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Organizations concerned with human rights are increasingly using 

remote sensing as a tool to improve their detection of human rights and 

international humanitarian law violations.  However, as these organizations 

have transitioned to human rights monitoring campaigns conducted over 

large regions and extended periods of time, current methods of using fine-

resolution sensors and manpower-intensive analyses have become cost-

prohibitive.  To support the continued growth of remote sensing in human 

rights and international humanitarian law monitoring campaigns, this study 

researches how moderate resolution land observatories can provide 

complementary data to operational human rights monitoring efforts. 
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This study demonstrates the capacity of moderate resolutions to 

provide data to monitoring efforts by developing an approach that uses 

Landsat Enhanced Thematic Mapper Plus (ETM+) as part of a system for 

the detection of village destruction in Darfur, Sudan.  Village destruction is 

an indicator of a human rights or international humanitarian law violations in 

Darfur during the 2004 study period.  This analysis approach capitalizes on 

Landsat’s historical archive and systematic observations by constructing a 

historic spectral baseline for each village in the study area that supports 

automated detection of a potentially destroyed village with each new 

overpass of the sensor.  Using Landsat’s near-infrared band, the approach 

demonstrates high levels of accuracy when compared with a U.S. 

government database documenting destroyed villages. 

This approach is then applied to the Darfur conflict from 2002 to 

2008, providing new data on when and where villages were destroyed in this 

widespread and long-lasting conflict.  This application to the duration of a 

real-world conflict illustrates the abilities and shortcomings of moderate 

resolution sensors in human rights monitoring efforts. 

This study demonstrates that moderate resolution satellites have the 

capacity to contribute complementary data to operational human rights 

monitoring efforts.  While this study validates this capacity for the burning 



	
   iii 

of villages in arid environments, this approach can be generalized to detect 

other human rights violations if an observable signal that represents the 

violation is identified. 
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Chapter 1.  Introduction 

The crimes committed against humanity during World War II shocked 

the global community into action.  As the world continued to uncover the 

full extent of the Holocaust, international leaders in the newly formed 

United Nations (U.N.) drafted the Universal Declaration of Human Rights 

and established a mandate to protect human rights and prevent atrocities 

(United Nations, 1948).  However, certain situations increase the likelihood 

of human rights violations and therefore the need for human rights 

monitoring of conflicts (Edwards & Koettl, 2011): 

• The conflict is in a remote area. 

• There are multiple armed groups. 

• There are few external observers. 

• It is a regime where information flow to the outside is limited. 

Because of ongoing abuses, the U.N., along with other governmental 

and nongovernmental organizations (NGOs), conducts widespread and 

intensive human rights monitoring campaigns.  Broadly described by the 

Office of the High Commission for Human Rights as the “active collection, 

verification and immediate use of information to address human rights 

problems” (Office of the High Commissioner for Human Rights, 2001), 
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human rights monitoring documents any violations that include 

governmental and non-state transgressions of human rights and the failures 

of the state to protect those rights. 

 

1.1. The Basis of Human Rights and International Humanitarian Law 

Human rights are those rights that protect individuals and groups from 

governmental actions that interfere with fundamental freedoms and human 

dignity (Office of the High Commissioner for Human Rights, 2001).  

Established through the Universal Declaration of Human Rights in 1948, 

international humanitarian law is the body of law applicable in situations of 

armed conflict and is designed to protect humanity and diminish the evils of 

war (United Nations, 1948).  This declaration was expanded through the four 

Geneva Conventions of 1949 and the two 1977 Protocol Additions to those 

conventions to provide important protections for persons taking no active 

part in hostilities, including detainees and those places hors de combat 

(outside of combat) (United Nations, 1949, 1977a, b).  All parties to a 

conflict, including non-state actors, are obliged to comply with international 

humanitarian law. 

A human rights violation occurs any time a state or non-state actor 

breaches any part of human rights.  Remote sensing has successfully 
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provided evidence for several violations that the International Criminal 

Court (ICC) prosecutes, defined in Article 5 as “the most serious crimes of 

concern to the international community as a whole” (United Nations, 1998) 

(Table 1-1), and which include violations of human rights and international 

humanitarian law.  
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Table 1-1: Jurisdiction of the ICC (United Nations, 1998) 

 
Genocide: Any of the following acts committed with intent to destroy, in 
whole or in part, a national, ethnical, racial, or religious group 
-Killing members of the group 
-Causing serious bodily or mental harm to members of the group 
-Deliberately inflicting on the group conditions of life calculated to bring  
 about its physical destruction in whole or in part 
-Imposing measures intended to prevent births within the group 
-Forcibly transferring children of the group to another group 
 
Crimes Against Humanity: Any of the following acts when committed as 
part of a widespread or systematic attack directed against any civilian 
population 
-Murder 
-Extermination 
-Enslavement 
-Deportation or forcible transfer of population 
-Imprisonment or other severe deprivation of physical liberty in violation  
  of fundamental rules of international law 
-Torture 
-Rape, sexual slavery, enforced prostitution, forced pregnancy, enforced  
  sterilization, or any other form of sexual violence of comparable gravity 
-Persecution against any identifiable group or collectivity on political,  
  racial, national, ethnic, cultural, religious, gender 
-Enforced disappearance of persons 
-The crime of apartheid 
-Other inhumane acts of a similar character intentionally causing great  
  suffering, or serious injury to body or to mental or physical health 
 
War Crimes: Grave breaches of the Geneva Conventions of 1949 
-Willful killing 
-Torture or inhuman treatment, including biological experiments 
-Willfully causing great suffering, or serious injury to body or health 
-Extensive destruction and appropriation of property, not justified by  
  military necessity and carried out unlawfully and wantonly 
-Compelling a prisoner of war or other protected person to serve in the  
  forces of a hostile power 
-Willfully depriving a prisoner of war or other protected person of the  
  rights of fair and regular trial 
-Unlawful deportation or transfer or unlawful confinement 
-Taking of hostages 
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1.2. Using Remote Sensing to Detect International Law Violations 

Remote sensing is a tool that improves detection of and potentially 

provides a deterrent to human rights and international humanitarian law 

violations.  Remote sensing platforms include helicopters and fixed-wing or 

unmanned aerial vehicles.  However, these platforms are limited in several 

aspects, including limited range and the need for basing facilities near 

conflict areas, which are often in very remote locations.  These platforms 

also require overflight permission from the host government, which is often 

the alleged transgressor.  For these reasons, organizations that monitor 

human rights have increasingly turned to space-based imagery to identify 

and document conflict. 

The process of using remote sensing to detect human rights and 

international humanitarian law violations involves many different factors.  

However, organizations tend to follow a standard sequence of steps: 1) they 

identify the violation they are attempting to detect; 2) they select a remotely-

sensed, observable event, or phenomenon, that is associated with this 

violation; and then 3) they choose a sensor and a type of analysis that will 

permit detection of this phenomenon’s signal from the noise. 

These phenomena include anything the sensor can detect that may 

represent a violation of human rights or international humanitarian law.  
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Satellites can directly detect some phenomena, such as extensive destruction 

of civilian property, which is a violation if not justified by military necessity.  

For example, investigators will use satellite images and analysis to look for 

widespread destruction of houses.  Satellites can also indirectly detect 

violations, such as the forcible transfer of a people.  An example of this is 

detection of abandoned agricultural fields or greening pastoral areas (Table 

1-2) (UNOSAT, 2009).  
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Table 1-2: Select Human Rights Violations with Identification Requirements 

Violation 
(Location) 

Phenomena Signal Analysis Sensor / Revisit 
Used 

Source 

Artillery Targeted 
Near Civilians  
(Sri Lanka) 

Artillery, 
bomb craters 

Identification of 
craters near 
civilians 

WorldView 1  
(0.5m)  
2 Weeks 

(UNOSAT 
2009) 

Mass Executions 
(Bosnia) 

Creation of 
mass graves 

Disturbed earth, 
earthmovers 

U-2  
(unk)  
n/a 

(New York 
Times, 1995) 

Ethnic House 
Destruction 
(Georgia) 

Individuals 
houses 
destroyed 

Destroyed roof 
change 
detection 

DigitalGlobe 
(2m) 
6 months 

(AAAS, 
2008) 

Targeting of 
Civilian 
Infrastructure 
(Georgia) 

Damage to 
public 
buildings 

Identification of 
destroyed 
buildings 

WorldView 1 
(0.5m) 
n/a 

(UNOSAT 
2008) 

Political Prison 
Camps (North 
Korea) 

Expansions of 
prisons 

Prison size 
change 
detection 

DigitalGlobe 
(2m) 
10 years 

(Amnesty 
International, 
2011) 

Targeting of 
Civilian 
Infrastructure 
(Turkey) 

Destroying 
forests, fields, 
and villages 

Change in land 
cover 
classification 

Landsat 5 
(30m) 
4 years 

(De Vos et 
al., 2008) 

Civilian Population 
Removed  
(Sudan) 

Disruption of 
agricultural 
land 

NDVI change 
near population 
areas 

MODIS 
(250m) 
Annual 

(Schimmer, 
2008) 

Civilian Population 
Removed  
(Bosnia) 

Abandonment 
of agricultural 
land 

Agricultural 
field change 
detection 

Landsat 5 
(30m) 
4 years 

(Witmer, 
2008) 

Attacking Village 
(Sudan) 

Burning of 
arid villages 

MODIS fire 
detection 

MODIS 
(250m) 
Annual 

(Bromley, 
2010) 

Attacking Village 
(Sudan) 

Burning of 
arid villages 

Drop in 
village’s 
reflectance 

Landsat 5 / 7 
(30m) 
Annual 

(Prins, 2008) 
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The detection of different phenomena requires specific sensor 

characteristics.  Although some monitoring capacity has been shown using 

moderate resolution (MODRES) (10-100 spatial resolution) sensors 

(Bromley, 2010; Prins, 2008), most phenomena currently being used in 

human rights monitoring require a fine (1 to 10m spatial resolution), or very-

fine resolution (under 10m) sensor (Table 1-3). 

 

Table 1-3: Image Spatial Resolution Categories (Warner et al., 2009)3 

Pixel Size (m) Spatial Resolution Example Satellite-borne sensors 

< 1 Very fine WorldView 

1 - 10 Fine IKONOS 

10 - 100 Moderate ASTER, AWIFS, ETM+, MSS, SPOT 

100 - 1000 Coarse MODIS, MERIS 

> 1000 Very coarse AVHRR, GOES, METEOSAT 

 

The sensor’s temporal resolution, or how often a satellite passes over 

a target area, is also critical in the detection of violations.  Some phenomena, 

such as the deployment of tanks to protests, can require an image that day, 

while other phenomena, such as the abandonment of agriculture fields, may 

take several months to manifest themselves.  
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The importance of temporal resolution is demonstrated in a report by 

AAAS and Amnesty International on the Russian occupation of Tskhinvali, 

the capital of the disputed region of South Ossetia (AAAS, 2011; Amnesty 

International, 2008).  In response to Amnesty’s eyewitness reporting on the 

destruction of ethnic Georgian homes, AAAS purchased imagery for August 

10, two days after major hostilities ceased and the beginning of Russian 

occupation of the area.  AAAS also purchased imagery for August 19.  By 

imaging on these specific dates, AAAS was able to show that several 

hundred Georgian homes were destroyed after major hostilities concluded 

and during the time of Russian occupation (Edwards & Koettl, 2011).  This 

report corroborated eyewitness reports of widespread human rights 

violations occurring while under Russian occupation. 

Certain crimes, such as genocide, are by definition systematic, and 

evidence of them requires a time-series analysis.  The necessity of 

systematically detecting phenomena associated with some violations has led 

organizations to conduct human rights monitoring campaigns.  In these 

monitoring campaigns there is typically a standing request to collect all 

images over a certain region.  Later analysts look through the images to see 

if there is a systematic nature to the violations; both when and where the 

crimes occurred.  One of the first examples of this was when the U.S. 
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Department of State’s Humanitarian Information Unit (HIU) posted on-line 

a database and map based on hundreds of fine (under 10m spatial resolution) 

satellite images that linked eyewitness accounts with imagery-derived 

evidence of widespread destruction of villages in Darfur, Sudan (HIU, 

2004). 

 

1.3. Development of “Landsat Class” Observatories and Archive 

Civilian, moderate resolution, satellite-based imaging systems were 

developed from the recognition that military land observatories, such as 

CORONA, could provide valuable observations of the Earth’s land areas 

(Goward et al., 2009; National Research Council, 1969).  From that 

recognition, the concept of 30m to 100m multispectral, or “Landsat class”, 

observatories was developed through the convergence of conflicting views 

held by the National Aeronautics and Space Administration (NASA), the 

Department of Interior, the U.S. Intelligence Community, and the U.S. 

Academic Community (Goward et al., 2011). 

From this conceptualization, in 1972 the Earth Resources Technology 

Satellite (ERTS-1, later named Landsat-1) was launched.  Its sensors 

included the Return Bean Vidicon (RBV) and the Multispectral Scanner 

System (MSS).  The successes of the MSS, coupled with the failure of the 
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RBV shortly after launch, resulted in the MSS becoming the primary sensor 

on ERTS-1 and later Landsat missions (Goward et al., 2011).  The MSS six-

band design was improved on later missions, and renamed the Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+). 

In 2004, the Landsat program was declared a “national asset” by the 

U.S. President’s Science Advisor (Marburger, 2005) due to it’s unique 

provision of a continuous record of earth observation since 1972.  The 

observations produced by its spatial, spectral, and temporal resolutions have 

proven valuable in a wide variety of ecological and anthropological 

applications (Leimgruber et al., 2005; Townshend & Justice, 1988).  More 

recently, advanced computing power has introduced new methods of 

analyzing Landsat’s historic database.  Such analysis is possible due to the 

public and free availability of Landsat’s archives (Woodcock et al., 2008), 

its commitment to systematic global coverage (Goward et al., 2006), and its 

rigorous calibration and quality assurance (Markham et al., 2004). 

In 1992 the Land Remote Sensing Policy Act provided for the 

creation of the National Satellite Land Remote Sensing Data Archive 

(NSLRSDA) to preserve and make accessible the collection of satellite 

observations (U.S. Congress, 1992).  This act also mandated continued 

systematic monitoring of Earth land areas.  Today the U.S. Geological 
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Services’ Earth Resources Observation System (EROS) Data Center 

provides for the reception, processing, archiving, and hosting of Landsat 

data. 

Because Landsat-7 can only process about 400 per day (Wulder et al., 

2008), a long-term acquisition plan is used to prioritize scene selection 

(Arvidson et al., 2006).  The result of this acquisition plan is dense temporal 

coverage in some areas, and relatively poor coverage in other areas (Goward 

et al., 2006).  This discrepancy is magnified by the fact that not all Landsat 

observations are held in the NSLRSDA holdings.  Goward (2006) identifies 

gaps of varying magnitudes in the holdings which reflect administrative or 

technical gaps throughout Landsat’s history. 

While Roy (2010) notes that there is a mean of 6.9 acquisitions per 

path/row per year with cloud cover ≤	
  40% across Africa for 2000 to 2008, 

temporal coverage for western Sudan improved significantly in 2004 when 

daily scene collection increased from 250 to 300 starting on 11 May 2004 

(Arvidson et al., 2006).  Landsat TM was not available because the study 

area is not within a ground receiving antenna and the transmitter failed in 

1987. 
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Figure 1-1: The annual mean number of African ETM+ acquisitions, 2000–
2008, with cloud cover ≤ 40%, stored in the US Landsat archive.  Colors 
show the mean number of acquisitions available at a given Landsat 
path/row: 0 to 1 (black), 1 to 2 (purple), 3 to 4 (royal blue), 4 to 5 (blue), 5 to 
6 (aqua), 6 to 7 (dark green), 7 to 8 (green), 8 to 9 (light green), 9 to 10 
(orange), 10 to 11 (light red), 11 to 12 (orange), 12 to 13 (dark red). 1 
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1.4 Development of MODRES Change Detection Applications 

Digital change techniques for use with Landsat and other satellites, 

typically only analyze one image pair at a time (Lu et al., 2005; Singh, 

1989).  Some algorithms have been developed to analyze three or more 

images at a time, though these suffer from the same shortcomings as bi-

temporal techniques (Coppin et al., 2004; Lunetta et al., 2006).  More 

recently, temporal trajectory, or temporal profile analysis uses high temporal 

frequency in data acquisitions to characterize spectral profiles through time.  

This has been most often used to successfully documenting forest 

disturbance and regrowth (Huang et al., 2008; Jin & Sader, 2005; Kennedy 

et al., 2007). 

Much of the work developed in this dissertation is inspired and made 

possible from principles developed in the North American Forest  

Dynamics (NAFD) project.  This work evaluated forest disturbance and 

regrowth for the conterminous U.S. by combining Landsat observations and 

field measurements (Goward et al., 2008; Huang et al., 2008).  This project 

pioneered the use of dense Landsat Time Series Stacks (LTSS), defined as a 

temporal sequence of Landsat images acquired at specific temporal intervals, 

usually every year, or every two years (Huang et al., 2009). 
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The image pre-processing system developed in the NAFD project, 

called the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) (Masek et al., 2006; Wolfe et al., 2004) was used in this study.  

This system is a more appropriate pre-processing system for the study than 

image-to-image normalization procedures (Chavez, 1996; Moran et al., 

1992) which are designed for pairs of images.  While LEDAPS was 

designed for time-series analysis of North American forest disturbance, it is 

effective for application by converting images from digital numbers to TOA 

reflectance and then accounting for water vapor and aerosol atmospheric 

attenuation, which permits conversion of the images to surface reflectance.  

The LEDAPS system consists of four steps: 

• Extracts metadata, creates header files and masks for scanline gaps 
• Converts to top-of-atmosphere (TOA) reflectance and TOA 

brightness temperature for band 6 
• Generates cloud mask from the Automated Cloud Cover 

Assessment (Irish et al., 2006) 
• Converts to Surface Reflectance using concurrent MODIS 

information (Vermote et al., 2002) and dark vegetation 
differencing for aerosols (Kaufman et al., 1997) 

 
Analysis of the LTSS is done through an algorithm developed for 

reconstructing forest disturbance history, called the Vegetation Change 

Tracker (VCT) (Huang et al., 2010).  The VCT first samples forest values to 

build an integrated forest z-score (IFZ).  This score is used to further 

equalize forest pixels in the LTSS and is also used as a metric to create 
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temporal profiles of different land cover and forest change processes (Fig. 1-

2).  Decision rules are the applied to these profiles to identify persisting land 

cover types or disturbances.  The result is an accurate, trajectory-based 

analysis that detects forest disturbance and regeneration, with little to no 

fine-tuning for each LTSS.  
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Figure 1-2: Typical temporal profiles of major forest cover change processes 
(a-c) and non-forest (d) (Huang et. al, 2010).2 

 

1.5 Drylands Fire Detection 

Research into the remote sensing of burn scars has predominantly 

focused on forest fires, showing that bands 4 and 7 perform the best in 

discriminating burned areas (Koutsias & Karteris, 2000).  The Normalized 

Burn Ratio (NBR) is well documented in its ability to detect fire scars 

𝑁𝐵𝑅 = (!"#$  !!!"#$  !)
(!"#$  !!!"#$  !)

 (Garcia & Caselles, 1991) and has been shown to 

out-perform other time-series analysis techniques, such as image 
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differencing and ratioing (Lyon et al., 1998).  The time-series use of NBR, 

called NBR differencing (dNBR) subtracts the pre-fire NBR from the post-

fire NBR (Key & Benson, 2002).  For intra-seasonal fire detection, previous 

studies include the registering of reduced NDVI within a growing year 

(Kasischke & French, 1995) and a frequency based approach considering 

dNBR values for a biome (Loboda et al., 2007). 

	
  

Figure 1-3: Garcia (1991) demonstrated how the normalizing of Landsat 
bands 4 and 7 capture pre- and post-fire reflectance differences.3  
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There is considerably less research for burn scars in drylands.  

Principal Components Analysis (PCA) was shown to out-perform raw data 

and Kauth-Thomas transformations in using Landsat to detect fires in 

African savannas (Hudak & Brockett, 2004), however results however were 

poor.  Of the validation points in Hudak’s study, only 26 of 34 (76%) burned 

pixels were correctly identified. 

The performance of Landsat in drylands fire detection is much more 

difficult because band 7 (wavelengths 2.08-2.35µm) is not as useful as in 

forest fires.  In forest fires, band 7 is used to distinguish the low reflectivity 

of moist forest canopy with the high reflectivity of charred soil (Jia et al., 

2006).  In a drylands fire, reflectance from bands 4 and 5 drop as the ground 

transitions from pre-burn materials (soil, deadwood, dead twigs and dead 

litter) to post-burn materials (soil, charwood, charred soil and ash) (Fig. 1-4) 

(U.S. Geological Society, 2011).  Roy’s (2006) studies of grasslands or 

shrub areas have shown more sensitivity in the near infrared than mid-

wavelength infrared (3–8 µm) in pre- and post-fire situations (Fig. 1-5). 
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Figure 1-4: Pre- and Post-Fire Spectral Properties of soil and litter with 
ETM+ bands 4 and 7 (U.S. Geological Society, 2011).  The water absorption 
bands from 1350um to 1400um and 1800um to 1900um are omitted.4 
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Figure 1-5: Pre- and Post-Fire Average Spectral Profiles of a arid village 
ETM+ bands 4 and 7 (U.S. Geological Society, 2011).  +1 and -1 standard 
deviations are shown for both profiles.  Theater absorption bands from 
1350um to 1400um and 1800um to 1900um are omitted. 5 

 

1.6. Research Goals 

To date remote sensing research studies have largely failed to create 

new methods for the human rights community to assist in the timely and 

accurate detection of human rights violations.  This has been acknowledged; 

for example, “no large scale remote sensing monitoring of villages or a 

comprehensive map of burnt villages in Darfur is available” (Prins, 2008) 

and “there is a clear need for a rapid data collection and analysis methods 

with minimal cost for human rights groups” (Sulik & Edwards, 2010).  New 

remote sensing methods for human rights practitioners need to be developed 



	
   22 

because constraints posed by the current methodology are already limiting 

the growth of remote sensing in the human rights community.  

Within this study, prior research and practices of remote sensing in 

human rights was examined to identify areas where moderate resolution 

satellites could provide complementary data to monitoring campaigns.  The 

study identified an approach where moderate resolution could be employed, 

validated its performance, and demonstrated advantages that can be gained 

by implementation of such a system.  To accomplish this goal, the following 

specific research questions were addressed: 

1. What are the concepts and principles of human rights and 

international humanitarian law? (Chapter 1). 

2. What are the concepts and principles of remote sensing in human 

rights and international humanitarian law?  (Chapter 1). 

3. How can data from moderate resolution sensors be employed to 

address shortfalls in current remote sensing monitoring?  (Chapter 2). 

4. Focusing on arid regions that with a history of human rights 

transgressions, can an observable signal associated with human rights 

be identified and used in an early-warning system?  (Chapter 3). 

Basic Approach: 
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a. Identify a signal that is associated with a human rights 

violation.  

b. Develop an approach to detect this signal considering the time 

profile and separability of the signal. 

c. Test the approach on different Landsat bands and indices. 

d. Evaluate the approach’s success based on a U.S. government 

database of destroyed villages. 

5.  What are the benefits that this complementary data provides when 

implemented in an actual conflict?  (Chapter 4). 

6. Results of this thesis are summarized in the final chapter (Chapter 5) 

along with the significance and future applications of this work.   

Parts of this thesis have been combined into a manuscript titled ‘Remote 

Sensing in Human Rights and International Humanitarian Law Monitoring’ 

published in the Geographical Review (Marx & Goward, 2013) and 

‘Landsat-based early warning system to detect the destruction of villages in 

Darfur, Sudan’, which has been accepted for publication by Remote Sensing 

of Environment (Marx & Loboda). 
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Chapter 2.   
Methods of Remote Sensing in International Humanitarian 

Law 
	
  

There are two broad categories of remote sensing in international 

humanitarian law.  “Human rights mapping” consists of quickly ordering 

images of specific locations to verify an alleged human rights violation, 

while “human rights monitoring” systematically collects images over a large 

region to document any suspected violations.  Information gathered using 

remote sensing products such as DigitalGlobe or Geoeye imagery helps the 

U.N. and NGOs provide evidence of international law violations to fact-

finding bodies and criminal courts and supports U.N. peacekeeping missions 

(Pisano, 2011). In the future, these organizations expect to conduct larger 

human rights monitoring campaigns (UNOSAT, 2011). 

 

2.1. HIRES Mapping 

High-resolution (HIRES) (under 10m spatial resolution) mapping 

images a specific area and time that is either at risk of human rights 

violations or as verification of an alleged human rights violation.  This high-

resolution, often panchromatic image can produce compelling, corroborating 

evidence to complement eyewitness reporting and is the most commonly 
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used application of remote sensing in human rights.  Images can be overlaid 

with facts from geographic information systems (GIS), such as borders, 

ethnic neighborhoods, or locations of eyewitness reporting, to help analysts 

document the events. 

The U.S. government began to routinely used HIRES mapping to 

monitor human rights violations in the mid-1990s.  In 1995 then Secretary 

of State Madeleine Albright presented high-altitude, aircraft reconnaissance 

images to the U.N. Security Council depicting an excavator digging a mass 

grave and oblong objects, reputedly human bodies, awaiting burial (Bjørn, 

2000).  These HIRES photographs, combined with U.S. national satellite 

photographs and eyewitness reporting of mass executions of 7,000 Muslim 

men in the Bosnian town of Srebrenica, were effective in significantly 

increasing U.N. and international pressure on the leadership of the Bosnian 

Serbs (Figure 2-1) (New York Times, 1995).  These images were also used 

as evidence in the successful genocide prosecutions by the International 

Criminal Tribunal for the former Yugoslavia of several individuals involved 

in the massacre, most notably Slobodan Milosevic, the former president of 

Serbia and Yugoslavia (Keeley & Huebert, 2004). 
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Figure 2-1: Possible mass graves in the Kasaba / Konjevic Polje area of 
Bosnia, July 1995.  The arrows indicate recently disturbed earth or vehicle 
revetments.  Source:  New York Times, 29 October 1995.6 

 

HIRES mapping is an excellent tool for organizations with human 

rights programs, for it can detect very small phenomena associated with 

human rights violations, such as the destruction of a single house.  In 

addition, it enables organizations that monitor human rights to decrease the 

amount of time between receipt of eyewitness reports of a violation and 

distribution of the images to the international community.  Well-funded 

human rights campaigns such as the Satellite Sentinel Project (SatSentinel) 

purchase imagery from a constellation of HIRES sensors and can publicize 
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imagery from a location with a reported human rights violation in as little as 

twenty-four hours (SatSentinel, 2011). 

HIRES mapping is most limited, in that it must receive eyewitness 

reports, either from victims or international observers, before an 

organization can order satellite images to gather evidence of suspected 

violations.  In armed conflict, observers may be denied access, and reports 

by victims may be delayed for weeks or months if they leave the conflict 

area.  Because HIRES sensors are on demand, unlike some MODRES 

observatories like Landsat, these sensors may miss time-sensitive 

phenomena because human rights organizations may not yet have a reason to 

direct them to the violation. 

 

2.2. HIRES Monitoring 

HIRES monitoring differs from HIRES mapping in that many digital 

images are recorded over a large region in a long-term, systematic effort.  

Images are not ordered in response to reports of specific incidents but are 

continually taken over time, either to provide a deterrent in an area with a 

population at risk of suffering from human rights violations or to document 

crimes over time. 
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Most operational work in human rights monitoring employs trained 

imagery analysts, who use at least two images from different times to 

determine whether there is a change in the image, known as “change 

detection”.  As with HIRES mapping, the images are often overlaid with 

GIS layers and the locations of eyewitness reports that provide context and 

guide analysis.  Some organizations also overlay these images with data 

from other satellites, such as sensors that detect fire (Bromley, 2010; 

Wolfinbarger & Drake, 2012). 

SatSentinel, established in 2010 to serve as a deterrent to human rights 

violations in southern Sudan, is a well-publicized example of a HIRES 

monitoring campaign.  Sudan’s government-sponsored violence against 

civilians in southern Sudan has been feared following South Sudan’s 2011 

vote for independence.  In this campaign SatSentinel regularly acquires 

HIRES imagery, conducts analysis, and publishes the reports online.  

Villages, barracks, and transportation nodes are frequently imaged to record 

any suspicious activity (SatSentinel, 2011) (Figure 2-2).  It is disputed 

whether the SatSentinel program, as well as other campaigns that document 

human rights violations for later use in court, successfully deters perpetrators 

(Brown, 2011).  Matthew Levinger questions the effectiveness of GIS-based 

surveillance as an instrument for preventing genocide, noting that “projects 
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such as Crisis in Darfur and Eyes on Darfur are likely to be effective only if 

they can motivate external actors such as the U.S. government to take action 

against genocidal regimes” (Levinger, 2009). 

	
  

Figure 2-2: Apparent intentional destruction of the village of Tajalei, in the 
Abyei region of Sudan, 6 March 2011.  The black marks indicate recently 
burned huts and surrounding fields.  Source: SatSentinel 2011.7 

	
  

HIRES monitoring is also used in U.S. public diplomacy efforts to 

promote the safety of civilians in areas of conflict.  Imagery from either 

commercial or U.S. military satellites is used in multilateral (U.N.), bilateral 

(nation to nation), and media campaigns.  In 2009 the U.S. State Department 
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used images acquired from HIRES sensors to support ongoing efforts to 

encourage international intervention in Sri Lanka (British Broadcasting 

Corporation, 2009). The imagery demonstrated the rapid concentration of 

internally displaced persons (IDPs) trapped between warring Sri Lankan 

military and Tamil Tiger forces, promoted an end to hostilities, encouraged 

relief efforts for IDPs in the safe zone, and provided evidence of a 

humanitarian crisis (Figure 2-3). 
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Figure 2-3: A section of a civilian safe zone in northeastern Sri Lanka. Few 
tents speckle the beach in the top image, taken in February 2008 but just two 
months later, in April, the bottom image shows the same beach packed with 
displaced persons’ tents (BBC, 2009). 8  
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Although HIRES monitoring suffers from few methodological 

weaknesses, it is limited by the expense and manpower required to carry out 

a monitoring campaign.  Depending on the satellite and the contract, images 

can several thousands of dollars per image, incurring prohibitive costs on the 

part of monitoring campaigns that require tens or hundred of images.  The 

manual analysis of many images requires trained analysts and many hours of 

their time, additional factors that also contribute to the expense. 

2.3. Direct MODRES Monitoring 

Because MODRES sensors are continually imaging over land, 

organizations concerned with human rights violations can look for 

phenomena even if eyewitness reports come in weeks or months after the 

occurrence.  Because of their coarser spatial resolution, human rights work 

and research with MODRES monitoring has focused on detecting changes to 

entire villages (Table 1-2).  Even then, detectable changes associated with 

the destruction of a village can be slight, so they require careful calibration 

and consideration of environmental and seasonal issues such as precipitation 

or soil moisture.  Therefore MODRES observations are most effective on 

large villages that experience a significant amount of destruction. 

Prins (2008) provides an example of MODRES remote sensing in 

human rights monitoring demonstrating that Landsat ETM+ could detect the 
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destruction of medium to large villages in Darfur on an annual basis.  In a 

more recent study, Bromley (2010) links the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor, which detects fire, with eyewitness 

reports of violence in Darfur. 

Although these studies have demonstrated that MODRES sensors are 

successful in identifying phenomena that can be linked to human rights 

violations, such as a change in a village’s reflectivity or a fire in an area, 

they are still limited in several respects.  Successful monitoring has been 

demonstrated only on spatially large phenomena, and it requires a significant 

change to the village that causes a physical modification of the landscape, 

such as burning across a large section of a village.  And, unlike HIRES 

monitoring and mapping, MODRES sensors do not always produce 

compelling graphics, which limits their use in public-advocacy campaigns. 

 

2.4. Indirect MODRES Monitoring 

MODRES sensors can also be used to indirectly monitor an area for 

human rights violations.  Sensors can look for phenomena such as 

abandonment of agricultural fields or removal of livestock herds, both of 

which indicate the departure of a civilian population.  To detect these 

phenomena, researchers use methods that have proved effective for 
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measuring environmental change.  This was first demonstrated in using a 

variety of sensors to identify war-induced agricultural abandonment in 

Kosovo over a two-year period (Terres et al., 1999). Other studies have 

followed, demonstrating the ability of MODRES sensors to detect 

agricultural abandonment in Croatia and Bosnia (Landsberg et al., 2006; 

Witmer, 2008).   Schimmer (2008) used MODRES sensors to track an 

increase in vegetation cover and vigor in Darfur, which he linked to the 

displacement of people and their livestock.  He noted that the spatial and 

temporal tracking of population displacement could provide important 

evidence of the scale and systematic nature of the violence, evidence that is 

essential in genocide trials. 

These studies suffer from some methodological weaknesses, however.  

For example, the phenological changes that the sensor detects in the 

environment may be due not to conflict-related causes but to other factors.  

Abandoned fields may be only lying fallow (Terres et al., 1999),  Schimmer 

(2008) acknowledges that he did not control for interannual environmental 

differences such as rainfall or earlier green-up periods. It may be possible to 

control for environmental factors, but this requires detailed weather data that 

are less likely to be available in locations experiencing conflict (Nicholson 

& Farrar, 1994).  Moreover, using MODRES sensors to detect phenomena 



	
   35 

indirectly associated with human rights violations works best when 

preconflict and postconflict remote sensing data are available (Witmer, 

2008).  Preconflict data, gathered either through ground sampling or HIRES 

imagery, may not exist, and postconflict ground sampling may not be 

possible due to persistent security threats, such as land mines. 

 

2.5. New Methods Needed 

 The international human rights community continues to use remote 

sensing for human rights mapping or to corroborate eyewitness reporting of 

a violation at a specific time and location.  This work has improved with 

decreased time lapses between reports of violations and the ordering, 

acquisition, processing, analysis, and dissemination of images.  International 

human rights and humanitarian organizations are also increasingly using 

remote sensing for human rights monitoring or to observe regions where 

populations are at risk of suffering from human rights violations.  However, 

few organizations are able to conduct monitoring campaigns because of the 

expense of HIRES imagery and trained imagery analysts. 

Operational methods have changed little since 2003, when the 

Humanitarian Information Unit (HIU) demonstrated the ability to use a 

collection of information, including HIRES sensors, to depict village 
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destruction in Darfur.  Since then only a few organizations have 

incorporated advanced remote sensing techniques such as time-coincident 

MODIS fire detection (Sulik & Edwards, 2010). 
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Chapter 3.  
Landsat-based early warning system to detect the burning of 

villages in Arid Environments 
	
  

Although previous studies have shown promising results, these 

methods are more suitable to scientific research than operational monitoring 

due to the considerable lag in time between the impact of the armed conflict 

on population and its identification in satellite imagery.  In Preventing 

Genocide: A Blueprint for U.S. Policymakers, former U.S. Secretary of State 

Madeleine Albright writes that “at its most basic level, early warning means 

getting critical information to policymakers in time for them to take effective 

preventive action” (Albright & Cohen, 2008). 

The strategic data acquisition plan for Landsat missions provides a 

suitable data source to serve as a prototype for development of such a 

warning system (Goward et al., 2006).  The 16-day repeat cycle from 

Landsat 7 allowed us to collect an archive of images over Darfur between 

2000 and 2008.  In May 2003 the scan line corrector (SLC) malfunctioned 

on Landsat 7 that left only 75% of each acquired scene usable 

(http://landsat.gsfc.nasa.gov/about/landsat7.html).  While a combination of 
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two Landsat satellites would have provided a better return frequency of 8 

days, and thus greater opportunities for monitoring, this was not possible 

over Darfur region, as Landsat 5 was functioning in a very limited capacity 

during this time period and has since been decommissioned. 

 Subsequently, this project uses ETM+ as a prototype to develop such 

a warning system and to test its abilities.  The proposed approach may then 

be operationally deployed using Landsat 8 (LDCM or Landsat Data 

Continuity Mission) that was successfully launched on February 11, 2013. 

Methods applied within an early warning system require an 

economically viable combination of frequent observations of the affected 

area, as well as an appropriate spatial resolution and spectral range for 

detecting the footprint of the phenomena associated with human rights 

violations.  The price of individual fine of very fine images (Table 1-2), and 

the limitations of some platforms in the spectral range of their observations, 

makes an operational application from these sensors economically 

unfeasible.  However, only fine or very fine imagery allows for definitive 

identification of individual households and their condition in the Darfur 

region.  Therefore, an early warning system for monitoring impacts of an 

armed conflict on population in Darfur requires a coordinated effort of fine 
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or very fine data acquisition strategy, guided by the early-stage impact 

identification from the MODRES data. 

This chapter introduces a methodology for an early warning system 

using ETM+ that is designed to provide automated detection of the 

destruction of villages in arid environments.  This remote sensing algorithm 

capitalizes on Landsat program’s historical archive, radiometric stability 

(Markham et al., 2004), consistent calibration, and systematic observations 

by constructing a historic spectral baseline for each village in the study area.  

The application of the algorithm to the archived or operationally acquired 

Landsat and Landsat-like imagery identifies areas of high likelihood for 

village destruction in space-time and provides specifications for fine or very 

fine image acquisition and analysis to verify impact and quantify the extent 

of damage at the individual household level. 
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Figure 3-1: The study area in covers portions of West, North and South 
Darfur in western Sudan.9 

 

3.1. Study area 

In the late 1980s and 1990s, the Sudanese state of Darfur experienced 

clashes from both inter-tribal conflicts and armed insurrection by rebel 
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groups.  Beginning in 2003, the violence significantly escalated as 

government-supported militia groups, and later Sudanese military forces, 

attacked and destroyed thousands of villages (Flint & De Waal, 2008).  By 

September 2005 over 2 million people had fled the rural areas of Darfur to 

camps and the larger towns, and another 200,000 had sought refuge in 

neighboring Chad (Petersen & Tullin, 2006).  Refugees reported a similar 

pattern of attack: 1) their village was bombed, 2) soldiers and militia 

surrounded and entered the village, and 3) villages were looted and 

frequently burned. 

The proposed algorithm detects a remotely sensed phenomenon 

associated with a human rights violation.  Specifically it detects a dramatic 

change in surface reflectance, which is associated with the burning 

destruction of a village.  This approach provides a high degree of accuracy 

because, at the time in Darfur, such destruction was almost always due to an 

armed group violently removing a population and preventing their return by 

destroying the village (Flint & De Waal, 2008). 
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Figure 3-2:  The 
study area consists 
primarily of closed to 
open grassland (140) 
in the north, to 
rainfed croplands 
(14) and mosaic 
vegetation/croplands 
in the south (30) 
(Defourny et al., 
2006). Path/row 
179/51 is indicated in 
black. 10 
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The study area consists of Landsat ETM+ path/row 179/51 in western 

Darfur, Sudan.  The land cover consists primarily of open grassland in the 

north, increasing to rainfed	
  croplands	
  and	
  mosaic	
  vegetation/croplands	
  

in	
  the	
  south	
  in the south (Fig. 3-2) (Defourny et al., 2006).  It experiences 

heavy rain from the beginning of July to the end of September, with little 

rainfall in other months (Fig. 3-3) (Huffman et al., 2009).  While the 

widespread conflict in Darfur was distributed across 8 Landsat path/rows, 

this location was chosen because it contains the greatest concentration of 

destroyed villages in a one-year period (HIU, 2010). 

 

Figure 3-3: Mean Precipitation for latitude 12-13 North, 22-24 East (red) 
and 13-14 North, 22-24 East (blue) (Huffman, 2009). 11 
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Figure 3-4: Huffman (2009) precipitation grids 12-13 North, 22-24 East and 
13-14 North, 22-24 East (pink).  Sudanese international boundary (yellow).  
Landsat ETM+ path/row 179/51 (grey). 12 

 

3.2. Methodology 

The input data for the algorithm includes Landsat surface reflectance 

data and the Humanitarian Information Unit’s database of villages in Darfur 

(HIU, 2010).  The methodology is presented in three parts: 1) image 
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processing and village delineation; 2) algorithm flow; and 3) evaluation of 

16 bands/indices derived from ETM+. 

Table 3-1: Images Used in Study.4 

3.3. Image processing 

The analysis of the 

change in surface reflectance 

caused by village destruction 

was performed using Landsat 

7 ETM+ images.  Images 

were collected from four 

baseline years, ranging from 

15 October 2000 to 26 

December 2003 and the entire 

test year in 2004 (Table 3-2).  

There was a total of 21 SLC-

on and 3 SLC-off images 

available 

(http://earthexplorer.usgs.org) 

for the baseline period, and 25 

USGS	
  ID	
   Date	
  
LE71790512000289EDC00	
   15-­‐Oct-­‐00	
  
LE71790512000353SGS00	
   18-­‐Dec-­‐00	
  
LE71790512001035SGS00	
   4-­‐Feb-­‐01	
  
LE71790512001099EDC00	
   8-­‐Apr-­‐01	
  
LE71790512001131SGS00	
   10-­‐May-­‐01	
  
LE71790512001179EDC00	
   27-­‐Jun-­‐01	
  
LE71790512001291SGS00	
   17-­‐Oct-­‐01	
  
LE71790512001355SGS00	
   20-­‐Dec-­‐01	
  
LE71790512002070EDC00	
   10-­‐Mar-­‐02	
  
LE71790512002294SGS00	
   20-­‐Oct-­‐02	
  
LE71790512002310SGS00	
   5-­‐Nov-­‐02	
  
LE71790512002342SGS00	
   7-­‐Dec-­‐02	
  
LE71790512003009SGS00	
   9-­‐Jan-­‐03	
  
LE71790512003057SGS00	
   26-­‐Feb-­‐03	
  
LE71790512003089EDC00	
   29-­‐Mar-­‐03	
  
LE71790512003313ASN01	
   8-­‐Nov-­‐03	
  
LE71790512003361ASN01	
   26-­‐Dec-­‐03	
  
LE71790512004028ASN01	
   28-­‐Jan-­‐04	
  
LE71790512004044ASN01	
   13-­‐Feb-­‐04	
  
LE71790512004076ASN01	
   16-­‐Mar-­‐04	
  
LE71790512004092ASN01	
   1-­‐Apr-­‐04	
  
LE71790512004108ASN01	
   17-­‐Apr-­‐04	
  
LE71790512004124ASN01	
   3-­‐May-­‐04	
  
LE71790512004140ASN01	
   19-­‐May-­‐04	
  
LE71790512004156ASN01	
   4-­‐Jun-­‐04	
  
LE71790512004316ASN00	
   11-­‐Nov-­‐04	
  
LE71790512004332ASN00	
   27-­‐Nov-­‐04	
  
LE71790512004348ASN00	
   13-­‐Dec-­‐04	
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SLC-off for 2004.  Of these, 17 images were not significantly impacted by 

clouds and were used for the baseline, and eleven images in 2004 were used 

to test the algorithm.  The SLC corrector issues of ETM+ imagery that began 

in May 2003 affect 25% percent of the footprint (Fig. 3-6).  Landsat 5 TM 

imagery is unavailable for this location because of the 1987 failure of the 

Tracking and Data Relay Satellite System (TDRSS) transmitter and because 

this path/row is not within range of a downlink station (Goward et al., 2006).  

All Landsat terrain corrected (L1T) imagery were converted to surface 

reflectance using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) (Wolfe et al., 2004).  LEDAPS includes the Automated 

Cloud Cover Assessment (ACCA) algorithm, which creates an automatic 

cloud and cloud shadow mask based on Landsat bands 2 through 6 (Irish et 

al., 2006); however, ACCA does not perform well on semi-transparent 

clouds or cloud edges.  Two baseline images (4/28/02 and 6/15/02) were not 

used due to cloud contamination that was not successfully masked with the 

ACCA (Fig. 3-5). 
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Figure 3-5: Landsat 7 image from 4/28/2002 (path 179 row 51) (RGB – left) 
(ACCA mask – right). Cloud edges and semi-transparent cloud were not 
successfully masked.13 
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 Figure 3-6: Study area path/row 179/51 showing a) scan line error 
areas in white, b) study area polygon, c) destroyed villages X, and d) control 
villages O. Villages in the study were chosen from the middle of the Landsat 
scene to minimize a lack of coverage due to scan lines.14  

	
  

Villages used in the case study were selected from the HIU’s database 

of villages in Darfur (HIU, 2010).  This database provides a center point 

(latitude and longitude) of all villages in Darfur and, where possible, its 
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status by year (damaged, destroyed, or no damage).  The extent of each 

village’s structures was delineated manually from VHR imagery available in 

Google Earth and villages that are in areas significantly impacted by the 

SLC errors were omitted from the study.  All villages in the study area that 

were listed as destroyed in 2004 and not significantly impacted by SLC 

errors were selected to test the algorithm—a total of 92 villages.  These 

villages ranged in size from 25 to 262 Landsat pixels, or 750 to 7,860m2.  

Another 92 villages were randomly selected from villages that were not in 

SLC error areas and were never listed as damaged or destroyed (Fig. 3-6).  

Five of these villages were smaller than 20 Landsat pixels or 600m2 and 

were removed from the control dataset, bringing the number to 87 villages. 

While control villages were selected randomly, they tended to be 

smaller on average (2,659m2) than villages that were identified as destroyed 

(3,634m2).  This is likely due to the fact that large destroyed villages have 

more eyewitnesses reporting attacks and are easier to identify through 

imagery.  Control villages also tended to have larger baseline NIR 

observations (NIR= 0.32) than destroyed villages (0.28), indicating a greater 

density of built structures that are made of dried plant material. 



	
   50 

 

3.4. Band/Index Selection 

Sixteen different bands/indices derived from ETM+ were evaluated 

for use in the proposed analysis approach.  The band/index must produce a 

stable signal for each village throughout the baseline years.  This creates a 

stable baseline with which to compare future observations and identify 

possible village destruction.  This also prevents the incorrect identification 

of a destroyed village during the test year (i.e. commission error).  However, 

the signal must be sensitive enough to identify the destruction of even small 

villages with sparsely built structures during the test year.  This analysis 

focused on testing a combination of surface reflectance and derived indices 

on two major components: 1) signal stability and 2) signal sensitivity. 

 

3.4.1. Signal Stability 

Seventeen ETM+ images from 15 October 2000 to 27 December 2003 

created a population of observations for 179 different villages to evaluate 16 

different bands/indices in their ability to produce a stable population of 

observations throughout the baseline years (Table 3-1).  These metrics were 

chosen because they are the bands and indices most commonly researched in 

burn scar detection.  The bands/indices includes Landsat ETM+ bands 1 



	
   51 

through 8, the normalized burn ratio (NBR) (Key & Benson, 2002), NDVI 

(Tucker, 1979), visible bands sum (sum of ETM+ bands 1,2,3,4,5,7), ETM+ 

bands 1+2+3, ETM+ bands 4+5, ETM+ bands 4+5+7, Tasseled Cap (TC) 

Brightness, TC Greenness, and TC Wetness (Huang et al., 2002). 

For use in the proposed algorithm, a signal must be stable in all 

baseline observations, and not exhibit a strong seasonal green-up.  Sampling 

only from within a village’s extent minimizes seasonal green-up, as well as 

only recording the village’s lowest 20% of pixels (Fig. 3-12).  Additionally 

images from the months of June, July, August and September were not used 

because they correspond to the region’s wet season (Huffman et al., 2009).  

Although these measures were taken, there is some evidence of village’s 

producing lower reflectance scores following the wet season in October (Fig. 

3-8 and 3-9) indicating that a seasonal green-up is minimized, but not fully 

negated. 

A one-way ANOVA F-test statistic evaluated the relative stability of 

each band/index (Table 3-2) by measuring the between-group variability 

over within-group variability (Weisstein, 2003).  In this algorithm, the 

variability between the 179 villages is divided by the variability within a 

single village (over up to 17 dates) so the larger the F-statistic, the more 

stable the signal is in comparison to observations across all villages.	
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Table 3-2: The stability of Landsat-based metrics in the algorithm was tested 
through an F-test statistic over baseline years.  The variability between the 
179 villages was divided by the variability within a single village so the 
larger the F-statistic the more stable the signal is in comparison to 
observations across all villages. ETM+ bands 4 and 5, and their sum, 
produced the most stable observations in the algorithm. 5 

Band	
  1	
   5.32	
   NDVI	
   4.32	
  

Band	
  2	
   11.91	
   1+2+3+4+5+7	
   23.68	
  

Band	
  3	
   16.73	
   1+2+3	
   12.26	
  

Band	
  4	
   34.62	
   4+5	
   37.19	
  

Band	
  5	
   36.15	
   4+5+7	
   32.6	
  

Band	
  6	
   0.29	
   TC	
  Brightness	
   23.91	
  

Band	
  7	
   21.44	
   TC	
  Greenness	
   6.66	
  

NBR	
   7.64	
   TC	
  Wetness	
   28.35	
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The combination of NIR and SWIR1 (Landsat band 5 ~1.5µm) 

produced the least amount of variability within a village compared to 

between villages.  SWIR1 was the most stable single band followed by NIR.  

SWIR1, and to a lesser degree Wetness, produced high F-statistics because 

they are sensitive to moisture content of soil and vegetation.  Because all 

observations were taken in the dry season, there was little change in 

moisture content within a village over time resulting in a stable signal (Fig. 

3-8 and 3-9).  

	
  

Figure 3-7:  Reflectance (solid line) and transmittance (dashed line) of (left) 
fresh leaf and (right) dry leaf of a semiarid species, Quercus pubescens 
(Ustin, 2005).15 

	
  

NIR, which is sensitive to changes in biomass, both green vegetation 

(GV) and non-photosynthetically active vegetation (NPV) (Numata et al., 

2007; Ustin et al., 2009) (Fig. 3-7), produced a stable population of baseline 
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observations because these arid villages are composed of dry plant material 

and bare, unvegetated ground.  Additionally, because only dry-season 

images were used, seasonal green-up within these villages is minimized 

(Fig. 3-8 and 3-9).  While NBR is based on bands that were stable in this 

evaluation (NIR and SWIR1), NBR produced a very low F-statistic because 

it is a ratio designed to amplify differences in the signals (Table 3-2). 
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Figure 3-8: Baseline observations in the algorithm for NIR (a), SWIR1 (b), 
and NBR (c) for test village #5.  SWIR1 and NIR provided the most stable 
population of observations in baseline years as measured by their F-statistic 
(Table 3-2).  Observations were not used from 1 July to 30 September due to 
cloud cover and green-up during the wet season and because fighting took 
place during the dry season.16 
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Figure 3-9: Baseline observations in the algorithm for NIR (a), SWIR1 (b), 
and NBR (c) for test village #67.  SWIR1 and NIR provided the most stable 
population of observations in baseline years as measured by their F-statistic 
(Table 3-2).  Observations were not used from 1 July to 30 September due to 
cloud cover and green-up during the wet season and because fighting took 
place during the dry season. 17 
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Figure 3-10. Um Zaifa, South Darfur, Sudan, burned on 10 December 2004. 
This village is not in the extent of the study area (lat: 24.667, lon: 11.067) 
(Petersen & Tullin, 2006).  Photo: Brian Steidle © Courtesy of United States 
Holocaust Memorial Museum. 18 

 
3.4.2. Sensitivity 

16 different metrics derived from ETM+ were evaluated in their 

ability to detect the destruction of a village during the test year.  These 

metrics were chosen because they are the bands and indices most commonly 

researched in burn scar detection.  For the 92 villages listed as destroyed for 

the test year of 2004 (HIU, 2010), each metric should produce at least one 

observation that is separated from the body of baseline observations, which 

 25

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Um Zaifa, Darfur, 2005. Photo: Brian Steidle © Courtesy of United States Holocaust Memorial 
Museum
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is estimated as the detection of the village now destroyed (Fig. 3-11).  

Additionally for the 87 villages confirmed as not destroyed for 2004, there 

should be no observations that separate from the body of baseline 

observations. 

The test year consisted of 11 ETM+ images in 2004 for the 179 

villages.  A one-tailed, student’s t-test was used to determine if a village’s 

observation during the test year was significantly lower than all observations 

during the baseline years (Weisstein, 2003).  If the p value was less than a 

significance value of 0.0001, the village was considered destroyed (Table 3-

3).  There was assumed to be no variability in any single test observation, 

permitting a very low significance value of 0.0001. 

  



	
   60 

 

Table 3-3: Landsat-based metrics were tested in the algorithm against the 
reference database.  A one-tailed, student’s t-test was used to determine if 
any single, test year observation was lower than that village’s baseline 
observations.  There was assumed to be no variability in the single test 
observation, permitting an α of 0.0001. 6 

 Omission Error Commission Error Accuracy 
Band 1 88.0% 16.1% 46.9% 
Band 2 90.2% 3.4% 52.0% 
Band 3 92.4% 5.7% 49.7% 
Band 4   17.4% 13.8% 84.4% 
Band 5 65.2% 14.9% 59.2% 
Band 6 57.6% 77.0% 33.0% 
Band 7 82.6% 4.6% 55.3% 
NBR 16.3% 47.1% 68.7% 
NDVI 17.4% 72.4% 55.9% 
1+2+3+4+5+7 84.8% 10.3% 51.4% 
1+2+3 89.1% 9.2% 49.7% 
4+5 42.4% 12.6% 72.1% 
4+5+7 73.9% 10.3% 57.0% 
TC Brightness 79.3% 9.2% 54.7% 
TC Greenness 19.6% 77.0% 52.5% 
TC Wetness 72.8% 26.4% 49.7% 
 
 

L7 ETM+ visible bands and indices that use a combination of these 

bands, such as 1+2+3+4+5+7 and Red+Green+Blue, performed poorly with 

very high omission rates and very low commission rates (Table 3-4).  These 

metrics were not able to detect the signal for a village’s destruction from the 

signal’s noise, primarily because these metrics were not stable during the 

baseline years.  SWIR2 (Landsat band 7 ~2.1 µm), Brightness, and Wetness 
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performed better than the visible bands, but were also unable to separate the 

signal indicating a village’s destruction from the metric’s noise.   

By contrast, NBR, NDVI, and Greenness all produced very strong 

signals representing the destruction of a village, but because of the high 

variability of these indices (as indicated in their low F-statistics) (Table 3-2), 

they have very large commission error rates on control villages (Table 3-3).  

While SWIR1 and NIR + SWIR1 produced very stable populations of 

baseline observations, the signals produced for destroyed villages were 

insufficient for detection of destroyed villages as seen in their high omission 

rates. 

Figure 3-11: Year 2004 observations for test village #5 show the sensitivity 
of NIR in the algorithm to detect a possible destruction; between the third 
and fourth observations in this case.  The village’s average for baseline 
observations (0.294) is shown as a dashed line.19 
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ETM+ band 4 or NIR was the most effective metric tested for the 

algorithm.  NIR produced a stable population of observations in the baseline 

years, as evidenced in a high F-statistic.  This stability is also seen in the low 

commission rate for control villages in the test year.  Additionally, the signal 

correctly representing the detection of a destroyed a village was strong 

enough for detection from the signal’s noise, as evidenced by the low 

omission error rate (Table 3-4).  

NIR likely performs well because villages in the study area are 

primarily constructed with deadwood and straw (Fig. 3-10) (Steidle, 2004).  

When a village is destroyed there is a significant and persistent drop in 

biomass that is detectable in Landsat’s NIR band.  NIR is sensitive to 

changes in biomass, both in green vegetation and non-photosynthetically 

active vegetation (Fig. 3-7) (Numata et al., 2007; Ustin et al., 2009).  The 

change in NIR reflectance represents the transition in the village’s structures 

from dead plant material to char and ash (Fig. 1-5) (U.S. Geological Society, 

2011). 

 

3.5. Algorithm Flow 

Two satellite images from two dates, spaced one year apart (or annual 

multiples), are most often used in change detection because they minimize 
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discrepancies in reflectance caused by seasonal vegetation fluxes and sun 

angle differences (Coppin et al., 2004).  This has been shown to be very 

effective in detecting forest disturbance using Landsat TM and ETM+ 

(Huang et al., 2008; Kennedy et al., 2007).  Temporal trajectory analysis is 

less accurate, attempting to identify changes within a calendar year by 

building seasonal development curves or profiles of the study area.  Changes 

are detected when the study area departs from the baseline curve (Kasischke 

& French, 1995). 

This algorithm proposes new methodology by detecting if a village’s 

observation at each new pass of the sensor during the test year is 

significantly lower than the body of observations from baseline years (Fig. 

3-12).  To identify when structures within the village transition from dry 

plant material to charwood and charred soil, observations are calculated 

averaging the lowest 20% of the village’s pixels.  

𝑇_𝑇𝑒𝑠𝑡 =
𝑀𝑒𝑎𝑛 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑆𝑡𝑑𝑒𝑣/ 𝑑𝑓
 

During the test year, a one-tailed, student’s t-test (p=0.0001) is used to 

determine if village’s observation is significantly lower than the historical 

body of its observations (Weisstein, 2003), where “mean” is the mean of all 

baseline observations, “observation” is the value for the test observation, 
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“Stdev” is the standard deviation of all baseline observations, and “df” is 

degrees of freedom, or the count of all baseline observations.  This T-Test is 

assumes there is no variability in the observations, resulting in very low 

probability values. 

 

	
  

Figure 3-12.  Landsat ETM+ destroyed village detection algorithm process 
stages.20 

	
  

This methodology is possible in part because LEDAPS is effective at 

reducing differences in the images caused by atmospheric effects (Masek et 

al., 2006).  The method of comparing a village’s observation to a stack of its 
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previous observations increases the sensitivity of the algorithm by 

eliminating differences between villages such as local land cover and the 

density of build structures.  This is similar to Loboda, et al. (2007), 

increasing the sensitivity of fire detection methods by modifying the 

algorithm based on the local environment. 

 

3.6. Validation dataset and methodology 

The validation reference base used to test the algorithm’s performance 

on these 197 villages is the U.S. Department of State’s Office of the 

Geographer and Global Issues’ HIU database (HIU, 2010).  This database 

lists the location of villages in Darfur, Sudan and their annual status as either 

damaged, destroyed, or no damage.  A destroyed village is defined as 

confirmed evidence of complete destruction of the village.  Villages where 

the date of damage could not be determined (those listed in the database as 

“damaged at any time”) were not included in this study.  A confusion matrix 

was calculated with commission and omission errors and the overall 

accuracy (Table 3-4). 
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3.7. Results 

The use of ETM+ band 4 in the algorithm correctly detected 82% of 

the villages identified as destroyed by the HIU database in 2004.  The 

algorithm incorrectly detected 14% of the control villages as being 

destroyed.  Increasing the significance level to 0.0005 reduces the omission 

rate, but it also significantly increases the number of villages incorrectly 

detected as destroyed.  While there is limited fine or very fine resolution 

imagery of this area in 2004 and subsequent years, a survey of available fine 

or very fine resolution imagery from 2005 to 2007 confirmed that at least six 

of the eight control villages identified as destroyed in 2004 were in fact 

identified incorrectly. 

There is not a single identified factor for why twelve of the 87 control 

villages had an observation in the test year that was significantly lower than 

its body of baseline observations.  These villages had a slightly higher 

baseline average and standard deviation (0.34 and 0.024, respectively) than 

all control villages (0.32 and 0.022, respectively).  While small control 

villages (less than 50 pixels) were more likely to have commission errors, 

large control villages (at least 180 pixels) had few commission errors (Table 

3-4).  These large villages tend to have lower NIR averages and less NIR 
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variability throughout the year, likely because they are more densely built 

and reflect seasonal green-ups less than small villages.  There was no 

temporal correlation, such as the first image after the wet season, for when a 

control village registered a commission error.  It is most likely that these few 

control villages which were detected by the algorithm as being possibly 

destroyed in the test year was because of anthropological reasons such as the 

burning of agricultural plots very close or within the village’s border, or 

because fences or other structures were destroyed on a limited basis in the 

village. 
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Table 3-4: Omission and Commission Errors by village size.  The control 
village data set had a larger number of smaller villages and a higher 
percentage of commission errors.  Large villages (over 179 pixels) had few 
errors.  While control villages were selected randomly, they tended to be 
smaller on average than destroyed villages that have more eyewitnesses 
reporting attacks and are easier to identify through imagery. 7 

	
   	
  
Destroyed	
  Villages	
  

	
  
Not	
  Destroyed	
  Villages	
  

Pixels	
  
	
  

Total	
   Omission	
  Error	
  
	
  

Total	
   Commission	
  Error	
  
20-­‐49	
  

	
  
9	
   1	
  

	
  
26	
   7	
  

50-­‐99	
  
	
  

28	
   6	
  
	
  

33	
   4	
  
100-­‐179	
  

	
  
41	
   8	
  

	
  
22	
   0	
  

180-­‐285	
  
	
  

14	
   1	
  
	
  

6	
   1	
  
 

 

16 of 92 villages listed as destroyed in 2004 (HIU, 2010) were not 

detected as destroyed using our approach.  Similar to the villages that had 

commission errors, villages with omission errors had higher baseline 

reflectances and standard deviations (0.28 and 0.016, respectively) than 

those where a burn was detected (0.29 and 0.017, respectively), indicating 

villages with more seasonal plant growth.  A survey of available VHR 

imagery confirmed that 13 of these 16 villages were destroyed sometime 

before 2007.  One of the villages was identified as intact in the VHR 

imagery, indicating shortcomings in the reference database.  Further visual 

inspection of Landsat ETM+ imagery indicates that three of these villages 

were destroyed in the end of 2003, effectively reducing omission error to 12 

of 92, or 13%. 
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During the wet season, there is a five-month gap in satellite coverage 

from 4 June to 11 November 2004 due to cloud cover.  Although village 

destruction declines during this time due to impassable roads (Petersen & 

Tullin, 2006), other omission errors may be because villages were destroyed 

during this time period.  While the HIU database was used because it 

contained the largest collection of villages identified as destroyed, the few 

errors in the database reveal that a study of its accuracy using smaller 

databases compiled from eyewitness reporting (Petersen & Tullin, 2006; 

Raleigh et al., 2010) would be valuable for future studies that cover the 

entire Darfur conflict. 

 

3.8. Conclusion 

Currently few organizations are able to conduct human rights 

monitoring campaigns because existing methods are prohibitively costly and 

labor-intensive.  The presented algorithm provides an approach that reduces 

the cost of human rights monitoring campaigns in arid regions by focusing 

the purchase of VHR imagery and analysis to areas that have been alerted by 

MODRES sensors.  This does not eliminate the costs however.  While the 

MODRES imagery and imagery pre-processing software (LEDAPS) is 

available online at no cost to users, the software used to run the algorithm, 



	
   70 

VHR imagery purchases to confirm village destruction, and trained analysts 

to interpret the results still make this a costly monitoring program to 

implement. 

Our results show that the approach provides a reliable detection of 

village destruction in 84% of the cases with very few false alarms.  As a 

warning mechanism, the demonstrated approach provides a worst-case lag of 

16 days (assuming no cloud cover), the revisit rate of ETM+.  The Landsat 

Data Continuity Mission (LDCM), launched in 2013, in combination with 

ETM+, would reduce the warning lag by up to eight days.  Additionally, 

other MODRES sensors, such as India's ResourceSat-1 Advanced Wide 

Field Sensor (AWiFS), have been shown to be interchangeable with Landsat 

in earth-observing applications (Goward et al., 2012).  The inclusion of other 

MODRES sensors to this algorithm could also be used to improve accuracy 

by modifying the algorithm to detect when two sequential observations are 

significantly different from baseline observations. 

The threshold, developed within this algorithm, is aimed at 

monitoring villages in Darfur, Sudan in 2004, and is specific to this region’s 

building materials as well as the methods of the perpetrators (e.g. the 

burning of villages).  The expansion of this approach necessitates the 

identification of an observable signal in the region of interest that indicates a 
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possible international humanitarian law violation.  We plan to expand the 

algorithm to other regions following the overall framework presented in this 

paper.  In the future, data from a constellation of MODRES sensors could 

provide a low-cost and continual monitoring of regions at-risk of 

international humanitarian law violations. 
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Chapter 4.  Analysis of the Darfur Conflict, 2002 to 2008 

4.1. Introduction 

Since the late 1980s there have been minor clashes in the Sudanese 

state of Darfur due to inter-tribal conflicts and rebel-armed insurrection.  

The beginning of the waves of mass atrocities in Darfur, however, started in 

April 2003 with the government’s response to the successful 25 February 

2003 rebel attack against an army garrison in the Marrah Mountains (Power, 

2004).  At this time, government-supported militia groups, known as 

Janjaweed, and later Sudanese military forces, attacked thousands of 

villages, killing and raping their inhabitants.  They also prevented the return 

of escaped villagers by slaughtering their livestock and destroying homes 

(Flint & De Waal, 2008).  By September 2005 over 2 million people had 

fled the rural areas of Darfur to camps and the larger towns, and another 

200,000 had sought refuge in neighboring Chad (Petersen & Tullin, 2006). 

4.2. Study Area 

The study area consists of West Darfur, and portions of North and 

South Darfur where villages were documented as destroyed from 2003 to 

2008 in the HIU database (HIU, 2010).  Using the U.N. Land Cover 

Classification System, the study area consists primarily of bare and 
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grassland with closed and open tree canopy in the north, increasing to 

rainfed croplands and mosaic vegetation/croplands in the south (Fig. 4-1) 

(Defourny et al., 2006).  This region experiences heavy rain from the 

beginning of July to the end of September, with little rainfall in other months 

(Huffman et al., 2009).  Scenes that occur during the wet season (July, 

August, and September) were not used to minimize seasonal green-up within 

these villages. 
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Figure 4-1: The study area 
(red) consists of West 
Darfur, and portions of 
North and South Darfur.  
The U.N. Land Cover 
Classification System 
describes the study area as 
consisting primarily of bare 
(200) and grassland (140) 
in the north, increasing to 
croplands (14) and 
vegetation in the south (30) 
(Defourny et al., 2006). 21  
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4.2.1 Reference Dataset 

The reference dataset used in this study is the U.S. Department of 

State’s Office of the Geographer and Global Issues’ HIU database (HIU, 

2010).  This database lists the location of villages in Darfur, Sudan and their 

annual status as either damaged, destroyed, or no damage.  A destroyed 

village is defined as confirmed evidence by government analysts of 

complete destruction of the village.  Damaged villages were not used in the 

study.  Additionally villages where the date of damage could not be 

determined (those listed in the database as “damaged at any time”) were not 

included.  During the study period from October 2002 to 2008, 2,668 

villages were documented as destroyed in this database (Fig. 4-2).   

For this study, each village was assigned a single specific satellite 

footprint, or path/row to prevent double counting (Table 4-1).  The 

Worldwide Reference System-2 (WRS-2) is a notation system for Landsat 

data that allows users to define satellite imagery over any portion of the 

world by specifying a designated by path and row number.  Path/rows with 

the largest number of available images were assigned all villages in their 

area to provide the largest number of observations.  Two villages were 

contained in a twelfth path/row and were not included in this study, bringing 

the study total to 2,666 villages. 
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Table 4-1: Destroyed Villages in Study by Path / Row, Images Used, the 
color for Figure 4-2. 8  

 

	
  

	
  

	
   	
  

Path, Row Villages Images Used Fig. 4-2 Color 
177, 51 13 47 Blue 
177, 52 512 52 Dark Green 
178, 50 124 65 Dark Red 
178, 51 534 69 Dark Purple 
178, 52 362 61 Light Red 
178, 53 25 54 Light Purple 
179, 50 204 63 Aqua 
179, 51 555 74 Magenta 
179, 52 70 64 Green 
180, 50 40 39 Brown 
180, 51 227 75 Light Green 
Total 2,666 663  
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Figure 4-2:  The study area consists of 2,666 destroyed villages distributed 
across eleven path/rows indicated in black text and by color defined on 
Table 4-1.  Each village is assigned to a single specific path/row to prevent 
double counting (Table 4-1).  Villages are shown in colors which reflect the 
different path/rows they are assigned.22 
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4.2.2 Remote Sensing Satellite Data 

All images from 1 January 2000 to 31 December 2008, excluding wet-

season images from July, August, and September, were downloaded from 

USGS Landsat archive (http://earthexplorer.usgs.org) and included in the 

study (Appendix A).  Landsat 4 and 5 TM imagery are not available for this 

location because of the 1987 failure of the Tracking and Data Relay Satellite 

System (TDRSS) transmitter and because this path/row is not within range 

of a downlink station (Goward et al., 2006).  All imagery was orthorectified 

at USGS EROS (L1T) adjusting for any relief displacement.  Images were 

preprocessed using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) preprocessing software chain 

(http://ledapsweb.nascom.nasa.gov).  This chain converts the L1T imagery 

product to surface, spectral reflectances (Wolfe et al., 2004) and also 

includes the Automated Cloud Cover Assessment (ACCA) algorithm, which 

generates a cloud mask based on Landsat bands 2 through 6 (Irish et al., 

2006). 

Wet-season images from July, August, and September were not used 

because violence in the region corresponds to the dry season when roads 

permit the movement of rebel, militia, and military forces (Flint & De Waal, 
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2008).  Additionally not including the wet-season produces a more stable 

baseline of observations by minimizing village reflectance changes due to 

the annual seasonal green-up cycle (Huffman et al., 2009). 

The study area consists of eleven Landsat ETM+ path/rows in western 

Darfur, Sudan (Fig. 4-3).  Although Landsat-7 passes over nearly 850 scenes 

in a 24 hour period, technical satellite and sensor limitation as well as 

ground processing limitations (Wulder et al., 2008) reduce the acquisitions 

to ~ 250 scenes per day, which are determined by the long-term acquisition 

plan, which uses cloud cover and other priority factors  to prioritize scene 

selection (Arvidson et al., 2006).  Goward (2006) notes that discrepancies in 

scene collection by path/row is magnified by the fact that not all Landsat 

observations are held in the National Satellite Land Remote Sensing Data 

Archive (NSLRSDA).  Those acquired at the International Ground station 

reside at those ground stations.  The collection of images used in this study 

is available at USGS indicating that they were acquired using the L7 LTAP 

approach  (http://landsat.usgs.gov/tools_pend_acq_l7.php). 
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Figure 4-3: Images used in the study demonstrate the greater number of 
images available starting in 2004.23 

 

For the study area, there are more images available per year for the 

study area starting in 2004 (Fig. 4-3).  This is due to the increase in daily 

scene collection from 250 to 300 starting on 11 May 2004 (Arvidson et al., 

2006).  Arvidson (2006) notes the significant increase in desert scene 

acquisition starting in 2004 (Table 4-2).	
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Table 4-2: Acquisitions of desert scenes increased significantly starting in 
2004 as produced by Arvidson (2006).  910 

Boreal	
   2001	
   2002	
   2003	
   2004	
   2005	
  
Avg.	
  acquisitions/scene	
   5.6	
   5.3	
   3.7	
   4.8	
   6.1	
  
%	
  clear	
  images	
  
(acca<10%)	
  

26.2	
   28.4	
   33.6	
   27.3	
   27.7	
  
Desert	
   2001	
   2002	
   2003	
   2004	
   2005	
  
Avg.	
  acquisitions/scene	
   7.4	
   7.7	
   7.9	
   12.1	
   12.4	
  
%	
  clear	
  images	
  
(acca<10%)	
  

71	
   70.6	
   67.6	
   73.3	
   70.6	
  
	
  
	
  

4.3. Methodology 

The methodology used in this study builds on results from Chapter 3.  

Specifically it detects a drop in the village’s surface reflectance when a 

village is burned.  This drop shows the transition of the village from pre-

burn materials (soil, deadwood, dead twigs and dead litter) to post-burn 

materials (soil, charwood, charred soil and ash) (Fig. 1-4).  Previous analysis 

(Chap. 3) demonstrated that Landsat ETM’ near-infrared band was most 

sensitive to this change.  This prior approach was limited to the year 2004 

and to the areas of WRS-2 path 179 row 51 that were not affected by 

scanline errors.  ETM+ band 4 showed a high degree of accuracy in the 

approach, with an omission error of 17% and commission error of 14% 

(Table 3-3).   

Due to the expansion of this approach to all of Darfur, from October 

2002 to 2008, there were two significant modifications to the approach 
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developed in Chapter 3.  These included a change to how villages delineated 

and changes to the algorithm. 

	
  

4.3.1 Village Buffer 

In Chapter 3, the buffer of each of the 198 villages was delineated 

manually using very fine resolution imagery (Google Earth).  Because this 

study looks at 2,666 villages, a village’s extent was instead estimated with a 

200-meter buffer around the center point of each village’s location.  Based 

on visual analysis of Landsat ETM+ imagery, a 200-meter buffer was the 

largest a buffer possible before including adjacent rivers for some villages.  

This 200 m buffer, or 4,380 square meters was converted into a 146 pixels 

mask on the Landsat ETM+ imagery.  
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Figure 4-4: 200 meter buffer extent for two villages in path/row 179/51.  
Left panel: DigitalGlobe, 2005.  Right panel: Landsat ETM+, 5 March, 2000 
(ture color).  Both villages were detected as destroyed in 2003.24 

  

 
4.3.2 Algorithm 

Each village’s observation, from all scenes from October of 2002 to 

31 December 2008, was evaluated if it was destroyed.  Unlike the approach 

used in Chapter 3, this analysis compares each new observation to all 
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observations before it, called a rolling algorithm.  This approach provides for 

more baseline observations and greater accuracy.  Although violence in the 

region significantly increased following the 25 February 2003 successful 

rebel attack, the algorithm starts in October 2002 to capture the limited 

village destruction which occurred in the Fall of 2002 in West Darfur (Flint 

& De Waal, 2008; Petersen & Tullin, 2006). 

With each new pass of the sensor, each village’s observation was 

compared to a baseline of all previous observations starting in 2000.  A more 

restrictive T-Test was used in this study in comparison to Chapter 3 because 

villages had a greater number of baseline observations.  A one-tailed, 

student’s T-Test is used to determine if village’s observation is significantly 

lower than all previous observations (Weisstein, 2003), where “mean” is the 

mean of all previous observations, “observation” is the value for the test 

observation, “Stdev” is the standard deviation of all previous observations, 

and “df” is degrees of freedom, or the count of all previous observation.  

T_Test =
Mean − Observation
Stdev (1/df) + 1

 

This T-Test assumes some variability in the observations, resulting in 

higher probability, or p-values, than those used in Chapter 3.  This algorithm 

uses two confidence levels for the detection village destruction.  A p-value 
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under 0.005 alerts as high confidence of a recent fire in the village’s 

perimeter and a p-value of 0.05 alerts as medium confidence. 

	
  

Figure 4-5: Landsat ETM+ destroyed village detection algorithm process 
stages.  Version 2.25 

 

Starting in October 2002, all villages were then analyzed for the date 

they are first detected as destroyed.  The buffered area of a village may have 

been burned several times over the six year study period, so only the first 

observation where a village alerts is recorded.  Large-scale fires were 

observed in many areas of Darfur in 2006 and 2007, and covered many 

villages that were already detected as destroyed earlier in the conflict.  

Because there is no evidence of village rebuilding in Darfur in this time 



	
   86 

period (Flint & De Waal, 2008), only the first time a village is detected as 

destroyed is recorded.  The last date a village is observed as intact is also 

recorded.  The period between last detected intact, and first detected 

destroyed, may range from 16 days, the repeat cycle of the sensor, to several 

months if the village is detected as destroyed just after the wet season, or is 

in an area significantly impacted by scan line errors. 

 

4.4. Results 

4.4.1 Summary 
	
  

There were a total of 2,666 villages in the study that were reported as 

destroyed.  Of these 66% alerted as being destroyed; 1,106 (41%) at a high 

confidence level and 651 (24%) at a medium confidence level.  909 (34%) 

were not detected as destroyed.  The average time between when a village 

alerted as destroyed and when a village was last detected as not destroyed 

was 73 days.  High confidence level alerts had a slightly longer lag time than 

medium confidence alerts (76 and 69 days, respectively) (Fig. 4-6).  39% of 

all detections occurred after one pass of the sensor (16 days), and 64% of 

detections were after three passes of the sensor (48 days). 



	
   87 

	
  

Figure 4-6: Lag between when villages are last detected as intact, and first 
detected as destroyed by confidence level of the destroyed alert. 26 
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Figure 4-7: Villages detected as destroyed by year.  Focus areas near Kutum, 
North Darfur, and Donkey, South Darfur are outlined in blue. 27 
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4.4.2 Accuracy Assessment 
 

4.4.2.1 Inter-comparison with Chapter 3 Results  

There were 90 common destroyed villages between those used in 

Chapter 3 and Chapter 4 (although the Chapter 3 study consisted of 92 

control villages, two villages were covered by a different path/row in the 

Chapter 4 study).  The methodology differed for these 90 villages due to 

Chapter 4 methodology using an automated buffer instead of manually 

delineating a village’s extent, and using a more restrictive test for the 

detection of village destruction.  The omission rate for these villages was 14 

of 90 (15%) in the Chapter 3 study and 26 of 90 (29%) for the Chapter 4 

study.  

The reason for the significantly higher omission rate is due to the 

more restrictive test in Chapter 4, not the less precise buffer.  When the 

Chapter 4 villages with buffered extents were put into the less restrictive 

approach, their omission rate fell 17 of 90 (19%).  Additionally when the 

more precisely delineated villages were put into the more restrictive version 

of the algorithm the omission rate increased to 25 of 90 (28%).  The more 

restrictive approach was chosen because all dates after Oct 2003 are tested 

and only the first date a village is detected is destroyed is recorded.  A more 
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restrictive approach minimizes the occurrences of false alarms although it 

significantly increases the omission rate. 

 

4.4.2.2 Comparison with Bloodhound Database 

Bloodhound in a Danish non-governmental organization founded in 

early 2004 to document atrocities perpetrated by the Government of Sudan 

(www.bloodhound.dk).  Their report, authored by Petersen and Tullin 

(2006), “The Scorched Earth of Darfur: Patterns in Death and Destruction 

Reported by the People of Darfur” is a collection of detailed witness 

testimonies and reports on village attacks in Darfur from January 2001 to 

September 2005.  There are 178 accounts of attacks collected from media, 

human rights, and United Nations sources.  Although the violence in Darfur 

affected an estimated 2 million people during this time, all access to the area 

was denied to journalists and human rights groups until March 2004, with 

only limited access allowed subsequent to that date.  This resulted in the 

small number of reports as well as making it impossible to conduct a 

detailed on-site verification of the scale and nature of these attacks. 

Of the 178 accounts of attacks, only 16 accounts were of a village 

destruction including a date and specific location that corresponded to a 

destroyed village in this study.  Eight of the 16 eyewitness accounts were 
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detected with the algorithm within the same period as the Bloodhound 

Database.  Three villages were not detected destroyed at any time and five 

were detected at different times.  In one of the cases where the approach did 

not match the time of the eyewitness report, village destruction was detected 

just one sensor pass after the eyewitness-reported destruction date.  In many 

cases the date of the village destruction is approximate, as villagers may not 

know exactly what date it was when they were attacked, and refugees report 

that villages often experienced multiple attacks over a prolonged period 

before they are destroyed by burning or bombing (U.S. Department of State, 

2004).  Of the 13 villages that were detected as destroyed by the algorithm, 9 

(69%) were within 16 days of the eyewitness account. 



	
   92 

	
  

Figure 4-8: Location of 16 villages used to compare village destruction dates 
with algorithm results.  The algorithm detected 8 villages (circle) as 
destroyed in the same time period and 8 were not detected or detected at a 
different time period (X). 28 
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Table 4-3: Eight of the 16 villages with eyewitness reporting of the attack 
were detected with the algorithm.  Three villages were not detected as 
destroyed and five were detected as destroyed on different dates.  11 

	
  

4.4.3 Sources of Error 

4.4.3.1 Nature of Village Destruction 

The largest contributor to omissions by the algorithm was the nature 

of village destruction.  The HIU dataset does not discriminate between a 

burned village and an otherwise destroyed village, therefore selecting only 

burned villages for the algorithm is not possible.  Although there is some 

variation, eyewitness accounts indicate that the perpetrators of attacks 

tended to use the same tactics in a region, during a specific time period.  For 

Reported	
  
Destroyed	
  

Last	
  Detected	
  
Intact	
  

First	
  Detected	
  
Destroyed	
  

Name	
   Path	
  Row	
   Result	
  

29-­‐Aug-­‐03	
   21-­‐Apr-­‐03	
   15-­‐Nov-­‐03	
   Beida	
   180	
  51	
   Y	
  
30-­‐Aug-­‐03	
   8-­‐Nov-­‐03	
   26-­‐Dec-­‐03	
   Mororo	
   179	
  51	
   N	
  
Oct-­‐03	
   29-­‐Mar-­‐03	
   8-­‐Nov-­‐03	
   Habila	
   179	
  50	
   Y	
  

3-­‐Nov-­‐03	
   21-­‐Apr-­‐03	
   15-­‐Nov-­‐03	
   Beida	
   180	
  51	
   Y	
  
3-­‐Nov-­‐03	
   21-­‐Apr-­‐03	
   15-­‐Nov-­‐03	
   Shushtah	
   180	
  51	
   Y	
  
Dec-­‐03	
   8-­‐Nov-­‐03	
   26-­‐Dec-­‐03	
   Kenyo	
   179	
  52	
   Y	
  

20-­‐Dec-­‐03	
   	
   not	
  detected	
   Habila	
  Kanari	
   179	
  51	
   N	
  
5-­‐Jan-­‐04	
   8-­‐Nov-­‐03	
   26-­‐Dec-­‐03	
   Korare	
   179	
  51	
   N	
  
Feb-­‐04	
   5-­‐Dec-­‐04	
   21-­‐Dec-­‐04	
   Kaileck	
   178	
  52	
   N	
  
Feb-­‐04	
   20-­‐Jan-­‐04	
   21-­‐Feb-­‐04	
   Shattai	
   178	
  52	
   Y	
  
7-­‐Feb-­‐04	
   28-­‐Jan-­‐04	
   13-­‐Feb-­‐04	
   Tongfuka	
   179	
  51	
   Y	
  
15-­‐Feb-­‐04	
   4-­‐Feb-­‐04	
   7-­‐Mar-­‐04	
   Terbiba	
   180	
  51	
   Y	
  
18-­‐Feb-­‐04	
   23-­‐Dec-­‐05	
   24-­‐Jan-­‐06	
   Anka	
   178	
  50	
   N	
  
15-­‐Mar-­‐04	
   	
   not	
  detected	
   Haish	
  Bara	
   180	
  50	
   N	
  
9-­‐Aug-­‐04	
   	
   not	
  detected	
   Diiba	
   179	
  50	
   N	
  
15-­‐Dec-­‐04	
   20-­‐Oct-­‐05	
   5-­‐Nov-­‐05	
   Marla	
   178	
  52	
   N	
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example in western Darfur, near the border with Chad, eyewitnesses report 

that in 2003 Sudanese military forces and militias systematically burned and 

looted towns and villages that are supporting the rebels (Fig. 4-9) (U.S. 

Department of State, 2004). 

	
  

Figure 4-9: Burned shops in a village between Al Junaynah and Sisi, 
Western Darfur, Sudan (U.S. Department of State, 2004).29 

 

An example of the link between methods of the perpetrators and 

algorithm detection of village destruction can be seen in North Darfur, 

where a large concentration of villages were destroyed in 2003 and early 



	
   95 

2004, just west of Kutum.  There are four eyewitness accounts of the 

villages of Orschi, Miski, Disa and Kutum being attacked in that region from 

the New York Times, and Amnesty International compiled in the 

Bloodhound report (Petersen & Tullin, 2006).  All four of these eyewitness 

accounts report the village being attacked by Janjaweed and Sudanese 

soldiers, but not being burned.  The eyewitness report for Orshci describes 

“government planes circled overhead before the Janjaweed stormed their 

villages.  The village trashed, animals were stolen” (Petersen & Tullin, 

2006).  Of the 324 villages identified as destroyed in this area in 2003 and 

2004, only 104, or 32%, were detected as destroyed. 
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Figure 4-10: Eyewitnesses from villages attacked west of Kutum in 2003 
and 2004 reported that villages were destroyed, but not burned (Petersen & 
Tullin, 2006).  The algorithm was unable to detect many of the destroyed 
villages because fire was not used in the perpertrator’s methods (villages 
detected in green; villages not detected in red).30 

 

In contrast to attacks west of Kutum in 2003 and 2004, a grouping of 

attacks in South Darfur, near Donkey, had a very high rate of detection of 

village destruction.  In 2006, 240 villages in this cluster were destroyed (Fig 

4-10).  One eyewitness reported “An attack by more than 400 armed 

horsemen on the village of Donki Dereisa on July 12.  The attack, which was 

supported by a fixed-wing aircraft that bombed the village and by several 
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military vehicles filled with Sudanese foot soldiers, resulted in the death of 

as many as 150 villagers, including six young children” (Petersen & Tullin, 

2006).  The village was reported as burned in the summary of the attack.  

Reports from the Eyes on Darfur project, which uses DigitalGlobe imagery 

to track the destruction of villages, also show the burning of villages Donki 

Dereisa during this time (Fig. 4-11). 

	
  

Figure 4-11: Donkey Dereisa destroyed by burning between 1 November, 
2004 (left) and 20 October, 2006 (right) (Amnesty International, 2007).  The 
village is identified as burned because there are no fence lines and there are 
dark areas where structures once stood.  © DigitalGlobe Inc.31 

 

In this concentration of villages in 2006, which were identified as 

burned as part of the attacks, only 20 of 240 (8.3%) were not detected by the 

algorithm as destroyed (Fig. 4-12).  Imagery coverage for this path/row did 
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improve after 2003, but was not greater than other path/rows in 200,6 so 

imagery availability was likely not responsible for the high detection rate. 

	
  

Figure 4-12:  Eyewitnesses from Donkey in 2006 report the burning of the 
village as part of the attack (Petersen & Tullin, 2006).  The algorithm 
performed well in this region and time period because fire was used in the 
prepertrator’s methods (villages detected in green; villages not detected in 
red). 32 
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4.4.3.2 Scene Availability 

The number of scenes for a path/row during the study was not 

correlated with that path/row’s omission rate (Table 4-4).  Path/row 178/50, 

which mostly consists of villages near Kutum that were identified as 

destroyed but not burned, had a very low detection rate, but only slightly 

fewer scenes than the average (56 scenes).  While path/rows 177/52, 

identified as consisting of villages that were often burned as part of the 

attack, had a much higher detection rate, and also slightly fewer images than 

average.   

Poor image availability in 2003 was likely a factor in the approach’s 

low detection rate.  While there were many reported incidents of village’s 

burning in the middle of 2003 (Flint & De Waal, 2008),  scene availability 

remained poor until 11 May 2004 when daily scene collection from 250 to 

300.  Greater scene availability was also not tied to a decreased lag between 

last time a village was detected as intact and first time a village is detected as 

destroyed.  Factors such as if a village was attacked just after the wet season 

(causing at least a three month lag) was more significant than scene 

availability. 
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Table 4-4: Detection Rate by Path/Row.12 

Path/Row	
   Images	
   Detected	
   Total	
   %	
  Detected	
   Average	
  Lag	
  
177/51	
   47	
   9	
   13	
   69.2%	
   108.4	
  
177/52	
   52	
   402	
   512	
   78.5%	
   93.3	
  
178/50	
   46	
   31	
   124	
   25.0%	
   22.7	
  
178/51	
   57	
   319	
   534	
   59.7%	
   50.3	
  
178/52	
   61	
   280	
   362	
   77.3%	
   79.1	
  
178/53	
   54	
   24	
   25	
   96.0%	
   53.3	
  
179/50	
   63	
   134	
   204	
   65.7%	
   98.3	
  
179/51	
   61	
   374	
   555	
   67.4%	
   56.7	
  
179/52	
   64	
   53	
   70	
   75.7%	
   144.7	
  
180/50	
   39	
   24	
   40	
   60.0%	
   124.1	
  
180/51	
   75	
   107	
   227	
   47.1%	
   50.0	
  

	
  
619	
   1,757	
   2,666	
   65.9%	
  

	
  	
  

	
  

4.4.3.3 Village Size 

1,308 villages of the 2,666 villages in the study have a value in the 

field “structures” for the HIU database.  This value describes approximately 

how many destroyed structures were identified along with the total 

structures in the village (e.g. “~700 of ~1000”).  There however was little 

correlation between the number of structures identified as destroyed and the 

omission rate (Table 4-5).  Villages with more destroyed structures (76 or 

greater) had slightly lower omission rates than villages with fewer structures. 
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Table 4-5:  There is little correlation between number of destroyed structures 
and the omission rate. Villages with more destroyed structures (76 or 
greater) had slightly lower omission rates.13 

Structures	
  
Destroyed	
  

Detected	
  Destroyed?	
  

Yes	
   %	
  Yes	
   Total	
  
<	
  25	
   249	
   68%	
   364	
  
26	
  to	
  50	
   152	
   64%	
   238	
  
50	
  to	
  75	
   205	
   63%	
   323	
  
76	
  to	
  150	
   142	
   72%	
   198	
  
150	
  <	
   124	
   67%	
   185	
  
	
  	
   872	
   67%	
   1308	
  

	
  

4.4.3.4 Scan line Gaps 

Areas significantly impacted by scanline errors did not affect whether 

a village was detected as destroyed or not.  There were 738 villages in high 

scanline gap areas, identified as the area where one path covers the 

neighboring path to the east or the west (Fig. 4-13).  Eliminating those 

villages leaves 2,195 villages of which 1,457 (66.4%) were detected 

destroyed after the 11 May 2004 scanline corrector error.  For all villages the 

detection rate was slightly lower (65.9%). 

Eliminating those villages from the study does reduce the lag between 

last intact and first detected destroyed (from 73 days to 70 days), showing 

that scanline gaps did affect the temporal precision of the study.  This 

temporal precision would likely be much greater if villages were manually 
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delineated.  Villages smaller than the 200-meter buffer would likely have a 

significant drop in number of observations. 

	
  

Figure 4-13: Eliminating villages from areas with high scanline error gaps 
only slightly improves the detection rate (from 65.9% to 66.4%).  Detected 
villages are shown in green and villages not detected in the approach are 
shown in red.  33 
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4.4.4. Exploratory Analysis of Conflict 

The conflict in Darfur from 2002 to 2008 was a series of government 

and government backed-militia responses to three major rebel groups who 

operated in different areas and engaged in conflict at different times 

(Hudson, 2013).  The Sudan Liberation Movement or Army (SLA) consisted 

of rebels of the Zaghawa ethnicity, led by Minni Minnawi (SLA-Minnawi) 

and operating generally in North Darfur, and rebels of the Fur ethnicity, led 

by Abdul Wahid al-Nur (SLA-al-Nur) who operated generally in West 

Darfur.  In 2006 SLA-al-Nur formed as a splinter faction of the SLA 

following Minnawi’s signature of the Darfur Peace Agreement.  Finally the 

Justice and Equality Movement (JEM), led by Khalil Ibrahim operates 

mainly in Kurdufan and the eastern part of Darfur (Flint & De Waal, 2008). 

 

4.4.4.1 Spatial and Temporal Patterns 

The beginning of the 2003 to 2008 waves of mass atrocities in Darfur 

began with the government’s response to scattered rebel attacks in the early 

months of 2003.  Starting in March, fighting across Darfur broke out 

between government troops and black African rebels with the SLA and JEM 

(Totten & Markusen, 2006).  This first wave of violence was encouraged 

from a leading Janjaweed militia leader, Hilal (Power, 2004), who 
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repeatedly made public speeches on his intent to eliminate Black Africans 

from Darfur and personally led attacks on settlements in Darfur (Hagan & 

Kaiser, 2011).  This initial wave of violence continued until the 4 September 

2003 negotiated ceasefire between the government and the SLA. 

The fighting, from the middle of 2003 until September 2003, is not 

observed in the study because scenes from the wet season (July, August and 

September) were not used in the study.  Only 48 villages were observed 

destroyed during this time.  However during the subsequent ceasefire (4 

September to early December) there were an additional 129 villages detected 

as destroyed.  106 of these likely reflect the early 2003 violence because 

their last intact dates are from before the wet season.  However twenty-three 

of these detections represent villages destroyed during the ceasefire.  These 

detections are all in WRS-2 path 178 row 51 and were detected as intact and 

then destroyed during the ceasefire. 

There are no eyewitness reports or fine resolution (under 10m spatial 

resolution) imagery available to confirm the destruction of these villages 

during this time period (Fig. 4-14).  While both the government and the 

rebels accuse the other of breaking the ceasefire soon after it is implemented 

(Totten & Markusen, 2006), these attacks most likely represent the 

continued government responses against the JEM, who operate in this area 
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of Darfur and did not sign the ceasefire.  In early 2003 the JEM claimed 

responsibility for attacks in Golo and Al Fashir and continued to operate in 

this area in 2003 (Tanner et al., 2007). 

	
  

Figure 4-14: Villages detected as destroyed during the first ceasefire 
(September to early December 2003) only occurred in one path/row.  These 
detections may not be violations to the ceasefire, but government operations 
against the JEM who were not signatories to the ceasefire and operated in 
this area. 34 

 

A second interval of fighting began in December 2003 which 

coincided with a vow by Sudanese President Al-Bashir to ‘annihilate’ 

Darfurian rebels (Hagan & Kaiser, 2011).  In one week, 18,000 refugees 

entered Chad to escape Janjaweed attacks in Darfur (Totten & Markusen, 
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2006).  Results from the study strongly support the reported rise in attacks 

from December 2003 to 11 April 2004.  During this time 315 villages were 

detected as destroyed between 3 December 2003 and 11 April 2004 (Fig. 4-

15). 

	
  

Figure 4-15:  315 villages were detected as destroyed following the first 
ceasefire (3 December 2003 to 11 April, 2004); an average of 2.6 per day. 35 

 

This wave of violence reportedly ended in late March / early April 

with the remarks on 22nd March 2004 by Mukesh Kapila, the U.N. 
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Humanitarian coordinator for Sudan, stating that “the only difference 

between Rwanda and Darfur is now the numbers involved” (Petersen & 

Tullin, 2006).  These statements were very effective at increasing press 

coverage of the conflict and helped bring about the 8 April 2004 

”Humanitarian Ceasefire Agreement” between the government and rebel 

leaders (Hudson, 2013). 

The 45-day ”Humanitarian Ceasefire Agreement” agreement began on 

11 April 2004, allowing for the deployment of observers from the African 

Union and for humanitarian assistance to be provided to internally displaced 

persons in Darfur.  This ceasefire was signed between the Sudanese 

government, the JEM, and the SLA.  A faction splintered from the JEM, the 

National Movement for Reform and Development (NMRD), who did not 

agree with the ceasefire agreement and continued operation in West Darfur. 

During this ceasefire 42 villages were detected as destroyed, primarily 

in West Darfur.  There was no eyewitness reporting or fine resolution 

imagery that could confirm the destruction of any of these villages during 

this narrow time period (Fig. 4-16).  Because the NMRD did not sign the 

ceasefire, and operated in West Darfur during this time, these detections may 

not represent violations to the ceasefire, but continued government 

operations against the NMRD. 
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Figure 4-16: 42 villages detected were detected as destroyed during the 
second ceasefire (11 April to 26 May 2004).  These detections may not 
represent violations to the ceasefire, but continued operations against the 
NMRD who did not sign the agreement and operated in West Darfur.36 

  

The following two dry seasons (October 2004 through June 2005; and 

October 2005 through June 2006) show a decreased level of village 

destruction (Appendix C).  These dry seasons had an average of 1.0 and 1.2 

villages detected as destroyed per day respectively, much lower than the 

preceding or following dry seasons (Table 4-6). 
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Table 4-6: Dry Season Detection Rates.14 

 Oct 2003 to 
Jun 2004 

Oct 2004 to 
Jun 2005 

Oct 2005 to 
Jun 2006 

Oct 2006 to 
Jun 2007 

Oct 2007 to 
Jun 2008 

Detected 482 261 326 440 154 

Detected/Day 1.8 1.0 1.2 1.6 0.6 

 

On 5 May 2006, the Minni Minnawi led rebel group (SLA-Minnawi) 

signed the Darfur Peace Agreement with the government.  The approach did 

not detect the destruction of any villages from this date until the start of the 

wet season at the end of June.  The peace agreement is widely regarded a 

failure in stopping the violence, which is supported with findings from this 

study.  At the start of the next dry season in October, there is a large increase 

in violence with 358 villages detected as destroyed within the first three 

months. 

October through December 2006 is the most destructive three-month 

period in the study with 4.0 villages detected as destroyed per day (Table 4-

6).  The majority of these detections occurred southeast of Nyala, near 

Donkey, although village destruction is detected across Darfur (Fig. 4-17).  

These detections are consistent with press reporting of increased government 

attacks against rebel groups that did not sign the Darfur Peace Agreement, 
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and of inter-tribal conflict between Zaghawa and Nur (Flint & De Waal, 

2008). 

 

 

	
  

Figure 4-17: The highest rate of detections, 4.0 per day, occurred from 
October to December 2006 (green).  The rest of the dry season (January to 
June 2007) only had 0.3 detections per day (red).37 
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Violence decreases after December 2006, with an additional 81 

villages detected as destroyed the rest of the dry season.  The decrease 

coincides with the 12 January 2007 60-day ceasefire brokered by New 

Mexico Governor Bill Richardson between the government of Sudan and 

several rebel factions in Darfur.  The following dry season (October 2007 to 

June 2008) maintains this low rate of detected village destructions, with an 

average of only 0.6 villages detected as destroyed during this time period 

(Table 4-6). 

 
 
4.5. Conclusion 

This chapter builds on the approach developed in Chapter 3, and was 

expanded to study all of Darfur from 2002 to 2008.  The approach was 

modified in two important ways; manual village delineation using fine 

resolution imagery was replaced by less accurate automated village buffers, 

and a more rigorous rolling detection algorithm was used to compare a 

village’s observation to all observations previously recorded.  Analysis of 

the changes in approach demonstrated that the more stringent algorithm was 

responsible for the higher omission rate in Chapter 4 (66%) than Chapter 3 

(84%). 
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The Bloodhound database (Petersen & Tullin, 2006), a collection of 

eyewitness accounts of attacks collected from media, human rights and 

United Nations sources, was used to compare results with the approach.  

Because access to the area was denied to journalists and human rights 

groups until March 2004, with only limited access after that, there were only 

16 accounts of a destroyed village in the Bloodhound database that 

corresponded to this study.  Of those three were not detected by the study 

and 9 of the 16 (69%) were detected within 16 days of the eyewitness 

account (Table 4-3). 

The largest contributor to the omission rate was the nature of the 

village’s destruction.  Because the HIU dataset does not indicate if burning 

is part of a village’s destruction, and because the approach is designed to 

detect the drop of a village’s surface reflectance when a village is burned, 

the approach performed well in at specific times and locations in the conflict 

when the perpetrators use arson.  Near Donkey, an area where eyewitness’ 

report that villages were burned as part of their destruction, the omission rate 

was 8.3% (Fig. 4-12), but around Kutum, an area where burnings were not 

consistently part of the village’s destruction, the omission rate was 68% 

(Fig. 4-10). 
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In addition to the method of the village destruction, several other 

sources of error were evaluated in their contribution to the omission rate.  

The lack of scene availability in the 2003 likely significantly reduced the 

number of villages successfully destructed as destroyed in this year.  

Additionally while a path/row with more scenes available during the study 

period did not improve the omission rate, it did decrease the time between 

when a village was last detected as intact and first detected as destroyed 

(Table 4-4).  Villages with large numbers of destroyed structures showed 

slightly lower omission rates (Table 4-5) as well as villages not in areas 

significantly impacted by scanline errors (Fig. 4-13). 

Results from this expanded study in Chapter 4 reveal new 

understandings about the conflict in Darfur from 2002 to 2008.  While rebels 

from the SLA and the government claim that either side violated the first 

ceasefire (September 2003 to early December 2003), the study did not 

confirm this.  Detected village destructions during this time occurred in 

areas where the JEM operated in 2003 and may represent operations against 

that JEM who did not sign the ceasefire (Fig. 4-14).  The study also detected 

violations to the second ceasefire (11 April to 26 May 2004), with the 

destruction of 42 villages across Darfur (Fig. 4-16).  These detections 

however may also not represent violations to the ceasefire, but continued 
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operations against the NMRD who did not sign the agreement and operated 

in West Darfur.  Finally this study revealed that following a period of 

decreased village destruction (January 2005 to October 2006) there was an 

intense three month period of violence where an average of four villages 

were detected as destroyed daily (Fig. 4-17). 

While this study does not provide a complete documentation of all 

village destruction, it does significantly improve understanding of when and 

where villages were destroyed in this widespread and long-lasting conflict.  

Further research could significantly improve this study by modifying the 

approach to function during the wet season (July, August, and September) 

and to perform better on villages that were destroyed but not burned.  

Additionally geospatial research could be conducted to determine the impact 

of other variables to the conflict such as if the presence of African Union 

observers was correlated to village destruction or preservation and if any of 

the villages destroyed during ceasefires represent violations to those 

ceasefires by signatories. 
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Chapter 5.  Summary and Conclusions 

5.1. Introduction 

The objective of this study is to improve the practice of remote 

sensing in human rights by demonstrating how moderate resolution sensors 

can provide accurate and timely complementary data to monitoring efforts.  

Organizations concerned with human rights continue to rely on the same 

sensor types and methods of analysis since the 1990s and have struggled to 

find ways to introduce the increasingly powerful, and publically available 

data from a growing constellation of moderate resolution sensors.  Research 

in remote sensing has also not addressed how data from these sensors can be 

used in operation human rights monitoring campaigns.  This study 

demonstrates how moderate resolution sensors can provide accurate data 

(69% omission rate at a 95% confidence level) in a much more timely 

manner than eyewitness reporting to operational human rights monitoring 

campaigns.  By doing so it intends to provide a way forward for the research 

and practice of using these sensors in such campaigns. 

Although remotely sensed imagery has been used for decades to 

document specific human rights events, such as the 1995 massacre in 

Srebrenica, Bosnia (Figure 2-1) (New York Times, 1995), there are only a 
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few examples of these methods evolving since then (Sulik & Edwards, 2010; 

Wolfinbarger & Drake, 2012).  Organizations continue to use analyst-

intensive approaches to mostly visual interpretation of fine resolution 

imagery, which has made the monitoring of large areas cost-prohibitive to 

all but the most well-funded organizations (Pisano, 2011). 

Although previous research using moderate resolution imagery in 

human rights has shown promising results, these methods are more suitable 

to scientific research than operational monitoring (Prins, 2008; Witmer, 

2008).  This is due to the considerable lag in time between the impact of the 

armed conflict on population and its identification in satellite imagery.  

These studies conducted change-detection on an annual basis, which reduced 

the number of scenes required for purchase, minimized changes due to the 

annual phenological cycles, and simplified the analysis. 

The free availability of Landsat’s archives has addressed the cost 

constraint of employing this sensor in large-scale human rights monitoring 

campaigns (Woodcock et al., 2008).  In addition, advancements by the North 

American Forest Dynamics (NAFD) program has developed methods to 

successfully use this data in time-series analysis (Goward et al., 2008).  This 

study built on NAFD-validated methods of working with Landsat data and 
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applied them to a human rights application; specifically the detection of 

burnt of villages in Darfur, Sudan.   

 

5.2. Summary of Research 

This study consisted of three research phases, each producing a 

unique contribution to the understanding the role of remote sensing in 

detecting human rights violations.  The initial research phase produced 

academia’s first manuscript that comprehensively addresses the concepts 

and methods of remote sensing in the detection of human rights violations.  

Findings from this work included: 

• Although research has shown that moderate resolution satellites can 

directly or indirectly detect phenomena associated with human rights 

violations (Table 1-2), the vast majority of detections rely on directly 

sensing phenomena with fine or very-fine resolution sensors (Table 1-

3). 

• The reliance on visual analysis of fine resolution imagery in human 

rights monitoring campaigns makes these campaigns cost-prohibitive 

to all but the most well-funded monitoring efforts.  The inclusion of 

data derived from moderate resolution sensors makes monitoring 
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efforts significantly more cost-effective, especially when conducted 

over large areas. 

• Research into applications from moderate resolution imagery has 

provided promising results, though no operational methods to employ 

these sensors have yet been developed. 

• Previous studies are more suitable to scientific research than 

operational monitoring due to the considerable lag in time between the 

impact of the armed conflict on population and its identification in 

satellite imagery. 

Results from this research were published in the American Geographical 

Society’s journal, the Geographical Review (Marx & Goward, 2013). 

 

The second research phase was to develop an approach to employ 

moderate resolution sensor data for operational human rights monitoring 

scenario. This study showed that Landsat ETM+ could provide accurate and 

complementary data as part of a system to monitor the burning of villages in 

arid environments. Such a monitoring system depends upon on Landsat’s 

strategic data acquisition plan which acquires systematic observations with 

Landsat 7 (Goward et al., 2006). 
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The Landsat observatory provided an economically viable 

combination of frequent observations of the affected area, and the 

appropriate spatial resolution and spectral range for detecting the footprint of 

the phenomena associated with the burning of villages.  Findings from this 

work included: 

• An approach can be developed to provide accurate and timely data 

from a moderate resolution sensor to an operational, human rights 

monitoring campaign. 

• The inclusion of data from a moderate resolution sensor to a 

monitoring campaign depends on the identification of a signal 

associated with a violation that is observable to a sensor’s spatial, 

spectral, and temporal characteristics. 

• A single band, Landsat ETM+’s band 4, near-infrared, is the most 

accurate in the designed approach to detect the burning of a village 

with each new scene collected. 

• ETM+’s band 4 is most accurate due to a combination of NIR 

measurement observation stability and NIR sensitivity to detect the 

transition of a village from pre- to post-burn materials. 
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Results from this research have been summarized in a manuscript that is 

accepted for publication by Remote Sensing of Environment (Marx & 

Loboda, 2013). 

While the second phase’s approach is designed to provide 

complementary data to campaigns already using fine resolution sensors, it 

was applied without these sensors in the third research phase to the entire 

conflict in Darfur to illustrate the benefits and shortfalls in an actual conflict.  

This study also produced new data for analysis of the Darfur conflict, whose 

research has suffered from limited, and often inaccurate, data.  Findings 

from the chapter include: 

• The study’s low detection rate (66%) is partially due to the 

algorithm’s inability to detect villages that are destroyed not using 

fire, indicating that the methods of the perpetrators, not scanline error 

gaps, or number of destroyed structures is the limiting factor for this 

data source. 

• The study’s low detection rate is also was the result of limited scene 

availability for the region during the first wave of violence in 2003. 

The May2004 increase in Landsat ETM+ daily scene collection, to 

compensate for the lose of the scan-line corrector mirror, significantly 

increased scene availability for the study (Fig. 4-4). 
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• 69% of village destructions that corresponded to eyewitness accounts 

were within 16 days of the approach’s detection indicating high 

temporal accuracy for villages detected as destroyed (Table 4-3). 

• Results indicate village destruction during both the first ceasefire 

(September 2003 to early December 2003) and the second ceasefire 

(11 April to 26 May 2004), although in both cases there were rebel 

groups who did not sign the ceasefires operating in areas with 

detected destructions. 

• Results reveal an intense three-month period (October 2006 through 

December 2006) of violence in South Darfur State (Fig. 4-17) 

following a period of decreased village destruction.  This represents 

both increased government attacks on rebels not signing the Darfur 

Peace Agreement, and an inter-tribal conflict between the Nur and 

Zaghawa. 

Results from this study will be published as part of the mapping initiatives 

program by the Center for the Prevention of Genocide at the U.S. Holocaust 

Memorial Museum (http://www.ushmm.org/maps). 
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5.3. Future Applications 

This study demonstrates that moderate resolution sensors can be used 

to provide complementary data to operational human rights monitoring 

campaigns.  While the approach is validated for a specific region, conflict, 

sensor, and phenomenon that is linked to a violation, advancements in 

moderate resolution imagery and its analysis make this a data source that is 

increasingly applicable to a variety of human rights monitoring efforts. 

The growing constellation of moderate resolution sensors provide 

more data and a better revisit rate than years past.  For example, the Disaster 

Monitoring Constellation (DMC) (https://earth.esa.int) provides a daily 

equatorial repeat at 30m spatial resolution in four spectral bands.  This 

imagery is significantly less expensive than commercial fine resolution 

imagery and other moderate resolution imagery, such as Landsat, is free to 

users. 

The public and no-charge release of Landsat imagery has spurred 

research into intra-annual, time-series analysis of moderate resolution 

imagery.  When coupled with advancements in computing processing and 

storage, pixel-based analysis of stacks of tens or hundreds of Landsat images 

is reduced to hours.  Because images directly downloaded by the Earth 

Resources Observation Systems (EROS) Data Center Land Ground Station 
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from Landsat are available within 6 to 24 hours, these scenes can be quickly 

analyzed and included in operational human right monitoring efforts.  While 

no special arrangement for data access is required, one could be made to 

speed up the analysis and processing of the scenes. 

 

5.3.1 Generalization of Approach 
	
  

The inclusion of this growing wealth of moderate resolution imagery 

to human rights monitoring campaigns depends first on an understanding of 

the conflict that is monitored.  In a specified conflict, individual human 

rights violations and associated, detectable signals must be identified.  Some 

violations, such as torture, will not have signals detectable by any satellite’s 

sensor.  Other violations, such as the destruction of specific houses in a 

neighborhood, may have a signal only detectable with fine or very fine 

resolution sensors.  Moderate resolution sensors require a physical 

modification of the landscape for identification. 

A single area at-risk of human rights violations could be monitored 

for several different signals that are associated with possible human rights 

violations.  For example moderate resolution satellites could monitor an area 

for the destruction of civilian homes as well as monitoring neighboring 

cropland for burning.  Extensive destruction of civilian infrastructure is a 
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violation if it is not justified by military necessity (United Nations, 1949, 

1977a, b). 

Once a signal is identified, the time-profile, spatial size, and spectral 

separability of the signal must be matched with the sensor.  Some signals 

associated with violations, such as the burning of agricultural plots may last 

for several months, while others, such as a neighborhood’s destruction 

during a foreign military’s occupation may require imagery every few days.  

Once a detectable signal is matched with a sensor, the approach needs to be 

validated with ground truth data or fine resolution satellite imagery.   

 

5.3.2 Employing Moderate Resolution Satellites in Past Cases 
 
Table 1-15 has been amended to demonstrate how moderate 

resolution sensors could have been employed, or better employed, in past 

cases where remote sensing was used to detect human rights violations 

(Table 5-1).  The table first lists the U.N.’s Operational Satellite 

Applications Programme’s (UNOSAT) use of WorldView 1 (0.5m spatial 

resolution) to detect the artillery bombardments within a civilian safe zone in 

Sri Lanka in 2009 (UNOSAT, 2009).  While moderate resolution sensors 

have not been validated in their ability to detect artillery craters, this type of 

sensor could be used to detect the transition of internally displaced person’s 
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(IDP) tents as they moved from one area of the civilian safe zone to another 

that was not being bombarded.  This situation however is most appropriate 

for fine resolution imagery, because the civilian safe zone was only a few 

square kilometers, the situation was known about by the international 

community in advance, and the bombardments and subsequent movement 

took place within seven days (UNOSAT, 2009).  
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Table 5-1: Revised Table (1-15) Demonstrating how Moderate Resolution 
Sensors could be employed 

Violation 
(Location) 

Phenomena Signal Analysis Proposed Sensor / 
Revisit 

Artillery Targeted 
Near Civilians  
(Sri Lanka) 

Relocation of 
IDP tents 

Identification of tent 
relocations 

DMC Constellation  
(30m)  
4 Days 

Mass Executions 
(Bosnia) 

Creation of 
mass graves 

Change Detection: Large 
plots of earth 

Landsat TM 
(30m) 
16 days 

Ethnic House 
Destruction 
(Georgia) 

Groups of 
houses 
destroyed 

Change Detection: 
Destruction of groups of 
houses  

DMC Constellation  
(30m)  
4 Days 

Targeting of 
Civilian 
Infrastructure 
(Georgia) 

Damage to 
public 
buildings 

Change Detection: Damage 
to large civilian buildings 

Landsat ETM+ 
(30m) 
16 days 

Political Prison 
Camps (North 
Korea) 

Expansions of 
prisons 

Prison size change 
detection 

Landsat ETM+ 
(30m) 
Monthly 

Targeting of 
Civilian 
Infrastructure 
(Turkey) 

Destroying 
forests, fields, 
and villages 

Change in large 
infrastructure reflectance 

Landsat ETM+ 
(30m) 
16Days 

Civilian Population 
Removed  
(Sudan) 

Disruption of 
agricultural 
land 

Identify atypical intra-
annual vegetation cycle  

MODIS 
(250m) 
Monthly 

Civilian Population 
Removed  
(Bosnia) 

Abandonment 
of agricultural 
land 

Identify atypical intra-
annual crops growing cycle 

Landsat TM 
(30m) 
16 Days 

Attacking Village 
(Sudan) 

Burning of 
arid villages 

MODIS fire detection MODIS 
(250m) 
Daily 

Attacking Village 
(Sudan) 

Burning of 
arid villages 

Drop in village’s NIR 
Reflectance 

Landsat ETM+ 
(30m) 
16 Days 
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The second listed human rights violation in Table 1-15 is the detection 

of recently constructed mass graves in the Bosnian town of Srebrenica 

(Figure 5-1), corroborating eyewitness reporting of the nearby execution of 

7,000 Muslim men. 

 

Figure 5-1:  Possible mass graves in Bosnia, July 1995.  The arrows indicate 
recently disturbed earth or vehicle revetments.  Source:  New York Times, 
29 October 1995.38 

  

In this situation, Landsat TM could have been used to monitor areas in 

Bosnia that were at-risk of mass executions and burials.  Upon an eyewitness 

report of a mass execution, change analysis could be conducted in the local 

area to detect if any spaces transitioned from grass to soil which could 

indicate a mass grave.  Then fine resolution sensors could be employed to 
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confirm the disturbed earth.  This approach would likely require relatively 

large mass graves due to Landsat TM’s pixel size.  While this is not a 

demonstrated capacity of Landsat, it is possible that advancements in time-

series, change detection research and improvements to the bit rate of Landsat 

sensors (12 bit for LDCM) could successfully separate this phenomena’s 

signal for future monitoring. 

The third case in Table 5-1 is the destruction of specific homes in 

towns across South Ossetia, Georgia (UNOSAT, 2008).  In this case, fine 

(DigitalGlobe) imagery was used to detect the destruction of civilian homes 

during a nine-day period of Russian occupation of the city.  Because of the 

narrow time window, DMC could be used to detect groups of destroyed 

civilian homes although individual homes would likely be too small to 

identify with a 30m resolution sensor. 

The fourth case in Table 5-1 detected large infrastructure destruction 

in Georgia with very fine (WorldView-1) imagery.  Because there is no time 

constriction, and the civilian infrastructure is of a larger spatial extent, 

Landsat ETM+ could possibly have been used to monitor the area for a large 

change in reflectance to large industrial buildings, large apartment buildings, 

and bridges.  Additionally the fifth case, the growth of prisons in North 
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Korea could be accomplished with Landsat ETM+ on a monthly revisit to 

monitor the prisons. 

The last five cases on Table 5-1 consisted of cases where moderate 

resolution satellites were used on an annual basis to detect a phenomena 

associated with a human rights violation.  These cases have been amended to 

include new signals and sensors that would reduce the lag between the 

violation and when it is detected in the remotely sensed data.  This improves 

the operational usefulness of the remotely sensed data.  

 

5.4. Conclusions 

Remote sensing in human rights monitoring is on the cusp of a 

significant change.  The growing constellation of moderate resolution 

satellites is now providing a constant stream of high-quality and, in some 

cases, free data.  Landsat 8 (Landsat Data Continuity Mission) was launched 

in February 2013 with a much-improved sensor, the Operational Land 

Imager.  This sensor will provide up to 650 scenes per day as opposed to 

Landsat 7’s 300 scenes per day.  In addition to a growing availability, 

research has demonstrated how data derived from moderate resolution 

imagery can be used in the intra-annual monitoring of landcover changes.  
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Finally, this study demonstrated how these methods can be applied to a 

landcover change which is associated with human rights violation. 

Human rights monitoring thus far has largely remained reactive 

because it relies on eyewitness reporting to identify areas of reported 

violations.  Practitioners then use visual analysis of fine or very fine 

resolution imagery to document the violation.  The inclusion of data from 

moderate resolution sensors, can provide organizations the ability to monitor 

large regions without eyewitness reporting.  When this analysis alerts of a 

possible violation, fine resolution imagery can then be purchased and 

analyzed with visual interpretation, significantly lowering the cost of such 

monitoring.  The increasing potential of data derived from the constellation 

of moderate resolution satellites may one day provide organizations with a 

low-cost and continual monitoring ability of very large regions at risk of a 

variety of human rights violations. 
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Appendix A: Landsat ETM+ images used in Chapter 4 study. 
	
  

177/51	
   177/52	
   178/50	
   178/51	
   178/52	
   178/53	
  
4-­‐Feb-­‐00	
   24-­‐Apr-­‐00	
   26-­‐Jan-­‐00	
   26-­‐Jan-­‐00	
   14-­‐Mar-­‐00	
   14-­‐Mar-­‐00	
  
24-­‐Apr-­‐00	
   17-­‐Oct-­‐00	
   15-­‐Apr-­‐00	
   1-­‐May-­‐00	
   1-­‐May-­‐00	
   1-­‐May-­‐00	
  
30-­‐Nov-­‐00	
   13-­‐Jun-­‐01	
   9-­‐Nov-­‐00	
   24-­‐Oct-­‐00	
   24-­‐Oct-­‐00	
   24-­‐Oct-­‐00	
  
13-­‐Jun-­‐01	
   19-­‐Oct-­‐01	
   11-­‐Dec-­‐00	
   16-­‐Mar-­‐01	
   16-­‐Mar-­‐01	
   11-­‐Dec-­‐00	
  
6-­‐Dec-­‐01	
   7-­‐Jan-­‐02	
   28-­‐Feb-­‐01	
   3-­‐May-­‐01	
   3-­‐May-­‐01	
   16-­‐Mar-­‐01	
  
13-­‐Apr-­‐02	
   6-­‐Oct-­‐02	
   3-­‐May-­‐01	
   11-­‐Nov-­‐01	
   14-­‐Jan-­‐02	
   3-­‐May-­‐01	
  
31-­‐May-­‐02	
   22-­‐Oct-­‐02	
   11-­‐Nov-­‐01	
   14-­‐Jan-­‐02	
   20-­‐Apr-­‐02	
   14-­‐Jan-­‐02	
  
22-­‐Oct-­‐02	
   10-­‐Jan-­‐03	
   15-­‐Feb-­‐02	
   15-­‐Feb-­‐02	
   14-­‐Nov-­‐02	
   14-­‐Nov-­‐02	
  
11-­‐Jan-­‐03	
   31-­‐Mar-­‐03	
   14-­‐Nov-­‐02	
   14-­‐Nov-­‐02	
   17-­‐Jan-­‐03	
   18-­‐Feb-­‐03	
  
15-­‐Mar-­‐03	
   2-­‐May-­‐03	
   17-­‐Jan-­‐03	
   17-­‐Jan-­‐03	
   18-­‐Feb-­‐03	
   22-­‐Mar-­‐03	
  
2-­‐May-­‐03	
   10-­‐Nov-­‐03	
   6-­‐Mar-­‐03	
   18-­‐Feb-­‐03	
   22-­‐Mar-­‐03	
   30-­‐Sep-­‐03	
  
10-­‐Nov-­‐03	
   12-­‐Dec-­‐03	
   1-­‐Nov-­‐03	
   22-­‐Mar-­‐03	
   7-­‐Apr-­‐03	
   17-­‐Nov-­‐03	
  
12-­‐Dec-­‐03	
   1-­‐Mar-­‐04	
   3-­‐Dec-­‐03	
   30-­‐Sep-­‐03	
   30-­‐Sep-­‐03	
   3-­‐Dec-­‐03	
  
2-­‐Mar-­‐04	
   18-­‐Apr-­‐04	
   8-­‐Mar-­‐04	
   1-­‐Nov-­‐03	
   1-­‐Nov-­‐03	
   20-­‐Jan-­‐04	
  
3-­‐Apr-­‐04	
   4-­‐May-­‐04	
   9-­‐Apr-­‐04	
   3-­‐Dec-­‐03	
   3-­‐Dec-­‐03	
   21-­‐Feb-­‐04	
  
12-­‐Oct-­‐04	
   28-­‐Nov-­‐04	
   11-­‐May-­‐04	
   21-­‐Feb-­‐04	
   20-­‐Jan-­‐04	
   24-­‐Mar-­‐04	
  
13-­‐Nov-­‐04	
   14-­‐Dec-­‐04	
   27-­‐May-­‐04	
   24-­‐Mar-­‐04	
   21-­‐Feb-­‐04	
   11-­‐May-­‐04	
  
29-­‐Nov-­‐04	
   30-­‐Dec-­‐04	
   28-­‐Jun-­‐04	
   9-­‐Apr-­‐04	
   24-­‐Mar-­‐04	
   2-­‐Oct-­‐04	
  
15-­‐Dec-­‐04	
   14-­‐Jan-­‐05	
   18-­‐Oct-­‐04	
   11-­‐May-­‐04	
   11-­‐May-­‐04	
   18-­‐Oct-­‐04	
  
31-­‐Dec-­‐04	
   15-­‐Feb-­‐05	
   3-­‐Nov-­‐04	
   18-­‐Oct-­‐04	
   18-­‐Oct-­‐04	
   5-­‐Dec-­‐04	
  
16-­‐Jan-­‐05	
   3-­‐Mar-­‐05	
   19-­‐Nov-­‐04	
   3-­‐Nov-­‐04	
   3-­‐Nov-­‐04	
   21-­‐Dec-­‐04	
  
4-­‐Mar-­‐05	
   19-­‐Mar-­‐05	
   5-­‐Dec-­‐04	
   19-­‐Nov-­‐04	
   19-­‐Nov-­‐04	
   5-­‐Jan-­‐05	
  
20-­‐Mar-­‐05	
   4-­‐Apr-­‐05	
   21-­‐Dec-­‐04	
   5-­‐Dec-­‐04	
   5-­‐Dec-­‐04	
   6-­‐Feb-­‐05	
  
5-­‐Apr-­‐05	
   6-­‐May-­‐05	
   6-­‐Feb-­‐05	
   21-­‐Dec-­‐04	
   21-­‐Dec-­‐04	
   22-­‐Feb-­‐05	
  
7-­‐May-­‐05	
   13-­‐Oct-­‐05	
   22-­‐Feb-­‐05	
   6-­‐Feb-­‐05	
   21-­‐Jan-­‐05	
   11-­‐Apr-­‐05	
  
14-­‐Oct-­‐05	
   29-­‐Oct-­‐05	
   26-­‐Mar-­‐05	
   22-­‐Feb-­‐05	
   6-­‐Feb-­‐05	
   13-­‐May-­‐05	
  
30-­‐Oct-­‐05	
   14-­‐Nov-­‐05	
   11-­‐Apr-­‐05	
   11-­‐Apr-­‐05	
   22-­‐Feb-­‐05	
   29-­‐May-­‐05	
  
15-­‐Nov-­‐05	
   30-­‐Nov-­‐05	
   27-­‐Apr-­‐05	
   13-­‐May-­‐05	
   11-­‐Apr-­‐05	
   5-­‐Nov-­‐05	
  
1-­‐Dec-­‐05	
   16-­‐Dec-­‐05	
   13-­‐May-­‐05	
   20-­‐Oct-­‐05	
   13-­‐May-­‐05	
   21-­‐Nov-­‐05	
  
17-­‐Dec-­‐05	
   1-­‐Jan-­‐06	
   20-­‐Oct-­‐05	
   5-­‐Nov-­‐05	
   29-­‐May-­‐05	
   7-­‐Dec-­‐05	
  
26-­‐May-­‐06	
   17-­‐Jan-­‐06	
   5-­‐Nov-­‐05	
   7-­‐Dec-­‐05	
   20-­‐Oct-­‐05	
   23-­‐Dec-­‐05	
  
27-­‐Jun-­‐06	
   2-­‐Feb-­‐06	
   21-­‐Nov-­‐05	
   23-­‐Dec-­‐05	
   5-­‐Nov-­‐05	
   8-­‐Jan-­‐06	
  
18-­‐Nov-­‐06	
   18-­‐Feb-­‐06	
   23-­‐Dec-­‐05	
   24-­‐Jan-­‐06	
   7-­‐Dec-­‐05	
   9-­‐Feb-­‐06	
  
4-­‐Dec-­‐06	
   26-­‐Jun-­‐06	
   24-­‐Jan-­‐06	
   9-­‐Feb-­‐06	
   23-­‐Dec-­‐05	
   13-­‐Mar-­‐06	
  
20-­‐Dec-­‐06	
   17-­‐Nov-­‐06	
   9-­‐Feb-­‐06	
   25-­‐Feb-­‐06	
   8-­‐Jan-­‐06	
   29-­‐Mar-­‐06	
  
10-­‐Mar-­‐07	
   3-­‐Dec-­‐06	
   25-­‐Feb-­‐06	
   13-­‐Mar-­‐06	
   9-­‐Feb-­‐06	
   14-­‐Apr-­‐06	
  
26-­‐Mar-­‐07	
   19-­‐Dec-­‐06	
   13-­‐Mar-­‐06	
   29-­‐Mar-­‐06	
   25-­‐Feb-­‐06	
   1-­‐Jun-­‐06	
  
11-­‐Apr-­‐07	
   4-­‐Jan-­‐07	
   29-­‐Mar-­‐06	
   14-­‐Apr-­‐06	
   13-­‐Mar-­‐06	
   8-­‐Nov-­‐06	
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177/51	
   177/52	
   178/50	
   178/51	
   178/52	
   178/53	
  
27-­‐Apr-­‐07	
   9-­‐Mar-­‐07	
   14-­‐Apr-­‐06	
   1-­‐Jun-­‐06	
   29-­‐Mar-­‐06	
   24-­‐Nov-­‐06	
  
4-­‐Oct-­‐07	
   25-­‐Mar-­‐07	
   1-­‐Jun-­‐06	
   17-­‐Jun-­‐06	
   14-­‐Apr-­‐06	
   10-­‐Dec-­‐06	
  
20-­‐Oct-­‐07	
   26-­‐Apr-­‐07	
   17-­‐Jun-­‐06	
   7-­‐Oct-­‐06	
   1-­‐Jun-­‐06	
   26-­‐Dec-­‐06	
  
21-­‐Nov-­‐07	
   28-­‐May-­‐07	
   23-­‐Oct-­‐06	
   23-­‐Oct-­‐06	
   17-­‐Jun-­‐06	
   16-­‐Mar-­‐07	
  
7-­‐Dec-­‐07	
   3-­‐Oct-­‐07	
   8-­‐Nov-­‐06	
   8-­‐Nov-­‐06	
   7-­‐Oct-­‐06	
   1-­‐Apr-­‐07	
  
23-­‐Dec-­‐07	
   20-­‐Nov-­‐07	
   24-­‐Nov-­‐06	
   24-­‐Nov-­‐06	
   23-­‐Oct-­‐06	
   3-­‐May-­‐07	
  
29-­‐Mar-­‐08	
   6-­‐Dec-­‐07	
   10-­‐Dec-­‐06	
   10-­‐Dec-­‐06	
   8-­‐Nov-­‐06	
   10-­‐Oct-­‐07	
  
14-­‐Apr-­‐08	
   22-­‐Dec-­‐07	
   26-­‐Dec-­‐06	
   26-­‐Dec-­‐06	
   24-­‐Nov-­‐06	
   26-­‐Oct-­‐07	
  
16-­‐May-­‐08	
   7-­‐Jan-­‐08	
   2-­‐Jan-­‐07	
   27-­‐Jan-­‐07	
   10-­‐Dec-­‐06	
   30-­‐Jan-­‐08	
  

	
  	
   11-­‐Mar-­‐08	
   18-­‐Jan-­‐07	
   12-­‐Feb-­‐07	
   26-­‐Dec-­‐06	
   15-­‐Feb-­‐08	
  
	
  	
   27-­‐Mar-­‐08	
   3-­‐Feb-­‐07	
   28-­‐Feb-­‐07	
   27-­‐Jan-­‐07	
   2-­‐Mar-­‐08	
  
	
  	
   6-­‐Nov-­‐08	
   19-­‐Feb-­‐07	
   16-­‐Mar-­‐07	
   28-­‐Feb-­‐07	
   18-­‐Mar-­‐08	
  
	
  	
   22-­‐Nov-­‐08	
   23-­‐Mar-­‐07	
   1-­‐Apr-­‐07	
   16-­‐Mar-­‐07	
   19-­‐Apr-­‐08	
  
	
  	
   8-­‐Dec-­‐08	
   8-­‐Apr-­‐07	
   17-­‐Apr-­‐07	
   1-­‐Apr-­‐07	
   28-­‐Oct-­‐08	
  
	
  	
   	
  	
   15-­‐Sep-­‐07	
   3-­‐May-­‐07	
   10-­‐Oct-­‐07	
   13-­‐Nov-­‐08	
  
	
  	
   	
  	
   1-­‐Oct-­‐07	
   19-­‐May-­‐07	
   26-­‐Oct-­‐07	
   15-­‐Dec-­‐08	
  
	
  	
   	
  	
   17-­‐Oct-­‐07	
   10-­‐Oct-­‐07	
   14-­‐Jan-­‐08	
   	
  	
  
	
  	
   	
  	
   5-­‐Jan-­‐08	
   26-­‐Oct-­‐07	
   30-­‐Jan-­‐08	
   	
  	
  
	
  	
   	
  	
   21-­‐Jan-­‐08	
   11-­‐Nov-­‐07	
   15-­‐Feb-­‐08	
   	
  	
  
	
  	
   	
  	
   6-­‐Feb-­‐08	
   16-­‐Jan-­‐08	
   2-­‐Mar-­‐08	
   	
  	
  
	
  	
   	
  	
   22-­‐Feb-­‐08	
   1-­‐Feb-­‐08	
   28-­‐Oct-­‐08	
   	
  	
  
	
  	
   	
  	
   12-­‐May-­‐08	
   17-­‐Feb-­‐08	
   13-­‐Nov-­‐08	
   	
  	
  
	
  	
   	
  	
   28-­‐May-­‐08	
   4-­‐Mar-­‐08	
   15-­‐Dec-­‐08	
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Appendix B: Landsat ETM+ images used (continued). 
	
  

179/50	
   179/51	
   179/52	
   180/50	
   180/51	
  
5-­‐Mar-­‐00	
   5-­‐Mar-­‐00	
   5-­‐Mar-­‐00	
   31-­‐May-­‐00	
   29-­‐Apr-­‐00	
  
6-­‐Apr-­‐00	
   6-­‐Apr-­‐00	
   6-­‐Apr-­‐00	
   22-­‐Oct-­‐00	
   31-­‐May-­‐00	
  
15-­‐Oct-­‐00	
   24-­‐May-­‐00	
   15-­‐Oct-­‐00	
   14-­‐Mar-­‐01	
   22-­‐Oct-­‐00	
  
4-­‐Feb-­‐01	
   15-­‐Oct-­‐00	
   18-­‐Dec-­‐00	
   17-­‐May-­‐01	
   25-­‐Dec-­‐00	
  

10-­‐May-­‐01	
   18-­‐Dec-­‐00	
   4-­‐Feb-­‐01	
   24-­‐Oct-­‐01	
   27-­‐Feb-­‐01	
  
27-­‐Jun-­‐01	
   4-­‐Feb-­‐01	
   8-­‐Apr-­‐01	
   17-­‐Mar-­‐02	
   17-­‐May-­‐01	
  
17-­‐Oct-­‐01	
   8-­‐Apr-­‐01	
   27-­‐Jun-­‐01	
   4-­‐May-­‐02	
   24-­‐Oct-­‐01	
  
10-­‐Mar-­‐02	
   10-­‐May-­‐01	
   17-­‐Oct-­‐01	
   21-­‐Jun-­‐02	
   11-­‐Dec-­‐01	
  
14-­‐Jun-­‐02	
   27-­‐Jun-­‐01	
   20-­‐Dec-­‐01	
   4-­‐Mar-­‐03	
   14-­‐Feb-­‐02	
  
20-­‐Oct-­‐02	
   17-­‐Oct-­‐01	
   10-­‐Mar-­‐02	
   21-­‐Apr-­‐03	
   4-­‐May-­‐02	
  
9-­‐Jan-­‐03	
   10-­‐Mar-­‐02	
   14-­‐Jun-­‐02	
   7-­‐May-­‐03	
   21-­‐Jun-­‐02	
  

29-­‐Mar-­‐03	
   5-­‐Nov-­‐02	
   5-­‐Nov-­‐02	
   15-­‐Nov-­‐03	
   11-­‐Oct-­‐02	
  
8-­‐Nov-­‐03	
   9-­‐Jan-­‐03	
   7-­‐Dec-­‐02	
   7-­‐Mar-­‐04	
   12-­‐Nov-­‐02	
  
13-­‐Feb-­‐04	
   29-­‐Mar-­‐03	
   9-­‐Jan-­‐03	
   10-­‐May-­‐04	
   30-­‐Dec-­‐02	
  
16-­‐Mar-­‐04	
   8-­‐Nov-­‐03	
   8-­‐Nov-­‐03	
   26-­‐May-­‐04	
   4-­‐Mar-­‐03	
  
1-­‐Apr-­‐04	
   26-­‐Dec-­‐03	
   26-­‐Dec-­‐03	
   17-­‐Oct-­‐04	
   21-­‐Apr-­‐03	
  
17-­‐Apr-­‐04	
   28-­‐Jan-­‐04	
   16-­‐Mar-­‐04	
   2-­‐Nov-­‐04	
   15-­‐Nov-­‐03	
  
3-­‐May-­‐04	
   13-­‐Feb-­‐04	
   1-­‐Apr-­‐04	
   25-­‐Mar-­‐05	
   1-­‐Dec-­‐03	
  
19-­‐May-­‐04	
   16-­‐Mar-­‐04	
   17-­‐Apr-­‐04	
   10-­‐Apr-­‐05	
   4-­‐Jan-­‐04	
  
4-­‐Jun-­‐04	
   1-­‐Apr-­‐04	
   3-­‐May-­‐04	
   26-­‐Apr-­‐05	
   4-­‐Feb-­‐04	
  

10-­‐Oct-­‐04	
   17-­‐Apr-­‐04	
   11-­‐Nov-­‐04	
   12-­‐May-­‐05	
   7-­‐Mar-­‐04	
  
11-­‐Nov-­‐04	
   3-­‐May-­‐04	
   27-­‐Nov-­‐04	
   3-­‐Oct-­‐05	
   10-­‐May-­‐04	
  
14-­‐Jan-­‐05	
   19-­‐May-­‐04	
   14-­‐Jan-­‐05	
   19-­‐Oct-­‐05	
   26-­‐May-­‐04	
  
15-­‐Feb-­‐05	
   4-­‐Jun-­‐04	
   15-­‐Feb-­‐05	
   28-­‐Mar-­‐06	
   17-­‐Oct-­‐04	
  
2-­‐Mar-­‐05	
   11-­‐Nov-­‐04	
   18-­‐Mar-­‐05	
   13-­‐Apr-­‐06	
   2-­‐Nov-­‐04	
  

18-­‐Mar-­‐05	
   27-­‐Nov-­‐04	
   3-­‐Apr-­‐05	
   6-­‐Oct-­‐06	
   18-­‐Nov-­‐04	
  
3-­‐Apr-­‐05	
   13-­‐Dec-­‐04	
   19-­‐Apr-­‐05	
   15-­‐Mar-­‐07	
   4-­‐Dec-­‐04	
  
19-­‐Apr-­‐05	
   14-­‐Jan-­‐05	
   13-­‐Nov-­‐05	
   31-­‐Mar-­‐07	
   20-­‐Dec-­‐04	
  
12-­‐Oct-­‐05	
   15-­‐Feb-­‐05	
   29-­‐Nov-­‐05	
   16-­‐Apr-­‐07	
   5-­‐Jan-­‐05	
  
28-­‐Oct-­‐05	
   2-­‐Mar-­‐05	
   15-­‐Dec-­‐05	
   19-­‐Jun-­‐07	
   21-­‐Jan-­‐05	
  
1-­‐Jan-­‐06	
   18-­‐Mar-­‐05	
   1-­‐Jan-­‐06	
   9-­‐Oct-­‐07	
   6-­‐Feb-­‐05	
  

17-­‐Jan-­‐06	
   3-­‐Apr-­‐05	
   17-­‐Jan-­‐06	
   25-­‐Oct-­‐07	
   22-­‐Feb-­‐05	
  
18-­‐Feb-­‐06	
   19-­‐Apr-­‐05	
   18-­‐Feb-­‐06	
   2-­‐Mar-­‐08	
   25-­‐Mar-­‐05	
  
5-­‐Mar-­‐06	
   12-­‐Oct-­‐05	
   5-­‐Mar-­‐06	
   18-­‐Mar-­‐08	
   10-­‐Apr-­‐05	
  

21-­‐Mar-­‐06	
   28-­‐Oct-­‐05	
   21-­‐Mar-­‐06	
   19-­‐Apr-­‐08	
   12-­‐May-­‐05	
  
22-­‐Apr-­‐06	
   13-­‐Nov-­‐05	
   22-­‐Apr-­‐06	
   21-­‐May-­‐08	
   13-­‐Jun-­‐05	
  
8-­‐May-­‐06	
   1-­‐Jan-­‐06	
   8-­‐May-­‐06	
   6-­‐Jun-­‐08	
   29-­‐Jun-­‐05	
  
24-­‐May-­‐06	
   17-­‐Jan-­‐06	
   31-­‐Oct-­‐06	
   12-­‐Oct-­‐08	
   3-­‐Oct-­‐05	
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179/50	
   179/51	
   179/52	
   180/50	
   180/51	
  
9-­‐Jun-­‐06	
   18-­‐Feb-­‐06	
   16-­‐Nov-­‐06	
   28-­‐Oct-­‐08	
   19-­‐Oct-­‐05	
  
25-­‐Jun-­‐06	
   5-­‐Mar-­‐06	
   18-­‐Dec-­‐06	
   	
  	
   4-­‐Nov-­‐05	
  
15-­‐Oct-­‐06	
   21-­‐Mar-­‐06	
   4-­‐Jan-­‐07	
   	
  	
   20-­‐Nov-­‐05	
  
31-­‐Oct-­‐06	
   22-­‐Apr-­‐06	
   20-­‐Jan-­‐07	
   	
  	
   6-­‐Dec-­‐05	
  
16-­‐Nov-­‐06	
   8-­‐May-­‐06	
   21-­‐Feb-­‐07	
   	
  	
   22-­‐Dec-­‐05	
  
4-­‐Jan-­‐07	
   15-­‐Oct-­‐06	
   8-­‐Mar-­‐07	
   	
  	
   24-­‐Jan-­‐06	
  

20-­‐Jan-­‐07	
   31-­‐Oct-­‐06	
   24-­‐Mar-­‐07	
   	
  	
   9-­‐Feb-­‐06	
  
21-­‐Feb-­‐07	
   16-­‐Nov-­‐06	
   9-­‐Apr-­‐07	
   	
  	
   25-­‐Feb-­‐06	
  
8-­‐Mar-­‐07	
   2-­‐Dec-­‐06	
   25-­‐Apr-­‐07	
   	
  	
   12-­‐Mar-­‐06	
  

24-­‐Mar-­‐07	
   18-­‐Dec-­‐06	
   18-­‐Oct-­‐07	
   	
  	
   13-­‐Apr-­‐06	
  
9-­‐Apr-­‐07	
   4-­‐Jan-­‐07	
   3-­‐Nov-­‐07	
   	
  	
   5-­‐Oct-­‐06	
  
25-­‐Apr-­‐07	
   20-­‐Jan-­‐07	
   19-­‐Nov-­‐07	
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