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The web is becoming more dynamic due to the increasing engagement and contribution

of Internet users in the age of social media. A more dynamic web presents new challenges for

web search—an important application of Information Retrieval (IR). A stream of new documents

constantly flows into the web at a high rate, adding to the old content. In many cases, documents

quickly lose their relevance. In these time-sensitive environments, finding relevant content in

response to user queries requires a real-time search service; immediate availability of content for

search and a fast ranking, which requires an optimized search architecture. These aspects of

today’s web are at odds with how academic IR researchers have traditionally viewed the web, as a

collection of static documents. Moreover, search architectures have received little attention in the

IR literature. Therefore, academic IR research, for the most part, does not provide a mechanism

to efficiently handle a high-velocity stream of documents, nor does it facilitate real-time ranking.

This dissertation addresses the aforementioned shortcomings. We present an efficient mech-

anism to index a stream of documents, thereby enabling immediate availability of content. Our

indexer works entirely in main memory and provides a mechanism to control inverted list con-

tiguity, thereby enabling faster retrieval. Additionally, we consider document ranking with a

machine-learned model, dubbed “Learning to Rank” (LTR), and introduce a novel multi-stage

search architecture that enables fast retrieval and allows for more design flexibility. The stages

of our architecture include candidate generation (top k retrieval), feature extraction, and docu-

ment re-ranking. We compare this architecture with a traditional monolithic architecture where



candidate generation and feature extraction occur together. As we lay out our architecture, we

present optimizations to each stage to facilitate low-latency ranking. These optimizations include a

fast approximate top k retrieval algorithm, document vectors for feature extraction, architecture-

conscious implementations of tree ensembles for LTR using predication and vectorization, and

algorithms to train tree-based LTR models that are fast to evaluate. We also study the efficiency-

effectiveness tradeoffs of these techniques, and empirically evaluate our end-to-end architecture on

microblog document collections. We show that our techniques improve efficiency without degrading

quality.
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Chapter 1

Introduction

1.1 Motivation

The web is expanding and the volume of information it hosts is growing every second. As the

amount of information grows, so does the need for search, so much that web search—an important

application of Information Retrieval (IR)—has become an indispensable tool for many Internet

users: users issue queries to a search service and, in return, expect a ranked list of documents that

contain relevant information.

As the web evolves, so do the roles and demands of its users. For example, in recent years

we have witnessed the growing popularity of social media among Internet users. The integration of

social media in a variety of online services, together with the spread of smart phones, has changed

the way we gossip, advertise, engage in political debates, and track public health. Social media

and the online presence of news organizations have similarly revolutionized how news is created,

distributed, and accessed. These changes, in turn, have brought about increasing engagement and

contribution of users on the web, thereby making the web more dynamic.

A more dynamic web presents new challenges for search. A stream of new documents in

various forms constantly flows into the web at a very high rate, adding to the old content. In

many cases, documents quickly lose their relevance. In these time-sensitive environments, finding

relevant content in response to user queries requires a real-time search service. This means that

the search service must guarantee immediate availability of new content for search. In addition,

the search service must offer a fast—yet effective—relevance assessment and ranking of documents,

which requires an optimized search architecture. These aspects of today’s web are at odds with how

academic IR researchers have traditionally viewed the web, as a collection of static documents.

Moreover, search architectures have received little attention in the IR literature. As a result,
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academic IR research, for the most part, does not provide a mechanism to efficiently handle a

high-velocity stream of documents, nor does it facilitate real-time ranking.

In order to resolve these shortcomings, we need to adapt existing search architectures to

the new characteristics of the web. To this end, this dissertation addresses the issues of real-time

indexing and explores various search architectures for document ranking. We present an efficient

mechanism to index a stream of documents in real-time, thereby enabling immediate availability of

content for search. Additionally, we introduce a novel multi-stage search architecture that enables

efficient retrieval and offers more design flexibility. As we lay out our multi-stage architecture,

we present optimizations in each stage that reduce latency. In the end, we explore efficiency-

effectiveness tradeoffs in various architectures and empirically show the improvements that our

architecture brings about. The experiments in this dissertation focus on search on microblog doc-

uments. However, in cases where our techniques are general and can be applied to web search, we

also perform experiments on web collections. Also, in cases where existing microblog collections do

not allow thorough experimentation, we experiment on standard collections other than microblog

documents. The techniques and algorithms in this dissertation make up our contributions to the

field of information retrieval.

1.2 Overview

1.2.1 Indexing Streaming Documents

To rank documents efficiently in response to a query, search services take advantage of a data

structure called an inverted index—a structure that can quickly tell us which documents contain

a particular term. In a search service, the task of constructing and maintaining an inverted index

is performed by an indexer. The input to an indexer is a set of documents and the output is an

inverted index.

In cases where documents remain unmodified for long periods of time, or where delays of

hours in reflecting the changes made to documents is acceptable, the indexer can construct an

inverted index using batch systems such as MapReduce [1]. With this approach, the system is
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Figure 1.1: Different indexing scenarios.

unable to start indexing until it has obtained the entire collection. Figure 1.1(a) illustrates an

indexer that reads documents from a collection as a batch and constructs an inverted index.

In many situations, however, it is more desirable to perform indexing while documents are

being collected. For example, we can form a pipeline by connecting the output of a web crawler

to the indexer, in order to index the crawled documents as other documents are being pulled from

the web by the crawler. This behavior is essential in systems where documents are pushed to the

search service (e.g., blog posts and tweets) and are expected to be indexed with little or no delay; in

other words, an indexer cannot stall waiting for a complete batch of documents to begin indexing.

In this scenario, as depicted in Figure 1.1(b), an indexer can model the documents it receives as an

unbounded stream. We can then formulate indexing as an “update” problem: indexing a stream

of documents is equivalent to updating an existing inverted index given one document at a time.

This formulation is known as “incremental indexing.”

Many incremental indexing algorithms have been proposed in the past [2, 3, 4, 5]. A majority

of these techniques assume that the inverted index does not fit in the main memory and should

be organized on the disk instead. Reading an inverted index from the disk, however, involves

slow disk seeks. Thus, serving the inverted index from the disk can adversely impact document

ranking latency [6], which operates on the inverted index. A low-latency ranking—which, as

argued earlier, is a requirement of the web today—is easier to achieve by serving indexes from
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the main memory. Furthermore, in situations where indexing and query evaluation on the same

index happen simultaneously, building an inverted index on disk makes low-latency ranking during

indexing even more challenging. As such, existing incremental indexing algorithms do not conform

to the new characteristics of today’s web.

To address these challenges, we introduce an efficient indexing mechanism that operates

entirely in main memory, thereby avoiding the disk altogether. Our indexer is capable of in-

crementally indexing thousands of web pages per second, which makes it suitable for real-time

indexing of a high-velocity stream of documents.

1.2.2 Multi-Stage Ranking Architectures

The second component in search is a document ranking algorithm, which operates on the inverted

index and computes the relevance of documents in a collection with respect to a user query.

These algorithms range from simple information retrieval metrics (such as tf-idf, BM25 [7], and

Dirichlet scores from language modeling), to complex machine-learned models (such as gradient

boosted regression trees [8, 9], additive ensembles [10], and cascades of rankers [11, 12]), known as

learning-to-rank, that generally lead to higher search quality. However, learning-to-rank models

often require the computation of more sophisticated features such as phrase features (i.e., co-

occurrence of query terms as a phrase). Because these features generally require term positions

and therefore are costly to compute, it is not feasible to compute them for every document and

apply a ranking algorithm to a document collection in its entirety.

Most learning-to-rank work leave aside these cost issues and focus exclusively on effective-

ness. In practice, however, to deal with cost issues discussed above, query evaluation is divided

into two stages [13, 11, 14]. The first stage, which we refer to as “candidate generation,” uses a

fast, simple algorithm to generate a subset of documents (henceforth, referred to as “candidates”)

that exhibit stronger relevance signals, which are measured by a relevance scoring function. The

relevance scoring function used in the first stage should be computationally light but also effective

at filtering out non-relevant documents; there are various query-dependent functions (e.g., BM25
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Figure 1.2: A monolithic architecture where candidate generation and feature extraction occur at

the same time.

and tf-idf) as well as query-independent scores (e.g., PageRank [15], HITS [16], SALSA [17], and

page quality score) that can be used for these purposes. The second stage, which we refer to as

“document re-ranking,” then re-ranks the candidates generated by the first stage using a machine-

learned model; the model computes a relevance score for every candidate, and subsequently sorts

the candidates in order—based on the computed scores—in order to form the final ranked list.

A machine-learned model needs vectors of features as input, where each vector describes a

candidate document. So before candidates from the first stage can be re-ranked using the machine-

learned model, we need to compute feature values for them. Feature value computation, however, is

an under-explored problem. The learning-to-rank literature focuses on developing machine learning

models for higher effectiveness and assumes an architecture that performs candidate generation

and feature extraction in one stage, as illustrated in Figure 1.2. As such, the learning-to-rank

literature is not clear on how, when, and using what data structures we can compute features

more efficiently.

We address this gap by treating feature extraction as a distinct task and delegating this

task to a third stage, resulting in our novel three-stage architecture as depicted in Figure 1.3. As

such, the “feature extraction” stage receives a list of candidates from the first stage, candidate

generation, and computes feature values for the candidates with respect to the input query. The

feature extraction stage then emits a list of feature vectors—one per candidate document—to the

last stage, document re-ranking. These three stages make up what we refer to as a learning-to-rank

pipeline.

5



Document 
Re-ranking

d
d
d
d
d
d
d

1
2
3
4
5
6
7

Candidates

...
dk

R
el

ev
an

ce

Final Results

Feature 
Extraction

f
f
f
f
f
f
f

1
2
3
4
5
6
7

Features

...
f k

d
d
d
d
d
d
d

r

...
d

Candidate 
Generation

Q

1
r2
r3
r4
r5
r6
r7

rk

Inverted 
Index

Figure 1.3: Stages of a learning-to-rank pipeline. The candidate generation stage receives a query
and returns a set of candidates that are likely more relevant to the input query. The second stage
computes features for the given candidate list with respect to a query. Finally, the third stage
applies a machine-learned algorithm to rank the candidate documents. The output is a ranked list
of documents.

In this work, we study the two main architectural variants of a learning-to-rank pipeline:

A monolithic architecture, as illustrated in Figure 1.2, represents the traditional approach; and

our three-stage architecture as shown in Figure 1.3. We discuss the design flexibilities of each

architecture in detail. In our three-stage architecture, we examine each stage in isolation and

present optimizations that enable faster end-to-end query evaluation. We also explore the tradeoffs

between search quality (i.e., effectiveness), speed (i.e., query latency), and space (i.e., memory

requirements). Our experiments emphasize on microblog documents (tweets), however, we also

evaluate our contributions on web collections where appropriate.

1.3 Contributions and Outline

In this work, we study the problem of indexing for streaming documents and propose a fast

indexing approach that addresses the concerns we raised earlier about current incremental indexing

algorithms. We also explore the implications of our multi-stage architecture on search quality,

speed, and memory usage. Additionally, we break down and examine the stages of a learning-to-

rank pipeline and present techniques to improve the efficiency of each stage in isolation. We show

that, when the improved stages are put back together, this approach ultimately leads to a more

efficient and more flexible end-to-end learning-to-rank pipeline. Our contributions are as follows:
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• Online indexing: We propose a novel inverted index structure as well as an indexing algorithm

that operates entirely in memory, and is capable of indexing thousands of documents per second.

Our indexer also provides a mechanism to control postings list contiguity (i.e., how contiguously

postings of a term are stored in the final inverted index). In order to demonstrate the trade-

offs between memory usage, contiguity, and query evaluation speed, we present experimental

evaluation on large-scale web collections, and discuss the results in Chapter 3.

• Bloom filter chains: We introduce a scalable variant of Bloom filters [18] that can auto-

matically expand with minimal memory and computational cost, in order to accommodate an

unbounded stream of sorted integers. This data structure guarantees a theoretical upper-bound

on the false positive rate and offers fast membership tests. We describe Bloom filter chains in

more detail in Chapter 4. We have originally proposed this data structure in Asadi and Lin [19].

• Approximate top k retrieval: We present a novel top k retrieval algorithm, designed specif-

ically for microblog search, which we use in the candidate generation stage. To enable fast

retrieval, we utilize Bloom filter chains, a probabilistic data structure to approximate the list of

top k documents for an input query. More specifically, in lieu of searching standard postings

lists to identify common document ids, we perform approximate set membership tests on Bloom

filter chains—which are alternative representations of postings. Evaluation on microblog data

shows that our approach is much faster and that the probabilistic nature of it does not degrade

the quality of the candidate set and further does not compromise end-to-end search quality. We

empirically characterize the tradeoff space between effectiveness (result quality), time (retrieval

speed), and space (index size). We discuss these results in Chapter 4. This chapter has originally

appeared in Asadi and Lin [19].

• Document vectors for feature extraction: Within the feature extraction stage, we exper-

imentally evaluate the efficiency of different data structures in terms of speed (latency) and

memory usage, as detailed in Chapter 5. To our knowledge, this is the first quantitative com-

parison of alternative data structures intended for fast feature extraction. Our results show
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that a lightweight inverted index together with an efficiently-organized document vector index,

compares favorably to a monolithic positional inverted index. It also offers additional flexibility

in terms of systems engineering. Our findings in this chapter have originally appeared in Asadi

and Lin [20].

• Architecture-conscious implementations of tree ensembles: Among learning-to-rank al-

gorithms, tree ensemble models (such as gradient boosted regression trees) have proven to be

superior in terms of effectiveness. However, when it comes to efficiency tree models are expensive

to execute since tree implementations contain many conditional jumps (i.e., branches), which

consequently result in an under-utilization of processor resources. We propose novel implemen-

tations of tree-based models that are highly-tuned to modern processor architectures, as they

take advantage of cache hierarchies and superscalar processors. We illustrate our techniques for

implementing tree-based models in a standard learning-to-rank task. In Chapter 6, we show that

our implementations perform significantly better than standard implementations. This chapter

will appear in Asadi et al. [21].

• Training efficient tree ensembles: As we discuss in Chapter 6, the performance of our

architecture-conscious implementation of tree ensembles is directly correlated with the depth of

each individual tree. Therefore, to enable faster evaluation, we present an approach to penalize

deeper regression trees during tree ensemble construction. Experimental results in Chapter 7

on a standard learning-to-rank dataset demonstrate significant gains in speed. The techniques

used in this chapter have originally appeared in Asadi and Lin [22].

• End-to-end efficiency-effectiveness tradeoffs: Chapter 8 evaluates the overall impact of

our contributions on end-to-end effectiveness and efficiency, and explores the tradeoffs. Our

experiments on microblog documents suggest that our techniques can improve end-to-end query

latency without detriment to search quality. We show that our techniques increase the overall

memory footprint, but we justify this in the context of modern server configurations and within

a broader search service. This chapter has partially appeared in Asadi and Lin [23].
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In the chapters that follow, we discuss each of the above contributions in more detail.

Chapter 9 concludes this work by a discussion on the limitations of this work. However, before we

proceed to further discuss these contributions, in Chapter 2 we present a literature review on the

topics related to this work.
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Chapter 2

Related Work

We begin with an overview of the academic literature on the components of a search pipeline. This

chapter covers existing incremental indexing algorithms, candidate generation algorithms, feature

extraction, an introduction to learning-to-rank algorithms and tree ensemble models, and finally,

modern processor architectures.

2.1 Inverted Index and Incremental Indexing

At the heart of most retrieval systems lies the inverted index. The inverted index is a mapping

from vocabulary terms to postings lists. A postings list contains a number of postings, one for

every document that contains the corresponding vocabulary term. The length of a postings list is

referred to as a term’s document frequency (df). Each posting, in turn, holds a document id and a

payload. In general, the payload contains information such as term frequency. In positional indexes,

the payload also contains the positional information of a term within a document. Alternatively,

the payload can hold pre-computed scores known as impacts [24, 25]. Figure 2.1 illustrates the

structure of a positional inverted index for a sample collection of three documents.

Postings in a postings list are organized in two ways: Either postings are sorted by document

ids or by the payload (e.g., term frequency or impact scores). There are a few tradeoffs in this

design space. Each design leads to a different space requirement, demands a certain organization

of postings in order to effectively utilize compression, requires its own mechanism for updates and

maintenance, and supports different types of query evaluation algorithms. We refer the reader

to Zobel and Moffat [26] for an overview of approaches to organizing postings lists. In a search

service, an indexer is responsible for construction and maintenance of inverted indexes.
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Figure 2.1: Structure of a sample positional inverted index for three documents. Each posting
contains a document id (the first integer), term frequency (the second integer), and a list of term
positions (in brackets).

2.1.1 Incremental Indexing

As explained in Chapter 1, the problem of indexing streaming documents is equivalent to updating

an existing inverted index with one document at a time—a problem known as “incremental”

indexing. Solving this problem boils down to designing inverted index update algorithms. It is

clear that different index organizations require different update algorithms. Since global statistics

for streaming documents constantly change, updating an impact-sorted index with a new document

could lead to substantial modifications to postings lists. Therefore impact-sorted indexes are not

appropriate for streaming documents. As such, we only consider document id-sorted indexes

throughout this work.

The problem of incremental indexing has received considerable attention in the literature,

and decades of research have led to many inverted index update algorithms. However, most of these

algorithms assume that the inverted index does not fit in the main memory and must ultimately be

organized on disk. As such, the fundamental challenge that update algorithms attempt to address

lies within the tradeoff between index update speed and query evaluation speed.

To understand this tradeoff, consider an inverted index in which each postings list is stored

contiguously on disk.1 Such storage offers a high query evaluation speed, because one disk seek is

enough to find and read a term’s postings. However, maintaining a postings list’s contiguity after

1Note that, storage–hence, contiguity–of an on-disk index is delegated to the file system.
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an update complicates the update algorithm and leads to slower updates. At the other extreme,

consider an inverted index where each postings list is a discontiguous linked list of postings. Such

index is very fast to update; to insert a posting into a postings list, an indexer can simply append

the new posting to the current end of the index file, and link it to the last posting. However,

query evaluation becomes very slow, since reading a postings list involves many random disk seeks.

Between these two extremes fall a vast literature of update algorithms that attempt to achieve a

middle ground.

The majority of update algorithms accumulate postings of new documents in the main

memory, until the size of in-memory postings exceeds a threshold or when the memory is exhausted.

When this happens, the in-memory postings are merged with the on-disk index. As such, an

update problem becomes a merge problem. Different merge strategies present a different update-

query evaluation speed tradeoff. These strategies can be categorized into three general classes of

algorithms: re-build, merge, and in-place updates.

Re-build: A simple, but costly approach is to re-build the entire index whenever a merge is

triggered. The high cost of a re-build operation is amortized because we accumulate postings

over time and perform the merge in batches. While a merged index is being constructed, queries

continue to be served from the old index until the new index is complete. Only then, the new index

replaces the old one. This approach is very slow in practice [27], however, in situations where there

is no urgency to update the index (e.g., a school’s intranet), it is a favorable solution due to its

simplicity.

Several algorithms have been proposed to ensure contiguity in the re-built index. One

such approach is the so-called “two-pass” solution [28, 29, 30]. In the first pass, the algorithm

collects some statistics from the collection (e.g., document frequency). Using these statistics, the

algorithm determines how much on-disk space to allocate for every postings list. The second pass

subsequently reads the collection one more time and inserts postings into the allocated space to

construct a contiguous inverted index. This approach is straightforward to implement, however,

reading the collection twice can become very expensive for large collections.
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To address this issue, Moffat and Bell [3] propose a single-pass, sort-based inversion algo-

rithm. In their method, when a merge is triggered, in-memory postings are flushed onto the disk as

individual batches. In the end, a post-processing step sorts these individual batches and combines

them together to build the final inverted index. As an extension to this work, Heinz and Zobel

in [4] introduce optimizations by compressing in-memory postings on-the-fly, and by holding only

a small portion of the vocabulary in memory. Other attempts to re-build the index in a single-pass

(such as the work of Harman and Candela [31]) do not lead to significant improvements.

Merge: An alternative to the re-build strategy is to merge the in-memory postings with the on-

disk index on the fly. That is, when a merge is triggered, the algorithm reads on-disk postings lists

one at a time, appends in-memory postings when appropriate, and finally writes the updated list

to a different location on disk.

This recipe is referred to as “immediate merge,” which merges the entire index with in-

memory postings every time a merge is triggered. Lester et al. [5, 27] study this approach in

detail and show that, with large-enough memory, immediate merge is indeed very fast. However,

its performance is severely deteriorated if the available memory is small. This is because, in such

cases, the merge operation happens more frequently, which translates into more disk interactions—

a high-latency operation.

Researchers have introduced smarter merge strategies. One thread of work [32, 33, 34]

focuses on strategies that merge in-memory postings with only a fraction of the on-disk index,

as opposed to the entire index. The general idea is to partition the on-disk index into multiple

segments, and merge in-memory postings in a hierarchical way. A different thread of work [35, 36]

presents solutions that merge only a subset of in-memory postings with the on-disk index, as

opposed to merging all in-memory postings.

In-place updates: Another general approach to updating the inverted index is what is referred to

as in-place updates. The idea is to directly append a term’s in-memory postings to the current end

of its on-disk postings. If the current on-disk list does not have enough space to accommodate new

postings, the algorithm moves the list to another location on disk and expands it such that new
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postings can safely be inserted into the allocated space. When expanding the list, the algorithm can

over-allocate space to allow future postings to be inserted in place. Determining the appropriate

amount of space to over-allocate is a challenging question and requires an effective over-allocation

policy [2, 37].

The in-place merge strategy needs to deal with several practical problems. First, a cut-

expand-and-paste mechanism along with an over-allocation policy leaves free space behind. The

algorithm should keep track of this free space and manage it efficiently. Second, the presence

of free space eventually leads to fragmentation in the inverted index which, if not carefully dealt

with, can result in a very large inverted index file. Finally, unlike the strictly-sequential disk access

pattern in the re-build and most merge strategies, an in-place strategy requires random disk seeks.

These issues together are the reason why an in-place update can be even slower than a re-build

update [27, 5].

Brown et al. [38] proposed one of the first in-place update strategies. In their approach, if

there is enough space at the current end of an on-disk list, the in-memory postings are appended

in-place. Otherwise, a larger amount of space is allocated and the content of the old block is

moved to the new location, with new postings appended to its end. Space is allocated in powers

of two (24, 25, ..., 213). That is, a list which is 2i bytes long will be expanded to 2i+1 bytes. If a

list requires more than 213 bytes, the old block is left untouched and a new 213 byte-long block is

allocated and linked to the last block—thereby, creating a linked list of blocks.

Tomasic et al. [2] present an in-place approach which distinguishes between short and long

postings lists. In their work, they store postings into fixed-size buckets, where each bucket accu-

mulates postings for a disjoint subset of the vocabulary. The algorithm inserts a new posting to

its corresponding bucket. Once a bucket overflows, the longest list in the bucket is declared a long

list and is moved out to a separate location on disk. If a term’s postings list is long, the algorithm

merges its new postings with the long list using a merge policy. The authors present various policies

in [2]. An “update efficient” policy optimizes the update time by simply appending postings to the

end of the inverted index file. A “read efficient” policy combines long lists with new postings, and
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writes the combined list contiguously at a different location on disk. As a compromise between

the two extremes, another policy uses predictive over-allocation methods and allows some degree

of discontiguity for long lists.

Büttcher et al. [39] propose a hybrid approach where “short” lists are updated by a merge

strategy while “long” lists are updated in place. In this design, there are two independent on-

disk indexes: an inverted index that contains short postings lists (short index), and another that

contains long lists (long index). The algorithm views a term’s postings list as a concatenation

of a long list and a short list. New in-memory postings are always merged with the current on-

disk short index. When a list exceeds a predefined number of postings, its postings are removed

from the short index and are appended to the long index. This update algorithm also allows

for discontiguity in the long index, however, the degree of discontiguity can be managed through

different parameter settings.

2.1.2 In-Memory Indexes

There are only a few recent studies [35, 40] that explore storage other than the disk. Li et al. [35]

study incremental updates to inverted indexes on Solid-State Drives (SSDs). Luk and Lam [40]

propose an in-memory scheme for small inverted indexes, and use a linked list data structure to

represent postings—the scalability of their approach remains an unexplored question. However,

the decreasing trend in the cost of main memory over the past decade opens doors to exciting

opportunities, allowing us to weigh pros and cons of large-scale in-memory indexing.

In-memory indexes have a number of attractive properties, which we believe justify this

work’s exclusive focus on in-memory indexes. First, keeping the entire inverted index in main

memory enables faster query evaluation [6]. Second, as our experiments highlight, serving indexes

from the main memory leads to a behavior different from what we observe with on-disk indexes.

In particular, we show that full postings list contiguity is not a requirement for having an ideal

query evaluation speed; through relaxing constraints on contiguity, we observe no statistically

distinguishable increase in query latency. Third, we can take advantage of block compression
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techniques such as PFOR [41, 42, 43] or VSEncoding [44], which offer fast decompression speeds,

whereas utilizing block compression on-the-fly further complicates the update process for on-disk

indexes. Finally, since operations on an in-memory index avoids high-latency interactions with the

disk, in-memory indexes are more appropriate for the task of indexing a high-velocity stream of

documents.

An example of an in-memory index structure designed for streaming documents is the work

of Busch et al. [45]. They introduce Earlybird—Twitter’s real-time search service—in which in-

dexes are served from and maintained in the main memory. They describe a memory layout

for postings lists which facilitates efficient in-place updates. However, their index structure is

designed specifically for tweets with limited length, whereas in this work we propose a generic

framework which can index documents of arbitrary length. In addition, EarlyBird leaves postings

uncompressed during indexing and postpones compression to a post-processing phase, while our

proposed indexing mechanism performs on-the-fly compression.

2.1.3 Dictionary

Finally, a note on the dictionary structure: Just as documents are assigned unique document ids,

each vocabulary term is assigned a unique integer (known as a term id). The rationale is that we can

save space by storing integers in lieu of strings of characters, thereby enabling further compression

of postings using integer compression algorithms. As such, we need a dictionary data structure that

maps every vocabulary term to its term id. Because the dictionary is probed at a high frequency

during indexing and query evaluation, the choice of the dictionary data structure directly impacts

indexing and query evaluation speeds. Primarily, we are interested in an in-memory dictionary.

Zobel et al. [46] compare various dictionary data structures (binary search trees, splay

trees, tries, hash tables, etc.) among which, optimized hash tables are concluded to be significantly

more efficient. In particular, they use a bit-wise hash function [47], and reorder in-chain nodes

using the move-to-front technique [48]. There has been other studies since that confirm their

findings [49, 50]. However, in situations where the dictionary structure does not fit in memory
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and must be organized on disk, hash tables are not an appropriate choice. This is because hash

tables distribute keys randomly and therefore do not preserve the lexicographical order of terms,

which subsequently results in an increase in the number of random disk seeks when accessing a

dictionary record. Therefore, a slower data structure that ensures a lexicographical order (such as

a B-tree) is favorable. However, since we focus on in-memory indexing and assume the dictionary

is also held in memory, such sorted order is not a requirement. As such, we use an optimized hash

table throughout this work.

2.2 Candidate Generation

As mentioned in Chapter 1, the first stage in a learning-to-rank pipeline is the candidate genera-

tion stage. Given a query, the candidate generation stage retrieves the top k documents (known

as candidates) that exhibit stronger relevance signals. Relevance is measured by a scoring func-

tion. By definition, this stage comprises two main components: a scoring function and a retrieval

algorithm.

A scoring function should be simple and computationally cheap, so that it does not dominate

the cost of candidate generation. At the same time, it should be effective at distinguishing non-

relevant documents from relevant documents. A range of query-dependent scoring functions (e.g.,

BM25 and tf-idf) as well as query-independent scores also known as static priors (e.g., content

quality scores) can be used for these purposes. In this work, we use a combination of a static prior

as well as a query-dependent scoring function.

Retrieval algorithms are divided into two general categories: conjunctive and disjunctive

query processing. In conjunctive query processing, only documents that contain all query terms

are considered as candidates. Previous work on web search has shown that this approach leads to

high early precision [13]. Conjunctive query processing requires solving the problem of postings lists

intersection. This problem has been studied in detail and various algorithms have been presented

in the literature for impact-sorted indexes [24, 25, 51], as well as document id-sorted indexes [52,

53, 54, 55, 14]. We do not consider methods that operate on impact-sorted indexes further,
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since impact-sorted indexes are not appropriate for our problem setup. Algorithms designed for

document id-sorted indexes typically pick a target element, called an “eliminator,” from one of the

lists. The intersection algorithm then performs random-access lookups in the remaining lists for

that element. Among these methods, the SvS algorithm [55] offers a strong baseline.

The SvS algorithm for postings list intersection first sorts the postings lists in increasing

length. It begins by intersecting the two smallest lists. Then, at each step, the algorithm intersects

the current result set with the next postings list, until all lists have been consumed. In our

implementation, we use galloping search to intersect postings lists. The SvS algorithm has no

mechanism for early termination, and thus must exhaustively compute the entire intersection set.

As a result, in order to retrieve the top k documents using the SvS algorithm, we must first retrieve

the entire intersection set and compute relevance scores for every document in the set. Then, we

can rank all the documents by their relevance scores, and return the top k documents from the

sorted list.

The alternative to conjunctive query processing is disjunctive query processing. In this

approach, documents that contain any of the query terms are considered in the retrieval algorithm.

Because of this generous consideration, disjunctive query processing is significantly slower than

conjunctive query processing. To improve efficiency, researchers have designed clever algorithms

that (I) can skip over large portions of postings lists [56, 57, 13, 58, 59], or (II) consider more

promising documents early in the process [24, 25, 51]. The two state-of-the-art disjunctive query

processing algorithms are Block-Max Wand [59] (an extension of the Wand algorithm [13]) and

the work of Strohman and Croft [51]. The latter requires impact-sorted indexes, which again are

inappropriate for our problem formulation.

The Wand algorithm for top k retrieval uses a pivot-based pointer-movement strategy which

enables the algorithm to skip over postings of documents that cannot possibly be in the top k

results. In this approach, each postings list has a “current” pointer that moves forward as the

algorithm proceeds. Postings to the left of the pointer have already been examined, while postings

to the right have yet to be considered. The algorithm keeps postings lists sorted in increasing order
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Figure 2.2: Illustration of the Wand algorithm on a three-term query in which the current pointers
point to documents 100, 230, and 290. With a score threshold of 1.4, Wand selects “tree” as the
pivot term (a). Since the current pointer for “Obama” points to a document id that is less than
230, the algorithm moves its current pointer to the posting whose document id is at least 230, and
re-orders the lists (b). Current pointers now point to 230, 235, and 290. Document 235 becomes
the pivot. Due to the same reason as in (a), the first term’s (now, “tree”) current pointer is moved
to the posting whose document id is at least 235, resulting in (c). Finally, since the pivot term’s
document id is equal to that of its preceding term, the algorithm computes the score for document
235, and adds it to the heap if its actual score is greater than the threshold.

of the docid of the “current” posting. In addition, each postings list is associated with a score

upper bound, indicating the maximum score contribution of the corresponding term. At first, the

algorithm creates an empty heap of size k. At each step, the algorithm finds a pivot term: it does

so by adding up the score upper bounds of each term (in sorted order). The pivot term is the

first term where the sum exceeds a given threshold. The threshold is typically set to the lowest

score in the heap—that is, a document’s score must be higher than this value for the document

to appear in the top k results. If no such term exists, then the algorithm terminates. Otherwise,

there are two cases: If all the preceding terms’ current docids are equal to that of the pivot term,

the candidate document pointed to by the pivot term is scored using the scoring function, and is

then added to the heap if the actual score exceeds the threshold. Otherwise, the algorithm moves

the current pointer for one of the preceding terms to the posting whose document id is greater

than or equal to that of the pivot term, and the algorithm repeats.

As an example, assume that we are given the query “Obama family tree,” where the score

upper bounds for “Obama,” “family,” and “tree” are 1.0, 0.4, and 0.6 respectively. Further assume

that, as illustrated in Figure 2.2(a), the current pointers point to documents 100, 290, and 230 for

the query terms. Wand sorts the postings lists such that the current document ids are in ascending

order. Suppose the current threshold is set to 1.4 (the current lowest score in the heap). Therefore,
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“tree” is selected as the pivot term (1.0+0.6 > 1.4). The algorithm can now confidently claim that

the smallest document id that can make it into the top k is 230. Because the current document id

for “Obama” is not equal to 230, the algorithm moves its pointer to the posting whose document

id is greater than or equal to 230, and re-orders the lists, resulting in Figure 2.2(b). Current

pointers now point to documents 230 for “tree,” 235 for “Obama,” and 290 for “family.” Note that

document 230 is never fully scored because it does not contain “Obama.” The term “Obama” is

selected as the pivot next, and similar to the case in Figure 2.2(a), the pointer for “tree” is moved

to the posting whose document id is at least 235, resulting in Figure 2.2(c). Since the current

document id for the pivot term is equal to that of its preceding term, the algorithm computes

the score for document 235, and if its actual score is greater than the threshold 1.4, it adds the

document to the heap.

Recently, Ding and Suel [59] introduced an optimization on top of Wand, called Block-Max

Wand that substantially increases query evaluation speed. The idea is that instead of using the

global maximum score of each term to compute the pivots, the algorithm uses a piece-wise upper-

bound approximation of the scores for each postings list. However, this optimization becomes

difficult to apply when dealing with streaming documents since the global statistics constantly

change—the indexing algorithm would need to adjust all piece-wise upper-bounds every time a

new document is added to the index.

In this work, we propose a fast top k retrieval algorithm which is a variant of Wand. Our

solution is to replace postings list lookups with membership tests in Bloom filters. We provide an

overview of Bloom filters in Section 2.3, and address the challenges we face in using Bloom filters

for streaming documents in Chapter 4.

We should also mention that, while index pruning [60, 61] and early termination [57, 51, 10]

are two families of techniques that improve the efficiency of intersection algorithms, they are

incompatible with the index structures and query evaluation algorithms that we present in our

work.
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Figure 2.3: Insertion of element e into a Bloom filter of length m using κ hash functions h1 to hκ.

2.3 Overview of Bloom Filters

A Bloom filter [18] is a space-efficient data structure that offers fast approximate set membership

tests. It is comprised of a bit array of size m, and κ hash functions that generate values in the range

[0,m − 1]. Bloom filters provide two operations: insertion, and membership test. An insertion

adds a new element to the set. A membership test determines if an element has previously been

inserted into the data structure. Bloom filters support very efficient O(1) membership tests.

In order to insert an element e into a Bloom filter, as illustrated in Figure 2.3, we compute

the values of the given κ hash functions on e, and then set the corresponding bit positions in the

underlying bit array to one. If a bit has already been set to one, it is left untouched; that is, hash

collisions are ignored.

Similar to an insertion, to query a Bloom filter for an element e, we compute κ hash values

on e, using the same hash functions as in the insertion process. We then probe the corresponding

bit positions. The membership test passes if all the bit positions are set, and it fails if any of the

bit positions is unset. A common optimization for probing is to compute the hash values one at

a time, and terminate as soon as a probed bit position is unset. This short-circuiting technique

helps avoid unnecessary hash value computations.

Membership tests on Bloom filters are approximate. When a membership test on a test

element fails, it is guaranteed that the test element has never been inserted into the Bloom filter,

making the occurrence of false negatives impossible. A false positive, on the other hand, is possible.

That is, a membership test may assert true on a test element, while in fact the element was never

inserted into the Bloom filter.

False positives occur when there are hash collisions, and become more likely as more elements
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are inserted into a Bloom filter. Fortunately, the false positive rate (also known as the false drop

rate) can be theoretically predicted and controlled given the values m and κ. The probability of

a false positive is equal to the probability of a successful membership test, after n elements are

inserted into a Bloom filter of length m, using κ hash functions.

Assuming hash functions select a bit position in the array of m bits with equal probability,2

the probability that a bit is not set by one hash function during an insertion is equal to (1− 1
m )κ.

After n insertions the probability that a bit is set to one becomes:

p = 1−
(

1− 1

m

)κn
.

As mentioned earlier, a membsership test passes if all κ bit positions (as computed by the hash

functions) are set to one. A strict lower-bound estimate of the probability that a membership test

passes after n insertions, is as follows [62] for κ ≥ 2:

pκ =

(
1−

(
1− 1

m

)κn)κ
≈
(

1− e
−κn
m

)κ
, (2.1)

while the upper-bound [62] is:

pκ ×

1 +

κ
p

√
ln m−2κ ln p

m

1− κ
p

√
ln m−2κ ln p

m

+
2√
m

 (2.2)

For sufficiently large values of m and sufficienctly small values of κ, the difference between

pκ and Equation 2.2 is negligible. This means, Equation 2.1 provides a close estimate of the actual

false positive rate. Since in our work we set m and κ to large and small values respectively, we use

Equation 2.1 to predict and control the false positive rate.

From Equation 2.1, it is clear that we can reach a desirable false positive rate through

adjusting two parameters: the number of hash functions, κ, and the ratio of the allocated number

of bits to the number of elements, r = m
n . Figure 2.4 illustrates the impact of these two factors on

the false positive rate as predicted by Equation 2.1. In this figure, it is assumed that the number

of elements (n) is fixed.

This figure demonstrates the tradeoffs encoded in a Bloom filter through parameters r and

κ. Assuming a fixed number of hash functions, allocating more space (i.e., increasing r) improves

2In practice, hash functions do not behave ideally. As a result, the probability of false positives is slightly higher
than what theory predicts.
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Figure 2.4: Probability of a false positive (lower-bound) for a Bloom filter for different values of r
and κ.

the false positive rate. However, this comes at the cost of larger memory requirements. On the

other hand, using more hash functions while fixing r, reduces the false positive rate. This gain

too is not free to achieve as it requires more hash value computations, thereby affecting speed.

These factors form a tradeoff space between accuracy (i.e., false positive rate), time (i.e., speed

of membership tests), and memory footprint (i.e., space requirements). We will explore these

tradeoffs in our experiments.

Parameters κ and r from Equation 2.1 can only guarantee a certain false positive rate if

the number of elements (n) is known beforehand. However, if the number of inserted elements

exceeds a Bloom filter’s capacity (i.e., n), the underlying bit vector becomes saturated with 1’s.

As a result, the rate of false positives drastically increases. This disqualifies standard Bloom filters

for use in situations where the cardinality of a set is not known a priori; that is, when the set is

dynamic.

To deal with the scalability issues, Almeida et al. [63] propose an extension to Bloom filters.

To construct a scalable filter, the authors use a series of Bloom filters of geometrically-increasing

sizes. When a Bloom filter reaches its capacity, a new Bloom filter is constructed and added to

the list. New elements are then inserted into this new filter. To perform a membership test, all

Bloom filters are probed. A membership test passes if at least one of the Bloom filters claims to

contain the element in question. There are a few drawbacks to this approach. First, membership
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tests become slower as more and more Bloom filters are added to the list. Second, to fix the false

positive rate, this approach increases the size of Bloom filters progressively, which subsequently

adds to the memory cost. In this work, we address these issues by introducing constraints on the

elements that are to be inserted into a Bloom filter. More specifically, we require that the elements

be a stream of sorted integers. Chapter 4 details our approach.

There have been many studies that utilize Bloom filters for information retrieval applica-

tions [64, 65, 66]. For example, Li et al. [66] have used Bloom filters to perform keyword search

in Peer-to-Peer (P2P) systems. In particular, they present a mechanism to perform (distributed)

postings list intersection which reduces the amount of data transferred between nodes in the P2P

system; to perform an intersection, a node shares a Bloom filter representation of postings from its

inverted index with other nodes instead of the actual postings list, while the nodes receiving the

Bloom filters perform intersection between their postings lists and the Bloom filters. In contrast, in

our work, we focus on a single machine and utilize Bloom filters to speed up candidate generation

in a multi-stage search architecture.

2.4 Feature Extraction

Document ranking algorithms in a learning-to-rank retrieval pipeline often consider features that

are costly to compute. As discussed earlier, in order to reduce the cost of computing these expensive

features, we apply the document ranking algorithm to only a small set of candidate documents.

Feature extraction on this relatively small set is affordable and practical.

Architecturally, we can view feature extraction as a distinct stage between the candidate

generation and document ranking stages. The task of a feature extraction stage is to compute

features that are used in the document re-ranking stage, which are potentially more sophisticated.

An example of more complex features is the class of term proximity features. Term proximity

features can be divided into two types: query terms occurring in order within a fixed span (e.g., as a

phrase), and query terms co-occurring within a fixed span in any order. Computing these features

requires storing term position information which substantially increases the size of the inverted
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index. Additionally, it requires decoding and comparing term positions to determine whether

terms co-occur within a specified span. For these reasons, computing term proximity features

is relatively expensive. One recent set of microbenchmarks has shown that computing bigram

features is 20 times slower than computing unigram features [12]. However, studies have shown

that term proximity features lead to statistically significant improvements over less complicated

features such as term-based (i.e., unigram) features [67, 68, 69, 70, 71, 72].

Delaying the computation of expensive features to a second stage has its own advantages.

We argue that, decoupling feature extraction and candidate generation stages allows us to use a

different data structure in each stage. In particular, we do not need to store positional information

in the inverted index used in the candidate generation stage—thereby reducing memory footprint

in the first stage. As we discuss later in Chapter 5, this is the route we pursue.

Note that, real-world search engines take advantage of caching [73]. In principle, one can

cache expensive features in frequently-evaluated documents to avoid re-computation. However,

feature caching is a non-trivial engineering problem. This is because the space of cache values is

the query space crossed with the document space. This challenge aside, we argue that caching

is an orthogonal issue to our work: caching strategies can also be applied on top of our proposed

techniques to further increase speed.

2.5 Learning to Rank Algorithms

Another area of relevant previous work is the vast literature on learning-to-rank [74]: applica-

tion of machine learning techniques to the document ranking problem. Among machine learning

algorithms used in learning-to-rank, studies have shown that tree-based models combined with

ensemble techniques are highly effective. An example of this class of learning algorithms is the

family of Gradient Boosted Regression Trees (GBRTs) [75, 8, 76, 9]. A state-of-the-art GBRT is

the LambdaMART [8] algorithm, which is the combination of LambdaRank [77] and MART [78]—

a class of boosting algorithms that perform gradient descent using regression trees. LambdaRank,

in turn, is based on the RankNet [79] learning algorithm.
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RankNet is a pair-wise learning-to-rank approach; that is, it optimizes the relative ordering

of documents in a ranked list, as opposed to a list-wise approach which directly optimizes a

retrieval effectiveness metric. The training data consists of pairs of documents, together with

a probability that one document is ranked higher than the other. Given the training data, the

algorithm minimizes a probabilistic cost function defined on the relative ordering of documents.

RankNet constructs a neural network for training, where the weights in the network are adjusted

using gradient descent.

One particular drawback to using gradient descent is that the cost function must be smooth

in order to compute its gradient. Unfortunately, information retrieval measures, such as NDCG [80]

and ERR [81], are either discontinuous or flat. This means that, gradient of a retrieval metric is

either zero or undefined at any given point. Due to this discontinuity, RankNet cannot be used

to directly optimize an information retrieval metric. To address this, Burges et al. [77] developed

LambdaRank which bypasses these difficulties. The idea behind LambdaRank is that, rather than

deriving gradients from a cost function, we can define desired gradients and use them directly. We

refer the reader to [77] for more details. Given these gradients, one can apply gradient descent to

optimize a retrieval metric.

LambdaMART uses the LambdaRank algorithm at its core and performs gradient boosting

to learn an ensemble of regression trees. The algorithm builds an ensemble by sequentially con-

structing a new tree that best accounts for the remaining regression error (i.e., the residuals) of

the training samples. More specifically, LambdaMART learns a linear predictor Hβ(x) = βᵀh(x)

that minimizes a given loss function `(Hβ), where the base learners are limited-depth regression

trees [82]: h(x) = [h1(x), ..., hT (x)], where ht ∈ H, and H is the set of all possible regression trees.

Assuming the ensemble has t − 1 regression trees, LambdaMART adds the tth tree that

greedily minimizes the loss function, given the current residuals. To construct an individual re-

gression tree, LambdaMART uses the CART [82] algorithm. CART works by recursively splitting

the training data. At each step, the algorithm computes the best split (a feature and a threshold)

for all the current terminal nodes, and then applies the split that yields the most gain, thereby
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growing the tree one node at a time. The algorithm continues until there are J terminal nodes in

the tree.

In LambdaMART, CART chooses a split that minimizes a least squares error function as

follows:

C(N, 〈f, θ〉N ) =
∑
xi∈L

(yi − ȳL)2 +
∑
xi∈R

(yi − ȳR)2, (2.3)

where N denotes a node in the tree; 〈f, θ〉N is a split, consisting of a feature and a threshold; L

and R are the left and right sets containing the instances that would fall into the left and right of

node N if the split was applied; xi and yi denote a training instance and its associated residual;

and finally, ȳL and ȳR are the average y of instances that would fall to the left or the right branch

of node N if the split was applied. Minimizing Equation (2.3) is equivalent to maximizing the

difference in C(·) before and after a split is applied to node N . This difference can be computed

as follows:

G(N, 〈f, θ〉N ) =
∑
xi∈N

(yi − ȳN )2 − C(N, 〈f, θ〉N ), (2.4)

where xi ∈ N denotes the set of instances that are present in node N .

The final LambdaMART model has a low bias, while it is prone to overfitting the training

data (i.e., model has a high variance). In order to reduce the variance of an ensemble model,

bagging [83] and randomization can be utilized during training. Friedman [84] introduces the

following randomization techniques:

• A weak learner is fit on a sub-sample of the training set drawn at random without replace-

ment. This results in substantial improvements in accuracy.

• Similar to Random Forests [85], to determine the best tree split, the algorithm picks the best

feature from a random subset of all features (as opposed to choosing the best overall feature).

Ganjisaffar et al. [9] take this one step further and construct multiple ensembles, each built using

a random bootstrap of the training data (i.e., bagging multiple boosted ensembles). The bagged

model achieves the best of both worlds: it lowers the variance of the final model through bagging,
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and maintains the low bias of regression trees. In this work, we do not explore bagging, primar-

ily because it is embarrassingly-parallel from the runtime execution perspective and thus is not

particularly interesting.

Note that, the focus of most learning-to-rank research is on learning effective models, without

concern to efficiency ([12, 86] being exceptions). In contrast, we focus exclusively on runtime

ranking performance.

2.6 Optimizing Tree Ensembles

Tree ensemble models often consist of a large number of trees, which become expensive to evaluate

at test time (i.e., to classify or score a test instance). There are several methods in the litera-

ture that address this issue both at training/construction time, and at test time. We here focus

on techniques that can be applied during the construction of an ensemble, and leave test-time

optimizations aside. Construction-time optimizations can be categorized into four classes.

• Adjusting the Learning Rate: By using a larger shrinkage parameter η we can force the algorithm

to converge faster, thereby creating an ensemble with fewer trees. However, larger η often leads

to lower effectiveness. In contrast, a smaller η prevents a high model variance, but results in

larger ensembles.

• Early Termination: Assuming a small η is utilized, Ganjisaffar [87] proposes several techniques

to reduce the runtime execution cost by discarding trees that contribute the least to the final

document scores. In what is referred to as prefix compression, only the first n trees in an ensemble

are preserved, while the rest are removed from the ensemble. The value of n is determined based

on a time budget. This is similar to the early termination of training algorithms described by

Margineantu and Dietterich [88], where the focus is on minimizing storage (as opposed to speed

per se).

• Pruning Trees: A different approach is to re-weight all trees, after the entire ensemble is built. In

this approach, trees whose absense from the ensemble do not significantly change effectiveness,
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are assigned a weight of zero and are subsequently discarded. Ganjisaffar [87] uses the Lasso [89]

method to compute weights for every tree. However, experiments show that if the learning rate

is small, this approach does not lead to more compact ensembles.

Similarly in [88], the authors filter weak learners from an AdaBoost classifier using a “diversity”

and classification-accuracy criterion. Results suggest that 60–80 percent of the weak learners

can be discarded without a significant loss in accuracy. For an overview of ensemble pruning

techniuqes see [90, 91, 92, 93] and the references therein.

• Pruning Nodes: At a different level, pruning can be applied to individual nodes rather than

entire trees. Ganjisaffar in [87] also presents a node pruning approach that trims leaves in a tree

and collapses them into a single terminal node after an ensemble is built. Leaves are trimmed

only if the impact of such trimming on effectiveness is not significant. However, despite the

costly computation required to perform such pruning, this too fails to make ensembles more

compact.

Our work differs from previous work in that we directly model and optimize the evaluation

speed while constructing the ensemble. The idea behind our work is similar to that of Xu et al. [86].

The authors consider a scenario where features are labeled with their computational cost, and aim

at minimizing the overall cost of evaluation by integrating feature costs into the loss function

used during training. However, in their model, the authors assume that the cost of evaluating a

regression tree at test-time is constant, regardless of its topology. In this work, however, we argue

that tree evaluation cost is in fact a function of tree structure (in particular, tree depth).

We consider previous work on post-pruning to be orthogonal to our work, since post-pruning

can be applied to an ensemble regardless of how the ensemble was constructed. Early exit strate-

gies [94] at test-time and cascade ranking models [95] are also independent threads of work. Pre-

vious work on scaling the training of tree-based models to massive datasets [96, 97] is also an

orthogonal problem to the issues we tackle in this work.
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2.7 Modern Processor Architectures

In recent years, we have witnessed what is known as the multi-core revolution [98]. Experts widely

agree that an increased transistor density on a chip does not necessarily translate into significant

improvements to instruction-level parallelism in hardware. Instead, adding more cores appears to

be a better use of these resources.

An increase in processor speed alone, however, is not sufficient to achieve a higher through-

put. There are other key contributing factors that impact throughput in nontrivial ways. One such

factor is the memory latency, which dominates runtime because of the inevitable interactions be-

tween the processor and the main memory. Unfortunately, the main memory is becoming relatively

slow as compared to processor speed. That is, improvements to processor speed has outstripped

achievements in reducing memory latency. As a result of higher latencies, interactions with the

main memory become a bottleneck and form the so-called “memory wall” [99].

In order to attenuate the impact of this problem, computer architects have introduced

hierarchical cache memories. In modern architecutres, there are three levels of cache memories

referred to as L1, L2, and L3 in order of proximity to the processor. Cache memories serve as a

short-term memory between the processor and the main memory, and “remember” and “forget”

data according to a caching strategy.

Cache memories are designed based on the assumption that the processor repeatedly accesses

a relatively small region in memory. That is known as “reference locality.” When this assumption

holds, a fraction of memory accesses can be fulfilled directly from the cache. This fraction is called

the cache hit rate. On the other hand, accessing data that are not present in the cache causes

a cache miss. Cache misses propagate through the cache hierarchy until the requested data are

found. That is, if a datum is not found in L1 cache, the processor probes L2 cache, and if that

fails too then looks for it in L3, and finally in the main memory if L3 cache does not contain the

data. A cache miss becomes more expensive as it propagates down this hierarchy.

Managing cache content is a complex problem. However, software developers can take

advantage of caches by taking two properties of cache memories into consideration when designing
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new data structures. First, caches are organized into cache lines. A cache line is the smallest unit

of transfer between two caches and the main memory. That is, when a program accesses a datum

at a particular memory location, an entire cache line surrounding that location is fetched and

placed into the cache. In this way, subsequent accesses to memory locations within that cache line

are very fast. Second, if a program accesses memory in a predictable sequential way, the processor

will prefetch and move data into cache before the program explicitly requests the data. We refer

the reader to [100] for more details on cache architectures.

The use of cache-conscious data structures has been extensively explored in the database

community [101, 102, 103, 104, 99]. On the other hand, information retrieval and data mining

communities have not taken advantage of the advances in modern processor architectures. In this

work, we propose novel implementations of (regression) tree data structures that take advantage

of cache properties.

An independent thread of work on processor architecture that improves througput is the

introduction of pipelining. In a pipelined execution model, instruction execution is split into several

stages (e.g., fetch, decode, execute, and write-back). At each clock cycle, all instructions that are

currently in the pipeline advance one stage in the pipeline. New instructions enter the pipeline,

while instructions that leave the pipeline are retired. Therefore, a pipelined execution model allows

for execution of multiple instructions at the same time, but each at a different stage.

In addition to pipelining, modern superscalar processors have the ability to dispatch more

than one instruction per clock cycle. That is, more than one instruction can simultaneously be at

the same stage in the pipeline. Moreover, superscalar processors allow for out-of-order execution

of instructions, provided that the instructions are independent.

Pipelining is susceptible to two dangers known as hazards: data and control hazards. Data

hazards occur when there is data dependency between consecutive instructions—when one instruc-

tion requires the output of another. Such hazards happen frequently when dereferencing pointers,

where requesting data requires computing a memory location first—instructions that follow cannot

proceed until the memory location is known. In these scenarios, the processor has to simply wait
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Figure 2.5: Pipelined execution with four stages: Instruction Fetch (IF), Instruction Decode (ID),
Execute (EX), and Write Back (WB). A branch misprediction occurs at the fifth cycle (when
executing the third instruction, EX-3), which causes the pipeline to be flushed (gray area in the
figure: IF-{3, 4, 5}, ID-{3, 4}, and EX-3 are flushed). After the pipeline is flushed, stages go into an
idle mode (pipeline bubbles), and the processor rolls back and starts executing the correct branch.

for the result. In the meantime, superscalar processors can execute other independent instructions.

Control hazards are instruction dependencies introduced by conditional jumps (e.g., if-else

clauses). To prevent control hazards, modern processors use branch prediction techniques. In

short, the processor tries to predict which code path is more likely to be taken, and goes on to

prefetch and execute instructions from the more likely branch. However, if the guess is incorrect,

the processor must undo the instructions that were executed after the branching point. In other

words, the processor needs to flush the pipeline. Figure 2.5 illustrates a pipelined execution model

with four stages, and shows what happens when a control hazard occurs.

The impact of data and control hazards can be substantial. An influential paper in 1999

concluded that in commercial relational database management systems at the time, almost half of

the execution time is spent on stalls [101]. It is possible to reduce the impact of control hazards

with a technique called predication [105, 106, 107], which converts control dependencies into data

dependencies. We will explore this technique in our work in order to reduce runtime execution of

tree ensembles.

Another optimization that we adopt, called vectorization, was pioneered by database re-

searchers [108, 104]. The basic idea is that, instead of processing a tuple at a time, a relational
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query engine should process a vector (i.e., batch) of tuples at a time to take advantage of pipelin-

ing. Since instructions to evaluate multiple feature vectors are independent, using this technique,

we can take advantage of the out-of-order execution model in a superscalar processor.
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Chapter 3

In-Memory Indexing for Streaming Documents

This chapter focuses on the inverted index as the first component of our learning-to-rank pipeline,

as depicted in Figure 3.1. An inverted index, as detailed in Section 2.1, is a mapping from

vocabulary terms to postings lists. Postings in a postings list contain information about every

document that contains the term. The amount of information kept in postings directly impacts

the memory requirements of an inverted index.

Information retrieval researchers in academia have long assumed that memory requirements

of inverted indexes surpass the capacity of available memory resources. For this reason, inverted

indexes have been traditionally organized on disk. However, modern server configurations, along

with advances in distributed search architectures, weaken that assumption and provide the oppor-

tunity to free indexing algorithms from their dependence on disk.

The main disadvantage of on-disk indexes is that, serving an index from disk leads to slow

query evaluation [6]. Low-latency ranking—which, as argued earlier, is a requirement of the web

today—can only be achieved by serving indexes from the main memory. Furthermore, building an

inverted index on disk makes it difficult to rank with low latency during indexing, in situations

where indexing and query evaluation on the same index happen concurrently.

We address these shortcomings in this chapter. First, we present a novel index structure for

streaming documents which resides entirely in memory, along with an efficient index update algo-
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Figure 3.2: A snapshot of our indexing algorithm. In the middle we have buffer maps for storing
docids, tfs, and term positions: the gray areas show elements inserted for document 508, the current
one to be indexed. Once the buffer for a term fills up, an inverted list segment is assembled and
added to the end of the segment pool and linked to the previous segment via addressing pointers.
The dictionary maps from terms to term ids and holds pointers to the head and tail of the inverted
list segments in the segment pool.

rithm. Our index structure scales to modern web collections and takes advantage of state-of-the-art

compression schemes. Second, we propose a mechanism to manage postings lists contiguity through

co-locating small groups of index segments, and explore the impact of postings list contiguity on

both index update speed and query evaluation latency. We find that contiguity does indeed lead

to a decrease in query evaluation latency, but beyond a certain degree of contiguity we observe no

statistically significant gap in query evaluation performance compared to a fully-contiguous index.

3.1 Approach

3.1.1 Basic Incremental Indexing Algorithm

There are three main components in our index structure, as depicted in Figure 3.2: a dictionary, a

set of buffer maps, and a segment pool. Our approach, in summary, is to accumulate uncompressed

postings in the buffer maps until the buffer maps are full, and then to apply compression and store

the compressed postings in the segment pool.

The dictionary in our implementation is a hash table with a bit-wise hash function [47] and
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the move-to-front optimization technique [48], which maps terms to integer term ids. For each

term, the dictionary additionally holds its document frequency (df ) as well as a head and a tail

pointer that determine the location of the term’s postings in the segment pool (more details below).

In our implementation, term ids are assigned sequentially as we encounter new terms. Note that

there is nothing novel about our implementation of dictionary.

A buffer map is a mapping from term ids to arrays of integers (the buffers). In order to

construct a positional inverted index, we use three buffer maps: the document id (docid) buffer

map, the term frequency (tf ) buffer map, and a term positions buffer map. The docid map collects

document ids of incoming documents, the tf map accumulates term frequencies, and the term

positions map holds positions of a term within a document. Every document has exactly one entry

in the docid and tf maps, while there can be more than one entry in the term positions map for a

document; the number of entries in a term’s positions buffer for a document is equal to the term’s

frequency in that document. In order to construct a non-positional or a boolean index, we can

simply disable the term positions and/or term frequency buffer maps.

Since term ids increase monotonically, we can implement a buffer map using an array of

pointers. In this array, each index position corresponds to a term id and the pointer points to the

memory location of the associated buffer. We dynamically expand the array to accomodate more

terms as needed.

When a new document arrives, we assign a unique document id (docid) to the document—

docids increase monotonically. The indexing algorithm parses and groups the document’s terms

to collect term frequencies and term positions (relative to the current document). The algorithm

inserts these data into the appropriate buffer maps. When encountering a new term, the algorithm

allocates a new buffer per buffer map and places a pointer to its memory location into the buffer

map. Initially, the size of a buffer is set to b, which is the block size used by the compression

algorithm. Following best practice today, we use PFOR [41, 43], with the recommended block size

of b = 128. To accomodate more positions, we expand buffers in the term positions map one block

at a time. When the docid buffer for a term fills up, we compress all docids, term frequencies, and
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term positions into what we call a segment, before we flush the resulting segment to the current

end of the segment pool.

Each segment begins with a compressed list of document ids; call this D. Note that, since

document ids increase monotonically as new documents arrive, document ids in the docid buffer

map are sorted in ascending order. This allows us to use gap compression techniques such as

PFORDelta. Next comes a compressed list of term frequencies; call this F . Unlike document ids,

term frequencies in the tf buffer map are not sorted. Therefore, we use PFOR to compress term

frequency values in their raw form. By design, docids and term frequencies occupy exactly one

PFOR block each. A segment ends with a compressed list of term positions. For every document,

term positions are gap-encoded relative to the first position. For example, in Figure 3.2 term A

was found at positions [1, 3, 5] in document 508 and at positions [3, 4, 8] in document 509. When

compressing term positions, we encode the positions in these two documents as [1, 2, 2, 3, 1, 4]. We

can unambiguously reconstruct term positions using term frequency values. Term position buffers

are likely longer than the block size, b. Therefore, we split the encoded term positions into multiple

blocks and compress each block separately; call the blocks of term positions P1 . . . Pm. Finally, we

pack D, F , and Pi’s together into a contiguous block of memory to form a segment. The structure

of a segment, therefore, is as follows:

[ |D|, D, |F |, F, {|Pi|, Pi}0≤i<m]

where the | · | operator returns the length of its argument. Since all the data are packed into one

single array, we need to explicitly store the length of each compressed block to properly decode

the data during retrieval.

Each segment is stored at the current end of the segment pool, which contains the compressed

inverted index. Conceptually, the segment pool is an infinitely large array, but in practice we

allocate the pool in large blocks and dynamically expand it as needed. A pointer keeps track of

the current end of the segment pool. To be able to read a term’s postings list, we need to record the

position within the segment pool where the term’s first segment is stored. We refer to this position

as the “head” of a postings list, and add its address to the dictionary as a “head” pointer. Since
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segments of a postings list are written to the segment pool in a discontiguous way, we also need to

link them together in order to traverse a term’s postings list (e.g., during query evaluation). As

such, we prepend each segment with the address of the next segment in the chain. This means that

every time we insert a new segment for a term, we have to go back and correct the “next pointer”

for the last segment. We leave the next pointer blank for a newly-inserted segment to mark the

end of the postings list for a term; this location is stored as the “tail pointer” in the dictionary.

This indexing design has several practical implications. On the positive side, by packing

all data contiguously into segments and managing memory allocation manually (i.e., the segment

pool), we can utilize memory efficiently. This approach guarantees that the indexing algorithm

will not lead to heap fragmentation. In addition, as opposed to flushing the entire in-memory

postings to the inverted index as in previous work, our indexer only flushes data associated with

the term id whose buffer has reached capacity. On the negative side, postings lists are stored

discontiguously. Therefore, traversing postings boils down to chasing pointers accross the heap

with an unpredictable access pattern. As a result, in the process of traversing postings, the

processor is likely to encounter a cache miss whenever it reaches the end of a segment. However,

since PFOR is a block-based compression scheme and decompresses data in blocks regardless of

the storage scheme, the extent of this impact is not immediately clear. We will return to discuss

this in Section 3.1.2 and measure the impact of contiguity on retrieval speed in our experiments.

Finally, we note that a large portion of the vocabulary consists of rare terms (i.e., the

vocabulary follows a Zipfian distribution). Therefore, allocating a buffer of length b for every

new term likely leads to a large waste of memory resources. To deal with this problem, when

encountering a new term we first allocate a relatively small buffer. We continue to buffer postings

for new documents until the buffer fills up. When that happens, we re-allocate a buffer of length

b for that term. The length of the initial buffer is set to what we refer to as a document frequency

threshold. Terms with a document frequency (df) less than the df threshold are discarded in the

end. In our implementation, we set the df threshold to 10. This two-step process reduces memory

usage substantially.
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3.1.2 Segment Contiguity

It is clear that our baseline indexing algorithm generates discontiguous inverted list segments. In

order to create contiguous inverted lists, we would need an algorithm to re-arrange the segments

once they are written to the segment pool. One approach to accomplish this is to follow the merge

update techniques of disk-based indexes (see Section 2.1 for details). That is, we would need to

merge multiple discontiguous segments that belong to a term’s postings list and transfer them

to another location in memory. Alternatively, we can use an over-allocation policy as in many

in-place update techniques. These approaches have been thoroughly studied in the literature,

however, when it comes to in-memory indexes we argue that the issues become more complex.

This is in part because we do not have an intermediate abstraction of the inverted file. Therefore,

the algorithm must explicitly manage memory addresses—which requires a custom implementation

of memory management mechanisms similar to malloc and free.

Devising and implementing a memory management system is a non-trivial task. Therefore,

before we further complicate our indexing approach, we first study the impact of postings lists

contiguity on indexing and retrieval speed. The gold-standard in such a study is a fully-contiguous

inverted index. To construct a contiguous index, let us assume that we have an oracle that tells us

exactly how long each inverted list is going to be. Using this oracle, we can lay out an inverted list’s

segments end-to-end with no discontiguity. In practice, we first build the inverted index as normal

and then post-process the inverted index to lay out segments of a postings list contiguously. We

acknowledge that this solution for building a fully-contiguous index is not practical in maintaining

an index for streaming documents, however, this simple experiment allows us to measure the ideal

performance. The query evaluation speed using a fully-contiguous index provides an upper bound,

while our indexing algorithm in its original form (Section 3.1.1) provides the lower bound on query

evaluation speed.

In order to achieve a middle ground, we developed a simple approach to approximate con-

tiguous postings lists. Instead of moving compressed segments around after they have been added

to the segment pool, we change the memory allocation policy for the buffer maps. As an extreme,
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it is easy to see how we could build a fully-contiguous inverted index if buffers in the buffer maps

had an infinite capacity—in which case, we would allocate all postings in an uncompressed form

and flush to the segment pool when there is no document left to index. However, it is not necessary

to consider such extremes.

In our strategy, whenever the docid buffer for a term fills up (and is subsequently written

to the segment pool), we expand that term’s docid and tf buffers by a factor of two. This means

that after the first segment of a term is flushed, new docid and tf buffers of length 2b replace the

old ones; after the second flush, the buffer size increases to 4b, and then 8b, and so on. When a

buffer of size 2mb fills up, the buffer is broken down to 2m segments, each segment is compressed

as described earlier, and all 2m segments are written at the end of the segment pool contiguously.

This strategy allows long postings to become increasingly contiguous.

To prevent buffers from growing indefinitely, we set a cap on the length of docid and tf

buffers. That is, if the cap is set to 2mb, then when the buffer size for a term reaches that limit,

it no longer is expanded. This means that the maximum number of contiguous segments allowed

in the segment pool is 2m. We experimentally show that for relatively small values of m, around

6 or 7, we achieve query evaluation speeds that are statistically indistinguishable from having an

index with fully-contiguous inverted lists. However, there is a tradeoff between contiguity and

memory usage as increasing m translates into larger memory requirements to hold buffer maps.

We experimentally measure the additional memory requirements. In Section 3.4, we consider

alternative designs and discuss why we chose this approach.

3.2 Experimental Setup

We performed our experiments on two standard web collections: Gov2 and ClueWeb09. The Gov2

collection is a crawl of .gov sites from early 2004, containing about 25 million pages, totaling

81GB compressed. ClueWeb09 is a best-first web crawl from early 2009. The collection contains

one billion pages in ten languages totaling around 25 TB. Of those, about 500 million pages

are in English, divided into ten roughly equally-sized segments. Our experiments used only the
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first English segment, which has 50 million documents (totaling 1.53 TB uncompressed, 247 GB

compressed).
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Figure 3.3: Query length distribution for the AOL and the
TREC terabyte queries.

For evaluation purposes, we

used two sets of queries: the TREC

2005 terabyte track “efficiency” queries,

which consists of 50,000 queries to-

tal;1 and a set of 100,000 queries

sampled randomly from the AOL

query log [109], which contains ap-

proximately 10 million queries. Our

sample preserves the original query

length distribution. Figure 3.3 shows

the query length distributions for

these query sets.

We implemented our indexer in C, which is available as an open-source package, Zambezi.2

It is currently single-threaded. Since this chapter is focused on indexing, we wish to separate

document parsing from the actual indexing. Therefore, we assume that input test collections are

already parsed, stemmed, with stopwords removed before they are provided to the indexer. As

such, our reports of indexing speed does not include document pre-processing time.

We performed our experiments on a server running Red Hat Linux, with dual Intel Xeon

“Westmere” quad-core processors (E5620 2.4GHz) and 128GB RAM. This particular architecture

has a 64KB L1 cache per core, split between data and instructions; a 256KB L2 cache per core;

and a 12MB L3 cache shared by all cores of a single processor. For experimentation purposes, we

had exclusive access to the machine with no competing processes.

We examined three aspects of performance: memory usage, indexing speed, and query eval-

uation latency. The first two are straightforward, but we elaborate on the third. For each indexing

1http://www-nlpir.nist.gov/projects/terabyte/
2http://zambezi.cc
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configuration, we measured query evaluation speed in terms of query latency for two retrieval

strategies: conjunctive retrieval using the SvS algorithm, demonstrated by Culpepper and Mof-

fat [55] to be the best approach to postings intersection, and disjunctive query processing using

the Wand algorithm [13], which represents a strong baseline for top k retrieval (with BM25).

These baseline algorithms were detailed in Section 2.2. Note that for both cases we first indexed

the collection, and then performed query evaluation at the end—the interleaving of indexing and

retrieval operations is beyond the scope of this work, since it involves tackling concurrency chal-

lenges. Further note that, to compute per-query latency, we measured the elapsed time to process

all queries and divided by the number of queries. We conducted multiple trials following this pro-

cedure to compute confidence intervals on mean query latency. All timing results in the remainder

of this dissertation were performed in the same manner.

As a reference point, we compared our approach against two open-source retrieval engines:

Zettair3 (v0.9.3), which implements the geometric partitioning approach of Lester et al. [110] and

Indri4 (v5.1). To ensure a fair comparison with other systems, we disable their document parsing

phase and used the already parsed documents as input. As with our algorithms, reports of indexing

speed do not include time spent on document pre-processing. In this work, we do not intend to

present a query latency-wise comparison of disk-based (e.g., Zettair) and in-memory indexes, since

previous studies have shown improvements the latter can bring to the table [6].

3.3 Results

3.3.1 Query Latency

Table 3.1 summarizes query latency for conjunctive query processing (postings intersection with

SvS). The average latency per query is reported in milliseconds across five trials along with 95%

confidence intervals. Each column shows different indexing conditions: 1b is the baseline algorithm

presented in Section 3.1.1 (linked list of inverted list segments). Each of {2, 4, 8 . . . 128}b represents

3http://www.seg.rmit.edu.au/zettair/
4http://www.lemurproject.org/indri/
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Table 3.1: Average query latency (in milliseconds) for postings intersection using SvS with different
buffer length settings. Results are averaged across 5 trials, reported with 95% confidence intervals.

Query 1b 2b 4b 8b 16b 32b 64b 128b Contiguous
G
o
v
2 Terabyte 14.4 (0.2) 14.2 (0.1) 13.9 (0.1) 13.6 (0.1) 13.3 (0.1) 13.2 (0.1) 13.1 (0.1) 13.1 (0.1) 13.1 (0.1)

AOL 20.2 (0.4) 19.7 (0.1) 19.3 (0.2) 19.0 (0.3) 18.8 (0.3) 18.7 (0.5) 18.4 (0.2) 18.3 (0.1) 18.2 (0.2)

C
lu
e Terabyte 49.7 (0.2) 47.1 (0.1) 45.9 (0.4) 44.4 (0.5) 42.9 (0.4) 42.0 (0.3) 41.6 (0.1) 41.6 (0.4) 41.3 (0.1)

AOL 87.5 (1.6) 83.2 (0.5) 80.7 (0.3) 75.5 (0.5) 75.7 (0.8) 75.8 (0.3) 75.2 (0.2) 75.0 (0.6) 75.3 (1.2)
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Figure 3.4: Query latency using SvS for the AOL query set, broken down by query length for
different buffer length settings.

a different upper bound in the buffer map growing strategy described in Section 3.1.2. The final

column marked “contiguous” denotes the oracle condition in which all postings are contiguous;

this represents the ideal performance.

From these results, we see that, as expected, discontiguous postings lists (1b) yield slower

query evaluation: on Gov2, queries are approximately 10% slower, while for ClueWeb09, the per-

formance decreases by 16% to 20%. At 32b, query evaluation performance is statistically indis-

tinguishable from the performance upper bound (i.e., their confidence intervals overlap). That is,

we only need to arrange inverted list segments in relatively small groups of 32 to achieve ideal

performance. Later, we discuss the memory requirements of allocating larger buffer maps.

Figure 3.4 illustrates query latency by query length, for the AOL query set on Gov2 and

ClueWeb09, using different conditions. Not surprisingly, the latency gap between contiguous and

the 1b condition widens for longer queries. On the other hand, the difference between a contiguous

index and the 32b condition is indistinguishable across all query lengths.

For disjunctive query processing, we used the Wand algorithm to retrieve the top 1000

documents using BM25. Table 3.2 summarizes these experiments on different collections and
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Table 3.2: Average query latency (in milliseconds) to retrieve top 1000 hits in terms of BM25 using
WAND (5 trials, with 95% confidence intervals).

Query 1b 32b Contiguous

G
o
v
2 Terabyte 65.0 (±0.4) 62.5 (±0.8) 62.0 (±0.4)

AOL 103.5 (±0.5) 100.3 (±0.1) 100.2 (±0.4)

C
lu

e Terabyte 150.0 (±0.5) 141.1 (±0.6) 141.1 (±0.2)
AOL 455.7 (±5.1) 434.3 (±5.8) 432.6 (±4.9)

queries. We only report results for select buffer length configurations. These results are consistent

with the conjunctive processing case. A maximum buffer size of 32b yields query latencies that

are statistically indistinguishable from a contiguous index. Note that the performance difference

between fully-contiguous postings lists and 1b discontiguous postings lists is less than 7%. In other

words, there is much less performance degradation than in the SvS case. We will explain this

behavior in Section 3.4.

3.3.2 Indexing Speed

Figure 3.5 illustrates indexing times for our indexer, Zettair, and Indri. We can adjust the amount

of memory provided to Zettair and Indri through different parameter settings. Due to its imple-

mentation, Zettair is unable to consume more than 4GB of memory—the amount of memory to be

used is represented by a 32-bit integer. For our indexer, we report results with different postings

lists contiguity settings. Error bars show 95% confidence intervals across three trials.

Increasing the available memory size appears to have little or no impact on Indri’s indexing

speed. Overall, Indri is slower than both Zettair and our indexer. On the other hand, we observe a

significant change in Zettair’s performance as we tune the amount of available memory. However,

providing more memory to Zettair counter-intuitively slows down the indexing algorithm. The

reason behind this, we believe, is that smaller in-memory postings lists are more cache-friendly.

For exmaple, since our system has a 12MB L3 cache, in the 20MB condition, more than half

of the in-memory postings will reside in cache. The downside of smaller segments, however, is

that indexing will require more merge operations. Based on our experiments, the first factor (i.e.,

cache-friendliness of smaller segments) seems to lead to a gain larger than the loss in speed from

44



 0

 5

 10

 15

 20

512M
B

1G
B

2G
B

4G
B

20M
B

128M
B

256M
B

512M
B

1G
B

2G
B

4G
B

1b 2b 4b 8b 16b
32b
64b
128b

Ti
m

e 
(k

ilo
se

co
nd

s)

Gov2

Buffer sizeMemory limit

Indri
Zettair

Zambezi

 0

 5

 10

 15

 20

 25

 30

512M
B

1G
B

2G
B

4G
B

20M
B

128M
B

256M
B

512M
B

1G
B

2G
B

4G
B

1b 2b 4b 8b 16b
32b
64b
128b

Ti
m

e 
(k

ilo
se

co
nd

s)

ClueWeb09

Buffer sizeMemory limit

Indri
Zettair

Zambezi

Figure 3.5: Indexing speed for Indri and Zettair with different memory limits, and our indexer
with different contiguity conditions on Gov2 and ClueWeb09. Error bars show 95% confidence
intervals across 3 trials.

the second factor (i.e., more merges). For ClueWeb09, indexing is fastest with 20MB buffers. For

Gov2, increased cache performance is not sufficient to compensate for additional time spent on

merging, but the optimal balance occurs with 128MB buffers, which is still relatively small.

Finally, Figure 3.5 shows that our in-memory indexing algorithm is not substantially faster

than an on-disk algorithm. In fact, for some conditions on Gov2 our indexer is actually slower

than Zettair. This is not surprising since the state-of-the-art on-disk indexing techniques are a

product of decades of research; the implementations have been highly tuned to the characteristics

of disks. In addition, as the Zettair results suggest, an increase in memory footprint leads to

less cache locality—as more data compete over cache. This in turn slows down the indexing

algorithm. In contrast, merge operations for on-disk indexes access data in a sequential pattern,

which creates an opportunity for the processor to pre-fetch data and mask memory latencies. To

test this hypothesis, we ran Indri with a memory size of 120GB on Gov2, and the indexer took

38k seconds to complete, which is roughly double the times reported in Figure 3.5. This result

appears to support our analysis.

Finally, we note that there are other components in an indexer that independently impact

end-to-end performance. The choice of compression schemes—we use PFOR whereas Zettair does

not—and dictionary—we use a hash table whereas Zettair uses a B+ tree—are two such factors.

However, the research question we are trying to answer is the impact of postings lists contiguity

on query evaluation and indexing speed. Zettair and Indri merely contextualize our findings.
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3.3.3 Memory Usage

Incremental indexing algorithms all require some amount of memory to hold intermediate data.

Previous work on on-disk indexing have assumed that the available memory is relatively small.

In our work, on the other hand, we set no limit on the amount of available memory. However,

the space we allocate to hold intermediate data takes away space that can be used to hold the

final compressed inverted index. This “waste” in memory determines the maximum size of the

collection that we can index given a fixed server configuration.

By default, the buffer maps in our indexer hold the most recent b document ids, term

frequencies, and term positions. In this work we set b to 128 as guided by previous work on PFOR

compression. In order to increase the contiguity of the inverted list segments, we increase the

length of the buffers, as described in Section 3.1.2. This, in turn, increases the space requirements

of the buffer maps.
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Figure 3.6: Memory required to hold all buffer maps for
different buffer length settings, normalized to the 1b setting,
on Gov2 ClueWeb09.

Figure 3.6 shows the maxi-

mum size of the buffer maps for dif-

ferent contiguity configurations, bro-

ken down by space devoted to do-

cids, term frequencies, and term posi-

tions. The reported values were com-

puted analytically from term statis-

tics, making the assumption that all

terms reach their maximum buffer

size at the same time, which makes

these upper bounds on memory us-

age. To make comparison across the two collections easier, we normalize the values with respect to

the 1b condition. For the 1b condition, the total buffer map sizes are 12.6GB for Gov2 and 22.1GB

for ClueWeb09. At 128b, where we allow the buffer to grow to 128 blocks of 128 32-bit integers,

the algorithm requires 71% more space for Gov2 and 95% more space for ClueWeb09 (compared to
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the 1b condition). At 32b, which from our previous results achieves query evaluation performance

that is statistically indistinguishable from contiguous postings lists, we require 44% and 70% more

memory for Gov2 and ClueWeb09, respectively.

As reference, the total size of the segment pool (i.e., size of the final index) is 31GB for

Gov2 and 62GB for ClueWeb09. This means that on the Gov2 collection, setting the maximum

buffer length to 1b, 32b and 128b results in a buffer map that is approximately 41%, 59%, and

69% of the overall size of the segment pool, respectively. Similarly, for ClueWeb09 the buffer map

sizes are approximately 32%, 54%, and 63% of the size of the segment pool, respectively. These

statistics quantify the overhead of our in-memory indexing algorithms.

Note that most of the working memory is taken up by term positions; in comparison, the

requirements for buffering docids and term frequencies are relatively modest. In all cases the

present implementation uses 32-bit integers, even for term positions. We could easily cut the

memory requirements for those in half by switching to 16-bit integers, although this would require

us to either discard or arbitrarily truncate long documents. Ultimately, we decided not to sacrifice

the ability to index long documents.
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m × b is required, for different values of m, and block size
b = 128.

The total number of unique

terms is 31M in Gov2 and 79M

in ClueWeb09. Since these collec-

tions consist of web pages, most of

the terms are unique and correspond

to JavaScript fragments that our

parser inadvertently included and

other HTML idiosyncrasies; such is-

sues are prevalent in web search and

HTML cleanup is beyond the scope

of this work. Our indexer discards

terms that occur fewer than 10 times, which results in a vocabulary size of 2.9M for Gov2 and
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6.9M for ClueWeb09. Of these, Figure 3.7 shows the percentage of terms that require a maximum

buffer length of m× b, for different values of m in our contiguity settings. For example, the 1b bar

represents terms whose document frequencies are ≥ 10 but < 128. The 2b bar represents terms

whose document frequencies are ≥ 128 but less than 1b+ 2b = 384, and so on. The 128b bar rep-

resents terms whose document frequencies exceed the maximum buffer length of 128 blocks. From

this we can see why significantly increasing the b value only yields a modest increase in memory

requirements.

3.4 Discussion

We can summarize our findings as follows: we observe that a linked list of inverted list segments

leads to query latencies that are significantly slower than what a fully-contiguous inverted index

(i.e., an ideal condition) would yield. However, the performance gap is not significant if we organize

segments in groups of 32 through increasing buffer sizes. Thus, contiguity is an important factor

but only to a point.

There are two major factors that contribute to this phenomenon. First, PFOR decompres-

sion masks memory latency associated with pointer chasing in traversing postings lists. Since we

read and decompress postings in blocks—as opposed to reading individual postings one by one—

the processor can hide cache misses by dispatching memory requests for the next segment while

decompressing the current block of postings. These instructions can be executed out of order due

to their independence from one another. Second, query evaluation is more complex than a simple

linear scan of postings lists; the SvS algorithm performs a binary (galloping) search and Wand

uses pivoting to skip over unpromising postings lists. This behavior results in unpredictability in

memory access patterns which reduces the opportunity to pre-fetch data. To illustrate this, con-

sider the difference between ideal performance and the 1b baseline condition: the performance gap

is much smaller for Wand than for SvS. This makes sense, since at each stage, SvS is intersecting

the current postings list with the working set: this implies more predictable access patterns, hence

greater cache locality, so we obtain a bigger performance boost with contiguous postings list. On
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the other hand, Wand pivots from term to term and, at each step, may advance the current pointer

by an unpredictable amount; thus, even if the postings list are contiguous, the processor may still

encounter cache misses. Thus, it makes less of a difference if the postings lists are discontiguous

to begin with.

The downside of our approach is that our algorithm needs to set aside working memory to

buffer intermediate data. Increasing the buffer sizes means we have less space to hold the final

compressed index. This tradeoff limits the size of the collection that we can handle. However, in

practice, this is not an issue. Search engines partition the entire document collection into small

subsets and assign each partition to individual servers [111]. Many different factors determine the

size of these partitions. These factors include processor speed and memory latencies which directly

impact query evaluation speed. However, the maximum possible partition size is dictated by the

amount of memory available. Since memory capacities are growing at a much faster pace than the

speed of processors and improvements in memory latencies, the overhead of our indexing approach

will become less of a concern over time.

As an alternative to increasing the size of the buffer maps to increase postings list contiguity,

we could use over-allocation policies similar to in-place update techniques. We had considered this

approach, but decided not to pursue it for several reasons. First, because of our choice of a block

compression (PFOR), there is greater potential for waste with over-allocation. For example, if

we only reserved 800 bytes but the next inverted list segment occupies 801 bytes, then the entire

reserved memory is left unused—this leads to under-utilization of memory resources. Second, over-

allocation policies inevitably result in fragmentation in the segment pool unless we re-organize data

by moving them around—which requires an implementation of a garbage collector. In contrast,

our indexing approach does not result in “holes” in the segment pool. At the same time, the space

used for buffering postings is transient. That is, it is freed after the indexing process is complete.

For these reasons, we opted to not utilize over-allocation and instead explore a buffering approach.
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Chapter 4

Approximate Top k Retrieval for Candidate Generation

As discussed earlier, we study the stages of a learning-to-rank retrieval pipeline in isolation, while

introducing techniques to make each stage more efficient. The first stage is candidate generation,

which, as illustrated in Figure 4.1, takes a query as input and returns a list of documents that

are potentially most relevant to the given query. We refer to these documents as candidates. The

candidates are ranked using a “cheap” ranker (e.g., timestamp) and are forwarded to the next

stages. This chapter focuses on the candidate generation stage, assuming an inverted index that

has already been created using our indexer from Chapter 3.

We first introduce a novel variant of Bloom filters [18] that can automatically expand in an

efficient manner in order to accommodate an unbounded stream of sorted integers. Furthermore,

this data structure guarantees a theoretical upper-bound on the false positive rate and offers fast

membership tests. These properties make our scalable variant of Bloom filters suitable for storing

document ids in a streaming setting.

Using this data structure, we design a novel approximate top k retrieval algorithm that, given

a query, efficiently retrieves the k documents that are potentially most relevant. We designed this

algorithm primarily for search on microblog documents (such as tweets). Our algorithm takes

advantage of two unique characteristics of microblog documents; namely, that every document

has a limited length and bears a timestamp. As such, the scoring function and early-termination
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strategies in our algorithm are specific to microblog documents and do not generalize to web

documents. Our experiments demonstrate that our top k algorithm outperforms strong baselines

in terms of speed, with a small loss in effectiveness.

4.1 Bloom Filter Chains

A Bloom filter, as introduced in Section 2.3, supports two operations: insert and membership test.

We discussed that membership tests are not exact and, in fact, produce false positives. That is,

a membership test may return true even though the Bloom filter does not actually contain the

test element. However, we can guarantee a theoretical upper-bound on the false positive rate of

a Bloom filter by appropriately adjusting the filter’s parameters: κ (number of hash functions)

and r (number of bits allocated per element). Once a Bloom filter is constructed and space is

allocated, we are no longer able to modify the filter’s parameters. Therefore, to guarantee a target

upper-bound on the false-positive rate, we need to know the exact number of elements that will

be inserted into the filter in advance.

Due to this requirement, standard Bloom filters are not suitable in situations where the

cardinality of the set of elements is not known in advance, and the number of elements constantly

increases; we have no way of determining the right amount of space to guarantee a false-positive

upper-bound.

To resolve this problem, we introduce Bloom filter chains which are extensions of standard

Bloom filters and are designed to dynamically expand to represent any sorted list of integers with

a guaranteed false positive rate, without requiring a prior knowledge of the list’s length. This

data structure addresses the shortcomings of previous work on scalable Bloom filters. With the

assumption that elements are inserted into the filter in a sorted order, Bloom filter chains require

minimal memory overhead (i.e., the amount of space not directly used to store elements), and

provide efficient membership tests.

The general idea behind Bloom filter chains is similar to the work of Almeida et al. [63]. We

initially create a Bloom filter of a default length. Given a target false positive rate (i.e., a pair of
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r and κ, the number of bits per element and the number of hash functions, respectively), we can

calculate the maximum number of elements that the Bloom filter can safely accommodate. Once

a Bloom filter reaches its capacity, we construct another Bloom filter and link it to the last filter.

In the end, we will have a linked list of Bloom filters, each containing disjoint partitions of the

sorted list.

Despite some similarities, our work is different from the work of Almeida et al. in two ways.

First, in our approach, the sizes of Bloom filters in the chain are arbitrary while in their work [63],

the sizes of Bloom filters follow a geometric progression which is necessary to guarantee a target

false positive rate. Second, in [63] a probe operation requires a membership test on all Bloom

filters in the series. However, in our case, because we assume elements are inserted into the filter

in sorted order, each Bloom filter in the chain contains a non-overlapping range of elements. That

is, if the nth Bloom filter contains elements in the range [αn, βn], where αn and βn indicate the

first and last elements inserted into the Bloom filter respectively, then βn < αn+1. This means

that we can compare a test element with the range associated with each Bloom filter to determine

whether the queried element might have been inserted into that filter; these range checks tell us

the right Bloom filter to probe, and thus we can avoid unnecessary membership tests on other

Bloom filters in the chain. To enable this comparison, we must keep track of αn and βn for every

Bloom filter in the chain. However, since αn < βn and because βn < αn+1, storing αn’s alone

suffices—we need to explicitly store the first element that is inserted into each Bloom filter in the

chain.

Like standard Bloom filters, Bloom filter chains support insertion and membership tests.

Let us formalize these operations as follows:

• Insert(d) inserts an integer d into the Bloom filter chain,

• Probe(d) performs an approximate membership test to determine if the Bloom filter chain

contains element d.

Insertion of elements into a Bloom filter requires computing κ hash values. The hash

computations must be fast and the hash values must distribute the keys as evenly as possible.
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Algorithm 1: Probe(d)

Input: d – test element
Output: true if the Bloom filter chain contains the test element, false otherwise

n← TailPointer
while d < αn and HasPrevious(n) do
n← Previous(n)

end while
return Bn.contains(d)

In our implementation, we construct an arbitrary number of hash functions using Jenkin’s integer

hash, of the form h(x, S) mod L, where S is a seed and L is the length of the Bloom filter. For

κ = 1, we simply use a large prime number as the seed. For κ > 1, we compute the nth hash value

by setting the seed to hn−1(x, S).

Next, we describe the implementation of the Probe operation (see pseudo-code in Algo-

rithm 1). Let us assume that we have a tail pointer stored along with the data structure which

contains a pointer to the last Bloom filter in a Bloom filter chain; call this n. Testing for mem-

bership begins by comparing the test element d with αn—the first document id that was inserted

into the Bloom filter pointed to by n. There are three possible outcomes:

1. d = αn: the membership test passes.

2. d > αn: this means that d must have been inserted into Bn—the Bloom filter pointed to by

pointer n. In this case, we probe Bn to determine if d is a member.

3. d < αn: it is clear that if d had been inserted at all, it must be contained in an earlier Bloom

filter in the chain. In this case, we follow the link to the previous filter and repeat this

comparison. When we reach the first Bloom filter, we probe the filter regardless of d.

In theory, Probe is an O(n) operation, where n is the length of the Bloom filter chain. However,

in practice only a few range checks are necessary to find the correct Bloom filter to probe, which

is an O(1) operation. We will return to discuss this in more detail in Section 4.2.

We use Bloom filter chains to complement traditional inverted lists; every term has a stan-

dard postings list as well as a Bloom filter chain associated with it. In the Bloom filter chain
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associated with a term, we store document ids (docid) of documents in which that term appears.

In order to integrate Bloom filter chains in our index structure from Chapter 3, we do the following:

Once a docid buffer fills up, we proceed to pack the data into an inverted list segment as explained

previously. However, while compressing a term’s docids and placing them into a segment, we

construct a Bloom filter using parameters r and κ, and subsequently insert all the docids into the

filter. Before writing the segment in the segment pool, we append the segment with the Bloom

filter; call this B. This way, each segment will contain a Bloom filter in addition to docids and

other data. To support efficient membership tests, we explained that we would have to keep track

of the first element that is inserted into a Bloom filter. Therefore, we explicitly include the first

docid in inverted list segments; call this α. As a result, our new inverted list segments will have

the following structure:

[ |D|, D, |F |, F, ({|Pi|, Pi}0≤i<m), B, α]

where the | · | operator is the length of its argument; D, F , and Pi’s are compressed docid, tf,

and blocks of term positions respectively (see Chapter 3 for details). Since the length of B can be

easily calculated given |D| and Bloom filter parameter r, we do not need to explicitly store |B|.

4.2 Efficient Candidate Generation with Bloom Filters

In this section, we introduce our novel top k retrieval algorithm that takes advantage of Bloom

filters chains. Using this data structure to complement traditional inverted lists, we describe a

novel variant of the Wand algorithm (see Chapter 2 for a description), called BWand (short for

Bloom Wand), that is many times faster than the Wand algorithm and, like Wand, is capable of

performing conjunctive and disjunctive query processing.

Before we explain the details of BWand, recall that a top k retrieval algorithm requires

a scoring function that assesses the relevance of a document with respect to an input query. As

mentioned before, the scoring function should be fast but also effective at distilling the document

collection to find more relevant documents. In this work, we use a mixture of time and a simplified

BM25 function (as a query-dependent scoring function).
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In the original BM25 formulation, the score of a document D with respect to a query is

defined as follows:

ScoreBM25(Q,D) =
∑
q∈Q

(k1 + 1) · tf(q,D)

K + tf(q,D)
log

[
N − df(q) + 0.5

df(q) + 0.5

]
(4.1)

where tf(q,D) is the term frequency of query term q in documentD, df(q) is the document frequency

of q, and N is the number of documents in the collection. K is defined as k1[(1−b)−b ·(|D|/|D|′)],

where |D| is the length of document D and |D|′ is the average document length. Finally, k1 and

b are free parameters.

There are three components that contribute to a BM25 score: a term frequency factor (the

first term in the summation above), an inverse document frequency (Idf) factor (the second term

in the summation), and a length normalization factor (K). However, since we primarily focus on

collections of microblog documents with limited length (tweets), length factorization should not

have much of an impact. Additionally, as we will empirically verify, term frequency is almost always

one—thereby, this factor too should not matter. Therefore, a BM25 function can be reduced to

its Idf factor. In other words, if a query term is contained in a document, we simply assume that

its term frequency is one and ignore document length normalization. More specifically, we define

the Idf scoring function as follows:

ScoreIdf(Q,D) =
∑

q∈Q∩D
log

[
N − df(q) + 0.5

df(q) + 0.5

]
≡

∑
q∈Q∩D

Idf(q) (4.2)

These simplifications allow us to substantially increase the speed of candidate generation. We

examine the impact of these assumptions on search quality later in this work.

There is a hidden component in our scoring function: time. Recall that, our indexing

algorithm indexes documents in order of arrival (see Chapter 3) and assigns document ids that

increase monotonically. In this way, a larger document id indicates a more recent document. As

a result, documents in a postings list are not only sorted by their document ids, but they are

also implicitly sorted in chronological order. As such, walking down a postings list from its tail

translates into a reverse-chronological traversal of documents—a desirable ordering in real-time

search.
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Algorithm 2: BWand(Q, k, ω)

Input: Q – query consisting of |Q| terms
Input: k – number of documents to retrieve
Input: ω – conjunctive/disjunctive tuning parameter
Output: top k documents ranked by Idf scoring model

H ← new Heap(k)
θ ← ω ×

∑
qi∈Q Idf(qi)

qb ← argmini[Dictionary.Df(qi), qi ∈ Q]
Pb ← GetPostings(qb)
while Pb.HasNext() And θ 6=

∑
qi∈Q Idf(qi) do

d← Pb.GetDocid()
s← Idf(qb)
for qi ∈ Q− qb do

if GetBloomFilterChain(qi).Probe(d) = True then
s← s+ Idf(qi)

end if
end for
if s > θ then
H.Insert(〈d, s〉)
if H.IsFull() then
θ ← H.MinScore()

end if
end if

end while
return H

Now that we defined our scoring function, let us formally describe our BWand algorithm,

the pseudo-code of which is shown in Algorithm 2. The input to our algorithm is a query Q, the

number of hits k, and a parameter ω that controls whether the algorithm operates in conjunctive

or in disjunctive mode.

The algorithm begins by creating an empty heap of size k, and initializing a threshold

θ to ω times the sum of the Idf scores of all query terms. The algorithm then identifies the

rarest query term and fetches its postings list—we refer to this as the base postings list. Query

evaluation proceeds by traversing this base postings list backwards from its tail, one document at

a time. Initially, the score of a document is set to the Idf score of the rarest term. For every

document in the base postings list, the algorithm then probes the Bloom filter chains associated

with other query terms in an attempt to determine whether that document contains other query

terms. Whenever a membership test passes, the algorithm adds the Idf score of the corresponding

term to the document score. If the final score is strictly greater than θ, the document is placed in
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the heap. When the heap is full, every time a document is added to the heap, θ is adjusted to the

minimum score in the heap (i.e., the score of the kth document). It is clear that, if θ is equal to

the sum of all query terms’ Idf scores, then no other document can make it into the heap. This

provides an opportunity to early-terminate the algorithm (see the condition of the while loop in

Algorithm 2). The strict comparison of scores with θ guarantees that our algorithm breaks ties in

favor of more recent documents, given the reverse-chronological ordering of our postings traversal.

Similar to Wand, initializing ω to 0 yields disjunctive query processing. However, our

algorithm still requires the presence of the rarest term—we experimentally explore the impact of

this heuristic on search quality. Whereas setting ω to 1−ε (for a negligible ε) reduces the algorithm

to conjunctive query processing. Like with Wand, values between these two extremes determine

whether query evaluation is conjunctive-like or disjunctive-like.

In conjunctive mode, it is easy to see that the Idf scoring function has no impact on the final

ranking of documents. That is, since candidate documents contain all query terms, Equation 4.2

yeilds the same score for all documents that can make it to the heap. Since the algorithm breaks

ties in favor of more recent documents and because we traverse postings in reverse-chronological

order, conjunctive query processing, in practice, returns the first k documents that contain all query

terms. Therefore, after the algorithm accumulates k documents, no other document can find its

way to the candidate set. This enables early-termination in conjunctive mode: the algorithm can

terminate as soon as the heap is full.

Another optimization in conjunctive mode is to short circuit the membership tests once a

Probe fails and proceed to the next document in the base postings list. This way we can avoid

unnecessary membership tests.

Additionally, Probe can take advantage of the fact that test document ids are monotonically

decreasing, because we traverse the base postings list in reverse chronological order. Therefore,

assuming we probed the Bloom filter chain at position n to perform a membership test for di, we

can begin Algorithm (1) from the same location to perform the membership test for di+1. In other

words, instead of starting from the last filter in a term’s Bloom filter chain each time, we can begin
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with the last filter probed. This optimization improves performance by reducing pointer chasing

to find the right filter, and makes the Probe operation O(1) in the context of the candidate

generation algorithm.

4.3 Experimental Setup

We performed our experiments on the same hardware as in the previous chapter (again, with

exclusive access to the machine). In the following sections, we describe the evaluation data, imple-

mentational details of the candidate generation algorithms, and the metrics we used to evaluate

our approach.

4.3.1 Test Collections and Evaluation Methodology

Our experiments used the Tweets2011 collection, created for the TREC 2011 and TREC 2012

microblog tracks [112, 113, 114, 115].1 The collection includes approximately 16 million tweets

over a period of two weeks (24th January 2011 until 8th February, inclusive), which covers both

the time period of the Egyptian revolution and the US Superbowl. Different types of tweets are

present, including replies and retweets, in English as well as other languages. Following standard

practice, terms in tweets were stemmed and stopwords were removed prior to indexing.

Analysis of the collection reveals that term frequency is one for 96% of all term instances

and is two for 3.5% of the instances. Most of the terms that appear more than once in a tweet do

not appear to be important from a retrieval perspective. Examples include “rt”, “http”, “haha”,

“like”, “da”, “youtub”, “video”, and top level domains (e.g., “com”, “edu”). Often, spam tweets

have terms with high term frequencies due to attempts at keyword stuffing. However, cursory

examination does reveal that, occasionally, terms of interest (such as “world”, “TSA”) appear

multiple times in tweets.

For evaluation, we used three different sets of queries. For efficiency experiments, we used

the TREC 2005 terabyte track “efficiency” queries as well as the down-sampled AOL queries, which

1http://trec.nist.gov/data/tweets/
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were introduced in Chapter 3. For effectiveness experiments, we used the TREC microblog track

topics from 2011 and 2012, which contain 110 queries in total. These queries comprise a complete

test collection in that we have relevance judgments, but there are too few queries for meaningful

efficiency experiments.

In order to evaluate the performance of our proposed candidate generation algorithm, we

implemented two baselines. For conjunctive retrieval (i.e., postings list intersection) we imple-

mented the SvS algorithm [52, 55] (see Section 2.2 for details). For disjunctive retrieval, we used

Wand [13] with the Idf scoring function (see Section 4.2). We call this WandIdf. We had to

adopt these algorithms such that they work on linked lists of discontiguous inverted list segments.

In all cases, the candidate generation stage returned 1000 hits. Recall that the SvS algorithm must

first compute the entire intersection set before returning the top k documents, ranked by time.

However, for queries that contain one or two terms, we can early-terminate the SvS algorithm as

soon as the algorithm accumulates k documents.

To ensure a fair comparison, we have put in a best faith effort to optimize our implementation

of SvS and Wand. We are confident that observed differences are not caused by neglect or an

underperforming baseline. Finally, we note that all implementations are presently single-threaded.

4.3.2 Evaluation Metrics

There are three important considerations in the design of search engines: the quality of the results,

query evaluation speed (time), and memory footprint (space). Each of the algorithms explored in

this paper represents a tradeoff point in this design space, which we seek to better understand.

For the BWand algorithm, these three considerations are influenced by the parameters used in

the Bloom filters: r (number of bits per element) and κ (number of hash functions). Based on

preliminary calculations from theoretical bounds (see Section 2.3), we restricted our consideration

to r = {8, 16, 24}, and κ = {1, 2, 3}. Note that these values are fixed for all Bloom filters. Index

size can be easily measured and will be reported as in Section 3.3.3.

Speed is measured in terms of query latency: the amount of time it takes to perform can-
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didate generation and return a list of top k = 1000 documents. In conjunctive retrieval, the

returned documents contain all query terms and are sorted in reverse chronological order, whereas

in disjunctive retrieval, documents are sorted with respect to the scoring function. Elapsed time

is reported in microseconds. We compute average latency across five trials on each query set, and

also break down the results by query length. Since our current implementation is single-threaded,

throughput (i.e., queries per second) is simply the inverse of latency.

Finally, it is necessary to measure both component-level and end-to-end effectiveness, since

we introduce approximations that trade effectiveness for speed. At the component level, we mea-

sure effectiveness in terms of relative recall with respect to the exact baseline: SvS in the case

of conjunctive query processing and Wand with full BM25 scores (WandBM25) in the case of

disjunctive query processing. That is, of all documents retrieved by the baseline, what fraction

is retrieved by our candidate generation algorithm? In the conjunctive case, this metric captures

the false positive errors introduced by the Bloom filters, and in the disjunctive case, this met-

ric additionally captures a number of simplifications and approximations in the scoring function

compared to BM25. Relative recall is computed via macro-averaging (i.e., computed per topic,

then averaged across topics), which has the effect of disproportionately weighting topics that have

fewer matching documents. Note that since we are concerned with generating a candidate list that

will be passed to a re-ranker, precision or any metric that incorporates precision such as average

precision or NDCG is not an appropriate component-level measure.

The other aspect of quality is end-to-end effectiveness. As we will show in Chapter 8,

approximations and simplifications introduced in our algorithm do not degrade end-to-end effec-

tiveness.

4.4 Results

4.4.1 Component-Level Effectiveness

Our first set of experiments examines the impact of Bloom filter parameter settings on component-

level effectiveness. Table 4.1 shows the relative recall of BWand with different Bloom filter con-
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Table 4.1: Relative recall for different Bloom filter chain settings, with respect to SvS for conjunc-
tive query processing and WandBM25 for disjunctive query processing.

(a) Conjunctive

r\κ 1 2 3

8 0.981 0.993 0.997
16 0.991 0.998 0.999
24 0.994 0.998 0.999

(b) Disjunctive

r\κ 1 2 3

8 0.354 0.365 0.368
16 0.364 0.369 0.370
24 0.367 0.370 0.370

Table 4.2: Relative recall for different Bloom filter chain settings, considering only relevant docu-
ments, with respect to SvS for conjunctive query processing and WandBM25 for disjunctive query
processing.

(a) Conjunctive

r\κ 1 2 3

8 0.972 0.992 0.997
16 0.989 0.999 1.0
24 0.994 1.0 1.0

(b) Disjunctive

r\κ 1 2 3

8 0.684 0.707 0.711
16 0.704 0.714 0.715
24 0.708 0.714 0.714

figuration parameters, r (bits per element) and κ (number of hash functions), for both conjunctive

and disjunctive query processing. That is, of the documents retrieved by the baselines (SvS and

WandBM25), we compute the fraction that is retrieved by BWand. Table 4.2 shows relative recall

figures, but only with respect to relevant documents.

In the conjunctive query processing case, BWand achieves nearly perfect recall in all cases.

This means that nearly all documents retrieved by the exact algorithm are also retrieved by our

approximate algorithm and are subsequently available to the learning-to-rank model. BWand

erroneously includes some documents that do not contain all query terms in the candidate set.

Since we only retrieve the top 1000 document, false positives displace relevant candidates and

do not let them in the final candidate set. If we increased k to infinity (i.e., returned the full

intersection set), the Bloom filter errors would not degrade relative recall. Focusing on only the

relevant documents, relative recall is still well above 97%.

In the disjunctive query processing case, relative recall with respect to WandBM25 is low,

as expected. However, when we focus only on relevant documents, relative recall increases sub-

stantially. That is, although with BWand we “lose” documents that would have been retrieved

under WandBM25, the lost documents have a greater tendency to be non-relevant.
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Table 4.3: Average query latency (in microseconds) for the TREC 2005 terabyte track queries
and the AOL queries to retrieve 1000 candidate documents, averaged across five trials, with 95%
confidence intervals.

(a) Conjunctive Query Processing

SvS r\κ 1 2 3

T
R
E
C
0
5

172.8

(±0.2)

8 52.4 (±3.8) 61.1 (±1.6) 76.2 (±7.2)
16 58.0 (±7.1) 58.4 (±1.4) 64.0 (±3.3)
24 63.1 (±13.6) 67.3 (±7.6) 65.2 (±4.4)

A
O
L 407.1

(±1.2)

8 61.8 (±4.9) 68.0 (±0.1) 76.6 (±0.1)
16 60.9 (±0.1) 63.8 (±0.1) 67.9 (±0.1)
24 62.9 (±0.1) 63.5 (±0.1) 66.3 (±0.1)

(b) Disjunctive Query Processing

WandIdf r\κ 1 2 3

T
R
E
C
0
5

958.8

(±38.6)

8 94.2 (±1.6) 100.5 (±2.0) 119.1 (±1.2)
16 103.5 (±2.3) 102.6 (±1.4) 113.5 (±2.6)
24 127.5 (±3.3) 110.4 (±2.0) 114.4 (±1.9)

A
O
L 2,048.6

(±10.2)

8 128.6 (±2.2) 133.5 (±6.3) 149.4 (±1.2)
16 144.7 (±2.9) 145.5 (±2.6) 146.9 (±1.1)
24 157.7 (±3.6) 154.0 (±3.6) 157.3 (±3.1)

Tables 4.1 and 4.2 together show that relative recall can be controlled by appropriately

tuning Bloom filter parameters. The tradeoffs are exactly what we would expect: Increasing the

number of hash functions, κ, reduces the false positive rate and therefore improves relative recall.

Similarly, increasing the number of bits per element, r, reduces hash collisions—thereby reducing

the false positive rate and increasing relative recall. However, as we will discuss in Sections 4.4.2

and 4.4.3, larger values of κ reduce speed and larger values of r increase memory requirements.

4.4.2 Query Evaluation Speed

Thus far, we have shown that our BWand candidate generation algorithm leads to high relative

recall against the baseline algorithms. We now turn our attention to query evaluation speed and

measure what we gain by our approximations and simplifications.

Table 4.3 shows the average query latency of BWand for different values of r (bits per

element) and κ (number of hash functions). For these efficiency experiments, there are not enough

queries from the microblog track to produce meaningful results, and so we used queries from the

TREC 2005 terabyte track and the AOL query log. The table also includes query latencies of the
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baseline algorithms for reference. Reported values represent the average across five trials for each

parameter setting and include 95% confidence intervals.

For conjunctive query processing, the fastest setting of BWand (r = 8, κ = 1) achieves a

threefold increase in speed over SvS on the TREC queries, and a sixfold increase in speed on the

AOL queries. For disjunctive query processing, we observe that BWand with r = 8, κ = 1 is more

than ten times faster than WandIdf on the TREC queries and is about fifteen times faster on the

AOL queries. Other settings of BWand lead to query latencies that are slightly higher than the

(8,1) condition, but are still multiple times smaller than that of the baselines.

The observed differences between different settings of the BWand algorithm are due to two

main reasons. First, increasing the number of hash functions, κ, forces the algorithm to compute

more hash values and probe additional bit positions for membership tests. The effect of this is

clear from Table 4.3: query evaluation becomes slower with increasing values of κ. However, larger

values of κ have the advantage of reducing Bloom filter false positives, thereby yielding higher

component-level recall, per the results in Tables 4.1 and 4.2.

Second, increasing the number of bits per element, r, gives rise to two counteracting forces.

On the one hand, increasing r leads to larger Bloom filters. This translates into less locality

and longer memory latencies. On the other hand, a larger Bloom filter—with a fixed number

of elements—improves the false positive rate. Therefore, fewer hash computations are needed to

reject a non-existent document id. The impact of these factors is clear in Table 4.3. In some cases,

r = 16 is faster than r = 8 (meaning the drop in false positive errors overcomes the decreased

locality), while we observe the opposite for r = 24 versus r = 16. From Tables 4.1 and 4.2, we see

the benefit of increasing r in terms of higher relative recall.

Figures 4.2 and 4.3 show a break-down of average query latency for the TREC terabyte

queries and the AOL queries by query length for conjunctive and disjunctive query processing

using r = 8. For r = 16 and r = 24, the plots appear similar, so they are not included for

brevity. Due to different query characteristics, results differ slightly from one query set to another,

but the trends are consistent. For conjunctive query processing, longer queries are not necessarily
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slower: for example, seven-term queries are actually faster than three-term queries. This is possible

because longer queries tend to contain rarer query terms. On the other hand, disjunctive query

processing becomes slightly slower for longer queries.

As a reference, Figure 4.4 shows query latencies for the baseline algorithms, broken down by

query length. Interestingly, SvS actually becomes faster for longer queries. Once again, this can

happen because longer queries tend to contain rarer query terms. For disjunctive query processing,

Wand latency grows with the number of query terms at a much faster rate than our BWand

algorithm; note that the y axis of Figure 4.4(b) is in log scale.

4.4.3 Index Size
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Figure 4.5: Effect of r (bits per element) on index size for
the Tweets2011 collection, along with the size of a baseline
index that only contains Docids.

In previous sections, we have exam-

ined our BWand algorithm in terms

of effectiveness and query evaluation

speed. We have established that

our algorithm yields high relative re-

call against exact baselines, while in-

creasing query evaluation speed at

least ten times. However, this gain

in speed comes at the cost of an in-

crease in memory footprint. Recall

that, our BWand algorithm requires

Bloom filter chains in addition to a non-positional inverted index (i.e., an inverted index that only

contains document ids). On the other hand, the WandIdf baseline only requires a non-positional

index. We here evaluate the overhead of BWand in terms of index size.

Figure 4.5 illustrates index size as a function of r, number of bits per element. With r = 8,

we observe a 45% increase in the overall index size. This is the cost of our approach: We are

trading space for time by building auxiliary data structures that increase the speed of candidate
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generation. However, we believe this is a justifiable tradeoff for modern retrieval environments

where query latency has a direct impact on site usage [116].

Our experiments have examined the tradeoffs between quality, speed, and memory usage

that result from the approximations and simplifications in our BWand candidate generation al-

gorithm. It is possible to achieve higher relative recall, but at the cost of longer query latencies

or a larger memory footprint. If we wish to make the Bloom filter chains more compact, we must

either sacrifice speed or quality, and so on. It is up to a developer to select the parameter setting

that is appropriate for a particular server configuration and application context.
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Chapter 5

Document Vector Organizations for Feature Extraction

Having explored the first stage in a learning-to-rank pipeline, we now turn our attention to the

second stage: feature extraction. The feature extraction stage takes as input a set of candidate

documents and returns as output vectors of features (one vector per candidate document). This

is illustrated in Figure 5.1.

In a recent study [20], we have shown that decoupling candidate generation and feature

extraction to form a two-stage retrieval architecture has advantages over a monolithic architecture

in many ways. Most importantly, it allows us to use a different data struture in each stage.

In the two-stage architecture, we have explored the use of document vectors (i.e., representing

every document as a vector of terms) in lieu of a positional inverted index. We discussed the

implications of each design and empirically evaluated the impact of using document vectors on

feature extraction. Results suggest that we can achieve query latencies that are on par with a

monolithic baseline with positional inverted indexes, but with an overall smaller memory footprint.

However, in that study we focused on relatively static document collections and made a few

assumptions that do not hold for streaming documents. The key change is that, we assigned term

ids based on the term frequency distribution of a collection in a way that more frequent terms have

a smaller term id. However, this is not possible for streaming documents since we assign mono-

tonically increasing term ids as we observe new vocabulary terms, regardless of term frequencies.
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The change from static collections to streaming documents has implications for memory usage and

speed in the feature extraction stage. For example, arbitrary term id assignment may degrade

compression ratio and consequently increase the overall memory footprint. An increase in memory

footprint may subsequently affect latency.

In this chapter, we summarize the highlights from our previous study [20], and explore

these new tradeoffs. We focus on only one of the various document vector representations from

our previous work [20], and compare it with a monolithic baseline in terms of latency, memory

usage, and design flexibility. We assume a standard candidate generation algorithm like Wand and

turn our attention to the feature extraction stage. Our experiments are performed on tweets as

well as web collections since the techniques introduced in this chapter are applicable to arbitrary

documents. Results suggest that, with slightly larger memory requirements, feature extraction

with document vectors can be faster than a baseline approach and offer more flexibility.

5.1 Features

In the feature extraction stage we leave aside query-independent features which can be computed

at indexing time and be stored in a hash table—reading these pre-computed scores require a

constant access time. We instead consider query-dependent features, which by definition cannot

be computed until a query is issued. We consider a standard set of query-dependent features

defined in Metzler and Croft [117], as listed in Figure 5.2.

We use two families of scoring functions: BM25 and Dirichlet score from language modeling.

Each family consists of a unigram feature fT , a bigram proximity feature fO that takes term order

into account and is parameterized with a window S ∈ {1, 2, 4, 8, 16} (i.e., co-occurrence of terms in

order within a window), and a bigram feature score for unordered terms fU which is parameterized

with a window S′ ∈ {2, 4, 8, 16, 32}. In total, there are 22 features. Among these features, term

proximity features are the most interesting: their use has been shown to improve search quality,

but they are expensive both in terms of computational cost and memory requirements for storing

and accessing term positional information.
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fT,Dir(q,D) = log

[
tf(q,D) + µ

|C| cf(q)

|D|+ µ

]

fT,BM25(q,D) =
(k1 + 1) · tf(q,D)

K + tf(q,D)
log

[
N − df(q) + 0.5

df(q) + 0.5

]

fO,Dir,S(qj , qj+1, D) = log

[
tf(od(S, qj , qj+1), D) + µ

|C| cf(od(S, qj , qj+1))

|D|+ µ

]

fO,BM25,S(qj , qj+1, D) =
(k1 + 1) · tf(od(S, qj , qj+1), D)

K + tf(od(S, qj , qj+1), D)
log

[
N − df(od(S, qj , qj+1)) + 0.5

df(od(S, qj , qj+1)) + 0.5

]

fU,Dir,S′ (qj , qj+1, D) = log

[
tf(uw(S′, qj , qj+1), D) + µ

|C| cf(uw(S′, qj , qj+1))

|D|+ µ

]

fU,BM25,S′ (qj , qj+1, D) =
(k1 + 1) · tf(uw(S′, qj , qj+1), D)

K + tf(uw(S′, qj , qj+1), D)
log

[
N − df(uw(S′, qj , qj+1)) + 0.5

df(uw(S′, qj , qj+1)) + 0.5

]

Figure 5.2: Definition of features used in our model. tf(e,D) is the count of concept e in D,
df(e) is the document frequency of concept e, cf(e) is the collection frequency of concept e, where
e is defined as follows: q is a query term; OD(S, qj , qj+1) is an ordered phrase, span of S (S ∈
{1, 2, 4, 8, 16}); UW(S′, qj , qj+1) is an unordered phrase, span of S′ (S′ ∈ {2, 4, 8, 16, 32}). N is
the number of documents in the collection; |D| is the length of document D; |D|′ is the average
document length in the collection; |C| is the total length of the collection; for Dirichlet features, µ
is a smoothing parameter; for BM25, K = k1[(1− b)− b · (|D|/|D|′)], and k1, b are free parameters.

Real-world search engines take advantage of many more features. However, our simplified

feature set retains the important characteristics of the problem we wish to tackle. We believe our

findings can be generalized to larger and/or more sophisticated feature sets.

5.2 Index Organizations

As a baseline, we consider the standard positional inverted index, using which an algorithm can

simultaneously perform candidate generation and feature extraction (input: query, output: list

of feature vectors). Figure 5.3(a) illustrates a monolithic architecture. We use the approach in

Chapter 3 to construct a positional inverted index (using the 32b contiguity setting with b = 128).

During postings traversal over a positional inverted index, we decode and collect query

terms’ positional information for every candidate. Once all top k candidates are generated, we

can compute features using term positions. Therefore, a single stage suffices to generate candidate

documents and to extract features.

We compare this monolithic approach with an architecture that has distinct candidate

generation and feature extraction stages, each using separate data structures. In the candidate
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Figure 5.3: Two architectures for candidate generation and feature extraction: a monolithic ap-
proach with a positional inverted index and a two-stage approach using a non-positional index and
a document vector index.

generation stage, it is possible to use non-positional indexes, which are far more compact; when

constructing a non-positional index, we disable term positions buffer maps in our indexing algo-

rithm from Chapter 3, thereby reducing overall memory requirements. In the feature extraction

stage, we can rely on a document vector index: a mapping from document ids to document vectors.

This architecture is shown in Figure 5.3(b).

A document vector index provides random access to documents vectors, which is the main

data structure used in our feature generation algorithm. We explored different approaches for

representing document vectors in our previous work [20]. Among them, a flat array representation

showed superior performance in many aspects. Therefore, we limit this study to flat arrays.

In the flat array document vector representation, a document D is represented as a list

of terms {tp1 , tp2 , tp3 . . .} such that tpi is the term at position pi where 1 ≤ pi ≤ |D|. In lieu

of actual (string) terms, we use integer term ids. A flat array representation can be compressed

using standard integer compression techniques. Note that gap-compression is not appropriate in

this case since there is no guarantee that term ids are in ascending order. In Asadi and Lin [20],

we experimented with three different integer coding techniques. We used variable-length integers

(VByte) and PFOR, and also proposed a document-adaptive coding scheme. Experimental evalu-

ation of these schemes have shown that VByte is relatively slow. Therefore, we exclude VByte in

our experiments in this chapter. On the other hand, our coding scheme was designed based on a
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set of assumptions that do not hold for streaming documents—we do not include our compression

scheme in this chapter. This leaves us with one data structure: PFOR compressed document

vectors.

We can easily augment our index structure from Chapter 3 with document vectors: When

a new document arrives, we index the document as usual to construct a non-positional inverted

index (with contiguity setting 32b), but store a copy of the document as a compressed flat array

of term ids in a separate table. Since document ids increase monotonically, we can implement this

table just as buffer maps in our indexing algorithm, as detailed in Section 3.1.1—only here the

array index corresponds to document ids (not term ids), and individual buffers have an arbitrary

length. We index term frequencies whenever necessary (see section 5.4).

5.3 Feature Extraction

As previously discussed, we ignore query-independent features in our experiments since they can

be modeled as constant factors. Here, we describe how query-dependent features (e.g., those in

Figure 5.2) are computed. We assume that global term statistics (e.g., document length and

collection frequency) are stored in the dictionary and are available in the memory.

Given a query and a document vector, we compute query-dependent features using the

fastest algorithm detailed in [20]. In this approach, we first extract a list of term positions for

every query term from the document vector “on the fly.” Computation of proximity features can

then be treated as a set intersection problem, for which we use a variant of the SvS algorithm.

More specifically, feature extractors are provided with pairs that consist of a query term qi and a

list of positions Pi at which that term appears in the document. In order to compute the number

of co-occurrences of terms qj and qj+1 for a proximity feature with window size W , we traverse

the list associated with the first query term (i.e., list Pj). For every position p in Pj , we count

the number of positions in Pj+1 that is within a window of length W from p. For example, if the

current position from Pj is pk, then we find positions p′k ∈ Pj+1 where:

• p′k−pk ≤ S, p′k > pk, to extract ordered window proximity features of the form OD(S, qj , qj+1),
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based on the definition in [117],

•


p′k − pk + 1 ≤ S′, p′k > pk

pk − p′k + 1 ≤ S′, pk−1 < p′k < pk

, to extract unordered window proximity features in

the form of UW(S′, qj , qj+1) [117].

To illustrate the above, let us assume that we have a a query “A B,” and a document vector

with terms 〈A B A D A C B A B〉. From the vector, we can extract the positions for terms “A”

(PA) and “B” (PB): PA = [1, 3, 5, 8] and PB = [2, 7, 9]. Figure 5.4 shows how the number of

occurrences of OD(2,A,B) (i.e., “A” and “B” can be separated by one term, but should appear

in order) can be computed using the above algorithm. At each stage, we pick one position from

PA in order, and count the number positions in PB that is within a window of length 2 from the

position in PA.

This approach can easily be generalized to phrases that consist of more than two query terms.

Note that, since the candidate generation algorithm in the monolithic architecture extracts term

positions for every candidate, we can easily use this class of feature extractors in the monolithic

architecture as well.

5.4 Experimental setup

We performed our experiments on the first English segment of the ClueWeb09 collection, the Gov2

collection, as well as the Tweets2011 collection, as described in previous chapters. There are about

50 million documents in the ClueWeb09 collection (6.9 million unique indexed terms), 25 million
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Table 5.1: Average time per query in milliseconds to generate 1000 candidate documents and
extract features for the TREC 2005 terabyte track queries (across 5 trials, with 95% confidence
intervals).

Tweets2011 ClueWeb09 Gov2

Wand 0.9 (±0.1) 141.1 (±0.6) 62.5 (±0.8)
PII 4.2 (±0.1) 169.3 (±1.8) 100.9 (±8.3)
DV 3.7 (±0.1) 162.6 (±1.7) 137.7 (±8.3)

documents in the Gov2 collection (2.9 million unique indexed terms), and 16 million tweets in

the Tweets2011 collection (400K unique indexed terms). For evaluation, we used the “efficiency

topics” of the TREC 2005 terabyte track, same as in Chapters 3 and 4.

For candidate generation, we retrieved the top 1000 hits using the Wand algorithm with

a standard BM25 scoring function for experiments on the ClueWeb09 and Gov2 collections, and

Wand with the Idf scoring function (as explained in Chapter 4) for experiments on the Tweets2011

collection. Therefore, in the two-stage architecture, we construct a non-positional index with

term frequencies for the ClueWeb09 and Gov2 collections, and without term frequencies for the

Tweets2011 collection. Along with the non-positional inverted index, we store compressed docu-

ment vectors.

For our baseline comparison using positional inverted indexes, we use the Wand algorithm

(with BM25 for ClueWeb09 and Gov2, and Idf for Tweets2011). To enable feature extraction,

we need to accumulate term positions. As such, we modified the heap structure in Wand to keep

track of term positions for every candidate. Every time a document passes the score-threshold test

and is inserted into the heap, the Wand algorithm decodes term positions for every query term

present in that document and stores them in the heap along with the document id. In the end, all

candidates have a list of positions for all query terms, which can be used in the feature extractors

to compute feature values.
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5.5 Results

5.5.1 Speed

Table 5.1 shows the average query latency for candidate generation and feature extraction, reported

in milliseconds (averaged across 5 trials, with 95% confidence intervals), for different document

collections. To be precise, query latency is defined as the elapsed time between the arrival of a

query until all 22 features described earlier are extracted for the top 1000 candidate documents.

Note that, for the positional inverted index (PII), both candidate generation and feature extraction

are performed together, while with document vectors (DV) in a two-stage architecture, the two

stages are distinct. The table also includes the latency of candidate generation (i.e., no feature

extraction is performed) for reference.

On the ClueWeb09 and Tweets2011 collections, a two-stage architecture is slightly, neverthe-

less statistically significantly faster than PII. However, we observe that on the Gov2 collection, PII

achieves a smaller end-to-end query latency. We explain this observation by the average document

length of the collections under study. The average document lengths for Tweets2011, ClueWeb09,

and Gov2 are 8 (standard deviation of 5), 535 (standard deviation of 732), and 627 terms (stan-

dard deviation of 1,877). When working with document vectors in a two-stage architecture, feature

extractors must first decompress the entire document in order to collect position information for

every query term. A longer document spans more blocks and therefore requires more memory

fetches and decompression operations. Additionally, traversing a longer document to extract term

positions adds to the computational cost of feature extractors. On the other hand, in a positional

inverted index, we only decompress the term position block from the index segment that contains

a term’s positional information. Therefore, feature extraction in a monolithic architecture requires

less “work” when it comes to a relatively long document.

Figure 5.5 shows the average end-to-end query latency broken by query length. To no

surprise, query latency increases for longer queries. PII is consistently faster than a two-stage

approach on the Gov2 collection. This trend is reversed for Tweets2011 and ClueWeb09. However,
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Figure 5.5: Average time to generate 1000 candidate documents and extract features for the
terabyte track queries, broken down by query length.

the performance gap between the two approaches widens for longer queries. We explain this finding

as follows: for longer queries, the PII approach requires more probes to random memory locations

in order to decompress term positions associated with query terms. On the other hand, a document

vector must be completely decompressed regardless of the number of terms in a query; the only

extra cost to pay for longer queries is the additional comparisons of query terms with terms in the

document.

5.5.2 Index Size

We now turn our attention to index size, which corresponds to memory footprint, since we hold

all index structures in memory. These results are shown in Figure 5.6 for different collections.

In contrast to our findings in [20], document vectors together with a non-positional index have a

larger memory footprint than a positional inverted index. The overall index organization in the

two-stage architecture is 1.5 times larger than a positional index for Tweets2011, and is 0.3 times

larger for the ClueWeb09 and Gov2 collections.

These results make sense since term ids are assigned arbitrarily, which in turn degrades

compression ratio. This phenomenon is more pronounced for the Tweets2011 collection: The

compression algorithm is more effective for a positional inverted index since term positions and

term frequencies are relatively small, while compression becomes less effective for document vectors

with relatively large term ids. Additionally, because term positions for tweets are generally small,

a non-positional index is not much smaller than a positional index.
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Figure 5.6: Index size for different architectures. The two-stage architecture requires a non-
positional index in the candidate generation stage and document vectors in the feature extraction
stage. The monolithic architecture only requires a positional inverted index.

5.6 Discussion

Our two-stage architecture leads to faster feature extraction on collections of tweets, as well as web

collections like ClueWeb09, relative to a monolithic approach using a positional inverted index.

However, the index organization has a larger memory footprint. But we argue that there are other

advantages to a two-stage architecture that are not directly measurable; a two-stage architecture

provides more flexibility from an engineering perspective.

First, in our two-stage architecture, feature engineering does not need to involve the candi-

date generation stage, which reduces system-level changes needed for experimentation. Incorpo-

rating richer features, for example, named-entity tags, markup attributes, multiple text fields, etc.

is easier to accomplish in the document vector index than in the inverted index.

Second, in an architecture where candidate generation and feature extraction are decoupled,

there is in principle no reason why both stages need to run in the same process space, or even

on the same machine, for that matter. This fits well with modern web architectures, where each

rendering of a page involves dozens or even hundreds of individual services. From a management

point of view, fine-grained service decomposition makes monitoring, performance profiling, and

load balancing easier.

Finally, we note that in production systems, there must be some service for snippet genera-

tion (i.e., the keyword-in-context summary search results that are displayed to the user). We can

easily augment our document vector indexes to hold such information without any architectural
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changes (e.g., as another field). In fact, without stemming, the flat array document vector repre-

sentation can be directly used for snippet generation. With a positional inverted index, in contrast,

some other document-lookup service is required to generate snippets, which further increases the

overall memory footprint of the system.
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Chapter 6

Architecture-Conscious Implementations of Tree Ensembles

In previous chapters, we have studied the problem of adapting indexing and the first two stages

(candidate generation and feature extraction) of a learning-to-rank search architecture to streaming

documents. In this chapter and the next, we explore the final stage: document re-ranking using

a machine-learned model. As illustrated in Figure 6.1, the input to this stage is a set of feature

vectors, one per candidate document, and the output is a ranked list of candidate documents sorted

by relevance scores. Relevance scores are computed using a machine-learned model.

Among machine learning algorithms used in the last stage, Gradient Boosted Regression

Trees (GBRTs) have become popular due to their superior effectiveness. A GBRT model is es-

sentially an ensemble of (weighted) regression trees. To evaluate a feature vector, the algorithm

traverses every tree in the ensemble independently until it reaches a terminal node. Within each

tree, internal nodes direct the evaluation algorithm to the right or left subtree by conditioning on

a feature value, while terminal nodes return scores. The (weighted) sum of scores from individual

trees form the relevance score for an input feature vector.

Traversing a tree structure is an extremely straightforward task. However, a näıve imple-

mentation of trees is susceptible to data and control hazards, since it involves branches and leads to

an unpredictable memory access pattern (see Section 2.7 for details). These hazards consequently

degrade the efficiency of traversal of an individual tree. Their impact becomes more severe when
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Figure 6.1: Learning-to-rank pipeline.
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there are many more trees to traverse. This is an important issue in a search architecture because

GBRT ensembles often comprise a large number of trees (hundreds, even thousands).

To alleviate this problem, this chapter describes novel implementations of tree-based models

that are highly tuned to modern processor architectures. Our implementations take advantage

of cache hierarchies and superscalar processors. In order to evaluate our implementations, we

isolate the document re-ranking stage and—since our tweet collection is not sufficient for thorough

experimentation due to its small size and our small number of features—we perform experiments

on three separate learning-to-rank datasets for web search. Our experiments show significant

performance improvements over standard implementations. In Chapter 8, we demonstrate the

impact of these implementations on the end-to-end retrieval pipeline on a microblog collection,

however, with fewer number of features.

6.1 Tree Implementations

We describe various implementations of an individual tree in this section, starting from two base-

lines and incrementally introducing architecture-conscious optimizations. Our focus is on binary

trees, where every internal node branches out into left and right subtrees1. An internal node con-

tains a predicate check that involves comparing a feature value with a threshold: if the feature

value is less than the threshold, we take the left branch; otherwise, we move to the right branch.

CodeGen: As a baseline, we consider statically-generated if-else blocks. A code generator takes

a tree model and directly generates C code, which is then compiled and used to make predictions.

We refer to this as the CodeGen implementation.

We expect this approach to be fast. The entire model is statically specified; machine instruc-

tions are relatively compact and will fit into the processor’s instruction cache, thereby exhibiting

good reference locality. Furthermore, this implementation takes advantage of decades of compiler

optimizations that have been built into gcc. Note that this implementation eliminates data de-

pendencies completely by converting them all into control dependencies. The downside, however,

1Trees with a greater branching factor can be converted into an equivalent binary tree.
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is that this approach is inflexible; integrating a new model requires generating static code followed

by compiling and linking with the rest of the system.

Object: As another baseline, we consider an implementation of trees with nodes and associated

left and right pointers in C++. In this implementation, we represent each tree node by an object

which contains a feature id as well as a decision threshold. We refer to this as the Object

implementation.

This implementation is both simple and flexible. However, the downside is that we do

not have control over the layout of these objects in memory. Consequently, this implementation

does not guarantee good reference locality. Because of this, traversing a tree requires frequent

dereferencing and chasing pointers which potentially causes a large number of cache misses and

can negatively impact speed.

Struct: The Object implementation also suffers from inefficient memory utilization due to

object overhead in C++. The solution is to avoid objects and implement each node as a struct

(comprising feature id, threshold, left and right pointers). We construct a tree by allocating

memory for each node (malloc) and assigning the pointers appropriately. Prediction with this

implementation remains an exercise in pointer chasing, but now across much more memory-efficient

data structures. We refer to this as the Struct implementation.

Struct+: An improvement over Struct is to manually manage the memory layout. Instead of

allocating memory for each node separately, we allocate memory for all the nodes at once (i.e., an

array of structs) and linearize the order of the nodes via a breadth-first traversal of the tree, with

the root at index 0.

This implementation occupies the same amount of memory as Struct, except that the

memory is contiguous. The goal is to achieve better reference locality, thereby speeding up memory

interactions. We call this the Struct+ implementation. This is similar to the idea behind CSS-

Trees [102] used in the database community. There are a few differences between the work of Rao

and Ross [102] and this work: First, their focus is on search trees for sorted integers, while we

primarily focus on traversing regression trees. Second, our work is in the context of learning-to-
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Figure 6.2: Memory layout of the Pred implementation for a sample tree.

rank, while their work has applications in databases. Finally, they consider mutable trees while

trees in our work are static and do not change once a model is trained—which provides more

opportunity for optimizations.

Pred: The Struct+ implementation addresses the problem of reference locality that exists with

Object and Struct, but it fails to resolve another important drawback of all previous imple-

mentations: the presence of branches and hence inevitable branch mispredicts which can cause

pipeline stalls and wasted cycles (as explained in Section 2.7). While modern processors deal with

branches with complex branch prediction methods, removing branches from the execution cycle

may increase performance. A well-known technique in the compiler community for overcoming

these issues is known as predication [106, 107]. The idea is to convert control dependencies into

data dependencies, thus avoiding jumps in the underlying assembly code.

We adopt the idea of predication for tree structures as follows: We encode the tree as

an array of structs in C, nd, where nd[i].fid is the feature id to examine, and nd[i].theta

is the threshold. The nodes are laid out via breadth-first traversal of the tree, similar to the

Struct+ implementation. Each node, regardless of being intermediate or terminal, additionally

holds an array of two integers. The first integer field holds the index of the left child in the array

representation, and the second integer holds that of the right child. We use self loops to connect

every terminal node to itself (more below). Figure 6.2 illustrates a sample memory structure of

nodes in the proposed implementation.

To make the prediction, we probe the array d times, where d is the depth of the tree, in the

following manner:
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i = nd[i].index[(v[nd[i].fid] >= nd[i].theta)];

i = nd[i].index[(v[nd[i].fid] >= nd[i].theta)];

...

That is, if the condition holds, we visit the right node (index 1 of the index array); otherwise, we

visit the left node (index 0 of the index array). In case we reach a terminal node before the dth

statement, we would be sent back to the same node regardless of the condition by the self loops.

We completely unroll the tree traversal loop, so the above statement is repeated d times for

a tree of depth d. In the end, i contains the index of the leaf node corresponding to the prediction.

Self loops allow us to represent unbalanced trees without introducing additional complexity into the

tree traversal logic. More importantly, tree traversal does not need a condition to check whether

we have reached a terminal node. Therefore, we can safely unroll the loop without undermining

the correctness of the traversal algorithm. A final implementation detail: we hard code a prediction

function for every possible tree depth, and then dispatch calls dynamically using function pointers.

There are a few minor differences between our implementation and previous work, which

nevertheless may have a substantial impact on performance. For example, the GPU implementation

of tree models by Sharp [118] similarly takes advantage of predication and loop unrolling, but in

order to handle unbalanced trees each node must store a flag indicating whether or not it is a

terminal node. Tree traversal requires checking this flag at each step, which translates into an

additional conditional branch at each level in the tree. We avoid this additional comparison by the

“self loops” trick: note that these self loops have minimal impact on performance, since they are

accessing data structures that have already been placed into cache. In another example, the work

of Essen et al. [119] also takes advantage of predication, but their implementation also requires

this additional terminal node-test.

VPred: Predication eliminates branches by converting them into data dependencies. Each state-

ment in Pred is dependent on the result of its preceding statement: an index to the tree array.

Therefore, statements must execute in order, one by one, each followed by a memory fetch. While

referencing the memory, the processor will simply idle. Because main memory access latencies are

relatively very slow, Pred’s data dependency becomes a bottleneck in tree traversal.
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A common technique adopted in the database literature to mask these memory latencies

is called vectorization [108, 104]. The idea is to process multiple instances (in our case, feature

vectors) at once, in an interleaved way. Provided there are no dependencies between processes, the

processor can dispatch multiple instructions in parallel and take advantage of pipelining. That is,

while the processor is waiting for the memory access from the predication step on the first instance,

it can start working on the second instance. In fact, we can work on v instances in parallel. For

v = 4, this looks like the following, processing instances v0, v1, v2, v3 in parallel:

i0 = nd[i0].index[(v0[nd[i0].fid] >= nd[i0].theta)];

i1 = nd[i1].index[(v1[nd[i1].fid] >= nd[i1].theta)];

i2 = nd[i2].index[(v2[nd[i2].fid] >= nd[i2].theta)];

i3 = nd[i3].index[(v3[nd[i3].fid] >= nd[i3].theta)];

i0 = nd[i0].index[(v0[nd[i0].fid] >= nd[i0].theta)];

i1 = nd[i1].index[(v1[nd[i1].fid] >= nd[i1].theta)];

i2 = nd[i2].index[(v2[nd[i2].fid] >= nd[i2].theta)];

i3 = nd[i3].index[(v3[nd[i3].fid] >= nd[i3].theta)];

...

In other words, we traverse one layer in the tree for four instances at once. While we are waiting

for v0[nd[i0].fid] to resolve, we dispatch instructions for accessing v1[nd[i1].fid], and so on.

The hope is that by the time the final memory access has been dispatched, the contents of the first

memory access are available, and we can continue without processor stalls.

Again, we completely unroll the tree traversal loop, so each block of statements is repeated d

times for a tree of depth d. In the end, the i’s contain indexes of the terminal nodes corresponding

to the prediction for v instances. Setting v to 1 reduces this implementation to Pred (i.e., no

vectorization). The optimal value of v is dependent on the relationship between the amount of

computation performed and memory latencies, which we can determine empirically. We refer to

the vectorized version of the predication technique as VPred.

6.2 Experimental Setup

The focus of this chapter is efficiency. As such, our primary evaluation metric is prediction speed.

We define this as the elapsed time between the moment a feature vector (i.e., a test instance) is

presented to the tree-based model, to the moment that a prediction is made for the instance (in
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our case, a regression value). To increase the reliability of our results, we conduct multiple trials

and report the average as well as some characterization of the variance.

We conduct two sets of experiments. First, we quantify the performance of isolated in-

dividual trees using synthetically-generated data. Second, we verify our findings on standard

learning-to-rank datasets using full ensembles.

All experiments were run on the same hardware used in previous chapter with no other

competing processes. Code was compiled with GCC (version 4.1.2) using optimization flag -O3. In

our main experiments, all code ran single-threaded, but we report on multi-threaded experiments

in Section 6.4.

6.2.1 Synthetic Data

The synthetic data consist of randomly generated trees and randomly generated feature vectors.

Each intermediate node in a tree has two fields: a feature id and a threshold on which the decision

is made. Each leaf is associated with a regression value. Construction of a random tree of depth

d begins with the root node. We pick a feature id at random and generate a random threshold

to split the tree into left and right subtrees. By performing this process recursively, we can build

each subtree until the desired tree depth is reached. When we reach a terminal node, we generate

a regression value at random. Note that our randomly-generated trees are fully-balanced, i.e., a

tree of depth d has 2d terminal nodes.

The next step is to generate random feature vectors. Each random feature vector is simply

a floating-point array of length f (= number of features), where each index position corresponds to

a feature value. We assume that all paths in the decision tree are equally likely; the feature vectors

are generated in a way that guarantees an equal likelihood of visiting each leaf. To accomplish

this, we take one leaf at a time and follow its parents back to the root. At each node, we take the

node’s feature id and produce a feature value based on the position of the child node. That is, if

the child node we have just visited is on the left subtree we generate a feature value that is smaller

than the threshold stored at the current parent node and vice versa. We randomize the order of
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instances once we have generated all the feature vectors. To avoid any cache effects, we generate

a large number of instances (512k).

Given a random tree and a set of random feature vectors, we run experiments to assess the

various implementations of tree-based models described in Section 6.1. To capture the variance, we

repeat each experiment 5 times; in each trial we construct a new random binary tree and a different

randomly-generated set of feature vectors. To explore the design space, we conduct experiments

with varying tree depths d ∈ {3, 5, 7, 9, 11} and varying feature sizes f ∈ {32, 128, 512}—these

values follow our learning-to-rank datasets (see below).

6.2.2 Learning-to-Rank Experiments

In addition to randomly-generated trees, we conduct a set of learning-to-rank tasks using standard

datasets, containing training, validation and test sets. Using the training and validation sets we

learn a complete tree ensemble. We then evaluate test instances using our tree implementations to

determine the end-to-end performance. These end-to-end experiments give us an insight on how

different implementations compare in a real-world application.

We used three standard learning-to-rank datasets: LETOR-MQ2007,2 MSLR-WEB10K,3

and the Yahoo! Webscope Learning-to-Rank Challenge [120] dataset (C14 Set 1).4 All three

datasets are pre-folded, providing training, validation, and test instances. Table 6.1 shows the

dataset size and the number of features. To measure variance, we repeated experiments on all

folds. Note that MQ2007 is much smaller and contains a more impoverished feature set, considered

by many in the community to be outdated. Further note that the C14 dataset only contains a

single fold.

These learning-to-rank datasets guide the values of f (number of features) in our synthetic

experiments. We selected feature sizes that are multiples of 16 so that the feature vectors are

integer multiples of cache line sizes (64 bytes): f = 32 roughly corresponds to LETOR features

2http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx
3http://research.microsoft.com/en-us/projects/mslr/
4http://learningtorankchallenge.yahoo.com/datasets.php
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Table 6.1: Average number of training, validation, and test instances in our learning-to-rank
datasets, along with the number of features.

Dataset Train Validate Test Features

C14 473K 71K 165K 519
MSLR-WEB10K 720K 240K 240K 136
LETOR-MQ2007 42K 14K 14K 46

and is representative of a small feature space; f = 128 corresponds to MSLR and is representative

of a medium-sized feature space. Finally, the third condition f = 512 corresponds to the C14

dataset and captures a large feature space condition.

We use the open-source jforests implementation5 of LambdaMART to optimize NDCG [80].

Although there is no way to precisely control the depth of each tree, we can adjust the size

distribution of the trees by setting a cap on the number of leaves. To train an ensemble, we

initialize the randomized LambdaMART algorithm with a random seed S. In order to capture

the variance, we repeat this experiment E = 100 times for the LETOR and MSLR-WEB10K

datasets and E = 20 times for the C14 dataset. We repeat this procedure independently for each

cross-validation fold. For LETOR and MSLR, we use the parameters of LambdaMART suggested

by Ganjisaffar et al. [9]: feature and data sub-sampling parameters (0.3), minimum observations

per leaf (0.5), and the learning rate (0.05). We vary the max leaves parameter as part of our

experimental runs. Note that Ganjisaffar et al. did not experiment with the C14 dataset, but we

retain the same settings for all parameters except for the maximum number of leaves.

6.3 Results

In this section we present experimental results, first on synthetic data and then on learning-to-rank

datasets.

5http://code.google.com/p/jforests/
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Figure 6.3: Prediction time per instance (in nanoseconds) on synthetic data using various imple-
mentations. Error bars denote 95% confidence intervals.

6.3.1 Synthetic Data: Base Results

Figure 6.3 illustrates the average prediction time (in nanoseconds) per randomly-generated test

instance. Error bars indicate 95% confidence intervals. It is clear that prediction speed decreases for

trees with a larger depth. This is not surprising since deeper trees require more feature accesses and

predicate checks, more pointer chasing, and more branching (depending on the implementation).

First, let us consider the Object and CodeGen baselines. As expected, the Object im-

plementation is the slowest in most cases. Comparing this implementation with Struct reveals

that object overhead is the reason for its slowness. On the other hand, the CodeGen implemen-

tation is very fast: with the exception of f = 32, hard-coded if-else blocks outperform all other

implementations regardless of tree depth.

Struct+ does not achieve significant improvements for shallow trees over the Strcut

implementation, but it does lead to a significant speedup for deeper trees. Recall that Struct+

manages memory layouts manually and enforces contiguity of tree structures in memory. These

results show that reference locality is an important factor when it comes to deeper trees.

Finally, we turn our attention to the Pred condition. We observe a very interesting behav-

ior: For small feature vectors f = 32, the technique is actually faster than CodeGen. This shows

that at least for small feature sizes, predication helps to overcome branch mispredicts. That is,

converting control dependencies into data dependencies increases performance. For f = 128, the

performance of Pred is worse than that of CodeGen (except for trees of depth 11). With the

exception of the deepest trees, Pred is approximately the same speed as Struct and Struct+.
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Table 6.2: Prediction time per instance (in nanoseconds) for the VPred implementation with opti-
mal vectorization parameter, compared to Pred and CodeGen, along with relative improvements.

(a) f = 32, v = 8

d VPred Pred ∆ CodeGen ∆

3 17.4 22.6 23% 26.0 33%
5 21.3 31.9 33% 41.3 48%
7 25.1 44.4 44% 52.4 52%
9 28.9 58.9 51% 63.9 55%
11 39.2 75.8 57% 85.8 54%

(b) f = 128, v = 16

d VPred Pred ∆ CodeGen ∆

3 42.2 61.0 31% 50.0 16%
5 55.8 85.9 35% 64.6 14%
7 69.3 96.3 28% 76.2 9%
9 77.9 102.0 24% 85.8 9%
11 89.6 118.7 25% 116.0 23%

(c) f = 512, v = 16

d VPred Pred ∆ CodeGen ∆

3 49.7 110.6 55% 82.8 40%
5 72.3 200.3 64% 123.9 42%
7 97.8 302.5 68% 164.2 40%
9 120.4 395.5 70% 187.8 36%
11 149.5 476.1 69% 250.7 40%

However, for larger feature vectors (f = 512), the performance of Pred is very poor, even worse

than the Object implementation. To explain this behavior, recall that Pred’s performance is

entirely dependent on memory access latency. When traversing a tree, the processor idles until the

memory references are resolved. With small feature vectors, we get excellent locality: 32 features

take up two 64-byte cache lines, which means that evaluation results in at most two cache misses.

Since memory is fetched by cache lines, once a feature is accessed, accesses to all other features

on the same cache line are essentially free. On the other hand, larger feature vectors span more

cache lines and therefore have poorer locality. As a result, cache misses and subsequently memory

latencies dominate Pred’s prediction time.
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Figure 6.4: Prediction time per instance (in nanoseconds) on synthetic data using vectorized
predication, for varying values of the batch size v. v = 1 represents the Pred implementation.

6.3.2 Tuning Vectorization Parameter

As explained in Section 6.1, instead of simply stalling while we wait for memory references to

resolve, we can try to perform other useful computation—this is exactly what vectorization at-

tempts to accomplish. The idea is to process v feature vectors at the same time, so that while

the processor is waiting for memory access for one instance, it can process other instances and

perform useful computation. This takes advantage of pipelining and multiple dispatch in modern

superscalar processors.

The effectiveness of vectorization depends on two factors: the amount of time spent on

computation, and memory latencies. For example, if memory fetches take only one clock cycle,

then vectorization cannot possibly help. The longer the memory latencies, the more we would

expect vectorization to help. However, beyond a certain point, we would expect larger values of v

to have little impact. In fact, values that are too large start to bottleneck on memory bandwidth

and cache size.

Figure 6.4 shows the impact of various batch sizes, v ∈ {1, 4, 8, 16, 32, 64}, for different

feature sizes. When v is set to 1, we evaluate one instance at a time, reducing the implementation

to Pred. We measure speed in nanoseconds and report per-instance prediction time. For f = 32,

v = 8 yields the best performance; for f = 128, v = 16 yields the best performance; for f = 512,

v = {16, 32, 64} provide approximately the same level of performance. These results are exactly

what we would expect: since memory latencies increase with larger feature sizes, a larger batch

size is necessary to mask the latencies.
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The combination of vectorization and predication, VPred is the fastest of all our imple-

mentations on synthetic data. Comparing Figures 6.3 and 6.4, we see that VPred (with optimal

vectorization parameter) is even faster than CodeGen. Table 6.2 summarizes this comparison.

Vectorization is up to 70% faster than the non-vectorized implementation; VPred can be twice as

fast as CodeGen. In other words, we retain the best of both worlds: speed and flexibility, since

the VPred implementation does not require code re-compilation for each new tree model.

6.3.3 Learning-to-Rank Results

Thus far, we have demonstrated the superiority of VPred over other implementations using

synthetic data. We now turn our attention to learning-to-rank datasets using tree ensembles. As

described previously, we train tree ensembles using LambdaMART and evaluate the trained model

on test data to measure prediction speed. We compute mean and variance of prediction time across

multiple runs (see Section 6.2.2).

One important difference between the synthetic and learning-to-rank experiments is that

LambdaMART produces an ensemble of trees, whereas the synthetic experiments focused on a

single tree. To handle this, we simply add an outer loop to the algorithm that iterates over all the

individual trees in an ensemble.

From our experiments on synthetic data we know that shallower trees are desirable when it

comes to performance. However, there is a relationship between tree depth and effectiveness which

we examine first. Even though we cannot control tree depth with our particular training algorithm,

we can indirectly influence it by constraining the maximum number of leaves for each individual

tree. Table 8.1 summarizes the average NDCG values at different ranks measured across all folds

on the LETOR and MSLR datasets, and on the C14 dataset. The reported tree depths in the

table represent micro-averages. That is, we first compute the average tree depth for every ensemble

and then average across the folds. We determine statistical significance using the Wilcoxon test

(p-value<0.05); none of the differences on the LETOR dataset is significant.

Results show that on LETOR, the tree depth makes no significant difference, whereas deeper
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Table 6.3: Average NDCG values and average tree depth (95% confidence intervals in parentheses)
measured across cross-validation folds using various settings for max number of leaves. For MSLR,
+ and ∗ show statistically significant improvements over models obtained by setting max leaves to
10 and 30 respectively. For C14, + and ∗ show improvements over 70 and 110 respectively.

(a) LETOR-MQ2007

Max
Leaves

Avg. Depth @1 @3 @5 @10 @20 @∞

3 2.0 (0.0) 0.475 0.478 0.487 0.522 0.591 0.701
5 3.6 (0.1) 0.477 0.479 0.487 0.521 0.591 0.701
7 4.7 (0.1) 0.477 0.479 0.486 0.520 0.591 0.700
9 5.5 (0.1) 0.476 0.478 0.486 0.519 0.590 0.699
11 6.1 (0.2) 0.476 0.477 0.485 0.519 0.590 0.699

(b) MSLR-WEB10K

Max
Leaves

Avg. Depth @1 @3 @5 @10 @20 @∞

10 5.9 (0.1) 0.467 0.452 0.456 0.473 0.504 0.719
30 11.3 (0.1) 0.471+ 0.456+ 0.461+ 0.479+ 0.510+ 0.721+

50 15.1 (0.1) 0.471+ 0.457+ 0.461+ 0.480+∗ 0.511+∗ 0.722+∗

70 18.0 (0.1) 0.471+ 0.456+ 0.461+ 0.480+∗ 0.511+∗ 0.722+∗

(c) C14

Max
Leaves

Avg. Depth @1 @3 @5 @10 @20 @∞

70 19.8 (0.2) 0.713 0.715 0.735 0.778 0.820 0.863
110 28.1 (0.3) 0.712 0.716 0.735 0.778 0.820 0.863
150 35.9 (0.5) 0.712 0.716 0.736+∗ 0.779+∗ 0.821+∗ 0.863
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Figure 6.5: Per-instance prediction times (in microseconds), averaged across cross-validation folds
(100 ensembles per fold for LETOR and MSLR, and 20 ensembles for C14) using LambdaMART
on different datasets.

trees yield better quality results on MSLR and C14; however, there appears to be little difference

between 50 and 70 max leaves on MSLR. The results make sense: we need deeper trees to capture

the necessary relationships between features in a large vector.

Turning to efficiency results, Figure 6.5 illustrates per-instance prediction speed for various

implementations on the learning-to-rank datasets. Note that this is on the entire ensemble, with

latencies now in microseconds instead of nanoseconds. The x-axis plots the tree depths from

Table 8.1. In this set of experiments, we use the VPred approach with the vectorization parameter

set to 8 for LETOR and 16 for MSLR and C14.

Our findings from synthetic datasets mostly hold on learning-to-rank datasets. Object is

the slowest implementation and Struct is slightly faster. On the LETOR dataset, Struct is only

slightly slower than Struct+, but on MSLR and C14, Struct+ is much faster than Struct in

most cases. While on LETOR it is clear that there is a large performance gap between CodeGen

and the other approaches, the relative advantage of CodeGen decreases with deeper trees and

larger feature vectors (which is consistent with the synthetic results). VPred outperforms all other

techniques, including CodeGen on MSLR and C14 but is slower than CodeGen on LETOR.

6.4 Discussion

We have shown that by adopting predication and vectorization, we can develop architecture-

conscious implementations of tree-based models which have superior test-time performance over
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Table 6.4: Average percentage of examined features (variance in parentheses) across cross-
validation folds using various max leaves settings.

(a) LETOR-MQ2007

3 5 7 9 11

Percentage of features 76.7 (5.0) 72.2 (8.8) 80.2 (5.6) 77.6 (7.6) 84.8 (1.9)

(b) MSLR-WEB10K

10 30 50 70

Percentage of features 92.7 (1.7) 96.5 (1.1) 96.3 (1.9) 95.6 (1.6)

(c) C14

70 110 150

Percentage of features 88.2 (1.0) 88.6 (1.1) 90.7 (1.6)

standard implementations. However, throughout this work we have assumed that features are fully

computed prior to the last stage (i.e., the document ranking stage). There is an alternative to this

strategy: a lazy feature extractor. That is, we compute feature values only when the predicate at a

tree node needs to access that particular feature. This on-demand feature extraction is difficult to

study, since results will be highly dependent on various factors ranging from the implementation

of feature extractors to the cost of individual features. However, if a sufficiently large percentage

of features are accessed during the evaluation of a test instance, then it may makes sense to

pre-compute the entire feature vector and avoid complexities that accompany a lazy approach.

Table 6.4 shows the average fraction of features accessed in the final ensembles for all three

learning-to-rank datasets, with different max leaves configurations. It is clear that for all datasets

most of the features are accessed during the course of making a prediction. Therefore, it makes

sense to separate feature extraction from prediction. In fact, there are other reasons to do so:

a distinct feature extraction stage can benefit from better reference locality (when it comes to

document vectors, postings, or whatever underlying data structures are necessary for computing

features).

Thus far, all of our experiments have been performed on a single thread, despite the fact

that multi-core processors are ubiquitous today. We leave careful consideration of this issue for
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Figure 6.6: Impact of number of threads on latency and throughput, using C14 with max leaves of
150. In (a), each thread evaluates instances using a subset of trees in the ensemble, thus exploiting
intra-query parallelism to reduce latency. In (b), each thread operates independently on instances,
thus exploiting inter-query parallelism to increase throughput.

future work, but present some preliminary results here. There are two primary ways we can take

advantage of multi-threaded execution: the first is to reduce latency by exploiting intra-query

parallelism, while the second is to increase throughput by exploiting inter-query parallelism. We

consider each in turn.

Since each tree model is an ensemble of trees, parallelism at an ensemble level can be

obtained by assigning each thread to work on disjoint subsets of trees. This has the effect of

reducing prediction latency. Figure 6.6(a) shows the impact of this approach on prediction time

using the C14 dataset with max leaves set to 150. By using 16 threads, latency decreases by 70%

compared with a single-threaded implementation for VPred. Note that since our machine only

has eight physical cores, the extra boost obtained in going from 8 to 16 threads comes from hyper-

threading. The small performance difference between the two different conditions suggests that our

VPred implementation is effectively utilizing available processor resources (therefore, the gains

obtained from hyper-threading are limited). For CodeGen, we observe a 30% improvement in

latency by going from 1 to 4 threads. However, adding more threads actually increases prediction

time.

The alternative multi-threaded design is to use each thread to independently evaluate in-

stances using the entire ensemble. This represents inter-query parallelism and increases through-
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put. More precisely, each thread evaluates one test instance using CodeGen or v test instances

(the batch size) in the case of VPred. Figure 6.6(b) shows the gain in throughput (number of test

instances per second) for different number of threads on the C14 dataset with max leaves set to 150.

Comparing implementations with a single thread and 16 threads, throughput increases by 320%

(from 9K to 38K instances/second) for CodeGen and 400% (from 14K to 70K instances/second)

for VPred. This shows that VPred benefits more from multi-core processors.
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Chapter 7

Training Efficient Tree Ensembles for Web Learning-to-Rank

We have demonstrated in the previous chapter that the VPred implementation achieves a lower

latency among the various implementations studied. As detailed in Section 6.1, VPred evaluates

a tree of depth d using d statements per test instance. Therefore, the performance of VPred is

directly correlated with the tree depth; deeper trees are slower to evaluate. However, we concluded

in Section 6.3.3 that deeper trees lead to higher effectiveness in many cases. These observations

suggest that tree depth is a factor that trades off efficiency for effectiveness and vice versa. The

question that arises here is that, can we construct tree ensembles that are shallow (hence, faster

to evalute) but also highly effective? We here show that the answer is yes.

We can accomplish the best of both worlds by encouraging the LambdaMART algorithm

to construct shallower trees. We explore two techniques to make this happen. First, we directly

modify the splitting criterion during induction of each individual tree such that the algorithm would

penalize splits that increase the tree depth. Second, when generating each tree in the ensemble,

we can proceed as normal, and then prune back the tree to a shallower tree before proceeding to

the next boosting stage. We explore both approaches in detail in Sections 7.1 and 7.2. Similar to

Chapter 6, we evaluate our techniques using standard learning-to-rank datasets, since our tweet

collection does not allow thorough experimentation.

Before we proceed further, recall from Section 2.5 that LambdaMART learns a ranking

model by sequentially adding a new tree to an ensemble that best accounts for the remaining

regression error (i.e., the residuals) of the training samples.

Assuming we have constructed t − 1 regression trees, LambdaMART adds the tth tree

that greedily minimizes the loss function, given the current regression residuals. To construct an

individual regression tree with J terminal nodes, LambdaMART uses the CART [82] algorithm.

CART works by recursively splitting the training data. At each step, the algorithm computes the
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best split (a feature and a threshold) for all the current terminal nodes, and then applies the split

that yields the most gain, thereby growing the tree one node at a time. CART maximizes the

following gain function:

G(N, 〈f, θ〉N ) =
∑
xi∈N

(yi − ȳN )2 − C(N, 〈f, θ〉N ), (7.1)

where xi ∈ N denotes the set of instances that are present in node N , and yi is the pseudo-response

associated with xi; 〈f, θ〉N is a split, consisting of a feature and a threshold; and C(·) is defined in

Equation 2.3. Equation 7.1 measures the difference in regression error between the current state

of the tree and after a split is applied.

7.1 Cost-Sensitive Tree Induction

The cost of evaluating a feature vector using an ensemble of trees is bounded by the following:

c(Hβ) =
∑T
t=1 c · dt, where c is the cost of evaluating one VPred statement, and dt is the depth

of the tth tree, ht ∈ Hβ. In other words, c can be associated with the cost of evaluating a tree,

when the tree becomes 1 level deeper. Thus, we want to jointly minimize both the loss, `(Hβ) as

well as the cost c(Hβ).

In order to solve the above multi-objective problem, we take a greedy approach in which we

modify the CART splitting criterion. To do so, the algorithm should not only maximize the gain

G(·), but it should also penalize the splits that result in an increase in the depth of the tree under

construction, ht. That is, to select the next node to split, we want to maximize Equation 7.1 in

addition to minimizing c([ht]) = c · dt; we can safely ignore c since it is a constant.

We approach this problem by a priori articulating the preferences, where we determine

the importance of each objective function and prioritize accordingly. We then solve the problem

using the lexicographic approach [121, 122]. This method iterates through the functions sorted in

increasing order of importance. At step i, it finds a solution for function fi. A solution X ′, must

fulfill fi’s constraints, and must also satisfy fj(X
′) < αfj(X) ∀j<i, where X is the solution found

so far, and α is the relaxation parameter. In this way, among all terminal nodes, we find the node
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and a split that maximizes Equation 7.1:

arg max
N,〈f,θ〉N

G(N, 〈f, θ〉N ). (7.2)

We denote the solution to Equation (7.2) as N∗ and its split 〈f∗, θ∗〉N∗ . Next, among all terminal

nodes, we choose the node that minimizes the depth of the tree dt, by relaxing a constraint on

G(·). That is, our second optimization problem becomes:

arg min
N,〈f,θ〉N

D(N, 〈f, θ〉N ),

such that G(N, 〈f, θ〉N ) > (1− ρ)G(N∗, 〈f∗, θ∗〉N∗),
(7.3)

where ρ ∈ [0, 1]. Function D(·) is defined as follows:

D(N, 〈f, θ〉N ) =


dt, dN + 1 ≤ dt

dt + 1, otherwise

, (7.4)

where dt is the current depth of the tree, and dN is the depth of node N . In the second optimization

problem, in order to obtain a single solution, we break ties in favor of a higher gain. Setting ρ to

0 reduces this model to an unmodified LambdaMART model.

We can interpret this optimization problem as follows: If the split that results in maximum

gain does not increase the maximum depth of the tree, then continue with the split. Otherwise,

find a node closer to the root which, if split, would result in a gain larger than the discounted

maximum gain.

7.2 Pruning While Boosting

In the pruning approach, we construct the tth tree using the original CART algorithm, but before

proceeding to add the tree to the ensemble, we prune the tree with a focus on depth. Our algorithm

starts discarding the two deepest terminal nodes in the tree and turning their parent into a new

terminal node (and restoring the original regression value at the leaf pre-split) until a stopping

criterion is met (discussed below). However, unlike the method proposed by Ganjisaffar [87], we

do not include effectiveness in our criterion and exclusively focus on the depth and density of the

tree. The intuition is that, since we are performing the pruning while boosting, additional boosting
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stages can compensate the loss in effectiveness while at the same time reducing the average depth

of trees in the ensemble.

In this work, we explore a simple criterion: we continue collapsing terminal nodes until the

total number of nodes in the tree is equal or greater than a fraction of the maximum possible

number of nodes in the tree given its depth (i.e., in a perfectly balanced tree), as follows:

|ht| ≥ α
(
2dt+1 − 1

)
, (7.5)

where |ht| is the number of nodes in tree ht, dt is the current depth of the tree, and α ∈ [0, 1]

is a parameter. Intuitively, α controls to what extent we want our trees to “look like” perfectly-

balanced binary trees. Setting α to 0 reduces this model to the original LambdaMART algorithm.

Increasing α translates into more aggressive pruning, and with α = 1.0, we prune back the tree

until we obtain a perfectly-balanced binary tree. Obviously, this pruning method does not preserve

the target number of leaves.

7.3 Experimental Setup

All experiments were run on the same hardware as in previous chapters Similar to the previous

chapter, we compiled the code with GCC (version 4.1.2) using optimization flags -O3. All code

ran single-threaded. To evalute test instances, we used the VPred implementation, introduced in

Chapter 6.

We implemented our proposed training algorithms on top of jforests, and limited our exper-

iments to the MSLR-WEB10K dataset. We ported the code to Hadoop, which allows us to run

multiple experiments in parallel in order to capture the variance introduced by randomization—we

ran E = 100 trials per fold as in the previous chapter. Following standard practice, we optimize

NDCG [80]. Based on the previous chapter, we set the number of leaves to 70, feature and data

sub-sampling parameters to 0.3, minimum observations per leaf to 0.5, and the learning rate to

0.05.

We evaluate the resulting ensembles using the following metrics:
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• Depth (davg): the average maximum depth of all trees in the ensembles. Specifically, we

first compute the average maximum depth of each tree in the ensemble, then compute the

mean across all E ensembles.

• Ensemble size (Tavg): the average number of trees in an ensemble is important since

shallower trees might require larger ensembles (i.e., with more stages) to converge.

• Average total number of nodes (navg): the total number of nodes in the entire ensemble,

averaged across trials.

• Latency, our metric for efficiency (performance): the latency of evaluating a single instance

using an ensemble of trees. That is, we measure the time between when a feature vector

enters the system to when a relevance score is computed for the input instance. We report

the mean latency across all folds (each fold containing E = 100 ensembles) in microseconds.

• NDCG, our metric for effectiveness: average (across different trials) NDCG at different cut-

offs for each fold. We use a Wilcoxon test (p-value< 0.05) to determine statistical significance.

7.4 Results

Table 7.1 summarizes the results for all our experiments, averaged across all trials and all five folds,

for both the modified splitting criterion in Table 7.1(a) and the pruning technique in Table 7.1(b).

The first column shows the ρ and α settings; the next columns characterize the tree topology:

average maximum depth (davg), the average ensemble size (Tavg), and average number of total

nodes in the ensemble (navg). The next set of columns show NDCG values at various cutoffs. The

final two columns show the prediction latency (with 95% confidence intervals in parentheses) and

relative improvement over the baseline. The first entry in Table 7.1(a) and Table 7.1(b) shows the

unmodified LambdaMART baseline.

For the approach involving modifications to the CART splitting criterion: results suggest

that increasing ρ (i.e., the relaxation parameter) yields shallower trees—more precisely, trees with

smaller maximum average depths. In some cases, the sizes of the ensembles increase slightly. Note,
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Table 7.1: Tree topology, effectiveness, and efficiency results on the MSLR-WEB10K dataset,
averaged across 5 folds. The columns show topological properties of the tree, effectiveness (NDCG
at various cutoffs), and latency (with 95% confidence intervals). For NDCG, ∗ denotes statistical
significance with respect to the baseline (p-value < 0.05).

(a) Modified Splitting Criterion

NDCG

ρ davg Tavg navg @1 @3 @5 @10 @20 @∞ Latency ∆

0.0 17.8 321 44115 0.471 0.456 0.461 0.480 0.511 0.722 19.4 (±0.6)
0.4 15.7 327 45462 0.471 0.457 0.461 0.480 0.511 0.722 16.6 (±0.5) −14.4%
0.8 12.3 317 44173 0.471 0.457 0.461 0.480 0.511 0.722 12.9 (±0.4) −33.5%

0.95 11.7 325 44421 0.472 0.457 0.461 0.480 0.511 0.722 12.4 (±0.3) −36.1%

(b) Pruning

NDCG

α davg Tavg navg @1 @3 @5 @10 @20 @∞ Latency ∆

0.0 17.8 321 44115 0.471 0.456 0.461 0.480 0.511 0.722 19.4 (±0.6)
0.05 9.1 395 30554 0.471 0.457 0.461 0.479 0.510∗ 0.721∗ 10.7 (±0.3) −44.8%
0.1 7.8 432 26228 0.472 0.456 0.460 0.479 0.510∗ 0.721∗ 9.5 (±0.3) −51.0%
0.2 6.4 474 22372 0.471 0.456 0.460 0.478∗ 0.509∗ 0.721∗ 8.5 (±0.2) −56.2%
0.4 4.8 567 17524 0.469∗ 0.454∗ 0.458∗ 0.476∗ 0.507∗ 0.720∗ 7.6 (±0.2) −60.8%
0.6 3.6 675 13660 0.467∗ 0.452∗ 0.456∗ 0.474∗ 0.505∗ 0.719∗ 7.0 (±0.2) −63.9%

however, that the total number of nodes in the ensemble remains about the same—we get shallower

and more balanced trees. While we observe no difference in effectiveness as a result of changing ρ,

latency improves significantly (i.e., confidence intervals do not overlap). Figure 7.1(a) and 7.2(a),

which show NDCG@3 and query latency per fold for different values of ρ, suggest that the findings

are consistent across all cross-validation sets. For both figures, we show 95% confidence intervals

across the trials in each condition. Setting ρ to a value greater than 0.95 yields results that are

indistinguishable from ρ = 0.95, and for the sake of brevity, we do not include them in the result

set.

For the pruning approach: increasing the parameter α also improves latency significantly.

There is a considerable increase in the number of trees in the ensemble as we increase α, but the

individual trees are much shallower and more balanced. Furthermore, the average total number of

nodes in the ensembles decreases significantly (unlike with the modified splitting criterion). With

pruning, we obtain shallow trees, though not necessarily balanced by the design of the α parameter.

However, aggressive pruning comes at the cost of lower effectiveness. As we increase α, we get

significantly lower NDCG values, first at higher cutoffs, then at lower cutoffs. However, these
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Figure 7.1: Mean NDCG@3 across all trials per fold, with 95% confidence intervals. ∗ shows
statistical significance.
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Figure 7.2: Mean average latency (in microseconds) across all trials per fold, with 95% confidence
intervals.

reductions are very small. At α = 0.6, we obtain significantly lower NDCG at all cutoff values,

and thus we did not further explore larger values of α. Figure 7.1(b) and 7.2(b) show per-fold

NDCG@3 and query latency with confidence intervals for different values of α. Overall, α = 0.1

appears to be a good setting, yielding approximately 51% decrease in latency while decreasing

NDCG@20 by only a small amount and leaving NDCG at the other cutoffs unaffected.

We have experimented with a select set of parameters on the C14 dataset using 150 as

the maximum number of leaves, and measured the evaluation metrics across E = 20 trials. As

Table 7.2 shows, results carry over from the MSLR dataset: Setting ρ to 0.95 in the approach with

modified splitting criterion leads to shallower trees and slightly larger ensembles. However, latency
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Table 7.2: Tree topology, effectiveness, and efficiency results on the C14 dataset, averaged across
5 folds. Columns as in Table 7.1.

NDCG

davg Tavg navg @1 @3 @5 @10 @20 @∞ Latency ∆

ρ, α = 0 35.9 527 158748 0.712 0.716 0.736 0.779 0.821 0.863 72.9 (±1.2)
ρ = 0.95 24.3 538 161093 0.712 0.716 0.736 0.779 0.821 0.863 49.2 (±1.4) −32.5%
α = 0.1 17.3 643 91629 0.712 0.716 0.736 0.778∗ 0.819∗ 0.862∗ 38.8 (±0.9) −46.8%

improves by about 32% over the original LambdaMART algorithm, without loss in effectiveness.

On the other hand, setting α to 0.1 in the tree pruning approach leads to even shallower trees, but

significantly larger number of trees in the ensemble. However, there are fewer nodes in the final

ensemble. While query latency improves by about 46%, NDCG at cutoffs {10, 20} as well as mean

NDCG degrade significantly.
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Chapter 8

End-to-End Efficiency-Effectiveness Tradeoffs

Previous chapters have demonstrated our contributions to each stage of a learning-to-rank pipeline

in isolation. These include an approximate top k retrieval algorithm for microblog documents, the

use of document vectors for feature extraction, architecture-conscious implementations of tree

ensembles, and training mechanisms to learn tree ensmbles that have a faster runtime execution.

While we have discussed the impact of our contributions on each individual stage in previous

chapters, we have so far not explored how the end-to-end learning-to-rank pipeline benefits from

our contributions. We here present end-to-end experiments that measure the overall impact of

our contributions on retrieval. Results show that the techniques we introduce in this dissertation

significantly improve query latency with no detriment to search quality.

8.1 Setup

We explore the impact of our contributions on end-to-end efficiency and effectiveness. To that end,

we start with a monolithic learning-to-rank architecture, and progressively decouple the stages and

apply the best of our techniques from each chapter, until we obtain the multi-stage architecture as

illustrated in Figure 1.3. As such, the end-to-end configurations that we consider are as follows:

• BM25: As a baseline, we generate candidates using Wand with full BM25 scoring function

and rank candidates according to their scores—in this scenario we do not use a learning-to-

rank model. This configuration is illustrated in Figure 8.1(a).

• MonolithicCodeGen: This architecture uses a positional inverted index to generate candidates

and extract features, before passing the feature vectors to a LambdaMART ensemble for

evaluation. To generate candidates, we use the Wand algorithm with the Idf scoring function

from Chapter 4 (denoted WandIdf). The tree model is implemented as hard-coded if-else
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(c) Multi-Stage. Multi-StageWand uses WandIdf in Candidate Generation, while Multi-StageBWand uses
BWand with r = 8, and κ = 1.

Figure 8.1: Architectures used in end-to-end experiments.

blocks. Figure 8.1(b) depicts this configuration.

• MonolithicVPred: The setup is similar to MonolithicCodeGen, however, this setting evaluates

the LambdaMART ensemble using the VPred implementation from Chapter 6. This variant

measures the impact of our architecture-conscious tree implementation on the end-to-end

speed.

• Multi-StageWand: We break the candidate generation and feature extration tasks into two dis-

tinct stages. In candidate generation, similar to previous configurations, we use the WandIdf
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algorithm to retrieve top k documents, but now using a non-positional inverted index. The

feature extraction stage takes advantage of document vectors, and extracts features using

the algorithm presented in Chapter 5. Finally, the last stage re-ranks documents using a

LambdaMART model with the VPred implementation. This system evaluates the advan-

tages of decoupling candidate generation and feature extraction against the previous system.

This configuration is depicted in Figure 8.1(c).

• Multi-StageBWand: Similar to Multi-StageWand, but it uses the BWand algorithm from Chap-

ter 4 to generate top k candidates using a non-positional inverted index. This system mea-

sures the impact of our contributions to the candidate generation stage.

We also evaluate Monolithic and Multi-Stage configurations using a LambdaMART model

that is trained using the techniques detailed in Chapter 7. We use ρ = 0.95 and α = 0.1 in

our experiments. Additionally, all Monolithic and Multi-Stage configurations can be run in either

conjunctive or disjunctive mode.

We perform our experiments on the Tweets2011 collection, introduced in previous chapters,

and perform stemming and remove stopwords. We again use three classes of queries for evaluation

purposes: the TREC 2011-2012 microblog track queries (consisting of 110 queries) for effectiveness

experiments, and AOL and TREC 2005 terabyte track queries for efficiency experiments. We set

k, the size of the candidate set, to 1000. Note that, to measure per-query latency, we measure the

elapsed time to process all queries, and divide by the number of queries.

For effectiveness experiments, we randomly split the microblog queries into three equally-

sized subsets and perform cross-validation. We tune the LambdaMART training parameters using

the validation sets: minimum observations per leaf is set to 0.75, the learning rate is set to 0.05,

feature and data sub-sampling are set to 0.3, and maximum number of leaves is set to 15. Since

the LambdaMART algorithm is randomized, we construct E = 100 ensembles per cross-validation

fold and report average effectiveness across all ensembles.

To train a LambdaMART model, we use the same feature set as in Chapter 5 in our exper-

iments. In addition, we also include tweet-specific features such as: presence of the “@” character,
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presence of links, number of unique characters in the document (intended to penalize terms like

“haaaaa”), ratio of at-metions to terms, and number of unique terms. Since these features are

query-independent, feature extraction boils down to a table lookup which has a constant cost.

There are 27 features in total, which is approximately the size of feature vectors in the LETOR

dataset.

We post-process the final ranked list to discard retweets as well as tweets that were created

after the query time. This makes our evaluations consistent with the TREC microblog track

guidelines.

Given the emphasis on early precision in the web context, we measure precision and NDCG

at various cutoffs [80]. The ubiquity of Twitter mobile usage also suggests that these metrics

are appropriate—the limited screen size of mobile devices means that we should emphasize early

precision. We use a paired t-test to measure statistical signifiance.

For efficiency experiments, we evaluate test instances using all E = 100 ensembles per fold

(i.e., 300 experiments total) and report the average latency along with 95% confidence intervals.

We use the same hardware as in previous chapters to run these experiments. We had exclusive

access to the machine with no competing processes.

8.2 Effectiveness

This section examines end-to-end retrieval scenarios in terms of effectiveness. As discussed in

previous chapters, there are two components that trade off effectiveness for efficiency and index

size. First, simplifications and approximations that led to WandIdf and BWand in the candi-

date generation stage enable faster query evaluation, but degrade relative recall against an exact

baseline. Second, modifications to the LambdaMART training algorithm in Chapter 7 can also

improve query latency, but those approaches too lead to loss in effectiveness in some cases.

To understand these factors, we first study the impact on effectiveness of our techniques in

the candidate generation stage. Next, we measure effectiveness resulting from modified Lambda-

MART models and compare with effectiveness obtained by the original LambdaMART model.
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8.2.1 Candidate Generation

Recall from Chapter 4 that a number of simplifications to the BM25 scoring function (namely,

ignoring term frequencies and length normalization) has led to the WandIdf algorithm. Further,

by incorporating Bloom filters and requiring the presence of the rarest term, we designed the

BWand algorithm, which has approximate aspects. We showed that the BWand algorithm yields

high relative recall against an exact baseline, as a component-level metric. However, we did not

evaluate these algorithms in terms of end-to-end effectiveness.

In order to contextualize the effectiveness obtained by the WandIdf and BWand algorithms,

we need exact baselines. As such, we use SvS for conjunctive experiments and WandBM25 (i.e.,

Wand with full BM25 scoring function) for disjunctive experiments. To make a fair comparison

between all retrieval scenarios, we re-rank all candidates using a LambdaMART model. Therefore,

the end-to-end systems of interest are as follows:

• Conjunctive query processing

– SvS followed by LambdaMART. Multi-StageWand and the two Monolithic end-to-end

configurations yield effectiveness equal to that of the SvS condition.

– Multi-StageBWand: Comparing this with the SvS condition highlights the impact of

Bloom filter false positives on effectiveness.

• Disjunctive query processing

– WandBM25 followed by LambdaMART

– Multi-StageWand: Comparing this condition with the previous condition assesses the

impact of simplifications to the scoring function. Note that, the two Monolithic config-

urations yield effectiveness equal to that of Multi-StageWand.

– Multi-StageBWand: This condition introduces additional constraints by requiring the

presence of the rarest query term and by allowing false positives due to its use of Bloom

filters. Comparing this condition with previous conditions further measures the impact

of these changes on effectiveness.
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Table 8.1: End-to-end effectiveness in terms of precision and NDCG at various cutoffs for differ-
ent candidate generation algorithms. ∗ indicates statistical significance with respect to the SvS
condition.

(a) Conjunctive Query Processing

Precision NDCG
@5 @10 @30 @1 @3 @5 @10

SvS 0.29 0.24 0.14 0.26 0.24 0.23 0.21
Multi-StageBWand (8,1) 0.32∗ 0.28∗ 0.18∗ 0.26 0.25 0.25∗ 0.24∗

Multi-StageBWand (24,3) 0.29 0.24 0.14 0.26 0.24 0.23 0.21

(b) Disjunctive Query Processing

Precision NDCG
@5 @10 @30 @1 @3 @5 @10

BM25 0.42 0.39 0.30 0.34 0.34 0.33 0.32
WandBM25 0.47 0.46 0.36 0.39 0.38 0.39 0.37
Multi-StageWand 0.47 0.45 0.36 0.39 0.38 0.39 0.37
Multi-StageBWand (8,1) 0.47 0.45 0.35 0.39 0.38 0.38 0.37
Multi-StageBWand (24,3) 0.47 0.46 0.36 0.39 0.38 0.38 0.37

Table 8.1 shows precision and NDCG at various cutoffs, averaged across the cross-validation

sets. For Multi-StageBWand, the relevant Bloom filter parameter settings are r (number of bits per

element) and κ (number of hash functions): in these experiments, we report results for r = 8, κ = 1,

denoted (8,1) in the tables, and r = 24, κ = 3, denoted (24,3) in the tables; these represent the

extremes of the parameter value ranges we explore. Table 8.2 provides statistics for retrieved

results at rank ten to offer more context: it shows the number of topics for which the algorithm

retrieves at least one document, the number of unjudged tweets, and the number of retrieved tweets

that are non-relevant (0), relevant (1), and highly-relevant (2).

We first examine the conjunctive results. From Table 8.2, the SvS condition returned results

for only 81 out of 110 topics, whereas the Multi-StageBWand (8,1) condition returned results for

101 topics; the Multi-StageBWand (24,3) condition returned results for 82 topics. Note that in all

cases we compute the effectiveness metrics in Table 8.1 over all 110 topics. Some examples of

queries for which SvS did not return any results include “Pakistan diplomat arrest murder” and

“Dog Whisperer Cesar Millans techniques.” For the most part, they are long queries that appear

to over-specify the information need. On the other hand, the Multi-StageBWand (8,1) condition

retrieves results for some of these long topics. This is happening because of the false positive errors
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Table 8.2: Statistics for retrieved results at rank ten cutoff for different candidate generation
algorithms. Last three columns indicate relevance grades: non-relevant (0), relevant (1), and
highly-relevant (2).

(a) Conjunctive Query Processing

#topics unjudged 0 1 2

SvS 81 40 198 176 159
Multi-StageBWand (8,1) 101 103 327 224 181
Multi-StageBWand (24,3) 82 46 198 183 156

(b) Disjunctive Query Processing

#topics unjudged 0 1 2

BM25 110 89 526 278 207
WandBM25 110 87 489 297 227
Multi-StageWand 110 81 497 299 223
Multi-StageBWand (8,1) 110 86 512 281 221
Multi-StageBWand (24,3) 110 84 509 285 222

associated with Bloom filters; the retrieved results do not actually contain all terms. In cases where

exact postings list intersection (SvS) returns an empty set, the false positives become advantageous

since something is always better than nothing. At the same time, in cases where exact postings list

intersection returns a non-empty set, the false positives introduce noise. However, the noise does

not appear to have a negative impact on the final rasults ranked by the LambdaMART model.

Overall, Multi-StageBWand (8,1) achieves significantly higher precision at all cutoffs and NDCG at

cutoffs five and ten. For Multi-StageBWand (24,3), we observe no significant differences compared

to SvS.

We now turn our attention to the disjunctive query processing results. For reference, we

included effectiveness results for the BM25 condition—recall that no learning-to-rank model is used

in this condition. All conditions in disjuncitve query processing mode significantly outperform the

BM25 condition. The results in Table 8.1 show no significant differences between WandBM25 and

Multi-StageWand in disjunctive query processing mode. There are also no significant differences be-

tween WandBM25 and Multi-StageBWand in disjunctive query processing mode, with either Bloom

filter parameter setting. Looking at Table 8.2, we can confirm that these results do not appear

to be the product of unjudged documents or idiosyncrasies in the way that judgment pools were

constructed during the TREC evaluations.
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Table 8.3: End-to-end effectiveness in terms of precision and NDCG at various cutoffs for different
configurations (W for Multi-StageWand and B for Multi-StageBWand). Models include a Lambda-
MART model along with the modified LambdaMART model with ρ = 0.95 and α = 0.1. ∗ shows
statistical significance of models with ρ = 0.95 and α = 0.1 against LambdaMART.

Precision NDCG
@5 @10 @30 @1 @3 @5 @10

W

λ-MART 0.47 0.45 0.36 0.39 0.38 0.39 0.37
ρ = 0.95 0.47 0.45 0.35 0.40 0.38 0.38 0.38
α = 0.1 0.47 0.44 0.34∗ 0.39 0.38 0.36∗ 0.35∗

B

λ-MART 0.47 0.45 0.35 0.39 0.38 0.38 0.37
ρ = 0.95 0.47 0.45 0.35 0.39 0.37 0.37 0.37
α = 0.1 0.46 0.44 0.33∗ 0.38 0.37 0.35∗ 0.34∗

Overall, we see that disjunctive query processing is more effective than conjunctive query

processing. We believe the small size of the document collection is a major cause; for approximately

one quarter of the topics in our test collection, SvS returned zero results. Note here that our tweet

collection is only a small sample of the entire tweet stream—it is perhaps possible that we would

obtain different results using a larger collection. Regardless, our experiments confirm that our

BWand candidate generation algorithm with Bloom filter chains yields end-to-end effectiveness

that is statistically indistinguishable from exact algorithms in both conjunctive query processing

mode and disjunctive query processing mode.

Due to the superiority of disjunctive query processing over conjunctive query processing on

our tweet collection, we limit the rest of this chapter to disjunctive query processing. As such, the

following sections run all end-to-end experiments in disjunctive mode. Throughout the remaining

sections, we also fix the BWand parameters r and κ to 8 and 1 respectively.

8.2.2 Tuning LambdaMART Model

We have established that the use of WandIdf or BWand to generate candidates results in no

significant loss in effectiveness against an exact baseline; that is, the Monolithic and Multi-Stage

configurations are on par with an exact baseline in terms of effectiveness. We now explore the

impact of modifications to LambdaMART presented in Chapter 7.

Table 8.3 shows the end-to-end effectiveness in terms of precision and NDCG for differ-

ent configurations. The two Monolithic conditions result in effectiveness that is equal to Multi-
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Table 8.4: Query latency (ms) for the TREC 2005 terabyte queries and the AOL queries, using
various configurations. Models include a LambdaMART model along with the modified Lambda-
MART model with ρ = 0.95 and α = 0.1.

TREC 2005 AOL

Model λ-MART ρ = 0.95 α = 0.1 λ-MART ρ = 0.95 α = 0.1

MonolithicCodeGen 4.9 (±0.1) 4.9 (±0.1) 4.6 (±0.1) 6.7 (±0.1) 6.6 (±0.1) 6.4 (±0.1)
MonolithicVPred 4.8 (±0.1) 4.8 (±0.1) 4.5 (±0.1) 6.6 (±0.1) 6.5 (±0.1) 6.4 (±0.1)
Multi-StageWand 4.3 (±0.1) 4.3 (±0.1) 4.1 (±0.1) 5.8 (±0.1) 5.7 (±0.1) 5.5 (±0.1)
Multi-StageBWand 2.3 (±0.1) 2.2 (±0.1) 2.0 (±0.1) 2.4 (±0.1) 2.3 (±0.1) 2.1 (±0.1)

BM25 1.7 3.9

Table 8.5: Query latency (ms) for the TREC 2005 terabyte queries and the AOL queries, using
various configurations, broken down by stages. For clarity in presentation, we only include results
for an unmodified LambdaMART model.

TREC 2005 AOL

Stages Total Candidates Features Re-ranking Total Candidates Features Re-ranking

MonolithicCodeGen 4.9 4.2 0.7 6.7 6.1 0.6
MonolithicVPred 4.8 4.2 0.6 6.6 6.1 0.5

Multi-StageWand 4.3 0.9 2.8 0.6 5.8 2.0 3.3 0.5
Multi-StageBWand 2.3 0.1 1.8 0.4 2.4 0.1 1.9 0.4

StageWand, therefore they are excluded from this table. For both conditions, setting ρ to 0.95 leads

to precision and NDCG that is indistinguishable from a LambdaMART model. On the other hand,

setting α to 0.1 for pruning degrades NDCG at cutoffs {5, 10} as well as precision @30 significantly,

as anticipated. These results are consistent with the results in Chapter 7.

8.3 Query Latency

Next, we turn our attention to query latency. Table 8.4 shows per-query latency values in mil-

liseconds for all retrieval systems, to retrieve and rank top 1000 documents. Reported values are

the average over multiple trials and are accompanied with 95% confidence intervals. Note that

the BM25 condition uses the full BM25 scoring function to retrieve and rank documents. For

reference, Table 8.5 shows a break-down of the results for the unmodified LambdaMART model

using different configurations.

Let us first consider the LambdaMART model. Moving from the MonolithicCodeGen config-

uration to MonolithicVPred on both query sets highlights the improvements gained by our VPred

implementation over hard-coded if-else blocks. However, the improvements do not seem to be

112



 1

 10

 100

1 2 3 4 5 6 7 8 9+

Ti
m

e 
(m

s)

Query length

MonolithicCodeGen
Multi-StageBWAND

(a) Terabyte

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9+

Ti
m

e 
(m

s)

Query length

MonolithicCodeGen
Multi-StageBWAND

(b) AOL

Figure 8.2: End-to-end per-query latency.

statistically significant (i.e., confidence intervals overlap). This is primarily because our ensembles

have a small average depth (about 8.6); from Chapter 6, we know that the performance of the

VPred implementation is on par with the CodeGen approach for shallow trees.

A comparison of MonolithicVPred and Multi-StageWand shows that separating candidate

generation and feature extraction—and subsequently using different data structures in each stage—

improves query latency by about 10% on both query sets. Note again that the tree ensembles are

evaluated using the VPred algorithm in both systems.

Finally, changing Wand to BWand further lowers end-to-end query latency by about 46%

for the terabyte queries and about 58% for the AOL queries. There are two factors that contribute

to this gain. First, the superior efficiency of the BWand algorithm over the Wand algorithm

accounts for about 40% of the speedup. Second, because BWand requires the presence of the

rarest term, the size of the candidate set is for many queries smaller than what is obtained by

Wand. As a result, per-query feature extraction becomes less expensive as well.

Figure 8.2 breaks down the end-to-end query latency for MonolithicCodeGen and Multi-

StageBWand. From these figures, we observe that Multi-StageBWand is relatively insensitive to

query length, while the latency of MonolithicCodeGen increases exponentially for longer queries.

This phenomenon is not suprising, given the behavior of the Wand algorithm as explained in

Chapter 4.

Overall, by comparing MonolithicCodeGen and Multi-StageBWand we observe a 53% decrease
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Figure 8.3: Index size required for each system.

in end-to-end latency for the terabyte queries and a 64% decrease for the AOL queries. We should

note that, these gains are highly dependent on the topology of the ensemble, size of the collection,

and complexity and number of features.

Additionally, we trained modified LambdaMART models using ρ = 0.95 and α = 0.1 from

Chapter 7, and evaluated all systems on the new models. Results show no significant change to

query latency as a result of setting ρ to 0.95. This is not surprising since the trees are generally

shallow to begin with, therefore increasing ρ does not translate into much shallower trees—new

average tree depth is 7.5, as opposed to LambdaMART’s 8.6. However, pruning with α = 0.1

does result in a small but statistically significant gain over the original LambdaMART model—

average depth is now 5.7. However, as the effectiveness results suggest, pruning the tree results in

significant loss in P@30 and NDCG at rank cutoffs 5 and 10.

8.4 Memory Usage

Finally, we turn to memory usage. The Monolithic configurations require a positional inverted

index for candidate generation and feature extraction. On the other hand, the Multi-Stage con-

figurations operate on a non-positional inverted index in the candidate generation stage, but ad-

ditionally need document vectors in the feature extraction stage. Multi-StageBWand also requires

Bloom filter chains in addition to the inverted index in the candidate generation stage.
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Figure 8.3 shows the memory requirements for each system. As noted in Chapter 5, term

positions and term frequency values are generally small because tweets are of limited length.

However, term ids could be relatively very large, which is why document vectors alone are far

larger than a positional inverted index. The large size of document vectors makes the overall

memory footprint of Multi-StageWand 2.6 times that of Monolithic. However, in practice, the

search service needs to show the content of tweets to the user, which ultimately would require raw

documents. Therefore, the need for document vectors should not be considered an overhead of our

approach. Bloom filter chains with r = 8 additionally increase the overall memory footprint. The

overall memory footprint used in Multi-StageBWand is about 2.9 times that of Monolithic.
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Chapter 9

Conclusion

In this dissertation, we first introduced an efficient indexing mechanism that operates entirely

in the main memory. By using additional working memory, our indexer is capable of indexing

streaming documents in real-time, and provides a mechanism to control inverted list contiguity.

We have also laid out a novel three-stage architecture for document ranking. We have shown that

our three-stage architecture offers more flexibility and allows for more efficient ranking.

Within this three-stage architecture, we explored different techniques to improve the latency

of each stage in isolation. As such, we introduced a novel approximate top k retrieval algorithm that

is many times faster than a strong baseline; we examined the use of document vectors in features

extraction and discussed their impact on speed and space; we presented a novel implementation

of trees which enables faster document re-ranking using tree-based learning-to-rank models; and

finally, we designed a new algorithm to train tree-based learning-to-rank models that are faster to

evaluate. By putting all these pieces together to reconstruct our three-stage architecture, we have

shown that our techniques can improve end-to-end query latency by 50–60%, without degrading

effectiveness. We showed that our architecture leads to larger memory requirements, but explained

that this increase in memory footprint can be justified within a broader search service and in the

context of modern server configurations.

Despite the overall improvements that the techniques introduced in this work bring about,

there are a number of limitations that need to be addressed. We leave these issues as future work.

These limitations are as follows:

• Indexing and memory requirements: Our indexing approach as described in Chapter 3 re-

quires a considerable amount of transient memory to guarantee some degree of postings list

contiguity. To reduce memory requirements, we should devise alternative approaches that

allow us to control postings list contiguity.
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• BWand and web documents: Our BWand algorithm was designed specifically for tweets

and does not generalize to documents of arbitrary length; we showed that since tweets are

of limited length term frequencies are not important, while in contrast, web documents have

arbitrary sizes and term frequencies are important in determining relevance. We can resolve

this issue by using counting Bloom filters [123] which allow us to store counts associated with

keys. By paying a higher memory cost, we could store term frequency information in these

data structures and perform query evaluation in domains where term frequency is important.

• Multi-threading: We have conducted preliminary experiments on the impact of multi-threading

on different tree implementations in Chapter 6. However, a more thorough study is necessary

to understand the impact of multi-threading on cache behavior in all stages.

• Efficient tree ensembles: In Chapter 7 we presented two general techniques to train Lambda-

MART models that are more efficient to traverse. The impact of each technique depends on

the heuristics with which we solved the underlying problems. As a result, it is important to

explore other heuristics and other approaches to solve the formulated optimization problems.

For example, it is important to study the impact of other stopping criteria on pruning. We

leave this as future work.

• Concurrent query evaluation: In this work, we did not consider interleaving of indexing

and query evaluation. Concurrent query evaluation and indexing requires tackling a host of

concurrency issues which should be comprehensively studied as future work.

• Scaling out: Scaling out a learning-to-rank architecture in a distributed manner is a question

that we did not explore in this dissertation. In particular, the impact of distribution of a

multi-stage architecture on memory usage and cache behavior, as well as the introduction of

network costs to the equation should be studied.

This dissertation has highlighted the importance of efficiency in web search in the wake

of drastic changes to the web, including the rise of social media. The techniques introduced in

this work represent one solution to balance search efficiency and effectiveness in practice. As web
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becomes even more dynamic and information continues to be disseminated in real-time, adapting

search services to conform to real-time settings will become ever more important.
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