1);20

return M|VP |;21

Algorithm 1: Subgraph Pattern Matching Algorithm

4.4 Ego-centric Pattern Census Query Evaluation Algorithms

Next, we develop a suite of algorithms to solve the ego-centric pattern census

problem. In this section, we present algorithms for evaluating queries of type:

SELECT ID, COUNT(PATTERN, SUBGRAPH(ID, k))

FROM NODES WHERE (PREDICATE)

We defer the discussion of how to handle queries involving subpatterns and pairwise

80

intersection/union search neighborhoods to the appendix where algorithm pseudo-

codes are also presented.

We investigate two broad methods for answering such queries: node-driven,

and pattern-driven, that can be seen as duals of each other. In node-driven algo-

rithms, we start from the nodes and search for pattern matches in their neighbor-

hoods, whereas in pattern-driven algorithms, we start from the pattern matches

and look for the nodes whose neighborhoods contain those pattern matches. We

assume the existence of a function pattern-match(G,P) which returns the set of

all matches of the pattern P in the graph G. Furthermore, we refer to the set of

database graph nodes selected as a result of applying the node restriction predicates

as Vσ(G).

4.4.1 Node-driven Algorithms

Perhaps the simplest node-driven algorithm, which we use as a baseline, works

by extracting the k-hop subgraph around each node n ∈ Vσ(G), denoted S(n, k),

and then performing pattern matching on that subgraph. This baseline algorithm

(called ND-BAS), however, suffers from repeated and overlapping computations,

especially for k ≥ 2, and is computationally infeasible in practice. Next we propose

two node-driven methods: pivot indexing and differential counting.

81

4.4.1.1 Pivot Indexing (ND-PVOT)

The pivot indexing algorithm starts with finding all pattern matches in the

database graph, denoted by M, and then counts the number of matches in each

node’s neighborhood. We use the pattern-match algorithm to find M. Then, for

each node n ∈ Vσ(G), and for each pattern match M ∈ M, we check if the nodes

in M are entirely contained in S(n, k). However, the naive way to do this requires

O(|Vσ(G)| ∗ |M| ∗ |VP |) checks, which makes this base algorithm impractical. We

next introduce two optimizations to reduce the running time significantly.

Pattern Indexing: To avoid checking if every match M ∈ M is contained in

S(n, k) for every n, we index M so that the relevant subset of M can be retrieved

when needed. For this purpose, we first designate a node v in the pattern graph as

the pivot node, and build a pattern match index (denoted PMIv) on M using the

nodes corresponding to the pivot node in the matches. Let PMIv(n
′) denote the

list of matches returned by the index for node n′ (i.e., the list of pattern matches in

which n′ is the image of the pattern node v).

Now, to count the pattern matches in S(n, k), we traverse the neighborhood

of every node n ∈ Vσ(G) in a breath first fashion starting with n until we reach the

maximum depth k. For each node n′ visited in this process, we retrieve PMIv(n
′)

and for each match M ∈ PMIv(n
′), we check if VM is completely contained within

Nk(n). Next we discuss how to efficiently reduce these containment checks further.

Avoiding Containment Checks: Let maxv denote the distance between v and

the node farthest from it in the pattern graph. Let d(n, n′) denote the shortest

82

distance between n and n′. Then, if d(n, n′) + maxv ≤ k, any pattern match in

M ∈ PMIv(n
′) must be completely contained in S(n, k).

Thus, for any node n′ ∈ VG for which d(n, n′) ≤ k − maxv, we can avoid

checking whether each M ∈ PMIv(n
′) is entirely contained in S(n, k) and instead we

simply add |PMIv(n
′)| to the overall pattern match count for n. On the other hand,

if d(n, n′) + maxv > k, we need to explicitly check whether all nodes in PMIv(n
′)

are in S(n, k). Specifically, let v′ denote a node in the pattern graph such that

d(v, v′) + d(n, n′) > k. Then, we must explicitly check whether the corresponding

node in M is within k hops from n. However, if d(v, v′) + d(n, n′) ≤ k, then this

check can be avoided. Note that both d(v, v′) and d(n, n′) are easily computed

(the former can be pre-computed once for the pattern graph, whereas the latter is

available since we are using breadth first search).

Pivot Selection: Finally, the choice of the pivot node v becomes critical for the

performance of this algorithm. However, it is easy to see that choosing the node

with the minimum value of maxv is optimal with respect to the number of database

nodes for which we have to do explicit checks, i.e.,

v = argminx∈VP {d(x, argmaxy∈VP {d(x, y)})}

The pseudocode is listed in Algorithm 2.

Handling Subpatterns: In this algorithm, handling subpatterns is straightfor-

ward. As before, pattern matching is performed using the entire pattern graph;

however, the pivot is selected from the set of subpattern nodes VSP ⊆ VP , and

83

Input : Database graph G; pattern P ; set of nodes Vσ(G); neighborhood
radius k

Output: The number of matches of P within k hops of each node of Vσ(G)

v ← argminx∈VP {d(x, argmaxy∈VP {d(x, y)})};1

maxv ← d(v, argmaxy∈VP {d(x, y)});2

for u ∈ VP do3

for i← 1 to maxv do4

if d(v, u) ≥ i then distant[i]← distant[i] ∪ u5

M←pattern-match(G,P);6

PMIv ←build-pmi-index(M, v);7

for n ∈ Vσ(G), n′ ∈ Nk(n) do8

if maxv + d(n, n′) ≤ v then9

counts[n]← counts[n] + |PMIv[n
′]|;10

else11

for M ∈ PMIv[n
′] do12

if µ(distant[k − d(n, n′) + 1],M) ⊆ Nk(n) then13

counts[n]← counts[n] + 1;

return counts;14

Algorithm 2: Pivot Indexing Algorithm

the distance checks are only done for the database graph nodes that match the

subpattern nodes.

Handling Pairwise INTERSECTION and UNION: In the case of intersection

and union, the outer loop (line 9) iterates over pairs of nodes (n1, n2) ∈ V 2
σ (G), where

V 2
σ (G) is the set of selected pairs, and the Nk(n) is replaced with the set of nodes

in Nk(n1) ∩ Nk(n2) and Nk(n1) ∪ Nk(n2) for intersection and union, respectively

(lines 10 and 15). The distance d(n, n′) is replaced with max(d(n1, n
′), d(n2, n

′))

and min(d(n1, n
′), d(n2, n

′)), respectively.

84

4.4.1.2 Differential Counting (ND-DIFF)

The second node-driven approach that we investigate is based on the idea of

exploiting shared neighborhoods – Zhang et al. [80] use a similar idea for building a

pairwise signature index in their proposed approach for subgraph pattern matching.

LetM[n] denote the set of pattern matches contained in S(n, k). Given two nodes, n

and n′, andM[n], we can constructM[n′] by: (1) removing all matches M ∈M[n]

for which at least one node in M is present in Nk(n) − Nk(n
′), and (2) by finding

additional matches that contain nodes present in Nk(n
′)−Nk(n) and that are fully

contained in S(n′, k).

As above, we start with finding all pattern matchesM using the pattern-match

algorithm. We then build a modified pattern match index that indexesM using all

the nodes in the match (instead of just the pivot node). In other words, PMI[n]

contains all pattern matches that contain n. We start with an arbitrary database

graph node n and compute M[n] using PMI[n] (using a technique very similar to

the above algorithm). We then pick an arbitrary neighbor n′ of n and compute

M[n′] using M[n]. The detailed algorithm is listed in Algorithm 3.

Differential counting is appropriate for finding node-centric counts of compact

structures such as nodes or edges, but more complex patterns will likely have parts

that fall in unshared areas, making differential counting less effective in such cases.

Furthermore, picking a random neighbor does not always guarantee that the shared

neighborhood is large enough (we experimented with a heuristic based on shingle

ordering [113], but the results were essentially the same and hence we don’t report

85

Input : Database graph G; pattern P ; set of nodes Vσ(G); neighborhood
radius k

Output: The number of matches of P within k hops of each node of Vσ(G)

M← pattern-match(G,P);1

/* Index the matches on all the pattern nodes */

PMI ← build-pmi-index(M, VP);2

S ← Vσ(G);3

current← Next element from S;4

Mcurrent ← {};5

while S is not empty do6

S ← S − current;7

if prev = NULL then8

N1 ← Nk(current);9

N2 ← {}; Mcurrent ← {};10

else11

N1 ← Nk(current)−Nk(prev);12

N2 ← Nk(prev)−Nk(current);13

for n ∈ N1,M ∈ PMI[n] do14

if VM ⊆ Nk(current) then15

Mcurrent ←Mcurrent ∪M ;16

for n ∈ N2 do Mcurrent ←Mcurrent − PMI[n];17

counts[current]← |Mcurrent|;18

if there exists n s.t. n ∈ S ∩N(current) then19

prev ← current; current← n;20

else21

prev ← NULL; current← Next elem. from S;22

return counts;23

Algorithm 3: Differential Counting Algorithm

those here). In addition, if there is a selection predicate that specifies a subset of

nodes to do pattern census for, then sharing opportunities may be rarer (especially

with selective predicates). In our experimental evaluation, pivot indexing technique

always outperformed differential counting.

86

m1 m2 m3

n2

n1

n3

(a)
Queue Head
1 m1(0, 1, 2),m2(1, 0, 1), m3(2, 1, 0) m1

2 m2(1, 0, 1),m3(2, 1, 0), n1(1, 2, 3) m2

3 m3(2, 1, 0), n1(1, 2, 3), n2(2, 1, 1) m3

4 n1(1, 2, 3), n2(2, 1, 1) n1
5 n2(2, 1, 1), n3(2, 3, 4) n2
6 n3(2, 3, 4), n1(1, 2, 2) n3
7 n1(1, 2, 2) n1
8 n3(2, 3, 3) n3
9 φ −

(b)
Queue Head
1 m2(1, 0, 1),m1(0, 1, 2),m3(2, 1, 0) m2

2 m1(0, 1, 2),m3(2, 1, 0), n2(2, 1, 2) m1

3 m3(2, 1, 0), n2(2, 1, 2), n1(1, 2, 3) m3

4 n2(1, 2, 2), n1(1, 2, 3) n2
5 n1(1, 2, 2) n1
6 n3(2, 3, 3) n3
7 φ −

(c)

Figure 4.2: (a) Example used to illustrate the advantage of best-first traversal order.
(b) and (c) Simultaneous node expansions around the pattern match {m1,m2,m3}
using breadth-first and best-first approaches, respectively.

4.4.2 Pattern-driven Algorithms

The second class of algorithms that we propose start with the pattern matches

and look for nodes that contain the pattern match within their neighborhoods. This

can be seen as dual to the node-driven algorithms in that, here we process each

pattern match once, but may process the database nodes multiple times, whereas in

node-driven algorithms, we process each node once, but may process each pattern

87

match multiple times.

The baseline pattern-driven algorithm (called PT-BAS) processes the pattern

matches in the database graph independently one at a time. As before, let S(n, k)

denote n’s k-hop neighborhood subgraph. For each pattern match M = (VM , EM),

for each node mi ∈ VM , we traverse S(mi, k) in a breadth-first fashion, and for

each node in S(mi, k), we compute its distance from mi. We then find the node

mmin ∈ VM with the least number of k-hop neighbors, and for each of its k-hop

neighbors, we check whether that neighbor is reachable within k hops from every

other node in VM .

Next we discuss a series of optimizations that improve upon this baseline

algorithm.

4.4.2.1 Simultaneous Traversal

In the baseline algorithm, an edge may be traversed multiple times if it is

shared among the neighborhoods of the nodes in VM (this will often be the case).

We reduce the number of such edge traversals by traversing the neighborhoods

of all nodes in VM simultaneously, using a breadth-first algorithm whose queue is

initialized with VM . In each step, we remove and process one node from the queue.

With each visited node n, for each pattern match node m ∈ VM , we maintain

PMDm[n], the current upper bound on the distance between n and m. When a

node n is visited, we update the distance vector for its neighbor n′ according to the

relation: PMDm[n′] = min(PMDm[n] + 1, PMDm[n′]) for each m ∈M . If at least

88

one of the distances is updated, then n′ is pushed on the queue. The algorithm

terminates when the queue is empty. Initially PMDm[m] = 0 for each m ∈ VM and

is equal to ∞ (or k + 1) otherwise.

4.4.2.2 Distance Shortcuts

We can save some initial PMD computation steps by utilizing the fact that

the pattern P is isomorphic to any pattern match M ∈ M. We find the dis-

tances between every pair of nodes v, v′ in the pattern, and reuse these to initialize

PMD for the nodes in VM for each match M . Specifically, for m,m′ ∈ VM , we

set PMDm[m′] = d(µ−1(m), µ−1(m′)) if d(µ−1(m), µ−1(m′)) ≤ k, and initialize it to

k+ 1 otherwise (recall that µ−1(m) denotes the pattern node ∈ P that matches the

node m ∈M).

4.4.2.3 Best-first Ordering

Depending on the order in which the nodes are visited, unnecessary traversals

can still occur despite the above two optimizations. Here we present a heuris-

tic approach to further minimize the unnecessary computation by choosing which

node to visit next. Specifically, we choose the node with the minimum score(n) =

Σm∈VMPMDm[n] in the queue to visit next. The intuition behind this heuristic is

that the node with lowest score() value is the node that is closest (of the remain-

ing nodes) to all the pattern match nodes combined, and likely more influential in

determining the distances from the pattern match nodes.

89

As an example, consider the graph in Figure 4.2(a). In this graph, the pattern

match nodes are m1, m2 and m3, and k = 3. Figure 4.2(b) shows the operation of

the simultaneous breadth-first traversal approach. Initially, the traversal queue is

initialized with the three M nodes, m1, m2, m3, along with their PMD values for

(m1,m2,m2). At each step, the node nh at the head of the queue is removed and

its neighbors are inserted into the queue along with their PMD values if they do

not exist, or their PMD values are updated if they already exist. In Figure 4.2(b),

we observe that in step 4, n1 is examined before n2, which is examined in step 5.

As a result, when n2 is examined, it updates the PMD of n1, causing it to be

reinserted, and subsequently causing n3 to be reinserted too. Figure 4.2(c) shows

the operation of the algorithm by employing the best-first order. It can be seen that

the reinsertions of nodes n1 and n3 have been eliminated, and each node is visited

exactly once. The details of the algorithm are provided in Algorithm 4.

Although the best-first approach reduces the number of traversals, it comes

with an additional cost of having to maintain a priority queue, which requires

O(log |Q|) time for insertion and deletion, where |Q| is the queue size. However,

in our implementation, we eliminate the cost of maintaining a heap-based prior-

ity queue by observing that the range of possible scores is pre-defined and small.

Specifically, score(n) ≤ (k + 1)|VP | (since PMDm[n] ≤ k + 1). Hence, we use an

array-based priority queue where we store the nodes with score equal to i at position

i, leading to a complexity of O(1) for both insertions and deletions.

90

4.4.2.4 Center-based Expansion

Best-first ordering is aimed at reducing the number of node reinsertions into

the queue; a node reinsertion may cause its neighbors to be reinserted and hence

is an expensive operation. However, best-first ordering does not entirely eliminate

node reinsertions. Our next optimization is based on the idea of identifying a set of

important nodes and making sure they are not reinserted into the queue. Let C ∈ VG

denote the set of nodes (called centers) that are picked apriori for this purpose. We

pre-compute the distances d(c, n) ∀ c ∈ C, n ∈ VG. At query time, we insert these

nodes along with their scores (computed at query time) to the traversal queue as

part of the queue initialization, i.e., PMDm[c] = d(c,m) for all c ∈ C and m ∈ VM .

Now once these nodes are visited (and their neighbors processed), they will never be

reinserted into the queue. Further, we can use the triangle inequality to get tighter

upper bounds on the distances for other nodes. For any m,n′, c ∈ VG, we have that

d(m,n′) ≤ d(m, c) + d(c, n′). So when we visit a node n whose neighbor n′ is not

yet initialized, we can set the PMD values of n′ as:

PMDm[n′] = min(PMDm[n] + 1,minc∈C(d(m, c) + d(c, n′)))

Our final task is to choose a set of centers apriori. Many network centrality

measures have been proposed in the social network analysis literature to reflect

various notions of importance in social networks [114] that we can use for this

purpose, including page rank, betweenness centrality, closeness centrality, to name

a few. In our implementation, we pick C to be the set of nodes with the highest

91

degree centrality, i.e., the nodes with the highest degrees, primarily due to its low

computation cost compared to other centrality measures.

4.4.2.5 Pattern Match Clustering

The algorithm presented so far processes each pattern match independently.

Since many pattern matches may be close together, and in fact may overlap, pro-

cessing groups of them together could potentially lead to more savings. However,

the trade-off here is a larger number of distance computations – for a pattern match

M that is processed in isolation, we compute distances of all nodes in M to all nodes

that are within k hops of at least one node in M . If we were to process multiple

pattern matches together, a larger set of distances has to be computed (for every

node in a pattern match, we have to compute distances to all database nodes that

are within k hops of a node in any pattern match).

We use the center distance index along with the K-means clustering algorithm

to group pattern matches together. For each matchM , we construct a feature vector:

F (M) = 〈d(c1,m1), d(c1,m2), . . . , d(c|C|,m|VP |)〉

After computing these feature vectors for all the matches, we use the K-means

clustering algorithm [115] to cluster the matches into K clusters. (We discuss the

issues in choosingK in the next section.) We then process each cluster independently

by simultaneously expanding around all pattern matches in the cluster.

Incorporating this final optimization gives us our proposed pattern-driven al-

92

gorithm (called PT-OPT). The details of the algorithm are listed in Algorithm 4.

(We omit the pattern clustering optimization for simplicity.)

Input : Database graph G; pattern P ; set of nodes Vσ(G); neighborhood
radius k; set of centers C

Output: The number of matches of P within k hops of each node of Vσ(G)

M=pattern-match(G,P);1

for M ∈M do2

for m ∈ VM ,m′ ∈ VM do3

if d(µ−1(m), µ−1(m′)) ≤ k then4

PMDm[m′]← d(µ−1(m), µ−1(m′);5

else6

PMDm[m′]← k + 1;7

Q← VM ;8

while Q is not empty do9

n← argminq∈Q
∑

m∈VM PMDm[q];10

dequeue(Q, n);11

near ← TRUE; far ← TRUE;12

for m ∈ VM do13

if PMDm[n] > k then near ← FALSE;14

if PMDm[n] < k then far ← FALSE;15

if near then N [M]← N [M] ∪ n;16

if not far then17

for n′ ∈ N(n) do18

noChange← TRUE;19

for m ∈ N(M) do20

if PMDm[n′] = NULL then21

noChange← FALSE ;22

PMDm[n′]←23

min(PMDm[n] + 1,minc∈C(d(m, c) + d(c, n′)));

if PMDm[n′] > PMDm[n] + 1 then24

noChange← FALSE ;25

PMDm[n′]← PMDm[n] + 1;26

if not noChange then enqueue(Q, n′);27

N [M]← N [M] ∩ Vσ(G);28

for n ∈ N [M] do counts[n]← counts[n] + 1;29

return counts;30

Algorithm 4: Pattern-driven Algorithm

93

Handling Subpatterns: To handle subpatterns, we use µ(VSP ,M) instead of VM

in the algorithm. In other words, for each match M , we only consider its subgraph

incident on the nodes in VM that match nodes in the subpattern.

Handling Pairwise INTERSECTION and UNION: To handle INTERSEC-

TION, we note that all the pairs inN [M] already have the pattern in the intersection

of their neighborhood. Therefore, instead of adding the match M to each node in

N [M], we add it to each node pair in N [M]×N [M]. For UNION, for each match

M , we partition the set N(M) into all possible size 2 partitions P1, P2. We denote

nodes reachable from P1 and P2 by N [P1] and N [P2], respectively. The match M is

added for each pair of nodes (n1, n2) ∈ N [P1]×N [P2]. Because of the requirement

to partition the pattern in different ways, and perform the computation in on every

partitioning way, pattern-driven UNION evaluation is only useful for very simple

and selective patterns.

4.5 Experimental Evaluation

In this section, we present the results of a comprehensive experimental eval-

uation using our prototype implementation, which is written in Java on top of

the disk-based graph database engine Neo4j [116]. We begin with comparing our

graph pattern matching algorithm with the prior approach by He et al. [9], and

demonstrate that our approach of using candidate neighbor sets results in orders

of magnitude savings. We then compare the performance of our node-driven and

pattern-driven algorithms, and we study the effect of the various optimizations pro-

94

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

path2 clq3 clq3-tail sqr

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

A B C

A

B C

A

B
C D

A B

C D

A B

C D

A B

C D

sqr-dgn clq4 clq3-unlb

Figure 4.3: Query patterns used in the synthetic dataset experiments – the letters
inside the circles indicate the label of the node.

posed for pattern-driven algorithms in detail. Furthermore, we discuss a real-world

experiment, where we solve a link prediction problem over DBLP through our frame-

work and report its results.

For the first set of experiments, we use synthetic database graphs generated

according to the preferential attachment model [53]. For labeled graphs, the labels

are generated randomly. The graph sizes vary from 20K nodes to 1M nodes, with

the number of edges 5× the number of nodes in all graphs. The patterns used in the

experiments are shown in Figure 4.3. All experiments were performed on identical

Linux machines with 2.2 GHz quad-core processor, 8 GB of RAM, and a 750 GB

7200 RPM disk drive.

95

0.1	

1	

10	

100	

1000	

200k	 400k	 600k	 800k	 1m	

Ti
m
e	
(m

in
)-‐
	 lo
g	
sc
al
e	

Graph	 size	 (number	 of	 nodes)	

GQL-‐clq3	 GQL-‐clq4	

CN-‐clq3	 CN-‐clq4	

0	

50	

100	

150	

200	

250	

300	

sqr	 clq3	 clq3-‐tail	 sqr-‐dgn	 clq4	 path2	

6.0	 2.2	 7.3	
2.8	 3.5	 2.0	

297.3	

256.1	

187.2	

113.8	

33.4	

Ti
m
e	
(m

in
)	

PaAern	 shape	

CN	 GQL	

(a) (b)

0	

1	

2	

3	

4	

5	

6	

20k	 40k	 60k	 80k	 100k	

Ti
m
e	
(m

in
)	

Graph	 size	 (number	 of	 nodes)	

ND-‐PVOT	

ND-‐DIFF	

PT-‐OPT	

PT-‐RND	

PT-‐BAS	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

200k	 400k	 600k	 800k	 1m	

Ti
m
e	
(m

in
)	

Graph	 size	 (number	 of	 nodes)	

ND-‐PVOT	

ND-‐DIFF	

PT-‐OPT	

PT-‐RND	

PT-‐BAS	

(c) (d)

0	

5	

10	

15	

20	

25	

30	

20%	 40%	 60%	 80%	 100%	

Ti
m
e	
(m

in
)	

Selec5vity	

ND-‐PVOT	 ND-‐DIFF	 PT-‐OPT	
PT-‐RND	 PT-‐BAS	

3	

3.5	

4	

4.5	

5	

5.5	

6	

0	 6	 12	 18	 24	

Ti
m
e	
(m

in
)	

Number	 of	 centers	

DEG-‐CNTR	 RND-‐CNTR	

(e) (f)

3	

3.2	

3.4	

3.6	

3.8	

4	

4.2	

4.4	

4.6	

4.8	

5	

100	 200	 300	 400	 500	 600	

Ti
m
e	
(m

in
)	

Number	 of	 clusters	

OPT-‐CLUST	 RND-‐CLUST	
NO-‐CLUST	

0	

5	

10	

15	

20	

25	

N
od

e-‐
2H

op
	

Ed
ge
-‐2
H
op

	

N
od

e-‐
3H

op
	

Ja
cc
ar
d	

Ed
ge
-‐3
H
op

	

Tr
ia
ng
le
-‐3
H
op

	

N
od

e-‐
1H

op
	

Tr
ia
ng
le
-‐2
H
op

	

Ed
ge
-‐1
H
op

	

Tr
ia
ng
le
-‐1
H
op

	

%
	 P
re
ci
si
on

	 @
	 K
	 K=50	

K=600	

(g) (h)

Figure 4.4: (a) Comparison with GQL for different graph sizes and (b) for different
patterns; (c) Pattern census: varying graph size (unlabeled graphs); (d) Pattern
census: varying graph size (labeled graphs); (e) Pattern census: varying node selec-
tivity; (f) Effect of centers on the pattern-driven algorithm; (g) Effect of clustering
on the pattern-driven algorithm; (h) Precision @50 and @600 of DBLP link predic-
tion using different structures and hop lengths.

96

4.5.1 Experiments Using Synthetic Datasets

We begin with comparing the performance of our pattern matching algorithm

(called CN) with GraphQL system [9], also written in Java (called GQL). For this

purpose, we use the executable binaries that we obtained from the authors of the

system.

4.5.1.1 Comparison with GQL for Different Graph Sizes

Figure 4.4(a) shows the results (in log scale) of comparing CN with GQL

for varying graph sizes (from 200K nodes/1M edges to 1M nodes/5M edges), with

labels drawn randomly from a set of 4 labels, for two query patterns: clq3 and clq4

(Figure 4.3). As we can see, our algorithm is orders of magnitude better in almost all

cases (with speedups ranging from 10 to 140). Our detailed study (omitted because

of space constraints) indicates that the speedups are attributable, in large part, to

the use of candidate neighbor sets.

4.5.1.2 Comparison with GQL for Different Patterns

Here we compare CN and GQL using a 1M node graph (with 5M edges),

for the the labeled query patterns shown in Figure 4.3. The results are shown in

Figure 4.4(b). GQL takes 37 hours for calculating matches for sqr (480 times the

runtime of CN); therefore, we do not show that point on the graph. The results

confirm that our algorithm outperforms GQL by orders of magnitude.

For the next three experiments (3, 4 and 5), we compare the following pattern census

97

query evaluation algorithms:

Node-driven baseline (ND-BAS): In this algorithm, we extract S(n, k) for each node

and use the pattern matching algorithm to count the number of matches.

Node-driven differential counting method (ND-DIFF): This method, based on the

GADDI index method in [80], traverses the nodes in the graph in some or-

der, and computes the pattern matches for one node by utilizing the pattern

matches for the prior node in the sequence.

Node-driven pivot method (ND-PVOT): Our proposed pivot indexing node-driven

algorithm.

Pattern-driven baseline (PT-BAS): The baseline algorithm presented in Section 4.4.1.

Optimized pattern-driven algorithm (PT-OPT): The proposed pattern-driven algo-

rithm with all the proposed optimizations. Unless otherwise is stated, the

number of clusters is set to be the number of matches divided by 4, and we

use 12 centers. The number of K-means iterations is 10.

Random-first pattern-driven algorithm (PT-RND): The proposed pattern-driven al-

gorithm with all the proposed optimizations except best-first traversal. In-

stead, we choose the next node to process from the queue randomly.

4.5.1.3 Varying Graph Size – Unlabeled Graphs

Here we compare the performance of the 6 algorithms in evaluating the query

(with k = 2):

98

SELECT ID, COUNT(clq3-unlb, SUBGRAPH(ID, 2))

FROM NODES

We vary the graph size from 20K nodes to 100K nodes. The results are shown

in Figure 4.4(c). We do not plot the running time of ND-BAS – for 20K nodes,

the runtime of ND-BAS is 116 minutes, which is 218 times higher than our best

performing algorithm (ND-PVOT). We see that ND-PVOT outperforms not only

the other node-driven algorithms, but also the pattern-driven algorithms. This is

because the query pattern (unlabeled triangle) is not very selective, i.e., the number

of matches is quite high, and hence the approaches based on searching from patterns

do not perform as well. We observed consistent behavior for other non-selective

query patterns.

4.5.1.4 Varying Graph Size – Labeled Graphs

Here we use graphs with node labels randomly chosen from a set of 4 labels,

and vary the graph size from 200K nodes to 1M nodes. We use a similar query as

above (k = 2) but use a labeled triangle pattern (clq3) instead. As we can see (Fig-

ure 4.4(d)), PT-OPT significantly outperforms the other pattern-based algorithm,

including PT-RND, illustrating the importance of the best-first order in reducing

the overall runtime. Pattern-driven algorithms generally outperform node-driven

algorithms because the query pattern is more selective in this case.

99

4.5.1.5 Varying Focal Node Selectivity

Next, we vary the selectivity of the focal nodes specified in the query, controlled

by the WHERE clause. We use an unlabeled 500K database graph. The query is:

SELECT ID, COUNT(clq3-unlb, SUBGRAPH(ID, 2))

FROM NODES WHERE RND()<R

where we vary R from 20% to 100%. As shown in Figure 4.4(e), performance of

pattern-driven algorithms is not affected by the focal nodes’ selectivity, because

those algorithms start from the pattern matches and examine their neighborhood

irrespective of whether the nodes in the neighborhood are selected or not. On the

other hand, running time of the node-driven methods increases linearly with the

selectivity, and eventually becomes worse than pattern-driven methods.

4.5.1.6 Effect of the Number of Centers on Pattern-driven Algorithm

Next we examine the effect of both the number of centers and how they are

chosen, using a labeled graph of 1M nodes and 5M million edges, and 4 labels. The

query is:

SELECT ID, COUNT(clq3, SUBGRAPH(ID, 2))

FROM NODES

We compare the proposed way of choosing centers, i.e., using nodes with the highest

degree (DEG-CNTR) versus using randomly chosen centers (RND-CNTR). For both

methods, we vary the number of centers from 0, which corresponds to not using

centers, to 24 centers. Note that the number of centers affects both (1) the clustering

100

quality and (2) distance initializations in the pattern match neighborhoods (PMD).

The purpose of this experiment is to study (2) in isolation of (1) since using too

few centers clearly degrades the clustering quality and the overall performance.

Therefore, we isolate the effect of (1) in this experiment by fixing the number of

centers that are used for clustering regardless of the number of centers used for

PMD. The results are shown in Figure 4.4(f). We can see that using the high-

degree nodes as centers greatly helps the query performance, whereas with random

centers the performance worsens with increasing number of centers. On the other

hand, looking at the performance of DEG-CNTR as the number of centers increases,

we observe that the performance initially improves, but as the number of centers

becomes too large, the overheads of using centers start dominating.

4.5.1.7 Effect of Pattern Clustering

Finally we study the effect of the pattern clustering optimization on the per-

formance of our proposed pattern-driven algorithm using a labeled graph of 1M

nodes and 5M edges, and 4 labels. The query is:

SELECT ID, COUNT(clq3, SUBGRAPH(ID, 2)) FROM NODES

We compare the performance of three alternatives: (1) no clustering (NO-CLUST),

(2) random clustering (RND-CLUST), and (3) the proposed K-means approach

that is based on using the centers (OPT-CLUST). We also vary the number of clus-

ters from 100 to 600 to show the effect of changing the number of clusters on the

performance. Note that this parameter has no effect on NO-CLUST.

101

The results are shown in Figure 4.4(g). We observe that OPT-CLUST sig-

nificantly outperforms both RND-CLUST and NO-CLUST, illustrating both the

benefits of clustering and the need to choose the cluster carefully. Furthermore, we

can see that there is a trade-off in setting the number of clusters – with too large

a number of clusters (600), there is no significant advantage to using clusters since

the matches are largely processed independently, but the performance also degrades

with too few clusters (100). This is because in the latter case, there are too many

matches in each cluster and the resulting redundant distance computations outweigh

the benefits of clustering.

4.5.2 Real-world Experiment

In this experiment, we utilize our language to compare the predictive power of

different structures in predicting future scientific collaborations (this is an example

of a link prediction task). We collected publication data from SIGMOD, VLDB and

ICDE conferences from 2001 to 2010. Given the co-authorship information from

years 2001 to 2005, we predict collaborations in the period from 2006 to 2010. For

this purpose we defined 9 pairwise measures using our language. For each pair of

authors, we measure the number of nodes, edges and triangles in their common 1,

2, and 3 hop neighborhoods. In other words, we use a query of the form:

SELECT N1.ID, N2.ID,

COUNT(struct, SUBGRAPH-INTERSECTION(N1.ID, N2.ID, r))

FROM NODES AS N1, NODES AS N2, EDGES AS E

102

where struct represents a node, edge, or triangle pattern, and k is 1, 2 or 3, resulting

in 9 total configurations. In the prediction step, for each configuration, we pick the

top K pairs in terms of their common structures (i.e., the pairs of authors with the

highest counts for the corresponding pattern), and then measure the precision at K

defined as the number of correct predictions divided by K. Figure 4.4(h) shows the

precision of each of the nine configurations at K = 50 and K = 600. In addition

to the nine measures, the figure shows the performance of Jaccard coefficient, a

similarity measure that is regarded as a good predictor and commonly used in link

prediction [22]. We also measured the precision of the random predictor (which

selects random K pairs of nodes) and it yielded a zero precision at both K = 50

and K = 600. For our measures, common nodes within 2 hops has the strongest

prediction power, almost twice that of Jaccard coefficient. Several other measures

also outperform Jaccard coefficient. This simple experiment illustrates the power of

our framework in enabling social network analysis.

103

Chapter 5

Uncertain Graph Data Querying

5.1 Introduction

Although graph cleaning approaches proposed in Chapter 3 can be used to ad-

dress the issues of uncertainty and noise in graph data before querying or analyzing

it, uncertainty and noise can also be directly be modeled by associating proba-

bility distributions with graph data, and then, the probabilistic graph data can

be directly queried. Therefore, in this chapter, we study the problem of querying

uncertain graphs with identity uncertainty. We present our proposed approach for

modeling graphs with attribute uncertainty, edge existence uncertainty, and identity

uncertainty. Furthermore, we propose an efficient algorithm to perform subgraph

pattern matching queries over such uncertain graphs. Although some earlier work,

e.g., [98, 99, 100, 117], has addressed the issues of uncertainty in graphs, none of that

work has considered the three types of uncertainty together, and none of them has

addressed the problem of modeling and querying graphs with identity linkage un-

certainty. Before proceeding to the formal model, problem statement and proposed

solutions, we discuss a detailed motivating example.

104

5.2 Motivating Example

Consider a case where we want to build a system to help organizations find

experts in different domains and at different levels. We achieve that by integrating

information about experts and their affiliations from multiple sources. In this ex-

ample, we assume three sources: an online professional network (e.g., LinkedIn), an

online social network (e.g., Facebook), and personal webpages or blogs. We consider

the experts’ names, their affiliations (specifically, Academia (a), Research Lab (r),

or Industry (i)), and relationships between experts. Figure 5.1 illustrates a small

example, where we omit names for clarity. We use the term reference to denote the

observed objects, which in this example are strings encoding names, while we use

the term entity to refer to real-world objects, that is, the experts in our case. A

real-world object may thus correspond to a collection of references, as names may

be abbreviated, misspelled, etc. In Figure 5.1(a), nodes represent references, let-

ters inside nodes represent reference IDs, and letters outside nodes represent labels,

that is, affiliations, along with their probabilities in parentheses. Consider node r1,

extracted from a personal webpage. Suppose that a text analysis method suggests

that the name is “Gerald Maya” and the affiliation is industry with probability 0.75

and a Research Lab with probability 0.25. Nodes r2 and r3 are extracted from an

online professional network, with name “Becky Castor” and an Academia affiliation,

and the name “Christopher Tucker” and a Research Lab affiliation, respectively.

Finally, node r4 is extracted from an online social network, with the name “Chris

Tucker” and an Industry affiliation. Furthermore, relationships between the indi-

105

r1

a(1) r(1)
r(0.25),
i(0.75)

i(1)

1

0.5

0.9

Pr of
merging
c, d is
0.8

r2 r3

r4

a(1) r(1)

i(1)

1

0.5

0.9

r(0.25),
i(0.75)

s1 s2 s3

s4

a(1)

r(0.5), i(0.5)

0.75

0.9

r(0.25),
i(0.75)

s1 s2

s34

r

a

i

q1

q2

q3

(a) (b) (c) (d)

Figure 5.1: (a) Reference-level network, (b), (c) the two possible entity graphs, (d)
a query graph

viduals are extracted (represented as edges in the figure) and are associated with

probabilities that reflect the likelihood of the relationship’s existence. These proba-

bilities can be calculated based on whatever information or signals is available from

these online resources, such as the number of common connections or shared at-

tributes or the history of communication. Since “Christopher Tucker” and “Chris

Tucker” seem to be the same person based on name similarity, we put them together

in the same reference set to indicate that these two references may refer to the same

entity (depicted as a dashed line in the figure). To quantify identity uncertainty,

which is the uncertainty of having multiple references referring to the same real-

world entity, we assign this reference set a probability of 0.8, denoting the likelihood

that the elements in the set correspond to a single real-world entity.

Figures 5.1(b) and (c) illustrate the two possible sets of entities with their

labels and relations for the example reference network shown in Figure 5.1(a), where

the letters inside the nodes represent entity IDs. Figure 5.1(b) depicts the entity

graph in which r3 and r4 remain unmerged, i.e., assumed to be separate real-world

entities, (pr = 0.2), and Figure 5.1(c) depicts the case where they are merged, i.e.,

106

assumed to be the same real-world entities, (pr = 0.8) to form a new node s34 with

its own label and edge probability distributions. Going from a set of references to

an entity requires merging the information associated with the references, that is,

their labels and the relationships they participate in. In this example, we simply

average the probability distributions. Since r3 has label r and r4 has label i, we

assign a label distribution of r(0.5), i(0.5) to entity s34. Similarly, s34 has an edge

to s2 with pr = 0.75 (average of r3’s edge with pr = 1 and r4’s edge with pr = 0.5).

Clearly, we want to specify queries to our information system at the level of

entities rather than references. In this work, we focus on subgraph pattern match-

ing queries, perhaps the most widely used and studied class of queries over graphs.

Figure 5.1(d) depicts a query which asks for all paths of length 2 over nodes labeled

(r, a, i). In addition to the query graph, a query specifies a minimum threshold α,

which we set to 0.25 in this example, to indicate that only matches with probability

larger than α should be returned. In this simple case, we can answer our query

by examining all possible matches. In the entity graph in Figure 5.1(b), with r3

and r4 unmerged, the nodes (s3, s2, s4) form a path with the required labels. The

probability of that path is computed by multiplying together the three node label

probabilities (1, 1, 1), the two edges probabilities (1, 0.5), and the probability that

the nodes r3 and r4 are not merged (0.2); the resulting probability of the match

is 0.1, which is below our cutoff of 0.25. There are two more potential matches,

(s1, s2, s4) and (s3, s2, s1), but neither of them satisfies the minimum threshold con-

straint. In the second entity graph in Figure 5.1(c), there are two potential matches

for the query: (s1, s2, s34) and (s34, s2, s1). The probability of (s1, s2, s34) being a

107

match to the query is 0.084, which does not meet our threshold, whereas the proba-

bility of (s34, s2, s1) is 0.253. Therefore, (s34, s2, s1) is the only answer to our query.

Clearly, such an exhaustive approach is infeasible in practice for larger graphs. In

the remainder of this chapter, we therefore develop a scalable approach to answer

subgraph pattern matching queries in this setting.

5.3 Uncertain Graph Modeling

We now discuss our formal model for the types of uncertainties arising in sit-

uations as described in the example above, where we are given information about

references, or mentions of objects, but are interested in queries about entities, or

the objects themselves. We introduce probabilistic entity graphs, which define a

probability distribution over graphs describing entities, their labels, and links be-

tween them. The key challenge here is that references induce constraints on which

entity nodes can co-occur in the same graph, as each graph structure corresponds

to one possible way of assigning references to existing entities. To deal with these

dependencies, we represent our probability distribution as a probabilistic graphical

model (PGM) [118]. After a quick summary of the necessary basics, we introduce

the notion of a probabilistic graph description (PGD), and show how the PGD in

turn defines a probabilistic entity graph. We first focus on the basic case, where dis-

tributions over labels and links are all independent, and then show how additional

dependencies can directly be introduced.

A PGM P = 〈V ,F〉 defines a joint probability distribution over its random

108

Notation Definition
Σ Set of labels
R Set of references
S Set of sets of references
r Reference in R
s A set in S representing a potential real-world entity
r.x Random variable representing the reference’s label
(r1, r2) Edge in R×R
(r1, r2).x Random variable representing the edge’s existence
s.x, s.n Random variables representing the existence of an entity (used inter-

changeably in the contexts of PGD and PEG, respectively)
s.l Random variable representing the entity’s label
(s1, s2).e Random variable representing the existence of edge between entities s1

and s2

S.n Shorthand for s1.n = n1, . . . , s|S|.n = n|S|
Sr =
{s1, . . . , sk}

Subset of S that contains all sets that contain r, i.e., {s ∈ S|r ∈ s}

v Entity graph node
e Entity graph edge
v.n, v.l Entity graph random variables for node’s existence, and node’s label,

respectively

Table 5.1: Notations used in Section 5.3

variables V via its set of factors F . Each factor f is defined over a subset Vf of

V and represents a dependency between those random variables. Given a complete

joint assignment v ∈ Dom(V) to the variables in V , the joint distribution is defined

by Pr(v) = 1
Z
∏

f∈F f(vf), where vf denotes the assignments restricted to the

arguments Vf of f and Z =
∑

v′∈Dom(V)

∏
f∈F f(v′f) is a normalization constant

referred to as the partition function. The independencies in the distribution defined

by a PGM are represented graphically in its Markov network, which contains one

node for each random variable, and an edge between a pair of random variables if

and only if the two variables co-occur in some factor. Each connected component in

the Markov network corresponds to a part of the model that is independent from the

rest. We can thus compute the normalized probability for each connected component

109

separately and multiply them together to obtain the full joint distribution.

As a first step towards our probabilistic model, we now introduce random

variables for labels of references (r.x), existence of edges between pairs of references

(e.x), and existence of an entity corresponding to a set of references (s.x). We

further specify a probability distribution over each such random variable.

Definition 1. Probabilistic Graph Description: A probabilistic graph descrip-

tion (PGD) is a tuple D = (R, S,Σ, P,mΣ,m{T,F}), where

• R is a set of references.

• S is a set of subsets of R including at least all singleton subsets.

• Σ is a set of labels.

• P is a set of probability distributions containing (1) for each r ∈ R, a proba-

bility distribution pr(r.x) over a random variable r.x with values from Σ, (2)

for each (r1, r2) ∈ R × R, a probability distribution p(r1,r2)((r1, r2).x) over a

random variable (r1, r2).x with values from {T, F}, and (3) for each s ∈ S,

a probability distribution ps(s.x) over a random variable s.x with values from

{T, F}.

• The merge functions mΣ and m{T,F} transform a set of probability distributions

over random variables with values in Σ and {T, F}, respectively, into a single

such distribution.

For example, in Figure 5.1(a), R = {r1, . . . , r4}, S = {{r1}, {r2}, {r3}, {r4}, {r3, r4}},

Σ = {a, r, i}, P is the set of probability distributions over the reference labels, re-

110

lations, and identity uncertainties, and finally, both mΣ and m{T,F} are probability

distribution averaging functions.

A PGD thus specifies the set of observed references R together with their pos-

sible labels as well as probabilities for the existence of edges between two references.

Each set in S corresponds to a potential entity and contains all references to that

entity. The PGD specifies independent probability distributions for the existence of

such entities. The merge functions are used to compute new probability distributions

after merging two or more references into a single entity. Different merge functions

are appropriate in different settings. The simplest merge function is average, where

we simply average the input probability distributions (this is the merge function we

use in our experimental evaluation). Another example of a merge function for mT,F

is disjunct; where the output probability distribution is the disjunction of the input

distributions.

In the next step of our model construction, the probabilistic entity graph

combines these independent probability distributions into a graphical model that

encodes the dependencies between entities induced by shared references and com-

bines the distributions over labels and edges using the merge functions provided by

the PGD.

Definition 2. Probabilistic Entity Graph: For a given PGD D, the probabilistic

entity graph (PEG) U is a graphical model with set of random variables V = {s.n|s ∈

S} ∪ {s.l|s ∈ S} ∪ {e.e|e ∈ S × S} and set of factors F defined as follows. For each

111

r ∈ R with Sr = {s1, . . . , sk} = {s ∈ S|r ∈ s}, F contains a node existence factor

fN(s1.n = v1, . . . , sk.n = vk) =

ps(si.x = T) if vi = T and vj = F for all j 6= i

0 otherwise.

For each s ∈ S, F contains a node label factor

Pr(s.l) =
[
mΣ({pr|r ∈ s})

]
(s.l) (5.1)

For each (s1, s2) ∈ S × S, F contains an edge existence factor

Pr((s1, s2).e) =
[
m{T,F}({p(r1,r2)|ri ∈ si})

]
((s1, s2).e) (5.2)

Identity uncertainty is modeled by the node existence factors (fN(s1.n =

v1, . . . , sk.n = vk)), which ensure that all assignments where two entity nodes share

a reference have zero probability. The node label factors (Pr(s.l)) are probability

distributions obtained by aggregating the label probability distributions of all ref-

erences in the underlying set s via the node label merge function. In the same way,

the edge existence factors (Pr((s1, s2).e)) are probability distributions obtained by

aggregating the edge existence probability distributions of all pairs of references

from the underlying sets via the edge existence merge function.

Exploiting Independence: Writing out the probability distribution defined by

112

the PEG, we have

Pr(S.n, S.l, (S × S).e) =
1

Z
·
∏
r∈R

fN(Sr.n) ·
∏
s∈S

Pr(s.l) ·
∏

(s1,s2)∈S×S

Pr((s1, s2).e)

(5.3)

We use shorthand notation for assignments to sets of random variables, e.g., S.n for

s1.n = n1, . . . , s|S|.n = n|S|. The partition function Z is the sum of the factor prod-

uct over all variable assignments. As all node label and edge existence factors are

probability distributions independent of all other factors, Equation 5.3 is equivalent

to

Pr(S.n, S.l, (S × S).e) = Pr(S.n) ·
∏
s∈S

Pr(s.l) ·
∏

(s1,s2)∈S×S

Pr((s1, s2).e) (5.4)

where Pr(S.n) is the normalized product of all node existence factors, that is, the

partition function Zn is with respect to those factors only:

Pr(S.n) =
1

Zn

∏
r∈R

fN(Sr.n) (5.5)

It is often possible to further decompose this function, taking into account the

independencies encoded in the Markov network. Let C(S.n) be the partitioning of

the set of random variables S.n induced by the connected components of the Markov

network, that is, each element of C(S.n) contains all random variables participating

113

in one such component. We can then rewrite the above equation as

Pr(S.n) =
∏

Si.n∈C(S.n)

1

Zni

∏
r∈R∧Sr⊆Si

fN(Sr.n)

=
∏

Si.n∈C(S.n)

Pr(Si.n) (5.6)

where the partition function Zni
normalizes over all assignments for random vari-

ables in Si.n.

Distribution over Graphs. Clearly, not all assignments to random variables

in the model above directly correspond to legal graphs. We now show how to

obtain the final distribution over labeled graphs. The set of possible world graphs

PW (U) of a PEG U consists of those graphs W = (V,E, l(.)) where V is a set of

entity nodes corresponding to reference sets from S (merged into a single entity),

E ⊆ V × V is a set of edges between them, and the label function l : V → Σ

labels these nodes with elements of Σ. Slightly abusing notation, we often identify

a graph node v ∈ V with the corresponding set of references s ∈ S, and use both

notations interchangeably. This allows us to treat V as a subset of S and thus

simplify notation. Each possible world graph W induces a partial value assignment

(S.nW , V.lW , (V ×V).eW) to the random variables in the graphical model as follows.

For each s ∈ V , we have s.nW = T , and for each s ∈ S \ V , we have s.nW = F ,

that is, values of node existence variables mirror the (non-)existence of nodes in W .

For each s ∈ V , we have s.lW = l(s), that is, for all existing nodes, values of node

label random variables mirror the labels in W , and all other node label random

114

variables remain unassigned. For all (s1, s2) ∈ E, we have (s1, s2).eW = T , and for

all (s1, s2) ∈ (V × V) \ E, we have (s1, s2).eW = F , that is, for all pairs of existing

nodes, edge existence variables mirror the (non-)existence of edges in the graph,

and all other edge existence random variables remain unassigned. The probability

of W is now obtained based on Equation 5.4 by marginalizing over all unassigned

variables. As those all appear in independent factors only, we get

Pr((V,E, l(.))) =Pr(S.nW) ·
∏
v∈V

Pr(v.l = l(v))

·
∏

(s1,s2)∈E

Pr((s1, s2).e = T) ·
∏

(s1,s2)∈(V×V)\E

Pr((s1, s2).e = F)

(5.7)

As every full assignment to the variables in the graphical model contributes to

exactly one graph’s probability, this defines a probability distribution over possible

world graphs.

5.4 Subgraph Pattern Matching

We now define the task of subgraph pattern matching over uncertain graphs.

Our discussion assumes undirected graphs, but our approaches are equally applicable

to directed graphs. We start by defining a match of a query Q in a graph G where

there is no uncertainty, and we then define probabilistic subgraph pattern matching.

A query graph Q = (VQ, EQ) is a graph where each node v ∈ VQ is labeled with a

label lQ(v) ∈ Σ.

115

Definition 3. Match: Given a labeled graph G = (VG, EG, lG(.)) and a query graph

Q = (VQ, EQ, lQ(.)), a subgraph M = (VM , EM) of G is a match of Q in G if and only

if there is a bijective mapping ψ : VQ → VM such that (i) ∀u ∈ VQ : lQ(u) = lG(ψ(u))

and (ii) (ψ(u), ψ(v)) ∈ EM if and only if (u, v) ∈ EQ.

Definition 4. Probabilistic Match: Given a PEG U and a query graph Q, a

graph M is a probabilistic match of Q in U if and only if M is a match of Q in at

least one legal possible world graph G of U , that is, one where no two nodes share

a reference. The probability of the match M is the sum of the probabilities of all

possible world graphs of U where M is a match:

Pr(M) =
∑

G∈PW (U)∧M⊆G

Pr(G) (5.8)

Definition 5. Probabilistic Subgraph Pattern Matching: Given a PEG U ,

a query graph Q, and a probability threshold α, find all matches of Q in U whose

probability Pr(M) is greater than or equal to α.

Naively, this problem could be solved by performing subgraph pattern match-

ing over each possible world graph and for each match found, summing the prob-

abilities of possible worlds it appears in. Clearly, this approach is computationally

infeasible. In the remainder of this section, we show how to (a) find all matches

by performing subgraph matching on a single graph only, and (b) calculate the

probability of a given match directly, without need to explicitly consider all pos-

sible worlds it appears in. This provides the basis for the algorithms discussed in

Section 5.5, which further speed up probabilistic subgraph pattern matching.

116

Finding Matches. For a given PEG U , let GU be the graph that has a node

for each s ∈ S, labeled with the set of labels L(s) that are associated with s with

non-zero probability, that is, L(s) = {l′|l′ ∈ Σ ∧ Pr(s.l = l′) > 0}, and an edge

between two nodes s1 and s2 if and only if Pr((s1, s2).e = T) > 0. We generalize

the notion of match to this case by requiring the query node label to be in the set

of labels of the matched node. Clearly, if M is a match in a legal possible world of

U , it is a match in GU . However, while all matches M in GU are a match in some

possible world of U , this world might not be legal. This is the case if and only if the

match includes two nodes that share a reference. We therefore further extend the

matching procedure on GU to not return matches where two nodes share a reference.

This ensures that the matches on GU are exactly the probabilistic matches on U .

For the discussions to follow, we use the term probabilistic entity graph to denote

GU as well, as it is the structure that our algorithms operate on.

Calculating Probabilities. In Equation 5.8, the probability of a match M found

on GU is defined based on a set of possible world graphs, summing their probabilities

as given by Equation 5.7. The graphs in this set are exactly those containing all

nodes in VM with correct labels as well as all edges in EM , and arbitrary sets of

additional nodes and edges. Thus, the probability of M can be rewritten as the

117

marginal

Pr(M) = Prn(M) · Prle(M) (5.9)

Prn(M) = Pr(VM .n = T) (5.10)

Prle(M) =
∏
v∈VM

Pr(v.l = l(v)) ·
∏
e∈EM

Pr(e.e = T) (5.11)

where Pr(VM .n = T) is the corresponding marginal of Pr(S.n) that sums out values

of all node existence variables whose nodes are not part of M . In practice, as

in Equation 5.6, we exploit independencies in the underlying graphical model to

calculate this probability as a product of existence probabilities of smaller sets of

nodes. Recall that C(S.n) partitions the set of node existence random variables S.n

based on the connected components of the Markov network. As each node in a

match corresponds to one such random variable, we can use the same partitioning,

restricted to the set of nodes VM in the match, to calculate Pr(VM .n = T) as∏
C.n∈C(S.n) Pr((VM .n∩C.n) = T). Note that Prle(M) is subgraph decomposable, that

is, for two disjoint subgraphs M1 and M2, Prle(M1) × Prle(M2) = Prle(M1 ∪M2),

while this is not the case for Prn(M).

5.5 Algorithms

The problem of probabilistic subgraph pattern matching with identity uncer-

tainty is #P-complete. To increase efficiency, we propose a new path-based approach

to find probabilistic matches of queries. Our approach decomposes the query into a

118

set of paths, finds matches of individual paths, and exploits probabilistic information

to prune the space of possible matches.

By focusing on paths rather than nodes when finding candidate matches, we

can better exploit probabilistic information for pruning. If we would consider the

probabilities associated with the nodes only as the criteria for candidacy (as opposed

to paths), the search space would end up being very large, because node probabil-

ities tend to be much larger than the final query probability, leading the search

space to contain many more false positives. On the other hand, a path-based ap-

proach has better pruning capabilities, especially when used in association with path

context information and further reduction techniques as outlined in the following

paragraphs.

In order to enable efficient and scalable online processing, we divide the work

of answering probabilistic subgraph pattern matching queries into an offline and

an online phase. The offline phase first precomputes entity-level probability in-

formation. Second, it builds a novel disk-based context-aware path index on the

probabilistic entity graph, indexing not only all the paths in the PEG up to a given

length, but also other context information that captures different properties of the

path local neighborhoods (Section 5.5.1). The online phase answers the online user’s

query (Section 5.5.2). It first decomposes the query into paths and then constructs

a search space over the paths in three steps, by 1) accessing the path index to find

an initial set of path candidates, i.e., paths in the PEG that can potentially be

a match for the paths in the decomposition, 2) employing context information to

prune the sets of candidates for all query paths, and 3) reducing the search space

119

Key Value

(a,a), 0.9 Pu11, Pu21, Pu31

(a,b), 0.9 Pu43

(b,b), 0.9 Pu51, Pu52, Pu79

… …

c(v,σ)
ppu(v,σ)

fpu(v,σ) a b

v1

v2

v3 0.56 0.5

a b

v1

v2

v3 0.8 0.75

a b

v1 4 3

v2 2 1

v3 0 5

Path Index

PGD to PEG transformation
Context
Information

Figure 5.2: Schematic diagram of offline phase algorithms and indexes

for full graph matches using a technique called reduction by join-candidates, which

performs message passing in a k-partite graph where each partition corresponds to a

path in the query decomposition. This results in the final search space, from which

the algorithm then generates the actual matches. Figures 5.2 and 5.3 summarize

the offline and online phase algorithms, respectively. Notations used in this Section

are listed in Table 4.2.

5.5.1 Offline Phase

The offline phase precomputes the following pieces of information over the

probabilistic entity graph: component probabilities, path index, and context infor-

mation on nodes. We discuss each type in the following subsections.

120

Decompose

P1 P2 P3

P1 P2 P3

Pu2

Pu4

Pu5

Pu6

Pu7

Pu1

Pu3

Pu9

Pu8

Pu10

P1 P2 P3

Pu2

Pu4 Pu1

-Index lookup
-Node-level pruning
-Path level pruning
-Finding path candidates

Access offline information

Construct k-partite graph

Reduce k-partite graph
 -by structure
 -by upperbounds

Pu10

Pu1, Pu4, Pu10
Pu2, Pu4, Pu10

Output final
results

Figure 5.3: Schematic diagram of online phase algorithms

Notation Definition
P Query path
P u Entity graph path
ψ(v) Entity graph node matching the query node v
l(v) Label of node v
VM Set of nodes of subgraph M
EM Set of edges of subgraph M
Prle(M) Probability of the node label and edge existence components of sub-

graph M
Prn(M) Probability of the entity node existence component of subgraph M
α Input query threshold
β Path index construction threshold
γ Path index resolution coefficient
L Path index maximum path length
Γ(v) Neighbors of node v
refs(v) Set of underlying references of node v
c(v, σ) Cardinality of node v with respect to σ
ppu(v, σ) Partial probability upperbound of node v with respect to σ
fpu(v, σ) Full probability upperbound of node v with respect to σ
P Set of paths in a path decomposition
JP (P1, P2) Join predicates between P1 and P2

J(P1) Paths that join with P1

cn(P) Set of candidates of path P
cn(P1, P

u
1 , P2) Set of paths in cn(P2) that are candidates to be joined with P u

1 ∈ cn(P1)

Table 5.2: Notations used in Section 5.5

121

5.5.1.1 Component Probabilities

Calculating match probabilities requires evaluating Equation 5.9. To reduce

calls to the PGM engine during online inference, we precompute and store the un-

derlying probabilities. As Prle(.) is decomposable, we only precompute its parts,

that is, node label and edge existence probabilities, by applying the corresponding

merge functions on the underlying input distributions as specified in Equations 5.1

and 5.2, respectively. Since Prn(.) is not decomposable, we precompute node exis-

tence marginals for all possible valid configurations of every connected component,

i.e., those consisting of entities not sharing a reference. In general the connected

components are expected to be small enough in practice for this to be feasible. If

not, we could instead either employ an approximate inference technique to compute

the marginals, or compute them on demand using the PGM engine.

5.5.1.2 Path Index

The path index contains all paths in the probabilistic entity graph that have

length at most L, probability at least β1, and do not contain two nodes sharing

an underlying reference. Every entry in the path index consists of the following

information:

• Key: the entry’s key is a pair 〈X, π〉, where X ∈ Σl+1 is a sequence of node

labels of length l + 1, and π ∈ {β, β + γ, β + 2γ, . . . , 1} is a probability value.

The parameter γ defines the resolution of the index and provides a tradeoff

1Paths with smaller probability are computed on demand.

122

between the accuracy of the index and the time needed to access a range of

probabilities.

• Value: the entry’s value is the set of paths Pu of length l with probability

under the node label assignment X between π and π+γ satisfying the reference

constraint. For every P u ∈ Pu, we store the path itself as well as its two

probability components Prle(P
u) and Prn(P u).

Example: If a path P u = (1, 2, 3) has the probabilities Prle(P
u) = 0.9 and

Prn(P u) = 1.0 under the node label assignment (x1, x2, x3), then assuming an index

resolution γ = 0.1, this path will be associated with the key 〈(x1, x2, x3), 0.9〉.

To increase efficiency, we build a two-level index, where the first level, accessing

X via equality predicates, is a hash index, and the second level, accessing π via range

predicates, is a B+ tree index. Index construction starts with paths consisting of

a single node (l = 0) and builds entries of length l + 1 based on those of length l,

exploiting the fact that all paths with probability at least β must consist of sub-

paths with probability at least β as well. We exploit the fact that entries for different

label sequences of the same length can be constructed independently to build those

in parallel using multiple threads. We use a synchronization barrier to ensure that all

paths of the current length have been indexed before proceeding to the next length.

To increase I/O performance, we accumulate a group of records in a memory buffer

before writing the buffer to disk. Finally, for undirected graphs, entries for labels

X = {X1, X2, . . . , Xl−1, Xl} are identical to those for X’ = {Xl, Xl−1, . . . , X2, X1}

because of symmetry, and we therefore only store one direction for each such case

123

and derive the other one as needed.

5.5.1.3 Context Information

When pruning the set of candidate matches for a path in Section 5.5.2.2,

we rely on context information for nodes, which is the third type of information

precomputed during the offline phase. For a node v ∈ GU and a label σ ∈ Σ, let

N(v, σ) be the set of neighbors of v that have σ in their set of possible labels, i.e.,

N(v, σ) = {v′|v′ ∈ Γ(v), σ ∈ L(v), refs(v) ∩ refs(v′) = ∅},

where Γ(v) is the set of neighbors of node v, and refs(v) is the set of underlying

references of node v. For each node v ∈ VU and label σ ∈ Σ, we compute the

following values:

• Cardinality c(v, σ), which is simply the size of N(v, σ).

c(v, σ) = |N(v, σ)|

• Partial Probability Upperbound ppu(v, σ), which is an upperbound for

the probabilities in the neighborhood of v considering only the edges between

v and N(v, σ).

ppu(v, σ) = maxv′∈N(v,σ)Pr((v, v
′).e = T)

124

0.2

0.9

0.2

0.3

1

a(0.9)
b(0.1)

a(0.8)
b(0.2)

a(1.0)

a(1.0)

b(1.0)

v1

v σ c(v,σ) ppu(v,σ) fpu(v,σ)
v1 a 4 0.9 0.8

v1 b 3 1.0 1.0

Figure 5.4: Context information example

• Full Probability Upperbound fpu(v, σ), which is an upperbound for the

probabilities in the neighborhood of v also taking into account the neighbors’

labels.

fpu(v, σ) = maxv′∈N(v,σ)Pr(v
′.l = σ) · Pr((v, v′).e = T)

These measures capture different aspects of node/path neighborhoods. During the

online phase (cf. Section 5.5.2.2), we use a combination of the cardinality and full

probability upperbound to prune path candidates at the individual node level, and

a combination of full and partial probability upperbounds to prune path candidates

at the entire path level.

125

Example: In Figure 5.4, c(v1, a) = 4, c(v1, b) = 3. ppu(v1, a) = 0.9 because the

highest edge probability that connects v1 to a node with label a is 0.9. Similarly,

ppu(v1, b) = 1.0. Finally, fpu(v1, a) = 0.72 because it has an edge with existence

probability of 0.9 connecting it to a node with probability of 0.8 for the label a.

Similarly, fpu(v1, b) = 1.0.

5.5.2 Online Phase

Our online query processing technique consists of five main steps: decomposing

the query into a set of paths, obtaining a set of candidates for every path in the

decomposition, obtaining join-candidate paths for every candidate path, which are

candidate paths whose query paths share a node with the given candidate and can

thus extend it to form a partial match, jointly reducing the candidate search space

by reduction by join-candidates, and finally finding matches to the full query. A

schematic diagram of the online phase steps is shown in Figure 5.3. Below we

discuss each step in detail.

5.5.2.1 Path Decomposition

The task of path decomposition is to split the query into a set of possibly

overlapping paths, each of length L or less, that cover the entire query, and whose

matches can be obtained from the path index. To preserve the structural information

of the query, intersection points between the paths are expressed as join predicates,

which have to be satisfied when combining path matches into a full query match.

126

v2

v4 v3

v1 a

b

c c

v5

v7 v6

b

c c

v9

v10

v8 a

b

c

Q P1 P2

Figure 5.5: A query Q and its decomposition into two paths P1 and P2 that cover Q.
Letters inside node represent node IDs, and letters outside nodes represent the node
labels. The predicates associated with the path decomposition are P1.v5 = P2.v9

and P1.v7 = P2.v10.

For example, Figure 5.5 shows a query Q and its decomposition into two paths P1

and P2. In order to preserve the structural information of Q, any pair (P u
1 , P

u
2) that

matches (P1, P2) must satisfy the predicates P u
1 .v5 = P u

2 .v9 and P u
1 .v7 = P u

2 .v10 (we

use P u
1 .v5 to denote the vertex in path P u

1 that matches the vertex v5 in path P1

in the query). Query path decomposition thus decomposes a query Q into a set of

node/edge overlapping paths P . For every pair of overlapping paths P1 and P2, the

decomposition defines a set of join predicates JP (P1, P2). Further, we denote the

set of paths joining with a path P by J(P).

Since a single query has multiple valid path decompositions, and each de-

composition may lead to a different query processing cost, we would like to find a

least-cost path decomposition. Ideally, the cost of a decomposition should express

the number of operations involved in order to produce the final query results. As the

intricacy of the algorithm makes it difficult to calculate such a number, we instead

use an estimate of the initial query search space size SS0. We would thus like to

127

find argminP⊆P(Q),P covers QSS0(P), where P(Q) is the set of all possible paths of

length at most L in Q. More specifically, for each path P in the decomposition, we

estimate the number of matches, or its cardinality C(P, α), as discussed below. We

then estimate the search space size as the product of all such path cardinalities. The

cardinality is based on the number of database paths matching the query path P

with probability at least α, but also takes into account the fact that those matches

will have to be extended to neighboring query paths. We therefore express C(P, α)

in terms of the following quantities.

1. The number of candidates from the path index |PIndex(lQ(VP), α)| is

the number of paths matching P ’s label sequence lQ(VP) with probability at

least α as found in the path index under PIndex(lQ(VP), α).

2. The path degree degree(P) is the sum of path node degrees, not counting

edges on the path, that is, degree(P) =
∑

n∈VP degree(n)− 2× length(P).

3. The path density density(P) measures how close the nodes on P are to

forming a clique. Let K be the number of edges between the nodes of P , and

M the number of nodes on the path, then density(P) = 2K
M(M−1)

.

Example: The path degree of path (1, 2, 3, 4) shown in Figure 5.6 is 5, and its

density is 4/6.

Taking into account the direction of influence of these components on the true

number of matches, we approximate the cardinality of P as:

C(P, α) ∝ |PIndex(lQ(VP), α)|
degree(P) · density(P)

128

2 3 4

1

5 6

Figure 5.6: Path degree and density example

Therefore, our goal is to find

argmin P⊆P(Q),
P covers Q

∏
P∈P

|PIndex(lQ(VP), α)|
degree(P) · density(P)

Since it is not practical to query the index for an arbitrary α and lQ(VP) at query

runtime, we build a histogram for every possible label sequence X during the offline

phase at selected probability points (α0, . . . , 1). At runtime, we use exponential

curve fitting to estimate the value of |Index(lQ(VP), α)| given histogram(lQ(VP), αi)

and histogram(lQ(VP), αi+1) where αi < α < αi+1.

We reduce the problem of optimizing the cost function to that of SET COVER,

where the set of query edges corresponds to the universal set (in the corresponding

SET COVER instance), and each path P in the query with length at most L is a

possible set in the cover. Note that we allow paths with shared edges, as this can

reduce the cost of several paths at once (e.g., in the case of a very selective edge

connected to multiple non-selective paths). The cost of the cover is the product of

the individual costs of the participating paths. Since SET COVER is NP-complete,

we use the standard greedy approximation to solve the problem, which calculates

129

an efficiency metric for every path, by dividing its length by its costs, and then

greedily adding the path with the highest efficiency to the cover, and continuing

iteratively until all the query edges are covered.

5.5.2.2 Finding Path Candidates

Given a path decomposition P , the next step is to find candidate matches for

every query path. Therefore, at a high level, for every path P ∈ P , we access the

path index to get its matches PIndex(lQ(VP), α), by only keeping those paths that

satisfy certain context criteria. We denote the resulting set of matches by cn(P)

(⊆ PIndex(lQ(VP), α)). This second step relies on the following query statistics:

• Node-level statistics: For every node n ∈ VQ, we calculate its neighborhood

label count for every label σ ∈ Σ,

c(n, σ) = |{m|m ∈ Γ(n), lQ(m) = σ}|

• Path-level statistics: For every path P ∈ P , we collect information on its

neighboring nodes in the query, the nodes on P these neighbors are connected

to, and the query edges outside P that connect nodes on P . In order for a path

match to be a candidate for contributing to a full query match, it has to be

possible to extend this match to at least this neighborhood, and we can safely

prune other path matches. More specifically, we use the following information:

1. Path neighbors Γ(P): the set of nodes that are not on P but are neighbors

130

of at least one node on P .

2. Reverse path neighbors: for every m ∈ Γ(P), rv(P,m) is the set of nodes

on P that are neighbors of m.

3. Path cycles: for every n ∈ VP , path cycles, cyc(P, n), is the set of nodes

on P that are also connected to n by a query edge outside the path, and

thus appear together with n in a cycle. To avoid information duplication,

each such edge only contributes to the path cycles of one of its endpoints.

Example: In Figure 5.6, path neighbors of the path (1, 2, 3, 4) are the set

of nodes {5, 6}. Reverse path neighbors of node 5 are {3, 4}. There is a path

cycle formed by the edge between the nodes 1 and 3.

Node-level pruning Using the node-level statistics, we calculate a set of candi-

dates cn(n) for every node n ∈ VQ based on the following two criteria:

1. For every label σ ∈ Σ, v must have a number of neighbors that is greater

than or equal to the number of neighbors of n with label σ, i.e., c(v, σ) ≥

c(n, σ),∀σ ∈ Σ.

2. For every label σ ∈ Σ, the probability of v having the correct label and at

least the number of neighbors labeled σ required by the query has to exceed

the query threshold α. Using precomputed full probability upperbounds as

approximation and taking into account multiple occurrences of the same label,

we therefore further restrict candidates v for n to those satisfying Pr(v.l =

lQ(n))× fpu(v, σ)c(v,σ) ≥ α, ∀σ ∈ Σ.

131

Path-level pruning Next, we prune the set of candidate paths based on path-level

statistics. For each path P u ∈ PIndex(lQ(VP), α), we perform the following tests:

1. For every node v ∈ VPu , v must be a candidate for the corresponding node n

in P , i.e., v ∈ cn(n).

2. The probability of a path together with its neighboring nodes and cycles must

be greater than or equal to α, which we test using (Prle(P
u) × Prn(P u)) ×

pu(P u)× cpr(P u) ≥ α, with pu(P u) and cpr(P u) defined as follows.

The path-neighborhood probability upperbound pu(P u) of a candidate path P u

matching a query path P is an upperbound for the probability of all nodes

matching Γ(P) and their edges. Let m ∈ Γ(P) be a path P neighbor, and

n a node on P such that n ∈ rv(P,m). We form a probability upperbound

pu(n,m, P u) on the neighborhood of m as follows:

pu(n,m, P u) = fpu(ψ(n), lQ(m))
∏

n′∈rv(P,m),n′ 6=n

ppu(ψ(n′), lQ(m))

where we use the full probability upperbound fpu for the edge between the

match of m and the selected neighbor n, and partial probability upperbounds

for all other neighbors of m’s match, thus ensuring that information on m is

only considered once. Since this upperbound may depend on the selected n,

we obtain the tightest upperbound

pu(m,P u) = minn∈rv(P,m)pu(n,m, P u)

132

Finally, to find the overall path P u neighborhood probability upperbound, we

aggregate over all m ∈ Γ(P):

pu(P u) =
∏

m∈Γ(P)

pu(m,P u)

The path-cycles probability cpr(P u) is the overall probability of edges not on

the path P u but connecting path nodes:

cpr(P u) =
∏
n∈VP ,

m∈cyc(P,n)

Pr((ψ(n), ψ(m)).e = T)

Finally, for every path P in the decomposition, we obtain the list of candidates

cn(P) that contains exactly those paths from the initial set PIndex(lQ(VP), α) that

pass the above tests.

5.5.2.3 Finding Join-Candidates

In this step, we find for every candidate path P u ∈ cn(P) of every query path

P a set of paths that are candidates to be joined with P u.

Recall that every query path P1 ∈ P can be joined with a set of paths J(P1) ⊆

P , and there is a set of join predicates JP (P1, P2) between P1 and every path

P2 ∈ J(P1). For a query path P1 ∈ P , and a candidate path P u
1 ∈ cn(P1), we define

133

its join-candidate paths of type P2 ∈ J(P1) as:

cn(P1, P
u
1 , P2) = {P u

2 |P u
2 ∈ cn(P2)∧jp(P u

1 , P
u
2) = T,∀jp ∈ JP (P1, P2)

∧Pr(P u
1 ◦ P u

2) ≥ α ∧ refs(VPu
1

) ∩ refs(VPu
2

) = ∅}

where jp(P u
1 , P

u
2) is the instantiation of the predicate jp ∈ JP (P1, P2) using paths

P u
1 and P u

2 , and P u
1 ◦ P u

2 is the subgraph consisting of the two joined paths. Intu-

itively, cn(P1, P
u
1 , P2) refers to the set of paths in cn(P2) that are candidates to be

joined with P u
1 ∈ cn(P1).

To facilitate finding join-candidate paths, for each P ∈ P , while finding cn(P),

we build a lookup table T (P, Pi) for each query path Pi ∈ J(P). For every table

T (P, Pi), the set of positions 〈pi1, . . . , pik〉 indicates the nodes in Pi that participate

in join predicates. The key for table T (P, Pi) is a set of nodes 〈n1, . . . , nk〉, and the

values are paths in cn(P) that have nodes 〈n1, . . . , nk〉 at positions 〈pi1, . . . , pik〉.

Given a path P u
i ∈ cn(Pi), paths in P which are joinable with P u

i can now be

obtained using a direct lookup operation from table T (P, Pi), where the access key

is obtained from P u
i .

5.5.2.4 Joint Search Space Reduction

Joint search space reduction exploits the mutual relationship between the can-

didates and their join-candidates to reduce the size of all candidate lists before con-

structing full query matches, based on the following two observations. First, for a

candidate match of a path P to contribute to a full query match, we need to be able

134

to combine it with at least one candidate for all query paths joining P . Second, if we

can obtain an upperbound on the probability of all full query matches a candidate

path can appear in, we can prune candidate paths based on the query threshold

α. We refer to these two principles as reduction by structure and reduction by up-

perbounds, respectively, and discuss their details below. As they mutually influence

each other, the overall algorithm for joint search space reduction iterates between

them until no further changes occur.

We implement the reduction algorithm based on a k-partite graph, where each

partition corresponds to a query path, each vertex to a candidate path match,

and each link to a join between two candidate paths.2 Pruning a candidate thus

corresponds to deleting a vertex and its outgoing links from the k-partite graph.

Definition 6. Candidate k-partite Graph A candidate k-partite graph is a k-

partite graph that has a partition for each P ∈ P, where the set of vertices of

each partition P are cn(P). There is a link between P u
1 in partition P1 and P u

2 in

partition P2 iff P u
2 ∈ cn(P1, P

u
1 , P2) (of course, P u

2 ∈ cn(P1, P
u
1 , P2) ⇐⇒ P u

1 ∈

cn(P2, P
u
2 , P1)).

Every match of the query in the PEG corresponds to a subgraph of the can-

didate k-partite graph with one vertex per partition (i.e., one match for each query

path) and all join links between them. We can thus safely prune all vertices that have

no links to a partition they should link to, as well as those that cannot participate

in any match with probability above the query threshold.

2To avoid confusion, we use the terms (vertex/link) when referring to the k-partite graph, and
(node/edge) when referring to the PEG.

135

Reduction by structure. Reduction by structure removes vertices from the can-

didate k-partite graph by iterating the following two steps: 1) If a vertex has no

links to at least one partition its query path joins with, remove the vertex and all

of its links to vertices in all partitions, and 2) repeat (1) until no further changes

take place.

Reduction by upperbounds. In order to exploit probabilistic information during

search space reduction, we now introduce two types of vertex weights, based on

Prle(.) and Prn(.), respectively, and then discuss a message passing scheme that

exploits these weights to obtain bounds for reduction by upperbounds.

The first type of weights is assigned such that when a subgraph’s weights

are multiplied, we obtain the final Prle(.) probability of the corresponding match.

To avoid double contributions in cases of overlap between paths, we assign the

overlapping elements’ probability to exactly one partition, i.e., for every v ∈ VQ, e ∈

EQ, we choose exactly one partition to cover v’s or e’s probability. That is, if v or

e exclusively belongs to one query path, it is assigned to the partition representing

that path, and if v or e appear on multiple query paths, only one of their partitions

is picked. Let partition P (we use P to refer to both the path and its corresponding

partition) exclusively cover nodes and edges cv(P) and ce(P), respectively, then a

vertex’s first weight is

w1(P u) =
∏

n∈cv(P)

Pr(ψ(n).l = lQ(n))
∏

e∈ce(P)

Pr(ψ(e).e = T)

136

where ψ(n) is the PEG node matching the query node n. As identity probabilities

Prn(P u) are not decomposable, we directly use the identity probability of a path as

the second weight of its corresponding vertex in the k-partite graph (however, we

cannot multiply weights of this type together as it is the case with w1 weights):

w2(P u) = Prn(P u)

In addition to the two weights, each vertex P u has an associated perception

vector of length k, that is, with one entry per partition. Each entry is an upperbound

on the w1 weights of all vertices in that partition that can appear in a full match with

P u. Initially, we have w1(P u) for the entry corresponding to P u’s own partition, and

1 for all other partitions. During message passing, each vertex first sends its current

vector to each of its neighboring vertices (excluding the entry for the receiving

neighbor’s partition). Once all messages are received, each vertex P u
1 updates its

own vector based on the values received from its neighbors as follows. For each vector

entry corresponding to a partition P and each partition P2 containing neighboring

nodes of P u
1 , we choose the maximum value for P sent by the neighbors in P2. We

then take the minimum of these over all such P2 as the new value in the vector,

and iterate the overall process. The upperbound used to prune a vertex (and thus

a candidate path) based on the query threshold α then is the product of all entries

in the vertex’ vector and its weight w2.

As discussed above, the final algorithm iterates between both types of reduc-

tion until no further changes take place. We further improve efficiency by avoiding

137

unnecessary updates and exploiting parallelism, as discussed next.

Incremental maintenance. We only recompute upperbounds for vertices for

which a neighbor has been deleted or has reduced its perception, and only con-

sider vertices connected to a newly deleted link for deletion.

Parallel Implementation. We develop a shared-memory parallel implementation

for the reduction algorithm, with one thread per partition. We introduce appro-

priate locking protocols to avoid incorrect modifications of the k-partite graph by

multiple threads at the same time. We note here that in addition to the parallel

implementation of the reduction algorithm, we also exploit parallelism in other parts

of the system such as constructing node candidates, path candidates, and building

join-candidate sets.

Example: Figure 5.7(a) shows an example of a query that is decomposed to three

paths, where P2 joins with P1 and P3. In Figure 5.7(b), we show an example of the

k-partite graph construction, by introducing links between pairs of path matches

that satisfy the join conditions. Once the k-partite graph is constructed, it can

be reduced by removing vertices that do not have any links to a partition that it

should join with. Therefore, P u
3 , P

u
5 , P

u
6 , P

u
7 , P

u
10 can be removed with all their links,

resulting in the k-partite graph in Figure 5.7(c). We can further apply reduction

by upperbounds as shown in Figures 5.7(d), (e), (f). In Figure 5.7(d), each vertex

is initialized by a partition perception vector that is all 1’s except for the position

of its own partition, which is initialized by the vertex’s own weight. In this exam-

138

Decompose

P1 P2 P3

P1 P2 P3

Pu2

Pu4

Pu5

Pu6

Pu7

Pu1

Pu3

Pu9

Pu8

Pu10

(a) (b)

P1 P2 P3

Pu4

Pu2

Pu1

Pu9

Pu8

P1 P2 P3

Pu4 Pu2

Pu1

Pu9

Pu8

[0.9,1,1] [1,0.7,1] [1,1,0.6]

[0.8,1,1] [1,1,0.8]

(c) (d)
P1 P2 P3

Pu4 Pu2

Pu1

Pu9

Pu8

[0.9,0.7,1] [0.9,0.7,0.8] [1,0.7,0.6]

[0.8,0.7,1] [1,0.7,0.8]

P1 P2 P3

Pu4 Pu2

Pu1

Pu9

Pu8

[0.9,0.7,0.8] [0.9,0.7,0.8] [0.9,0.7,0.6]

[0.8,0.7,0.8] [0.9,0.7,0.8]

(e) (f)

Figure 5.7: (a) An example query and its decomposition, (b) k-partite graph con-
struction, (c) reduction by structure, (d), (e), (f), reduction by upperbounds

ple, we consider weights of type w1 only for simplicity. In the second step, each

vertex updates its upperbounds based on values from its neighbors, leading to the

perception vectors in Figure 5.7(e). Figure 5.7(f) depicts the result of applying an-

other iteration of the reduction algorithm, by performing one more pass of message

exchange. Assuming that the input query probability threshold α = 0.4, we can

see that P u
8 can be removed from the graph along with its links. At this point, no

further changes to the k-partite graph can take place, and we can proceed to the

139

final result generation step.

5.5.2.5 Finding Full Query Matches

The final step of the online query processing algorithm is finding the full query

matches. The algorithm starts from the matches of one path and progressively adds

matches of joining paths, based on an initially determined join order.

Join order determination. In principle, the optimal join order could be deter-

mined by minimizing the size of the intermediate results, that is, the sum of the

numbers of candidates after each step. To avoid the extra burden of this step, we

add paths to the join order one at a time, based on the following heuristic:

1. Choose the path with the largest number of nodes overlapping with the paths

that already exist in the order.

2. In case of ties, choose the path with the largest number of join predicates with

the existing paths.

3. In case of ties, choose the path with smallest cardinality (estimated as in path

decomposition).

In general, a node on the new path can participate in multiple join predicates with

existing nodes. However, when choosing the first path in the order, the first two

criteria are equal for all the paths, and we just use the third one.

Finding matches. Given the join order {P1, . . . , P|P|}, we use the reduced candi-

date k-partite graph to construct matches incrementally. The initial set of matches

140

are the vertices in the partition corresponding to P1. Each match Mi up to path

Pi is extended to matches up to Pi+1 as follows. We first identify all paths Pj with

j ≤ i that join with Pi+1. For each vertex in Pi+1’s partition that has a link to the

corresponding vertex in Mi for each such Pj, we extend Mi to a match up to Pi+1

by adding that vertex’s candidate match. We discard Mi if there is no such vertex,

and only produce those extended matches that have probability at least α and do

not contain two nodes sharing a reference.

5.6 Experimental Evaluation

In this section, we present the results of a comprehensive experimental evalu-

ation using our prototype implementation. Our implementation is written in Java

and uses the disk-based graph database engine Neo4j for storing the probabilistic

graph, and the key/value store KyotoCabinet to store the index as a B+ tree. We

begin by presenting the index construction algorithm’s performance in terms of both

time and space, and then demonstrate online query performance by comparing it

to various baselines. We further study the effect of the different pruning methods

we proposed on reducing the search space, and the relationship between the search

space size and different parameters. Finally, we report results on a real-world dataset

from DBLP. For the first set of experiments, we use synthetic graphs whose struc-

ture is generated according to the preferential attachment model [53]. To generate

node label probabilities, we first generate a set of random probabilities p1, . . . , p|Σ|,

which we then weigh by a zipf distribution, i.e., p′i = pi
i
, to introduce skew. We

141

normalize those to obtain final probabilities p′′i =
p′i∑
j p

′
j
, which are assigned to node

labels randomly. Edge probabilities are generated analogously. To generate refer-

ence sets corresponding to entities, we randomly choose k subsets of nodes from the

graph, each of size s nodes, and randomly assign r pairs of nodes per group to the

same reference set. That is, reference sets are of size 2, and the maximum size of a

connected component is s. Probabilities of reference sets are generated randomly.

We use merge functions that average the underlying distributions for both node

attributes and edge existence. In our experiments, we use four settings with 50k,

100k, 500k, and 1m references, and a number of relations equal to 5× the number

of references in every setting. We set k = No. of references/1000, s = r = 4. We as-

sociate probability distributions with 20% of the references, relations, and reference

sets unless otherwise stated. These settings result in probabilistic entity graphs of

sizes (54k/292k), (108k/583k), (540k/ 2.95m) and (1.08m/5.88m) nodes/edges, re-

spectively. Synthetic experiments are performed on an Amazon EC2 instance with

a Linux operating system, 8 core processors, 117 GB of RAM and 2 TB of instance

storage. The realworld experiment is performed on a Linux machine with two 2.66

GHz quad-core processors with hyper-threading, 48 GB of RAM, and a 1TB 7200

RPM disk drive.

5.6.1 Offline Phase Performance

We first assess performance of the offline phase for different maximum path

lengths.

142

0.1

1

10

100

1000

0.
9,

 5
0k

0.

7,
 5

0k

0.
5,

 5
0k

0.

3,
 5

0k

0.
9,

 1
00

k
0.

7,
 1

00
k

0.
5,

 1
00

k
0.

3,
 1

00
k

0.
9,

 5
00

k
0.

7,
 5

00
k

0.
5,

 5
00

k
0.

3,
 5

00
k

0.
9,

 1
m

0.

7,
 1

m

0.
5,

 1
m

0.

3,
 1

m

T
im

e
(m

in
)

Offline threshold, graph size

L=1 L=2
L=3

0

1

2

3

4

5

6

0.
9,

 5
0k

0.

7,
 5

0k

0.
5,

 5
0k

0.

3,
 5

0k

0.
9,

 1
00

k
0.

7,
 1

00
k

0.
5,

 1
00

k
0.

3,
 1

00
k

0.
9,

 5
00

k
0.

7,
 5

00
k

0.
5,

 5
00

k
0.

3,
 5

00
k

0.
9,

 1
m

0.

7,
 1

m

0.
5,

 1
m

0.

3,
 1

m
 In

de
x

siz
e

(M
B

)

Offline threshold, graph size

L=1 L=2
L=3

10
10
10
10
10
10
10

(a) (b)

0
2
4
6
8

10
12
14
16
18

3,3 5,10 7,21 9,36 11,44 13,52 15,60

T
im

e
(s

ec
)

Query size (number of nodes, edges)

Optimized L=1 Optimized L=2
Optimized L=3 No SS Reduction L=3
Random Decomp L=3

0
10
20
30
40
50
60

15,20 15,40 15,60 15,80 15,100

T
im

e
(s

ec
)

Query size (number of nodes, edges)

Optimized L=1 Optimized L=2
Optimized L=3 No SS Reduction L=3
Random Decomp L=3

!"!" !" !"!"!"

(c) (d)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

20% 40% 60% 80%

T
im

e
(s

ec
)

Uncertainty

L=1, q(5,5) L=2, q(5,5) L=3, q(5,5)
L=1, q(5,9) L=2, q(5,9) L=3, q(5,9)

0
1
2
3
4
5
6

20% 40% 60% 80%

T
im

e
(s

ec
)

Uncertainty

L=1, q(10,20) L=2, q(10,20) L=3, q(10,20)
L=1, q(10,40) L=2, q(10,40) L=3, q(10,40)

(e) (f)

Figure 5.8: (a),(b) Offline phase performance, (c) varying query size, (d) varying
query density, (e), (f), varying degree of uncertainty for queries with 5 and 10 nodes,
respectively. A * above a bar indicates that the query did not finish in the allocated
time (15 minutes), or the process ran out of memory.

5.6.1.1 Running Time

We first study the running time performance of the entire offline phase, which

includes calculating the entity graph component probabilities, building the path

index, and calculating context information. Figure 5.8(a) shows the running time

143

0
5

10
15
20
25
30
35
40

50k 100k 500k 1m

T
im

e
(s

ec
)

Graph size (number of nodes)

L=1, q(5,5) L=2, q(5,5) L=3, q(5,5)
L=1, q(5,9) L=2, q(5,9) L=3, q(5,9)

!" !"

0
20
40
60
80

100
120

50k 100k 500k 1m

T
im

e
(s

ec
)

Graph size (number of nodes)

L=1, q(10,20) L=2, q(10,20) L=3, q(10,20)
L=1, q(10,40) L=2, q(10,40) L=3, q(10,40)

(a) (b)

0
2
4
6
8

10
12
14
16

0.3 0.5 0.7 0.9

T
im

e
(s

ec
)

Query threshold

L=1, q(5,5) L=2, q(5,5) L=3, q(5,5)
L=1, q(5,9) L=2, q(5,9) L=3, q(5,9)

0
2
4
6
8

10
12
14

0.3 0.5 0.7 0.9

T
im

e
(s

ec
)

Query threshold

L=1, q(10,20) L=2, q(10,20) L=3, q(10,20)
L=1, q(10,40) L=2, q(10,40) L=3, q(10,40)

(c) (d)

0
5

10
15
20
25
30
35

Path Path+Context Final

Se
ar

ch
 S

pa
ce

 S
iz

e

Pruning Step

L=1,20% L=2,20% L=3,20%
L=1,80% L=2,80% L=3,80%

-6

-5

-4

-3

-2

-1

0

20% 40% 60% 80%

Se
ar

ch
 S

pa
ce

R

ed
uc

tio
n

Uncertainty

RC,L=1 RC,L=2 RC,L=3
UP,L=1 UP,L=2

10
10
10
10
10
10

(e) (f)

1

10

100

1000

10000

BF1 BF2 GR ST TR

T
im

e
(m

s)

Query

L=1 L=2 L=3

(g)

Figure 5.9: (a),(b) Varying input graph size for queries with 5 and 10 nodes, re-
spectively, (c), (d) varying input query threshold for queries with 5 and 10 nodes,
respectively, (e),(f) search space experiments, (g) performance on real-world data.
A * above a bar indicates that the query did not finish in the allocated time (15
minutes), or the process ran out of memory.

144

for index path lengths of L = 1, 2, and 3. We vary both the graph size and the index

lowerbound probability threshold, β, on the Y axis. As we can see, the offline phase

running time at L = 2 is between 10 and 14 times that at L = 1, and at L = 3 it is

between 7 to 30 times that of L = 2. Also, as the graph size increases, running time

increases by a factor less than the graph size increase factor. For example, although

the 1m graph is 20 times larger than the 50k graph, the running time increases by

a factor of 14 on average at L = 1, 18 on average at L = 2, and 46 on average at

L = 3. This is due to higher memory buffer utilization for larger graphs.

5.6.1.2 Path Index Size

We next compare the path index size at L = 1, 2, and 3, varying the graph

size and index threshold as before. Results in Figure 5.8(b) show that index sizes at

L = 2 are 32 times larger than those at L = 1 on average, and index sizes at L = 3

are 28 times larger than those at L = 2 on average. Index size increases at the same

rate as the graph size at L = 1, and faster than the increase in the graph size at

L = 2, e.g., the index size at 1m is 20 times larger than that of 50k on average at

L = 1 and 25 times on average at L = 2. This is because indexes at L = 1 increase

linearly with graph size, while at L = 2 the index size increases quadratically. The

same trend applies at L = 3 as its size increases cubically.

5.6.2 Online Phase Performance

We now study different performance aspects of the online phase.

145

5.6.2.1 Online running time

We first compare the running time of our proposed algorithm to a range of

baselines, using different input query sizes. We use the following algorithms and

parameters:

1. Optimized: This refers to our proposed approach with all the proposed op-

timizations. For this method we use different path lengths: L = 1, L = 2 and

L = 3.

2. Random decomposition: This is a variant of our proposed approach that

does not employ the proposed query decomposition algorithm. In this base-

line, we use random query decomposition instead of SET COVER, and when

determining the path join order, we sort the paths according to their number

of path index matches only, without taking into account the number of node

intersections, number of predicates, path degree or path density. We set L = 3

for this baseline.

3. No search space reduction: This approach uses our optimized method,

but without the joint search space reduction using the k-partite graph repre-

sentation, and goes directly to generating final results after constructing the

candidate and relative candidate lists. We set L = 3 for this baseline.

4. SQL: We implement our queries using SQL and run them on top of MySQL

database. We run SQL on the 100k nodes dataset using a query with 5 nodes

and 7 edges and a query threshold of 0.7. While our approach can answer this

146

query in less than a second, SQL never finishes it in a month. Therefore, we

do not report any other SQL-based performance metrics.

Varying input query size. In this experiment, we study the running time per-

formance of Optimized (L = 1, 2, 3), Random Decomp and No SS Reduction for

varying query size. We use the 100k dataset and a query threshold of 0.7. Fig-

ure 5.8(c) shows running times for 7 different query sizes between (3,3) and (15,6)

nodes/edges, averaged over five randomly generated queries per size. A query of n

nodes has 4 × n edges, unless the maximum number of edges for the query is less

than 4× n, in which case, we use the maximum possible number of edges. Our ap-

proach at L = 3 always outperforms L = 1, 2 and both of Random Decomp and No

SS Reduction. For smaller queries (with 3 and 5 nodes), L = 2 outperforms L = 1,

but it does not for the larger ones. The reason is that L = 1 has an advantage

with querying the path index, as it returns a lower number of matches than both

L = 2, 3, and at the same time, L = 3 has an advantage with context-based prun-

ing, as higher path lengths have richer context information. At L = 2 the pruning

performed with context information does not alleviate the processing needed for the

larger number of matches returned from the path index, especially with larger query

sizes. However, as we show in further experiments, L = 2 outperforms L = 1 when

the input graph has higher degree of uncertainty, even for larger query sizes, and

also sometimes outperforms L = 1 in extreme cases, such as queries with a very

large number of results, or with a very large number of nodes and edges, or very

large input graphs (e.g., (500k, 2.5m) and (1m, 5m) nodes, edges). Therefore, even

147

though L = 2 sometimes does not perform as well as L = 1, 3, it may be used as

a compromise that does not take as much time and space as L = 3 in building its

index, and still has an acceptable performance in extreme cases where L = 1 may

not succeed.

Varying input query density. In this experiment, we study the running time

performance of Optimized (L = 1, 2, 3), Random Decomp and No SS Reduction for

varying the input query density. We use the 100k dataset and a query threshold

of 0.7. Figure 5.8(d) shows running times for 5 different densities, by using queries

with 15 nodes and a number of edges ranging between 20 and 100. Each result is the

average over five randomly generated queries with the corresponding size. Again,

our approach at L = 3 always outperforms L = 1, 2 and both of Random Decomp

and No SS Reduction. L = 1 runs out of memory at the query (15, 20) due to the

large number of matches of that query (because it is very sparse). Therefore, we

do not show its running time. Furthermore, there are configurations which have at

least one run of the five runs whose execution time exceeded the maximum time

allowed of 15 minutes. Those configurations are L = 1 at q(15,40), q(15,100), No

SS Reduction at q(15,20), q(15,100), and Random Decomp at q(15,20).

Varying input graph degree of uncertainty. In this experiment, we study the

effect of the degree of uncertainty in the PEG on the running time of our proposed

approach, by varying the number of uncertain nodes and edges from 20% to 100%.

We use query sizes q(5,5) and q(5,9) (in Figure 5.8(e)), and q(10,20) and q(10,40)

148

(in Figure 5.8(f)), using a query threshold of 0.7. As we can see, L = 3 always

outperforms L = 1, 2, while L = 2 outperforms L = 1 for all degrees of uncertainty

larger than 20%.

Varying input graph size. In this experiment, we study the performance of

our proposed approach for all four input graph size settings, corresponding to

graphs whose number of edges varies between 300 thousand and 6 million. We use

query sizes q(5,5) and q(5,9) (in Figure 5.9(a)), and q(10,20) and q(10,40) (in Fig-

ure 5.9(b)), using a query threshold of 0.7. As we can see, L = 1 runs out of memory

at both 500k and 1m, with query q(5,5) due to the high number of matches, while

L = 2, 3 finishes normally in those cases. Otherwise, L = 3 outperforms L = 1, 2 in

most cases.

Varying input query threshold. In this experiment, we vary the query threshold

between 0.9 and 0.3. We use queries of size q(5,5), q(5,9) (in Figure 5.9(c)) and

q(10,20), q(10,40) (in Figure 5.9(d)), using the 100k dataset. We can see that

the performance improves for all path lengths with the increase of the lower input

probability threshold, but at the same time, the performance of lower path lengths

is the most sensitive to the change in the threshold, indicating that higher path

lengths are the most stable with respect to such a parameter.

149

5.6.2.2 Search Space Performance

In this set of experiments, we study the search space performance, measured

as the product of the candidate list sizes, and its reduction throughout different

steps of our proposed method, under different circumstances.

Search Space Progression. In this experiment, we study the progression of

the search space size throughout the main steps of our online querying algorithm.

The results are depicted in Figure 5.9(e). The first step (labeled Path) refers to

the search space size resulting from querying the path index. The second step

(labeled Path+Context) is the size of the search space after pruning based on context

information, that is, node-based neighborhood information, path neighbors and path

cycle, as discussed in Section 5.5.2.2. The last step (labeled Final) refers to the final

search space size after applying the mutual search space reduction using the k-partite

graph representation (Section 5.5.2.4). We use a randomly generated query of size

(5,7) with query threshold of 0.7 over two 100k datasets, one with 20% uncertainty,

and the other with 80% uncertainty. Figure 5.9(e) shows the performance of our

approach (in log scale) using the three path lengths of L = 1, 2, 3. As we can see,

the mutual search space reduction step (Final) achieves effective reduction for all

path lengths, although it is more effective with shorter path lengths. This is due to

the fact that decompositions with shorter paths take into account information from

smaller neighborhoods, and thus benefit more from distant information obtained via

message passing. In contrast, the previous step (Path+Context) is most effective for

longer paths, as those provide more context information for pruning. Also, generally,

150

higher degree of uncertainty results in smaller search spaces, because more paths

are pruned at every step compared to lower degrees of uncertainty. Finally, we can

see that overall, the final search space for longer paths is much smaller than that for

shorter ones, which emphasizes the effectiveness of higher values of L in producing

much smaller search spaces: 14 orders of magnitude smaller, comparing L = 3 to

L = 1 at 20%.

Joint Search Space Reduction Performance. In this experiment, we study

the mutual search space reduction step (Section 5.5.2.4) in more detail, taking a

closer look at the performance of both reduction methods: reduction by structure

(ST), and reduction by upperbounds (UP). We use graphs of size 100k, a query

that is a cycle with 5 nodes and 5 edges, and threshold 0.1. We have chosen a cycle

query because it has a high diameter, thus illustrating the performance of infor-

mation exchange using both reduction methods along the edges. For each method,

we measure its reduction by dividing its resulting search space size by the initial

search space size immediately before the reduction algorithm starts. Of course, since

reduction by upperbounds is performed after reduction by structure, it will always

perform higher reduction, but we are interested in its contribution to the overall

reduction, and how it is affected by different parameters. Figure 5.9(f) shows the

search space reduction for both ST and UP using three different path lengths 1,

2, 3 over graphs whose degrees of uncertainty vary from 20% to 80%. We do not

show the case (UP,L=3) because the algorithm terminated (i.e., no further changes

took place) before reduction by upperbounds already. As we can see, the effect

151

1

2

4

5

1

2

4

5
3

D M

D M

S!

1

2

5

6

3

4
D M

D M

S!

S!

D

M

S!

S!
1

2

4

5
3

D D

D D

S!

2

3

1

M

M

S!

4

5 D

D

6
7 D

D

Butterfly 1 (BF1)! Butterfly 2 (BF2)! Group (GR)! Star (ST)! Tree (TR)!

Figure 5.10: Collaboration pattern queries for real-world data.

of both reduction methods increases with the degree of uncertainty in the graph,

again because more paths can be pruned. However, particularly, the effectiveness

of UP increases with increased degree of uncertainty, as increased uncertainty often

results in tighter upperbounds. Finally, we observe that reduction by upperbounds

is more effective with shorter path lengths, as those obtain more additional informa-

tion during message passing, while longer ones have already exploited part of this

information during context based pruning and reduction by structure.

5.6.3 Performance on Real-world Data

In this subsection, we show our experimental results on a real-world dataset.

We extracted collaboration data from DBLP. The nodes of the graph represent

authors, the edges represent collaboration relationships. We annotated the collab-

oration graph with probabilistic data to capture different types of uncertaintities.

For every author, we assigned a probability distribution over the areas that she/he

is interested in, which can be Databases, Machine Learning or Software Engineer-

ing. We extract this information by counting the author’s relative contribution in

each area’s conferences. For example, SIGMOD, VLDB, and ICDE count towards

152

Database interests, while ICSE, FSE and ICSM count towards Software Engineering

interests, and so on. We assign existence probabilities between 0.5 and 1 to edges,

depending on the number of times the pair of authors has collaborated. We create a

reference set for every pair of authors whose names have normalized string similar-

ity score above 0.9. The resulting graph has 16.8k nodes and 40.3k edges. We run

probabilistic subgraph pattern matching using the collaboration patterns shown in

Figure 5.10 with a query threshold of 0.01. Running times of the online phase using

L=1,2,3 are shown in Figure 5.9(g). As we can see, L=3 outperforms L=2, which

in turn outperforms L=1, for all queries except the star query, which has a maxi-

mum path length of two and thus does not benefit from indexing paths up to L=3.

Another observation is that we found interesting insights about multi-disciplinary

collaborations that span the three areas, where collaborations are somehow unusual.

For example, the highest probability match of the tree query returned the group of

authors: (Chao Liu, Christos Faloutsos, Jiawei Han) as the matches for nodes (1, 2,

3) respectively. On his webpage, Chao Liu states that he has worked on statistical

methods for software reliability during his PhD, and after joining MSR, his research

has shifted to Web search and statistical models to interpret web users’ behaviors.

Furthermore, Chao Liu collaborates with both of Christos Faloutsos and Jiawei Han

who are known to be prolific authors in the fields of machine learning and databases,

which also coincides with the query that specifies that nodes 2 and 3 are interested

in machine learning, and their collaborators are interested in databases.

153

Chapter 6

Conclusions

In this dissertation, we addressed the problems of efficiently and declaratively

cleaning, analyzing and querying graph-structured data.

On the cleaning aspect, we proposed a declarative framework to clean noisy

graph data observed in various domains. We described the design of a data man-

agement system, called GrDB, for supporting declarative graph cleaning over noisy

information networks. The system supports new constructs for defining graph-based

inference operations, and heavily exploits the common properties shared by these

operators to enable efficient storage and execution. The reason for choosing Dat-

alog is its expressive power and ability to represent computation over graphs in

an intuitive and easy-to-understand manner, in addition to its support for recur-

sion, a commonly occurring operation in graph algorithms. We built a prototype

system that implements this functionality and showed how to efficiently perform

incremental maintenance of user-defined features and domain views. We presented

a performance evaluation of the system; and the results show that the proposed

approach can efficiently handle a wide spectrum of graph cleaning operations, like

attribute prediction, link prediction and entity resolution.

For analyzing graph data, we proposed a new type of graph analysis query

called ego-centric pattern census. The proposed approach for analysis focuses on

154

local properties of graph nodes, as opposed to traditional, well-known global graph

properties such as community structure or PageRank. Ego-centric pattern census

has broad applications in a variety of domains including targeted marketing, bro-

kerage analysis, and social sciences. We designed a general and flexible language for

specifying pattern census queries, and developed efficient algorithms for answering

such queries. The results of a comprehensive experimental evaluation over a proto-

type system illustrate that the proposed algorithms can efficiently evaluate pattern

census queries over large graphs.

For querying certain graph data, we designed and implemented a subgraph

pattern matching algorithm that efficiently finds matches of a query graph in a

large database graph. The key idea behind the proposed approach is to perform

mutual pruning between candidate nodes and nodes that can be their neighbors in

the final answer, i.e., candidate neighbors. By mutually reducing these two types

of lists, the final search space can be reduced significantly. Performance evaluation

shows that the proposed algorithm outperforms a state-of-the-art approach [9] by

two orders of magnitude.

For querying uncertain graph data, we presented a probabilistic approach for

modeling uncertain graphs and answering queries over them. The proposed graph

model, called probabilistic entity graphs, captures node attribute uncertainty, edge

existence uncertainty, and identity uncertainty. We presented efficient algorithms to

solve subgraph pattern matching queries over such uncertain graphs, where queries

are expressed and evaluated at the entity-level. Experimental evaluation shows that

the proposed algorithm outperforms an equivalent SQL implementation by multiple

155

orders of magnitude.

In this dissertation, we have shown that declarative graph processing is a very

powerful tool that can provide graph database users, programmers, and analysts

both ease of use and powerful querying capabilities. There are many lessons we

have learnt from building evaluation engines for declarative graph programs and

queries:

• A considerable number of graph processing algorithms are iterative. In this

dissertation, we have presented iterative algorithms for graph cleaning and

querying. In graph cleaning, the algorithms are iterative because the pre-

dictions are applied in iterations according to their confidence values, and in

graph querying, for both certain and uncertain graph cases, the algorithms

are iterative because of the mutual reduction of search space step. Support-

ing fast iterative graph processing is a crucial step for implementing scalable

graph algorithms.

• Iterative algorithms execute by performing repeated passes over the graph

and usually introducing small changes after every iteration. Iterative graph

algorithms are more efficient if they only react to the changes after every

iteration, and avoid performing the full computation repeatedly over the entire

graph. As we have seen, in graph cleaning and querying, we have implemented

incremental evaluation of their iterative algorithms, and have shown that it

outperforms the re-computation model.

• Many graph algorithms process the graph by exploring the local neighbor-

156

hoods around nodes. For example, in feature construction for graph cleaning,

prediction features for nodes are extracted by examining the nodes’ local neigh-

borhoods. In ego-centric pattern census, patterns are searched in the k-hop

neighborhood of nodes, and in graph querying, node neighborhood statistics

are used to summarize information about the node and help to detect if it will

participate in the query result. For building efficient graph cleaning, analysis,

and querying systems, paying attention to the storage and retrieval of node

neighborhoods in an efficient manner is crucial. In Chapters 4 and 5, we used

node neighborhood summaries to avoid accessing the entire node neighborhood

when it is sufficient to look up the summaries.

• When processing multiple node neighborhoods, it is important to consider the

overlap between them, and utilize it to save computation. Our techniques for

ego-centric pattern census show that methods that utilize overlap outperform

methods that do not. In Chapter 4, we have used the shingle ordering [113]

to access graph nodes in an order that helps exploiting their shared neighbor-

hoods.

• Node-centric graph algorithms are highly parallelizable. We have discussed a

parallel implementation of uncertain graph querying in Chapter 5.

In this dissertation, we have presented declarative methods for performing

graph cleaning, analysis and querying. We have shown that the general design

considerations mentioned above, and others that are specific to each task, enable

us to process very large graph datasets. While in some cases, no other systems are

157

available to solve our problems (specifically, ego-centric pattern census (Chapter 4)

and querying uncertain graphs with identity uncertainty (Chapter 5)), in all the

cases, our approaches are superior to their baselines or prior approaches, and some

of our optimizations lead to multiple orders of magnitude reductions over those.

158

Bibliography

[1] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-
uschka Jr., and Tom M. Mitchell. Toward an architecture for never-ending
language learning. In AAAI, 2010.

[2] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

[3] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[4] S. Mangan and U. Alon. Structure and function of the feed-forward loop
network motif. Proceedings of The National Academy of Sciences, 100:11980–
11985, 2003.

[5] Uri Alon. Network motifs: theory and experimental approaches. Nature Re-
views Genetics, 8(6):450–461, 2007.

[6] Marco Baiesi. Scaling and precursor motifs in earthquake networks. Physica
A, 360(2):4, 2004.

[7] Shalev Itzkovitz and Uri Alon. Subgraphs and network motifs in geometric
networks. Phys. Rev. E, 71, 2005.

[8] Sergi Valverde and Ricard V. Solé. Network motifs in computational graphs: A
case study in software architecture. Physical Review E, 72(2):026107, August
2005.

[9] Huahai He and Ambuj K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In SIGMOD, 2008.

[10] Jennifer Neville and David Jensen. Collective classification with relational
dependency networks. In Proc. of KDD Workshop on Multi-Relational Data
Mining, 2003.

[11] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian
Gallagher, and Tina Eliassi-Rad. Collective classification in network data. AI
Magazine, 29(3):93–106, 2008.

[12] Qing Lu and Lise Getoor. Link-based classification. In ICML, 2003.

[13] D. Jensen, J. Neville, and B. Gallagher. Why collective inference improves
relational classification. In SIGKDD, 2004.

159

[14] Sofus A. Macskassy and Foster J. Provost. Classification in networked data:
A toolkit and a univariate case study. Journal of Machine Learning Research,
8:935–983, 2007.

[15] J. Neville and D. Jensen. Iterative classification in relational data. In AAAI
Workshop on Learning Statistical Models from Relational Data, 2000.

[16] Luke McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious inference
in collective classification. In AAAI, 2007.

[17] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning proba-
bilistic relational models. In IJCAI, pages 1300–1309, 1999.

[18] Ben Taskar, Abbeel Pieter, and Daphne Koller. Discriminative probabilistic
models for relational data. In UAI, 2002.

[19] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
Learning, 62:107–136, 2006.

[20] Matthias Bröcheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic simi-
larity logic. In UAI, pages 73–82, 2010.

[21] Linyuan Lu and Tao Zhou. Link prediction in complex networks: A survey.
CoRR, abs/1010.0725, 2010.

[22] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social
networks. In CIKM, 2003.

[23] Lada Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

[24] Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18:3943, 1953.

[25] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[26] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[27] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link predic-
tion in relational data. In Advances in Neural Information Processing Systems,
2004.

[28] Alex Memory, Angelika Kimmig, Stephen H. Bach, Louiqa Raschid, and Lise
Getoor. Graph summarization in annotated data using probabilistic soft logic.
In URSW, pages 75–86, 2012.

160

[29] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A com-
parison of string distance metrics for name-matching tasks. In Proc. of IJCAI
Workshop on Information Integration, August 2003.

[30] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eu-
ijong Whang, and Jennifer Widom. Swoosh: a generic approach to entity
resolution. The VLDB Journal, 2008.

[31] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

[32] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates
in data warehouses. In VLDB, 2002.

[33] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for
domain-independent data cleaning. In SIAM SDM, 2005.

[34] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in rela-
tional data. ACM TKDD, 1:1–36, 2007.

[35] P Singla and P Domingos. Entity resolution with markov logic. IEEE Inter-
national Conference on Data Mining (ICDM 2006), 21:572–582, 2006.

[36] Galileo Namata, Stanley Kok, and Lise Getoor. Collective graph identification.
In KDD, pages 87–95, 2011.

[37] Arvind Arasu, Christopher Re, and Dan Suciu. Large-scale deduplication with
constraints using dedupalog. In ICDE, 2009.

[38] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive database
systems. The Journal of Logic Programming, 23(2):125–149, 1995.

[39] C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur. Sets and
negation in a logic data base language (LDL1). In PODS, 1987.

[40] Raghu Ramakrishnan, Kenneth Ross, Divesh Srivastava, and S. Sudarshan.
Efficient incremental evaluation of queries with aggregation. In ILPS, 1994.

[41] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume I. Computer Science Press, 1988.

[42] I. Balbin and K. Ramamohanarao. A generalization of the differential ap-
proach to recursive query evaluation. J. Log. Program., 1987.

[43] Boon Loo, Tyson Condie, Minos Garofalakis, David Gay, Joseph Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica.
Declarative networking: language, execution and optimization. In SIGMOD,
2006.

161

[44] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip
Levis, Scott Shenker, and Ion Stoica. The design and implementation of a
declarative sensor network system. In SenSys, 2007.

[45] Royi Ronen and Oded Shmueli. Evaluating very large datalog queries on social
networks. In EDBT, 2009.

[46] Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions
for efficient social network analysis. In ICDE, 2013.

[47] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Seventh International World-Wide Web Conference (WWW 1998),
1998.

[48] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632, 1999.

[49] L.C. Freeman. A set of measures of centrality based upon betweenness. So-
ciometry, 40:35–41, 1977.

[50] Michelle Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academu of Science, USA,
99:7821, 2002.

[51] M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Science, 103(23):8577–8582, June 2006.

[52] Martin Everett and Stephen P. Borgatti. Ego network betweenness. Social
Networks, 27(1):31–38, 2005.

[53] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999.

[54] Marc A. Smith, Ben Shneiderman, Natasa Milic-Frayling, Eduarda
Mendes Rodrigues, Vladimir Barash, Cody Dunne, Tony Capone, Adam
Perer, and Eric Gleave. Analyzing (social media) networks with nodexl. In
Proceedings of the fourth international conference on Communities and tech-
nologies, pages 255–264, 2009.

[55] Ronald Burt. Structural holes: The social structure of competition. Harvard
University Press, 1992.

[56] Jon M. Kleinberg, Siddharth Suri, Eva Tardos, and Tom Wexler. Strategic
network formation with structural holes. Sigecom Exchanges, 7:284–293, 2008.

[57] EgoNet. http://egonet.sf.net.

[58] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the
ACM, 42:844–856, July 1995.

162

http://egonet.sf.net

[59] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17:209–223, 1997.

[60] Michael Fellows, Guillaume Fertin, Danny Hermelin, and Stphane Vialette.
Sharp tractability borderlines for finding connected motifs in vertex-colored
graphs. In ICALP, 2007.

[61] Mariano Consens and Alberto O. Mendelzon. GraphLog: a visual formalism
for real life recursion. In PODS, 1990.

[62] Marc Gyssens, Jan Paredaens, and Dirk van Gucht. A graph-oriented object
database model. In PODS, 1990.

[63] Ralf Hartmut Güting. GraphDB: Modeling and querying graphs in databases.
In VLDB, 1994.

[64] L. Sheng and G. Özsoyoglu. A graph query language and its query processing.
In ICDE, 1999.

[65] Ulf Leser. A query language for biological networks. Bioinformatics, 21:33–39,
January 2005.

[66] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and
distance queries via 2-hop labels. SIAM Journal of Computing, 32(5):1338–
1355, 2003.

[67] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very
large graphs. In SIGMOD Conference, 2007.

[68] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. Grail: scalable reach-
ability index for large graphs. Proceedings of VLDB Endowment, 3:276–284,
September 2010.

[69] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast discovery
of connection subgraphs. In KDD, 2004.

[70] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, 2006.

[71] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay.
Clustering large graphs via the singular value decomposition. Machine Learn-
ing, 56(1-3):9–33, 2004.

[72] Kathy Macropol and Ambuj K. Singh. Scalable discovery of best clusters on
large graphs. PVLDB, 3(1):693–702, 2010.

[73] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and
applications of tree and graph searching. In PODS, 2002.

163

[74] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

[75] Huahai He and Ambuj K. Singh. Closure-tree: An index structure for graph
queries. In ICDE, 2006.

[76] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graph indexing: tree + delta
<= graph. In VLDB, 2007.

[77] Shijie Zhang, Meng Hu, and Jiong Yang. TreePi: A novel graph indexing
method. In ICDE, 2007.

[78] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. FG-index: towards
verification-free query processing on graph databases. In SIGMOD, 2007.

[79] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming ver-
ification hardness: an efficient algorithm for testing subgraph isomorphism.
Proc. VLDB Endow., 1:364–375, August 2008.

[80] Shijie Zhang, Shirong Li, and Jiong Yang. GADDI: distance index based
subgraph matching in biological networks. In EDBT, 2009.

[81] Peixiang Zhao and Jiawei Han. On graph query optimization in large networks.
Proc. VLDB Endow., 3:340–351, September 2010.

[82] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng
Wu. Graph pattern matching: from intractable to polynomial time. Proc.
VLDB Endow., 3:264–275, September 2010.

[83] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding
regular expressions to graph reachability and pattern queries. In ICDE, 2011.

[84] Lei Zou, Lei Chen, and M. Tamer Özsu. Distance-join: pattern match query
in a large graph database. Proc. VLDB Endow., 2:886–897, August 2009.

[85] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. VLDB Journal, 16(4):523–544, 2007.

[86] Omar Benjelloun, Anish Das, Sarma Alon, and Halevy Jennifer Widom.
ULDBs: Databases with uncertainty and lineage. In VLDB, 2006.

[87] Prithviraj Sen, Amol Deshpande, and Lise Getoor. PrDB: Managing and
exploiting rich correlations in probabilistic databases. VLDB Journal, special
issue on uncertain and probabilistic databases, 2009.

[88] Bhargav Kanagal and Amol Deshpande. Indexing correlated probabilistic
databases. In SIGMOD, 2009.

[89] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George Kollios.
k-nearest neighbors in uncertain graphs. PVLDB, 3(1):997–1008, 2010.

164

[90] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. Distance-constraint
reachability computation in uncertain graphs. PVLDB, 4(9):551–562, 2011.

[91] Ruoming Jin, Lin Liu, and Charu C. Aggarwal. Discovering highly reliable
subgraphs in uncertain graphs. In KDD, 2011.

[92] Petteri Hintsanen and Hannu Toivonen. Finding reliable subgraphs from large
probabilistic graphs. Data Mining and Knowledge Discovery, 17(1):3–23, 2008.

[93] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Finding top-k
maximal cliques in an uncertain graph. In ICDE, 2010.

[94] Odysseas Papapetrou, Ekaterini Ioannou, and Dimitrios Skoutas. Efficient
discovery of frequent subgraph patterns in uncertain graph databases. In
EDBT/ICDT, 2011.

[95] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent
subgraph patterns from uncertain graph data. IEEE Transactions on Knowl-
edge and Data Engineering, 22(9):1203–1218, 2010.

[96] Lei Chen and Changliang Wang. Continuous subgraph pattern search over
certain and uncertain graph streams. IEEE Transactions on Knowledge and
Data Engineering, 22(8):1093–1109, 2010.

[97] Ye Yuan, Guoren Wang, Haixun Wang, and Lei Chen. Efficient subgraph
search over large uncertain graphs. PVLDB, 4(11):876–886, 2011.

[98] Octavian Udrea, V. S. Subrahmanian, and Zoran Majkic. Probabilistic RDF.
In IRI, pages 172–177, 2006.

[99] Hai Huang and Chengfei Liu. Query evaluation on probabilistic RDF
databases. In WISE, volume 5802 of Lecture Notes in Computer Science,
pages 307–320. Springer, 2009.

[100] Xiang Lian and Lei Chen. Efficient query answering in probabilistic RDF
graphs. In SIGMOD, 2011.

[101] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, and Yannis Velegrakis.
On-the-fly entity-aware query processing in the presence of linkage. PVLDB,
3(1):429–438, 2010.

[102] Ming Hua and Jian Pei. Aggregate queries on probabilistic record linkages.
In EDBT, pages 360–371, 2012.

[103] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with
duplicates. In SIGMOD, 1995.

[104] Himanshu Gupta and Inderpal Singh Mumick. Incremental maintenance of
aggregate and outerjoin expressions. Inf. Syst., 2006.

165

[105] P. A. Larson and Jingren Zhou. Efficient maintenance of materialized outer-
join views. In ICDE, 2007.

[106] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Den-
sification and shrinking diameters. ACM TKDD, 2007.

[107] D. Cartwright and F. Harary. Structural balance: a generalization of Heider’s
theory. Psychological Review, 63(5):277–93, 1956.

[108] Yuanyuan Tian, Richard C. Mceachin, Carlos Santos, David J. States, and
Jignesh M. Patel. SAGA: a subgraph matching tool for biological graphs.
Bioinformatics, 23:232–239, January 2007.

[109] Edward G. Allan, Jr., William H. Turkett, Jr., and Errin W. Fulp. Using
network motifs to identify application protocols. In GLOBECOM, 2009.

[110] Valery Van Kerrebroeck and Enzo Marinari. Ranking by loops: a new ap-
proach to categorization. Phys. Rev. Lett., 101:098701, 2008.

[111] Natasa Przülj. Biological network comparison using graphlet degree distribu-
tion. Bioinformatics/computer Applications in the Biosciences, 23:177–183,
2007.

[112] Bin Jiang and Christophe Claramunt. Topological analysis of urban street
networks. Environment and Planning B: Planning and Design, 31:151–162,
2004.

[113] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On compressing social net-
works. In KDD, 2009.

[114] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods
and Applications. Cambridge University Press, 1994.

[115] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[116] Neo4j open source NoSQL graph database. http://neo4j.org/.

[117] Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. Efficient subgraph
similarity search on large probabilistic graph databases. PVLDB, 5(9):800–
811, 2012.

[118] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

166

http://neo4j.org/

	List of Figures
	List of Abbreviations
	Introduction
	Motivating Applications
	Scientific Publication Networks
	Targeted Marketing

	Overview of Dissertation Research
	Graph Data Cleaning
	Graph Data Analysis
	Graph Data Querying

	Outline and Contributions

	Related Work
	Graph Data Cleaning
	Graph Data Analysis
	Graph Data Querying
	Querying Certain Graph Databases
	Querying Uncertain Graph Databases

	Declarative Graph Data Cleaning
	Introduction
	Specification Language and Data Model
	Declarative Analysis Framework
	Defining Prediction Domains and Features
	Iterative Inference and Updating

	Implementation
	Rule-Based Query Optimizer
	The Merge-Join Operator
	Top-K Ranking by Confidence
	INSERT, DELETE and UPDATE Rules
	Iterative Inference

	Incremental Maintenance
	Feature Definition Views
	DOMAIN Views
	Cascaded View Maintenance

	Experimental Evaluation
	Synthetic Data Experiments
	Comparison with Derby
	Real-world Experiment

	Graph Data Querying and Analysis
	Introduction
	Data Model and Language Specification
	Subgraph Pattern Matching
	Enumerating Candidates of Each Pattern Node
	Initializing the Candidate Neighbor Sets
	Simultaneously Pruning the Candidates and Their Neighbors
	Extracting the Set of Matches from Candidate Sets

	Ego-centric Pattern Census Query Evaluation Algorithms
	Node-driven Algorithms
	Pattern-driven Algorithms

	Experimental Evaluation
	Experiments Using Synthetic Datasets
	Real-world Experiment

	Uncertain Graph Data Querying
	Introduction
	Motivating Example
	Uncertain Graph Modeling
	Subgraph Pattern Matching
	Algorithms
	Offline Phase
	Online Phase

	Experimental Evaluation
	Offline Phase Performance
	Online Phase Performance
	Performance on Real-world Data

	Conclusions
	Bibliography

