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 The lack of good exposures and paucity of datable horizons in central Nepal has hindered the 

ability of geologists to piece together a relatively cohesive and straightforward stratigraphic succession 

within the Lesser Himalaya. U-Pb isotopic analyses of detrital zircons from the Modi Khola valley 

indicates maximum depositional ages of ~1875 Ma for the Kuncha Formation, ~1800 Ma for the Fagfog 

Formation, and ~ 1780 Ma for the Kushma Formation. The intrusive 1831 ± 17 Ma Ulleri augen gneiss 

provides a minimum depositional age bound for the Kuncha.  Combined, these data suggest the Kuncha 

Formation is the oldest member of the Lesser Himalayan series in central Nepal. Additionally, δ13C data 

suggest the Malekhu Formation of the Lakharpata Group was deposited before ca. 1250 Ma. A field 

mapping comparison based on the redefined stratigraphy indicates the Ramgarh thrust is located >10 km 

farther south than previously mapped, potentially reducing regional shortening estimates. 
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Chapter 1 – Introduction to the Himalaya 

1.1 Orogenesis 

“Mountains are the beginning and end of all scenery” – John Ruskin, art critic and author 

To geologists mountains are more than just majestic scenery; they represent a remarkable result 

of plate tectonics. Orogenesis, or mountain building, offers insight into the workings of the Earth; 

including past and present plate motions, crustal strength and deformation, and related magmatism and 

metamorphism.  In addition, mountains influence regional and global climate by shifting air circulation 

patterns, leading to rain shadows and orographic effects. Mountains isolate plant and animal populations, 

leading to the development of new species and act as barriers to migration. Numerous human civilizations 

have also benefitted from the strategic advantages conferred by occupation of the topographic high 

ground.   

1.2 The Himalaya 

The word Himalaya comes from the Sanskrit hima or “snow” and ālaya or "abode", in other 

words “place where there is snow”. Bounded to the north by the Tibetan Plateau and to the south by the 

Indian subcontinent, the range extends from ~ 76° to ~91°E longitude, and is home to eight of the ten 

highest peaks in the world including Mt. Everest and K2 (Fig. 1.1; Hodges, 2000). Additionally, the range 

partially or entirely encompasses the countries of Nepal, Tibet, China, India, Pakistan, and Bhutan.  

The Himalaya are considered the “type” example of a continent-continent collision. Beginning 

around 55-50 Ma ago and continuing to the present day, the collision of the Indian and Eurasian plates 

has accommodated a minimum of 2500 km of convergence (Achache et al., 1984; Patriat and Achache, 

1984; Besse et al., 1984; Besse and Courtillot, 1988; Rowley, 1996; Guillot et al., 2003; DeCelles et al., 

2004; Leech et al., 2005; Leech et al., 2007). Of this, approximately 800-1200 km are thought to be 

accommodated by the Himalayan fold and thrust belt (Lyon-Caen and Molnar, 1985; Lillie et al., 1987; 

Srivastava and Mitra, 1994; Bilham et al., 1997; Powers et al., 1998; Larson et al., 1999; Lavé and 
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Avouac, 2000; DeCelles et al., 2002). The fold and thrust belt includes mostly south-vergent thrusts and 

associated folds, which consist of lithified sediments accumulated on the northern margin of India prior to 

collision (DeCelles et al., 2001).  

Regional balanced cross sections across the fold and thrust belt reveal minimum shortening 

estimates, however they do not include the shortening contributions of penetrative strain or small scale 

folds and faults, which would increase total shortening estimates considerably (DeCelles et al., 2002). The 

western portion of the Himalaya, including Pakistan, western Nepal, and northwestern India, appear to 

have accommodated the most shortening, on the order of 353-743 km from the South Tibetan Detachment 

System (STDS) to the Main Frontal thrust (MFT) (Coward and Butler, 1985; Srivastava and Mitra, 1994; 

DeCelles et al., 1998; DeCelles et al., 2001; DeCelles et al., 2002; Robinson et al., 2006). In central 

Nepal, Schelling (1992) estimates 210-280 km of shortening between the STDS and the Main Frontal 

thrust. In the eastern portion of the Himalaya, estimates of shortening range from 185-245 km between 

the STDS and MFT, and up to 323 km from the Indus-Yalu suture to the MFT (Schelling and Arita, 1991; 

Hauck et al., 1998). 

 

Figure 1.1– The Himalaya from space. Image from NASA World Wind. 

N
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In Nepal, where the focus of this research is located, the fold and thrust belt is divided into four 

tectonostratigraphic units from south to north, the Subhimalayan (SH), Lesser Himalayan (LH), Greater 

Himalayan (GH), and Tibetan Himalayan (TH) zones, all of which are bounded by faults (Heim and 

Gansser, 1939). These tectonostratigraphic, or geologic, units should not be confused with the 

physiographic provinces of the Himalaya by the same name (Fig. 1.2). This paper will refer only to 

tectonostratigraphic divisions. The fold and thrust belt region has received a great deal of attention 

because it can potentially answer many of the questions geologists have about the Himalaya and mountain 

building in general. 

 

 

Figure 1.2 – Geologic cross section of the Himalaya with the tectonostratigraphic units marked on the 
cross section and physiographic provinces delineated below. TH – Tibetan Himalaya, GH – Greater 
Himalaya, LH- Lesser Himalaya, LHD – Lesser Himalayan Duplex, SH – Subhimalaya, STD – South 
Tibetan Detachment, MCT – Main Central thrust, MBT – Main Boundary thrust, MFT – Main Frontal 
thrust. Modified from Robinson et al., 2006. 
 

1.3 Fold and Thrust Belt Formation 

“It is a truism in structural geology that broad, thin-skinned fold and thrust belts are easy to find, but 

difficult to explain mechanically” – William Chapple, Geologist 

 Early workers recognized fold and thrust belts as areas of extensive crustal shortening and their 

geometries and kinematics became the focus of extensive research (Armstrong and Oriel, 1965; Bally et 

al., 1966; Dahlstrom, 1970; Elliott 1976 a, b; Chapple, 1978; Bombolakis, 1986; Butler, 1987). Chapple 
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was one of the first to enumerate several defining characteristics of fold and thrust belts as we know them 

today. He described a wedge shaped region of deformation, thicker at the back (hinterland) and thinner at 

the toe (foreland), which was bounded at its base by a relatively weak geologic layer. He noted that 

shortening and thickening occurred throughout the wedge, primarily towards the back-end of the wedge. 

Chapple posited that material within the wedge maintained cohesion and that displacement on the thrust 

faults was relayed to successive, adjacent faults.  The driving force responsible for the development of the 

fold and thrust belt was a “compressive flow” or “push from behind”, as opposed to gravity driven 

“gliding” or other previously proposed mechanisms (Elliott 1976 a,b).  

 Additional work revealed other common characteristics of fold and thrust belts including a 

positive, linear relationship between fault displacement and fault length, and foreland propagation of in-

sequence thrusting, although there are cases of out-of-sequence thrusting as well (Armstrong and Oriel, 

1965; Bally et al., 1966; Elliott 1976 a, b; Goff and Wiltschko, 1992; Pearson and DeCelles, 2005; 

Robinson et al., 2006; Robinson, 2008). A regular decrease in spacing between thrust ramps toward the 

foreland has also been noted (Bombolakis, 1986; Goff and Wiltschko, 1992; Panian and Wiltschko, 

2007).   

 To explain these observations, the critical taper theory was proposed by Davis et al. in 1983, and 

has subsequently been elaborated upon by numerous workers (Dahlen et al., 1984; Goff and Wiltschko, 

1992; Makel and Walters, 1993; Horton, 1999; DeCelles and Mitra, 1995; Strayer, 2001; Bollinger et al., 

2006). The theory accepts the basic geometry described by Chapple and explains the mechanics of wedge 

formation as analogous to a wedge of snow or dirt pushed along by a plow. At first, the material deforms 

internally until a wedge shape forms, and sliding begins along the base. At this point the wedge has 

attained a critical taper, where all points within the wedge are on the verge of failure under horizontal 

compression. As material is added or lost, or as internal factors such as pore fluid pressure change, the 

wedge geometry (α or β) responds through internal deformation or faulting to maintain its’ critical state 

(Fig. 1.3; Davis et al., 1983; Horton et al., 1999). 
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 How and where the first thrust fault in a thrust sheet forms is currently debated. Most modelers 

agree that maintenance of wedge geometry is likely the main controlling factor in thrust fault formation. 

However, a variety of factors can influence where the break occurs. Work by Goff and Wiltschko (1992) 

suggests that the weight of overlying thrust sheets stabilizes the footwall of the incipient thrust, i.e. that 

the length and mass of overlying thrust sheets have a direct effect on the location of the next thrust sheet. 

Therefore, rates of thrust fault emplacement and erosion might also contribute to variation in the spacing 

of thrust faults. It is easy to understand why the prediction of thrust sheet dimensions is difficult! 

Nevertheless, it is reasonable to assume there is some minimum thickness of a thrust sheet necessary for 

the rocks to remain cohesive during movement and to avoid complete erosion during the time it takes a 

thrust sheet to be emplaced. 

 

Figure 1.3 – Original model developed by Davis et al. (1983) that used sand and a moving mylar sheet to 
approximate wedge formation. Lower schematic shows an idealized critical taper (Horton, 1999). 

 

1.4 Enduring Questions 

By developing an extensive and cohesive understanding of the Himalayan fold and thrust belt, 

geologists can gain insight into the processes that shape the face of our entire planet. However, many 

questions remain incompletely answered, including: (1) How do mountain ranges fully accommodate 

shortening? Possible mechanisms include faulting, internal deformation, and extrusion of crust, but may 

likely be a combination of these and other mechanisms. (2) What is the order and timing of shortening 
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events? Thrusting may occur in- or out- of- sequence. (3) How much shortening occurred and where? 

Regional shortening estimates vary and are dependent upon correct mapping of faults and geologic units. 

(4) Where are the major faults located, how much movement occurred on them, and are they still active? 

This information has ramifications for the area’s geologic history.  

In order to answer questions such as the ones listed above, fundamental information about the 

geology of the fold and thrust belt is needed. What are the ages of the geological units? How are the units 

related? The development of regional stratigraphy and subsequent field mapping provide the foundation 

of knowledge necessary to make interpretations of the larger “big picture” structures involved in 

mountain building. In this study, I examine Lesser Himalayan rocks in central Nepal to obtain 

depositional ages of the units. From these ages I evaluate the accuracy of the current stratigraphy and 

subsequently modify regional geologic maps, as necessary. This work relates to the broader questions 

about fold and thrust belts because the location of faults, hence the thicknesses of the overlying thrust 

sheets and the development of accurate cross- sections and regional shortening estimates, are dependent 

upon correct mapping based on accurate stratigraphy.  

Of the two units that make up the Lesser Himalayan series, only the younger unit, the Tansen, is 

fossiliferous. The older Nawakot Unit lacks fossils that might indicate relative ages of its members, so 

other methods of dating are necessary. To this end, I use U-Pb isotopic analyses of detrital zircons 

sampled from several siliciclastic units to obtain maximum ages of deposition. These ages are further 

constrained by a cross cutting igneous unit of known age. I also use chemostratigraphic data (time series 

δ13 C variations), sampled from the stratigraphically highest carbonate within the Lesser Himalaya, to 

place a lower limit on deposition of the Lesser Himalayan sequence.  The rearrangement of stratigraphy 

based on these analyses lead to a revision of current maps and fault placement, thus changing regional 

shortening estimates based on balanced cross-sections. 
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Chapter 2 – Geochemical Background of Isotopic Systems Utilized 

2.1 Perspective  

 This work examines several geologic units from central Nepal whose lithologies range from clean 

quartzite and sandy phyllite to crystalline carbonate and calcareous shale. In order to constrain 

depositional ages of these units several methods were applied. A brief description of each isotopic system 

used in this research is covered below.  

2.2 Carbon 

 The carbon cycle is a series of complex interactions between the biosphere, atmosphere, 

hydrosphere, and lithosphere. Of all the carbon available on Earth, 98.89 % is found in the form of 

carbon-12, while only 1.11% consists of the carbon-13 isotope.  The ratio of the two isotopes in the Earth 

reflects global-scale oceanographic and climatic changes based upon isotopic fractionation (Prothero and 

Schawb, 2004).   

Isotope fractionation includes equilibrium isotope effects, where the heavier isotope ( in this case 

carbon-13) preferentially goes into the compound in which it is most strongly bound (Bigeleisen, 1965), 

and kinetic isotope effects, where the rate of a chemical reaction is sensitive to the atomic mass at a 

particular position of the reaction species (Hayes, 1983).   

2.2.1 Delta Notation 

 Due to the fact that isotopic abundances may differ at or beyond the third significant figure, 

geologists have developed delta notation expressed in parts per mil or parts per thousand (‰), as the 

conventional way to communicate findings. Delta notation is given by the following equation (1): 

 

δ13C = [(13C/12C)sample – (13C/12C)standard)]   * 1000                                                               (1) 

                      (13C/12C)standard  
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 The standard used for calibration has traditionally been the Pee Dee Belemnite (PDB). As there is 

no longer a supply of this material, alternative standards such as NBS-19 (this study) are used and then 

referenced to Vienna-PDB (V-PDB). 

2.2.2 Carbon Cycling 

 While critical to life on the planet, the majority of carbon on the Earth’s surface is actually 

sequestered in sedimentary rocks, namely carbonates and solid organic compounds (Fig. 2.1; Ripperdan, 

2001). In ocean water carbon is largely present in the form of the bicarbonate ion (HCO3
-). Carbonate 

minerals are formed by the combination of divalent cations, predominantly Ca2+, with the carbonate ion 

(Hoefs, 2004): 

Ca2+ + CO3
2- = CaCO3         (2) 

 

 

Figure 2.1 – Diagram of carbon cycling pathways. Modified from Ripperdan, 2001. 

 

 Short term cycling and fractionation of carbon isotopes is dominated by photosynthetic 

fractionation of CO2, which preferentially incorporates 12C into plant tissues (O’Leary, 1981; Farquhar et 
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al., 1989). When photosynthesis occurs in the oceans, it may enrich the surrounding ocean water in 13C. 

This kinetic isotope effect is the primary basis for the fractionation of carbon isotopes between the Corganic 

(Corg) and Ccarbonate (Ccarb) reservoirs (Kaufman and Knoll, 1995).  The magnitude of fractionation between 

two compounds, A and B, can be described by a fractionation factor (α) in which: 

αA-B = RA/RB          (3) 

where R is the ratio of numbers of any two isotopes in a compound A divided by the corresponding ratio 

in compound B (Hoefs, 2004, Kaufman, Pers. Comm.).  

 Long term cycling of carbon is based on the flux of carbon into the oceans from weathering and 

out gassing, and the corresponding outward flux through sedimentation and burial (Broeker, 1970; Hayes, 

1983; Buick et al., 1995; Ripperdan, 2001). Most importantly, secular changes in the carbon isotope 

record reflect the relative proportions of Corg and Ccarb being buried in marine sediments (Broeker, 1970; 

Hayes, 1983; Kaufman and Knoll, 1995; Veizer et al., 1999; Anbar and Knoll, 2002). 

 
Figure 2.2 – Schematic of the open system ocean as a reactant chamber with input/reactant R, and 

outputs/ products Q and P, which in this diagram represent Ccarb and Corg respectively. Bottom diagram 
demonstrates the isotopic fractionation (A) between Q, and P.  

 
 

 The open system behavior of the ocean can be described mathematically in the terms of carbon 

inputs and carbon outputs (Fig. 2.2; Hayes, 1983). If a steady state of inputs (reactant R in Fig. 2.2) and 
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outputs (products Q and P in Fig. 2.2) is assumed, fractionation between outputs is controlled by the 

kinetic isotope effect:  

Rpe = αP/R * Rre           (4) 

Rqe = αQ/R * Rre           (5)  

which when combined yield: 

 Rpe/Rqe = αP/R /αQ/R         (6) 

where Rpe is the ratio of P at equilibrium, Rqe is the ratio of Q at equilibrium, αP/R is the fractionation 

factor between P and R, αQ/R is the fractionation factor between Q and R, and Rre is the ratio of reactant at 

equilibrium. Considering the law of conservation of mass: 

niFi = naFa +nbFb         (7) 

where n is the molar quantity of carbon in i, a, and b, and F is the fractional isotopic abundance or F = 

[13C/(13C + 12C)]. Therefore: 

Fi = faFa + (1-fa)Fb         (8) 

where fa is the fraction of input i that is going to product A (na/ni), and (1-fa) is equal to the fraction of 

input going to product B (nb/ni). Simultaneous solving of equations 6 and 8 yields: 

δp = δr + (1-fp)ε            (9) 

and  

δq = δr -fpε             (10) 

where δr is the isotopic composition of carbon entering the ocean, δp is the isotopic composition of 

organic carbon, δq is the isotopic composition of carbonate, fp is the fraction of organic carbon being 

buried in sediments, and ε = [(αP/R /αQ/R)-1)*103]. The typical values of carbon entering and leaving the 



11 

 

ocean are δr ~5.5‰ and ε ~25‰, respectively (Kaufman, Pers. Comm.). Ultimately, if burial of Corg 

increases, the long term carbon isotope record preserved in carbonates will record more positive values. If 

relatively less Corg is being buried in sediment, long term carbon isotope values of carbonates will be 

more negative. 

 Therefore, variation in the carbon isotope record is enhanced or attenuated by a variety of 

processes including: changes in biological productivity, changes in geologic preservation rates of organic 

carbon, atmospheric CO2 sorption by weathering of continental materials, changes in CO2 content in 

ocean water based on temperature changes, oceanic circulation, and volcanic out gassing (Ripperdan, 

2001). Typical values of some carbon reservoirs can be seen in Figure 2.3.  

Additional variations in the carbon record are caused by complicating factors such as: non-

equilibrium processes at the depositional interface, preservational bias, local 13C heterogeneities from 

organic matter, and post-depositional diagenesis, including the liberation of volatiles with increasing 

temperature and the infiltration of externally derived fluids (Valley, 1986; Kohn and Valley, 1994; 

Ripperdan, 2001). 

 
Figure 2.3 – Typical δ13C values of some carbon reservoirs in ‰V-PDB (Hoefs, 2001). 
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Many researchers, working in sedimentary basins around the world, have developed a composite 

record of carbon isotopes through time. It appears that throughout Earth history, with one or two notable 

exceptions, variable and fluctuating carbon isotope values have been the norm.  Though prior to 2.6 Ga 

the carbon isotope curve is essentially flat, workers note that significant positive and negative excursions 

similar to modern day values were seen (Schidlowski et al., 1983; Karhu and Holland, 1996; Lindsay and 

Brasier, 2002). From ~1.8 to 1.0 Ga another relatively quiescent interval in the carbon record occurs, with 

isotopic values typically near 0 ± 2‰ (Knoll et al. 1995, Buick et al. 1995; Kaufman, 1997; Des Marais, 

1997). Towards the end of the Mesoproterozoic and the beginning of the Neoproterozoic, researchers 

observe a general trend of increasing fluctuations in carbon isotopes (Kah et al., 1999; Kumar et al., 

2002), which gradually increase in amplitude up to 10‰ and greater, most often associated with 

widespread glaciations (Kaufman and Knoll, 1995; Kaufman et al., 2006; Kaufman et al., 2007; Tewari 

and Sial, 2007). The wildly swinging values of the Neoproterozoic eventually give way to more moderate 

fluctuations of the Phanerozoic (Zachos et al., 2001; Tewari and Sial, 2007). Several authors attribute the 

large fluctuations in the isotopic carbon record to tectonism and the formation or break up of 

supercontinents and a web of closely linked phenomena including carbon sequestration, rising 

atmospheric oxygen levels, and glaciations (Derry et al., 1992; Kaufman and Knoll, 1995; Berner, 2001; 

Ripperdan, 2001; Anbar and Knoll, 2002; Lindsay and Brasier, 2002; Kaufman et al., 2007). 

2.3 Oxygen 

Typically measured simultaneously with carbon isotopes and expressed in the same delta 

notation, oxygen isotopes provide important chemostratigraphic information to geologists. Changes in 

atmospheric oxygen are intimately related to the carbon cycle, including the biologic and tectonic 

processes of photosynthesis, sedimentation/burial of organics, weathering, and erosion (Berner et al., 

2001). The formation of supercontinents leads to the burial of large amounts of organic carbon, which in 

turn leads to an increase in atmospheric O2 levels (Lindsay and Brasier, 2002). Increases in atmospheric 

oxygen, in turn, affect the oxygen content of ocean waters.  
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In addition, Urey (1947) and Emiliani (1955) determined that oxygen isotopes (16O= 99.756% 

and 18O = 0.205%) fractionate based on temperature. Later work indicated that ice volume (glaciation) 

plays a larger role in changing the isotopic ratios of oxygen in seawater (Prothero and Schwab, 2004). In 

this system, 16O rich water is preferentially evaporated, which is then precipitated from clouds. Due to 

global atmospheric circulation patterns, these clouds move out from the equator towards the poles. During 

glaciated periods, this water is captured on land and fails to return to the oceans. The oceans thus become 

progressively enriched in 18O over time (Fig. 2.4; Alley and Cuffey, 2001). These findings make oxygen 

isotopes indicators of paleo-ice volume. 

 

Figure 2.4 – Schematic of oxygen isotope fractionation during evaporation and precipitation. Values 
given are only illustrative. Modified from Alley and Cuffey, 2001. 

 

A globally correlated curve of isotopic oxygen values throughout time has been developed. 

However, while δ13C values have been shown to be relatively resistant to diagenetic changes, oxygen 

isotopes are much more easily altered (Hudson, 1977; Tucker, 1983; Burdett et al., 1990; Kaufman et al., 

1991). This is likely due to the nature of most meteoric and metamorphic fluids, which have relatively 

little carbon to exchange with the rocks, but plenty of oxygen. The oxygen atoms are supplied from the 

fluid. Work by Baumgartner and Valley (2003) reveal that as metamorphism increases, the δ18O values of 

carbonates decrease due to a variety of volatization reactions. Similarly, Alley and Cuffey (2003) found 

that most meteoric fluids are relatively depleted in 18O, which would in turn result in lower measured δ18O 

values. Furthermore, Jacobsen and Kaufman (1999) demonstrate that a much larger (factor of 10 or 
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greater) water to rock ratio is necessary in order to reset 13C values versus 18O values (Fig. 2.5). Typical 

values of some oxygen reservoirs are seen in Fig. 2.6.  

 

Figure 2.5 – δ18O and δ13C values with increasing water to rock ratio for both closed and open 
systems. Modified from Jacobsen and Kaufman, 1999. 

 

                     
Figure 2.6 – Typical δ18O values of some oxygen reservoirs in ‰V-PDB (Hoefs, 2001). 

2. 4 Uranium-Lead 

 The uranium-thorium-lead system is one of the more complicated systems in radiogenic isotopes. 

The system includes three radiogenic parent isotopes which decay to three different daughter products, as 
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well as emit alpha (α or 4He), beta (β¯), and antineutrino ( ) particles (Fiorentini et al., 2007). For U-Pb 

dating, the 238U and 235U pathways are used:  

238U = 8 4He + 6β¯ + 6   + 206Pb         (11) 

235U = 7 4He + 4β¯ + 4  + 207Pb         (12) 

 The system also has one stable isotope of lead, 204Pb. This isotope is used as the denominator in 

the decay equations written below as (Hole, 1998): 

206Pb/204Pb = 206Pb/204Pbi + 238U/204Pb   * (eλ1t – 1)      (13) 

207Pb/204Pb = 207Pb/204Pbi + 235U/204Pb   * (eλ2t – 1)      (14) 

where 206Pb/204Pb and 207Pb/204Pb are the isotope ratios at the present, i denotes the initial lead isotope 

ratio at the time of sample formation, 238U/204Pb and 235U/204Pb are the isotope ratios at the present time, 

λ1 and λ2 are decay constants, and t is the time elapsed since the closure temperature of the mineral was 

reached (Hole, 1998). The decay constants used are:  

λ1 = 1.551* 10 -10 half life = 4.468 Ga       (15) 

λ 2= 9.848 *10-10 half life = 704 Ma       (16) 

 These independent decay systems provide two independent geochronometers, which should 

provide two independent ages for a given sample. Ideally, these two ages coincide, which is termed 

concordant. If you rearrange equations 5 and 6 to: 

206Pb*/238U = eλ1t – 1          (17) 

207Pb*/235U = eλ2t – 1          (18)  

where the * denotes the amount of radiogenic lead that has been produced by the sample, for a specified 

value of t, the amount of radiogenic lead of a sample can be calculated. If plotted on a 207Pb*/235U versus 

206Pb*/238U graph, this would produce a curve known as the concordia (Fig. 2.7). However, because the 

elements are radioactive, crystal damage to the zircon containing the U and Pb is not uncommon. 
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Radiation damage can allow lead to be lost from the mineral, as the zircon crystal lattice preferentially 

incorporates uranium and excludes lead. Lead loss by diffusion during metamorphism or incorporation 

into igneous rocks can result in different ages for the 238U and 235U systems, which is called discordance 

(Lee et al., 1997). Several studies have also shown re-crystallization of zircons during metamorphism can 

lead to redistribution of Pb within the mineral, possibly to zones of lower uranium concentration 

(Mattinson et al., 1996; Hawkins and Bowring, 1997; Mezger and Krogstad, 1997; Pidgeon and Wilde, 

1998; Carson et al., 2002a, b; Romer, 2003). When re-crystallized zones of high Pb are sampled, they plot 

above the concordia and are said to be reverse discordant.  

 Zircon (ZrSiO4) is one the most common minerals dated using the U-Pb system. Zircon is a 

stable, tetragonal mineral at the Earth’s surface. Its crystal lattice accepts uranium but excludes lead, and 

it has a closure temperature of ~1,000°C (Dahl, 1997; Lee et al., 1997; Hole, 1998; Cherniak and Watson, 

2001; Finch and Hanchar, 2003; Schmitz and Bowring, 2003). Zircon is quite common in felsic and 

intermediate rocks, but its abundance is low in mafic and ultramafic rocks. In this study detrital zircons, 

those that are not primary but have been weathered from the original rocks in which they formed and 

reincorporated into younger sedimentary rocks, are dated using the U-Pb system to render populations of 

ages for a given formation. Based on the geologic principle of inclusions, the sedimentary unit containing 

detrital zircons of interest must be younger than the youngest zircon found within the rock. Therefore, the 

youngest robust ages of detrital zircons are interpreted to be the maximum depositional age of a given 

unit (Fedo et al., 2003).  

 
Figure 2.7 – Sample concordia plot (Hole, 1998). 
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Chapter 3 – Lesser Himalayan Rocks 

3.1 Introduction 

The Himalaya has been a natural focal point in the study of continent-continent collisional 

orogenies. Numerous theories and models have been developed to elucidate the processes responsible for 

the ongoing uplift and thickening of crust in the world’s largest mountain range. While grand in scope, 

explanations ranging from the classic wedge shaped, forward-propagating thrust systems (Davis et al., 

1983; DeCelles et al., 2001; Robinson et al., 2006; Kohn, 2008) to more avant-garde theories of crustal 

extrusion (Beaumont et al., 2001; Jamieson et al., 2004) are undeniably dependent upon accurate 

geometric and kinematic information to make correct predictions.  Conversely, geometric and kinematic 

information gathered act as tests of the theoretical models.  

The most basic and perhaps, therefore, the most important step towards creating these models is 

the development of an understanding of regional stratigraphy. In the Lesser Himalayan series of central 

Nepal (Fig. 3.1), the rocks have few fossils and are difficult to date and correlate regionally (DeCelles et 

al., 2001). Workers have thus conceptualized a variety of stratigraphic columns in order to evaluate field 

relations (Heim and Gansser, 1939; Pêcher, 1978; Hodges et al., 1996; Upreti, 1996; DeCelles et al., 

2001; Martin et al., 2005; Pearson and DeCelles, 2005; Robinson et al., 2006). Through the use of U-Pb 

isotopic analyses of detrital zircons and time series δ13C variations, this study aims to constrain 

depositional ages for several units in the Lesser Himalayan sequence, and as a result, will inform the 

regional stratigraphic succession and structural organization. 

3.2 Geologic Setting 

 Although the Himalaya offers a spectacular opportunity to study the processes of mountain 

building, it also presents great challenges.  Steep topography, abundant vegetation, and a paucity of 

datable horizons throughout much of the region are several obstacles to the identification and correlation 

of stratigraphic units across the range. This is evidenced by the multitude of monikers for individual 
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formations and the proliferation of stratigraphic columns for the region that are not in agreement. Most 

problematic are the lack of definitive ages and relationships between units, which necessarily makes it 

difficult to establish links between units of eastern and central Nepal with that of the better exposed and 

documented units in western Nepal, and along the rest of the Himalayan arc (DeCelles et al., 2001; 

Robinson et al., 2006).  

 

Figure 3.1 –Geologic map of Nepal with study areas outlined in red (Martin et al., 2005). K – 
Kathmandu, P- Pokhara, L- Langtang, IYSZ – Indus Yarling Suture Zone, STDS – South Tibetan 

Detachment System, MCT- Main Central thrust, RT – Ramgarh thrust, MT- Mahabarat thrust, DT – 
Dadeldhura thrust, MBT – Main Boundary thrust, MFT – Main Frontal thrust 

 

 The four main tectonostratigraphic units that constitute the Himalaya are, from south to north, the 

Subhimalayan (SH), Lesser Himalayan (LH), Greater Himalayan (GH), and Tibetan Himalayan (TH) 

zones, all of which are divided by faults (Fig. 3.1; Heim and Gansser, 1939). This work focuses solely on 

the Lesser Himalayan rocks, using the stratigraphic scheme of Upreti (Fig. 3.2a, b; 1996) as a basis for 

mapping.   
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Figure 3.2a, b – a) Proposed stratigraphy of Lesser Himalayan rocks by (r) Martin et al. (2005) and (l) 
Upreti (1996). b) Schematic of stratigraphy used in this study, with approximate thicknesses labeled. 
Symbols (Kn) Kuncha Formation, (Ks) Kushma Formation, (Fg) Fagfog Formation, (Da) Dandagon 
Formation, (N) Norpul Formation, (D) Dhading Formation, (B) Benighat Formation, (M) Malekhu 

Formation, (GW_FB) Gondwana and Foreland Basin units, (MBT) Main Boundary thrust, (MCT) Main 
Central thrust. The Dandagon and Norpul formations are not recognized in the Modi Khola. 

 

The Lesser Himalayan series is structurally bounded below by the Main Boundary thrust (MBT) 

and above by the Main Central thrust (MCT) (DeCelles et al., 2001). While there are several faults 

associated with the Lesser Himalayan series with displacements on the order of tens of kilometers, only 

the Main Central thrust and the Ramgarh thrust (RT) are considered in this study.  The Ramgarh thrust is 

located within the Lesser Himalayan series, generally placing the oldest Proterozoic rocks against 

younger LH rocks or Miocene foreland basin deposits (Pearson and DeCelles, 2005). The MCT and RT 

are thought to accommodate over 140 km and 120 km of slip, respectively, making them the largest 

factors in regional shortening estimates. 

 Upreti (1996) designates the basal member of the Nawakot unit of the Lesser Himalayan 

sequence in central Nepal the Kuncha Formation. However, the base of this formation has not been 

described or located within Nepal. Largely composed of grey-green phyllites and phyllitic quartzites, the 

Kuncha Formation extends westward from central Nepal for over 300 km, and may be the lateral 

Lakharpata Gr. 

MCT 

MBT
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equivalent of the Ranimata Formation of western Nepal (DeCelles et al., 2001; Pearson and DeCelles, 

2005). The Kuncha Formation has a thickness of several thousand meters and is intruded by the Ulleri 

augen gneiss, a granitic intrusion containing zircons that are 1831±17 Ma, providing a minimum age 

constraint for the formation (DeCelles et al., 2000). Not recognized as a separate unit by Upreti in central 

Nepal, the Kushma Formation is a several hundred meter thick unit of white to grey, fine to very fine 

grained, well sorted quartzite (DeCelles et al., 2001). In western Nepal, the Kushma Formation is 

stratigraphically below the Ranimata (Kuncha?) Formation (DeCelles et al., 2000; Pearson and DeCelles, 

2005; Robinson et al., 2006) and the exact nature of the relationship between the Kuncha and Kushma 

formations in central Nepal, as well as the similarity in names, has caused considerable confusion. Martin 

et al. (Fig. 3.2; 2005) included the Kushma quartzite in the Kuncha Formation, however, a depositional 

age for either unit in central Nepal has not been determined and is a focus point of this research.  

Moving upward in the section, the Fagfog Formation is an off-white to cream colored quartzite, 

with a large amount of ripples and trough cross bedding. In western Nepal it has a thickness of ~500 m 

and detrital zircons indicate an age younger than 1.68 Ga (DeCelles et al., 2000). The Dandagon 

Formation (or Galyang in western Nepal) is a green to grey phyllite that lacks any particularly useful 

diagnostic characteristics. This unit is stratigraphically below the much more distinctive Norpul (or 

Syangia) Formation. The Norpul Formation consists of pink/white quartzites and stunning reddish –

purple phyllites and slates. Moving upwards again are the three members of the Lakharpata Group. In 

stratigraphic order; the ridge-forming, blue-gray Dhading dolomite, the black-gray Benighat slate, and the 

blue-gray Malekhu limestone. The lower portion of the Dhading Formation is described as a collection of 

gray slates and stromatolitic limestones, while the upper portion is characterized as more than 80% 

stromatolitic dolomite, interspersed with a few quartz sandstones and oolitic dolomites (Upreti, 1996). 

The Malekhu Formation consists of thinly bedded dolomites and shales, moving upward into thickly 

bedded dolomite, with the upper portion including intraformational pebble conglomerates and chert 

nodules as well. Stromatolite structures are not as pervasive in the Malekhu Formation.  
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Unconformably overlying the Lakharpata Group (and the Nawakot unit) is the Tansen Unit, 

consisting of the Gondwanan unit and the Bhainskati and Dumri formations. The Carboniferous to 

Paleocene Gondwanan sequence consists of sandstone, black shale, coal, lignite, and quartz pebble 

conglomerate (DeCelles et al., 2001). Bryozoa from the genera Fenestrella, Polypora, and Acanthocladia 

and spores of the genus Vittatiana have been used to ascertain relative ages of this sequence (Upreti, 

1996). The Bhainskati and Dumri formations, which make up the Lower Foreland Basin Unit of Martin et 

al. (2005), consist of Eocene to Miocene black shale, fossiliferous (Nummulites and Assilina) limestone, 

and sandstone (Upreti, 1996). 

The petrography and metamorphic history of the Lesser Himalayan rocks in central Nepal have 

been studied by numerous workers (Arita 1983; Upreti, 1996; Paudel and Arita, 2000; Catlos et al., 2001; 

Beyssac et al., 2004; Bollinger et al., 2004; Kohn, 2008). Work by Martin (2005) in the Modi Khola 

valley indicates a peak equilibrium assemblage of quartz + muscovite + biotite ± garnet ± plagioclase 

feldspar in the Lesser Himalayan series. Exceptions include one sample that lacks muscovite and one 

which has chlorite, but no biotite. Accessory minerals present in the rocks include allanite, apatite, 

hematite/magnetite, ilmenite, monazite, pyrite, thorianite, tourmaline, xenotime, and zircon. Therefore, 

the pelites in the hanging wall of the Ramgarh thrust in central Nepal are garnet zone. 

Garnet-biotite and garnet-ilmenite cation exchange thermometry and GMBP barometry by Martin 

(2005) indicates that the Lesser Himalayan rocks between the Ramgarh thrust and the Main Central thrust 

underwent a peak temperature of 575°C and pressure at the peak temperature of 9 kbar (900 MPa). Work 

by Beyssac et al. (2004), using Raman spectroscopy of carbonaceous matter, yielded peak temperatures of 

330°-540°C which agree within the uncertainty with the finding of Martin (2005). In the Marsyangdi river 

valley, several kilometers east of the Modi Khola valley, Catlos et al. (2001) found peak conditions of 

450°-550°C and 6-8 kbar (600-800 MPa) using muscovite 40Ar/39Ar analyses and thermobarometric 

analyses of garnet bearing assemblages. Research thus suggests that the Lesser Himalayan rocks in 

central Nepal experienced metamorphism from greenschist to lower amphibolite facies.  
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The focus of this research is in the previously mapped Modi Khola valley in the Annapurna range 

of central Nepal (Fig. 3.1). The area has relatively good access and exposure of Lesser Himalayan rocks, 

and the structural top of the section has been well defined (Martin et al., 2005). A second study is located 

in the well-mapped Galcchi Bajar area of Trishuli River Valley, approximately 40 km west of 

Kathmandu, where the uppermost member (Malekhu Formation) of the Lakharpata Group is exposed 

(Fig. 3.3; Pearson and DeCelles, 2005). The lower carbonate member of the Lakharpata Group, the 

Dhading Formation, is poorly exposed in both areas and was thus not sampled. 

With the aim of resolving some of the aforementioned stratigraphic ambiguities, dating of detrital 

zircons in quartzites from the Modi Khola valley and δ13C stratigraphy of the Malekhu Formation in 

Galcchi Bajar are used to constrain the depositional ages of the units of the Lesser Himalayan sequence 

and subsequently the position of the Ramgarh thrust and other structures. As such, the three hypotheses 

that guide this research are as follows: 

1) In the Lesser Himalayan rocks of the Modi Khola, the Kushma quartzite is older than 
the Kuncha Formation. 

2) In the Lesser Himalayan rocks of the Modi Khola, the quartzite stratigraphically 
below the carbonates of the Lakharpata Group is the Fagfog quartzite. 

3) The Malekhu Formation in the Lakharpata Group north of Galcchi Bajar was likely 
deposited before ~1250 Ma.  

3.3 Methods 

3.3.1 Field Mapping 

 Field mapping and sampling in the Modi Khola valley was conducted during May and June 2007. 

Carbonate samples were also collected in 2007 from the Trishuli River valley north of the town of 

Galcchi Bajar (Fig. 3.3). Detrital zircon samples were collected from type localities in central Nepal by 

Dr. Martin during the 2006 field season (Fig. 3.4).  All field stations were marked using the Global 

Positioning System and recorded. Thin section samples were oriented using a Brunton compass.  Samples 

were then stored individually to prevent cross-contamination. 
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Figure 3.3 – Geologic map and cross section of the Trishuli river valley north of Galcchi Bajar (Pearson 
and DeCelles, 2005). 

 
Figure 3.4 – Map of type localities in central Nepal where samples were taken during the 2006 and 2007 
field seasons. The unknown sample is located within the Modi Khola valley, which is one of two study 
areas in this research. Inset map modified from Figure 3.1. Base map courtesy of Lisa Walsh (2008). 
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3.3.2 Malekhu Formation 

Previously mapped by Pearson and DeCelles (Fig. 3.3; 2005), the Trishuli River north of Galcchi 

Bajar has relatively good rock exposure and is easily accessible, providing an ideal location for measuring 

and sampling the Malekhu Formation. Carbonate samples were collected at 3 m intervals, with additional 

samples taken at notable lithologic changes, to prevent sampling bias for specific rock types or exposures.   

Total section thickness measured was 443 m, including covered intervals at the base and top of the 

section.  

 In the lab, the samples were cut using an MK tile saw, then ground and polished with a Struers 

Labopol-21 two-wheel grinding apparatus. Drilling sites were determined by identifying homogeneous 

areas within the rocks that were not located close to veins or weathered surfaces. Analytical procedures 

followed are described in Kaufman et al. (1991) and Kaufman and Knoll (1995). Once drilled, 100 µg of 

material were acidified with 102% phosphoric acid (H3PO4) for 10 minutes at 90° C under vacuum. The 

resulting CO2 samples were analyzed using the GV IsoPrime dual inlet gas source mass spectrometer at 

the University of Maryland.  Eight to ten NBS-19 standards were analyzed per run and all data were 

subsequently reported relative to V-PDB. Uncertainties for both carbon and oxygen isotopes are less than 

0.05‰.  

3.3.3 Zircons  

 Samples of quartzite from the type localities in central Nepal were collected by Dr. Aaron Martin 

during the 2006 field season. Additional samples were collected from the Modi Khola valley during the 

2007 field season by Dr. Martin, as well. Detrital zircon samples include type Kuncha (Sample #506078), 

Kushma (Sample #406102), Fagfog (Sample #506079), and Norpul/Syangia (Sample #406154) 

formations, as well as one sample taken from an unidentified unit in the Modi Khola (Sample #406020). 

One igneous sample was also collected, the Ulleri augen gneiss (Sample #507056). 
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Samples were crushed by hand using a stainless steel mortar and pestle, and sifted through 2 mm 

and 0.25 mm sieves. The resulting material was washed and panned by hand and allowed to dry 

overnight.  Magnetic separation was accomplished using the Frantz LB-1 magnetic barrier separator, set 

with a 17.5° front angle and a 20° side angle.  Samples were run through the Frantz at 0.5, 1, 1.5, and 2.25 

(maximum) amps. Due to machine variance, maximum amp settings were as following; for sample 

number 406154 (2.25A), 406020 (1.97A), 507056 and 506079 (1.85A), and 406102 (1.5A).  Dense liquid 

separation was accomplished using methylene iodide (MEI) with a density of 3.325g/ml. The samples 

were then hand-picked using a stereomicroscope with both transmitted and reflected light. Sample 

406154, the Norpul (Syangia) type locality, did not yield any zircons and will therefore not be further 

evaluated.   During picking, a random selection of zircon grains were chosen to prevent bias in the zircon 

populations of each sample based on grain morphology. With the addition of zircon standard SL-2, the 

zircons were mounted, polished, and taken to the University of Maryland Electron Probe Microanalyzer 

Laboratory. Backscatter electron and cathodoluminescent images were collected using the JEOL JXA-

8900 SuperProbe (Figure 3.5a, b). 

Figure 3.5a, b – Backscatter electron images (left) and cathodoluminescent images (right) of zircons 
from the type Kuncha Formation (Sample 506078). Red arrows indicate candidate spots for laser ablation 

and the red circle encompasses an inclusion which was avoided when firing the laser. 
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 U-Pb isotopic data were collected in-situ from the laser ablation multicollector inductively 

coupled plasma mass spectrometer (LA-MC-ICPMS) at the University of Arizona LaserChron Center.  

The LA-ICPMS uses a New Wave/Lambda Physik DUV 193 Excimer laser, with a 193 nm wavelength. 

The laser is set with an 8 Hz repetition rate and a fluence of ~4 J/cm2. Spot diameter for detrital samples 

was 30 µm, and for the igneous sample a spot size of 20 µm was used to allow for the collection of rim 

and core data from individual grains. Depth of the ablation pit is ~12-15 µm. Care was taken to avoid 

hitting inclusions or multiple zones within a single zircon with the laser (Fig. 3.5a, b). Ablated material 

was carried in a stream of helium to the plasma source and U, Th, and Pb were measured simultaneously 

in static mode on 10E11ohm Faraday detectors for 238U, 232Th, 208Pb, and 206Pb, a 10E12 ohm Faraday 

collector for 207Pb, and an ion counting channel for 204Pb. Examples of systematic uranium and lead 

changes during laser ablation can be seen in Figure 3.6a-c.  
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Figure 3.6a-c – Graphs of (a) 206Pb intensity, (b) 238U intensity, and (c) 206Pb/238U intensity changes 
during laser ablation. Data points are integrated over 1 second intervals. 

 
Reduction of detrital zircon analyses was accomplished using the procedures of Gehrels et al. 

(2006, 2008).  Three corrections were made prior to age calculation using an Excel spreadsheet supplied 

by the University of Arizona LaserChron Center.  Depth-related fractionation was accommodated by 

discarding the first three seconds of data, which removes the early, typically rapidly fluctuating signal 

(Figure 3.7), and then extracting the nine seconds of remaining analyses as nine 1-second integrations 

which yield isotope ratios from the integrated intensities. A least squares regression through the 

remaining data to the initial ratio (fourth second of signal acquisition) was made to account for 206Pb/238U 

and 208Pb/232Th depth dependent changes. Correction for inter-element fractionation of 206Pb/238U  and 

fractionation of 207Pb/206Pb was based on in-run analyses of standard SL-2 (Sri Lanka), which has an ID-

TIMS age of 564 + 4 Ma (2σ) (Gehrels et al., 2008).  Inter-element fractionation of Pb/U is typically 20% 

and fractionation between Pb isotopes is ~2%. Uncertainties on the calibration corrections are 1-2% (2σ). 

The standard was analyzed after every five to seven unknowns. Unknowns were corrected using a sliding 

window average of the six closest standards, excluding the maximum and minimum fractionation factor 

values.  

Common lead correction was made by measuring 204Pb and assuming an initial lead composition 

based on the work of Stacey and Kramers (1975). Background 204Hg and 204Pb were measured on peaks. 

Uranium and thorium concentrations were also determined  by comparison to the standard zircon (SL-2) 
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which has concentrations of 518 ppm and 68 ppm, respectively, calculating the average intensity of the 

238U and 232Th for standards used between samples and adjusting the unknowns by that factor according to 

their intensities. To remove detrital zircon ages without crystallization significance, e.g. an age resulting 

from an analyzed zircon with demonstrable lead loss, analyses with greater than 10% 206Pb/238U error, 5% 

207Pb/206Pb error, 25% discordance, or 5% reverse discordance were discarded. For zircon grains older 

than 1,000 Ma, interpreted ages are based on 207Pb/206Pb, as opposed to 207Pb/235U, with an uncertainty of 

1-2% (2σ).  

Although the formation of “new” metamorphic zircon is rare at temperatures and pressures less 

than upper amphibolite or granulite facies, recrystallization of inherited zircons and growth of 

metamorphic rims is possible (Hoskin and Schaltegger, 2003). Therefore, in order to avoid including 

analyses of detrital zircons that do not reflect igneous crystallization ages, samples were evaluated for the 

presence of metamorphic zircon in several ways. Backscatter electron and cathodoluminescent images, 

which have been demonstrated to be effective methods for revealing internal crystal structure (Hanchar 

and Miller, 1993; Hanchar and Rudnick, 1995), were taken of all samples. Locations of cores and rims 

were noted for better placement of the laser during ablation, and only cores were sampled. Oscillatory 

zoning, which is a common characteristic of igneous zircons (Zhao et al., 2002; Hoskin and Schaltegger, 

2003), was also noted in many of the zircons. Several researchers have noted that metamorphic zircons 

typically have higher U concentrations and higher U/Th ratios than igneous zircons (Belousova et al., 

2002; Rubatto, 2002; Xian et al., 2004; Dziggel et al., 2005). Thus for each sample, outlying analyses 

with relatively high U concentrations or U/Th ratios compared to the sample population as a whole were 

discarded. No more than 5 analyses were excluded from any given sample based on the U concentration 

or U/Th ratio. Lastly, because only clusters of three or more analyses with overlapping ages are 

interpreted to have significance, the likelihood of any n>3 remaining metamorphic zircons yielding 

similar ages is significantly diminished.  
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The number of analyses discarded varied by sample. For the Kuncha type (Sample 506078) there 

were 39 analyses discarded out of 166 or 23% of the total analyses. From the Kushma type (Sample 

406102), 53 analyses out of 178 analyses or 30% were of the total analyses were discarded. In the Fagfog 

type (Sample 506079) 35 analyses out of 211 analyses or 17% of the total analyses were discarded. From 

the unidentified quartzite in the Modi Khola (Sample 406020), 19 of 53 analyses were discarded or 36% 

of the total analyses. 

 

Figure 3.7 - Example of signal from ablation of a zircon using the LA-ICP-MS at the University 

of Arizona LaserChron Center. Laser is fired for 12 seconds, with first 3 seconds of data discarded based 

on rapidly fluctuating signal. Figure from Gehrels et al., 2008. 
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3.3.4 Justification of Detrital Zircon Method 

Although accurate and precise analyses are important, the use of detrital zircons to determine a 

maximum depositional age for a given geologic unit is somewhat less dependent on the precision of any 

one individual analysis, and more focused on the number of analyses and the care with which individual 

zircons are selected (Anderson, 2005). Link et al. (2005) recognized detrital zircons could create a unique 

“barcode” of age spectra that could be used to describe a geologic unit or terrane. However, researchers 

need to be aware of several biases that could influence the representativeness of a given sample and take 

care to avoid them when possible.  The abundance of (or lack of) zircon in source rocks will ultimately 

lead to variability in the amount of zircon produced from a given rock. Zircon is found in sedimentary, 

igneous, and metamorphic rocks, but its abundance is much greater in rocks with felsic or intermediate 

compositions than those that are mafic or ultramafic in nature (Yamashita et al., 2000, Belousova et al., 

2002).  

Furthermore, zircons formed in mafic rocks typically have low U concentrations, which when 

sampled by laser ablation can lead to a large error on the 206Pb/238U measurement (Rubatto, 2002; Hoskin 

and Schaltegger, 2003). The high error can result in the exclusion of those zircons and an introduction of 

bias into the sample. Understanding the source rocks of the detrital zircon sample and the relative quantity 

of mafic or ultramafic rocks that might have contributed to the sample is essential. Research on the Lesser 

Himalayan series indicates that the rocks consist of sediment weathered from the Indian craton and 

deposited on the passive margin of northern India (Gansser, 1964; DeCelles et al., 1998; Sharma, 1998; 

Hodges, 2000; Bollinger et al., 2004; Robinson et al., 2001, Myrow et al., 2003; Najman, 2006). The 

Indian subcontinent consists of six Precambrian terrains. The terrains include the Dharwar, Bastar, and  

Singhbhum cratons, the Southern Granulite Terrain, the Eastern Ghat Mobile Belt, and the Aravalli-Delhi 

Mobile Belt (including the Bundelkhand craton). The major lithologies consist of sandstones, limestones, 

shales, quartzites, felsic and mafic metavolcanics, granites, and gneisses along with Archean aged pillow 

lavas, amphibolites, and ultramafics (Divakara Rao et al., 1998; Sharma, 1998; Mishra et al., 2000; 
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Menon et al., 2003; Myrow et al., 2003; Leelanandam et al., 2006; Pati et al., 2007; Mall et al., 2008). 

Importantly, the amount of mafic or ultramafic rock of mid-Paleoproterozoic age or older in the Indian 

shield appears to be quite small. Therefore, it is inferred that the potential contribution of zircon from 

mafic or ultramafic rocks is likely restricted and the detrital samples in this study should not be unduly 

biased.  

Surficial processes can also create natural biases in the detrital zircon record. Weathering has 

been shown to more easily destroy zircons or portions of zircon grains that are older, have higher U 

concentrations, or are metamict (Fedo et al., 2003). Distance traveled from the source will affect the 

concentration of zircon that is incorporated into downstream sedimentary rocks. Upriver sources may be 

masked by downstream inputs, especially if the lower reaches of the rivers transporting material are 

incised and contribute zircons from underlying units (Cawood et al., 2003; Link et al, 2005; Moecher and 

Samson, 2006).  

While researchers have little to no control over the natural processes that bias detrital zircon 

populations, there are introduced biases in sampling that can be avoided. Larson and Poldervaart (1957) 

demonstrated that zircon breaking during crushing does not appear to be significant. However, a common 

grain size fraction (ex. <0.25 mm) should be used in order to avoid a grain size bias between samples 

(Morton et al., 1996).  There is a lack of evidence to support any biases introduced by water separation on 

the Wilfley table or in this research, hand panning, or from the dense liquid separation of zircons (Fedo et 

al., 2003). Magnetic separation has the potential to cause bias in detrital zircon samples because of the 

positive correlations between Pb loss, U content, discordance, and magnetic susceptibility (Silver, 1963; 

Sircombe and Stern, 2002). It is noted that the most paramagnetic fractions of detrital zircons are typically 

the most unreliable (discordant) and it is suggested that a Frantz setting of 1.8 A with a 10° side angle 

should be an acceptable compromise between a representative sampling and analytical reliability. 

However, this is perhaps open to some interpretation (Sircombe and Stern, 2002).  
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Hand picking of the detrital zircon population has the potential to introduce a large bias into the 

final age population of a sample and has thus been a focus of several studies.  Several researchers argue 

for the importance of a random sampling of grains (Dodson, 1988; Morton et al., 1996; Moecher and 

Samson, 2006), while others suggest picking non-random samples based on grain morphology (Ross and 

Villenuve, 2003), or both random and non-random samples to compare results (Anderson, 2005). Link 

and Fanning (2003) sampled from the the same units as Ross and Villenuve (2003) and found the same 

populations of zircons using a random picking method versus the previous author’s selective method. 

They therefore maintain that picking grains based on a specific morphology is unnecessary. These 

arguments about random and non-random picking lead to the question: How many zircons need to be 

picked and analyzed to yield a statistically robust answer? 

Dodson (1988) determined a sample of n=60 randomly chosen detrital zircons should detect an 

age population as low as 5% of a given sample at a 95% confidence interval. This assumes that any zircon 

in the sample has an equal opportunity of being picked. Link and Fanning (2003) found in sample sizes 

n>60, the smallest age populations became better defined but no new populations were detected. They 

also noted that one grain analysis does not constitute a population, but that a multi-grain population (n ≥ 

3) was important to demonstrate the presence of any specific age group. Several other researchers use 

sample sizes ranging from n=35 to n=75 grains based on the work of Dodson (Morton et al., 1996; Link 

and Fanning, 2003; Moecher and Samson, 2006). 

 However, Vermeesch (2004) posits that Dodson’s work does not sufficiently account for a “worst 

case” scenario in which there is an equal abundance of all age populations. If this were the case a sample 

size of n=117 would be necessary to ensure at the 95% confidence interval that an age population of 5% 

is not missed. If research suggests that there is not an equal abundance of all age populations, Anderson 

(2005) suggests the ideal number of analyses needed is likely somewhere between Dodson’s n=60 and 

Vermeesch’s n=117.  In this study, three of the four detrital zircon samples analyzed have n >117. The 

remaining sample has n= 34, after much of the sample was lost during final polishing. 
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3.4 Results 

3.4.1 Mapping  

 Work in the Modi Khola valley (Fig. 3.8) reveals the Kushma Formation is exposed in the 

southernmost and topographically lowest portion of the map area (Fig. 3.9). Outcrop near the town of 

Birethati (Fig. 3.10) demonstrates that the Kushma quartzite lies above the phyllitic Kuncha Formation.  

Moving topographically higher and northward, the Kuncha Formation is again exposed, but this time 

above the Kushma. The Kuncha Formation is intruded by the Ulleri augen gneiss in the valley. The 

repetitive sequence of Kushma and Kuncha formations is followed by exposure of another clean quartzite, 

also identified as the Kushma Formation.  

Structurally above the quartzite are, in order, the Dhading, Benighat, and Malekhu formations of 

the Lakharpata Group, followed by the Gondwana and Foreland Basin sediments. Thin section 

photographs of the units sampled from type localities in central Nepal and from the Modi Khola can be 

seen in Figures 3.11a-j. These are some of the first pictures of type locality thin section to be illustrated 

and are included here for reference. Petrographic descriptions of the type location detrital zircon samples 

can be seen in Table 1. The Main Central thrust represents the structural termination of the Lesser 

Himalayan series and is located at the northernmost portion of the map area. Measured foliations and 

bedding in the Modi Khola are predominantly north (hinterland) dipping. 

 

Figure 3.8 – View of the Modi 
Khola valley looking south from 
Ghandruk.  
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 Figure 3.9  – Comparison of mapping in Modi Khola valley and surrounding region (a) completed prior 
to 2006 by Martin (personal communication) and (b) based on this research in 2007. CI=200 m. Black 
star indicates location of Figure 3.10. 
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Figure 3.10 – Birethati exposure with quartzitic Kushma Formation (pCks) above phyllitic Kuncha 
Formation (pCkn). Red dashed line denotes contact. Outcrop location in the Modi Khola valley marked by 

black star in Figure 3.9. 

3.4.2 Malekhu Formation 

 Results from the analysis of the Malekhu Formation from the Trishuli River valley can be seen in 

Figure 3.12 and Table 2.The δ13C values of the section range from  -1.7 to +0.2 ‰, with a mean value of -

0.9 ‰ ± 0.4 ‰ (1 s.d.), while δ18O values range from -17 to -9 ‰, with a mean value of -12.4 ‰ ± 1.5 

‰. A remarkably long stratigraphic interval with limited variation about the mean can be seen in the 

carbon isotope data throughout the entire section, with the exceptions of a slight negative trend noted 

from approximately 133 m to 147 m and a somewhat larger variation is seen in the data above 387.5 m. 

Otherwise, there is remarkable consistency in the data over the entire 309.5 m section and across a wide 

variety of lithologies, including limestone, dolomite, and calcareous shale (Fig. 3.13a-d).  The data for 

δ18O reveal slightly more variability, but no significant excursions are seen. Thin sections from the 

Trishuli River valley reveal recrystallization and a lack of primary structures, as well as an increasing 

siliciclastic input near the top of the section. 
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 A sample of the Malekhu Formation (Sample #07033) located in the Modi Khola valley (Fig. 3.9) 

reveals a δ13C value of -0.3‰ and a δ18O value of -12 ‰, which is similar to findings in the Trishuli River 

valley. Thin sections of the sample (Fig. 3.11 i,j) demonstrate that this unit is predominantly made up of 

carbonate minerals and is not a sandstone as suggested by previous workers (Pearson and DeCelles, 

2005). Of note, the thin sections from samples in the Modi Khola valley also demonstrate a consistently 

larger grain size than the thin sections from the Trishuli River locality. This is expected since the Malekhu 

Formation in the Modi Khola valley is located within the Ramgarh thrust sheet, and experienced higher 

temperatures and pressures than in the Trishuli River valley. 

 Additionally, several samples dispersed throughout the section were drilled in multiple locations 

to ascertain the variability of carbon and oxygen isotope measurements on the millimeter scale. The 

results of this investigation demonstrate very little variability of δ13C and δ18O values on this scale, 

although there are some minor differences beyond analytical uncertainty (Fig. 3.14). The limited variation 

in carbon and oxygen isotopic values at the millimeter scale is also reflected in the larger, meter scale 

findings which demonstrate a similar tendency.  
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Figure 3.11a-j (and on next page).  Thin sections of type localities in central Nepal and samples from 
the Modi Khola. Pictures (a-h) taken in cross-polar light, scale the same as in (b). (a) Kuncha Formation 
type locality – grey-green phyllite and phyllitic quartzite, (b) Kushma Formation type locality – coarse 
grained, well sorted quartzite, (c) Ulleri augen gneiss type locality, (d) Fagfog Formation type locality – 
medium grain, well sorted quartzite, (e) Dhading Formation – carbonate- from Modi Khola, (f) Benighat 
Formation – slate- from Modi Khola ,(g) Malekhu Formation – carbonate-from type locality, (h) diorite 
mapped in the Modi Khola, (i, j) Scale as seen in (j). Cross-polar and plane polar light respectively. 
Malekhu Formation from Modi Khola, which was interpreted as a sandstone by previous workers. 
Symbols (q) quartz, (bt) biotite, (ms) muscovite, (amp) amphibole, (ca) calcite, (pl) plagioclase feldspar. 
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Figure 3.12 (next page) – Stratigraphic column with carbon and oxygen isotopic data for the Malekhu 
Limestone. Interval between base of section and 133.5m is covered, column starts at 133.5m. All values 
are referenced to V-PDB. Errors less than 0.05 ‰ and contained within symbols. (ca) calcite, (dol) 
dolomite.
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Figure 3.13a-d. – Thin sections of carbonate lithofacies present in the Malekhu Formation in the Trishuli 
River valley. Photos taken in cross-polar light, field of view 2 mm. (a) Crystalline carbonate – calcite with 
quartz vein, (b) Crystalline carbonate – dolomite with re-crystallized calcite in vein (c) Calcareous shale 
with quartz vein, (d) Micaceous calcareous shale. 
 

 

Figure 3.14 – Carbon and oxygen cross-plot of selected samples from the stratigraphic column in Fig. 
3.12 demonstrate limited variablitiy of δ13C and δ18O values with samples on a millimeter scale. Errors 
contained within symbols. 
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3.4.3 Interpretation of Detrital Zircon Chronology 

 In this study detrital zircon data are presented with a combination of histograms and probability 

density plots. The histograms plot the number or frequency of analyses or samples on the y-axis and 

207Pb/206Pb ages of samples in binned groups along the x-axis. Overlying the histogram is a probability 

density plot. This plot represents the ages and frequencies, as well as associated uncertainties 

(Vermeesch, 2004). The probability density plot is constructed by calculating a normal distribution for 

each analysis based on its measured age and uncertainty, then summing the probability distributions into a 

single curve (Gehrels et al., 2006).  

 Based on the premise that a geologic unit is younger than the youngest detrital zircon contained 

within it (law of inclusions); the youngest portion of the detrital zircon sample is of greatest interest for 

interpreting maximum depositional ages. While the entire age spectra of an analysis may be useful for 

studies of provenance, no interpretations are made regarding these ages. All interpretations focus on the 

youngest zircons within a given sample. 

 Although Vermeesch (2004) suggests that a single age analysis can be used to determine the 

presence of an age population, other researchers prefer to interpret only clusters of three or more analyses 

with overlapping ages as defining robust age populations (DeCelles et al., 2000, 2004; Gehrels et al., 

2006, 2008). A single analysis is more likely to have been compromised in some way (e.g. Pb loss) and 

yield an erroneous age, than three or more analyses with ages that overlap. Therefore, this study does not 

interpret clusters of ages with less than three analyses. Furthermore, a range of ages are given for each 

sample and the size of the analyzed cluster is also indicated. From the range of ages, a conservative 

maximum depositional age, as well as a less conservative, but still robust maximum depositional age is 

determined for each unit.  
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3.4.4 Zircons  

Reduction of detrital zircon analyses yield several distinct maximum depositional ages for units 

in the Modi Khola. For zircon grains older than 1,000 Ma, interpreted ages are based on 207Pb/206Pb, as 

opposed to 207Pb/235U, with an uncertainty of 1-2% (2σ)(Table 3). Zircons (n=127) from the type Kuncha 

Formation have a youngest peak on the probability density plot (Fig. 3.15a, b) of 1896 Ma, however 

Table 2 shows a cluster of 10 analyses with ages ranging from 1871 to 1881Ma. Therefore a conservative 

maximum depositional age for the Kuncha Formation is ~1896 Ma. A slightly less conservative, but still 

robust age for the Kuncha Formation is ~1875 Ma. The unit’s depositional age is further constrained by 

the 1831 Ma ±17 Ma age of the Ulleri augen gneiss, which intrudes the Kuncha Formation and thus 

constrains the youngest possible age of deposition (DeCelles et al., 2000).  Sample (507056), the Ulleri 

augen gneiss collected in 2007, did not yield useable ages for either cores or rims. As such, it was not 

included in this analysis and the published age of 1831 Ma ±17 Ma is used instead (DeCelles et al., 2000). 

The maximum depositional age indicated by the youngest peak on the probability density plot for 

zircons (n=125) in the type Kushma Formation is 1795 Ma (Fig. 3.16a, b).  Nine analyses ranging from 

1771-1785 Ma suggest a less conservative, but still robust maximum depositional age of ~1780 Ma for 

the Kushma Formation.  The maximum age of deposition peak on the probability density plot for the type 

Fagfog Formation (n=176) is ~1800 Ma (Fig. 3.17a, b).  Seven analyses with ages ranging from 1791 to 

1810 Ma also suggest a maximum depositional age of 1800 Ma for this unit. The unknown sample (n=34) 

taken from the Modi Khola indicates a likely maximum depositional age of ~1900 Ma, with the youngest 

reliable zircon population ranging between 1895 and 1908 Ma, although the sample size is much smaller 

than the preferred n> 60, as the majority of the sample was lost during final polishing (Fig. 3.18a, b).  
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3.5 Implications  

3.5.1 Constraints on depositional ages  

 Broadly consistent with the findings of DeCelles et al. (2000), the detrital zircon analyses of this 

study have several interesting implications for the depositional ages of Lesser Himalayan units in central 

Nepal. First, the ~1875 Ma maximum depositional age of the Kuncha Formation coupled with the 1831 ± 

17 Ma age of the intruded and cross-cutting Ulleri augen gneiss, provide upper and lower depositional  

 

 
Figure 3.15a -b. – Relative probability plot of age distributions and concordia diagram of detrital 
zircon ages in the type Kuncha Formation (506078). Inferred depositional age is ~1875 Ma. 
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Figure 3.16a -b. – Relative probability plot of age distributions and concordia diagram of detrital zircon 
ages in the type Kushma Formation (406102). Inferred depositional age is ~1780 Ma. 
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Figure 3.17a -b. – Relative probability plot of age distributions and concordia diagram of detrital zircon 
ages in the type Fagfog Formation (506079). Inferred depositional age is ~1800 Ma. 
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Figure 3.18a-b. – Relative probability plot of age distributions and concordia diagram of detrital zircon 
ages in the unknown formation in the Modi Khola (406020). Inferred depositional age is ~1900 Ma.  
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bounds for the unit (DeCelles et al., 2000). These data support the interpretation that the Kuncha 

Formation is older than the Kushma and Fagfog formations, which have maximum depositional ages that 

are younger than the crystallization age of the Ulleri gneiss. This finding does not support my earlier 

hypothesis (1), in which the Kushma Formation was expected to be older than the Kuncha Formation.  

Second, the ~1800 Ma maximum age of deposition for the type Fagfog Formation allows the unit 

to have been deposited before the type Kushma Formation, but it cannot completely rule out that the unit 

may actually have been deposited after the deposition of the Kushma Formation. Due to the restricted 

sample size, the zircon population from the quartzite (406020) stratigraphically below the Lakharpata 

Group in the Modi Khola does not match exactly any of the type localities. However, there are similarities 

between the histogram profiles of the unknown and the Fagfog type locality, as well as that of the 

Kushma type locality. If the northernmost quartzite is the Kushma Formation, then a depositional contact 

between it and the underlying Kuncha Formation would be inferred. In contrast, if the northernmost 

quartzite is the Fagfog Formation a fault contact is required. The simplest and therefore the preferred 

explanation is that the northernmost quartzite is actually a repetition of the Kushma Formation and is 

mapped as such. Since the data cannot distinguish between the Fagfog and Kushma formations, I am 

unable to falsify hypothesis (2) that the northernmost quartzite is the Fagfog Formation.  

Third, the trend of near 0‰ δ13C values throughout the Malekhu section in Trishuli River valley 

is consistent with hypothesis (3) of a Mesoproterozoic (>1250 Ma) age of deposition. Unfortunately, the 

data cannot differentiate between an early Mesoproterozoic depositional age and that of a younger, 

relatively quiescent interval between the larger δ13C shifts of the later Mesoproterozoic or 

Neoproterozoic. However, in practical terms, there appears to be no evidence for carbonates from a thick, 

Neoproterozoic aged succession with near 0‰ δ13C values continuously throughout the section.  Buick et 
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al. (1995) found a comparably limited range of δ13C values in the Mesoproterozoic Bangemall Group in 

Australia and noted that the ”flat” carbon values also existed over an approximately 2500 m thickness of 

strata.  Knoll et al. (1995) examined Proterozoic carbonates of the 2200 m thick Anbar Massif in 

northwestern Siberia which span the Meso-Neoproterozoic boundary. They found δ13C values of 0 to -

1.9‰ in the older units (1600-1200 Ma), and slightly greater variation, -2.7 to 4.6‰, in the younger units 

(1200-850 Ma). Spanning a similar time rage, Kumar et al. (2002) investigated the 4300 m thick 

Proterozoic Vindhyan Basin in central India, in which the older, Mesoproterozoic, unit (~2100 m thick) 

also shows δ13C values of 0‰ and the younger Neoproterozoic unit values show a range from -7.5 to 2‰. 

Kaufman et al. (2006) found significantly more negative and positive δ13C values in the ~1400 m thick 

Neoproterozoic (Ediacaran Period) Krol platform in the Lesser Himalaya of northern India, as did Tewari 

and Sial (2007). These studies lead to a preference for an early (>1250 Ma) Mesoproterozoic age of 

deposition for the Malekhu Formation (Fig. 3.19). 

The δ13C age of the Malekhu Formation is significant because it confirms that the Lakharpata 

Group of central Nepal is not correlative with other carbonate successions in the Lesser Himalayan 

physiographic province in India, e.g., the Neoproterozoic Infra Krol Formation and the Krol group 

(Aharon et al., 1987; Kaufman et al., 2006; Tewari and Sial, 2007).  

 

Figure 3.19 – δ13C curve for Meso-and Neo-Proterozoic rocks (Kah et al., 1999). 
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Post-depositional diagenesis has been shown to cause δ18O values to become more negative 

through aqueous fluid interactions, coupled with temperature increases after burial, while leaving δ13C 

values relatively unchanged (Tucker, 1983; Banner and Hanson, 1990; Wickham and Peters, 1993; 

Jacobsen and Kaufman, 1999; Kah et al., 1999; Kaufman et al., 2006). The wide range of negative δ18O 

values suggests the influence of an isotopically depleted metamorphic or meteoric fluid interaction with 

the rocks (Jacobsen and Kaufman, 1999; Baumgartner and Valley, 2003). The variation in oxygen values 

appears to be unrelated to or uncoupled from the carbon isotopes which remain unchanging throughout 

the section. The significant amount of veining in parts of the measured section, which can be seen in thin 

section (Fig. 3.13a-d), is physical evidence consistent with fluids moving through the system.  

3.5.2 Stratigraphy in the Modi Khola   

Based on depositional age constraints of the detrital zircons, a reorganization of the stratigraphy 

of central Nepal is necessary.  Detrital zircons and Ulleri augen gneiss magmatic zircons constrain the 

Kuncha Formation as older than the Kushma, therefore the Kuncha Formation should be considered the 

basal unit of the Lesser Himalayan package. This is supported by field evidence in the geologic exposure 

south of the town of Birethati (Fig. 3.10), which clearly demonstrates the relationship of Kushma 

Formation overlying Kuncha Formation, as well as the larger map scale contact between the units. 

Furthermore, it has been noted by previous workers that exposures of the Ulleri augen gneiss exclusively 

intrude the Kuncha Formation, but never the Kushma Formation or younger units. If the Kushma 

Formation were the older unit, evidence of the Ulleri augen gneiss intruding the Kushma would be 

expected.   

While mapping, no evidence was found to indicate the existence of the Dandagon or Syangia 

formations in the Modi Khola. The northernmost quartzite in the Modi Khola is likely the Kushma 

Formation, based on detrital zircon analyses and evaluation of field relationships.  Based on this 

identification and from the absence of the Dandagon and Syangia formations, a significant amount of the 
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Lesser Himalayan series is missing/ omitted from the region, either through normal faulting or a 

stratigraphic hiatus. A normal fault is inferred based on the presence of the omitted units in nearby 

regions.  

The package of rocks topographically and stratigraphically above the northernmost quartzite are 

likely the Dhading, Benighat, and Malekhu formations (the Lakharpata Group as recognized in western 

Nepal). This interpretation is supported by thin section petrography, which confirm the carbonate-shale-

carbonate lithologies of the units (Fig. 3.11a-j). Furthermore, thin sections of the Malekhu Formation 

from the Modi Khola demonstrate a larger grain size than that of the measured section in the Trishuli 

River valley. This finding suggests that the rocks have experienced more recrystallization in the Modi 

Khola valley, which is consistent with its metamorphic history. However, the similarity in δ13C and δ18O 

values between the Modi Khola and Trishuli river valleys suggests limited diagenetic differences between 

the two. 

Topographically above the Malekhu Formation, the Gondwana/Foreland Basin units are exposed. 

The Main Central thrust is structurally above the Gondwana and Foreland Basin and represents the top of 

the Lesser Himalayan series. 

3.5.3 Structural Significance  

The presence of a thrust fault is inferred from the repetition of Kuncha and Kushma units in the 

Modi Khola. Since the Ramgarh thrust is defined as the first major thrust fault below the MCT, the 

northernmost exposure of the Kuncha Formation marks the location of the Ramgarh thrust. Based on this 

interpretation, the location of the Ramgarh thrust is ≥10 km further south than indicated by previous 

mapping (Fig.3.9 and 3.20; Martin et al., 2005; Pearson and DeCelles, 2005). DeCelles et al. (2001) note 

that the Ramgarh thrust sheet, where currently located, is unusually thin for such a regionally extensive 

feature. This study’s findings imply that the Ramgarh thrust does in fact carry a thick package of rock 

similar to, but thinner, than that of the Main Central thrust, and supports the assertion of Pearson and 



 

51 

 

DeCelles (2005) that the thrust is a kinematically important structure in the Himalayan fold and thrust 

belt. Furthermore, this interpretation reduces the number of thrust faults mapped below the MCT within 

the Modi Khola from four to one (Fig. 3.9), and would thus reduce the estimates of shortening 

accommodated in the region.  

3.6 Conclusions 

  Field observations, δ13C analyses, and U-Pb detrital zircon ages support the following 

conclusions in the central Nepal Himalaya: 

(1) The Kuncha Formation is older than the Kushma Formation in central Nepal. Detrital zircons 

indicate a conservative maximum depositional age for the Kuncha Formation of ~1896 Ma. A 

slightly less conservative, but still robust age for the Kuncha Formation is ~1875 Ma. The Ulleri 

augen gneiss, which intrudes the Kuncha Formation, is dated at 1831±17 Ma age and constrains 

the youngest possible age of deposition for the unit. Detrital zircons from the Kushma Formation, 

which is not intruded by the Ulleri augen gneiss, indicate a maximum depositional age of the 

~1795 Ma. A less conservative, but still robust maximum depositional age of ~1780 Ma for the 

Kushma Formation is still consistent with this conclusion. 

(2) The Malekhu Limestone was likely deposited before 1250 Ma. There appears to be no evidence 

for a thick succession of Neoproterozoic aged carbonate rocks with consistently near 0‰ δ13C 

values throughout the section, especially those of the Infra Krol  and Krol formations in the 

physiographic Lesser Himalaya (Buick et al., 1995; Knoll et al., 1995; Kumar et al., 2002).  

(3) Upper and lower age bounds for Lesser Himalayan rocks in central Nepal between the Kuncha 

and Malekhu formations are ~1875 Ma to ~1250 Ma ( likely lower bound on the Malekhu 

Formation), indicating deposition occurred over no more than a 625 Ma time span.  

(4) Based on the depositional ages determined in this study, the Ramgarh thrust is likely located 

farther south than previously mapped. The new location of the Ramgarh would imply that the 

thrust does in fact carry a thick package of rock similar to that of the Main Central thrust, and the 
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reduction in the number of faults mapped in the Modi Khola may reduce shortening estimates in 

the fold and thrust belt of central Nepal. 

(5) Reevaluation of fault locations in central Nepal is called for based on the stratigraphy defined in 

the Modi Khola. Confirmation of this finding in other parts of Nepal is necessary, and if 

supported, should be reflected in balanced cross sections of the region. 

 

 

Figure 3.20 – Comparison of mapping by Pearson and DeCelles (2005) and mapping completed in this 
study in 2007. Lithologic units are the same as in Figure 3.9. The Ranimata Formation in Pearson and 
DeCelles (2005) may be the lateral equivalent of the Kuncha Formation (orange) in central Nepal. 
Contour interval is 200m for both maps. 
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Table 1 – Petrographic descriptions of detrital zircon samples in this study.  

Sample Number Sample Name Predominant 
Minerals 

Accessory Minerals 

406020 Unknown in Modi 
Khola 

quartz muscovite, zircon 

406102 Kushma Formation quartz chlorite, muscovite, 
sulfides, tourmaline, 

zircon 

506078 Kuncha Formation quartz, muscovite hematite/magnetite, 
sulfides, tourmaline, 

zircon 

506079 Fagfog Formation quartz muscovite, rutile, 
tourmaline, zircon 
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Table 2 – Carbon and oxygen values of the Malekhu formation. Data highlighted in color correspond to 
Figure 3.9. 

Height above base (m) δ13C δ18O Height above base (m) δ13C δ18O 
133.5 -0.1 -11 292.5 -0.9 -14 
136.5 0.0 -11 292.5 -1.0 -14 
139.5 -0.1 -12 292.5 -1.0 -14 
139.5 -0.1 -12 292.5 -1.0 -14 
139.5 -0.2 -13 292.5 -1.0 -14 
139.5 -0.2 -13 295.5 -0.9 -13 
139.5 -0.2 -13 298.5 -0.7 -13 
139.5 -0.1 -13 301.5 -0.9 -12 
145.5 -0.4 -11 304.5 -1.1 -13 
148.5 -0.6 -12 304.5 -1.2 -13 
148.5 -0.6 -12 310.5 -1.0 -13 
148.5 -0.6 -12 310.5 -1.1 -14 
148.5 -0.6 -12 313.5 -1.2 -14 
148.5 -0.6 -12 313.5 -1.2 -14 
151.5 -0.8 -13 319.5 -1.2 -12 
154.5 -1.0 -13 322.5 -1.4 -12 
163.5 -1.0 -13 325.5 -1.1 -12 
166.5 -1.0 -14 331.5 -1.1 -11 
172.5 -0.8 -11 334.5 -1.2 -11 
175.5 -0.7 -10 337.5 -0.9 -12 
178.5 -0.8 -11 339.5 -1.0 -12 
178.5 -0.8 -11 342.5 -1.1 -11 
181.5 -1.1 -11 345.5 -1.1 -12 
184.5 -0.9 -9 345.5 -1.1 -13 
187.5 -0.9 -11 357.5 -0.8 -14 
190.5 -0.9 -11 360.5 -0.7 -14 
196.5 -0.8 -10 363.5 -1.1 -14 
199.5 -1.0 -11 363.5 -1.1 -14 
202.5 -1.3 -11 366.5 -0.9 -12 
208.5 -0.7 -10 366.5 -0.9 -12 
211.5 -1.1 -11 369.5 -1.1 -12 
214.5 -1.0 -11 369.5 -1.1 -12 
217.5 -1.1 -10 372.5 -0.9 -12 
220.5 -1.6 -13 372.5 -0.9 -12 
223.5 -1.5 -13 376.5 -0.6 -12 
225.5 -0.8 -11 379.5 -1.1 -13 
229.5 -0.6 -9 382.5 -1.1 -14 
232.5 -1.0 -10 384.5 -1.3 -14 
235.5 -1.3 -11 387.5 -0.0047 -12 
238.5 -1.1 -10 387.5 0.1180 -12 
241.5 -0.8 -9 387.5 0.1874 -11 
244.5 -1.0 -12 387.5 -0.0112 -12 
250.5 -1.0 -12 393.5 -1.0 -14 
250.5 -0.9 -12 393.5 -1.1 -14 
253.5 -1.2 -13 396.5 -0.9 -13 
259.5 -0.8 -13 396.5 -0.8 -14 
265.5 -1.3 -13 408.5 -0.6 -13 
274.5 -1.1 -15 408.5 -0.7 -14 
280.5 -1.7 -17 414.5 -0.7 -14 
280.5 -1.2 -15 414.5 -0.6 -14 
283.5 -1.4 -15 420.5 -1.7 -16 
289.5 -0.9 -14 429.5 -1.6 -15 
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Table 3– U-Pb detrital zircon analyses. 

   
Isotopic 
ratios        

Apparent 
ages (Ma)      

Ages 
used   

                     

U 206Pb 207Pb* ± 206Pb ±  Error 206Pb* ±  207Pb* ± 206Pb* ±  Concord. Age ±  

(ppm) 204Pb 235U (%) 238U (%) Corr. 238U (Ma) 235U (Ma) 207Pb* (Ma)   (Ma) (Ma) 

Sample 506078 – Kuncha Fm. (Lat, Long = 28.12613°, 84.34905°)          

799 75325 5.14828 1.67 0.33217 1.00 0.60 1849 16 1844 14 1839 24 1.01 1839 24 

290 14050 5.11838 1.90 0.32830 1.00 0.52 1830 16 1839 16 1849 29 0.99 1849 29 

321 30368 5.39134 1.58 0.34242 1.22 0.77 1898 20 1883 14 1867 18 1.02 1867 18 

324 32306 5.41025 2.53 0.34355 1.32 0.52 1904 22 1886 22 1868 39 1.02 1868 39 

198 15979 5.43952 1.50 0.34517 1.00 0.67 1912 17 1891 13 1869 20 1.02 1869 20 

836 33214 5.08251 1.42 0.32226 1.00 0.71 1801 16 1833 12 1870 18 0.96 1870 18 

248 10120 5.53482 1.82 0.35062 1.00 0.55 1938 17 1906 16 1872 27 1.04 1872 27 

264 19544 5.39347 1.81 0.34147 1.00 0.55 1894 16 1884 16 1873 27 1.01 1873 27 

376 37490 5.40051 1.41 0.34159 1.00 0.71 1894 16 1885 12 1875 18 1.01 1875 18 

256 18555 5.39259 1.41 0.34091 1.00 0.71 1891 16 1884 12 1876 18 1.01 1876 18 

893 69830 5.33576 1.56 0.33687 1.00 0.64 1872 16 1875 13 1878 22 1.00 1878 22 

294 21963 5.48941 1.66 0.34638 1.00 0.60 1917 17 1899 14 1879 24 1.02 1879 24 

223 22910 5.23708 1.92 0.33042 1.00 0.52 1840 16 1859 16 1879 30 0.98 1879 30 

653 66194 5.21299 1.59 0.32889 1.00 0.63 1833 16 1855 14 1879 22 0.98 1879 22 

442 34453 5.27139 1.41 0.33219 1.00 0.71 1849 16 1864 12 1881 18 0.98 1881 18 

921 75827 5.54070 1.95 0.34904 1.19 0.61 1930 20 1907 17 1882 28 1.03 1882 28 

291 20731 5.36995 1.42 0.33824 1.00 0.71 1878 16 1880 12 1882 18 1.00 1882 18 

207 19472 5.29985 1.41 0.33357 1.00 0.71 1856 16 1869 12 1884 18 0.99 1884 18 

797 40867 4.95667 1.81 0.31190 1.00 0.55 1750 15 1812 15 1884 27 0.93 1884 27 

248 18072 5.39717 1.41 0.33953 1.00 0.71 1884 16 1884 12 1884 18 1.00 1884 18 

184 20669 5.15907 1.60 0.32415 1.00 0.62 1810 16 1846 14 1887 23 0.96 1887 23 

364 25208 5.42230 1.87 0.34058 1.21 0.65 1889 20 1888 16 1887 26 1.00 1887 26 

1021 47042 4.88344 2.01 0.30646 1.00 0.50 1723 15 1799 17 1889 31 0.91 1889 31 

598 40312 4.79973 4.97 0.30105 4.83 0.97 1697 72 1785 42 1890 21 0.90 1890 21 

137 8882 4.99931 4.67 0.31354 4.50 0.96 1758 69 1819 40 1890 22 0.93 1890 22 

230 22802 5.22026 3.27 0.32735 1.00 0.31 1826 16 1856 28 1890 56 0.97 1890 56 

220 21475 5.17269 2.39 0.32434 1.71 0.72 1811 27 1848 20 1890 30 0.96 1890 30 

204 19858 5.52960 2.30 0.34672 1.74 0.76 1919 29 1905 20 1890 27 1.02 1890 27 

364 22118 5.47920 2.14 0.34340 1.84 0.86 1903 30 1897 18 1891 20 1.01 1891 20 

183 13296 5.12942 1.49 0.32147 1.00 0.67 1797 16 1841 13 1891 20 0.95 1891 20 

382 22829 5.37802 1.49 0.33693 1.11 0.74 1872 18 1881 13 1892 18 0.99 1892 18 

175 15954 5.33255 2.58 0.33383 2.38 0.92 1857 38 1874 22 1893 18 0.98 1893 18 

201 22723 5.21034 1.41 0.32605 1.00 0.71 1819 16 1854 12 1894 18 0.96 1894 18 

524 47243 5.12015 1.52 0.32032 1.14 0.75 1791 18 1839 13 1894 18 0.95 1894 18 

555 74574 5.25434 1.41 0.32865 1.00 0.71 1832 16 1861 12 1895 18 0.97 1895 18 

430 35768 5.56044 2.17 0.34766 1.00 0.46 1923 17 1910 19 1895 35 1.01 1895 35 
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562 41138 5.43393 1.96 0.33971 1.04 0.53 1885 17 1890 17 1896 30 0.99 1896 30 

265 25997 5.21799 2.31 0.32617 1.99 0.86 1820 32 1856 20 1896 21 0.96 1896 21 

565 45610 5.15678 1.84 0.32185 1.00 0.54 1799 16 1846 16 1899 28 0.95 1899 28 

468 43635 5.46276 1.47 0.34093 1.00 0.68 1891 16 1895 13 1899 19 1.00 1899 19 

192 20518 5.53399 1.97 0.34523 1.70 0.86 1912 28 1906 17 1899 18 1.01 1899 18 

687 54206 5.37924 1.41 0.33523 1.00 0.71 1864 16 1882 12 1901 18 0.98 1901 18 

185 12530 5.37782 5.40 0.33497 1.41 0.26 1862 23 1881 46 1902 94 0.98 1902 94 

479 34461 5.49145 1.41 0.34205 1.00 0.71 1897 16 1899 12 1902 18 1.00 1902 18 

497 35611 5.47237 1.44 0.34055 1.03 0.72 1889 17 1896 12 1904 18 0.99 1904 18 

752 77232 5.43694 1.41 0.33829 1.00 0.71 1878 16 1891 12 1904 18 0.99 1904 18 

824 51174 4.69642 2.03 0.29216 1.17 0.58 1652 17 1767 17 1904 30 0.87 1904 30 

1035 76872 5.26111 2.11 0.32687 1.86 0.88 1823 30 1863 18 1907 18 0.96 1907 18 

341 33024 5.61773 1.41 0.34901 1.00 0.71 1930 17 1919 12 1907 18 1.01 1907 18 

935 95878 5.11073 2.27 0.31749 1.45 0.64 1777 23 1838 19 1907 31 0.93 1907 31 

249 20051 5.73419 1.41 0.35613 1.00 0.71 1964 17 1937 12 1907 18 1.03 1907 18 

258 19237 5.72667 1.53 0.35556 1.00 0.65 1961 17 1935 13 1908 21 1.03 1908 21 

422 31010 5.04518 2.41 0.31322 1.67 0.69 1757 26 1827 20 1908 31 0.92 1908 31 

438 29870 5.38184 1.87 0.33411 1.00 0.53 1858 16 1882 16 1908 28 0.97 1908 28 

390 23517 5.18912 1.57 0.32183 1.00 0.64 1799 16 1851 13 1910 22 0.94 1910 22 

294 44950 5.29166 1.41 0.32807 1.00 0.71 1829 16 1868 12 1911 18 0.96 1911 18 

196 10216 5.40277 1.64 0.33494 1.10 0.67 1862 18 1885 14 1911 22 0.97 1911 22 

642 35288 5.41618 1.41 0.33567 1.00 0.71 1866 16 1887 12 1911 18 0.98 1911 18 

276 25714 5.53956 1.41 0.34318 1.00 0.71 1902 16 1907 12 1912 18 0.99 1912 18 

541 43454 5.35886 1.41 0.33196 1.00 0.71 1848 16 1878 12 1912 18 0.97 1912 18 

359 15048 5.47800 1.41 0.33927 1.00 0.71 1883 16 1897 12 1912 18 0.98 1912 18 

312 18354 5.72687 2.28 0.35461 1.61 0.71 1957 27 1935 20 1913 29 1.02 1913 29 

347 23579 5.29138 1.95 0.32747 1.67 0.86 1826 27 1867 17 1914 18 0.95 1914 18 

226 9290 5.13442 1.77 0.31699 1.33 0.75 1775 21 1842 15 1918 21 0.93 1918 21 

391 36253 5.10155 1.96 0.31491 1.00 0.51 1765 15 1836 17 1918 30 0.92 1918 30 

325 13546 4.90064 1.70 0.30238 1.34 0.79 1703 20 1802 14 1919 19 0.89 1919 19 

348 20288 5.34281 1.68 0.32942 1.14 0.68 1836 18 1876 14 1921 22 0.96 1921 22 

552 24251 4.55454 4.92 0.28050 3.62 0.74 1594 51 1741 41 1923 60 0.83 1923 60 

467 43282 5.30852 2.62 0.32687 2.42 0.92 1823 38 1870 22 1923 18 0.95 1923 18 

587 47168 5.12682 1.62 0.31528 1.00 0.62 1767 15 1841 14 1925 23 0.92 1925 23 

174 15392 5.46316 1.42 0.33532 1.00 0.70 1864 16 1895 12 1929 18 0.97 1929 18 

505 24696 5.16365 2.16 0.31671 1.60 0.74 1774 25 1847 18 1930 26 0.92 1930 26 

442 46963 5.65633 3.18 0.34681 2.64 0.83 1919 44 1925 27 1930 32 0.99 1930 32 

242 26659 5.68954 1.61 0.34585 1.24 0.77 1915 21 1930 14 1946 18 0.98 1946 18 

308 33397 5.74878 1.56 0.34869 1.00 0.64 1928 17 1939 14 1950 21 0.99 1950 21 

942 64760 5.31715 2.04 0.32062 1.00 0.49 1793 16 1872 17 1960 32 0.91 1960 32 

145 18019 6.19633 1.41 0.37196 1.00 0.71 2039 17 2004 12 1968 18 1.04 1968 18 

901 48270 5.84359 2.16 0.35014 1.80 0.83 1935 30 1953 19 1972 21 0.98 1972 21 

304 33614 5.88007 2.80 0.35074 1.00 0.36 1938 17 1958 24 1980 46 0.98 1980 46 
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431 45909 6.16332 1.80 0.36513 1.33 0.74 2006 23 1999 16 1992 22 1.01 1992 22 

354 36179 6.19520 1.67 0.36524 1.00 0.60 2007 17 2004 15 2000 24 1.00 2000 24 

224 20781 6.07491 1.67 0.35599 1.00 0.60 1963 17 1987 15 2011 24 0.98 2011 24 

491 47683 5.94776 2.46 0.34667 1.46 0.59 1919 24 1968 21 2021 35 0.95 2021 35 

389 20933 6.04941 3.93 0.35220 3.68 0.94 1945 62 1983 34 2023 25 0.96 2023 25 

317 16150 6.38643 1.41 0.36774 1.00 0.71 2019 17 2030 12 2042 18 0.99 2042 18 

108 9554 6.52287 1.79 0.37436 1.00 0.56 2050 18 2049 16 2048 26 1.00 2048 26 

365 18342 5.96098 1.82 0.34196 1.00 0.55 1896 16 1970 16 2049 27 0.93 2049 27 

225 17742 6.35210 2.78 0.36225 2.44 0.88 1993 42 2026 24 2059 23 0.97 2059 23 

473 45482 6.36356 1.59 0.35797 1.00 0.63 1973 17 2027 14 2083 22 0.95 2083 22 

322 27184 6.54882 2.98 0.36694 2.43 0.81 2015 42 2052 26 2090 30 0.96 2090 30 

393 41451 7.11704 1.41 0.39844 1.00 0.71 2162 18 2126 13 2092 18 1.03 2092 18 

1014 58632 7.33811 2.21 0.39602 1.24 0.56 2151 23 2153 20 2156 32 1.00 2156 32 

684 43603 5.47820 5.63 0.29214 4.19 0.74 1652 61 1897 48 2177 65 0.76 2177 65 

120 14979 7.46065 1.42 0.39745 1.00 0.71 2157 18 2168 13 2179 17 0.99 2179 17 

105 10285 7.58167 2.92 0.40133 2.74 0.94 2175 51 2183 26 2190 17 0.99 2190 17 

241 34075 7.43213 2.02 0.39267 1.00 0.50 2135 18 2165 18 2193 30 0.97 2193 30 

175 22298 7.32228 1.56 0.38473 1.00 0.64 2098 18 2152 14 2203 21 0.95 2203 21 

238 24782 7.45694 1.69 0.39070 1.36 0.81 2126 25 2168 15 2208 17 0.96 2208 17 

210 24323 7.60750 1.84 0.39823 1.00 0.54 2161 18 2186 17 2209 27 0.98 2209 27 

281 27386 7.67173 1.55 0.39254 1.00 0.64 2135 18 2193 14 2249 21 0.95 2249 21 

434 25074 6.86762 2.33 0.34672 1.41 0.61 1919 23 2094 21 2272 32 0.84 2272 32 

261 27843 8.59628 3.63 0.42922 2.71 0.75 2302 52 2296 33 2291 42 1.00 2291 42 

768 33091 6.25552 2.35 0.31153 1.08 0.46 1748 17 2012 21 2295 36 0.76 2295 36 

381 31978 8.19314 1.41 0.40779 1.00 0.71 2205 19 2253 13 2296 17 0.96 2296 17 

670 77469 9.14145 1.41 0.43214 1.00 0.71 2315 19 2352 13 2384 17 0.97 2384 17 

491 75883 8.94157 2.60 0.41168 2.40 0.92 2223 45 2332 24 2429 17 0.91 2429 17 

236 18829 9.62632 1.84 0.43921 1.00 0.54 2347 20 2400 17 2445 26 0.96 2445 26 

489 18634 7.97869 3.42 0.36395 2.86 0.84 2001 49 2229 31 2445 32 0.82 2445 32 

120 18869 10.18803 1.41 0.45361 1.00 0.71 2411 20 2452 13 2486 17 0.97 2486 17 

221 34902 9.93674 1.41 0.43974 1.00 0.71 2349 20 2429 13 2496 17 0.94 2496 17 

268 20950 10.15060 1.54 0.44900 1.17 0.76 2391 23 2449 14 2497 17 0.96 2497 17 

302 35691 9.75769 1.75 0.42977 1.00 0.57 2305 19 2412 16 2504 24 0.92 2504 24 

67 10498 10.45692 1.59 0.45968 1.24 0.78 2438 25 2476 15 2507 17 0.97 2507 17 

347 36030 10.79749 1.59 0.47443 1.00 0.63 2503 21 2506 15 2508 21 1.00 2508 21 

312 30238 10.06373 1.52 0.44213 1.00 0.66 2360 20 2441 14 2508 19 0.94 2508 19 

384 33354 11.36050 3.23 0.49887 2.55 0.79 2609 55 2553 30 2509 33 1.04 2509 33 

401 31728 10.82332 1.41 0.47394 1.00 0.71 2501 21 2508 13 2514 17 0.99 2514 17 

114 12357 11.16286 1.56 0.48739 1.00 0.64 2559 21 2537 15 2519 20 1.02 2519 20 

92 13022 10.50956 2.59 0.45865 1.49 0.58 2434 30 2481 24 2520 36 0.97 2520 36 

356 44131 10.74324 2.66 0.46624 2.46 0.93 2467 50 2501 25 2529 17 0.98 2529 17 

204 21637 11.44159 2.77 0.49429 1.14 0.41 2589 24 2560 26 2537 42 1.02 2537 42 

880 110760 11.17538 2.39 0.47892 1.02 0.43 2523 21 2538 22 2550 36 0.99 2550 36 
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336 58186 10.75940 1.53 0.45499 1.00 0.65 2417 20 2503 14 2572 19 0.94 2572 19 

137 13726 10.19257 2.74 0.42924 2.52 0.92 2302 49 2452 25 2579 18 0.89 2579 18 

82 4293 15.04288 3.96 0.56565 2.00 0.51 2890 47 2818 38 2767 56 1.04 2767 56 

262 35130 16.06230 2.21 0.54393 1.00 0.45 2800 23 2881 21 2937 32 0.95 2937 32 

118 23405 24.37904 1.56 0.64886 1.00 0.64 3224 25 3284 15 3320 19 0.97 3320 19 

                

Sample 506079 – Fagfog Fm (Lat, Long = 27.85165°, 84.85856°)          

453 21239 3.94169 9.21 0.26830 8.87 0.96 1532 121 1622 75 1741 46 0.88 1741 46 

208 17373 4.99994 1.41 0.33379 1.00 0.71 1857 16 1819 12 1777 18 1.05 1777 18 

403 24298 3.92498 1.70 0.25998 1.37 0.81 1490 18 1619 14 1791 18 0.83 1791 18 

242 7933 3.88763 2.36 0.25697 2.13 0.90 1474 28 1611 19 1795 18 0.82 1795 18 

1011 39800 4.51018 1.41 0.29751 1.00 0.71 1679 15 1733 12 1799 18 0.93 1799 18 

665 34879 3.92561 4.82 0.25850 4.72 0.98 1482 63 1619 39 1802 18 0.82 1802 18 

614 44412 5.03546 1.55 0.33097 1.19 0.77 1843 19 1825 13 1805 18 1.02 1805 18 

250 13593 4.49646 1.42 0.29545 1.00 0.71 1669 15 1730 12 1806 18 0.92 1806 18 

447 43076 4.77328 2.34 0.31291 1.84 0.79 1755 28 1780 20 1810 26 0.97 1810 26 

509 18253 3.75043 1.90 0.24536 1.41 0.74 1414 18 1582 15 1814 23 0.78 1814 23 

599 32209 5.01587 1.41 0.32763 1.00 0.71 1827 16 1822 12 1816 18 1.01 1816 18 

436 36687 5.19961 1.87 0.33861 1.00 0.53 1880 16 1853 16 1822 29 1.03 1822 29 

100 9582 5.05454 2.38 0.32837 1.00 0.42 1830 16 1829 20 1826 39 1.00 1826 39 

189 13936 5.12215 1.93 0.33270 1.18 0.61 1851 19 1840 16 1827 28 1.01 1827 28 

342 21958 4.48376 2.83 0.29123 1.00 0.35 1648 15 1728 23 1827 48 0.90 1827 48 

298 16526 5.09035 1.58 0.32945 1.03 0.65 1836 16 1834 13 1833 22 1.00 1833 22 

463 25384 4.59584 1.59 0.29744 1.00 0.63 1679 15 1749 13 1833 22 0.92 1833 22 

455 28384 4.94158 1.42 0.31819 1.00 0.71 1781 16 1809 12 1842 18 0.97 1842 18 

132 12571 5.21251 1.88 0.33461 1.23 0.66 1861 20 1855 16 1848 26 1.01 1848 26 

146 12224 5.17455 1.72 0.33111 1.10 0.64 1844 18 1848 15 1854 24 0.99 1854 24 

340 23228 4.80266 1.42 0.30722 1.01 0.71 1727 15 1785 12 1854 18 0.93 1854 18 

688 43823 5.29792 1.56 0.33700 1.00 0.64 1872 16 1869 13 1864 22 1.00 1864 22 

414 33141 4.97424 1.94 0.31496 1.54 0.79 1765 24 1815 16 1873 21 0.94 1873 21 

634 64177 5.35703 1.41 0.33896 1.00 0.71 1882 16 1878 12 1874 18 1.00 1874 18 

315 30235 5.60571 2.02 0.35445 1.00 0.49 1956 17 1917 17 1875 32 1.04 1875 32 

175 15893 5.35631 1.59 0.33856 1.00 0.63 1880 16 1878 14 1876 22 1.00 1876 22 

175 17476 5.43296 2.05 0.34237 1.00 0.49 1898 16 1890 18 1881 32 1.01 1881 32 

176 14951 5.47082 1.61 0.34411 1.00 0.62 1906 17 1896 14 1885 23 1.01 1885 23 

609 45214 5.52377 1.41 0.34715 1.00 0.71 1921 17 1904 12 1886 18 1.02 1886 18 

278 16505 5.60621 1.85 0.35122 1.00 0.54 1940 17 1917 16 1892 28 1.03 1892 28 

374 24768 5.67712 1.61 0.35556 1.00 0.62 1961 17 1928 14 1892 23 1.04 1892 23 

420 16985 5.17608 1.51 0.32396 1.00 0.66 1809 16 1849 13 1894 20 0.96 1894 20 

97 9760 5.54698 1.69 0.34715 1.36 0.81 1921 23 1908 15 1894 18 1.01 1894 18 

228 18859 5.66053 1.61 0.35384 1.00 0.62 1953 17 1925 14 1896 23 1.03 1896 23 

334 21219 5.17283 4.22 0.32323 3.91 0.93 1805 62 1848 36 1897 28 0.95 1897 28 

286 21168 5.44763 2.55 0.33996 1.29 0.51 1887 21 1892 22 1899 40 0.99 1899 40 
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476 35737 5.38823 1.41 0.33609 1.00 0.71 1868 16 1883 12 1900 18 0.98 1900 18 

194 14825 5.56936 2.20 0.34738 1.60 0.73 1922 27 1911 19 1900 27 1.01 1900 27 

142 14385 5.04758 7.44 0.31479 7.29 0.98 1764 113 1827 63 1900 26 0.93 1900 26 

399 35083 5.37783 2.04 0.33537 1.49 0.73 1864 24 1881 18 1900 25 0.98 1900 25 

221 9742 5.31334 1.42 0.33118 1.00 0.71 1844 16 1871 12 1901 18 0.97 1901 18 

216 20311 5.75861 1.65 0.35890 1.00 0.61 1977 17 1940 14 1901 24 1.04 1901 24 

274 19166 5.49059 1.66 0.34213 1.33 0.80 1897 22 1899 14 1902 18 1.00 1902 18 

152 12780 5.67512 1.41 0.35346 1.00 0.71 1951 17 1928 12 1902 18 1.03 1902 18 

312 29445 5.65000 1.98 0.35187 1.26 0.64 1944 21 1924 17 1902 28 1.02 1902 28 

278 23695 5.74208 1.64 0.35759 1.09 0.67 1971 19 1938 14 1903 22 1.04 1903 22 

416 32624 5.47085 1.41 0.34055 1.00 0.71 1889 16 1896 12 1903 18 0.99 1903 18 

328 34676 5.45839 1.57 0.33948 1.21 0.77 1884 20 1894 13 1905 18 0.99 1905 18 

403 35290 5.50084 1.43 0.34202 1.00 0.70 1896 16 1901 12 1905 18 1.00 1905 18 

286 25640 5.51823 1.41 0.34307 1.00 0.71 1901 16 1903 12 1906 18 1.00 1906 18 

745 43661 4.81380 1.61 0.29906 1.26 0.78 1687 19 1787 14 1907 18 0.88 1907 18 

339 30022 5.66664 1.41 0.35202 1.00 0.71 1944 17 1926 12 1907 18 1.02 1907 18 

227 22437 5.57425 1.42 0.34621 1.00 0.71 1916 17 1912 12 1907 18 1.00 1907 18 

501 33006 5.25583 1.44 0.32637 1.00 0.70 1821 16 1862 12 1908 19 0.95 1908 19 

519 45834 5.64544 1.43 0.35053 1.00 0.70 1937 17 1923 12 1908 18 1.02 1908 18 

189 18283 5.60327 1.58 0.34790 1.00 0.63 1925 17 1917 14 1908 22 1.01 1908 22 

504 45074 5.72532 1.50 0.35531 1.00 0.67 1960 17 1935 13 1909 20 1.03 1909 20 

571 39502 5.12461 1.46 0.31775 1.00 0.69 1779 16 1840 12 1910 19 0.93 1910 19 

200 19858 5.52905 1.64 0.34278 1.19 0.72 1900 20 1905 14 1911 20 0.99 1911 20 

341 29656 5.58306 1.41 0.34612 1.00 0.71 1916 17 1913 12 1911 18 1.00 1911 18 

199 19646 5.83880 1.42 0.36194 1.00 0.71 1991 17 1952 12 1911 18 1.04 1911 18 

457 40317 5.61243 1.41 0.34774 1.00 0.71 1924 17 1918 12 1912 18 1.01 1912 18 

246 16782 5.48689 1.85 0.33990 1.00 0.54 1886 16 1899 16 1912 28 0.99 1912 28 

407 27628 5.68313 1.41 0.35197 1.00 0.71 1944 17 1929 12 1912 18 1.02 1912 18 

115 9166 5.78962 1.42 0.35838 1.00 0.70 1974 17 1945 12 1913 18 1.03 1913 18 

212 18860 5.74132 1.67 0.35534 1.34 0.80 1960 23 1938 14 1914 18 1.02 1914 18 

473 35637 5.67523 1.69 0.35124 1.00 0.59 1941 17 1928 15 1914 24 1.01 1914 24 

585 35144 5.46652 2.08 0.33819 1.24 0.60 1878 20 1895 18 1914 30 0.98 1914 30 

975 80405 5.55378 2.11 0.34355 1.73 0.82 1904 29 1909 18 1915 22 0.99 1915 22 

828 62572 5.67947 1.41 0.35125 1.00 0.71 1941 17 1928 12 1915 18 1.01 1915 18 

341 38412 5.71902 2.51 0.35367 1.76 0.70 1952 30 1934 22 1915 32 1.02 1915 32 

407 26937 5.45092 1.47 0.33707 1.00 0.68 1873 16 1893 13 1915 19 0.98 1915 19 

705 51992 5.58856 1.41 0.34554 1.00 0.71 1913 17 1914 12 1915 18 1.00 1915 18 

276 19230 5.75485 2.17 0.35560 1.81 0.83 1961 31 1940 19 1917 22 1.02 1917 22 

609 32048 5.48230 3.21 0.33873 2.87 0.89 1881 47 1898 28 1917 26 0.98 1917 26 

214 18233 5.65798 1.45 0.34938 1.00 0.69 1932 17 1925 13 1918 19 1.01 1918 19 

637 36945 5.43625 1.41 0.33558 1.00 0.71 1865 16 1891 12 1918 18 0.97 1918 18 

598 32869 5.43971 1.57 0.33567 1.17 0.74 1866 19 1891 13 1919 19 0.97 1919 19 

289 29840 5.68174 1.71 0.35058 1.39 0.81 1937 23 1929 15 1919 18 1.01 1919 18 
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1023 46134 4.34357 11.00 0.26791 10.82 0.98 1530 147 1702 91 1920 36 0.80 1920 36 

270 26641 5.94655 1.78 0.36677 1.00 0.56 2014 17 1968 15 1920 26 1.05 1920 26 

580 49404 5.76550 1.41 0.35558 1.00 0.71 1961 17 1941 12 1920 18 1.02 1920 18 

972 52736 5.05853 2.57 0.31196 2.20 0.86 1750 34 1829 22 1920 24 0.91 1920 24 

123 9252 5.46362 1.42 0.33690 1.00 0.71 1872 16 1895 12 1920 18 0.97 1920 18 

451 29658 5.72789 1.93 0.35313 1.00 0.52 1950 17 1936 17 1921 30 1.02 1921 30 

521 38051 5.13031 2.24 0.31614 1.66 0.74 1771 26 1841 19 1922 27 0.92 1922 27 

521 35654 5.29774 1.61 0.32630 1.26 0.78 1820 20 1868 14 1922 18 0.95 1922 18 

350 20311 5.48871 1.56 0.33801 1.00 0.64 1877 16 1899 13 1923 22 0.98 1923 22 

694 39403 5.52498 2.11 0.34006 1.00 0.47 1887 16 1904 18 1924 33 0.98 1924 33 

288 24658 5.78060 1.71 0.35567 1.27 0.74 1962 21 1944 15 1924 21 1.02 1924 21 

470 38098 5.44224 1.55 0.33438 1.00 0.65 1860 16 1892 13 1927 21 0.97 1927 21 

254 21652 5.84415 1.64 0.35889 1.30 0.79 1977 22 1953 14 1928 18 1.03 1928 18 

476 29063 5.64058 2.51 0.34579 2.20 0.88 1914 36 1922 22 1931 22 0.99 1931 22 

334 24153 5.76147 3.22 0.35313 2.94 0.91 1950 49 1941 28 1931 24 1.01 1931 24 

929 71581 5.90616 1.47 0.36189 1.00 0.68 1991 17 1962 13 1932 19 1.03 1932 19 

386 17267 5.82923 1.58 0.35666 1.00 0.63 1966 17 1951 14 1934 22 1.02 1934 22 

346 27937 5.88072 1.56 0.35977 1.00 0.64 1981 17 1958 14 1934 21 1.02 1934 21 

316 18551 5.47917 2.96 0.33512 2.79 0.94 1863 45 1897 25 1935 18 0.96 1935 18 

272 14026 5.39750 4.48 0.32994 4.32 0.97 1838 69 1884 38 1936 21 0.95 1936 21 

653 42195 5.52216 1.90 0.33731 1.00 0.53 1874 16 1904 16 1937 29 0.97 1937 29 

732 44321 5.42583 1.55 0.33135 1.00 0.64 1845 16 1889 13 1938 21 0.95 1938 21 

485 42949 5.73825 1.41 0.35025 1.00 0.71 1936 17 1937 12 1939 18 1.00 1939 18 

191 13256 5.77188 1.48 0.35143 1.09 0.74 1941 18 1942 13 1943 18 1.00 1943 18 

200 11424 4.55435 5.13 0.27720 4.61 0.90 1577 65 1741 43 1944 40 0.81 1944 40 

302 25399 5.73173 2.13 0.34641 1.00 0.47 1917 17 1936 18 1956 34 0.98 1956 34 

454 45746 6.01775 1.41 0.36174 1.00 0.71 1990 17 1978 12 1966 18 1.01 1966 18 

729 25483 5.16099 4.68 0.30907 4.42 0.94 1736 67 1846 40 1973 27 0.88 1973 27 

449 45616 6.24842 1.46 0.37230 1.00 0.69 2040 17 2011 13 1982 19 1.03 1982 19 

540 39741 5.74426 1.41 0.34092 1.00 0.71 1891 16 1938 12 1989 18 0.95 1989 18 

221 20071 5.83401 3.40 0.34477 1.81 0.53 1910 30 1951 30 1996 51 0.96 1996 51 

562 45033 6.20229 1.41 0.36511 1.00 0.71 2006 17 2005 12 2003 18 1.00 2003 18 

108 6978 5.74012 1.47 0.33639 1.06 0.72 1869 17 1937 13 2011 18 0.93 2011 18 

227 15618 6.29533 1.52 0.36547 1.00 0.66 2008 17 2018 13 2028 20 0.99 2028 20 

316 32921 6.50273 1.41 0.37689 1.00 0.71 2062 18 2046 12 2031 18 1.02 2031 18 

315 26069 6.64897 1.93 0.38150 1.00 0.52 2083 18 2066 17 2049 29 1.02 2049 29 

196 19604 6.64987 1.42 0.37914 1.00 0.71 2072 18 2066 12 2060 18 1.01 2060 18 

486 33279 6.19572 1.70 0.34854 1.00 0.59 1928 17 2004 15 2083 24 0.93 2083 24 

589 34343 5.92447 6.52 0.33250 4.01 0.62 1851 65 1965 57 2087 90 0.89 2087 90 

275 18532 6.36796 2.18 0.35294 1.67 0.77 1949 28 2028 19 2109 25 0.92 2109 25 

316 26592 6.94728 2.80 0.38177 1.00 0.36 2085 18 2105 25 2124 46 0.98 2124 46 

736 44712 5.70417 5.96 0.31305 5.51 0.93 1756 85 1932 51 2127 40 0.83 2127 40 

357 28324 6.90652 2.21 0.37850 1.00 0.45 2069 18 2099 20 2129 34 0.97 2129 34 
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361 40498 6.93259 2.07 0.37870 1.00 0.48 2070 18 2103 18 2135 32 0.97 2135 32 

434 25260 5.85780 2.21 0.31443 1.60 0.72 1762 25 1955 19 2166 27 0.81 2166 27 

257 26767 7.57592 3.15 0.40208 1.55 0.49 2179 29 2182 28 2185 48 1.00 2185 48 

433 22221 7.85162 2.38 0.41221 1.34 0.56 2225 25 2214 21 2204 34 1.01 2204 34 

338 20833 7.05794 2.41 0.36943 1.06 0.44 2027 18 2119 21 2209 38 0.92 2209 38 

124 14381 8.10867 1.49 0.42197 1.00 0.67 2269 19 2243 14 2219 19 1.02 2219 19 

196 17758 7.68770 2.58 0.39757 2.08 0.81 2158 38 2195 23 2230 27 0.97 2230 27 

102 13091 8.30100 1.58 0.42493 1.00 0.63 2283 19 2264 14 2248 21 1.02 2248 21 

402 35361 7.93988 3.12 0.40425 1.03 0.33 2189 19 2224 28 2257 51 0.97 2257 51 

747 64328 8.88887 3.93 0.44503 3.11 0.79 2373 62 2327 36 2286 41 1.04 2286 41 

483 41119 8.49440 1.88 0.41864 1.38 0.74 2254 26 2285 17 2313 22 0.97 2313 22 

236 22065 7.80004 1.43 0.37986 1.02 0.71 2076 18 2208 13 2334 17 0.89 2334 17 

336 35156 8.89805 1.85 0.43115 1.43 0.77 2311 28 2328 17 2342 20 0.99 2342 20 

241 22653 9.35810 1.41 0.44950 1.00 0.71 2393 20 2374 13 2357 17 1.02 2357 17 

467 49695 8.91830 1.46 0.42440 1.00 0.68 2280 19 2330 13 2373 18 0.96 2373 18 

538 47593 9.24269 3.90 0.43896 2.02 0.52 2346 40 2362 36 2377 57 0.99 2377 57 

124 17176 9.78670 1.41 0.46172 1.00 0.71 2447 20 2415 13 2388 17 1.02 2388 17 

104 13087 9.96281 1.94 0.46925 1.66 0.86 2480 34 2431 18 2391 17 1.04 2391 17 

783 88452 9.84823 1.80 0.45874 1.00 0.55 2434 20 2421 17 2409 25 1.01 2409 25 

693 42007 8.33071 4.81 0.38040 1.00 0.21 2078 18 2268 44 2443 80 0.85 2443 80 

76 7890 9.93253 1.42 0.44787 1.00 0.70 2386 20 2429 13 2465 17 0.97 2465 17 

477 61435 10.59911 2.41 0.47146 1.43 0.59 2490 30 2489 22 2488 33 1.00 2488 33 

356 38856 10.39074 2.51 0.45951 1.00 0.40 2437 20 2470 23 2497 39 0.98 2497 39 

589 49758 9.87460 2.76 0.43636 2.08 0.75 2334 41 2423 25 2499 31 0.93 2499 31 

516 54977 10.55048 1.82 0.46492 1.52 0.84 2461 31 2484 17 2503 17 0.98 2503 17 

438 50835 11.02207 1.62 0.48569 1.16 0.72 2552 24 2525 15 2503 19 1.02 2503 19 

228 20199 10.70599 1.63 0.46745 1.11 0.68 2472 23 2498 15 2519 20 0.98 2519 20 

782 52763 10.69395 3.31 0.46552 3.01 0.91 2464 62 2497 31 2524 23 0.98 2524 23 

932 80239 11.05779 1.92 0.48108 1.32 0.69 2532 28 2528 18 2525 24 1.00 2525 24 

280 25492 10.46292 1.44 0.45403 1.00 0.70 2413 20 2477 13 2529 17 0.95 2529 17 

396 37176 10.58262 1.72 0.45770 1.00 0.58 2429 20 2487 16 2535 23 0.96 2535 23 

307 29780 10.86399 2.53 0.46884 1.68 0.66 2478 35 2512 24 2538 32 0.98 2538 32 

246 30945 11.70167 1.73 0.50399 1.41 0.82 2631 30 2581 16 2542 17 1.04 2542 17 

110 11753 10.91751 5.65 0.46672 5.50 0.97 2469 113 2516 53 2554 22 0.97 2554 22 

76 12191 11.88819 1.75 0.50679 1.24 0.71 2643 27 2596 16 2559 21 1.03 2559 21 

141 19370 11.88210 1.41 0.50537 1.00 0.71 2637 22 2595 13 2563 17 1.03 2563 17 

565 45260 10.38622 1.91 0.44148 1.39 0.73 2357 27 2470 18 2564 22 0.92 2564 22 

374 43758 11.66867 1.49 0.49444 1.00 0.67 2590 21 2578 14 2569 19 1.01 2569 19 

398 43350 11.01575 3.38 0.46526 2.98 0.88 2463 61 2524 31 2574 27 0.96 2574 27 

333 25457 11.38063 1.63 0.48009 1.15 0.70 2528 24 2555 15 2576 19 0.98 2576 19 

380 34169 11.32346 1.65 0.47754 1.31 0.79 2517 27 2550 15 2577 17 0.98 2577 17 

155 14182 9.80210 2.24 0.41315 1.57 0.70 2229 30 2416 21 2578 27 0.86 2578 27 

72 9435 11.69598 1.49 0.49041 1.10 0.74 2572 23 2580 14 2587 17 0.99 2587 17 
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404 41781 12.33962 3.05 0.51658 1.76 0.58 2685 39 2631 29 2589 42 1.04 2589 42 

418 42983 12.28759 1.54 0.51117 1.00 0.65 2662 22 2627 14 2600 20 1.02 2600 20 

213 29871 12.03874 1.68 0.50026 1.00 0.60 2615 21 2607 16 2602 23 1.01 2602 23 

97 8106 10.51285 1.50 0.43679 1.04 0.69 2336 20 2481 14 2602 18 0.90 2602 18 

135 19859 13.18117 2.41 0.52587 2.19 0.91 2724 49 2693 23 2669 17 1.02 2669 17 

524 70357 13.87237 2.03 0.53719 1.56 0.77 2772 35 2741 19 2719 21 1.02 2719 21 

241 34540 13.75199 1.80 0.53245 1.50 0.83 2752 34 2733 17 2719 16 1.01 2719 16 

504 53437 13.62567 1.81 0.52655 1.00 0.55 2727 22 2724 17 2722 25 1.00 2722 25 

258 45679 17.91657 1.81 0.60354 1.00 0.55 3044 24 2985 17 2946 24 1.03 2946 24 

464 55045 22.86169 1.97 0.61891 1.70 0.86 3106 42 3221 19 3294 16 0.94 3294 16 

518 82235 26.87348 1.48 0.68445 1.00 0.68 3361 26 3379 14 3389 17 0.99 3389 17 

                

Sample 406102 – Kushma Fm (Lat, Long = 28.23082°, 83.68118°)          

185 7504 3.99509 1.77 0.27293 1.45 0.82 1556 20 1633 14 1735 19 0.90 1735 19 

702 18520 3.57136 2.44 0.24204 2.18 0.89 1397 27 1543 19 1749 20 0.80 1749 20 

183 14152 4.07971 1.77 0.27609 1.00 0.56 1572 14 1650 14 1752 27 0.90 1752 27 

351 32252 4.25295 2.66 0.28736 2.10 0.79 1628 30 1684 22 1755 30 0.93 1755 30 

356 12787 4.16873 1.62 0.28147 1.01 0.63 1599 14 1668 13 1756 23 0.91 1756 23 

563 37554 3.94270 3.52 0.26512 3.25 0.92 1516 44 1622 29 1764 25 0.86 1764 25 

963 49448 3.69448 1.41 0.24809 1.00 0.71 1429 13 1570 11 1766 18 0.81 1766 18 

740 27759 3.67196 5.09 0.24590 4.95 0.97 1417 63 1565 41 1771 22 0.80 1771 22 

758 23460 3.90341 4.21 0.26133 3.92 0.93 1497 52 1614 34 1772 28 0.84 1772 28 

345 28018 4.32199 1.43 0.28908 1.00 0.70 1637 14 1698 12 1773 19 0.92 1773 19 

279 9603 4.63653 2.08 0.30936 1.00 0.48 1738 15 1756 17 1778 33 0.98 1778 33 

801 37514 4.05965 2.11 0.27054 1.12 0.53 1544 15 1646 17 1780 33 0.87 1780 33 

463 41638 4.40820 1.75 0.29376 1.18 0.67 1660 17 1714 14 1780 24 0.93 1780 24 

819 49993 4.30500 1.58 0.28672 1.00 0.63 1625 14 1694 13 1781 22 0.91 1781 22 

576 26173 4.31714 2.57 0.28727 2.37 0.92 1628 34 1697 21 1783 18 0.91 1783 18 

329 16693 4.74969 2.02 0.31558 1.00 0.50 1768 15 1776 17 1785 32 0.99 1785 32 

230 23540 4.73214 1.69 0.31422 1.00 0.59 1761 15 1773 14 1786 25 0.99 1786 25 

213 23420 4.73452 1.73 0.31426 1.25 0.72 1762 19 1773 15 1787 22 0.99 1787 22 

260 14316 4.56332 2.64 0.30289 1.00 0.38 1706 15 1743 22 1787 44 0.95 1787 44 

125 14424 4.79172 1.55 0.31802 1.00 0.64 1780 16 1783 13 1787 22 1.00 1787 22 

247 18381 4.64407 2.63 0.30804 2.19 0.83 1731 33 1757 22 1788 26 0.97 1788 26 

380 19305 4.61506 1.70 0.30603 1.00 0.59 1721 15 1752 14 1789 25 0.96 1789 25 

191 7725 4.41570 1.64 0.29274 1.00 0.61 1655 15 1715 14 1789 24 0.93 1789 24 

192 14886 4.96671 1.45 0.32910 1.00 0.69 1834 16 1814 12 1790 19 1.02 1790 19 

445 18194 3.83488 2.99 0.25367 2.82 0.94 1457 37 1600 24 1793 18 0.81 1793 18 

683 39891 3.88028 7.05 0.25655 6.98 0.99 1472 92 1610 57 1794 18 0.82 1794 18 

358 8850 3.92576 1.42 0.25944 1.00 0.70 1487 13 1619 11 1795 18 0.83 1795 18 

169 14933 4.70962 1.42 0.31121 1.00 0.71 1747 15 1769 12 1795 18 0.97 1795 18 

310 13558 4.56422 1.88 0.30159 1.00 0.53 1699 15 1743 16 1795 29 0.95 1795 29 

265 19902 4.52185 2.25 0.29811 1.00 0.45 1682 15 1735 19 1800 37 0.93 1800 37 
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329 29875 4.70442 2.79 0.30948 1.85 0.66 1738 28 1768 23 1803 38 0.96 1803 38 

827 39597 3.67812 2.82 0.24145 2.64 0.94 1394 33 1567 23 1807 18 0.77 1807 18 

601 25329 4.32514 2.15 0.28346 1.90 0.88 1609 27 1698 18 1810 18 0.89 1810 18 

609 45994 4.23812 4.60 0.27762 4.49 0.98 1579 63 1681 38 1811 18 0.87 1811 18 

233 18602 4.54823 1.91 0.29780 1.00 0.52 1680 15 1740 16 1812 30 0.93 1812 30 

280 13880 4.69912 1.55 0.30763 1.00 0.64 1729 15 1767 13 1812 22 0.95 1812 22 

166 19265 4.89824 1.93 0.32056 1.03 0.53 1792 16 1802 16 1813 30 0.99 1813 30 

363 16283 4.34767 1.77 0.28449 1.10 0.62 1614 16 1702 15 1813 25 0.89 1813 25 

951 28356 3.93803 1.41 0.25766 1.00 0.71 1478 13 1622 11 1813 18 0.81 1813 18 

277 15622 4.30911 1.78 0.28193 1.00 0.56 1601 14 1695 15 1813 27 0.88 1813 27 

422 22577 4.60584 1.71 0.30118 1.00 0.58 1697 15 1750 14 1814 25 0.94 1814 25 

406 34021 4.71752 1.55 0.30822 1.00 0.65 1732 15 1770 13 1816 21 0.95 1816 21 

211 13491 4.74295 2.06 0.30977 1.36 0.66 1740 21 1775 17 1817 28 0.96 1817 28 

628 20422 4.55078 1.55 0.29718 1.00 0.65 1677 15 1740 13 1817 21 0.92 1817 21 

582 46600 4.71254 2.80 0.30746 2.33 0.83 1728 35 1769 23 1819 28 0.95 1819 28 

517 48208 4.81391 1.59 0.31370 1.24 0.78 1759 19 1787 13 1821 18 0.97 1821 18 

357 20458 4.68253 1.90 0.30508 1.00 0.53 1716 15 1764 16 1821 29 0.94 1821 29 

790 28313 3.95354 3.05 0.25659 2.82 0.92 1472 37 1625 25 1828 21 0.81 1828 21 

391 12893 4.75162 2.36 0.30767 1.82 0.77 1729 28 1776 20 1832 27 0.94 1832 27 

455 30306 4.92036 2.42 0.31842 1.00 0.41 1782 16 1806 20 1833 40 0.97 1833 40 

336 13517 5.06443 2.13 0.32772 1.00 0.47 1827 16 1830 18 1833 34 1.00 1833 34 

1022 32716 4.42412 1.97 0.28585 1.09 0.55 1621 16 1717 16 1836 30 0.88 1836 30 

617 15517 3.91601 3.35 0.25290 1.95 0.58 1453 25 1617 27 1837 49 0.79 1837 49 

199 17659 4.68096 2.52 0.30226 1.02 0.40 1702 15 1764 21 1837 42 0.93 1837 42 

496 18161 4.63598 1.96 0.29896 1.00 0.51 1686 15 1756 16 1840 30 0.92 1840 30 

802 26874 4.77141 6.57 0.30735 5.08 0.77 1728 77 1780 55 1842 75 0.94 1842 75 

231 7164 4.48075 2.82 0.28853 1.71 0.61 1634 25 1727 23 1842 41 0.89 1842 41 

179 22196 5.00367 1.88 0.32193 1.00 0.53 1799 16 1820 16 1844 29 0.98 1844 29 

414 25411 4.97921 2.27 0.31897 1.16 0.51 1785 18 1816 19 1852 35 0.96 1852 35 

792 37687 4.43254 2.49 0.28284 1.55 0.62 1606 22 1718 21 1859 35 0.86 1859 35 

543 18915 4.75875 1.47 0.30155 1.00 0.68 1699 15 1778 12 1871 19 0.91 1871 19 

244 12013 4.65777 1.88 0.29469 1.00 0.53 1665 15 1760 16 1874 29 0.89 1874 29 

283 11929 4.84100 1.67 0.30544 1.00 0.60 1718 15 1792 14 1879 24 0.91 1879 24 

248 18222 5.59661 1.41 0.35181 1.00 0.71 1943 17 1916 12 1886 18 1.03 1886 18 

608 58236 4.91793 1.53 0.30873 1.00 0.65 1734 15 1805 13 1888 21 0.92 1888 21 

310 23863 5.26897 1.54 0.33056 1.17 0.76 1841 19 1864 13 1889 18 0.97 1889 18 

387 47605 5.25551 1.41 0.32946 1.00 0.71 1836 16 1862 12 1891 18 0.97 1891 18 

274 13449 4.41425 2.01 0.27639 1.74 0.87 1573 24 1715 17 1893 18 0.83 1893 18 

130 13088 5.13824 1.71 0.32126 1.00 0.58 1796 16 1842 15 1895 25 0.95 1895 25 

284 13672 5.25798 1.42 0.32796 1.00 0.71 1828 16 1862 12 1900 18 0.96 1900 18 

583 17701 4.96598 1.41 0.30875 1.00 0.71 1735 15 1814 12 1906 18 0.91 1906 18 

229 12301 4.85388 2.94 0.30156 2.76 0.94 1699 41 1794 25 1907 18 0.89 1907 18 

692 32868 4.68083 2.05 0.29013 1.00 0.49 1642 14 1764 17 1911 32 0.86 1911 32 
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386 37021 5.20243 1.85 0.32138 1.29 0.70 1796 20 1853 16 1917 24 0.94 1917 24 

388 27421 5.15771 1.41 0.31625 1.00 0.71 1771 15 1846 12 1930 18 0.92 1930 18 

659 31468 5.24594 2.48 0.32093 2.27 0.92 1794 36 1860 21 1935 18 0.93 1935 18 

245 24480 5.52233 2.60 0.33719 1.96 0.75 1873 32 1904 22 1938 30 0.97 1938 30 

351 13978 4.97112 1.89 0.30279 1.45 0.77 1705 22 1814 16 1942 22 0.88 1942 22 

583 24448 4.80202 1.59 0.29244 1.00 0.63 1654 15 1785 13 1943 22 0.85 1943 22 

336 11124 4.57250 2.93 0.27689 2.53 0.86 1576 35 1744 24 1953 26 0.81 1953 26 

329 18402 5.84084 1.74 0.34823 1.00 0.58 1926 17 1952 15 1981 25 0.97 1981 25 

642 17007 4.60406 2.99 0.27366 2.82 0.94 1559 39 1750 25 1986 18 0.79 1986 18 

425 42199 5.67492 2.49 0.33267 1.50 0.60 1851 24 1928 22 2011 35 0.92 2011 35 

881 43557 5.07487 10.08 0.29484 10.00 0.99 1666 147 1832 86 2026 23 0.82 2026 23 

148 8115 6.05948 2.03 0.34939 1.24 0.61 1932 21 1984 18 2040 28 0.95 2040 28 

237 10304 6.47044 1.44 0.36429 1.00 0.69 2002 17 2042 13 2082 18 0.96 2082 18 

295 10830 5.80291 1.65 0.31874 1.00 0.61 1784 16 1947 14 2125 23 0.84 2125 23 

302 20350 7.10673 1.98 0.38919 1.31 0.66 2119 24 2125 18 2131 26 0.99 2131 26 

368 27076 6.25070 2.47 0.32568 1.00 0.40 1817 16 2012 22 2217 39 0.82 2217 39 

387 37889 7.33722 1.93 0.38204 1.47 0.76 2086 26 2153 17 2218 22 0.94 2218 22 

123 9053 7.29063 2.05 0.37255 1.61 0.79 2041 28 2148 18 2251 22 0.91 2251 22 

911 52374 7.94134 1.77 0.39906 1.00 0.57 2165 18 2224 16 2280 25 0.95 2280 25 

343 31158 8.18101 1.64 0.39463 1.00 0.61 2144 18 2251 15 2350 22 0.91 2350 22 

595 39802 9.44799 1.84 0.43936 1.21 0.66 2348 24 2383 17 2412 23 0.97 2412 23 

465 33900 8.76030 2.01 0.39807 1.24 0.62 2160 23 2313 18 2451 27 0.88 2451 27 

270 24911 10.10751 2.02 0.44799 1.47 0.73 2386 29 2445 19 2494 23 0.96 2494 23 

559 35729 9.43780 1.90 0.41786 1.00 0.53 2251 19 2382 17 2495 27 0.90 2495 27 

156 11343 9.23105 2.86 0.40652 2.40 0.84 2199 45 2361 26 2504 26 0.88 2504 26 

420 27023 9.87075 3.48 0.43466 3.30 0.95 2327 64 2423 32 2505 18 0.93 2505 18 

689 32722 8.46825 1.94 0.37056 1.39 0.72 2032 24 2283 18 2515 23 0.81 2515 23 

547 24740 8.86558 3.53 0.38653 1.48 0.42 2107 27 2324 32 2521 54 0.84 2521 54 

243 28930 11.13003 2.00 0.48477 1.73 0.87 2548 36 2534 19 2523 17 1.01 2523 17 

335 43585 11.13759 1.90 0.47902 1.00 0.53 2523 21 2535 18 2544 27 0.99 2544 27 

181 10794 9.95865 1.98 0.42814 1.00 0.50 2297 19 2431 18 2545 29 0.90 2545 29 

159 18792 11.01834 2.31 0.47284 1.55 0.67 2496 32 2525 21 2548 29 0.98 2548 29 

113 4921 9.97476 2.45 0.42745 1.00 0.41 2294 19 2432 23 2550 38 0.90 2550 38 

218 22871 11.32644 1.74 0.48322 1.00 0.58 2541 21 2550 16 2558 24 0.99 2558 24 

616 31558 10.87973 1.90 0.46169 1.03 0.54 2447 21 2513 18 2567 27 0.95 2567 27 

359 36683 11.54088 1.47 0.48074 1.07 0.73 2530 22 2568 14 2598 17 0.97 2598 17 

289 18468 11.01828 1.41 0.45848 1.00 0.71 2433 20 2525 13 2599 17 0.94 2599 17 

63 12414 12.27508 1.42 0.49298 1.00 0.71 2584 21 2626 13 2658 17 0.97 2658 17 

258 17974 11.69858 1.67 0.46248 1.00 0.60 2451 20 2581 16 2684 22 0.91 2684 22 

678 33847 11.11985 5.24 0.43116 1.00 0.19 2311 19 2533 49 2716 85 0.85 2716 85 

341 22083 12.92678 1.47 0.49243 1.00 0.68 2581 21 2674 14 2746 18 0.94 2746 18 

278 41158 12.47589 3.33 0.46278 2.31 0.69 2452 47 2641 31 2789 39 0.88 2789 39 

173 24233 13.62468 2.95 0.50499 1.00 0.34 2635 22 2724 28 2790 45 0.94 2790 45 
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303 37463 14.63241 2.76 0.52206 1.00 0.36 2708 22 2792 26 2853 42 0.95 2853 42 

221 11445 12.86812 4.12 0.45530 1.03 0.25 2419 21 2670 39 2866 65 0.84 2866 65 

202 21364 15.04269 4.40 0.52224 2.21 0.50 2709 49 2818 42 2897 62 0.93 2897 62 

799 123872 16.49168 1.43 0.55313 1.00 0.70 2838 23 2906 14 2953 16 0.96 2953 16 

217 13346 15.86391 2.42 0.51988 1.00 0.41 2699 22 2869 23 2990 35 0.90 2990 35 

402 22745 14.60165 7.85 0.44958 7.28 0.93 2393 146 2790 75 3090 47 0.77 3090 47 

272 35260 19.81526 1.41 0.60890 1.00 0.71 3066 24 3082 14 3093 16 0.99 3093 16 

187 25411 20.59891 4.35 0.60533 3.32 0.76 3051 81 3120 42 3164 45 0.96 3164 45 

541 79400 23.01154 2.39 0.63930 2.08 0.87 3186 52 3227 23 3253 19 0.98 3253 19 

                

Sample 406020 – Unidentified sample (Lat, Long = 28.38187°, 83.80073°)           

617 23248 4.28844 3.15 0.28279 1.00 0.32 1605 14 1691 26 1799 54 0.89 1799 54 

63 6768 4.85940 5.58 0.31303 4.67 0.84 1756 72 1795 47 1842 55 0.95 1842 55 

334 22828 5.13569 2.14 0.32500 1.00 0.47 1814 16 1842 18 1874 34 0.97 1874 34 

316 17533 5.02149 2.25 0.31757 1.00 0.45 1778 16 1823 19 1875 36 0.95 1875 36 

1191 30436 3.98662 4.47 0.25088 2.19 0.49 1443 28 1631 36 1884 70 0.77 1884 70 

1005 26602 5.00331 1.57 0.31286 1.00 0.64 1755 15 1820 13 1895 22 0.93 1895 22 

586 32183 5.18701 1.66 0.32298 1.00 0.60 1804 16 1850 14 1903 24 0.95 1903 24 

427 29994 5.28227 1.66 0.32877 1.00 0.60 1832 16 1866 14 1904 24 0.96 1904 24 

481 20472 4.72198 1.65 0.29350 1.00 0.61 1659 15 1771 14 1906 24 0.87 1906 24 

771 46531 5.17165 1.75 0.32116 1.00 0.57 1795 16 1848 15 1908 26 0.94 1908 26 

375 22937 5.28125 1.67 0.32277 1.00 0.60 1803 16 1866 14 1936 24 0.93 1936 24 

387 15720 5.11488 2.42 0.30936 1.98 0.82 1738 30 1839 21 1955 25 0.89 1955 25 

502 25032 5.54236 2.39 0.33140 1.64 0.69 1845 26 1907 21 1975 31 0.93 1975 31 

184 8168 6.09649 2.68 0.35818 1.00 0.37 1974 17 1990 23 2007 44 0.98 2007 44 

469 30798 6.39960 1.96 0.35855 1.00 0.51 1975 17 2032 17 2090 30 0.94 2090 30 

43 6973 7.19554 2.47 0.40135 1.93 0.78 2175 36 2136 22 2098 27 1.04 2098 27 

425 27362 6.54321 1.75 0.36382 1.00 0.57 2000 17 2052 15 2104 25 0.95 2104 25 

436 24482 6.68588 5.49 0.36305 1.07 0.20 1997 18 2071 48 2145 94 0.93 2145 94 

468 21485 6.37485 4.81 0.34496 4.12 0.86 1910 68 2029 42 2151 43 0.89 2151 43 

398 21951 6.03807 3.66 0.32162 3.52 0.96 1798 55 1981 32 2179 17 0.82 2179 17 

157 17146 7.70224 1.63 0.40649 1.00 0.61 2199 19 2197 15 2195 22 1.00 2195 22 

206 10299 7.51050 1.47 0.39293 1.00 0.68 2136 18 2174 13 2210 19 0.97 2210 19 

411 29052 9.00424 1.67 0.42619 1.00 0.60 2289 19 2338 15 2382 23 0.96 2382 23 

314 14477 6.94502 4.01 0.32781 3.75 0.93 1828 60 2104 36 2387 24 0.77 2387 24 

1353 75914 8.56405 3.28 0.38792 2.87 0.87 2113 52 2293 30 2457 27 0.86 2457 27 

785 59391 9.83780 1.53 0.44446 1.00 0.65 2371 20 2420 14 2461 20 0.96 2461 20 

457 38351 9.78517 2.39 0.44013 1.00 0.42 2351 20 2415 22 2469 37 0.95 2469 37 

70 8122 10.96234 3.13 0.48103 2.29 0.73 2532 48 2520 29 2510 36 1.01 2510 36 

214 18883 10.86886 1.50 0.47416 1.00 0.67 2502 21 2512 14 2520 19 0.99 2520 19 

470 30679 10.22232 1.67 0.44488 1.00 0.60 2372 20 2455 15 2524 23 0.94 2524 23 

504 44632 11.68696 1.44 0.48998 1.00 0.69 2571 21 2580 13 2587 17 0.99 2587 17 

235 25125 12.65721 2.74 0.49362 1.18 0.43 2586 25 2654 26 2707 41 0.96 2707 41 
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400 30642 13.27228 2.31 0.51182 1.45 0.63 2664 32 2699 22 2725 30 0.98 2725 30 

364 36858 13.87242 1.77 0.52393 1.00 0.57 2716 22 2741 17 2760 24 0.98 2760 24 

* = radiogenic Pb. All errors are reported at the 1-sigma level.         

U concentration has an uncertainty of ~ 25%.            
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