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An important way to learn new actions and behaviors is by observing others,

and several evolutionary games have been developed to investigate what learning

strategies work best and how they might have evolved. In this dissertation I present

an extensive set of mathematical and simulation results for Cultaptation, which is

one of the best-known such games.

I derive a formula for measuring a strategy’s expected reproductive success,

and provide algorithms to compute near-best-response strategies and near-Nash

equilibria. Some of these algorithms are too complex to run quickly on larger versions

of Cultaptation, so I also show how they can be approximated to be able to handle

larger games, while still exhibiting better performance than the current best-known

Cultaptation strategy for such games. Experimental studies provide strong evidence

for the following hypotheses:

1. The best strategies for Cultaptation and similar games are likely to be con-

ditional ones in which the choice of action at each round is conditioned on



the agent’s accumulated experience. Such strategies (or close approximations

of them) can be computed by doing a lookahead search that predicts how

each possible choice of action at the current round is likely to affect future

performance.

2. Such strategies are likely to prefer social learning most of the time, but will

have ways of quickly detecting structural shocks, so that they can switch

quickly to individual learning in order to learn how to respond to such shocks.

This conflicts with the conventional wisdom that successful social-learning

strategies are characterized by a high frequency of individual learning; and

agrees with recent experiments by others on human subjects that also challenge

the conventional wisdom.
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Chapter 1

Introduction

An important way to learn new actions and behaviors is social learning, i.e.,

learning by observing others. Some social-learning theorists believe this is how most

human behavior is learned [1], and it also is important for many other animal species

[2, 3, 4]. Such learning usually involves evaluating the outcomes of others’ actions,

rather than indiscriminate copying of others’ behavior [5, 6], but much is unknown

about what learning strategies work best and how they might have evolved.

For example, it seems natural to assume that communication has evolved due

to the inherent superiority of copying others’ success rather than learning on one’s

own via trial-and-error innovation. However, there has also been substantial work

questioning this intuition [7, 8, 9, 10, 11].

Several evolutionary games have been developed to investigate social learning

[12, 13, 14, 15]. One of the best-known is Cultaptation, a multi-agent social-learning

game developed by a consortium of European scientists [15] who sponsored an in-

ternational tournament with a e10,000 prize.1 The rules of Cultaptation are rather

complicated (see Section 2.1), but can be summarized as follows:

• Each agent has three kinds of possible actions: innovation, observation, and

exploitation. These are highly simplified analogs of the following real-world

1NOTE: I am not affiliated with the tournament or with the Cultaptation project.
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activities, respectively: spending time and resources to learn something new,

learning something by communicating with another agent, and exploiting the

learned knowledge.

• At each step of the game, each agent must choose one of the available actions.

How an agent does this constitutes the agent’s “social learning strategy.”

• Each action provides an immediate numeric payoff and/or information about

the payoffs of other actions at the current round of the game. This information

is not necessarily correct in subsequent rounds because the actions’ payoffs

may vary from one round to the next, and the way in which they may vary is

unknown to the agents in the game.2

• Each agent has a fixed probability of dying at each round. At each round,

each agent may also produce offspring, with a probability that depends on

how this agent’s average per-round payoff compares to the average per-round

payoffs of the other agents in the game.

A second Cultaptation tournament is scheduled to begin in February 2012.

This tournament carries a e25,000 prize and introduces a few new concepts into

the game, such as the ability for agents to improve actions they already know, and

proximity-based observation. This work does not deal with these additions, although

2 For my analyses, I assume the payoffs at each round are determined by an
arbitrary function (which may be either deterministic or probabilistic), and I ana-
lyze how strategies perform given various possible characteristics of that function.
In general, such characteristics would not be known to any Cultaptation agent—
but my objective is to examine the properties of strategies in various versions of
Cultaptation, not to develop a Cultaptation agent per se.
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I may address them in future work.

My work has had two main objectives: (1) to study the nature of Cultaptation

to see what types of strategies are effective; and (2) more generally, to develop ways

of analyzing evolutionary environments with social learning.

This work includes the following results. First, it provides a formula for ap-

proximating (to within any given error bound ε > 0) the expected per-round utility

(EPRU) of a given strategy (Section 4.2), and a proof that a strategy with maximal

EPRU will have the highest frequency in the limit (Section 4.2.2). This provides a

basis for evaluating Cultaptation strategies analytically, rather than through sim-

ulated games. Next, the work provides a strategy-generation algorithm that can

construct a strategy that is within any given error bound ε > 0 of a best response to

a given set of competing strategies (Section 5.1). It then presents the Cultaptation

Strategy Learning Algorithm (CSLA), which uses the strategy-generation algorithm

in an iterative self-improvement loop to attempt to find a strategy that is a near-best

response to itself, and is therefore a symmetric near-Nash equilibrium (Section 5.2).

Finding such a strategy is desirable because it should be able to perform well against

any set of competing strategies (i.e., any strategies it plays against in a tournament

setting).

The work then provides experimental results outlining the generation of an ap-

proximate Nash equilibrium strategy, sself , in a small version of Cultaptation, and a

performance comparison (in the smaller environment) between sself and EVChooser,

a known good strategy from the Cultaptation tournament (Section 5.3). These ex-

periments show that sself is able to outperform EVChooser, and provide several
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insights into the characteristics of good Cultaptation strategies. For example, the

experiments show that sself observes and exploits most of the time, but switches

quickly to innovation when a structural shock occurs, switching back to observation

and exploitation once it has learned how to respond to the shock. This conflicts

with the conventional wisdom [16, 7] that successful social-learning strategies are

characterized by a high frequency of innovation, but it helps to explain both the

results of the Cultaptation tournament [17] and some recent experimental results

on human subjects [18].

Finally, the work shows how the previous results (which were run on smaller

versions of Cultaptation) can be extended to the larger version used in the tourna-

ment (Chapter 6). It first shows how the analysis and experimental results outlined

above can be used to identify potential problems in the best strategy from the Cul-

taptation tournament (i.e., discountmachine). Next, it uses the formulae from the

analysis to define a new strategy, relaxedlookahead, that avoids such weaknesses.

Experimental results verify that relaxedlookahead is capable of outperforming dis-

countmachine in a variety of environments similar to those used in the Cultaptation

tournament, and provide an in-depth analysis of the factors that allowed relaxed-

lookahead to perform better.

Taken together, these results provide strong support for the following hypothe-

ses about the best strategies for Cultaptation and similar games: First, the best

strategies are likely to be conditional ones in which the choice of action at each

round is conditioned on the agent’s accumulated experience. Such strategies (or

close approximations of them) can be computed by doing a lookahead search that
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predicts how each possible choice of action at the current round is likely to affect

future performance. Second, it is likely that the best strategies will observe and

exploit most of the time, but will have ways of quickly detecting structural shocks,

so that they can switch quickly to innovation in order to learn how to respond to

such shocks.

In addition to these insights about Cultaptation and social learning in gen-

eral, the work also explains how the analysis and algorithms outlined above could

be adapted to apply to future evolutionary games that, like Cultaptation, are signif-

icantly more complex than classical evolutionary games. As researchers in the field

of evolutionary game theory continue to study more complex phenomena like social

learning, it is likely that these weaker assumptions will be needed more frequently,

and so techniques like the ones presented here will be necessary more often.
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Chapter 2

Background

2.1 Cultaptation Social-Learning Game

This section gives a more detailed description of the Cultaptation social learn-

ing game, adapted from the official description [15]. The game is a multi-agent

round-based game, where one action is chosen by each agent each round. There

are N agents playing the game, where N is a parameter to the game. No agent

knows of any other agent’s actions at any point in the game except through the

Obs action specified below. The actions available to each agent are innovation (Inv),

observation (Obs), and exploitation (X1, . . . ,XM , where M is a parameter to the

game). Each Inv and Obs action informs the agent what the utility would be for

one of the exploitation actions, and an agent may not use an exploitation action Xi

unless the agent has previously learned of it through an innovation or observation

action. Here are some details:

Exploitation. Each exploitation action Xi provides utility specific to that

action (e.g. X1 may provide utility 10 and X2 may provide utility 50). The utility

assigned to each action at the beginning of the game is drawn from a probability

distribution π, where π is a parameter to the game.

The utility provided by each exploitation action Xi may change on round r,

according to a probability cr. The function c is a parameter to the game, and
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specifies the probability of change for every round of the game. When the changes

occur, they are invisible to the agents playing the game until the agent interacts

with the changed action. For instance: if an action’s utility happens to change on

the same round it is exploited, the agent receives the new utility, and discovers the

change when the new utility is received. The new utility for a changed action is

determined via the distribution π.

Innovation. When an agent uses the Inv action, it provides no utility, but it

tells the agent the name and utility of some exploitation action Xi that is chosen

uniformly at random from the set of all exploitation actions about which the agent

has no information. If an agent already knows all of the exploitation actions, then

Inv is illegal, and indeed undesirable (when there is nothing left to innovate, why

innovate?). The agent receives no utility on any round where she chooses an Inv

action.

Observation. By performing an Obs action, an agent gets to observe the

action performed and utility received by some other agent who performed an ex-

ploitation action on the previous round. Agents receive no utility for Obs actions,

nor any information other than the action observed and its value: the agent being

observed, for instance, is unknown. If none of the other agents performed an ex-

ploitation action on the previous round, then there were no Xi actions to observe so

the observing agent receives no information. In some variants of the social learning

game, agents receive information about more than one action when observing. I do

not treat such variants directly in this proposal, but it is straightforward to extend

my algorithms to take this difference into account.
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Round # 1 2 3 4 5 . . . k

I1’s action Inv X1 X1 X1 X1 . . . X1

I1’s utility 0 3 6 9 12 . . . 3(k − 1)

Per round 0 1.5 2 2.25 2.4 . . . 3k−1
k

I2O’s action Inv Inv Obs X3 X3 . . . X3

I2O’s utility 0 0 0 8 16 . . . 8(k − 3)

Per round 0 0 0 2 3.2 . . . 8k−3
k

Table 2.1: Action sequences from Example 1, and their utilities.

Example 1. Consider two strategies: the innovate-once strategy (here-
after I1), which innovates exactly once and exploits that innovated action
(whatever it is) for the rest of the game, and the innovate-twice-observe-
once strategy (hereafter I2O), which innovates twice, observes once, and
exploits the highest valued action of the actions discovered for the rest
of the game. For simplicity of exposition, suppose there are only four
exploitation actions: X1, X2, X3, and X4. The values for each of these
actions are drawn from a distribution; in this example we will assume
that they are chosen to be 3, 5, 8, and 5, respectively. For simplicity,
we will assume the probability of change is 0. Suppose there are two
agents: one I1 and one I2O. For the first action, I1 will innovate, which
we suppose gives I1 the value of action X1. On every sequential action,
I1 will choose action X1, exploiting the initial investment. If the agent
dies k rounds later, then the history of actions and utilities will be that
given in Table 2.1; giving a utility of 3(k− 1) and a per-round utility of
3k−1

k
.

In contrast, I2O will innovate, informing it of the utility of X3: 8, then
it will innovate again, informing it of the utility of X4: 5, and finally it
will observe. On the second round, I1 performed X1, and since these are
the only two agents, this was the only exploitation action performed.
Therefore, I2O’s observation action on the next round must report that
another agent got a utility of 3 from action X1 last round (if there were
multiple possibilities, one would be chosen uniformly at random). On
round 4, I2O then knows that actions X1, X3, and X4 have utilities of 3,
8, and 5, respectively. Since the probability of change is 0, the obvious
best action is X3, which I2O performs for the rest of her life. The utility
of I2O on round k is 8(k − 3), making the per-round utility 8k−3

k
. Note

that on rounds 2 to 4, I2O will have a worse per-round utility than I1,
while after round 4, the utility of I2O will be higher (this is important
because reproduction is tied to per-round utility, as I will show shortly).

Formally, everything that an agent α knows about each round can be described
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by an action-percept pair, (a, (m, v)), where a ∈ {Inv,Obs,X1, . . . ,XM} is the action

that α chose to perform, and (m, v) is the percept returned by the action. More

specifically, m ∈ {X1, . . . ,XM , ∅} is either an exploitation action or a null value, and

v is the utility observed or received. While a is chosen by the agent, m and v are

percepts the agent receives in response to that choice. If a is Inv or Obs, then v is the

utility of exploitation action m. If a is Obs and no agent performed an exploitation

action last round, then there is no exploitation action to be observed, hence m = ∅

and v = 0. If a is some Xi, then m will be the same Xi and v will be the utility the

agent receives for that action. The agent history for agent α is a sequence of such

action-percept pairs, hα = 〈(a1, (m1, v1)), . . . , (ak, (mk, vk))〉. As a special case, the

empty (initial) history is 〈〉.

Example 2. The history for I2O in Example 1 is:

hI2O = 〈(Inv, (X3, 8)), (Inv, (X4, 5)), (Obs, (X1, 3)), (X3, (X3, 8)), . . . 〉

To concatenate a new action-percept pair onto the end of a history, I use

the ◦ symbol. For example, hα ◦ (a, (m, v)) is the history hα concatenated with

the action-percept pair (a, (m, v)). Further, for hα = 〈p1, p2, . . . , pk〉, where each

pi is some action-percept pair, I let hα[i] = pi, and hα[i, . . . , j] be the subhistory

〈pi, . . . , pj〉.

Strategies. The Cultaptation game is ultimately a competition among strate-

gies. Here, a strategy is a function from histories to the set of possible actions:

s : hα 7→ m, where hα is a history of an agent using s and m is Inv, Obs or Xi for

some i. Since each strategy may depend on the entire history, the set of possible

9



strategies is huge;1 but any particular Cultaptation game is a competition among a

much smaller set of strategies S, which I will call the set of available strategies. For

example, if there are n contestants, each of whom chooses a strategy to enter into

the game, then in this case,

S = {the strategies chosen by the contestants}. (2.1)

Each strategy in S may be used by many different agents, and the strategy profile

at each round of the game may change many times as the game progresses. When

an agent reproduces, it passes its strategy on to a newly created agent, with the per-

round utility of each agent determining its likelihood of reproduction. A strategy’s

success is measured by its average prevalence over the last quarter of the game [15].

The replication dynamics work as follows. On each round, each agent has

a 2% chance of dying. As such, I also include a parameter d in my formulation

representing the probability of death (d defaults to 0.02). Upon death, an agent is

removed from the game and replaced by a new agent, whose strategy is chosen using

the reproduction and mutation mechanisms described below. Mutation happens 2%

of the time, and reproduction happens 98% of the time.

Reproduction. When reproduction occurs, the social learning strategy used

by the newborn agent is chosen from the strategies of agents currently alive with

a probability proportional to their per-round utility (the utility gained by an agent

1 The number of possible mixed strategies is, of course, infinite. But even if
we consider only pure strategies, the number is quite huge. For a 10,000-round
Cultaptation game of the type used in the Cultaptation tournament, a loose lower
bound on the number of pure strategies is 1009.4×1020155

[19]. In contrast, it has been
estimated [20] that the total number of atoms in the observable universe is only
about 1078 to 1082.
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divided by the number of rounds the agent has lived). The agent with the highest

per-round utility is thus the most likely to propagate its strategy on reproduction.

Example 3. Again looking at the sequences of actions in Table 2.1, we
see that both agents would have equal chance of reproducing on round
1. However, on round 2 I1 has a per-round utility of 1.5, while I2O
has a per-round utility of 0, meaning I1 gets 100% of the reproductions
occurring on round 2. Round three is the same, but on round 4 I1 has
a per round utility of 2.25 and I2O has a per-round utility of 2. This
means that I1 gets 100 · 2.25/4.25 = 53% of the reproductions and I2O
gets 100 · 2/4.25 = 47% of the reproductions on round 4.

Mutation. In Cultaptation, mutation does not refer to changes in an agent’s

codebase (as in genetic programming). Instead, it means that the new agent’s strat-

egy s is chosen uniformly at random from the set of available strategies, regardless

of whether any agents used s on the previous round. For instance, if there were

a Cultaptation game pitting strategies I1 and I2O against one another, then a new

mutated agent would be equally likely to have either strategy I1 or I2O, even if there

were no living agents with strategy I1.

Game Types. In the Cultaptation tournament [17], two types of games were

played: pairwise games and melee games. A pairwise game was played with an

invading strategy and a defending strategy. The defending strategy began play with

a population of 100 agents, while the invading strategy began with none. Mutation

was also disabled for the first 100 rounds, to allow the defending strategy time to

begin earning utility. After 100 rounds, mutation was enabled and the invader had

the challenging task of establishing a foothold in a population consisting entirely

of agents using the defending strategy (most of whom would have had time to

find several high-payoff actions). Since the pairwise games provide a clear early-

11



game advantage to the defender, they were typically played twice with the invader

and defender swapping roles on the second game. A melee game was played with n

strategies, for some n > 2. Initially, the population of 100 agents was evenly divided

between each strategy in the game. Mutation was disabled for the last quarter of

the game, so that it would not influence results when strategies had similar fitness.

Scoring. If we have k social learning strategies s1, . . . , sk playing Cultapta-

tion, then on any given round there will be some number nj of agents using strategy

sj, for 1 ≤ j ≤ k. Strategy sj’s score for the game is the average value of nj over

the final 2,500 rounds of the game. The strategy with the highest score is declared

the winner.

The only way an agent may affect nj is through reproduction. I will show in

Section 4.2.2 that any strategy maximizing an agent’s expected per-round utility

(defined in Section 4.1.5) will also maximize its reproduction. I will therefore focus

on computing the expected per-round utility.

2.2 Motivating Discussion

The purpose of this section is to explain the motivations for several aspects of

my work:

• Sections 2.2.1 and 2.2.2 give examples of types of strategies that seem like they

should work well at first glance, but can have unexpectedly bad consequences.

The existence of such situations motivate the algorithms described later in this

proposal, which perform a game tree search in order to consider strategies’
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long-term consequences.

• An important way of getting insight into a game is to examine its best-response

strategies; and this approach is at the heart of my formal analysis and my

game-tree search algorithms. Section 2.2.3 explains some issues that are im-

portant for finding best-response strategies in Cultaptation.

2.2.1 Innovation, Observation, and Structural Shocks

If we want to acquire a new action to exploit, then what is the best way of

doing it: to observe, or to innovate? At first glance, observing might seem to be

the best approach. If the other agents in the environment are competent, then it

is likely that they are exploiting actions that have high payoffs, hence we should

be able to acquire a better action by observing them than by innovating. This

suggests that an optimal agent will rely heavily on observation actions. However,

the following example shows that relying only on observation actions can lead to

disastrous consequences if there is a structural shock, i.e., a large change in the value

of an exploitation action.2

Example 4. Structural shocks: Figure 2.1 shows a Cultaptation
game in which all agents use the following strategy: each agent begins
with a single Obs action, followed by a single Inv action if the Obs action
returns ∅,3 in order to obtain an exploitation action Xi which the agent
will use in all subsequent rounds.

Agent A3 acquires action X4 by doing an unsuccessful Obs followed by
an Inv; and A1 and A2 acquire X4 by observing A3. At first, X4 is far

2 I have borrowed this term from the Economics literature, where it has an anal-
ogous meaning (e.g., [21, 22]).

3 This will generally only happen on the first round of the game, before any agent
has obtained an exploitation action.
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Round X1 X2 X3 X4 A1 A2 A3

1 2 4 1 9 N/A N/A (Obs, (∅, ·))
2 2 4 1 9 N/A N/A (Inv, (X4, 9))
3 2 4 1 9 Birth N/A (X4, (·, 9))
4 5 4 1 9 (Obs, (X4, 9)) Birth (X4, (·, 9))
5 5 2 1 9 (X4, (·, 9)) (Obs, (X4, 9)) (X4, (·, 9))
6 1 2 1 9 (X4, (·, 9)) (X4, (·, 9)) (X4, (·, 9))
7 1 2 8 9 (X4, (·, 9)) (X4, (·, 9)) Death
8 1 2 8 1 (X4, (·, 1)) (X4, (·, 1)) N/A
...

...
...

...
...

...
...

...

Figure 2.1: An example of a game in which there is a large structural shock. The
columns for the exploitation actions Xi show their values at each round, and the
columns for agents A1–A3 show their histories. Note that by round 6, all agents
choose action X4, which has changed to a very low value. Since none of the agents
are innovating, none of them can find the newly optimal action X3.

better than the other exploitation actions, so all of the agents do well by
using it. On round 8, the action X4 changes to the lowest possible value,
but the agents continue to use it anyway. Furthermore, any time a new
agent is born, it will observe them using X4 and will start using it too.

This is a pathological case where the best action has disappeared and the

agents are in a sense “stuck” exploiting the suboptimal result. Their only way out

is if all agents die at once, so that one of the newly born agents is forced to innovate.

Experiments in Section 5.3.1 show that in some cases, situations like these are a big

enough risk that a near-best response strategy will choose innovation moves more

frequently than observation moves.

2.2.2 Innovation and Observation Versus Exploitation

One might also think that agents should perform all of their innovation and

observation actions first, so that they have as many options as possible when choos-

ing an action to exploit. However, as Raboin et al. [23] demonstrate, this intuition
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is not always correct. Because the game selects which agents reproduce based on

average per-round utility, not total accumulated utility, it is frequently better for

newborn agents to exploit one of the first actions it encounters, even if this action

has a mediocre payoff (e.g., exploiting an action with value 10 on the second round

of an agent’s life gives it as much per-round payoff as exploiting an action with value

50 on the tenth round). Once the agent has at least some per-round utility so that

it has a nonzero chance of reproducing, it can then begin searching for a high-valued

action to exploit for the rest of its lifetime.

2.2.3 Best-Response Strategies in Cultaptation

A widely used technique for getting insight about a game (e.g., see [24]) is to

look at the game’s best-response strategies. Given an agent α and a strategy profile

(i.e., an assignment of strategies to agents) s−α for the agents other than α, α’s best

response is a strategy sopt that maximizes α’s expected utility if the other agents

use the strategies in s−α.

In Cultaptation, it is more useful to consider a best response to the set of

available strategies S, rather than any particular strategy profile. During the course

of a Cultaptation game, the strategy profile will change many times as agents die

and other agents are born to take their places. Each strategy in S will be scored

based on its average performance over the course of the game; and we will see (in

Section 4.2.2) that given S, each strategy’s score is independent of the initial strategy

profile if the game is sufficiently long.
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IfG is a Cultaptation game (i.e., a set of values for game parameters such as the

number of agents, set of available actions, probability distribution over their payoffs;

see Section 4.1 for details), then for any agent α, any set of available strategies S,

and any history hα for α, there is a probability distribution πObs(a|hα,S) that gives

the probability of observing each action a, given S and hα. Given πObs and G, we

can calculate the probability of each possible outcome for each action the agent

might take, which will allow us to determine the best response to S. To compute

πObs is not feasible except in general, but it is possible to compute approximations

of it in some special cases (e.g., cases in which all of the agents, or all of the agents

other than α, use the same strategy). That is the approach used in this proposal.

16



Chapter 3

Related Work

In this section I will discuss related work on social learning and on computa-

tional techniques related to my own.

3.1 Social Learning

The Cultaptation social learning competition offers insight into open questions

in behavioral and cultural evolution. An analysis of the competition is provided by

Rendell et al. [17]. Of the strategies entered into the competition, those that per-

formed the best were those that greatly favored observation actions over innovation

actions, and the top performing strategy learned almost exclusively through observa-

tion. This was considered surprising, since several strong arguments have previously

been made for why social learning isn’t purely beneficial [7, 16]. However, this re-

sult is consistent with observations made during my own experiments, in which the

ε-best-response strategy rarely did innovation (see Section 5.3).

In previous work, Carr et al. showed how to compute optimal strategies for

a highly simplified versions of the Cultaptation social learning game [25]. Their

paper simplifies the game by completely removing the observation action—which

prevents the agents from interacting with each other in any way whatsoever, thereby

transforming the game into a single-agent game rather than a multi-agent game.
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Their model also assumes that exploitable actions cannot change value once they

have been learned, which overlooks a key part of the full social learning game.

Wisdom and Goldstone attempted to study social learning strategies using a

game similar to Cultaptation, but using humans rather than computer agents [18].

Their game environment consisted of a group of “creatures,” each of which had

some hidden utility. The agents’ objective was to select a subset of the creatures

to create a “team,” which was assigned a utility based on the creatures used to

create it. Agents had a series of rounds in which to modify their team, and on each

round they were allowed to see the teams chosen by other agents on the previous

round (and in some cases, the utility of the other agents’ teams), and the object

of the game was to maximize the utility of one’s team. In this game, the acts of

keeping a creature on one’s team, choosing a creature that another agent has used,

and choosing a creature no one has yet used correspond to exploitation, observation,

and innovation (respectively) in the Cultaptation game.

The successful strategies Wisdom and Goldstone saw are similar to those used

by the strategies found by my algorithm: they keep most of the creatures on their

team the same from round to round (which corresponds in Cultaptation to per-

forming mostly exploitation actions), and new creatures are mostly drawn from

other agents’ teams (which corresponds to preferring observation over innovation in

Cultaptation). However, Wisdom and Goldstone highlight these characteristics as

interesting because they run contrary to the conventional wisdom for social learning

strategies, which suggests that broader exploration should lead to better perfor-

mance, and therefore that successful strategies should innovate more often [16]. In
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this case, analyzing the strategies found by my algorithm allowed me to draw the

same conclusions about what works well. This gives more evidence that the conven-

tional wisdom on social learning [7, 16] may be mistaken.

How best to learn in a social environment is still considered a nontrivial prob-

lem. Barnard and Sibly show that if a large portion of the population is learning

only socially, and there are few information producers, then the utility of social

learning goes down [9]. Thus, indiscriminate observation is not always the best

strategy, and there are indeed situations where innovation is appropriate. Authors

such as Laland have attempted to produce simple models for determining when one

choice is preferable to the other [8]. Game theoretic approaches have also been used

to explore this subject, but it is still ongoing research [26, 27]. Giraldeau et al. offer

reasons why social information can become unreliable. Both biological factors, and

the limitations of observation, can significantly degrade the quality of information

learned socially [11].

Work by Nettle outlines the circumstances in which verbal communication

is evolutionarily adaptive, and why few species have developed the ability to use

language despite its apparent advantages [10]. Nettle uses a significantly simpler

model than the Cultaptation game, but provides insight that may be useful to

understanding social learning in general. In Nettle’s model, the population reaches

an equilibrium at a point where both individual and social learning occur. The

point of equilibrium is affected by the quality of observed information and the rate

of change of the environment.
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3.2 Related Computational Techniques

The restless bandit problem, a generalization of the stochastic multi-armed

bandit problem that accounts for probability of change, is cited as the basis for

the rules of the Cultaptation tournament [17]. The rules of the Cultaptation game

differ from the restless bandit problem by including other agents, making observation

actions possible and complicating the game significantly. I also show in Section 4.2.2

that maximizing total payoff, the goal of the restless bandit problem, is different

from maximizing expected per-round utility (EPRU) of an agent in the Cultaptation

tournament.

The restless bandit problem is known to be PSPACE -complete, meaning it is

difficult to compute optimal solutions for in practice [28, 29]. Multi-armed bandit

problems have previously been used to study the tradeoff between exploitation and

exploration in learning environments [30, 31].

As discussed later in Section 4.1, finding a best-response strategy in Cultap-

tation is basically equivalent to finding an optimal policy for a Markov Decision

Process. Consequently, my algorithm for finding near-best-response strategies has

several similarities to the approach used by Kearns et al. to find near-optimal poli-

cies for large MDPs [32]. Both algorithms use the discount factor of the MDP

(which, in the case of Cultaptation, is the probability of death d) and the desired

accuracy ε to create a horizon for their search, and the depth hα of this horizon

depends on the discount factor and the branching factor, but not on the size of the

full state space (unlike conventional MDP algorithms). Thus, both their algorithm
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and mine also have running time exponential in 1/ε and in the branching factor.

However, the algorithm provided by Kearns et al. was designed as an online algo-

rithm, so it only returns the near-optimal action for the state at the root of the

search tree. Mine, on the other hand, returns a strategy specifying which action the

agent should take for all states that can occur on the first hα rounds. This means

that the exponential-time algorithm only needs to run once to generate an entire

strategy, rather than once per agent per round in each game we simulate.

Many algorithms for optimal control of an MDP have been developed, however

they all have running time that grows linearly with the size of the state space of

the MDP. This makes them intractable for problems like Cultaptation, which have

exponentially large state spaces. Several approaches for near-optimal control, which

produces a policy within some ε of optimal, have been developed [32, 33, 34].
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Chapter 4

Game Analysis

This chapter presents the formal model of Cultaptation used throughout the

rest of the work, as well as the derivation of a formula that, given the parameters of

the game environment and the other strategies in the game, will allow us to predict

which strategy has an evolutionary advantage.

4.1 Formal Model

In this section I introduce a formal mathematical model of Cultaptation games.

A glossary of the notation used in this proposal is provided as Table 4.1.

Game Definition. Cultaptation requires a number of parameters to deter-

mine exactly how it will run. Therefore, I will define the game parameters, G, to

be a set of values for the following: N , the number of agents; M , the number of ex-

ploitation actions in the game; c, the probability that an exploitation action changes

its utility each round; π, the probability distribution used to assign a utility value to

each exploitation action, both the outset and each time an action’s utility changes;

and d, the probability of death. In the Cultaptation tournament, only the values of

N , M , and d were known ahead of time, but for this analysis I use the values of the

other parameters as well.

Recall that in the Cultaptation tournament [15], each evolutionary simulation
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N Number of agents in the environment.
S The set of available strategies. Agents may only use strategies

in S.
r Number of the current round, ranging from 1 to ∞.
c The probability of change on all rounds.
d The probability of death on all rounds.
(a, (m, v)) An action-percept pair in which the action a returns the

percept (m, v).
hα Agent history for α. A sequence of action-percept pairs

experienced by agent α.
hα[i] The i-th action-percept pair in hα.
X(hα) Number of exploitable actions given history hα.
M Number of exploitation actions in the game.
π Probability distribution for the new value of any action whose

value changed at round r.
πObs(m, v|hα,S) Probability that Obs returns action m with value v, given

history hα and available strategies S.
πInv(v|r) Probability that Inv returns an action with value v on round r.
V The set of potential utility values.
P (h′α|hα, a,S) Probability of transitioning to history h′α if α performs action a

with history hα and available strategies S.
L(|hα|) Probability that α lives long enough to experience history hα.
T Set of all action-percept pairs of the form (a, (m, v)).

Table 4.1: A glossary of notation used in this proposal.

was a contest between two or more strategies submitted to the tournament. Thus,

there is a fixed set of strategies that are allowed to occur in a given simulation.

I will call this the set of available strategies S, where S = {s1, s2, ..., s`} for some

finite ` (i.e. in pairwise games ` = 2, in melee games ` > 2). Any strategy profile s

that occurs in the simulation will consist only of strategies in S. When an agent is

chosen to be replaced via mutation, its new strategy is selected at random from the

strategies in S.

A Cultaptation game can now be defined formally, as follows. A Cultaptation

game is an `-player game, in which each player receives the game parameters G as
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input. Each player then simultaneously chooses a strategy to put into the set of

available strategies. Let player i’s strategy be si, so that S = {s1, s2, ..., s`}. The

pair (G,S) is an instance of G. In (G,S), each player i will receive a payoff equal

to score(si), defined below.

Scoring. The version of Cultaptation used in the tournament continued for

10,000 rounds, and each strategy was assigned a score equal to its average population

over the last 2,500 rounds. But as is often done in analyses of repeated games, the

formal model assumes an infinite Cultaptation game, i.e., the game continues for an

infinite number of rounds, and the score for strategy s is its average population over

the entire game:

score(s) = lim
r→∞

∑r
j=1 p(s, j)

r
,

where p(s, j) is the population size of agents using strategy s on round j. This

greatly simplifies the analysis in Section 4.1.5, by allowing us to average out the

various sources of noise present in the game.

Actions. The rest of the formal model will be constructed from the perspec-

tive of an arbitrary agent, α, in a given infinite Cultaptation game instance (G,S).

I use r for the number of a round, and X(hα) to specify the number of exploita-

tion actions available after history hα. After all exploitation actions X1, . . . ,XM have

been innovated or observed in a history hα, then X(hα) = M and innovation actions

become illegal.

I model the payoffs supplied for exploitation actions Xi by a probability dis-

tribution π. π(v) is the probability of an action having payoff v at the start of the
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game instance. π(v) is also the probability that, when an action changes its payoff,

the new payoff is v. I let V be the set of all action values that may occur with

non-zero probability:

V = {v | π(v) > 0},

where V has finite size.

If we let πInv(v|r) be the probability that value v is innovated on round r, it

can be defined recursively in terms of c and π as:

πInv(v|r) =


π(v), if r=0,

cπ(v) + (1− c)πInv(v|r − 1), otherwise.

That is, initially the chance that Inv will return an action with value v is

determined by the given distribution π(v). On later rounds (r > 0) the chance that

Inv will return an action with value v is the chance that an action’s value changed

to v on the current round (given by cπ(v)), plus the chance that an action’s value

was v on the previous round and it did not change this round.

While computing the probability distribution for utilities of actions returned

by Inv was fairly straightforward, computing a similar distribution for Obs actions

is significantly more difficult. Let α be any agent, and S be the set of available

strategies. From S we can get a probability distribution over the other agents’

actions in any given situation; and from this we can derive πObs(m, v|hα,S), the

probability that Obs would return the action-percept pair (m, v), given history hα.

In order to derive πObs, we must consider each possible strategy profile s−α for

agents besides α, determine how likely that strategy profile is to occur, and then

determine what each agent in s−α will do for every possible sequence of actions they
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could have encountered, bounded only by the percepts the agent has received in

hα. As discussed in Section 2.2.3, the number of possible histories alone is astro-

nomically large. Since πObs is conditioned on each possible history it will be larger

still, so in any practical implementation the best we can do is to approximate πObs

(Section 5.1.5 describes how we will do this). But for the theoretical development,

I will assume we have an oracle for πObs, that will tell us exactly how likely we are

to observe any given action-utility pair.

In what follows, I will show that given π, πObs, V , and S, we can calculate

the possible outcomes of each action the agent may take, and the probability of

each of these outcomes. This allows us to treat an infinite Cultaptation game as a

Markov Decision Process (MDP) [35]. Calculating the best response in this case is

equivalent to finding an optimal control policy for an MDP.

4.1.1 Transition Probabilities

A transition probability function P (h′α|hα, a,S) defines the probability of tran-

sitioning from history hα to history h′α = hα ◦ (a, (m, v)) in the next round if an

agent α performs action a. These transition probabilities are for the case where α

does not die before reaching h′α; I introduce functions to account for the probability

of death in Section 4.1.2.

There are three cases for what P (h′α|hα, a,S) might be, depending on whether

a is an innovation, observation, or exploitation action:
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• If a = Inv, then

P (hα ◦ (Inv, (m, v))|hα, Inv,S) =



πInv(v|r)
M−X(hα)

if hα contains no percepts that

contain the action m,

0 otherwise.

(4.1)

• Recall that an agent cannot innovate action m if it has already encountered m

by innovating or observing. Observation actions are not subject to the same

restriction, so if a = Obs, then

P (hα ◦ (Obs, (m, v))|hα,Obs,S) = πObs(m, v|hα,S) (4.2)

where πObs(m, v|hα,S) models the exploitation behavior of the other agents

in the environment. Obviously, the exact probability distribution will depend

on the composition of strategies used by these agents. The above definition is

general enough to support a wide range of environments; and in Section 5.1.5

I will discuss one potential way to model this function for a more specific set

of environments.

• Finally, if a = Xm, then hα must contain at least one percept for Xm. Let r

be the last round at which the last such percept occurred. For the case where

Xm’s utility did not change since round r, we have

P (hα ◦ (Xm, (m, v))|hα,Xm,S) = (1− c)|hα|−r︸ ︷︷ ︸
prob. of not changing

+ cπ(v)

|hα|∑
j=r

(1− c)|hα|−j︸ ︷︷ ︸
prob. of changing back to v.

(4.3)
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For the case where Xm’s utility did change since round r, we have

P (hα ◦ (Xm, (m, v))|hα,Xm,S) = cπ(v)

|hα|∑
j=r

(1− c)|hα|−j (4.4)

which is similar, but assumes that the value must have changed at least once.

In all other cases, no transition from hα to h′α is possible, so P (h′α|hα, a,S) = 0.

Probability of Reaching a History

We will frequently be interested in P (hα|s,S), the probability of history hα

occurring given that the agent is following some strategy s ∈ S. We will be able to

derive P (hα|s,S) iteratively, calculating the probability of each step of history hα

occurring using the functions derived above.

Specifically, P (hα|s,S) is the probability that each hα[i] = (ai, (mi, vi)) occurs

given the action chosen by the strategy in the history hα[1, . . . , i−1] = (a1, (m1, v1))·

· · · · (ai−1, (mi−1, vi−1)), or:

P (hα|s,S) =

|hα|−1∏
i=1

P (hα[1, . . . , i] ◦ hα[i+ 1]|hα[1, . . . , i], s(hα[1, . . . , i]),S) (4.5)

4.1.2 Accounting for Probability of Death

The probability of an agent living long enough to experience history hα de-

pends on the probability of death. It is

L(|hα|) = (1− d)|hα|−1. (4.6)

When we calculate the probability of reaching a given history hα, we will

generally multiply it by L(|hα|) to account for the chance that the agent dies before

reaching hα.
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Sometimes we will also be interested in the probability that a randomly-

selected agent has history hα. For this we will need to know the probability that a

randomly-selected agent is exactly |hα| rounds old, which is simply:

L(|hα|)∑∞
i=1 L(i)

=
L(|hα|)

1
1−(1−d)

=
L(|hα|)

1
d

= dL(|hα|). (4.7)

4.1.3 Utility Functions

A utility function U((a, (m, v))) defines the utility gleaned on action-percept

pair (a, (m, v)):

U((a, (m, v))) =


v, if ∃i such that a = Xi,

0, otherwise.

(4.8)

Notice that U(·) is only non-zero on exploitation actions.

The per-round utility (PRU) of history hα, where

hα = (a1, (m1, v1)) ◦ · · · ◦ (a|hα|, (m|hα|, v|hα|)),

is defined to be the sum of the utility acquired in that history divided by the history’s

length:

PRU(hα) =
1
|hα|

|hα|∑
i=1

U((ai, (mi, vi))) (4.9)

4.1.4 Strategy Representation

A strategy s is defined as a function mapping each history hα ∈ H to the

agent’s next action s(hα) ∈ {Inv,Obs,X1, . . . ,XM}. For instance, the strategy I1
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from Example 1 is defined by the function:

sI1(hα) =


Inv, if hα is empty,

Xi, for hα = (Inv, (Xi, v)), . . .

In this proposal we will deal with partially specified strategies. A partially spec-

ified strategy is a mixed strategy (i.e., a probability distribution over a set of

pure strategies) that is defined by a finite set Q of history action pairs (Q ⊂

H × {Inv,Obs,X1, . . . ,XM}), in which each hα ∈ H appears at most once. Given

any history hα, if there is an action m such that (hα,m) ∈ Q, then sQ chooses the

action m. Otherwise, sQ chooses an action arbitrarily from all actions that are legal

in hα. Partially specified strategies have the advantage of being guaranteed to be

finitely representable.

4.1.5 Evaluating Strategies

At each round, an agent with history hα has reproductive fitness PRU(hα), and

agents are selected to reproduce with probability proportional to their reproductive

fitness (i.e., using the replicator equation [36]). Since a strategy’s score is a function

of its average population over the course of the game, we want some metric that

allows us to compare the expected reproductive fitness of two strategies. This will

allow us to predict which strategy is more likely to win.

At first glance, it may appear that the way to predict which strategy will have

higher expected reproductive fitness is to compare their expected utilities. However,

prior work has shown that this is not the case: in Cultaptation, a strategy’s expected

reproductive fitness is not necessarily proportional to its expected utility [23]. I now
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Table 4.2: The expected utility and expected reproductive fitness of sII and sIEI

from Example 5. sIEI has a higher expected reproductive fitness, and therefore will
be likely to win a game against sII, even though sII has a higher expected utility.

Expected Utility Expected Reproductive Fitness

sII 90.25 65.074

sIEI 88.825 65.185

present a simple example that illustrates this phenomenon.

Example 5. Consider an infinite Cultaptation game with no probability
of change, no observation actions, probability of death d = 0.05, two
exploitation actions valued at 65 and 100, and an innovate action that
will return either exploitation action with uniform probability. This
means that an agent needs to perform at most two innovate actions to
have knowledge of the action with value 100, since innovating does not
return an action the agent already knows.

Let us compare two strategies: sII and sIEI. Both strategies will perform
an innovate as their first action. If the action they learn has value 100,
both strategies will exploit that action until the agent dies. If the action
learned has value 65, sII will perform a second innovate on its next turn,
learning the action with value 100, and will exploit that action until its
agent dies. Meanwhile, sIEI will exploit the action with value 65 once,
before performing an innovate on its third turn to learn the action with
value 100. It then exploits this action until its agent dies.

Since the two strategies are identical when they learn the action with
value 100 on their first action, and since this case is equally likely to
be encountered by both strategies, we can ignore it for the purposes of
comparing them. For the rest of this analysis we will assume the first
innovate returns the action with value 65. In this case, we can calculate
the expected utility for both strategies using geometric series, and we can
calculate their expected reproductive fitnesses using methods described
in Section 4.2. Table 4.2 presents these values. While sII has a higher
expected utility, since it exploits the action with value 100 more often,
sIEI has a higher expected reproductive fitness, since it does not wait as
long to begin exploiting. Therefore, sIEI will be the likely winner in a
contest between these two strategies.

Since we cannot always use a strategy’s expected utility to determine whether

it is expected to win, we will instead compute a strategy’s expected reproductive

fitness directly, by computing its Expected Per-Round Utility.
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Definition. The Expected Per-Round Utility for a strategy sα, EPRU(sα | G,S), is

the expected value of PRU(hα) over all possible histories hα for a randomly-selected

agent α using strategy sα ∈ S in an infinite Cultaptation game instance (G,S). 2

To calculate EPRU(sα | G,S), we look at each possible history hα and multiply

PRU(hα) by the probability that a randomly-chosen agent using sα has history hα.

This probability is equal to the probability that a randomly-chosen agent is |hα|

rounds old (Equation 4.7) times the probability of reaching history hα in |hα| steps

using strategy sα (Equation 4.5). Hence, the EPRU of a strategy is:

EPRU(sα | G,S) =
∑
hα∈H

dL(|hα|)× P (hα|sα,S)× PRU(hα).

Note that for a given environment, the probability of death d is a constant.

Hence, in the analysis I will frequently factor it out.

Example 6. Recall the innovate-once strategy, which innovates once
to learn an action and then exploits that action until it dies. Suppose
this strategy exists in an environment with a probability of death of
0.2 and only one possible exploit action with non-changing value 10. All
agents using this strategy will therefore learn the only action on their first
round, and then exploit an action with value 10 on all subsequent rounds.
Hence, there is only one possible history for a j-round old agent using
this strategy, and its per-round utility is 10 · (j − 1)/j. The probability
that a randomly-selected agent will be j rounds old will be 0.2 · L(j) =
0.2·0.8j−1. Thus the expected per-round utility achieved by this strategy
in this environment is

∑∞
j=1 0.2 · 0.8j−1 · 10 · (j − 1)/j.

4.2 Analysis of EPRU

In this section I examine methods for computing the expected per-round utility

of a strategy. First I present a method for computing an approximation to the EPRU
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for given a strategy, then I present a proof that a strategy maximizing EPRU will

also maximize its average population in an infinite Cultaptation game instance.

4.2.1 Computation of EPRU

I will now define a formula that can be used to compute EPRU exactly for a

given strategy s. The definition of EPRU given in Section 4.1.5 used a “backward”

view: for every possible history hα, it looked back through hα to determine PRU(hα).

Notice, however, that hα must have some preceding history h′α, where hα = h′α ◦ t

for some action-percept pair t. This definition of EPRU must examine h′α and hα

independently, even though their only difference is the addition of t.

For this reason, it will make more sense computationally to use a “forward”

view of EPRU: we will construct a recursive function on s and hα which, for each

possible hα ◦ t:

• calculates the per-round utility gained from t, both for history hα ◦ t and for

all histories that can be reached from hα ◦ t, and then

• recurses on s and hα ◦ t.

For the calculation in the first bullet, we will use the formula EVexp(r, v),

which computes the expected amount of per-round utility we gain (on the current

round and on future rounds) by exploiting a value v on round r:

EVexp(r, v) =
∞∑
j=r

L(j)v

j
= v

∞∑
j=r

1

j
(1− d)j−1. (4.10)
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Using known properties of infinite series, EVexp can also be expressed as

EVexp(r, v) = v

(
∞∑
i=1

1

i
(1− d)i−1 −

r−1∑
i=1

1

i
(1− d)i−1

)

= v

(
ln d

d− 1
−

r−1∑
i=1

1

i
(1− d)i−1

)
(4.11)

and is therefore computable.

We can now express the expected per-round utility of a strategy s recursively

in terms of the average per-round payoff of an agent.

EPRUalt(s, hα | G,S) = (4.12)∑
t∈T

P (hα ◦ t|hα, s(hα),S)· (EVexp(|hα ◦ t|, U(t)) + EPRUalt(s, hα ◦ t | G,S))

where T is the set of all possible action-percept pairs, and hα ◦ t represents a pos-

sible history on the next round. Note that the size of T is finite. A proof that

EPRU(s | G,S)/d = EPRUalt(s, 〈〉 | G,S) is included in [19].

Unfortunately, computing EPRUalt is not possible since it suffers from infinite

recursion. To handle this, I introduce a depth-limited computation of EPRUalt,

which only computes the portion of the total EPRU contributed by the first k

rounds:

EPRUk
alt(s, hα | G,S) = (4.13)
0 If k = 0∑

t∈T P (hα ◦ t|hα, s(hα),S)×

(EVexp(|hα|, U(t)) + EPRUk−1
alt (s, h ◦ t | G,S)) otherwise

I prove in Section 5.1.3 that if the search depth k is deep enough, EPRUk
alt(s, hα |G,S)

will always be within ε of EPRUalt(s, hα | G,S).
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4.2.2 EPRU Corresponds to Reproductive Success

This section provides a proof that if a strategy has the highest EPRU for the

given environment, it will also have the optimal expected probability of reproducing.

This proof applies only to pairwise games, but the same techniques should apply to

arbitrary (finite) numbers of strategies.

Assume we have an infinite Cultaptation game instance (G,S), as defined in

Section 4.1, made up of agents using strategies s and s′ (i.e. S = {s, s′}). Recall

from Section 4.1 that the score for strategy s is

score(s) = lim
r→∞

∑r
i=0 p(s, i)

r

where p(s, i) is the number of agents using strategy s on round i. Our objective for

this section will be to show that EPRU(s | G,S) > EPRU(s′ | G,S) if and only if

score(s) > score(s′).

I begin by defining a reset event, which will help illustrate some interesting

properties of infinite Cultaptation.

Definition. Let n and n′ be the number of agents using s and s′, respectively, on

the first round of the game instance, and let N = n+n′. A reset event occurs when

all the agents in the environment die on two consecutive rounds, and on the second

round they are replaced (via mutation) by n agents using s and n′ agents using s′.

The probability of a reset event occurring is β = dNdNmN
(
n
N

)
0.5n. 2

In other words, after a reset event occurs the conditions are identical to those

that were present on the first round; the game instance has essentially started over.

Note that β is the same on every round, and it is always greater than 0.
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Since the game instance continues for an infinite number of rounds, there will

be an infinite number of reset events. Thus, if we were to run other game instances

with S = {s, s′}, both strategies would have the same score each time. Therefore,

we also know that we can define each strategy’s score as a function of its expected

population at each round, rather than its population for a single game instance.

This gives us

lim
r→∞

∑r
i=0 p(s, i)

r
= lim

r→∞

∑r
i=0 EP(s, i)

r
(4.14)

where EP(s, r) is the expected population of agents using strategy s on round r.

I will also define EAU(s, r) to be the expected agent utility of strategy s on

round r; that is, EAU(s, r) is the expected PRU of a randomly-chosen agent using

strategy s on round r. EP(s, r) can now be defined recursively for each strategy

using the mechanics of Cultaptation, as follows. Let EP(s, 0) = n and EP(s′, 0) = n′.

Then, for r ≥ 0

EP(t, r + 1) =

(1− d)EP(t, r)︸ ︷︷ ︸
Survived from previous round

+Nd(1−m)
EP(t, r)EAU(t, r)

TU(r)︸ ︷︷ ︸
New agents from selection

+ Nd
m

2︸ ︷︷ ︸
New agents from mutation

where t ∈ {s, s′} and TU(r) = EP(s, r)EAU(s, r) + EP(s′, r)EAU(s′, r) is the ex-

pected total utility on round r. Recall from Section 4.1 that N is the total number

of agents in the environment, d is the probability of death, and m is the probability

of mutation.

I now consider the behavior of EAU(s, r) as r increases.

Lemma 1. For any strategy s, limr→∞ EAU(s, r) = γ for some finite γ.
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Proof. Let u(s, r) be the expected utility of a single agent using strategy s when

r rounds have passed since the first round or the last reset event. For all r, we

know that 0 ≤ u(s, r) ≤ Vmax/d, since agents cannot earn negative utility, and no

strategy can have better expected performance than a strategy that exploits the

best possible action for its entire expected lifespan of 1/d rounds. We can rewrite

EAU(s, r) in terms of u(s, r) as follows.

EAU(s, r) = β

(
r−1∑
i=0

(1− β)iu(s, r)

)
+ (1− β)ru(s, r)

Taking the limit of this form gives us

lim
r→∞

EAU(s, r) = lim
r→∞

β

(
r−1∑
i=0

(1− β)iu(s, i)

)
+ lim

r→∞
(1− β)ru(s, r)

= lim
r→∞

β

(
r−1∑
i=0

(1− β)iu(s, i)

)
.

Since u(s, i) is bounded and
∑r−1

i=0 (1− β)i is a geometric series,

lim
r→∞

β

(
r−1∑
i=0

(1− β)iu(s, i)

)

converges absolutely by the comparison test. Hence, limr→∞ EAU(s, r) = γ for some

finite γ. 2

Lemma 2. For any strategy sα and set of available strategies S,

lim
r→∞

EAU(sα, r) = EPRU(sα | G,S)

Proof. The expected agent utility EAU(sα, r) is defined as the expected PRU of an

agent using strategy sα on round r. As r approaches infinity, the probability that a

randomly-selected agent will be i rounds old approaches L(i)/
∑∞

j=0 L(j) = dL(i).
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The probability of reaching a history hα is defined in Section 4.1.5 as P (hα|sα,S),

and as r increases the set of histories a randomly-selected agent may have approaches

H, the set of all histories. Thus,

lim
r→∞

EAU(sα, r) =
∑
hα∈H

dL(|hα|)× P (hα|sα,S)× PRU(hα),

which is the definition of EPRU(sα | G,S). 2

EP(s, r) and EP(s′, r) are both functions of EAU(s, r) and EAU(s′, r), which

converge to EPRU(s | G,S) and EPRU(s′ | G,S) respectively. Therefore, EP(s, r)

and EP(s′, r) must also converge as r approaches infinity. We will let EP(s) =

limr→∞ EP(s, r) for s ∈ {s, s′}. We can find the value of EP(s) as follows

EP(s) =

(1− d)EP(s) +Nd(1−m)
EP(s) EPRU(s | G,S)

EP(s) EPRU(s | G,S) + EP(s′) EPRU(s′ | G,S)
+Nd

m

2
.

After substituting EP(s′) = N − EP(s) and rearranging terms, we have

0 =(EPRU(s | G,S)EP(s)2 − EPRU(s′ | G,S))

+N
(

(1 +
m

2
) EPRU(s′ | G,S)− (1− m

2
) EPRU(s | G,S)

)
EP(s)

−N2m

2
EPRU(s′ | G,S).

Assume EPRU(s | G,S) > 0 and EPRU(s′ | G,S) > 0, which must be

true as long as there are no actions that give negative utility. Also, let x =

EPRU(s | G,S)/EPRU(s′ | G,S). Then we can rewrite the above as

0 = (x− 1)EP(s)2 +N
(

1 +
m

2
− x(1− m

2
)
)

EP(s)−N2m

2
. (4.15)
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This equation, when subject to the constraint 0 ≤ EP(s) ≤ N , allows us to

express EP(s) as a strictly increasing function of x. It also has the property that

when x = 1, EP(s) = EP(s′) = N/2.

Lemma 3. EP(s) > EP(s′) if and only if EPRU(s | G,S) > EPRU(s′ | G,S).

Proof. Assume EPRU(s | G,S) > EPRU(s′ | G,S). Then x > 1 in Equation 4.15,

and therefore EP(s) > N/2, so EP(s) > EP(s′). Assume EP(s) > EP(s′). Applying

this as an extra constraint to Equation 4.15, we see that only values for x greater

than one satisfy the equality. Therefore, EPRU(s | G,S) > EPRU(s′ | G,S).

Hence, EP(s) > EP(s′) if and only if EPRU(s | G,S) > EPRU(s′ | G,S). 2

We now know that the strategy with higher EPRU will have the highest ex-

pected frequency in the limit, so all that remains is to show that a strategy with

higher frequency in the limit will, in fact, have a higher average population over all

rounds (and therefore, a higher score in the game).

Lemma 4. For all s and s′,

lim
r→∞

Pr
i=0 EP(s,i)

rPr
i=0 EP(s′,i)

r

=
EP(s)

EP(s′)
.

Proof. First, note that because N , d, and m are all strictly positive, 0 < Ndm
2
≤

EP(s, r) < N for all strategies s and rounds r. Therefore,
∑r

i=0 EP(s′, i) is strictly

increasing and unbounded as r increases.

Using the fact that Ndm
2
≤ EP(s, r) < N for all s and r, and the definition
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EP(s) = limr→∞ EP(s, r), we can obtain the following:

lim
r→∞

∑r+1
i=0 EP(s, i)−

∑r
i=0 EP(s, i)∑r+1

i=0 EP(s′, i)−
∑r

i=0 EP(s′, i)
= lim

r→∞

EP(s, r + 1)

EP(s′, r + 1)

=
limr→∞ EP(s, r + 1)

limr→∞ EP(s′, r + 1)
=

limr→∞ EP(s, r)

limr→∞ EP(s′, r)
=

EP(s)

EP(s′)
.

Therefore, by the Stolz-Cesàro theorem,

lim
r→∞

∑r
i=0 EP(s, i)∑r
i=0 EP(s′, i)

=
EP(s)

EP(s′)
,

thus

lim
r→∞

Pr
i=0 EP(s,i)

rPr
i=0 EP(s′,i)

r

=
EP(s)

EP(s′)
.

2

From Equation 4.14 and Lemmas 3 and 4, we immediately get the following:

Theorem 1. For all s and s′,

lim
r→∞

Pr
i=0 n(s,i)

rPr
i=0 n(s′,i)

r

> 1

if and only if EPRU(s | G,S) > EPRU(s′ | G,S).

Therefore, the strategy with higher EPRU will have the higher score in a game

of infinite Cultaptation.

Irrelevance of the Initial Strategy Profile

From the fact that EPRU is independent of the initial strategy profile s, we also

get the following corollary which will help us understand some of the experimental

results (see Section 5.3).

Corollary 1. The initial strategy profile s of an infinite Cultaptation game instance

(defined in Section 4.1) does not affect the score of any strategy in S.
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If this seems counterintuitive, consider the following. At the beginning of

this section I defined a reset event, in which every agent dies on two consecutive

rounds, and all are replaced via mutation so that the population is identical to the

initial strategy profile. For each reset event, there will be many similar events in

which every agent dies on two consecutive rounds and is replaced via mutation,

but in some arrangement different from the initial strategy profile. The probability

of this happening is d2NmN , which is greater than 0. In an infinite-length game,

such an event will eventually occur with probability 1. After it occurs, the initial

strategy profile clearly has no bearing on how the rest of the game plays out, yet

there are still an infinite number of rounds left in the game. Since each strategy’s

score is its average population over the entire game (see Section 4.1), the impact of

the initial strategy profile on each strategy’s total score is vanishingly small in an

infinite-length game.

Application of EPRU to other Evolutionary Games

Many of the equations used in calculating EPRU involve concepts particu-

lar to Cultaptation, such as innovation, observation, and changing action values.

However, the general technique used is to calculate the expected reproductive fit-

ness of an agent on round j, multiply this quantity by the expected proportion of

agents that are j rounds old, and sum these quantities to get the expected fitness

of an entire population. This should be a useful metric in any evolutionary game

in which agents live for more than one generation and reproduce according to the

replicator equation, even if the game uses some measure other than per-round utility

to determine reproductive fitness. The proofs in this section rely primarily on the

41



symmetry between 1) the probability that an agent will be alive after k rounds and

2) the expected proportion of a population of agents that are k rounds old on any

given round. Thus, any evolutionary game that allows agents to live more than one

generation and in which agents die with the same probability on every round should

be able to use a metric very similar to EPRU to compare strategies.
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Chapter 5

Strategy Generation Algorithms

This chapter describes the algorithms used to generate near-best response

strategies for Cultaptation, and presents experimental studies in which near-best

response strategies are tested against a known good strategy from the Cultaptation

tournament.

5.1 Finding an ε-Best Response Strategy

In this section I explain what it means for a strategy to be a best response or

near-best response in infinite Cultaptation, and I provide an algorithm for calculat-

ing a near-best response to S−α, the available strategies other than our own.

5.1.1 Problem Specification

Now that we have derived EPRU and proved that a strategy’s EPRU is directly

proportional to its score in an infinite Cultaptation game, we can determine how

each strategy in a given set of available strategies S will perform by evaluating the

EPRU of each strategy. Therefore, we can define a best-response strategy in terms

of EPRU, as follows.

Recall that in an infinite Cultaptation game (as defined in Section 4.1) there

are ` players, each of whom selects a strategy to put into the set of available strategies
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S. Let S−α be the set of available strategies other than our own, i.e. S−α =

{s1, ..., sα−1, sα+1, ..., s`}. Strategy sopt is a best response to S−α if and only if for

any other strategy s′,

EPRU(sopt | G,S−α ∪ sopt) ≥ EPRU(s′ | G,S−α ∪ s′).

Computing sopt is not possible due to its prohibitively large size. However, we

can compute an ε-best-response strategy, i.e., a strategy s such that EPRU(s |G,S−α∪

s) is arbitrarily close to EPRU(sopt | G,S−α∪sopt). This problem can be stated for-

mally as follows: Given game parametersG, error bound ε > 0, and the set S of avail-

able strategies other than our own, find a strategy sα such that EPRU(sα | G,S−α∪

sα) is within ε of EPRU(sopt | G,S−α ∪ sopt).

5.1.2 Bounding EPRU

In games where 0 < d < 1, an agent could potentially live for any finite number

of rounds. However, since the agent’s probability of being alive on round r decreases

exponentially with r, the expected utility contributed by an agent’s actions in later

rounds is exponentially lower than the expected utility contributed by earlier rounds.

I will use this fact in deriving a bound on EPRUalt(s, hα | G,S) for a given strategy

and a history hα of length l.

Recall from Equations 4.10 and 4.11 that:

EVexp(r, v) = v

∞∑
i=r

1

i
(1− d)i−1 = v

(
ln d

d− 1
−

r−1∑
i=1

1

i
(1− d)i−1

)
(5.1)

where EVexp(r, v) is the expected contribution to EPRU made by exploiting an

action with value v on round r.
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Since we know how much any given exploit contributes to EPRU(sα | G,S) for

a given strategy sα, we can calculate G(l, v), the amount that exploiting the same

action on all rounds after l contributes to EPRU(sα | G,S), as follows:

G(l, v) =
∞∑

j=l+1

v
∞∑
n=j

1

n
(1− d)n−1 = v

∞∑
j=l+1

∞∑
n=j

1

n
(1− d)n−1

Expanding the summations yields:

G(l, v) = v

(
1

l + 1
(1− d)l +

2

l + 2
(1− d)l+1 + · · ·

)
= v

∞∑
n=l+1

n− l
n

(1− d)n−1

= v

(
∞∑

n=l+1

(1− d)n−1 −
∞∑

n=l+1

l

n
(1− d)n−1

)

= v

(
(1− d)l

d
−

∞∑
n=l+1

l

n
(1− d)n−1

)

Next, we pull l out of the summation and use (5.1) to obtain:

G(l, v) = v

(1− d)l

d
− l

(
ln d

d− 1
−

l∑
n=1

1

n
(1− d)n−1

)
︸ ︷︷ ︸

a

 (5.2)

Note that for 0 < d < 1, G(l, v) is finite. G(l, v) provides a closed form formula

for the eventual contribution of exploiting an action with value v at every round

after the lth round. Since the set V of possible action values is finite (see Section

4.1), let vmax = max(V ) be the largest of these values. Then G(l, vmax) is an upper

bound on the expected per-round utility achieved after round l (clearly no strategy

can do better than making an action with maximal value every action after action l).

I use this fact to bound the depth limited expected per-round utility computation.
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Theorem 2. Let vmax be the highest possible action utility for game parameters G,

and let S−α be the set of available strategies other than our own. Then for all l and

all strategies sα,

EPRUalt(sα, 〈〉 | G,S−α ∪ sα)− EPRUl
alt(sα, 〈〉 | G,S−α ∪ sα) ≤ G(l, vmax).

Proof. Since it is not possible for any strategy to gain more utility than vmax on

any round, this follows from the discussion above. 2

Theorem 2 states that G(l, vmax) is the highest possible contribution to the

total expected per-round utility (i.e., EPRUalt(sα, 〈〉 | G,S)) made by any strategy

sα after round l. Thus, if we are given an ε > 0 and we can find a value of k such

that G(k, vmax) ≥ ε, then we know that no strategy can earn more than ε expected

utility after round k. The next section will show how to find such a k.

5.1.3 Determining How Far to Search

In this section I show how to find a search depth k such that, for any given

ε > 0, no strategy can earn more than ε utility after round k. We first note a bound

on G(l, v):

Lemma 5. G(l, v) ≤ v(1− d)l/d.

Proof. The lemma follows from noting that part (a) of Equation 5.2 is greater

than or equal to zero, since ln d
d−1

=
∑∞

n=1
1
n
(1 − d)n−1 and l < ∞. Thus G(l, v) =

v( (1−d)l
d
− w) ≤ v (1−d)l

d
, since w is always non-negative. 2

46



Now if we can find a k such that

ε = vmax(1− d)k/d,

then we can be certain that ε ≥ G(k, v). Solving for k in the above equation yields

k = log(1−d)

(
dε

vmax

)
, (5.3)

which has a solution for 0 < d < 1 and vmax > 0, both of which will always be true

in Cultaptation. This gives us the following theorem.

Theorem 3. Given ε > 0, set of available strategies S−α other than our own, and

game parameters G with maximal utility vmax, let k = log(1−d)

(
dε

vmax

)
. If sα has the

maximal value of EPRUk
alt(sα, ∅ | G,S−α∪sα), then sα is an ε-best response to S−α.

Proof. Let sopt be the strategy with the maximal value of EPRU(sopt |G,S−α∪sopt).

By Theorem 2, we know that sopt cannot earn more than ε expected utility on rounds

after k. Since sα earns the maximum EPRU possible in the first k rounds, it follows

that |EPRU(sopt | G,S−α ∪ sopt) − EPRU(sα | G,S−α ∪ sα)| ≤ ε. Therefore, sα is

an ε-best response. 2

5.1.4 Algorithm

I will now present my algorithm for computing the strategy s with the maximal

value of EPRUk
alt(s, ∅ | G,S−α ∪ s), and show how it can be used to compute an

ε-best response.

Algorithm 1 returns a 2-tuple with a partially specified strategy s and a scalar

U . Strategy s maximizes EPRUk
alt(s, hα | G,S−α ∪ s), and U is the value of this
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Algorithm 1 Produce strategy s that maximizes EPRUk
alt(s, hα | G,S−α∪s), given

initial history hα, set of possible utility values V , and S−α, the set of available
strategies other than our own.

Strat(hα,k,V , S−α)

1: if k = 0 then
2: return 0
3: end if
4: Let Umax = 0
5: Let smax = null
6: for each action a ∈ {Inv,Obs,X1, . . . ,XM} do
7: Let Utemp = 0
8: Let stemp = 〈hα, a〉
9: for each action m ∈ {1, . . . ,M} do

10: for each value v ∈ V do
11: Let t = (a, (m, v))
12: Let p = P (hα ◦ t|hα, a,S−α)
13: if p > 0 then
14: Let {S ′, U ′} = Strat(hα ◦ t, k − 1, V,S−α)
15: stemp = stemp ∪ S ′
16: Utemp = Utemp + p (EVexp(|hα ◦ t|, U(t)) + U ′)
17: end if
18: end for
19: end for
20: if Utemp > Umax then
21: Umax = Utemp

22: smax = stemp

23: end if
24: end for
25: return {smax, Umax}

expression.

The algorithm performs a depth-first search through the space of strategies

that start from the input history hα, stopping once it reaches a specified depth

k. Figure 5.1 provides an example of the kind of tree searched by this algorithm.

For each possible action a ∈ {Inv,Obs,X1, . . . ,XM} at hα, it computes the expected

per-round utility gained from performing a, and the utility of the best strategy

for each possible history h′α that could result from choosing a. It combines these
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quantities to get the total expected utility for a, and selects the action with the best

total expected utility, amax. It returns the strategy created by combining the policy

〈hα, amax〉 with the strategies for each possible h′α, and the utility for this strategy.

Seen another way, Strat(hα, k, V,S−α) computes EPRUk
alt(s, hα | G,S−α ∪ s)

for all possible strategies s, returning the strategy maximizing EPRUk
alt as well as

the maximal value of EPRUk
alt.

Proposition 1. Strat(hα, k, V,S−α) returns (s, U) such that

EPRUk
alt(s, hα | G,S−α ∪ s) = U = argmaxs′(EPRUk

alt(s
′, hα | G,S−α ∪ s′)).

A proof of this proposition is presented in [19].

We now have an algorithm capable of computing the strategy with maximal

expected utility over the first k rounds. Hence, in order to find an ε-best response

strategy we need only find the search depth k such that no strategy can earn more

than ε expected utility after round k, and then call the algorithm with that value

of k.

Theorem 4. Given ε > 0, available strategies other than our own S−α, and a set of

values V with maximum value vmax, let k = log(1−d)

(
dε

vmax

)
. Then Strat(∅, k, V,S−α)

returns (s, U) such that s is an ε-best response to S−α.

Proof. This follows from Theorem 3 and Proposition 1. 2

We also have the following.

Corollary 2. Given available strategies other than our own S−α and a set of values

V , let sk be the strategy returned by Strat(∅, k, V,S−α). Then limk→∞ sk is a best
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response to S−α.

Proof. Let sopt be a best response to S−α. By Lemma 5 and Theorem 3,

EPRU(sopt | G,S−α ∪ sopt)− EPRU(sk | G,S−α ∪ s) ≤ vmax(1− d)k/d.

Since limk→∞ vmax(1 − d)k/d = 0, it follows that limk→∞(EPRU(sopt | G,S−α ∪

sopt) − EPRU(sk | G,S−α ∪ sk)) = 0. Therefore, limk→∞ sk is a best response to

S−α. 2

5.1.5 Implementation

In this section I discuss modifications that improve the running time of Algo-

rithm 1 without any loss in accuracy. Section 5.1.5 discusses techniques for state

aggregation that cut the branching factor of the algorithm in half. Section 5.1.5 dis-

cusses the representation of πObs, and Section 5.1.5 discusses caching and pruning.

State Aggregation

If the pseudocode for Algorithm 1 were implemented verbatim, it would search

through each history that can be reached from the starting state. However, there is

a significant amount of extraneous information in each history that is not needed for

any of the algorithm’s calculations. For example, the histories hα = 〈(Inv, (1, 10))〉

and h′α = 〈(Inv, (2, 10))〉 both describe a situation where α innovates once and

obtains an action with value 10. The only difference between these histories is the

identifier assigned to the action, which does not impact any of the calculations—yet

the pseudocode must still search through each of these histories separately. We can
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eliminate this redundancy by using repertoires, rather than histories, as the states

for the algorithm to search through. A repertoire is a record of what the agent

knows about each of the actions it has learned, rather than a record of everything

that has happened to it.

Making this simple change allows Algorithm 1 to calculate the value of an

observation action by combining information it learns when exploring innovate and

exploit actions, rather than recursing again. This cuts the branching factor of the

search in half. The analysis and details involved in this change, as well as the proof

that the version of the algorithm using repertoires returns the same result as the

previous version, are included in Appendix B.

Running time analysis.

When Algorithm 1 considers a history hα, it makes one recursive call for each

possible action-percept pair (a, (m, v)) that can be executed at hα. There are 2M

such pairs for each history; if the agent knows how to exploit j actions, then it

can innovate any of the M − j actions it does not know, and it can observe any

of the M actions. Each of these actions can also have any of v values. Hence, the

number of recursive calls made by the algorithm each action is at most 2Mv. Since

the algorithm recurses to depth k, the running time for Algorithm 1 is O((2Mv)k).

With the state aggregation technique described above, we do not need to perform

additional recursions for observation actions. Hence, the number of recursive calls

made each action is at most Mv, and the total running time is O((Mv)k), which

improves upon the original running time by a factor of 2k.

Representing πObs
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For the formal proofs, I treated πObs as a black box that, when given the

agent’s history and round number, could tell us the exact probabilities of observing

each action on the current round. However, since there are an exponential number

of possible histories, storing πObs in this form would require an exponential amount

of space, which would severely limit the size of games for which we could compute

strategies. Algorithm 2 (introduced in Section 5.2) would also need to run a pro-

hibitively large number of simulations to get enough samples to generate a new πObs

of this type.

Therefore, as an approximation, my implementation assumes that πObs has a

similar structure to πInv, and remains constant throughout the agent’s lifetime. That

is, the πObs used in the experiments returns the probability of an action valued v

being observed. While this leads to some loss in accuracy, it is very easy to store

and compute. Further, we will see in the experimental results (particularly those

dealing with iterative computation in Section 5.3.2) that this form of πObs is still

able to produce good strategies.

Caching and Pruning

Since the implementation uses repertoires rather than histories to represent

the agent’s set of known actions, and since it is possible for two histories to produce

the same repertoire, the algorithm will sometimes encounter repertoires that it has

already evaluated. So that the algorithm will not have to waste time evaluating

them again, the implementation includes a cache which stores the EPRU of every

repertoire it has evaluated. When the algorithm encounters a repertoire whose

expected utility is needed, the implementation first checks the cache to see if the
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EPRU of the repertoire has been previously computed, and uses the computed value

if it exists. Caching is widely used in tree-search procedures, and is analogous to

the transposition tables in chess-playing algorithms [37].

I also use another well-known method for avoiding unnecessary evaluation of

states, namely branch-and-bound pruning [38, 39], which can be summarised as

follows. Before we compute the expected per-round utility of a given action, we

check to see if an upper bound on the EPRU of that action would be sufficient to

make the given action’s utility higher than the best previously computed action. In

many situations, the maximal utility that can be achieved for a given action will

in fact be less than the utility we know we can achieve via some other action, and

therefore we can skip the evaluation of that action (i.e., we can “prune” it from the

search tree).

There are no theoretical guarantees on runtime reduction using these tech-

niques, but we will see in Section 5.3.1 that the combination of pruning and caching

allows the algorithm to avoid evaluating significant portions of the state space in

the environments I tested.

5.2 Cultaptation Strategy Learning Algorithm

Until now I have assumed that Algorithm 1 has access to πObs, the distribu-

tion of observable actions, when it performs its calculations. While the algorithm

finds the near-best-response strategy given a particular πObs, agents playing the real

Cultaptation game are not given access to πObs beforehand, and even estimating
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what πObs looks like can be very difficult while playing the game due to the limited

amount of information each agent receives in its lifetime. It is also unclear how

exactly an agent’s own actions will affect πObs: by exploiting a particular action,

the agent is making that action observable to others who might then exploit it in

greater proportion than in the πObs used to compute the agent’s strategy.

To address these difficulties, I developed the Cultaptation Strategy Learning

Algorithm (CSLA), which uses a method for creating a strategy and a distribution

πObs simultaneously so that (i) πObs is the distribution created when all agents in a

Cultaptation game play the computed strategy and (ii) the computed strategy is a

near-best response for πObs (and other parameters).

This algorithm copes with the lack of information about πObs, and generates

an approximation of a strategy that is a best response to itself. At a high level,

the algorithm can be thought of as generating a series of strategies, each an ε-

best response to the one before it, and stopping when two successive strategies are

extremely similar. A more detailed description of this process follows.

The algorithm begins by assuming πObs = πInv. The algorithm then proceeds

iteratively; at each iteration it generates s, the ε-best response strategy to the current

πObs, then simulates a series of Cultaptation games in which s plays itself, and

extracts a new πObs from the actions exploited in these games.

At the end of each iteration, the algorithm compares s to sold, the strategy

produced by the previous iteration, using the stratDiff function. stratDiff(s, sold)

computes the probability that an agent using s would perform at least one different

action before dying than the same agent using sold. For instance, stratDiff(s, sold) =
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Algorithm 2 Produce an approximation of a strategy that is an ε-best response to
itself.
CSLA(πInv, τ, k)

1: Let πObs = πInv.
2: s = ∅.
3: repeat
4: Let sold = s.
5: Let V = {πInv, πObs}.
6: s = Strat(∅, k, V,S)
7: Simulate a series of Cultaptation games in which s plays itself, and action

utilities are initially drawn from πInv, recording all actions exploited in the
last quarter of this game.

8: Use records of exploited actions to generate a new distribution πObs (i.e.
πObs(v) = fraction of the time v was exploited in the records).

9: until stratDiff(s, sold) < τ
10: return s.

1.0 means that the two strategies will always perform at least one different action (i.e.

the actions they choose on the first round are different), while stratDiff(s, sold) = 0.0

means that s is identical to sold.

When stratDiff(s, sold) is found to be below some threshold τ , CSLA ter-

minates and returns s, the strategy computed by the last iteration. The formal

algorithm is presented as Algorithm 2.

Properties of the strategy. CSLA as presented here is a “best-effort”

algorithm in the following sense: If CSLA converges to a strategy s, we know that it

is an approximation of a symmetric Nash equilibrium strategy, but we do not know

(i) whether or not CSLA will converge for a given environment, or (ii) how close to

the true Nash equilibrium s is. The improved version of CSLA proposed in Chapter

5 will address these issues.

In my experimental studies (see Section 5.3), the strategies produced by CSLA

in any given game were all virtually identical, even when a random distribution
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(rather than πInv) was used to initialize πObs. This strongly suggests (though it

does not prove) that the strategy profile consisting of copies of sself is a symmetric

near-Nash equilibrium.

Furthermore, there is reason to believe that s is evolutionarily stable. Consider

an environment in which all agents use the strategy s, and suppose a small number

(say, one or two) other strategies are introduced as invaders. Because s was an

near-best response to the environment that existed before the opponent’s agents

are introduced, and because the introduction of one or two invaders will change this

environment only slightly, agents using s will still be using a strategy that is close to

the best response for the current environment, and they will also have some payoff

they have accumulated on previous rounds when their strategy was still an near-best

response. Thus, the invaders should have a difficult time establishing a foothold in

the population, hence should die out with high probability. This suggests (but does

not prove) that s is evolutionarily stable.1

5.2.1 Implementation Details

We have created a Java implementation of CSLA. Here I briefly discuss two

issues dealt with during implementation.

Representing πObs

My implementation of CSLA uses the same representation of πObs as my im-

plementation of Algorithm 1 does. In other words, it assumes πObs has the same

1 Among other things, a formal proof would require a way to calculate the payoffs
for s and any invading strategy. Accomplishing this is likely to be complicated, but
I hope to do it in my future research.
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form as πInv, and remains constant throughout the game. Ideally we would be able

to condition πObs on the agent’s history, but in practice this would require too much

space (since there are an exponential number of possible histories), and we would

need to run too many simulations in step 7 to get an accurate distribution for each

history.

Training

In the Machine Learning literature, the process of improving an agent’s perfor-

mance on a given task is often referred to as “training.” In Algorithm 2, strategy s

is trained by playing against itself in a series of simulated games in step 7. However,

in the implementation of CSLA the agents involved in the games in step 7 are a

parameter to the algorithm. This means that CSLA can also produce a strategy

that is trained by playing in an environment consisting of itself and one or more

given strategies. The intuition behind this approach is that a strategy trained by

playing against itself and strategy s′ may perform better when playing against s′

than a strategy trained against itself alone. I test this hypothesis experimentally, in

Section 5.3.2.

5.3 Experimental Results

In this section I present my experimental results.

Section 5.3.1 examines the performance of the implementation of the ε-best re-

sponse algorithm. I find that the optimizations allow the algorithm to find strategies

within 1% of the best response 1,000 times faster than the unoptimized algorithm.
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Section 5.3.1 examines the strategies found by the ε-best response algorithm when

presented with different environments and strategy profiles, and the results give

us an idea of what kinds of circumstances are necessary for the near-best-response

strategy to prefer innovation over observation.

Section 5.3.2 presents a series of experiments comparing two strategies gener-

ated with my Cultaptation Strategy Learning Algorithm to a known good strategy

used in the international Cultaptation tournament. I find that the strategies gen-

erated with CSLA are able to beat the known good strategy, even when the envi-

ronment is different than the one CSLA used to learn the strategies (Sections 5.3.2

and 5.3.2). Finally, I perform an in-depth qualitative analysis of all three strate-

gies and highlight the differences in behavior that give my learned strategies an

advantage (Section 5.3.2).

5.3.1 Experiments with ε-Best Response Algorithm

In this section I present the experiments involving an implementation of Algo-

rithm 1, which generates ε-best-response strategies for a given set of game parame-

ters and strategy profile.

Implementation Performance

My first set of experiments was designed to study the accuracy and running

time of my implementation, and the effectiveness of the methods developed to im-

prove its performance. I first examined the effect of ε on running time and on

the expected per-round utility computed by Algorithm 1. I ran the experiments in
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several different environments; first I examined the uniform1 environment. In this

environment, πInv is a uniform distribution over {33.33, 66.67, 100, 133.33, 166.67},

and S contains the innovate-once (I1) strategy from Example 1, so πInv is identical

to πObs. The probability of change in uniform1 is 1%, and the probability of death

is 40%.

I also introduced several variations on the uniform1 environment to study the

effect of different probabilities of change. They are uniform10, uniform20, uniform30,

and uniform40, which have the respective probabilities of change of 10%, 20%, 30%,

and 40%.

In Table 5.1, we see the EPRU computed for various values of epsilon in these

environments. As a point of reference, strategy I1 can be analytically shown to

achieve an EPRU of about 38.56. We can see that an upper bound on achievable

EPRU in the uniform1 environment is 40.5, since the EPRU of an ε-best response

to S is 40.1 when ε is 0.4. Also, note that the algorithm finds lower EPRUs as

the probability of change increases. This is as expected: in a rapidly changing

environment, one cannot expect an agent to do as well as in a static environment

where good actions remain good and bad actions remain bad. The ε-best-response

strategies computed generally innovate as the first action, then exploit that value

if it is not the lowest value available (in this case 33.33). Otherwise, the strategies

tend to innovate again in an attempt to find an action with a value bigger than

33.33. This is how they manage to achieve a higher EPRU than the innovate-once

strategy.

As part of the experiment in the uniform1 environment, I kept track of the
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Table 5.1: Expected per-round utility of the ε-best response strategy computed by
Algorithm 7, for eight different values of ε in various environments.

ε = 0.4 ε = 0.8 ε = 1.2 ε = 1.6 ε = 2.0 ε = 2.4 ε = 2.8 ε = 3.2

uniform1 40.1 40.0 39.6 39.6 39.6 38.9 38.9 38.9

uniform10 39.3 39.1 38.8 38.8 38.8 38.1 38.1 38.1

uniform20 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7

uniform30 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7

uniform40 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7

Figure 5.2: Number of nodes searched in the uniform1 environment, with different
combinations of caching and pruning.

number of nodes searched by four variations of the algorithm. In the first variation, I

ran Algorithm 1 without optimizations. I also examined the algorithm’s performance

with the pruning and caching optimizations described in Section 5.1.5.

In Figure 5.2 we see that employing both caching and pruning allows the

algorithm to compute strategies within 1% of the best response about 1,000 times

faster. The search time required for 80,000-node search is around 15 seconds on a

3.4GHz Xeon processor.
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Effects of Varying πInv and πObs on the ε-Best-Response

The objective of this experiment was to study how near-best-response strate-

gies (as computed by Algorithm 1) change as I varied the mean and standard devi-

ation of πInv and πObs (which I will call µInv, σInv, µObs and σObs, respectively). If we

assume that the other agents in the game are rational and not trying to deceive us by

intentionally exploiting low-utility actions, then one should expect that µObs ≥ µInv.

It may seem natural, then, to conclude that an agent should choose to observe rather

than innovate whenever possible, since the average action returned by observing will

have higher utility than one returned by innovating. However, previous work has

suggested that the standard deviation of these distributions may also play a role in

determining which is better [23]. Also, as discussed in Section 2.2.1, it is possible to

imagine pathological scenarios where a population that relies too heavily on obser-

vation can become stuck exploiting a low-value action. I designed this experiment

to test the hypothesis that, even if I let µObs > µInv, the standard deviations of these

distributions can still be varied such that the ε-best-response strategy computed by

EPRUk
alt will choose to innovate rather than observe. My methods and results are

presented below.

I used the repertoire-based algorithm Strat(R, r, k, V ) (Algorithm 1) to com-

pute ε-best-response strategies for Cultaptation games with several different pa-

rameter settings, then analyzed the strategies to determine how often they would

observe or innovate. In this experiment, the agents died with 40% probability on

each round (d = 0.4) and there were 5 potential exploitation actions. These games

are smaller than the Cultaptation game used in the tournament, to ensure they can
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Table 5.2: The portion of innovation actions (calculated as nInv/(nInv + nObs)) in
the ε-best-response strategy when the standard deviations of πInv and πObs are as
specified. In all cases, µInv = 100 and µObs = 110.

σObs = 10 σObs = 300

σInv = 10 2.80× 10−9 3.40× 10−10

σInv = 300 0.995 0.215

be solved in a reasonable amount of time. In these games, I used distributions πObs

and πInv with means of 110 and 100 respectively.

Table 5.2 shows the results for four combinations of parameter settings: σInv ∈

{10, 300} and σObs ∈ {10, 300}. When σInv = 10, the near-best-response strategy

will observe almost exclusively (innovating only in rare cases where observation

returns several low-quality moves in a row). However, in the environment where

σInv = 300 the near-best-response strategy includes significantly more Innvoates;

when σObs = 10 it will innovate 99.5% of the time, and even when σObs = 300 it still

innovates 21.5% of the time.

This experiment lets us conclude that the means of πInv and πObs are not suffi-

cient to determine if innovation or exploitation is better. In particular, if the stan-

dard deviation of innovated values is high, then innovation becomes more valuable

because multiple innovations tend to result in a higher valued action than multiple

observations.

An interesting strategy emerges when πInv and πObs both have high standard

deviations. Even though the mean value of innovated actions is lower than the

mean value of observed actions, the ε-best-response strategy in these cases innovates

initially, then, if the value innovated is high, exploits that value. If the innovated
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value is not high, an observation action is performed to ensure the agent has a

reasonably-valued action available to exploit until it dies.

5.3.2 Experiments with the Cultaptation Strategy Learning Algo-

rithm

The objective of my second experiment was to examine the performance of

strategies produced by the Cultaptation Strategy Learning Algorithm (Algorithm 2

in Section 5.2), and the importance of the environment (see Section 5.2.1) used to

train these strategies. Specifically, I was interested in—

• examining whether the strategies produced with CSLA were capable of beating

a strategy that is known to do well;

• examining whether strategies produced by CSLA were able to perform well in

environments different from those they were trained in;

• comparing how well a strategy that is trained only against itself (i.e., all agents

in the simulated game in Step 7 of the CSLA algorithm use strategy s) can do

at repelling an invader, versus how well a strategy trained against the invader

(i.e. the invading strategy is included in the population of agents at Step 7)

can do at repelling the invader.

For the previous experiments, I assumed the algorithm had an oracle for πObs.

For the rest of this section I will be running experimental simulations, so the oracle

will observe what the agents do in the simulations and construct πObs from this, as
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described in Section 5.2.

For the known good strategy I used an algorithm called EVChooser, which per-

forms a few innovation and observation actions early in the game and uses the results

of these actions (along with a discount factor) to estimate the expected value of in-

novating, observing, and exploiting, making the action with the highest expected

value. It placed 15th out of over 100 entries in the Cultaptation tournament [15].

We chose EVChooser because (1) it has been shown to be a competitive strategy,

(2) its source code was readily available to me (unlike the other successful strate-

gies from the Cultaptation tournament), and (3) it could be tuned to perform well

in the Cultaptation environments I used (which, in order to accommodate CSLA’s

exponential running time, were much smaller than those used in the international

Cultaptation tournament).

For games as small as the ones in my experiments, I believe EVChooser is repre-

sentative of most of the high-performing strategies from the tournament. Nearly all

of the strategies described in the tournament report [15] spend some time trying to

figure out what the innovate and observe distributions look like, and afterwards use

some heuristic for choosing whether to innovate, observe, or exploit their best known

action on any given round. This heuristic often involves some type of expected-value

computation; for instance, the winning strategy discountmachine used a discount

factor to compare the utility gained by exploiting the current best-known action to

the utility of possibly learning a better action and exploiting it on all future rounds,
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which is exactly what EVChooser does.2 Unlike my CSLA algorithm, none of the

strategies in the tournament conducted lookahead search.

For this experiment, I used an environment where πInv was a uniform distribu-

tion over the actions {20, 40, 80, 160}, probability of change was 1%, and probability

of death was 25%. Due to the exponential running time of my strategy generating

algorithm, this is the largest environment (i.e., smallest probability of death, highest

number of actions and action values) for which the algorithm could compute full

strategies in a reasonable amount of time.

Convergence and Consistency of CSLA

As part of this work, I have developed a Java implementation of Algorithm 2

that allows one to specify the type of game to be used for the simulation in Step 7,

and created two strategies: sself and sEVC. The training process for both strategies

began with s0, the best-response to a random πObs distribution, and continued by

constructing a strategy si+1 as a best-response to the πObs generated by simulating

games involving si. When training sself the simulated games consisted solely of

agents using si, but while training sEVC they consisted of a population of agents

using si being invaded by EVChooser. In both cases, 100 games were simulated at

each step of the iteration, to limit the amount of noise in the πObs that was extracted

from the simulations.

2discountmachine differs from EVChooser largely because it modifies the expected
value of Observing using a machine-learned function that accounts for observe ac-
tions being unreliable and returning multiple actions, neither of which are possible
in my version of the game
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While there are no theoretical guarantees that the strategies produced by

Algorithm 2 will converge, the algorithm’s similarity to policy iteration [35] led me

to suspect that the they would converge. Also, since CSLA is greedy, i.e., it selects

the best response strategy at each step of the iteration, I was interested in seeing

whether the strategy it found represented a local maximum or a global one.

I designed a simple experiment to see how these issues would play out when

generating sself and sEVC: I modified the program to use a randomly-generated

distribution for the initial value of πObs, rather than always initially setting πObs =

πInv as is done in Algorithm 2, and I used this modified program to generate 100

alternate versions of sself and sEVC. I then compared these alternates to the original

sself and sEVC using stratDiff. In the case of sself , I found that all 100 alternate

versions were identical to the original. In the case of sEVC, I found that 58 alternate

versions were identical to the original, and the rest exhibited a stratDiff of no more

than 1.08×10−4. This means that an agent using an alternate version of sEVC would

choose all the same actions as one using the original sEVC at least 99.989% of the

time. This tells us that not only does CSLA converge for the environment I am

testing it in, it converges to the same strategy each time it is run. This suggests

that the algorithm is finding a globally-best solution for this environment, rather

than getting stuck in a local maximum.

Finally, to estimate how different sself and sEVC are, I ran stratDiff(sself , sEVC)

and found it to be 0.27. This means that training a strategy against an external,

fixed strategy in Algorithm 2 does produce significantly different results than train-

ing a strategy against itself. For a more in-depth look at where sself and sEVC differ,
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Table 5.3: Win percentages of sself and sEVC when playing against EVChooser over
10,000 games as both Defender and Invader.

Win percentage

Defending vs. EVChooser Invading vs. EVChooser

sself 70.65% 70.16%

sEVC 69.92% 69.92%

see Section 5.3.2.

Pairwise Competitions: sself vs. EVChooser and sEVC vs. EVChooser

I played both of the generated strategies, sself and sEVC, against EVChooser

for 20,000 games – in 10,000 games, the generated strategy was defending against

an invading population of EVChooser agents, and in 10,000 games the roles were

reversed, with the generated strategy invading and EVChooser defending. I recorded

the population of each strategy on every round, as well as the winner of every game.3

The populations in an individual game were extremely noisy, as seen in Figure 5.3(e),

however by averaging the populations over all 10,000 games we can see some trends

emerge. These average populations for each strategy in all four match-ups are

presented in Figure 5.3(a–d), while the win rates for each match-up are presented

in Table 5.3.

In Figure 5.3 we see that, on average, the strategies generated by Algorithm 2

control roughly 57% of the population for the majority of the game in all four match-

ups. Interestingly, both sself and sEVC are able to reach this point in roughly the

same amount of time whether they are invading or defending. It is also worth noting

3Recall that the winner of a Cultaptation game is the strategy with the highest
average population over the last quarter of the game.
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a) EVChooser invading sself b) sself invading EVChooser

c) EVChooser invading sEVC d) sEVC invading EVChooser

e) Population of sself at each round, in a single game against EVChooser

Figure 5.3: Average populations of both strategies for each round, in match-ups
between sself and EVChooser (parts a and b) and between sEVC and EVChooser
(parts c and d), over 10,000 games. From round 2000 onwards, sself or sEVC control
57% of the population on average, regardless of whether EVChooser was invading
or defending. Since mutation is enabled from round 100 onwards, populations in
an individual game (exhibited in part e) are highly mercurial and do not converge.
Therefore, we must run a large number of trials and average the results to get a
good idea of each strategy’s expected performance.

69



Table 5.4: Percentage of games won (out of 10,000) by sself , sEVC, and EVChooser
in a melee contest between all three.

sself sEVC EVChooser

Melee win percentage 38.78% 37.38% 23.84%

that, even though I showed above that sself and sEVC have significant differences,

they performed almost identically against EVChooser in terms of population and

win percentages

Melee Competition: sself vs. sEVC vs. EVChooser

My next experiment was to run sself , sEVC, and EVChooser against one another

in a melee contest to see how the three strategies would interact in an environment

where none of them originally had the upper hand. All three strategies had an initial

population of 33 agents at the start of each game. I used the same πInv, probability of

change, and probability of death as in Experiment 2. Mutation was disabled for the

final 2,500 rounds of each melee game, as was done in the Cultaptation tournament

to allow the population to settle. I ran 10,000 games in this manner, and percentage

of wins for each strategy are shown in Table 5.4.

In the table we can see that sself has a slight edge over sEVC, and both these

strategies have a significant advantage over EVChooser. In fact, I observed that in

the first 100 rounds of most games (before mutation begins) EVChooser nearly died

out completely, although it is able to gain a foothold once mutation commences.

Mutation is also turned off after 7500 rounds in Cultaptation melee games; this

caused the population to quickly become dominated by one of the three strategies

in all 10,000 games played.
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Performance Analysis of sself , sEVC, and EVChooser

In the experiments in Section 5.3.2, we saw that the strategies found by CSLA

consistently outperform EVChooser in environments similar to the ones they were

trained in. In order to get a better idea of why this happens, I ran two experiments

to compare the performance of sself and EVChooser in more detail. The first was

designed to show the kinds of situations in which the two strategies chose different

actions, while the second was designed to show how well the two strategies were

able to spread good actions through their population.

Action Preferences

The objective of this experiment was to identify the kinds of situations in

which sself , sEVC, and EVChooser made different choices. To this end, I allowed sself

to play against itself for five games, in an environment identical to the one used for

the previous experiments in Section 5.3.2 (note that this is the same environment

sself was trained in). On each round, for each agent, I recorded the number of rounds

the agent had lived, the value of the best action in its repertoire,4 and whether the

agent chose to innovate, exploit, or observe on that round. Since there are 100 agents

alive at any given time and each game lasts 10,000 rounds, this yielded a total of five

million samples. Figures 5.4(a), (d), and (g) show the observed probability that sself

would innovate, observe, or exploit (respectively) for its first ten rounds and for each

possible best action value. I then repeated this process for sEVC and EVChooser,

allowing each strategy to play against itself for five games and recording the same

4This could be 20, 40, 80, 160, or None if the agent had not yet discovered an
action
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a) sself innovates b) sEVC innovates c) EVChooser innovates

d) sself observes e) sEVC observes f) EVChooser observes

g) sself exploits h) sEVC exploits i) EVChooser exploits

Figure 5.4: The observed probability that sself , sEVC, and EVChooser will innovate,
observe, or exploit when they are a given number of rounds old (on the x-axis) and
with a given value of the best action in the agent’s repertoire. These results were
observed by allowing each strategy to play itself for five games of 10,000 rounds
each with 100 agents alive on each round, generating a total of 5,000,000 samples.
All graphs in this figure share the same legend, which is included in graph c) and
omitted elsewhere to save space.
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data. The results for sEVC and EVChooser may be found in Figures 5.4(b), (e), and

(h), and Figures 5.4(c), (f), and (i), respectively.

The most obvious difference among the three strategies is that EVChooser

almost never innovates,5 a property it shares with the strategies that did well in the

Cultaptation tournament [17]. On the other hand, sself and sEVC have conditions

under which they innovate and conditions under which they do not. For instance,

both sself and sEVC always innovate if their first action (which is always an ob-

servation) returns no action. Also, sEVC frequently innovates if it is stuck with the

worst action after several observes, and sself also innovates (although less frequently;

see next paragraph) in this case. Another sharp contrast between EVChooser and

the generated strategies is in their exploitation actions. EVChooser spends nearly

all of its time exploiting, even if it has a low-value action, and only observes with

significant probability on round two. On the other hand, sself and sEVC will be-

gin exploiting immediately if they have one of the two best actions, but otherwise

will spend several rounds observing or innovating to attempt to find a better one,

and the number of rounds they spend searching for a better action increases as the

quality of their best known action decreases.

The main difference between sself and sEVC that can be seen in Figure 5.4 is in

the way they handle being stuck with the lowest-value action after several rounds.

In these circumstances, sself prefers observation while sEVC prefers innovation. Here

we see the most obvious impact of the differing environments used to generate these

two strategies. sself prefers observation in these cases because it was trained in an

5EVChooser innovates 1% of the time on its first round.
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environment where all agents are willing to perform innovation. Therefore, if an

sself agent is stuck with a bad action for more than a few rounds it will continue to

observe other agents, since if a better action exists, it is likely that it has already

been innovated by another agent and is spreading through the population. On the

other hand, sEVC prefers innovation in these situations because it has been trained

with EVChooser occupying a significant portion of the population, and we have

seen that EVChooser almost never innovates. Therefore, if sEVC is stuck with a bad

action after several rounds, it will attempt to innovate to find a better one, since it

is less likely that another agent has already done so.

Spreading High-value Actions

The objective of this experiment was to measure the rate at which sself , sEVC,

and EVChooser were able to spread high-valued actions through their populations.

To measure this, I again played sself against itself in the same environment used

in the previous experiment (which I will refer to as the “normal” environment in

this section), and on each round I recorded the number of agents exploiting actions

with each of the four possible values (20, 40, 80, and 160). To account for the

noise introduced by changing action values, I ran 10,000 games and averaged the

results for each round. I then repeated this process, playing sEVC and EVChooser

against themselves. The results for sself , sEVC, and EVChooser may be found in

Figures 5.5(a), (c), and (e) respectively.

This experiment lets us see what the steady state for these strategies looks

like, and how quickly they are able to reach it. However, I am also interested in

seeing how they respond to structural shocks [21, 22] (i.e., how quickly the strategies
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a) sself in normal environment b) sself in shock enviornment

c) sEVC in normal environment d) sEVC in shock enviornment

e) EVChooser in normal environment f) EVChooser in shock enviornment

Figure 5.5: The average number of agents exploiting an action with value U in two
environments. The “normal” environment in parts a, c, and e shows how quickly
sself , sEVC, and EVChooser spread actions through their population under normal
circumstances when they control the entire population. The “shock” environment
in parts b, d, and f shows how quickly each strategy responds to periodic structural
shock. The “normal” environment is the same as in the rest of Section 5.3.2, and
the “shock” environment is similar except that actions with value 160 are forced to
change every 100th round and held constant all other rounds. Each data point is
an average over 10,000 games.
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are able to recover when a good, widely-used action changes values). To this end, I

created a “shock” environment, which is identical to the normal environment with

one modification: actions with value 160 have a probability of change equal to 0 ex-

cept on rounds divisible by 100, in which case they have probability of change equal

to 1. All other actions use the normal probability of change for this environment,

0.01. This modification creates a shock every 100 rounds, while still keeping the

expected number of changes the same for all actions. I then repeated the experi-

ment above with the shock environment, running 10,000 games for sself , sEVC, and

EVChooser and averaging the results, which are presented in Figures 5.5(b), (d),

and (f) respectively.

In Figure 5.5 we can see that sself and sEVC exhibit nearly identical performance

in both the normal and shock environments. In the normal environment, they are

able to reach their steady state in only a few rounds, and the steady state consists

of a roughly equal number of agents exploiting the best and second-best action.

In the shock environment, we see that sself and sEVC respond to external shock by

drastically increasing the number of agents exploiting the second-best action over

the course of a few rounds, and returning to their steady states at a roughly linear

rate over the next 100 rounds. The number of sself and sEVC agents exploiting the

two worst actions remains extremely low except for small spikes immediately after

each shock.

Compared to the generated strategies, EVChooser’s performance appears to

be less stable, and less robust to structural shock. In the normal environment,

we see that EVChooser takes hundreds of rounds to reach its steady state. While
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EVChooser’s steady state does include more agents exploiting the best action than

sself and sEVC, it also includes a significant number of agents exploiting the two

worst actions. In the shock environment, we see that changes to the best action

result in significant increases to the number of EVChooser agents exploiting the

other actions, including the two worst ones. We can also see that populations of

EVChooser agents take a lot longer to return to normal after an external shock

than populations of sself and sEVC. These results help us account for the superior

performance of sself and sEVC over EVChooser in previous experiments, and indicate

that there is plenty of room for improvement in EVChooser and strategies like it.
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Chapter 6

Improving Full-scale Cultaptation Strategies

So far, the objective of this work has been to analyze Cultaptation and see

what types of strategies work well. However, in order to find strategies that were

provably good using the algorithms I was able to develop, it was necessary to use

game environments that were much smaller than the ones used in the real Cultap-

tation tournament. In this chapter, I will show how to take the observations and

analysis used in the previous chapters and use them to develop a strategy for full-size

Cultaptation that can outperform the current best strategy from the Cultaptation

tournament.

6.1 The Tournament Winner: discountmachine

The first Cultaptaton tournament was won by the strategy discountmachine,

by Dan Cownden and Tim Lillicrap of Queen’s University [15]. According to

the tournament organizers, discountmachine performed significantly better than

all other contestants; its population was about 50% higher, on average, than the

second-place strategy [17].

Pseudocode for discountmachine is provided as Algorithm 3. It can be sum-

marized as follows: On the first round, it always plays Observe. If it’s the second

round and the first Observe returned no action, it will always play Innovate as a
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bootstrapping measure. Otherwise, it begins by estimating the probability of change

(ĉ), the average value of the payoff distribution (µ̂π), the average value of the observe

distribution (µ̂Obs), and the current value of its best-known action (v̂∗). The values

v̂∗ and µ̂Obs are then multiplied by a discount factor meant to reflect the value of

exploiting the actions until either the action changes or the agent dies.

In order to prevent the agent from missing out on high-value actions in envi-

ronments with low probability of change, the strategy includes a heuristic that will

cause it to Observe at least once every 20 rounds if ĉ < 0.05 and its current action

is not significantly better than any it has seen before. Otherwise, it decides which

action to perform based on the output of a pre-trained neural network, which takes

as input discounted versions of v̂∗ and µ̂Obs, along with an estimate of the degree of

noise present in Observation.1

While the source code for discountmachine used in the tournament has been

made public on the organizers’ website [15], that code includes a neural network

with pre-trained weights, and the code used to train the neural network was not

made public. However, a comment in the source code explains, “We trained this

function by having it try and match the estimate made by a (strategy) with perfect

knowledge of what could be observed and (the amount of noise present for Observe

moves).”

1The strategy also defines a rare subset of values for some parameters for which
the neural network performed poorly, and in these cases the strategy simply returns
Observe if v̂∗ < µ̂Obs and Exploits the best-known action otherwise. For ease of
exposition I have omitted this from the pseudocode.
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Algorithm 3 Simplified pseudocode for the discountmachine strategy, which won
the first Cultaptation tournament. Returns the action selected by an agent, given
the agent’s current history h. Full source code available from the Cultaptation
website [15].

discountmachine(History h)

1: if |h| == 0 then
2: return Observe.
3: end if
4: if |h| == 1 AND No actions are known then
5: return Innovate.
6: end if
7: Let ĉ and µ̂π be the probability of change and average new action value,

respectively, experienced in history h.
8: Let v∗ be the value of the best known action, and r be the number of rounds

since that action was seen in h.
9: v̂∗ = (1− ĉ)r × v∗ + (1− (1− ĉ)r)× µ̂π.

10: Let µ̂Obs be the mean value of all observed actions in h.
11: Let f = (1− ĉ)(1− 0.02). This is the “discount factor.”
12: v̂∗ = v̂∗ × 1

(1−f)

13: µ̂Obs = µ̂Obs × f
1−f .

14: if ĉ < 0.05 AND |h| > 20 AND Last 20 actions have been Exploit then
15: if v̂∗ < 3 + PRU(h) then
16: return Observe.
17: else
18: return Exploit the best-known action.
19: end if
20: end if
21: return The action selected by a pre-trained neural network with inputs v̂max,

µ̂Obs, and an estimate of the amount of noise present in Observation.

6.1.1 Potential Problems with discountmachine

It’s clear from the results of the Cultaptation tournament that discountma-

chine is a significantly better strategy than the other contestants. However, the

analysis and experiments presented in Chapters 4 and 5 suggest that it has some

aspects that could still be improved.

First, discountmachine only ever innovates as a bootstrapping mechanism on

the second round of the game. While the tournament organizers found that this was
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a universal characteristic among the top-performing strategies in the tournament,

Sections 2.2.1 and 5.3.2 present theoretical and empirical evidence that, in at least

some circumstances, Innovating can be advantageous. Therefore, a strategy that

could recognize these situations would have an advantage over discountmachine.

Second, the formulae used to obtain the total value of exploiting the best-

known action (line 12) and the expected result of an observe (line 13) are incom-

plete. These formulae compute the expected total payoff the agent will earn by

exploiting each of these actions until either the action changes value or the agent

dies. As we have seen in Example 5 and Theorem 1, the expected total payoff is

not always the same as the EPRU, and EPRU is the metric that should be used to

determine the quality of a strategy (or, in this case, a potential course of action).

Furthermore, the formula on line 13 neglects the fact that the information returned

by an Observe pertains to the round before the Observe was performed. This means

that, if the newly-observed action is Exploited on the following round, it has had

two opportunities to change values, not one, and the expected value of the action

should be updated to reflect this.

Since the source code used to train the neural net in discountmachine is not

provided, it’s difficult to characterize the function approximated by the network.

However, given the issues with the formulae used to compute the inputs to the

network, it seems unlikely that it is perfectly accurate in determining whether Ob-

serving or Exploiting is a better choice.

Finally, the experimental results from Section 5.3.2 suggest that the choice of

whether to exploit a given action should be determined by the action’s value and
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the agent’s age, and that the preference towards exploiting should increase mono-

tonically as the agent gets older and as the value of the best known action increases.

However, the heuristic used on lines 14 through 19 causes discountmachine to con-

sistently violate this rule once every 20 rounds in environments with low probability

of change. While this does cause the agent to have a better idea of what actions

exist to be observed, I have been unable to find any analytical support for the notion

that this will typically increase the agent’s EPRU by more than the amount that is

lost by not exploiting as much as possible when the agent already has a high-value

action.

6.2 A Full-scale Cultaptation Player: relaxedlookahead

In order to show how the analysis and experiments presented in Chapters 4

and 5 can be used to create a player for the Cultaptation tournament, I developed

relaxedlookahead. The main insights that inspired relaxedlookahead ’s design were:

1. Actions should be evaluated based upon the estimated amount of EPRU they

provide the agent, since EPRU is proportional to reproductive success (The-

orem 1). While this may seem intuitive, I know of no current Cultaptation

player that uses EPRU or an equivalent metric (e.g., discountmachine esti-

mates expected total payoff, see above).

2. Innovating should be regarded as a worthwhile choice in at least some cir-

cumstances. Even though the top-performing strategies from the tournament

tended to eschew Innovate moves, we have seen that there are some circum-
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stances in which it is preferable. With an accurate formula for estimating the

value of innovation, the agent should be able to identify such circumstances.

3. The agent should choose its move based upon its entire history; in other words,

hard and fast rules such as the one used by discountmachine on lines 14

through 19 should be avoided. This will allow the agent to have behavior

that smoothly transitions according to the value of its best action and age, as

sself ’s behavior does in Figure 5.3.2, which gave it a significant performance

advantage over EVChooser.

4. Due to computational constraints present in the Cultaptation tournament, it

will not be possible to perform a full lookahead search to a depth sufficient to

achieve a small ε. However, a relaxed lookahead search, which considers a few

different possible outcomes of each action and their effects over the course of

many rounds, should still be sufficient to allow the agent to estimate which of

three choices (Exploit the best known action, Observe, or Innovate) has the

highest EPRU.

The relaxedlookahead strategy is defined in Algorithm 4, and can be summa-

rized as follows. Like discountmachine, it always observes on its first round and, if

that observe fails to return a value, it innovates as a bootstrapping measure. Oth-

erwise, the strategy begins by creating estimates of several quantities based on the

information contained in h; it estimates the probability of change (ĉ), average value

of the payoff distribution (µ̂π), current value of the best known action (v̂∗), and the

mean and standard deviation of the distribution of observe moves (µ̂Obs, σ̂Obs). It
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then estimates the value of three possible moves: exploiting the best known action,

observing, and innovating. These estimates are created using a relaxed lookahead

search, which is a very rough approximation of the search conducted in Chapter 5.

The relaxed lookahead search is conducted slightly differently for each of the

three possible moves. For the observe move, the strategy models the observe distri-

bution πObs as a normal distribution2 with mean µ̂Obs and standard deviation σ̂Obs,

and calculates the probability that the observed action will have a higher payoff

than v̂∗. The search then considers six different branches. In the first branch, the

observed action has a payoff lower than the current best action, so the agent’s best

known action is still v̂∗. The other five branches assume the observed action is better

than the current best action; candidate payoffs are generated by using the inverse

CDF of πObs to find five values appropriately distributed among the set of values

greater than v̂∗. For example, if v̂∗ was found to be in the 80th percentile of πObs, the

five candidate values would be in the 82nd, 86th, 90th, 94th, and 98th percentiles

respectively. For each branch, the strategy assumes the agent will exploit its new

best known action for 100 rounds, and it estimates the EPRU of the branch using

formulae based on those from Chapter 4. Finally, the EPRU of the observe move is

computed by combining the EPRU of each branch with its estimated likelihood.

2The normal distribution was selected as the most likely shape of πObs using a
process similar to the one in CSLA; the first version of relaxedlookahead did not as-
sume any shape to πObs and only considered its average value. This version was then
played against itself in simulated games, and the shape of the observe distribution
from the simulations appeared to be gaussian. I then changed relaxedlookahead to
model the observe distribution as a normal distribution, repeated the process, and
found that the observe distribution from the simulations was still gaussian.
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The EPRU of innovating is estimated in a similar manner, but the strategy

models the payoff distribution π as an exponential distribution3 rather than a normal

one. Finally, the EPRU of exploiting the current best action is estimated by simply

assuming that the agent exploits on the current round and the next 100 rounds.

Once the EPRUs for observing, innovating, and exploiting have all been estimated,

relaxedlookahead simply makes the move with the highest estimate.

6.3 Experiments: RLA vs. discountmachine

In order to test the hypothesis that relaxedlookahead would have an advan-

tage over discountmachine, I conducted several experiments to compare their per-

formance.

6.3.1 Overall Performance

The first experiment examines the overall performance of both strategies in a

variety of environments. I created two different versions of the action distribution

π. The first, πGeo, is a geometric distribution with probability of success p = 0.1.

The second, πGam, is a Gamma distribution with shape k = 2 and scale θ = 5.

Both these distributions have a mean value of 10 and conform to the tournament

organizers’ specifications of generating a larger number of small-value actions with

3The exponential distribution was selected due to the tournament organizers’
statement that the move distribution would typically contain large numbers of low-
value actions and small numbers of high-value actions [15]. The exponential distri-
bution is generally representative of distributions that have this shape, and can be
easily constructed since its shape depends only on its mean.
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Algorithm 4 Simplified pseudocode for the relaxedlookahead strategy. Returns the
action selected by an agent, given the agent’s current history h.

relaxedlookahead(History h)

1: if |h| == 0 then
2: return Observe.
3: end if
4: if |h| == 1 AND No actions are known then
5: return Innovate.
6: end if
7: Let ĉ and µ̂π be the probability of change and average new action value,

respectively, experienced in history h.
8: Let v∗ be the value of the best known action, and r be the number of rounds

since that action was seen in h.
9: v̂∗ = (1− ĉ)r × v∗ + (1− (1− ĉ)r)× µ̂π.

10: Let µ̂Obs and σ̂Obs be the mean value and standard deviation, respectively, of
all observed actions in h.

11: UO = evaluateObs(µ̂Obs, σ̂Obs, v̂∗, µ̂π, ĉ, |h|)
12: UI = evaluateInv(v̂∗, µ̂π, ĉ, |h|)
13: UX = estimateEPRU(v̂∗, µ̂π, ĉ, |h|)
14: if UX ≥ max(UO, UI) then
15: return Exploit the best known action.
16: else if UO ≥ UI then
17: return Observe.
18: else
19: return Innovate.
20: end if

estimateEPRU(v, v̄, c, r)

1: U = 0
2: EPRU = 0
3: for i = 0→ 100 do
4: U = U + (1− c)i × v + (1− (1− c)i)× v̄
5: EPRU = EPRU +0.98i × U

r+i

6: end for
7: return EPRU

a few high-value actions [15]. However, πGeo largely matches the assumptions re-

laxedlookahead makes about the shape of π while πGam does not. It features a large

“hump” around the low-value actions, with the most likely value being 5, and a

lower probability of high-value actions than πGeo.
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Algorithm 5 Pseudocode for the functions used to evaluate Observation and In-
novation by relaxedlookahead.

evaluateObs(µ, σ, v, v̄, c, r)

1: Let πObs be a normal distribution with mean µ and standard deviation σ.
2: Let phi be the probability that a value drawn from πObs is greater than v.
3: Uhi = 0
4: for i = 0→ 4 do
5: p = 1− phi × 1+2i

10

6: Let vi be the value of the inverse CDF of πObs at percentile p.
7: vi = (1− c)2 × vi + (1− (1− c)2)× v̄
8: Uhi = Uhi + estimateEPRU(vi, v̄, c, r + 1)
9: end for

10: Uhi = Uhi/5
11: Ulow = estimateEPRU(v, v̄, c, r + 1)
12: return phiUhi + (1− phi)Ulow

evaluateInv(µ, v, v̄, c, r)

1: Let πInv be an exponential distribution with mean µ.
2: Let phi be the probability that a value drawn from πInv is greater than v.
3: Uhi = 0
4: for i = 0→ 4 do
5: p = 1− phi × 1+2i

10

6: Let vi be the value of the inverse CDF of πInv at percentile p.
7: vi = (1− c)× vi + c× v̄
8: Uhi = Uhi + estimateEPRU(vi, v̄, c, r + 1)
9: end for

10: Uhi = Uhi/5
11: Ulow = estimateEPRU(v, v̄, c, r + 1)
12: return phiUhi + (1− phi)Ulow

I simulated 200 pairwise Cultaptation games between relaxedlookahead and

discountmachine (100 with relaxedlookahead invading and 100 with discountma-

chine invading) in each of 14 different environments. The first seven environments

used πGeo as the action distribution, and had probability of change c equal to 0.001,

0.005, 0.01, 0.05, 0.1, 0.2, and 0.4, respectively. The other environments used πGam

as the action distribution. This set of values for c is the same set used by the

Cultaptation tournament organizers for their first round of evaluations [15].
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Table 6.1: Performance of relaxedlookahead when played against discountma-
chine in a variety of environments. Results are based on 200 simulated games
for each environment (100 with relaxedlookahead invading, 100 with discountma-
chine invading). Results in bold or italics are statistically significant with ρ < 0.01;
bold results represent an advantage for relaxedlookahead, italicized results represent
an advantage for discountmachine.

Action distribution πGeo Action distribution πGam

Win percentage Average score Win percentage Average score

c = 0.001 .96 82.02 .97 83.96

c = 0.005 .78 66.29 .84 70.86

c = 0.01 .65 58.20 .72 63.77

c = 0.05 .48 47.70 .55 52.21

c = 0.1 .53 52.97 .59 55.24

c = 0.2 .44 47.32 .41 47.38

c = 0.4 .55 53.95 .42 45.04

The results of this experiment are presented in Table 6.1. relaxedlookahead has

a statistically significant advantage (ρ < 0.01) over discountmachine in seven envi-

ronments: c = 0.001, 0.005, and 0.01 for both action distributions, and c = 0.1 for

πGam. It has a statistically significant disadvantage for one environment, c = 0.2

with distribution πGam.

These results suggest that relaxedlookahead has a significant advantage over

discountmachine for environments with low probability of change, and that its

advantage shrinks and eventually disappears as the probability of change grows to

moderate and high levels. Curiously, the shape of π did not seem to make much

difference in relaxedlookahead ’s performance, and in fact it performed slightly better

in the environment which did not match its assumptions. We will investigate the

reasons for this in the following section.
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It should be noted that, in general, it will be much more difficult to obtain

a significant advantage in environments with high probabilities of change, since

as long as both players are exploiting as much as possible their choice of action

makes little difference. The tournament organizers have acknowledged this and,

appropriately, put significantly more emphasis on low-change environments in all

rounds of their evaluation. Therefore, since relaxedlookahead has a clear advantage

over discountmachine in such environments, it seems reasonable to conclude that

relaxedlookahead would be more likely to win in a tournament setting.

6.3.2 Performance Analysis

The next round of experiments was designed to duplicate the ones presented

in Section 5.3.2, in order to get a more detailed look at the differences between

relaxedlookahead and discountmachine.

Action Preferences

The objective of this experiment, like the first one in Section 5.3.2, was to

get an idea of the kinds of situations in which relaxedlookahead and discountma-

chine made different choices. To that end, I allowed each strategy to compete

against itself in 50 full-length games using four separate environments: c = 0.001

and 0.05 with action distribution πGeo, and c = 0.001 and 0.05 with action distribu-

tion πGam.4 On each round, I recorded the actions taken by all 100 agents and the

payoff of their best-known action, yielding a total of 50 × 106 data points for each

4The values c = 0.001 and c = 0.05 were chosen because the first reflects the
largest advantage for relaxedlookahead in the previous experiment, while the second
represents the lowest value at which both strategies appear to be evenly matched.
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strategy in each environment.

Figures 6.1 through 6.4 present the results of this experiment, showing the

probability that each strategy would innovate, observe, or exploit given its age and

the value of its best known action. There are two obvious differences between the

strategies in all four environments.

First, discountmachine, like EVChooser, never innovates except as a bootstrap-

ping mechanism on the second round of the game. Meanwhile, relaxedlookahead is

willing to innovate on any round, under the right circumstances. In fact, if its best

known action is between 5 and 15, relaxedlookahead appears to prefer innovating

to observing. The fact that it does so in environments in which it handily defeats

discountmachine is evidence that innovating should not be completely overlooked,

as the top-performing strategies in the tournament tended to do.

Second, the observe and exploit graphs for discountmachine exhibit large

spikes at regular intervals. These are due to the clause on line 14 of Algorithm 3,

which causes discountmachine to observe at least once every 20 rounds unless the

probability of change is high. The authors of the strategy explained that this is done

to make sure that an agent doesn’t miss a high-value action that most other agents

are exploiting. Meanwhile, the same graphs for relaxedlookahead also exhibit spikes,

but their size and the interval between them is correlated with the probability of

change in the environment and the value of the best-known action. There is no code

in relaxedlookahead that explicitly causes this behavior, so I can only conclude that

this is emergent behavior and that certain rounds are more likely than others to be

opportune times for exploring rather than exploiting. Whatever the cause, this is
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evidence that arbitrary rules like the one on line 14 of Algorithm 3 are not necessary

if the values of observing and exploiting can be estimated accurately.

Spreading High-value Actions

The objective of the next experiment, like the second one in Section 5.3.2, was

to measure the rate at which relaxedlookahead and discountmachine were able to

spread high-value actions through their populations. To measure this, I re-ran the

simulations used for the previous experiment,5 but this time recorded the value of

each action exploited on each round of the game. Since there are 100 agents in each

game, this yielded 5,000 data points for each round.

Figures 6.5 through 6.8 present the results of this experiment. They show

the probability of each strategy exploiting an action in each of six possible value

ranges: 0 to 5, 5 to 15, 15 to 25, 25 to 30, 30 to 40, and more than 40.6

These figures make it clear why relaxedlookahead has an advantage over dis-

countmachine, particularly in environments with low probability of change. Over

the first few generations of agents, discountmachine does an excellent job of quickly

spreading actions in the best value category that can reliably be found (e.g., val-

ues over 40 in Figure 6.5, values between 15 and 25 in Figure 6.6). However, in

all four environments, the proportion of agents exploiting such actions peaks at

about round 200 and then begins to steadily decline. Meanwhile, the proportion

of relaxedlookahead agents exploiting the same actions increases more slowly, but

eventually reaches a steady state with more agents exploiting high-value actions

5Each strategy played against itself in 50 full-length Cultaptation games in each of
four environments, with c = 0.001 or 0.05 and πgeo or πgam as the payoff distribution.

6In both πgeo and πgam, the mean action value is 10.
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a) relaxedlookahead Innovates b) discountmachine Innovates

c) relaxedlookahead Observes d) discountmachine Observes

e) relaxedlookahead Exploits f) discountmachine Exploits

Figure 6.1: Frequency that an agent using relaxedlookahead (left) or discountma-
chine (right) chose to Innovate, Observe, or Exploit, given its age and best known
action, in an environment with the geometrically-distributed action distribution πGeo

(with mean 10) and probability of change c = 0.001.
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a) relaxedlookahead Innovates b) discountmachine Innovates

c) relaxedlookahead Observes d) discountmachine Observes

e) relaxedlookahead Exploits f) discountmachine Exploits

Figure 6.2: Frequency that an agent using relaxedlookahead (left) or discountma-
chine (right) chose to Innovate, Observe, or Exploit, given its age and best known
action, in an environment with the geometrically-distributed action distribution πGeo

(with mean 10) and probability of change c = 0.05.
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a) relaxedlookahead Innovates b) discountmachine Innovates

c) relaxedlookahead Observes d) discountmachine Observes

e) relaxedlookahead Exploits f) discountmachine Exploits

Figure 6.3: Frequency that an agent using relaxedlookahead (left) or discountma-
chine (right) chose to Innovate, Observe, or Exploit, given its age and best known
action, in an environment with the action distribution πGam (i.e. a gamma distribu-
tion with shape 2 and scale 5) and probability of change c = 0.001.
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a) relaxedlookahead Innovates b) discountmachine Innovates

c) relaxedlookahead Observes d) discountmachine Observes

e) relaxedlookahead Exploits f) discountmachine Exploits

Figure 6.4: Frequency that an agent using relaxedlookahead (left) or discountma-
chine (right) chose to Innovate, Observe, or Exploit, given its age and best known
action, in an environment with the action distribution πGam (i.e. a gamma distribu-
tion with shape 2 and scale 5) and probability of change c = 0.001.
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than discountmachine.

This is the consequence of only innovating as a bootstrapping measure, as

discountmachine does. Over time, agents will observe actions that are better than

the ones they currently know, and begin exploiting them. In environments with low

probability of change, the best action in the environment will take a long time to

change, which makes it likely that almost all of the agents will be exploiting this

action when it does change. This creates a structural shock (see Section 2.2.1),

and leaves strategies like discountmachine with knowledge of only a very small

subset of the actions in the environment, and no way to learn more without in-

novating. Strategies like relaxedlookahead, however, can recover by innovating and

finding other actions that have changed to have higher value. This phenomenon

appears to be the biggest reason why relaxedlookahead has such a large advantage

in environments with low probability of change.

These figures also help to explain why, in Table 6.1, relaxedlookahead was

more likely to win in many environments using πGam, even though πGeo more closely

matches its assumptions about the shape of π. The reason appears to be fairly sim-

ple: relaxedlookahead ’s performance is about the same, while discountmachine ap-

pears to do worse in the environments using πGam. Comparing relaxedlookahead ’s

performance as the distribution changes (i.e. comparing Figure 6.6a to 6.8a), we

can see that it is more likely to exploit actions between 15 and 25, and less likely

to exploit actions with higher value than 25. This is to be expected, however, since

πGam is characterized by a large hump around the mean and a narrower tail than

πGeo, so there will be fewer actions with very high values in these environments.

96



Meanwhile, comparing Figure 6.6b to 6.8b, we can see that discountmachine has

much more trouble finding actions with above-average payoff in the environment

using πGam, and after round 500 most of its exploits have values between 5 and 15

(recall that the mean of πGam is 10). This explains why relaxedlookahead was able

to win against discountmachine seven percent more often in the environment used

in Figure 6.8.
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a) relaxedlookahead

b) discountmachine

Figure 6.5: Frequency with which relaxedlookahead(top) and discountma-
chine(bottom) exploited an action with payoff P , for six different ranges of values
for P , over the first 1000 rounds of a game. Results were obtained by allowing each
strategy to play a 50 games against itself, in an environment with action distribution
πGeo and probability of change c = 0.001, and averaging the exploits observed on
each round.
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a) relaxedlookahead

b) discountmachine

Figure 6.6: Frequency with which relaxedlookahead(top) and discountma-
chine(bottom) exploited an action with payoff P , for six different ranges of values
for P , over the first 1000 rounds of a game. Results were obtained by allowing each
strategy to play a 50 games against itself, in an environment with action distribu-
tion πGeo and probability of change c = 0.01, and averaging the exploits observed
on each round.
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a) relaxedlookahead

b) discountmachine

Figure 6.7: Frequency with which relaxedlookahead(top) and discountma-
chine(bottom) exploited an action with payoff P , for six different ranges of values
for P , over the first 1000 rounds of a game. Results were obtained by allowing each
strategy to play a 50 games against itself, in an environment with action distribution
πGam and probability of change c = 0.001, and averaging the exploits observed on
each round.
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a) relaxedlookahead

b) discountmachine

Figure 6.8: Frequency with which relaxedlookahead(top) and discountma-
chine(bottom) exploited an action with payoff P , for six different ranges of values
for P , over the first 1000 rounds of a game. Results were obtained by allowing each
strategy to play a 50 games against itself, in an environment with action distribution
πGam and probability of change c = 0.05, and averaging the exploits observed on
each round.
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Chapter 7

Conclusion

This dissertation has presented a variety of techniques for analyzing Cultap-

taiton, a complex evolutionary game designed to explore the phenomenon of social

learning. Furthermore, the work has demonstrated how to find strategies that are

provably good, and how to analyze such strategies to draw conclusions about how

good social learning strategies will operate. Thus, this work has advanced the state

of the art in two ways.

First, it provides theory and analysis that support many of the empirical

results found by the first Cultaptation tournament, and identifies some aspects of

the tournament results that are likely due to experimental error (e.g., the lack of

individual learning in any of the top-performing strategies). This helps strengthen

our understanding of social learning in general, and should help inform future studies

of this phenomenon.

Second, it demonstrates techniques that can be used to analyze evolutionary

games that are significantly more complex than classical evolutionary games, i.e.,

games that have a finite number of agents, rather than an infinitely large, well-mixed

population; games that last a finite, rather than infinite, number of generations; and

games that allow agents to live for multiple generations and condition their actions

on accumulated experience, rather than replacing the population every generation
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and preventing agents from accumulating experience in the first place. One of the

reasons Cultaptation is so complex is that early evolutionary models of social learn-

ing made very strong assumptions about social learning mechanics and strategies

[16, 7], and the conclusions drawn from studying such models generated a controver-

sial challenge to social learning’s role in evolutionary fitness that has taken decades

to fully address [7, 13, 14, 18]. As researchers in the field of evolutionary game

theory continue to study more complex phenomena like social learning, it is likely

that these weaker assumptions will be needed more frequently, and so techniques

like the ones presented here will be necessary more often.

In summary, this dissertation has provided the following contributions:

1. Analyzing strategies’ reproductive success. Given a Cultaptation

game G and a set S of available strategies for G, the work presents a formula for

approximating (to within any ε > 0) the expected per-round utility, EPRU(s | G,S),

of each strategy in S. The work shows that a strategy with maximal expected per-

round utility will have the highest expected frequency in the limit, independent

of the initial strategy profile. These results provide a basis for evaluating highly

complex strategies such as the ones described below.

Generalizability: These results can be generalized to other evolutionary games

in which agents live more than one generation, with a fixed probability of death at

each generation, and reproduction is done using the replicator dynamic.

2. Computing near-best-response strategies. The work provides a

strategy-generation algorithm that, given a Cultaptation game G and a set of avail-

able strategies S, can construct a strategy sα that is within ε of the a response to
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S.

Generalizability: The strategy-generation algorithm performs a finite-horizon

search, and is generalizable to other evolutionary games in which there is a fixed

upper bound on per-round utility and a nonzero lower bound on the probability of

death at each round.

3. Approximating symmetric Nash equilibria. The work provides

CSLA, an iterative self-improvement algorithm that uses the strategy-generation

algorithm in Section 5.1 to attempt to find a strategy sself that is a near-best re-

sponse in a Cultaptation game in which the other players are all using sself . Hence

a strategy profile composed entirely of instances of sself is a symmetric near-Nash

equilibrium.

Generalizability: An iterative self-improvement algorithm similar to CSLA

should be able to find a near-Nash equilibrium for any game in which the strategies

are complex enough that computing a best (or near-best) response is not feasible by

analyzing the strategies directly, but is feasible using information from a simulated

game between strategies in the profile. Games of this type will typically have a high

branching factor but relatively simple interactions between agents.

4. State aggregation. To make its algorithms fast enough for practical

experimentation, the work provides a state-aggregation technique that speeds them

up by an exponential factor without any loss in accuracy. The experimental re-

sults in Section 5.3 demonstrate the practical feasibility that this provides: in these

experiments, CSLA always converged in just a few iterations.

Generalizability: The state-aggregation technique is generalizable to other evo-
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lutionary games in which the utilities are Markovian.

5. Experimental results. In the experimental studies, the near-Nash equi-

libria produced by CSLA in any given game were all virtually identical, regardless

of the starting values that were used. That strongly suggests (though it does not

prove) that the strategy profile consisting of copies of sself approximates an optimal

Nash equilibrium, and possibly even a unique Nash equilibrium.

Consequently, sself ’s characteristics provide insights into the characteristics of

good Cultaptation strategies. For example, the experiments show that sself relies

primarily on observation and exploitation, but switches quickly to innovation when

a structural shock occurs, switching back to observation and exploitation once it has

learned how to respond to the shock. This conflicts with the conventional wisdom

[16, 7] that successful social-learning strategies are characterized by a high frequency

of innovation, but it helps to explain both the results of the Cultaptation tournament

[17] and some recent experimental results on human subjects [18].

6. Improvement on the best tournament strategy. While the algo-

rithms described above are fast enough for experimentation on smaller variants of

the Cultaptation game, they would be intractable for use on the more complex vari-

ant used in the Cultaptation tournament. The work shows two approaches that

can extend the above results to larger environments such as these. First, it shows

how the analysis and experimental results outlined above can be used to identify

potential problems in the best strategy from the Cultaptation tournament (i.e. dis-

countmachine). Second, it uses the formulae from the analysis to define a new

strategy, relaxedlookahead, that avoids such weaknesses. Experimental results verify
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that relaxedlookahead is capable of outperforming discountmachine in a variety of

environments similar to those used in the Cultaptation tournament, and provide an

in-depth analysis of the factors that allowed relaxedlookahead to perform better.

The analysis showed that refusing to innovate except as a bootstrapping mea-

sure (as discountmachine and all of the top-performing strategies from the tourna-

ment did) makes it much more difficult to recover from structural shocks, especially

in environments with low probability of change. Strategies that are willing to in-

novate when a structural shock is detected, as relaxedlookahead is, are able to

avoid this problem. The analysis also showed that heuristics instructing a strategy

to explore with some minimum frequency, like the one used by discountmachine,

are unnecessary, since relaxedlookahead exhibits emergent behavior in which it ex-

plores at intervals dependent upon the parameters of the environment, without being

specifically programmed to do so.

One possible avenue for future work would be to identify computationally fea-

sible techniques capable of approximating the Nash equilibrium strategy in these

larger versions of Cultaptation, preferably with provable bounds on the difference

between the performance of such techniques and the Nash equilibrium strategy.

In classical games, a regret minimizing strategy1 is typically not computationally

intensive and has been shown to have performance quite close to that of a Nash

strategy in several large classes of repeated games [40]. Therefore, it may be fruitful

1in short, a regret minimizing strategy seeks to minimize the expected difference in payoff

between the result of its chosen action and the best possible result if it had selected a different

action.
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to attempt to extend the concept of regret minimization to evolutionary game the-

ory; such an extension would need to account for the conceptual difference between

payoff in classical games and fitness in evolutionary games, perhaps involving an

idea of “lost fitness minimization,” in which the player compares the fitness gained

by its chosen action to the highest amount of fitness it would have obtained if it had

selected a different action.

7. Implications. These results provide strong support for the following

hypotheses about the best strategies for Cultaptation and similar games:

• What they are like, and how they can be computed. The best strategies are

likely to be conditional ones in which the choice of action at each round is

conditioned on the agent’s accumulated experience. Such strategies (or close

approximations of them) can be computed by doing a lookahead search that

predicts how each possible choice of action at the current round is likely to

affect future performance.

• How they are likely to behave. It is likely that the best strategies will observe

and exploit most of the time, but will have ways of quickly detecting structural

shocks, so that they can switch quickly to innovation in order to learn how to

respond to such shocks.
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Appendix A

Proofs

Proposition 2. EPRU(s | G,S)/d = EPRUalt(s, 〈〉 | G,S).

Proof.

First, we will show by induction that EPRUalt(s, 〈〉 | G,S) equals the summa-

tion of P (hα|sα,S) EVexp(|hα|, U(hα[|hα|])) for all histories hα. Then we will show

that this equals the summation of L(|hα|)P (hα|sα,S) PRU(hα) for all hα.

We will begin with the definition of EPRUalt in Equation 4.12, and note that

P (〈〉◦ t|〈〉, sα(〈〉),S) = P (〈〉◦ t|sα,S) for histories of length one. This gives us a base

case of

EPRUalt(sα, 〈〉 | G,S) =∑
t∈T

P (〈〉 ◦ t|sα,S) EVexp(1, U(t)) +
∑
t∈T

P (〈〉 ◦ t|sα,S) EPRUalt(sα, 〈〉 ◦ t | G,S).

For the inductive case, we will again start from Equation 4.12, this time noting

that P (hα|sα,S)P (hα ◦ t|hα, sα(hα),S) simplifies to just P (hα ◦ t|sα,S). Thus, for

all hα we can rewrite P (hα|sα,S) EPRUalt(sα, hα | G,S) in terms of histories one

round longer than hα, as follows:

P (hα|sα,S) EPRUalt(sα, hα | G,S) =
∑
t∈T

P (hα ◦ t|sα,S) EVexp(|hα ◦ t|, U(t))

+
∑
t∈T

P (hα ◦ t|sα,S) EPRUalt(sα, hα ◦ t | G,S)).
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Therefore, by induction we have

EPRUalt(sα, 〈〉 | G,S) =
∑
hα∈H

P (hα|sα,S) EVexp(|hα|, U(hα[|hα|])),

where H is the set of all possible histories.

The proof then proceeds arithmetically:

EPRUalt(sα, 〈〉 | G,S) =
∑
hα∈H

P (hα|sα,S) EVexp(|hα|, U(hα[|hα|]))

=
∑
hα∈H

P (hα|sα,S)
∞∑

i=|hα|

L(i)U(hα[|hα|])
i

=
∑
hα∈H

∞∑
i=|hα|

L(i)P (hα|sα,S)U(hα[|hα|])
i

=
∞∑
i=1

∑
hα∈H(≤i)

L(i)P (hα|sα,S)U(hα[|hα|])
i

=
∞∑
i=1

∑
hα∈H(i)

L(i)P (hα|sα,S) PRU(hα) = EPRU(sα | G,S)/d

Where H(≤ i) is the set of all histories of length less than or equal to i, and H(i)

is the set of all histories exactly of length i. 2

Proposition 3. Strat(hα, k, V,S) returns (sα, U) such that

EPRUk
alt(sα, hα | G,S) = U = maxs′(EPRUk

alt(s
′, hα | G,S)).

Proof. Let s′ be a strategy maximizing EPRUk
alt(s

′, hα | G,S) and let {sα, U} be

the strategy and value returned by Strat(hα, k, V,S). We will show by induction on

k that

EPRUk
alt(sα, hα | G,S) = U = EPRUk

alt(s
′, hα | G,S).
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In the base case, k = 0 and clearly EPRU0
alt(s

′, hα | G,S) = 0 for any s′,

therefore EPRUk
alt(sα, hα | G,S) = EPRUk

alt(s
′, hα | G,S) = 0 = U as required.

For the inductive case, suppose that for k, Strat(hα, k, V,S) returns {sα, U}

such that EPRUk
alt(sα, hα | G,S) = U = maxs′(EPRUk

alt(s
′, hα | G,S)). We must

then show that Strat(hα, k + 1, V,S) returns {sα, U} such that

EPRUk+1
alt (sα, hα | G,S) = U = maxs′(EPRUk+1

alt (s′, hα | G,S)).

Let stemp be the strategy constructed in lines 8–19 of the algorithm. First we show

that on line 20,

EPRUk+1
alt (stemp, hα | G,S) = (A.1)∑

t∈T

P (hα ◦ t|hα, stemp(hα),S)
(
EVexp(|hα|, U(t)) + EPRUk

alt(stemp, hα ◦ t | G,S)
)

= Utemp.

This follows because the t on line 11 iterates over all possible t ∈ T (due to the for

loops on lines 6, 9, and 10), meaning that the eventual value of Utemp is

∑
t∈T

P (hα ◦ t|hα, stemp(hα)|S) (EVexp(|hα ◦ t|, U(t)) + U ′) .

By the inductive hypothesis, U ′ = EPRUk
alt(stemp, hα ◦ t | G,S), sufficing to show

that (A.1) holds.

Now we show that

EPRUk+1
alt (sα, hα | G,S) = EPRUk+1

alt (s′, hα | G,S).

Clearly EPRUk+1
alt (sα, hα | G,S) ≤ EPRUk+1

alt (s′, hα | G,S), since s′ is assumed to
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have maximal EPRUk+1
alt for hα, so it suffices to show that

EPRUk+1
alt (sα, hα | G,S) ≥ EPRUk+1

alt (s′, hα | G,S).

Since sα maximizes

∑
t∈T

P (hα ◦ t|hα, sα(hα),S)(EVexp(|hα ◦ t|, U(t)) + U ′),

where U ′ ≥ EPRUk
alt(s

′, hα ◦ t | G,S) by the inductive hypothesis, there can be no

action a such that

∑
t∈T

P (hα ◦ t|hα, a,S)(EVexp(|hα ◦ t|, U(t)) + EPRUk
alt(s

′, hα ◦ t | G,S))

>
∑
t∈T

P (hα ◦ t|hα, s′(hα),S)(EVexp(|hα ◦ t|, U(t)) + U ′).

Therefore EPRUk+1
alt (sα, hα | G,S) ≥ EPRUk+1

alt (s′, hα | G,S). This concludes the

inductive argument.

Thus for all k, EPRUk
alt(sα, hα | G,S) = U = maxs′ EPRUk

alt(s
′, hα | G,S). 2
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Appendix B

Converting from Histories to Repertoires

In this appendix, we will formally define a repertoire, explain how to trans-

form histories into repertoires, and show that the number of possible repertoires is

substantially smaller than the number of possible histories, while maintaining the

property that any best-response action for a given repertoire is also a best resonse

for any history associated with that repertoire (Theorem 5). Finally, we will present

a modified version of Algorithm 1, which uses repertoires rather than histories, and

we will show how this simple change cuts the branching factor of the algorithm in

half (Algorithm 7).

B.1 Repertoire Definition

A repertoire tells the last value and age of each action an agent “knows,”

where an action’s age is the number of rounds that have passed since the agent

last obtained information about it. Since at any given point in a game, each known

action has a unique age, we label exploitation actions by their value and age, leaving

off the action number (e.g. if we discovered an action with value 4 last round and

an action with value 26 three rounds ago, then the repertoire will be {〈4, 1〉, 〈26, 3〉}

where 〈4, 1〉 denotes the existence of an action with value 4 discovered 1 round ago,

and 〈26, 3〉 denotes the existence of an action with value 26 discovered 3 rounds
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Algorithm 6 Creates and returns a repertoire for history hα.

CreateRepertoire(hα = (a1, (m1, v1)), . . . , (ar, (mr, vr)))

Let M = {mi|i = 1, . . . , r}.
Let R = ∅ {R will be the repertoire.}
for m ∈M do

Let i = max
{1,...,r}

(mi = m)

Add 〈vi, r − i〉 to R.
end for
return R

ago). Formally, a repertoire is defined to be a set of pairs, where the first value

in each pair represents the knowledge of an action with the given value, while the

second value in the pair represents the number of rounds since that knowledge was

last updated.

Definition. Let v1, . . . , vm ∈ V be action values and γ1, . . . , γm ∈ Z+ (the positive

integers) be action ages. A repertoire R is a set of action value/action age pairs

R = {〈v1, γ1〉, . . . , 〈vm, γm〉}. We denote the set of all repertoires as Rep, and the

set of all repertoires where all γi ≤ j as Repj. 2

Rep has unbounded size, but Repj has finite size. We show how to create a

repertoire R from a history hα using the CreateRepertoire function in Algorithm 6.

Repertoires change based on the action performed. For example, repertoire

R = {〈4, 1〉, 〈26, 3〉}

can change to repertoire

R′ = {〈4, 2〉, 〈26, 4〉, 〈27, 1〉}

after an innovation action where an action with value 27 is innovated. Notice that all

actions in R′, apart from the newly-innovated action with age 1, are one round older
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than they were in R. This aging process occurs often enough for us to introduce a

function which ages a repertoire R = {〈vi, γi〉}:

age({〈vi, γi〉}) = {〈vi, γi + 1〉}

Finally, we will introduce two functions to represent the two ways our reper-

toire can change when we perform an action.

The first, newaction, returns a repertoire with a new action added to it:

newaction(R, v) = age(R) ∪ {〈v, 1〉}

The second, updaction, returns a repertoire with updated information on action m:

updaction(R, v,m) = age(R \ {〈vm, γm〉}) ∪ {〈v, 1〉}

B.2 Transition Probabilities

We can now define the probability of transitioning between repertoires on

round r. We will call the transition probability functions PRep(R′|R, r, a,S) for

a ∈ {Inv,Obs,Xi}. In general, these functions will mirror the P (h′|h, a,S) functions

defined in Section 4.1, with some extra clauses added to ensure that if it is not

possible to go from repertoire R to repertoire R′ using the given action, then the

transition probability is 0.

Innovation actions For innovation actions, the function is:

PRep(R′|R, r, Inv,S) =


0 if |R| = M ∨ 6 ∃v : R′ = newaction(R, v)

π(v) if R′ = newaction(R, v)
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The first clause ensures that if all possible actions are already in R, or if it

is not possible to go from R to R′ in one innovation action, then the transition

probability is 0. The second clause simply tells us the probability of innovating an

action with value v, given that it is possible to go from R to R′ in one innovation

action.

Observation actions In Section 4.1 we assumed the existence of a distribution πObs

that, when given the current history, would tell us the probability of observing an

action with a given value. Here, we will make the following assumptions about πObs:

• When given a repertoire and round number, πObs(v|R, r,S) tells us the prob-

ability of observing an action that has value v and is not already known by

R.

• When given a repertoire and round number, πObs(m, v|R, r,S) tells us the

probability of observing an action that has value v, and was previously in R

at position m. The value of this action may have changed.

• πObs can make its predictions without using any information lost when con-

verting from a history to a repertoire.

These assumptions are all satisfied by the πObs used in our implementation, and we

expect them to hold for other practical implementations as well, since a distribution

conditioned on entire histories would be impractically large.
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With this in mind, the transition probability function for observation actions

is

PRep(R′|R, r,Obs,S) =



πObs(m, v|R, r,S) if 〈v′m, γm〉 ∈ R ∧

R′ = updaction(R, v,m)

πObs(v|R, r,S) if R′ = newaction(R, v)

0 Otherwise.

The first clause gives us the probability of observing an action already in our

repertoire, while the second gives us the probability of observing a new action.

Exploitation actions Let 〈vi, γi〉 be the value and age of exploitation action Xi.

Then

PRep(R′|R, r,Xi,S) =



0 if |R| 6= |R′|

0 if ∀v′ ∈ V,R′ 6= updaction(R, v′, i)∏r
j=r−γi(1− c(j)) +

∑r
j=r−γi c(j)π(vi, j)

(∏r
i=j(1− c(i))

)
if R′ = updaction(R, vi, i)∑r
j=r−γi c(j)π(v′i, j)

(∏r
i=j(1− c(i))

)
if R′ = updaction(R, v′i, i) and vi 6= v′i

The first two clauses check that we can, in fact, transition between R and R′

by exploiting. The third clause gives us the probability that the action we exploited

has not changed since we last saw it, while the fourth clause gives us the probability

that the action we exploited has changed.
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B.3 Consistency between P and PRep

Later in this section, we will show that using a repertoire-based algorithm to

compute ε-best-response strategies returns the same results as using the history-

based Algorithm 1. To do this, we will use the notion of consistency between the P

and PRep equations.

Definition. Let M be the set of actions known to an agent with history hα. The

P and PRep equations are consistent for hα if, for all a ∈ {Inv,Obs,Xi} and v ∈ V :

∑
m∈M

P (h ◦ (a, (m, v)) | h, a,S) =

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S) (B.1)

and

∑
m∈{1,...,M}\M

P (h ◦ (a, (m, v)) | h, a,S) = PRep(newaction(R, v)|R, r, a,S) (B.2)

where R = CreateRepertoire(h) and r = |hα|. 2

Lemma 6. The P and PRep equations are consistent for all h ∈ H.

Proof. We can prove this by using the definition of P , found in Section 4.1, and the

definition of PRep found above. We will simply consider what happens for arbitrary

hα and v when performing innovation, observation, and exploitation actions.

Recall that X(h) returns the number of exploit moves available to an agent

with history h. For ease of exposition, we will assume without loss of generality

that the first action learned by hα has label 1, the second has label 2, etc. Thus

M = {1, . . . , X(h)}, while {1, . . . ,M} \M = {X(h) + 1, . . . ,M}.
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Innovation actions An innovation action always returns information on a new ac-

tion, so both sides of Equation B.1 are clearly 0 in this case. If X(h) = |R| = M ,

both sides of Equation B.2 are also 0 since no new actions can be innovated. Thus,

we will assume X(h) = |R| < M . We now have

M∑
m=X(h)+1

P (h ◦ (Inv, (m, v))|h, Inv,S) = (M −X(h))
π(v)

M −X(h)
= π(v)

and

PRep(newaction(R, v)|R, r, Inv,S) = π(v)

which are clearly equivalent. Hence, P and PRep are consistent on hα when a = Inv.

Observation actions This section of the proof is mostly trivial, given the assump-

tions we have made about πObs. The left side of Equation B.1 is

X(h)∑
m=1

P (h ◦ (Obs, (m, v))|h,Obs,S) =

X(h)∑
m=1

πObs(m, v|h,S)

which tells us the probability of observing one of the actions already seen in our

current history. The right side is

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Obs,S) =

|R|∑
m=1

πObs(m, v|R, r,S)

Since we assume that πObs(m, v|R, r,S) tells us the probability of observing action

m in the repertoire,
∑|R|

m=1 πObs(m, v|R, r,S) also tells us the probability of observ-

ing any of the actions we have already seen. Therefore, Equation B.1 holds for

observation actions.

For Equation B.2, the left side is

M∑
m=X(h)+1

P (h ◦ (Obs, (m, v))|h,Obs,S) =
M∑

m=X(h)+1

πObs(m, v|h,S)
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which tells us the probability of observing an action we have not yet seen. The right

side is

PRep(newaction(R, v)|R, r,Obs,S) = πObs(v|R, r,S)

Since we assume that πObs(v|R, r,S) gives us the probability of observing a new

action, Equation B.2 also holds for observation actions. Hence, P and PRep are

consistent on hα when a = Obs.

Exploitation actions Exploiting an action never gives us information about a new

action, so both sides of Equation B.2 are 0 when we exploit. Thus, we need only

consider Equation B.1.

We will consider two cases. In the first case, the action we choose to exploit

has changed since we last saw it, so v is a new value. We then have

X(h)∑
m=1

P (h ◦ (Xm, (m, v))|h,Xm,S) =

X(h)∑
m=1

r∑
j=lastm

c(j)π(v, j)
r∏
i=j

1− c(i)

where lastm is the last round number on which we obtained any information about

the m-th action.

Similarly, since exploiting never increases the size of a repertoire, we have

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Xm,S) =

|R|∑
m=1

r∑
j=r−γm

c(j)π(v, j)
r∏
i=j

(1− c(i))

Since |R| = X(h) and lastm = r − γm by definition, Equation B.1 holds when the

action we exploit changes.

Next, we consider the case where the action we choose to exploit has not

changed. In this case, we have
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X(h)∑
m=1

P (h ◦ (Xm, (m, v))|h,Xm,S) =

X(h)∑
m=1

(
r∏

j=lastm

(1− c(j)) +
r∑

j=lastm

c(j)π(v, j)
r∏
i=j

1− c(i)

)
and

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Xm,S) =

|R|∑
m=1

(
r∏

j=r−γm

(1− c(j)) +
r∑

j=r−γm

c(j)π(v, j)
r∏
i=j

(1− c(i))

)
which are also equivalent. Therefore, Equation B.1 also holds when the action

we exploit does not change.

We have now shown that P and PRep are consistent on arbitrary hα when

a ∈ {Inv,Obs,Xi} and for arbitrary v. Therefore, P and PRep are consistent for all

hα. 2

B.4 Repertoire-Based Strategies

Repertoires can be used to more compactly define a strategy. We let a

repertoire-based strategy s be a function from repertoires to actions. Such a strategy

can be represented more compactly than the history-based strategies used earlier in

this work, since there are fewer possible repertoires than there are possible histories.

In any history hα, a repertoire-based strategy s chooses the action associated with

repertoire CreateRepertoire(h).

We can use the PRep functions to define a formula that determines the EPRU

for any repertoire-based strategy s. EPRUalt(s, R, r | G,S) is a recursive function
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for calculating the expected per-round utility of s:

EPRUalt(s, R, r | G,S) =∑
a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)×

(EVexp(r, U((a, (−, v)))) + EPRUalt(s, newaction(R, v), r + 1 | G,S))

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)×

(EVexp(r, U((a, (−, v)))) + EPRUalt(s, updaction(R, v,m), r + 1 | G,S))]

where A is the set of possible actions and V is the set of possible action values.

However, like EPRUalt(s, h | G,S), EPRUalt(s, R, r | G,S) contains infinite

recursion and is therefore not computable. We will deal with this problem as we did

in Section 4.2.1, by introducing a depth-limited version. For ease of exposition we

will introduce two ”helper” functions

EPRUk
altnew

(s, R, r, a, v | G,S)

= PRep(newaction(R, v)|R, r, a,S)×

[EVexp(r, U((a, (−, v)))) + EPRUk−1
alt (s, newaction(R, v), r + 1 | G,S)]

and

EPRUk
altupd

(s, R, r, a, v | G,S)

=

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)×

[EVexp(r, U((a, (−, v)))) + EPRUk−1
alt (s, updaction(R, v,m), r + 1 | G,S)]

Now we can define
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EPRUk
alt(s, R, r | G,S) =



0, if k = 0,

∑
a∈A

∑
v∈V

(EPRUk
altnew

(s, R, r, a, v | G,S) +

EPRUk
altupd

(s, R, r, a, v | G,S)), otherwise.

A proof that this formulation is equivalent to the version of EPRUk
alt from

Section 4.2.1 follows.

Theorem 5. For all histories hα, all repertoire-based strategies s, and all k ≥ 0, if

s′ is a function from histories to actions where s′(h) = s(CreateRepertoire(h)) and

r = |hα|, then EPRUk
alt(s, R, r | G,S) = EPRUk

alt(s
′, h | G,S).

Proof. We can prove this by using induction on k. For our base case, we will use

k = 0, since EPRU0
alt(s, R, r | G,S) = EPRU0

alt(s
′, h | G,S) = 0 by definition.

For the inductive step, we will assume that Theorem 5 holds for some k ≥ 0,

and show that it also holds for k + 1. Recall from Section 4.2.1 that, in this case

EPRUk+1
alt (s′, h |G,S) =

∑
t∈T

P (h◦t|h, s(h),S)(EVexp(r, U(t))+EPRUk
alt(s

′, h◦t |G,S))

Since T is simply the set of all action-percept pairs, we can instead write this

as

EPRUk+1
alt (s′, h | G,S) =

∑
a∈A

∑
v∈V

[
M∑
m=1

P (h ◦ (a, (m, v))|h, s(h),S)

(EVexp(r, U((a, (m, v)))) + EPRUk
alt(s

′, h ◦ (a, (m, v)) | G,S))]
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where A is the set of possible actions and V the set of possible values. We also have1

EPRUk+1
alt (s, R, r | G,S) =∑

a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)

(EVexp(r, U((a, (−, v)))) + EPRUk
alt(s, newaction(R, v), r + 1 | G,S))

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)

(EVexp(r, U((a, (−, v)))) + EPRUk
alt(s, updaction(R, v,m), r + 1 | G,S))]

Recall from Lemma 6 that P and PRep are consistent on hα. We can combine

this with our inductive hypothesis to show that the bracketed portions of the two

equations above are equal.

Recall that when a repertoire encounters a new action, it does not store the

action number m for that action. Thus, for any pair m and m′ that are not al-

ready in hα, we know that CreateRepertoire(h ◦ (a, (m, v))) = CreateRepertoire(h ◦

(a, (m′, v))) = newaction(R, v). Therefore, by our inductive hypothesis

EPRUk
alt(s

′, h ◦ (a, (m, v)) | G,S) = EPRUk
alt(s, newaction(R, v), r | G,S)

for all m not already in hα. Notice that, by definition, there are M −X(h) values of

m that are not already in hα. If we assume without loss of generality that the first

action learned in hα has label 1, the second has label 2, etc., then we can define βnew

1Recall that function U simply calculates the utility of performing the given action, and does

not depend on the action number. Thus U(a,m, v) = U(a,−, v) for any legal m.
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to be the quantity P and PRep are multiplied by when we learn something new:

βnew = EVexp(r, U((a, (−, v)))) + EPRUk
alt(s

′, h ◦ 〈a,X(h) + 1, v〉 | G,S)

= EVexp(r, U((a, (−, v)))) + EPRUk
alt(s

′, h ◦ 〈a,X(h) + 2, v〉 | G,S)

. . .

= EVexp(r, U((a, (−, v)))) + EPRUk
alt(s

′, h ◦ (a, (M, v)) | G,S)

= EVexp(r, U((a, (−, v)))) + EPRUk
alt(s, newaction(R, v), r | G,S)

Similarly, the inductive hypothesis also tells us that

EPRUk
alt(s

′, h ◦ (a, (m, v)) | G,S) = EPRUk
alt(s, updaction(R, v,m), r | G,S)

for all m that are already in hα. Thus, we can also define βm to be the quantity P

and PRep are multiplied by when we update our information on action m:

βm = EVexp(r, U((a, (−, v)))) + EPRUk
alt(s

′, h ◦ (a, (m, v)) | G,S)

= EVexp(r, U((a, (−, v)))) + EPRUk
alt(s, updaction(R, v,m), r | G,S)

for m = 1, . . . , X(h).

We can now rewrite EPRUk+1
alt (s′, h | G,S) and EPRUk+1

alt (s, R, r | G,S) as

EPRUk+1
alt (s′, h | G,S) =

∑
a∈A

∑
v∈V

[
M∑

m=X(h)+1

P (h ◦ (a, (m, v))|h, s(h),S)βnew

+

X(h)∑
m=1

P (h ◦ (a, (m, v))|h, s(h),S)βm]

and

EPRUk+1
alt (s, R, r | G,S) =

∑
a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)βnew

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)βm]
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Equations B.1 and B.2 tell us that regardless of the values of a and v,

M∑
m=X(h)+1

P (h ◦ (a, (m, v))|h, s(h),S) = PRep(newaction(R, v)|R, r, a,S)

and

X(h)∑
m=1

P (h ◦ (a, (m, v))|h, s(h),S) =

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)

Therefore, EPRUk+1
alt (s′, h | G,S) = EPRUk+1

alt (s, R, r | G,S). This completes the

induction. 2

B.5 Repertoire-Based Algorithm

Now that we have a formula for computing the EPRU of a repertoire-based

strategy, and we know that using repertoires rather than histories to calculate EPRU

gives us the same results, we can update our algorithm to use repertoires. The new

algorithm will be almost identical to Algorithm 1, except that using repertoires

rather than histories will allow us to reduce our number of recursive calls by half.

Let R′Obs be the set of repertoires for which PRep(R′Obs|R, r,Obs) > 0, and define

R′Inv and R′Xi similarly. Note that, if R contains m different actions,

R′Obs ⊆ R′Inv ∪
m⋃
i=1

R′Xi (B.3)

In other words, since repertoires do not need to remember what actions our

agent performed, choosing X1 produces the same repertoire as choosing Obs and

observing action 1. Similarly, choosing Inv and Obs can also produce the same

repertoires, if both actions happen to tell us about the same action. However, there
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is no action we could encounter through observing that we could not encounter

through either innovating or exploiting. Therefore, if we save the results of the

recursive calls to calculate the utility of Inv and X1, . . . ,Xm, we can compute the

utility of Obs without any additional recursion. This cuts the branching factor of

our algorithm in half, from (2m + 2)v to (m + 1)v, which reduces the size of the

search tree by a factor of 2k for search depth k, without any impact on accuracy.

Algorithm 7 is the complete algorithm.
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Algorithm 7 Produce strategy s that maximizes EPRUk
alt(s, R | G,S), given initial

repertoire R, and set of possible utility values V .

Strat(R,r, k,V ,S)

1: if k = 0 then
2: return 0
3: end if
4: Let Umax = 0
5: Let smax = null
6: Let UObs = 0
7: for each action a ∈ {X1, · · · ,XM , Inv} do
8: Let Utemp = 0
9: Let stemp = null

10: for each value v ∈ V do
11: Let t = 〈v, 1〉
12: if ∃i : (a = Xi) then Let R′ = age(R \ {〈vi, γi〉}) ∪ t and

p = PRep(R′|R, r,Xi,S)
13: else Let R′ = age(R) ∪ t and p = PRep(R′|R, r, Inv,S)
14: Let pObs = PRep(R′|R, r,Obs,S)
15: if p+ pObs > 0 then
16: Let {S ′, U ′} = Strat(R′, r + 1, k − 1, V,S)
17: if pObs > 0 then UObs = UObs + pObs · U ′
18: if p > 0 then
19: stemp = stemp ∪ S ′
20: if ∃i : (a = Xi) then Utemp = Utemp + p · (EVexp(r, v) + U ′)
21: else Utemp = Utemp + p · U ′
22: end if
23: end if
24: end for
25: if Utemp > Umax then
26: Umax = Utemp

27: smax = stemp ∪ 〈R, a〉
28: end if
29: end for
30: if UObs > Umax then
31: Umax = UObs

32: smax = stemp ∪ 〈R,Obs〉
33: end if
34: return {smax, Umax}
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Appendix C

The Number of Pure Strategies for Cultaptation

In Cultaptation as defined on the tournament web site, each game includes

10,000 rounds, 100 agents, 100 exploitation actions, and the actions Inv and Obs. Let

S be the set of all pure Cultaptation strategies, and S ′ be the set of all strategies

such that the first 100 moves are Inv, and all subsequent moves are exploitation

actions. Then any lower bound on S ′ is a loose lower bound on S.

Suppose an agent uses a strategy in S ′. If it survives for the first 100 rounds of

the game, it will learn values for all 100 of the exploitation actions. There are 100!

different orders in which these actions may be learned, and for each action there are

100 possible values; hence there are 100100 possible combinations of values. Thus

after 100 Inv moves, the number of possible histories is 100!×100100. All subsequent

moves by the agent will be exploitations; and it is possible (though quite unlikely!)

that the agent may live for the remaining 9, 900 rounds of the game. Thus each

of the above histories is the root of a game tree of height 2 × 9, 900. In this game

tree, each node of even depth is a choice node (each branch emanating from the

node corresponds to one of the 100 possible exploitation actions), and each node of

odd depth is a value node (each branch emanating from the node corresponds to

one of the 100 different values that the chosen action may return). Since there are
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100!× 100100 of these game trees, the total number of choice nodes is

100! ∗ 100100

9899∑
d=0

(1002)d > 9.3× 1039953.

If we use the conventional game-theoretic definition that a pure strategy s must

include a choice of action at each choice node, regardless of whether the choice node

is reachable given s, then it follows that

|S ′| > 1009.3×1039953

.

If we use the definition used by game-tree-search researchers, in which a pure strat-

egy only includes a choice of action at each choice node that is reachable given s,

then the number of reachable choice nodes given s is

100! ∗ 100100

9899∑
d=0

100d > 9.4× 1020155,

so

|S ′| > 1009.4×1020155

.
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