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Volumetric 3D data sets are being generated in many different application

areas. Some examples are CAT scans and MRI data, 3D models of protein molecules

represented by implicit surfaces, multi-dimensional numeric simulations of plasma

turbulence, and stacks of confocal microscopy images of cells. The size of these data

sets has been increasing, requiring the speed of analysis and visualization techniques

to also increase to keep up.

Recent advances in processor technology have stopped increasing clock speed

and instead begun increasing parallelism, resulting in multi-core CPUS and many-

core GPUs. To take advantage of these new parallel architectures, algorithms must

be explicitly written to exploit parallelism. In this thesis we describe several algo-

rithms and techniques for volumetric data set analysis and visualization that are

amenable to these modern parallel architectures.

We first discuss modeling volumetric data with Gaussian Radial Basis Func-

tions (RBFs). RBF representation of a data set has several advantages, including



lossy compression, analytic differentiability, and analytic application of Gaussian

blur. We also describe a parallel volume rendering algorithm that can create images

of the data directly from the RBF representation.

Next we discuss a parallel, stochastic algorithm for measuring the surface area

of volumetric representations of molecules. The algorithm is suitable for implemen-

tation on a GPU and is also progressive, allowing it to return a rough answer almost

immediately and refine the answer over time to the desired level of accuracy.

After this we discuss the concept of Confluent Visualization, which allows the

visualization of the interaction between a pair of volumetric data sets. The interac-

tion is visualized through volume rendering, which is well suited to implementation

on parallel architectures.

Finally we discuss a parallel, stochastic algorithm for classifying stem cells as

having been grown on a surface that induces differentiation or on a surface that does

not induce differentiation. The algorithm takes as input 3D volumetric models of the

cells generated from confocal microscopy. This algorithm builds on our algorithm

for surface area measurement and, like that algorithm, this algorithm is also suitable

for implementation on a GPU and is progressive.
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Chapter 1

Introduction

Modern technology has given rise to the generation of 3D volumetric data

sets in many application areas. CAT scans and MRI data are being generated

by the medical field. 3D models of protein molecules represented by implicit sur-

faces are being generated by computational biologists. Physicists are generating

multi-dimensional numeric simulations of plasma turbulence. Confocal microscopy

technology is allowing biologists to capture stacks of cell images at varying depths,

which can then be combined to create a 3D model of the cell.

Because these data sets can be large and can have a need for high-throughput

processing, we would like to leverage the most recent advances in high-performance

computing for their analysis. Recent advances in processor technology have stopped

increasing clock speed and instead begun increasing parallelism, resulting in multi-

core CPUS and many-core GPUs.

To take advantage of these new parallel architectures, algorithms must be

explicitly written to exploit parallelism. We have found that progressive stochastic

algorithms map well to these architectures. With these algorithms each parallel

processor can compute one stochastic sample– scaling to more processors then simply

results in an increase in the rate at which samples are taken. An additional benefit

is that the progressive nature of these algorithms allows an initial estimated result
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to be produced quickly, and then refined over time. The threads also tend to be

independent, requiring little or no inter-thread communication.

We have applied these techniques and algorithms to several different areas.

The first is fitting scalar fields with Gaussian radial basis functions in the context of

medical imaging and physical simulations. In addition, we have done work on using

parallel, stochastic algorithms to measure molecular surface area. We have also done

work in confluent visualization– using one data set to control the visualization of

another– in the context of plasma physics. Finally, we have done work in the area

of stem cell therapy, using these algorithms to identify whether or not a cell has

differentiated into a desired type of tissue.

1.1 Gaussian RBF Fitting

3D volumetric data sets are often represented as simple scalar fields. This is

sufficient for many purposes, but some applications can benefit from representing the

data as a mixture of Gaussian Radial Basis Functions (RBFs). Gaussian RBFs are

easily differentiable, which allows certain derived quantities such as the curvature of

an implicit surface to be computed analytically. A Gaussian RBF representation can

also have a Gaussian blur applied analytically by simply adjusting the parameters

of each RBF.

To fit RBFs to data, we make use of our work on Gaussian RBF modelling and

rendering [2]. In this work we fit the RBFs using a multi-resolution octree hierarchy.

We first fit a single RBF to the highest level of the octree. We then evaluate the
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fitting error, and if it is too high, we subdivide the octree node into eight children

and fit an RBF to each child. We then evaluate the fitting error of each of the

children and continue the subdivision and fitting until the error drops below a given

threshold.

To fit an RBF to an octree node we must determine the RBF weight, width,

and center. The center of the RBF is set to the location of maximum error. The

weight is then set such that the error at the center is zero. The anisotropic width can

be computed using several methods. One method involves incrementally increasing

the width along each axis until the increases stop decreasing the fitting error. An-

other method involves setting the width non-iteratively using Maximum Likelihood

Estimation.

Figure 1.1: Renderings from three different levels of an RBF hierarchy for the UNC

Head data set. From left to right, the renderings were generated using 4, 6, and 8

levels from the octree and consist of 561, 20.6 K, and 485 K RBFs.

In addition to the fitting algorithm, we also describe a method of rendering

a fitted data set directly from the RBF representation. We perform direct volume

rendering by incrementally stepping along rays shot from an eye position through
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the data set. At each step along the ray we evaluate the RBFs in the hierarchy at

that point and use this value to get a color and opacity from a transfer function.

We use the colors and opacities along each ray to produce the final color of a pixel

in the image.

The octree hierarchy allows us to make several optimizations in the rendering.

One optimization we can make is if the sample point along the ray is far from the

eye position, we can produce a lower resolution version of the data by not including

RBFs from all levels of the octree, instead stopping the evaluation of the RBFs at

some level above the leaves. Another optimization is that we can skip over octree

cells that do not contain a range of values that would give color or opacity with the

current transfer function.

1.2 Parallel Stochastic Measurement

Some applications require measuring geometric properties of a 3D object such

as its surface area or volume. For applications where the data is large or high-

throughput is required, it would be beneficial to perform these measurements using

a parallel algorithm. Such an algorithm is described in our work on measuring the

surface area of molecules by intersecting the surface of the molecule with a set of

random lines [3].

In this work we model molecules as a sum of Gaussian radial basis functions,

with each atom being represented with a single RBF. The representation of atoms

by Gaussian RBFs is inspired by the electron cloud around each atom. Unlike
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our previously described work on Gaussian RBF fitting we do not do the fitting

hierarchically, instead using a simple bucketing spacial data structure. RBF centers

are set to atom centers, and RBF weights and widths are set based on atomic radius

so that an isosurface of the RBF corresponds to a van der walls surface of the atom.

Once we have the RBF model of the molecule, we create a set of random

lines to intersect it with by choosing pairs of points on the surface of a bounding

sphere. We uniformly generate points on the surface of the sphere by using a quasi-

random sequence of numbers to give the point coordinates. Each pair of points then

determines a line.

To count the number of intersections of each line with the molecule we incre-

mentally step along each line evaluating the RBFs representing the molecule’s atoms

at that point. We determine whether each point is inside or outside the molecule by

comparing the value of the RBFs with an isovalue. If a point is found to be inside

the molecule when the previous point was outside, or vice versa, an intersection with

the molecular surface is recorded.

Once we have the count of intersections with the molecular surface, we can

use the Cauchy-Crofton formula from integral geometry to estimate the molecular

surface area. This formula relates the surface area and number of line intersections

with a bounding sphere to the surface area and number of intersections with the

enclosed molecular surface. Since the surface area of the bounding sphere, the

number of intersections with the bounding sphere, and the number of intersections

with the molecular surface area are known, the area of the molecular surface can be

estimated.
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(a) (b) (c)

Figure 1.2: Given a scalar field data set such as a cell or molecule (part a) we fit

the data with Gaussian radial basis functions (part b) then intersect the data and

a bounding sphere with a set of random lines, counting the number of intersections

(part c).

This algorithm has several nice features. First, it is easily parallelizable since

each line’s intersections with the molecule can be calculated independently. Our

parallel GPU implementation is 3x – 10x faster than existing CPU implementations

for the same error level. Second, it is incremental, meaning that it returns a rough

estimate of the surface almost immediately, and gives gradually more accurate es-

timates as more lines are intersected. This is useful since in some applications the

rough estimate might be used to determine whether or not additional time should

be spent to compute the more refined estimate.

1.3 Confluent Visualization

Some visualization applications involve understanding the spatial relationship

between a pair of superimposed data sets. One example is the phenomenon of stem

cell differentiation being induced by surface geometry, which involves a data set
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of the cell itself and a data set of the surface on which it is resting. Interesting

information may be derived by looking at the locations where the two data sets

interact.

Another example is physical simulations of gyrokinetic turbulence performed

in the context of research on fusion energy. These simulations can produce complex,

high dimensional data sets that are difficult to visualize. In order to make the data

more amenable to visualization, derived quantities are often visualized instead– in

this case heat flux and electric potential.

Figure 1.3: Example of Confluent Visualization in gyrokinetic turbulence simulation.

Visible structures indicate zones of high heat flux. Color represents values of the

electric potential.

To visualize these quantities we use standard direct volume rendering with a

color and opacity transfer function. However, unlike in traditional direct volume

rendering where the same value from the scalar field would be used to generate both

the color and opacity, we use electric potential to generate the color and heat flux

to generate the opacity. The result is that values of electric potential are visualized
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in areas of high heat flux. We refer to this as Confluent Visualization [4].

1.4 Regenerative Medicine

Tissue transplants are used to treat disorders of many different organs and

tissues, including the heart, the bladder, and the urethra. Unfortunately there

are several drawbacks of current transplant technology, such as requiring patients

to be on immunosuppresant drugs for the remainder of their life. Patients must

also compete for a limited supply of donor organs. These and other drawbacks of

transplants have created a large market for stem cell and regenerative medicine.

Stem cells are cells which have the ability to differentiate and grow into mul-

tiple different types of organ and tissue. One issue with stem cells is how to get

them to differentiate into the desired cell type. This can be accomplished through

exposure to various chemicals, but one current line of work has shown that in some

cases stem cells can be made to differentiate simply by placing them on a surface of

a certain texture.

When working with stem cells it is useful to be able to tell whether a given

cell population has differentiated or not. We have developed an algorithm based

on our work on molecular surface area measurement [3] that can identify whether

a cell was grown on a differentiating or non-differentiating surface with over 80%

accuracy. The algorithm works on a 3D model of the cell which can be generated

using confocal microscopy.

As with our molecular measurement work, this algorithm begins by intersecting
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Figure 1.4: Scanning Electron Micrographs (SEM) of surfaces upon which stem

cells can be grown and confocal microscopy models of cells grown on the surfaces.

Left to right: SEM of spun-coat film surface that does not induce differentiation.

Cell grown on spun-coat film. SEM of nanofiber scaffold surface that does induce

differentiation. Cell grown on nanofiber scaffold.

the 3D model of the cell with a set of random lines. The lengths of the line segments

that pass through the interior of the cell are stored in a histogram. These histograms

can be used as data points to train a machine learning algorithm, such as a Support

Vector Machine. Once the algorithm is trained, histograms of query cells can be

classified as coming from either a differentiating or non-differentiating surface.

Like our molecular measurement algorithm, this algorithm is parallel and pro-

gressive, making it suitable for future high-throughput cell classification applica-

tions. Classification of the cell by analysis of its shape also allows the cell to be

classified at an earlier stage of development than is possible by other means such as

chemical staining.
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Chapter 2

Gaussian RBF Fitting

2.1 Introduction

In this chapter we discuss modelling volumetric data with Gaussian Radial

Basis Functions (RBFs). Representation of volumetric data with Gaussian RBFs

has several advantages. First, the RBF representation may be smaller than the

original data, resulting in lossy compression. This reduction in data size can reduce

memory accesses resulting in a performance increase. Second, Gaussian RBFs are

easily differentiable, which allows certain derived quantities such as the curvature of

an implicit surface to be computed analytically. Third, a Gaussian RBF represen-

tation can also have a Gaussian blur applied analytically by simply adjusting the

parameters of each RBF.

In addition to the RBF representation, we describe a parallel, GPU-accelerated

volume rendering algorithm that can generate images of the data directly from the

RBF representation.

The following material in this chapter applies the concepts of RBF fitting

to medical and physics data, but the concepts are general enough that they could

be applied to any type of volumetric data. The material in this chapter has been

previously published [2].

Scientific visualization is currently facing a grand challenge in coping with vast
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quantities of data arising from high-fidelity acquisitions and large-scale scientific

simulations. Such datasets range from a few gigabytes to several terabytes and are

often characterized by an imperative need for interactive exploratory visualization

capabilities. For instance, the Richtmyer-Meshkov instability simulation performed

at the Lawrence Livermore National Laboratory [5] has produced a 2048×2048×1920

data over 273 time steps. The sheer size of this data makes it a challenge to visualize

it on commodity graphics hardware.

We believe that implicit representations offer a powerful model for facilitating

interactive visual exploration of large volumetric datasets. Implicit functions have

been used for almost two decades in visual computing. Introduced as blobby models

[6] and metaballs [7], they have grown to be widely used in games and movies. A nice

overview of some of the early work in implicit surfaces can be found in [8]. The use of

implicit representations for volume modeling and rendering is a recent phenomenon.

Implicit representations offer several advantages for volumes. First, their expressive

power makes them well-suited for trading off memory accesses with computation.

This is proving to be a powerful technique to hide memory latency for modern multi-

core architectures. Second, the analytical formulation of implicit representations is

highly amenable to local geometry processing, such as computing first and higher-

order derivatives. Indeed, recent research has established the relationship of such

geometric operators to features such as vortices and shocks by Weiler et al. [9] and

the principled design of transfer functions by Kniss et al. [10, 11]. Third, volumetric

implicit representations offer a multi-scale, and view-dependent capability to control

visual detail in an intuitive manner. This is likely to have a direct implication in
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Figure 2.1: Renderings from three different levels of an RBF hierarchy for the UNC

Head data set. From left to right, the renderings were generated using 4, 6, and 8

levels from the octree and consist of 561, 20.6 K, and 485 K RBFs.

devising techniques for facilitating comprehension and reducing clutter in visual

depictions.

In this chapter we present an algorithm for succinctly representing and effi-

ciently rendering large scalar volumetric data using a hierarchy of implicit functions

based on anisotropic radial basis functions. The novel contributions of our work are:

1. A multiresolution representation using anisotropic radial basis functions that

can encode a given volumetric dataset with progressively greater detail. Our

representation is well-suited for time-critical rendering, progressive refinement,

view-dependent level-of-detail, and progressive transmission.

2. An O(n log n)-scalable fitting algorithm based on Maximum Likelihood Es-

timation that can rapidly fit large datasets in a memory-friendly manner.

Specifically, we can fit 5123 dataset in around 20 minutes with a 1.6% RMS

error.
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3. A GPU-based ray-casting algorithm that can efficiently and directly render

from the hierarchical implicit representation of volumes. Our GPU-based

ray-casting algorithm supports acceleration techniques such as empty-space

skipping and early-ray termination with implicit volumes.

4. A multiresolution octree hierarchy over implicit RBFs that can leverage prior

work on octree location codes for efficient ray-casting, obviates the need to

store cell boundaries, and enables view-dependent level-of-detail rendering.

We review related work in section 2.2. We present our fitting algorithm in

section 2.3 and our direct volume rendering algorithm in section 2.4. Finally, we

conclude with some suggestions for future work in section 2.5.

2.2 Related Work

The basic goal of implicit function fitting is to fit a representation f(xi) =

di, i = 1, . . . , n, to surface or volumetric data, where di are appropriately chosen

scalars, such that the level sets of the function f, given by the values di have some

meaning associated either with the geometry or the properties of the object. When

fitting an implicit function to the input data, a local form of the fitting expression

is desirable, since the fit must adapt to local geometrical features. Radial basis

functions (RBFs) have been shown to be a versatile fitting tool in various fields.

A strong mathematical basis for their theory has been established and theorems

showing accuracy in various normed spaces have been proven for both surface and

volumetric data [12, 13, 14, 15, 16, 17, 18, 19]. These representations have several
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nice properties associated with sensitivity to local features, ability to support differ-

ent levels of detail, ability to mitigate noise, ability to incorporate various degrees of

smoothness and other priors via regularization and choice of particular RBFs (e.g.,

thin plate splines [20]). While these methods are considered to be accurate, their

naive implementations are both expensive to fit, and subsequently evaluate, making

them not very popular methods for fitting large datasets of the type we are dealing

with in this chapter.

Research by Beatson et al. [21] shows how RBF function fitting and evalua-

tion of the fitted function can be sped up by an order of magnitude using the fast

multipole method (FMM) [22]. They used non-compactly supported RBFs due to

their interpolation and extrapolation properties. Morse et al. [15] were the first to

fit surfaces using compactly-supported RBFs. Due to their local region of influ-

ence, compactly-supported RBFs can permit efficient evaluation and the ability to

incorporate local changes to the fitted function without the need for the FMM data-

structures. Co et al. [23] and Jang et al. [24] were the first to represent scattered and

irregular volumetric scalar fields using RBFs. They used Principal Component Anal-

ysis (PCA) [25] to cluster and determine centers for the Gaussian RBFs and used the

Levenberg-Marquardt optimization method to determine the Gaussian RBF vari-

ances. Weiler et al. [9] presented a k-d-tree-based method to fit Gaussian RBFs

to an unstructured volumetric vector field. In addition to using PCA clustering,

they select some of their RBF centers to be at peaks and troughs of low frequencies

in the data. They also use an approximate iterative method to quickly solve the

system of equations for the RBF weights. Hong et al. [26] use arbitrarily-oriented
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elliptical RBFs to fit data on an irregular grid. The RBF variances and orientations

are chosen to match the Voronoi cells of the data points. PCA is used to create

an initial guess for the RBF parameters, which is then refined using an iterative

optimization algorithm. Jang et al. [27] give a method of fitting arbitrarily-oriented

elliptical RBFs using non-linear optimization, and extend it to support vector data.

Rendering of implicit functions has a rich history in visual computing. Ray

tracing of implicit surfaces has been reasonably well-studied [6, 28, 29, 30, 31]. An

alternative to ray-tracing is to sample the implicit surface with a collection of well-

distributed particles and then render such particles. Methods for carefully sampling

the implicit surfaces have been discussed by Witkin and Heckbert [32] as well as by

Turk and O’Brien [18]. Another approach involves converting the implicit functions

to polygons by using marching cubes [33] or continuation methods [34, 35]. The

polygons can then be rendered as in traditional graphics. Direct volume rendering

of implicit functions is a relatively new endeavor. Jang et al. [24] and Weiler et

al. [9] have developed GPU-based volume rendering algorithms that proceed in a

slice-by-slice fashion. For each fragment in a slice, a fragment program iterates over

RBF parameters stored in a texture, computes the scalar value at that location, and

looks up the corresponding color from a 1D texture. Neophytou et al. [36] present a

splatting-based GPU-accelerated volume rendering method for arbitrarily-oriented

elliptical RBFs. Their method splats each RBF onto each intersecting slice as a

textured polygon and accumulates the splats in a texture buffer. The slice can then

be rendered after classification with a fragment program.

In this chapter we present the first GPU-accelerated ray-casting algorithm for
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direct rendering of implicit volumes and the first octree-structured RBF representa-

tion of regular volume data that lends itself well to adaptive and progressive levels

of detail.

2.3 Modelling

We model volume data as a sum of Radial Basis Functions (RBFs). Symboli-

cally, this can be represented as:

f(x) = w0 +
M∑
i=1

wi φi(x) (2.1)

where

x is the position vector of a point in the volume

f(x) is the scalar value at that point

φi is the ith RBF

M is the number of RBFs

w0 is a constant term

wi is the weight of the ith RBF

In this work we have used Gaussian RBFs:

φi(x) = e−r2/2 (2.2)

2.3.1 Multiresolution Hierarchical Fitting

Since we are targeting regular volumetric data, we can take advantage of the

inherent structure of the data and fit the RBFs to a multi-resolution octree hierarchy,
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from low resolution to high. We start by fitting a single RBF to a 23 resolution

downsampled version of the given dataset. This becomes the root of our RBF

hierarchy. We then take a version of the dataset that has been downsampled to

43, evaluate the initial (root) RBF at each of the 43 data points, and compute the

difference between the root RBF value and the downsampled version. The 43 block

of residual data is then divided into eight blocks of 23 data values, and the entire

process is repeated for each of these blocks. This is continued using versions of

the data that have been downsampled to 83, 163, etc. (see fig. 2.2). Each time

a new block is fit, the RBFs in that block and all of its ancestors are sampled at

the locations of the data points in the full resolution data, and the current fitting

error is computed. If the error is below a user-defined threshold, that block is not

subdivided any further. Otherwise, the blocks will continue to be subdivided until

they reach the full original data resolution.

This fitting algorithm only ever needs to access the full data in a sequential

manner, during the error evaluation stage. All other operations are performed on

one small, fixed-size block of data at a time, which will likely fit in a memory

cache. Besides being memory-friendly, the overall fitting algorithm also scales in a

O(n log n) manner.

In this method we truncate each RBF at the boundary of its octree cell. Due

to fitting errors, this would cause noticeable discontinuities at the borders between

octree cells during rendering. To avoid this, we fit each RBF to not only the data

within its 23 block, but also to data within a 1 data point border around that block

(each RBF is thus fitted to 43 data values). The fitting area of each block therefore
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(a) (b) (c) (d)

Figure 2.2: Overview of the fitting process. An RBF is first fit to low-resolution data

(a), and the fitting error is evaluated at the full resolution (b). If the error is too

high, additional RBFs are fit at a higher resolution (c), and their error evaluated (d).

In the actual implementation the borders of each block would overlap neighboring

blocks by one data point on each side, giving each block a resolution of 43 rather

than 23 – this is omitted in this illustration for clarity.

overlaps half of each face-adjacent block, one quarter of each edge-adjacent block,

and one eighth of each corner-adjacent block (see fig. 2.3 for an example on a

quadtree). During rendering, the RBF values are blended together based on the

distance from the center of each RBF’s block (see section 2.4.3).

2.3.2 Basic Algorithm

In the simplest version of the algorithm the RBF widths σi are identical. In

this case, the RBF radius r is simply:

r = ‖x− µi

σi

‖ (2.3)

where x is the position vector of a point in the volume, µi is the position vector of

the ith RBF’s center, and σi defines the width of the ith RBF.

Defining the RBF approximation is then only a matter of choosing a constant

term w0, RBF weights wi, RBF centers µi, and RBF widths σi. Some results of
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Figure 2.3: Blending between quadtree nodes. Only one edge-adjacent node (blue)

and one corner-adjacent node (red) are shown. Sample points within the central

block (grey) would be blended with samples from adjacent blocks whose shaded

regions the points fell in.

this simple algorithm are shown in the first row of table 2.2. Some possible choices

for the initial value of the constant term are zero, the minimum data value, or the

mean of the data. In our experiments we found that setting the initial value to zero

often produced the best results – this was done for all results reported in this work.

To compute the RBF centers and weights, the following simple algorithm can

be used:

1. Perform a linear search over the data to find the data point with the maximum

approximation error. This will be the location of the new RBF’s center.

2. Set the RBF’s weight to the error value at this cell. Since Gaussian RBFs

have a value of 1 at their center, setting the weight in this way will cause the
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center data point to have zero error.

3. Update error values stored at each data point within the RBF’s radius of

influence.

4. Repeat this process until the desired error threshold is reached.

2.3.3 Anisotropic Width Selection

A natural extension to the basic algorithm is to allow the widths of the RBFs

to vary anisotropically. This can be accomplished by making σ in equation 2.1 a

vector and allowing it to take on different values for different dimensions, dividing

it componentwise into the x−µi vector. General elliptical RBFs were used by Hong

et al.[26], Jang et al.[27], and Neophytou et al.[36], although we restrict our RBFs

to be axis-aligned, sacrificing some generality for a more compact representation.

The effect of using anisotropic widths is illustrated in table 2.1.

The simplest way to select the RBF widths is by using a greedy algorithm. For

each RBF, we first initialize the value of each σxi, σyi, σzi to some small number (we

use 0.3 times the width of a grid cell). We then begin iterating repeatedly over the

x, y, z dimensions. For each dimension, we increment the corresponding σi by some

small number (we use 0.1 times the width of a grid cell), and check if the average

error in the RBF’s area of effect was made worse by this change. If it was, the change

is reverted, and that dimension is excluded from further iterations. Otherwise, the

change is kept, and the iterations continued. Intuitively, this algorithm can be

viewed as blowing up the RBF like a balloon inside a closed box, with the sides of
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the box representing the widths at which further inflation along that axis begins

increasing the error.

Alternatively, a fast, non-iterative method of selecting the RBF widths is Maxi-

mum Likelihood Estimation (MLE)[37]. In this method, the data to be fit is treated

as a histogram of samples from a Gaussian probability density function with the

previously computed mean. The width σ of the probability density function that

would give this set of samples the highest probability of being generated is then

computed. This computation can be performed independently for each dimension,

giving σxi, σyi, σzi.

The equations for computing the MLE width for the x dimension are:

U0 =
∑
f

Ux =
∑
xf

Uxx =
∑

(x− Ux/U0)f

σ2
xi = U0/2Uxx

(2.4)

where x is the x coordinate of the data point and f is the data value at that point.

Other dimensions are computed similarly.

Since the residual data being fit can take on negative values, we must somehow

convert this into a positive-valued histogram for the MLE computation. We do this

by treating negative data values as zero when the RBF weight is positive, and the

opposite when the RBF weight is negative (except then also taking the absolute

value of the data values). The rationale for this is that we would like the RBF’s

region of influence to be restricted to an area in which the data has the same sign

as the RBF, since these are the areas in which the RBF will decrease the fitting
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error rather than increase it. Setting values of the histogram to zero outside this

area encourages probability distribution widths that do not produce many samples

outside this area, and thus result in RBFs that do not have much influence outside

this area.

A comparison between MLE width selection, iterative anisotropic width selec-

tion, and iterative isotropic width selection is given in table 2.1. The MLE method

is clearly comparable in accuracy and yet is significantly faster to compute.

2.3.4 Weight selection

Once the RBF center and widths have been chosen, we compute the weights

to minimize the sum of squared errors by forming the following system of linear

equations, similar to [24, 15, 9]:



1 φ1(x1) · · · φm(x1)

...
...

. . .
...

1 φ1(xn) · · · φm(xn)





w0

w1

...

wm


=



f(x1)

...

f(xn)


(2.5)

where m is the number of RBFs, n is the number of data cells, xj is the position of

the jth data point in the volume, f(xj) is the data value at that point, w0 is the

constant term, wi is the weight of the ith RBF, and φi is the ith RBF, with center

µi and widths σi.

Ifm = n, then this system can be solved exactly. Typically we will havem < n,

so in general we compute the best solution in the least-squares sense through the

use of singular-value decomposition.
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Data Width Fitting Number RMS

Data Set Size RBF Type Selection Time of RBFs Error

UNC Head 2563 Isotropic Iterative 4.12 m 520 K 1.93%

UNC Head 2563 Anisotropic Iterative 9.48 m 455 K 1.50%

UNC Head 2563 Anisotropic MLE 2.25 m 485 K 1.75%

VHF Torso 5123 Isotropic Iterative 29.9 m 3.48 M 1.68%

VHF Torso 5123 Anisotropic Iterative 58.2 m 2.95 M 1.23%

VHF Torso 5123 Anisotropic MLE 19.1 m 3.22 M 1.60%

LLNL R-M 10243 Isotropic Iterative 139 m 15.9 M 2.22%

LLNL R-M 10243 Anisotropic Iterative 315 m 15.4 M 1.64%

LLNL R-M 10243 Anisotropic MLE 85.3 m 16.0 M 1.85%

Table 2.1: Comparison of iterative fitting of isotropic RBFs, iterative fitting of

anisotropic RBFs, and single-step fitting of anisotropic RBFs. See section 2.3.7 for

a description of the data sets. The iterative fitting method can produce a somewhat

better fit, but would take 3-4 times longer.

2.3.5 Choice of the Basis Function

Gaussian RBFs (as in equation 3.1) have seen much use in prior work [23, 26,

27, 24, 36, 9], largely due to the smooth blending that occurs when these RBFs
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are brought in close proximity to each other. Since we truncate RBFs at octree

cell boundaries and perform explicit blending between the cells, we do not benefit

from this natural blending. However, there are still some desirable properties of

this basis function. First, it decays to zero rather than going off to infinity, so if

an octree cell is poorly fit by its RBF in some region, there is a limit to how much

damage the bad RBF can do to the final, blended result. Second, the derivatives

of Gaussian RBFs do not degenerate at higher orders, so these basis functions are

useful if higher-order derivative information needs to be computed. Still, most of our

work is not dependent on the particular choice of basis function, and investigation

into other possible basis functions may prove useful.

2.3.6 Binary Representation

Once the RBF representation has been computed, we store it in the following

format. The nodes of the octree from section 2.3.1 are stored in breadth-first order.

Each node contains exactly one RBF and has either eight or zero children.

We first store a 4-byte integer giving the byte offset to the start of this node’s

children. We then store the maximum and minimum data values contained within

the node as two 2-byte integers. The maximum and minimum values are packed into

2 bytes each by subtracting their minimum value, dividing by their range, and then

multiplying by the maximum size of a 2-byte integer. We next store the constant

term w0 and RBF weight w1, each as a 4-byte float. We then store the x, y, z

components of the RBF mean, each as a 1-byte integer. The packing computation
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takes into account the node’s size and position in the octree. For each component

we subtract the lowest value it could take on in that node, divide by the width of

the node, and then multiply by the maximum size of a 1-byte integer. Finally, we

store the σx, σy, σz width factors, each as a 4-byte float. This gives a total size of

31 bytes per node, which we pad to 32 bytes so that it fits evenly into two 16-byte

texture look-ups. This packing is illustrated in figure 2.4.

At the start of the file we store a header giving the number of levels in the

octree and the minimum values and ranges of the node maximums and minimums,

to allow the packing to be undone.

Byte Offset
to Children

Max/Min

w0

w1

Mean x,y,z

Padding

Width x,y,z

0 32

Figure 2.4: RBF and octree parameters packed into 32 bytes.

2.3.7 Fitting Results

We have tested our RBF fitting implementation on three different data sets.

The first (UNC Head) is a CT scan of a human head from the University of North

Carolina. This data set originally consisted of 113 slices, with each slice being a

2562 array of 16-bit integers (although only 12 bits of precision are actually used).

We linearly interpolated additional slices between the existing ones and duplicated

the final slice several times to produce a data set of size 2563. In our tests we used

this data set as well as a version downsampled to 1283.
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Data File Fitting Number RBF File RMS

Data Set Size Size Time of RBFs Size Error

UNC Head 1283 4 MB 0.28 m 91.4 K 2.8 MB 2.22%

UNC Head 2563 32 MB 1.90 m 485 K 15 MB 1.75%

VHF Torso 1283 4 MB 0.38 m 109 K 3.4 MB 2.14%

VHF Torso 2563 32 MB 2.10 m 520 K 16 MB 2.00%

VHF Torso 5123 256 MB 16.2 m 3.22 M 99 MB 1.60%

LLNL R-M 1283 2 MB 0.22 m 62.2 K 1.9 MB 5.24%

LLNL R-M 2563 16 MB 1.52 m 402 K 13 MB 4.37%

LLNL R-M 5123 128 MB 11.3 m 2.58 M 79 MB 3.31%

LLNL R-M 10243 1024 MB 85.3 m 16.0 M 489 MB 1.85%

Table 2.2: Fitting results for several different data sets using anositropic MLE-based

RBF width selection. For comparison, the VHF Torso and LLNL R-M data sets

have been downsampled to several different resolutions prior to fitting.

The second data set (VHF Torso) is a 5123 block of the torso area of the

Female CT data set from the Visible Human Project[38], in the same format as

the UNC Head data. In our tests we used both the full 5123 version and versions

downsampled to 2563 and 1283.
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The third data set (LLNL R-M) is time step 100 from the Richtmyer-Meshkov

Instability data set from LLNL[5], which consists of an array of 2048× 2048× 1920

8-bit integers. We padded this to 20483 and then downsampled it to several different

resolutions for testing.

We performed our fittings on a 64-bit Linux machine with dual Intel Xeon 3.0

GHz CPUs and 8 GB of RAM. As our fitting program is single threaded, it can only

make use of one CPU.

Fitting results are given in table 2.2. For most of the data sets our fitting

method achieves a reduction in file size of about 50% with an RMS error of about 1%-

2%. An exception to this was the lower resolutions of the LLNL R-M data set. We

suspect the reason for this is that these low resolution versions contain sharp, large-

magnitude discontinuities which are not amenable to fitting with smooth Gaussian

RBFs.

It is difficult to compare the efficiency of our fitting results with previous work

due to a lack of prior reported fitting times. One exception to this is Hong et al. [26]

who report fitting at the rate of 1300 grid points per minute. Although our results

are several orders of magnitude faster, this is not a fair comparison since they are

fitting unstructured data while we fit structured.

2.4 Rendering

We use ray-casting to render implicit RBF-encoded volumes. Data values at

points in the volume are computed directly from the RBF representation without

27



reconstructing the full data set in memory. Specifcally, the scalar value at a point

is computed by summing up the values of all RBFs that overlap that point. The

gradient vectors can be computed in a similar fashion, by summing the gradients of

all RBFs that overlap the sample point (this works because the gradient operator

distributes across summations). This sampling method can then be used to imple-

ment any rendering scheme that works by sampling data values and gradients at

various points, such as direct volume rendering or point-based isosurface rendering.

2.4.1 GPU Direct Volume Rendering

We have implemented a GPU direct volume rendering algorithm using NVIDIA’s

new CUDA GPU programming system. Our implementation supports piecewise-

linear transfer functions, gradient-based lighting, early ray termination based on ac-

cumulated opacity, and empty-space skipping based on checking whether the range

of values contained within an octree cell overlaps the range which, given the transfer

function, would produce any contribution to cumulative color or opacity. We also

perform view-dependent level-of-detail by adjusting the ray step size and maximum

octree depth based on the current distance along the ray.

Given an eye position and viewing direction, we construct ray origin and di-

rection vectors for a perspective projection on the GPU and store them in GPU

memory. We then execute a GPU kernel that traces each ray in parallel and writes

the final resulting colors to GPU memory.

The kernel first sets the initial sample point to the ray’s intersection with
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the data volume’s bounding cube, and then begins stepping along the ray. At each

sample point the kernel executes a space skipping routine that descends through the

octree cells containing that point. For each cell, it makes a single 16-byte texture

look-up and unpacks some parameters as described in section 2.3.6. It then checks

whether the cell’s range of data values would produce any contribution to the final

color or opacity. If not, the kernel computes the ray’s intersection with that octree

cell and moves the sample point just beyond the intersection point. This is repeated

until the skipping routine encounters a sample point at which it decends all the way

through the octree.

The kernel then evaluates the scalar field and its gradient at the current sample

point. This simply requires traversing the octree from the root to a leaf, evaluating

the value and gradient of the RBF stored in each cell at the location of the sample

point and summing up these values. We make use of the efficient location-code-

based octree traversal methods of Frisken and Perry[39]. For each octree cell the

kernel makes two 16-byte texture look-ups and unpacks some of the parameters

as described in section 2.3.6. Finally, we sample color and opacity values from

the transfer function using linear interpolation and apply diffuse, gradient-based

lighting.

2.4.2 View-Dependent Level of Detail

Our multi-resolution RBF hierarchy allows us to implement view-dependent

level-of-detail rendering by reducing the depth in the octree that we visit based
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Figure 2.5: Comparison of varying amounts of view-dependent Level of Detail re-

duction (see section 2.4.2) for the 10243 LLNL R-M data set. The top row shows

the renderings with the LOD reduction applied. The bottom row shows which LOD

is being used in which area of the volume by color coding— from front to back, the

colors represent levels of detail generated from 10, 9, 8, and 7 levels of the octree.

From left to right, the rendering times are 0.59s, 0.53s, 0.48s, and 0.44s.

on the distance along the ray. Every time a certain amount of distance has been

traversed, we reduce the maximum depth in the octree that we can visit by one

level. To avoid level-of-detail transition discontinuities one can store the sample

value computed at one level above the current level during the octree traversal, and

blend between this sample and the final sample based on the distance from the

previous level-of-detail transition. We experimented with this blending, but found

that in practice the level-of-detail transitions tended to occur far enough away from

the viewer that the discontinuities were not perceptible, even without blending. We

did not use level-of-detail blending for the images and results in this chapter.
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In addition to decreasing the octree depth based on the distance along the ray,

we also double the ray step size every time we decrease the maximum depth by one

level. We account for this during the incremental updating of cumulative color and

opacity by keeping track of the integer ratio of the current step size to the original

step size and iterating our incremental updates this many times at every step, using

the same sample color and opacity values.

Screen shots of renderings using various amounts of view-dependent level-of-

detail reduction and rendering rates are given in fig. 2.5.

2.4.3 Blending

Truncating the RBFs at octree cell boundaries can lead to visually noticeable

discontinuities. To resolve this, we take into account data in adjacent cells when

fitting each cell’s RBF (see section 2.3.1). Then, for each sample point, in addition

to computing a sample value from the RBFs in that point’s octree cells, we also

compute sample values at that position from the RBFs in adjacent octree cells.

We implement this by simply altering the location code of the sample point to the

location code of a point in each adjacent cell.

Since each cell’s overlap region extends halfway into each adjacent cell, at each

sample point there is the possibility of blending with up to three face-adjacent cells,

three edge-adjacent cells, and one corner-adjacent cell. The contribution of each

of the adjacent cells is linearly weighted based on the distance from the sample

point to the corresponding face, edge, or corner (see fig. 2.3 for an example on
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a quadtree). This blending scheme is similar to the one used in Ohtake et al.’s

multi-level partition of unity implicits[40].

Figure 2.6: Comparison of (left to right) no blending, four-sample blending, and

eight-sample blending (see section 2.4.3) for the 2563 UNC Head and 10243 LLNL

R-M data sets. Rendering times are given in table 2.3.

While completely smooth blending requires blending across faces, edges, and

corners, many of the discontinuities can be resolved by simply blending across faces.

This reduces the number of samples required per point from eight (1 local + 3 face

+ 3 edge + 1 corner) to four, reducing rendering time by about a factor of two.

A comparison between using no blending, four-sample blending, and eight-sample

blending is given in fig. 2.6 and table 2.3.
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Rendering

Data Set Blending Type Time

LLNL R-M One-Sample 0.37 s

LLNL R-M Four-Sample 0.72 s

LLNL R-M Eight-Sample 1.11 s

UNC Head One-Sample 0.10 s

UNC Head Four-Sample 0.21 s

UNC Head Eight-Sample 0.33 s

Table 2.3: Comparison of no blending, four-sample blending, and eight-sample

blending (see section 2.4.3) for the 2563 UNC Head data set and the 10243 LLNL

R-M data set. Screen shots are given in fig. 2.6

2.4.4 Rendering Results

Unless stated otherwise, all renderings were done with MLE-fitted data (see

section 2.3.3), four-sample blending (see section 2.4.3), and an image resolution of

5122. Renderings were performed using a beta version of NVIDIA’s CUDA drivers

on a GeForce 8800 GTX with 768 MB of RAM. Rendering times for several different

data sets and transfer functions are given in table 2.4, and screen shots are given in

fig. 2.7.

We found that the ray step size required to avoid artifacts was dependent on
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Figure 2.7: Rendering results using three different transfer functions for the 5123

VHF Torso and the 2563 UNC Head. Rendering times and other details are given

in table 2.4.

the size of the smallest octree nodes in the fitting, which is related to the amount

of high frequencies in the fitted data. We therefore needed to use smaller steps

for higher resolution data. For a given data set and transfer function, most of the

differences in rendering rate between original data resolutions are accounted for by

the difference in step size.

2.5 Future Work

We plan to use this work on RBF fitting in the context of fitting scalar fields

representing stem cells and nano fiber substrates. Our hope is that this will aid us

in intelligently selecting an isosurface of this data set for use in later steps of our
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proposed algorithm.

A great deal of work has been done in the area of RBF fitting, for example

in the machine-learning community. It seems likely that some of that work could

further benefit procedural encoding through RBFs. Possible improvements include

adding the ability to fit to a given error bound and removing the need to perform

explicit blending between octree cells. It also might prove beneficial to investigate

basis functions other than the Gaussian RBFs.

Another area of future work might be to investigate 4D fitting of time-varying

data sets. Since these data sets often contain a large amount of temporal coherence,

fitting multiple time steps simultaneously could result in a significant reduction in

the number of basis functions required to represent the data set.

Finally, there are likely many possible uses of the higher-level information pro-

vided by the RBF representation that have not yet been explored, perhaps involving

the use of high order derivatives that would have been too expensive to compute

when using traditional volume rendering techniques.
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Transfer Data Rendering

Data Set Function Size Step Size Time

UNC Head Skin 2563 384−1 0.45 s

UNC Head Skin/Bones 2563 384−1 0.67 s

UNC Head Bones 2563 384−1 0.21 s

VHF Torso Skin 2563 384−1 0.32 s

VHF Torso Skin/Bones 2563 384−1 1.09 s

VHF Torso Bones 2563 384−1 0.30 s

VHF Torso Skin 5123 768−1 0.54 s

VHF Torso Skin/Bones 5123 768−1 2.15 s

VHF Torso Bones 5123 768−1 0.53 s

LLNL R-M Isosurface 2563 384−1 0.26 s

LLNL R-M Isosurface 5123 768−1 0.40 s

LLNL R-M Isosurface 10243 1536−1 0.72 s

Table 2.4: Rendering results for several different transfer functions and data sets

of several different sizes. All renderings were done using four-sample blending (see

section 2.4.3). Step Size is the length of a step along the ray given that the data

volume is a unit cube. Images of several of these data sets are given in fig. 2.7.

36



Chapter 3

Parallel Stochastic Surface Measurement

3.1 Introduction

In this chapter we discuss a parallel, stochastic algorithm to compute the

surface area of a volumetric model of a molecule. The parallel nature of the algorithm

makes it suitable for implementation on the GPU and makes it a good candidate for

situations where high-throughput is required. The stochastic nature of the algorithm

makes it progressive, allowing it to return a rough answer almost immediately and

refine the answer over time to the desired level of accuracy.

We next describe the application of this algorithm to protein molecules mod-

elled by Gaussian Radial Basis Functions, but the algorithm is general enough that

it could be applied to any data representation that allows the computation of the

intersections of a line with the object being measured. An application of some of

the techniques used in this chapter to the problem of stem cell classification is given

in chapter 5. The material in this chapter has been previously published [3].

Computation of molecular surface area is important in the grand challenge

problems of molecular docking and protein folding as it allows one to incorporate

the effects of solvent in the potential energy calculations. Recent work on interac-

tive manipulation [41] and visualization of large-scale proteins [42] shows us how

interactive visualization offers a powerful front end for computational steering of
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calculations. In such settings, rapid calculation of protein conformations becomes

especially important and fast solvent-solute interactions are an essential first step.

In this chapter we address the mapping of molecular surface area calculations on

the emerging multi-core architectures for potential use in interleaved computation

and visualization of large bio-macromolecular complexes.

To serve this need for molecular surface area computation, a wide variety of

algorithms and programs have been developed— a few examples are the early works

by Connolly [43] [44], MSMS [45] by Sanner et al., GETAREA [46] by Fraczkiewicz

and Braun, LSMS [47] by Can et al., 3V [48] by Voss, and an adaptive grid-based

algorithm [49] included in TexMol [50] by Bajaj et al.. These algorithms have been

designed to work well on traditional, single-processor computer architectures using

a serial programming model.

However, computer architectures are now facing the first major disruptive

challenge in over two decades in the form of pervasive parallelism. For example,

AMD and Intel have already changed their product lines to include dual-core and

quad-core processors. According to the Intel road map, they plan to have hundreds

of cores on a single chip becoming a reality over the next decade. The Cell processor

has 8 stream processing cores in addition to a conventional scalar processor. GPUs

have been at the forefront of the multi-core revolution in that they are already

shipping with hundreds of cores. NVIDIA’s G80 has 128 multiprocessors. Intel has

recently disclosed their plans for a GPU consisting of 24-32 cores each involving a

16-wide SIMD vector processor with over 2 TFLOPs of performance. In addition,

GPUs and CPUs are being merged thereby blurring the distinction between cores
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that specialize for graphics and cores that are more general-purpose. Both AMD

and Intel are working on fused CPU-GPU cores; this will enable tight coupling

between applications and graphics. Because of the large computer games market,

these highly-parallel GPUs are being mass produced and are available for commodity

prices. While the use of this hardware for scientific computation originally required

some unpleasant hacks, recent development environments such as NVIDIA’s CUDA

(Compute Unified Device Architecture) [51] and ATI’s CTM (Close To Metal) [52]

make the use of this hardware much more elegant. Bringing GPU computing further

into the mainstream is NVIDIA’s Tesla product line, a GPU designed specifically

for general-purpose computation.

Unfortunately, algorithms and programs designed for a single-processor archi-

tecture are often not able to directly take advantage of these new parallel processors.

Algorithms designed for serial computation can sometimes be parallelized, but this

can be a non-trivial task.

To take advantage of this new trend in high-performance computer architec-

ture, we present a parallel algorithm, implemented for both CPU and GPU, to

efficiently compute molecular surface area. In addition to its parallel nature, the

algorithm is also progressive, providing a rough estimate of surface area very quickly

and refining the estimate over time until the desired accuracy is reached. Finally,

the algorithm generates points on the molecular surface, which can be used to create

point-based renderings of the molecule.
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3.2 Related Work

3.2.1 Molecular Surface Area Computation

Molecular surface areas have been computed through several different methods.

The program MSMS [45] by Sanner constructs the Solvent Accessible Surface (SAS)

[53] and Solvent Excluded Surface (SES) [54] by considering the intersections of

spheres representing Van der Waals radii of atoms of the molecule, and using this

information to compute a set of patches which make up the surface. The reduced

surfaces it computes correspond to alpha shapes [55]. The program GETAREA

[46] by Fraczkiewicz and Braun also calculates surface area by computing surface

patches based on sphere intersections, making use of some additional ideas from

computational geometry. A different type of approach was used by Wodak and

Janin[56], who give a fast method to estimate molecular surface area using only

distances between pairs of atoms.

Additionally, any program that computes triangulations of molecular surfaces,

such as SURF [57] by Varshney et al., can be easily converted to give an estimate of

molecular surface area by adding up the areas of all the generated triangles. SURF

is designed to take advantage of data-parallelism at the granularity of individual

atoms, but cannot scale to take advantage of an unlimited degree of parallelism

as our algorithm can. The SURF algorithm is also restricted to molecules defined

as a collection of discrete atoms, while our algorithm can be applied to molecular

surfaces defined in virtually any manner.

More recently, the program LSMS [47] by Can et al. discretizes atomic Van der
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Waals spheres onto a regular grid, and then uses the level-set method to propagate

fronts to compute the SAS and SES; it can also compute the Solvent Excluded

Volume (SEV). The program 3V [48] by Voss also discretizes the molecule onto a

regular grid and computes area and volume, but does not use the efficient level-set

algorithm of LSMS.

Another recent algorithm by Bajaj and Siddavanahalli [49] can compute sev-

eral different molecular surfaces. Their work models atoms using signed distance

fields, which are similar to the radial basis functions used in our work. However,

our algorithms are very different— Bajaj and Siddavanahalli’s algorithm builds up

molecular surfaces incrementally on a grid by adding atoms one at a time, while our

algorithm measures surface area using parallel, stochastic sampling.

3.2.2 General Purpose GPU Computing

Although Graphics Processing Units (GPUs) were originally specialized hard-

ware suitable only for 3D graphics computations, modern GPUs have evolved into

general-purpose high-performance parallel processors. NVIDIA’s G80 product line,

for example, features 128 programmable processor cores and advertises a maximum

performance of 300 gigaflops. These processors are programmed in an SPMD (Single

Program, Multiple Datastream) fashion; all processors execute the same program,

but are allowed to take different branches at conditional statements at the cost of

a performance penalty. The high peak performance of GPUs relative to CPUs is

largely due to the fact that GPUs devote a larger proportion of their transistors
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to arithmetic computation instead of tasks such as memory caching. Because of

this architecture, GPUs perform best with algorithms that do a large amount of

computation relative to their number of memory accesses; this type of algorithm is

referred to as having high arithmetic intensity.

Modern GPUs have large amounts of on-card memory; first generation Tesla

cards, for example, will have 1.5 GB of RAM. Historically, each processor on a GPU

was only able to write its output to a single location in memory, corresponding to

the pixel whose value that processor was computing. Modern GPUs have overcome

this limitation and allow full read and write access to any location in memory from

any processor. Additionally, the processors have access to a small pool of very fast

shared memory which is suitable for communication between processors within the

inner loop of an algorithm.

In the past, writing a general-purpose program for a GPU meant casting the

algorithm in terms of graphics operations, such as texture look-ups and RGB color

vector manipulations. With the recent advent of development environments such

as NVIDIA’s CUDA and ATI’s CTM, however, general-purpose algorithms can be

written in much more natural terms. CUDA, for example, is basically equivalent to

the C language with a few extensions to facilitate the launching of parallel compu-

tation kernels.

Even though GPU algorithms can now be written in development environ-

ments similar to those used for CPU algorithms, developing an algorithm for a

highly parallel architecture such as a GPU requires a different approach than de-

veloping for current CPUs. For an algorithm to run efficiently on a GPU, it must
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be divided into a large number (at least on the order of hundreds) of independent

tasks which can be executed simultaneously. We note that our algorithm is ideal

for this, since it is based on taking a large number of independent random samples.

Care must also be taken to reduce main memory access as much as possible, and to

take advantage of the available fast shared memory.

3.3 Gaussian Molecular Modelling

We calculate the surface area of a protein which is represented as the level set

of a sum of Gaussian Radial Basis Functions (RBFs), with one RBF being placed

at the location of each atom’s center. This implicit molecular surface representation

has been used as far back as Blinn’s 1982 work [58], as well as in many more recent

works such as Grant and Pickup[59], Ritchie[60], and Bajaj and Siddavanahalli [49].

Symbolically, each Gaussian RBF φ(x) can be represented as

φi(x) = wi e
−‖x−µi

σi
‖2

(3.1)

where wi is the weight of the ith RBF, µi is the location of the ith RBF’s center,

and σi controls the width of the ith RBF.

The program reads the same XYZR file format used by MSMS [45], which

can be generated from PDB [61] files by the pdb to xyzr utility that comes with

MSMS. Note that multiple atoms may be combined into a single entry in the PDB

file (merging with hydrogens, for example), in which case the number of RBFs will

be different than the number of atoms in the protein.

For the results reported in this work, we set the µi to the RBF centers in
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the XYZR file. RBF weights and widths are set based on the constants given

in Ritchie[60] and Grant and Pickup[59], which are designed to model the Van

der Waals surface of a molecule. Specifically, we set wi = 2.70 for all RBFs and

σi = ri/
√

2.3442, where ri is the RBF radius from the XYZR file. We form the

overall scalar field by summing together all RBFs, and treat the surface as being at

an isovalue of 0.259.

To accelerate sampling of the scalar field, we insert the RBFs into a bucketing

spatial data structure. We partition space into a regular grid, and store a pointer

to a list of the RBFs that overlap each grid cell at the corresponding element of a

three-dimensional array. The Gaussian RBFs are truncated to zero at a radius of

3σ.

3.4 Stochastic Area Measurement

To measure molecular surface area we make use of the Cauchy-Crofton formula

(equation 3.2) from integral geometry, which relates the area of a surface to the

number of intersections with the surface of a set of lines. This formula can be

written as ∫
m dL = πs (3.2)

where s is the surface area, m represents the number of intersections along a given

line, and the integration is taken over the space of all possible lines.

A numeric approximation to this integral can be made by taking a random

sample of lines and counting their intersections with the surface. Approximating the
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integral in this manner gives n1

N
≈ cπs1, where n1 is the count of intersections, N is

the number of sampled lines, s1 is the surface area, and c is an unknown constant of

proportionality. To get rid of c, we can intersect the same set of lines with a second

surface, giving n2

N
≈ cπs2. Combining these equations gives

s1 ≈
n1

n2

s2 (3.3)

If the area of the second surface s2 is known, we can then calculate the molecular

surface area s1. This derivation is given in more detail in Li et al.[62], and further

applications are discussed in Liu et al.[63].

3.4.1 Sampling the Space of Lines

Several methods for generating lines from randomly chosen parameters are

given in Li et al.[62]. We use a method called the Chord Model, which consists of

picking two random points from a uniform distribution of points on the surface of

a sphere and then taking the line that passes through them. Uniformly distributed

points (x, y, z) on a sphere can be generated from pairs (u, θ) of uniformly distributed

random numbers by using the formula

(x, y, z) = ((1− u2)
1
2 cos θ, (1− u2)

1
2 sin θ, u) (3.4)

where u is in [−1, 1] and θ is in [0, 2π). Further discussion of generating uniformly

distributed points on spheres is given on the Mathworld web site [64].

To generate random lines with this method, we must generate uniformly dis-

tributed random numbers. This would typically be done using a pseudo-random

45



sequence; however, better results can be obtained by using a quasi-random sequence

(also called low-discrepancy sequences). These sequences have less clustering of val-

ues than pseudo-random sequences, which results in a more representative sampling

of lines and actually provides an asymptotically lower error bound for the numeric

integration [62].

In our implementation we used the Niederreiter quasi-random sequence [1],

which can be found in the GNU Scientific Library [65]. We generate 4D quasi-

random points (a, b, c, d), and use the first and second coordinate pairs (a, b) and

(c, d) to generate the (u1, θ1) and (u2, θ2) for equation 5.1.

Comparisons between 2D points generated from a pseudo-random, a quasi-

random, and a regular grid distribution are given in figure 3.1. Note that the

pseudo-random distribution has more clusters and bare regions than the quasi-

random distribution. The regular grid distribution also avoids clustering, but is

so regular that its use could cause aliasing artifacts. Further analysis of sampling

points using quasi-random distributions can be found in Rovira et al. [66].

Figure 3.1: 2D distributions of points generated on a regular grid (left), from the

Niederreiter quasi-random sequence [1] (middle), and from a pseudo-random se-

quence (right).
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3.4.2 Intersection Counting

For our line intersection algorithm, we start by enclosing the RBFs represent-

ing the atoms in the tightest bounding sphere centered at the center of the molecule.

One optimization could be to instead use the tightest bounding sphere, computed

by a method such as in Gartner [67].

We then generate a sequence of quasi-random lines using pairs of points on

the surface of the bounding sphere as described above. For each line, we step in

uniform increments from one point to the other, evaluating the scalar field at each

step to determine whether the current point lies in the interior or exterior of the

surface. The optimal step size is a function of the typical atomic radii and packing

densities. In this work we have used a step size of 0.25 Angstroms, which we have

experimentally determined to be a reasonable value.

To evaluate the scalar field at a point, we iterate over all RBFs that overlap

that point’s bucket, adding their values to a running total until either all RBFs have

been processed or the current total exceeds the surface’s isovalue. If a point is found

to be in the interior of the surface and the previous point was in the exterior (or

vice versa), a running count of surface intersections is incremented.

Once the number of intersections of the lines with the isosurface has been

computed, equation 3.3 can be used to estimate the surface area of the molecule (the

area of the bounding sphere can be easily computed analytically, and the number

of intersections with the bounding sphere is simply two times the number of lines

intersected). The approximation improves as more lines are intersected.
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3.5 Parallelization for GPU

Because the sampling along each line is completely independent from all other

lines, this algorithm is a natural fit for a highly parallel architecture such as a GPU.

In fact, our algorithm is able to linearly scale to take advantage of an unlimited

amount of parallelism, since each additional available processor can be assigned to

compute the intersections of another random line, increasing the speed at which the

result converges.

We have implemented a version of the algorithm in NVIDIA’s CUDA lan-

guage that runs on a GPU, and compared its performance to the CPU version. In

our GPU implementation the 4D quasi-random points that define the sample lines

are generated on the CPU and then sent to GPU memory. After the per-line in-

tersection counts are computed in parallel on the GPU, this data is sent back to

CPU memory where the per-line counts are aggregated into an overall total. This

process could potentially be optimized by computing the quasi-random points and

performing the summation of the per-line counts on the GPU, which would not only

take further advantage of the GPU’s parallel processing capabilities but also avoid

time-consuming data transfers to and from the GPU.

3.6 Test Results

Areas can be calculated for several different types of molecular surfaces. The

Van der Waals surface is formed by a union of spheres located at the centers of

the molecule’s atoms, with radii equal to the atoms’ Van der Waals radii. The
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Solvent Accessible Surface (SAS) [53] is defined as the surface traced by the center

of a probe sphere (representing a solvent molecule) as it is rolled along the Van der

Waals surface. Finally, the Solvent Excluded Surface (SES) [54] is the boundary

of the area that no part of such a probe sphere may penetrate. Programs can also

calculate either the area of the outermost shell of the surface only, or include the

area of any interior cavities as well.

For our tests, we set the parameters of our Gaussian RBF implicit surface rep-

resentation to approximate the SES formed with a probe radius of 1.4 Angstroms.

Our algorithm calculates the surface area of the outer surface as well as the inte-

rior cavities. We compare our results against several other programs that compute

molecular surface area— MSMS [45], LSMS [47], and SURF [57].

Figure 3.2 illustrates how our algorithm converges on an estimate of the SES

for the several proteins as increasingly more lines are intersected with the surface. In

the remainder of the tests we set the number of intersected lines to 20,000, which we

have found gives quick estimates with reasonable accuracy. The number of sample

lines could be set higher or lower based on the speed and accuracy requirements of

a particular application.

To evaluate the accuracy of our surface area computations, we would like to

have some ground truth to compare our results against. Both MSMS and SURF

compute the SES analytically, and their reported surface areas usually agree very

closely. Therefore, we take the true SES area to be the average of the SES areas

reported by MSMS and SURF, and measure algorithm accuracy as a percent dif-

ference from this average value. The differences between the area we report and
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Figure 3.2: Surface area approximation errors for several proteins using various

numbers of intersected lines. Vertical axis is the percent error from the final value

(the area returned with 106 sample lines). Note that all proteins have converged to

near their final area by 20,000 lines.
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this average area come from two main sources— our algorithm not having yet fully

converged on the area of our surface, and the fact that the surface whose area we

are converging on is not quite the same as the SES surface that we are comparing

ourselves against.

As can be seen from table 3.6, our differences are comparable to the differences

of LSMS when using a fine 2563 grid, while our GPU running time is significantly

faster than LSMS using a 2563 grid, and is often even faster than LSMS using a

coarse 1283 grid. We observe that our running time depends mostly on the molecule

size, while for LSMS the running time depends mostly on the grid resolution. Our

GPU implementation is also faster than MSMS and SURF, especially for larger

molecules. A graph of running times of the various algorithms is given in figure 3.3.

Note that for similar error levels our GPU algorithm is 3x – 10x faster than existing

CPU algorithms.

3.7 Discussion and Future Work

Because our algorithm generates points on the molecular surface, it can easily

be used to create point-based renderings [68] of the molecule. Surface normals

for lighting calculations can also be easily generated by analytically computing the

gradient of the implicit function at each surface point. Because of their light weight

and simplicity, points are a good primitive for the representation of large models.

Some point-based molecular renderings generated from our implementation using

different numbers of points are shown in figure 3.4.
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Figure 3.3: Surface area computation times and percent differences for proteins of

different sizes using several different algorithms. Data is from table 3.6. Protein size

is given in RBFs, which is equal to the number of atoms listed in the PDB file. For

MSMS and SURF, data is not available for the larger proteins since these programs

were unable to compute the area for proteins of that size. Percent differences are

given as absolute magnitudes.

One nice feature of our algorithm that we have not explored is its progressive

nature. As the algorithm runs, a rough approximation of the surface area is returned

almost immediately, while increasingly accurate approximations are obtained as

more and more line intersections are computed. This feature could be used to
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Protein 1GCQ 2PTN 1PPE 8TLN 2CHA 1HIA 1N2C 1PMA 1FFK 1HTO

Size 1,678 1,712 1,991 2,621 3,542 4,584 24,237 56,392 64,268 90,672

Our Area (Å2) 8,806.06 8,258.64 8,805.47 11,256.8 16,761.7 21,157.2 79,010.5 192,382 461,631 335,624

Area Diff 0.95 % 3.39 % 0.48 % 1.12 % 9.78 % 3.51 % 17.92 % — — —

CPU Time (s) 1.63 3.13 2.53 2.23 2.52 2.90 2.58 5.11 7.56 5.42

GPU Time (s) 0.24 0.48 0.38 0.33 0.38 0.52 0.60 2.22 3.49 1.71

LSMS 1283 Area (Å2) 8,225.56 8,437.62 9,155.30 10,926.5 16,919.5 19,748.0 74,059.3 184,464 422,295 301,674

Area Diff 5.71 % 5.63 % 4.47 % 4.02 % 8.93 % 9.94 % 23.06 % — — —

Time (s) 0.76 0.93 0.98 0.87 0.85 0.88 0.75 0.89 1.00 1.11

LSMS 2563 Area (Å2) 8,272.37 8,466.53 9,148.43 11,202.1 18,171.1 21,078.2 84,250.1 203,324 472,889 352,981

Area Diff 5.17 % 5.99 % 4.39 % 1.60 % 2.20 % 3.87 % 12.48 % — — —

Time (s) 6.66 8.01 8.20 6.98 6.94 6.90 5.72 6.87 6.38 6.61

MSMS Area (Å2) 8,724.65 8,039.77 8,807.21 11,364.4 18,538.6 21,944.8 97,129.4 — — —

Time (s) 0.83 0.81 0.99 1.36 1.65 2.40 14.51 — — —

SURF Area (Å2) 8,722.10 7,935.88 8,719.81 11,404.0 18,619.9 21,909.9 95,388.7 — — —

Time (s) 0.66 0.64 0.80 1.03 1.45 1.83 10.55 — — —

Table 3.1: Comparison of the surface areas and running times of our method, LSMS

with a 1283 grid, LSMS with a 2563 grid, MSMS, and SURF. Protein size is given

in RBFs, which is equal to the number of atoms listed in the PDB file. For our

method, we used 20,000 sample lines. All methods computed the SES area (or an

approximation to it) of all disconnected surface components using a probe sphere

radius of 1.4 Å. Tests were performed on a machine with a GeForce 8800 GTX GPU,

an Intel Xeon 3.0 GHz CPU, and 4 GB of RAM. A ‘—’ means that MSMS or SURF

was unable to compute a surface for this molecule.

tune the speed versus accuracy of the algorithm for different applications, or to

provide a rough estimate to decide whether or not more exact calculations are worth

performing.

One possible area of future work might be to extend the program to compute

other geometric properties of molecules, such as volume or mean curvature, as dis-
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Figure 3.4: Point-based renderings of the protein with Protein Data Bank ID 1HTO

using 104 points (left), 105 points (middle), and 106 points (right).

cussed in Schröder [69]. Molecular volume computation in particular would likely

be an easy and useful extension.

One final issue worth mentioning is the treatment of hollow cavities within

the interior of a molecule. Depending on the application, it may or may not be

desirable to include interior cavity surface area in the overall surface area reported.

A discussion of these interior cavities can be found in Liang et al. [70]. Our algorithm

includes the surface area of these cavities in the final figures reported, as does SURF.

MSMS and LSMS give an option to either include these areas or not. All surface

areas and running times reported in this work are for the outer surface plus all

cavities. If only the outer surface area is required, MSMS can compute this several

times faster than it can compute the area of the outer surface plus all cavities.
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Chapter 4

Confluent Visualization

In this chapter we discuss the visualization of the interaction between a pair of

data sets. For example, the phenomenon of stem cell differentiation being induced

by surface geometry involves a data set of the cell itself and a data set of the surface

on which it is resting. Biologists may wish to visualize the area of contact between

the cell and the surface to learn about how the surface induces differentiation. The

idea of choosing an area of a data set to visualize based on another data set is called

Confluent Visualization.

In the following material in this chapter we discuss Confluent Visualization in

the context of gyrokinetic plasma turbulence simulations. However, the idea should

be applicable to any pair of volumetric data sets whose interaction needs to be

visualized. The material in this chapter was previously published [4].

Gyrokinetic simulations of tokamak turbulence are widely used to interpret

experimental data. The level of realism in modern gyrokinetic codes is very high – so

high, in fact, that it is nearly as difficult to understand and interpret the simulation

results as it is to work directly with experimental data. One of the main problems

is that the datasets, such as those shown here, are typically of dimension greater

than three. Also, many gyrokinetic simulations take place in a flux-tube following

coordinates whose geometry is fairly non-trivial and whose size with respect to

55



the enveloping tokamak device is small. Moreover, the very nature of turbulence

implies the existence of structures at various scales, which turns coherent graphical

representation of data into a challenging problem.

A gyrokinetic simulation describes the time evolution of the five-dimensional

probability distribution function(s) for a few plasma species (typically 1-5). Three

of these dimensions are spatial and the other two correspond to velocity space vari-

ables. Visualizing such a dataset directly is clearly impossible. A traditional diag-

nostic quantity is the electric potential φ whose fluctuations capture the patterns of

turbulence present in the system.

One of the most compelling techniques for visualizing three dimensional scalar

fields is direct volume rendering. It gives a global qualitative view of the entire

dataset, providing a fast insight into spatial patterns and correlations. However,

direct volume rendering works best for scalar fields with high degree of regularity,

such that occlusion and cluttering can be eliminated by filtering easily identifiable

value ranges. This is not the case with the electric potential, or other turbulent

scalar fields that arise in this context, which exhibit fluctuations on a variety of

scales.

To deal with this problem we focus on derived diagnostic quantities, which

are both physically meaningful and suitable for direct volume rendering. One such

diagnostic is the heat flux, which is calculated as a velocity space integral:

Q =
∫
fE

∂〈φ〉
∂y

dv

where f is the gyrokinetic probability distribution function, E is energy, and
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〈φ〉 denotes the gyroaveraged electric potential. The values of Q are used to identify

regions where the heat flux satisfies a certain condition, for instance, specified by a

given range. Within each region of interest we map the values of a turbulent field,

such as the electric potential. Thus information from two fields with distinct spatial

characteristics is convolved into a single coherent visual representation.

The data presented here are taken from an electrostatic, gyrokinetic simulation

of the Cyclone [71] benchmark case for ion temperature gradient-driven turbulence

in a tokamak. The spatial simulation domain is (nx, ny, nz) = (96, 96, 64), where

nx and ny are the number of grid points in the plane locally perpendicular to the

background magnetic field, and nz is the number of grid points along the magnetic

field. There are 768 velocity-space grid points at every spatial grid, for a total

meshpoint count of about half a billion. As is standard in the Cyclone benchmark,

there is one gyrokinetic ion species, and the electrons are taken to have a Boltzmann

response. The code used to generate this data is the GS2 code [72], [73].

Figure 4.1: Computational Domain: Visible Structures Indicate Zones of High Heat

Flux. Color Represents Values of the Electric Potential.
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Figure 4.1 shows ”confluent” volumetric rendering (CVR) of the heat flux and

the electric potential in the computational domain. Heat flux values are used in

the opacity transfer function, in effect defining a set of visible spatial structures

inside the volume. Electric potential values are used in the color transfer function,

which controls how color is applied to visible pixels. In our setup we are looking at

a collection of island regions where heat flux is higher than a certain cutoff value.

Figure 4.2 illustrates the geometry of the flux tube domain and features a blown-up

region that corresponds to a small ball around the center of the computational do-

main. Note that for aesthetics reasons the partial toroidal shell shown as a reference

here is taken from a different tokamak configuration.

Figure 4.2: Flux Tube Domain in a Toroidal Device. The Circular Region is an

Enlargement of an Area of the Ribbon Shaped Domain to Show Detail.
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Shown here are data derived from the late linear phase of the simulation, when

the linearly unstable modes are at high amplitude and are strongly interacting, but

before the nonlinearly generated flows and eddies have reached high amplitude. The

amount of heat being transported at this instance is quite large (comparable to the

steady-state, turbulent value), despite the small spatial filling factor. A conventional

diagnostic would show ”streamers” at this point in time. We are using the new CVR

diagnostic to develop intuition about the relationship between the E×B flows (along

contours of constant potential) and the radial heat flux.
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Chapter 5

Parallel Stochastic Classification of Stem Cells

5.1 Introduction

In this chapter we discuss a parallel, stochastic algorithm that can classify

volumetric models of stem cells as having been grown on a surface that induces

cell differentiation or on a surface that does not induce cell differentiation. This

algorithm builds on our algorithm discussed in Chapter 3 for molecular surface

area measurement. Like the surface area measurement algorithm, this algorithm is

suitable for implementation on a GPU and is progressive, allowing it to return a

rough classification almost immediately and refine the accuracy of the classification

over time.

In the following material in this chapter we discuss the application of this

algorithm to the classification of stem cells, but the algorithm could be applied to

the classification of any volumetric data sets that can be characterized by the lengths

of the intersections of randomly generated lines with the data set. The material in

this chapter is under preparation for publication [74].

Tissue engineering has been defined as an “interdisciplinary field that ap-

plies the principles of engineering and the life sciences toward the development of

biological substitutes that restore, maintain, or improve tissue or whole organ func-

tion” [75]. Recent advances include many tissues and organs, including heart[76],
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bladder[77], and urethra[78].

The two critical parts of a tissue-engineered implant are stem cells and 3D tis-

sue scaffolds [79]. Stem cells have the ability to differentiate down multiple lineages

for regeneration of different organs and tissues. Scaffolds provide a 3D template for

stem cells to adhere and differentiate.

Traditionally, control of cell function has been considered in terms of soluble

factors, biochemical signaling and paracrine effects. However, recent work shows

that the physical properties of the cellular microenvironment can also influence cell

function. In particular, the chemistry [80, 81, 82], mechanics [83, 84], and structure

[85, 86, 87] of the cell niche are important. Thus, a primary goal in regenerative

medicine is to engineer scaffolds to provide a 3D microenvironment that enhances

tissue regeneration.

Previously, we demonstrated that 3D PCL (poly(ε-caprolactone)) nanofiber

scaffolds drive hBMSCs (human Bone Marrow Stromal Cells) into an elongated and

highly-branched morphology that induces them to differentiate down an osteogenic

lineage [86]. hBMSCs are isolated from bone marrow and contain adult skeletal stem

cells that can differentiate into bone, fat and cartilage [88]. When hBMSCs were

cultured on 2D flat PCL films (spun-coat), they assumed a well-spread, polygonal

morphology, that supported cell proliferation but did not induce osteogenic differen-

tiation. These results indicated that the structure of the scaffold can be designed to

drive cells into morphologies that direct their differentiation down a desired lineage.

Images of the 2D and 3D surfaces and cells are given in figure 5.1.

The use of scaffold structure to control stem cell function is attractive because
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Figure 5.1: Left to right: SEM (Scanning Electron Micrograph) of 2D PCL spun-

coat film, an hBMSC cultured on a 2D PCL spun-coat film, SEM of 3D PCL

nanofiber scaffold, and an hBMSC cultured in a 3D PCL nanofiber scaffold. hBMSC

images are reconstructed from 3D confocal fluorescent scans of fluorescently stained

actin.

scaffold structure is stable, has a low regulatory burden and is relatively easy and

inexpensive to control [89]. Covalent functionalization of scaffold devices with bio-

chemically active molecules is difficult, hard to characterize and expensive. Loading

scaffolds with growth factors to guide regeneration is challenging because proteins

are hard to manufacture and highly unstable. In addition, including biomolecules

or growth factors in a device increases the regulatory costs.

Cell shape and function are known to be intricately linked [90, 91], and recent

work has shown that this premise holds true for hBMSCs [86, 87, 92, 93]. Cell

shape has the added value of being an early predictor of cell fate. Biochemical

assays require weeks or months of culture for differentiation markers to become

detectable, whereas cells attain a stable morphology within a day of culture that

can be an indicator for their future behavior [93]. Though previous methods for

assessing cell shape have focused on 2D cell shape data [94, 93], tissue engineering

aims to use 3D scaffolds to control cell shape function. Culture of cells in complex
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3D microenvironments is likely to require 3D cell shape analysis in order to establish

meaningful relationships. Rapid throughput is also desirable due to the large number

of parameters that must be tested to identify scaffolds that promote the desired

biologic response [95, 96].

In addition to the tissue engineering field, rapid 3D methods for measuring cell

shape are likely to be needed by the pharmaceutical industry as it moves towards

3D scaffold systems for drug screening [97, 98]. 3D in vitro culture models are

less expensive than animal models and may be more predictive of human clinical

outcomes. Drug screens typically involve thousands of compounds and cell shape

analysis is a parameter frequently used to determine toxicity response. Thus, high-

content 3D methods for cell shape classification are required if pharma is to use 3D

scaffold technologies to improve the predictive nature of in vitro testing [99, 100].

Herein, we have developed a machine learning algorithm that can rapidly identify

differentiating stem cells based on their 3D shape.

The remainder of this chapter is organized as follows. In section 5.2 we give

an overview of the algorithm and describe some parameters that need to be set. In

section 5.3 we describe how we characterize a cell by intersecting it with random

lines. In section 5.4 we describe several ways in which our algorithm can be paral-

lelized for implementation on a GPU (Graphics Processing Unit). In section 5.5 we

describe how we use machine learning to classify the cells. We present timing and

accuracy results in section 5.6. Finally, we provide suggestions for future work in

section 5.7 and give our conclusions in section 5.8.
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5.2 Technical Approach

We have cultured hBMSCs (human Bone Marrow Stromal Cells) on two types

of substrates: a spun-coat substrate with a flat, 2D surface, and a nanofiber sub-

strate with a fibrous, 3D surface. hBMSCs cultured on the nanofiber substrate

underwent osteogenic differentiation and adopted a more spikey, branched appear-

ance, while hBMSCs cultured on the spun-coat substrate did not differentiate and

retained a smoother appearance. Our goal is to measure three-dimensional geomet-

ric properties of the hBMSCs that can distinguish between hBMSCs cultured on

the nanofiber substrate and hBMSCs cultured on the spun-coat substrate. Many

methods for classifying three-dimensional objects can be found in the literature. For

a survey of these methods, see Cardone et al. [101].

Our general work-flow is as follows. First, confocal microscopy was used to

collect 3D image data sets of individual cells. Next we use an algorithm to intersect

each cell with many lines in 3D and record the lengths of each of the partial line

segments that run through the interior of the cell. From this line length data, we

generate a line length histogram describing each cell. Finally, we use the histograms

to train a machine learning technique which is used to classify new cells as coming

from a 3D, fibrous nanofiber scaffold or a 2D, flat spun-coat film. An overview of

this pipeline is given in figure 5.2.

The 3D cell images that were analyzed in the current work were collected pre-

viously and this previous work has been described in detail [86]. Briefly, primary

human bone marrow stromal cells (hBMSCs) isolated from iliac crest of healthy
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Figure 5.2: Overview of our cell data processing pipeline.

donors were cultured for 1 day on PCL (poly(ε-caprolactone)) spun-coat films or

PCL nanofiber scaffolds. 2D PCL spun-coat films were made by spin-coating. 3D

PCL nanofibers were made by electrospinning. Nanofiber diameter was measured

by imaging with scanning electron microscopy (mean nanofiber diameter = 910 nm,

S.D. = 526 nm, n = 100). 2D spun-coat films and 3D nanofiber scaffolds were made

from the same material, PCL, so that the effects of scaffold chemistry could be dis-

cerned from effects of scaffold structure. For 3D imaging, cellular actin was stained

with Alexa-Fluor-546-phalloidin and imaged by confocal fluorescence microscopy.

Z-stacks of images of individual hBMSCs on spun-coat films for nanofiber scaffolds

were collected using a 1 µm step size.

Previous analysis of hBMSC shape demonstrated that hBMSCs on 3D nanofiber

scaffolds have a more branched structure than hBMSCs on the 2D spun-coat films

[86]. We want to leverage this difference to distinguish between hBMSCs that were

cultured on the different substrates. To accomplish this, we first intersect the cells

with a set of randomly generated lines. We measure the lengths of the portions of
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the lines that passed through the cell and put these lengths into histograms. Our

hypothesis was that the cells on the nanofiber substrates would have more short

segments since these cells had more long, thin branches. Analysis of the average

segment length for the two cell types supports this hypothesis.

A question that arises is how to choose the random lines that are used to

intersect with the cells. We want a method of line selection whose results do not

depend on microscope orientation. We have tried two different methods of line

selection. The first is to simply select pairs of points on a bounding sphere around

the cell and generate lines that pass through both of the points. The results of

this method should converge to the same result regardless of the cell’s orientation.

The second method is to select pairs of points on the curved surface of a cylinder

rather than the surface of a sphere. This method takes advantage of the particular

structure of our data set.

To perform our algorithm we need to classify each voxel in the three-dimensional

data set as either being inside or outside the cell. Each voxel contains an integer

that represents how much light was received from that location by the microscope.

The fluorescently stained cell gives off a large amount of light from locations that

are inside the cell, while only some small amount of noise is received from locations

outside the cell. We classify the voxels by selecting a threshold value and labeling

voxels with values below this threshold as being outside the cell, and voxels with

values above this threshold as being inside. If the threshold value is chosen too low

then noise in the data set may be labeled as part of the cell, while if the threshold

value is chosen too high then significant geometric features of the cell may be eroded.

66



We therefore expect that, as the threshold value is increased, the performance of

the algorithm will improve up to a certain point and then begin to worsen. The

selection of the threshold value can be considered part of the training phase of the

algorithm and the value can be chosen based on the training data set. For this work

the threshold value was chosen by testing a series of different values and selecting

the one that produces the greatest percentage of correct classification. Based on the

data presented in table 5.1, we selected a threshold value of 3.0.

Threshold 0.5 1.0 2.0 3.0 4.0 5.0 6.0

% Correct 74.2 75.6 80.5 82.9 73.2 78.0 56.1

Table 5.1: Percent correct classification with various threshold values. The voxels

in the data set contained values in the range [0, 15]. Parameters used were 106 lines

intersected, minimum gap length of 8.0, linear SVM, ten-fold cross validation.

In addition to choosing a threshold value we clean the data set by identi-

fying connected components and throwing out all components except the largest.

This helps remove noise from the data set and also removes portions of other cells

that might have been captured in the images. We fill in any holes (empty regions

completely surrounded by cell voxels) we find in the component.

After these steps there can still be some noise in the data set that causes

voxels that should be inside the cell to be labeled as empty space. In our ray

shooting algorithm we correct this by ignoring gaps in the line segments that are

smaller than a certain length, instead counting it as one continuous segment. If this

minimum gap length is set too low then it will allow gaps that are actually noise
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or artifacts, while if it is set too high then it will exclude gaps that are actually

part of the cell geometry. We therefore expect that, as the minimum gap length

is increased, the performance of the algorithm will improve up to a certain point

and then begin to worsen. As with the previously mentioned threshold value, the

selection of the minimum gap length can be considered part of the training phase of

the algorithm and can be performed based on the training data set. For this work we

chose our value for the minimum gap length by once again testing a series of values

and selecting the one that produced the greatest percentage of correct classification.

Based on the data presented in table 5.2, we selected a minimum gap length of 8.0.

Min Gap Length (µm) 5.0 6.0 7.0 8.0 9.0 10.0 11.0

% Correct 78.0 80.5 80.5 82.9 80.5 80.5 80.5

Table 5.2: Percent correct classification with various minimum gap lengths. Param-

eters used were 106 lines intersected, threshold value of 3.0, linear SVM, ten-fold

cross validation.

5.3 Geometric Characterization of the Cell

As described above, our analysis of the cells involves generating a set of random

lines that intersect the cell. The lines were generated using several different methods.

In the first method we picked pairs of points on the surface of a bounding sphere

and generating a line that intersects these points. This is the method used by Juba

and Varshney [3] and is described by Li et al.[62] as the Chord Model. Uniformly

distributed points (x, y, z) on a sphere can be generated from pairs (u, θ) of uniformly
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distributed random numbers by using the formula

(x, y, z) = ((1− u2)
1
2 cos θ, (1− u2)

1
2 sin θ, u) (5.1)

where u is in [−1, 1] and θ is in [0, 2π). A slightly more computationally efficient

formula is given by Rovira et al. [66] which generates the points (x, y, z) from pairs

(ξ1, ξ2) of uniformly distributed random numbers

cos θ = 1− 2 ∗ ξ1

sin θ =
√

1− (cos θ)2

ϕ = 2 ∗ π ∗ ξ2

(x, y, z) = (sin θ ∗ sinϕ, cos θ, sin θ ∗ cosϕ)

(5.2)

where ξ1 and ξ2 are in [0, 1).

In the second method we picked pairs of points on the curved surface of a

cylinder and generate a line that intersects these points. The cylinder is oriented

such that the central axis is perpendicular to the plane of the 2D microscope images

that were stacked together to form the 3D volume. Each of the two points that

define the line is defined by an angle θ around the circumference of the cylinder and

a height z along the central axis. This is illustrated in figure 5.3. The formula for

points (x, y, z) on the curved surface of a cylinder is

(x, y, z) = (cos θ, sin θ, z) (5.3)

where z is in [−1, 1] and θ is in [0, 2π).

Both of these line generation methods require a set of uniformly distributed

random numbers. Typically a pseudo-random sequence of random numbers is used
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Figure 5.3: Top-down view of lines defined by points on a cylinder enclosing a cell.

The lengths of the intersections of these lines with the cell are stored in a histogram.

for this purpose. However, it has been shown that a so-called quasi-random sequence

(also called a low-discrepancy sequence) has better properties, including a lower

error bound in numeric integration [62]. For this work we use the Niederreiter

quasi-random sequence [1], which can be found in the GNU Scientific Library [65].

For equation 5.1, we generate quasi-random points (a, b, c, d) in four dimensions and

use the first and second coordinate pairs (a, b) and (c, d) to generate the (u1, θ1)

and (u2, θ2). For equation 5.3, we generate quasi-random points (a, b, c) in three

dimensions and use the three coordinates for θ1, θ2, and z (in our implementation

both points of the line are at the same altitude z).

The sphere method of generating lines is good for general data sets in which no

direction should be treated differently than any other. In the data we are working

with, however, most of the cell structure variation is in the xy plane of the microscope

images, with only minor changes along the z axis along which the images were

stacked. We therefore chose to generate lines using the cylinder method with the

central axis of the cylinder aligned with the z axis of the image stack when computing
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the results reported in this chapter. We have also found experimentally that we get

better cell classification results with the cylinder method (up to 82.9% correct) than

with the sphere method (up to 75.6% correct).

Once a line is generated the next step is to compute its intersections with the

cell. We do this by stepping along the line at uniform intervals and at each point

checking if that point is inside or outside the cell. Initially, the line starts outside

the cell. If two adjacent points are inside and outside the cell respectively (or vice

versa), we know that we have either entered or left the cell. Whenever we leave the

cell we compute the length of the line segment that was inside the cell and store

this in a histogram.

5.4 High-Throughput Processing

Figure 5.4: GPU memory and multiprocessor layout.

A GPU (Graphics Processing Unit) is a SIMT (Single Instruction, Multiple

Thread) processor capable of executing many identical instruction threads in paral-

lel on different sets of input data. It has a large number of stream processors, each

with some local memory and registers. These are grouped into several multipro-
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cessors, each containing a small amount of fast memory that is shared within the

multiprocessor. It also has a large amount of slower memory that is accessible by

all thread processors. A diagram of the processors and memory is given in figure

5.4.

The SIMT architecture is similar to the traditional SIMD (Single Instruction,

Multiple Data) except that in SIMT, threads can take diverging branches. In the

NVIDIA CUDA library [51] which we used to implement our algorithm, threads

are divided into groups of 32 called warps. Threads within a warp cannot execute

different instructions at the same time. If threads in a warp go down diverging

branches, the GPU will first disable all the threads going down the second branch

and execute the instructions of the first branch, then vice versa. Greater efficiency

can therefore be achieved by ensuring that as often as possible all threads in a warp

follow the same branches. Threads in different warps are free to go down different

branches without penalty.

If an algorithm can be mapped to this architecture, the GPU can generally

execute the algorithm much faster than it could be executed on a CPU. This is

because the SIMT nature of the GPU allows more of its transistors to be dedicated

to arithmetic operations rather than tasks such as caching and flow control.

We mapped our line intersection algorithm to the GPU by using one thread to

compute the intersections of each line with the cell. A straightforward implemen-

tation of this algorithm involves each thread writing the lengths of the intersecting

segments into a shared histogram (see figure 5.5). However, this requires synchro-

nization of the threads or the use of slow atomic operations. One way around this
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Figure 5.5: Use of CPU and GPU to generate segment length histogram from cell

volume using atomic operations algorithm.

requirement is to give each thread its own 256 bin histogram to store its results to,

and then merge the histograms at the end using a parallel reduction operation (see

figure 5.6). This approach is wasteful, however, since each thread would likely write

only a few segment lengths into each histogram. Instead, each thread writes its

intersected segment lengths into a fixed size list, and simply ignores any intersected

segments that occur after the list is full. We found that a list of length 10 is sufficient

to produce results that are almost identical to the CPU version of the algorithm.

Once the lists are constructed they are read back to the CPU and the lengths are

counted to generate the histogram (see figure 5.7). A comparison of performance

data for these three algorithms is given in section 5.6.
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Figure 5.6: Use of CPU and GPU to generate segment length histogram from cell

volume using parallel reduction algorithm.

5.5 Classification Through Machine Learning

The segment length measurements produced histograms for the nanofiber and

spun-coat cells. To show that these measurements could distinguish between the two

types of cells we applied several machine learning algorithms from the Weka machine

learning toolkit [102]. The algorithms we used included Naive Bayes, Support Vector

Machine, k Nearest Neighbor, and Decision Tree. For each algorithm we used ten-

fold cross validation. This means we divided the data into ten groups, used nine

groups to train the algorithm, and then classified the tenth. This was repeated

using each of the ten groups as the classification group. The results of the ten

classifications were then combined to give classification results for the whole data

set. We obtained the best classification results using Support Vector Machines

(SVM). Once the decision was made to use SVM, we switched from using Weka to

using LIBSVM [103].
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Figure 5.7: Use of CPU and GPU to generate segment length histogram from cell

volume using segment length list algorithm.

The training phase of the SVM treats each histogram as a point in high-

dimensional space and tries to compute the hyperplane that best separates the

points corresponding to differentiated cells and the points corresponding to non-

differentiated cells. The orientation of the hyperplane is determined only by those

points close to it, which are referred to as the support vector. Once the algorithm is

trained, additional histograms can be classified as differentiated or non-differentiated

by testing where the corresponding point lies in relation to the hyperplane. An

illustration of a trained SVM is given in figure 5.8. Additional information on

Support Vector Machines can be found by referring to Cortes and Vapnik [104].

5.6 Performance and Validation

We tested our algorithm on a data set developed by Kumar et al. [86] consist-

ing of 21 cells grown on a fibrous nanofiber substrate and 20 cells grown on a flat
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Figure 5.8: Trained Support Vector Machine (SVM). The hyperplane that separates

the two classes of histograms is the zero level-set of a decision function that divides

space into a positive half and a negative half. Histograms that fall in the positive

half are labeled as one class while histograms that fall in the negative half are labeled

as the other.

spun-coat substrate. For each cell we were given a stack of 16-bit grayscale confocal

microscopy images of resolution 512 × 512 which we merged together into a single

volume. The number of images in each stack varied from 11 to 20.

We measured the performance of our algorithms when intersecting a cell with

various numbers of lines, ranging from 103 to 106. The results are given in table

5.3. For each algorithm the first step was to generate the random lines with which

to intersect the cell. This step is independent of the data and can be done once as a

pre-process, with the same set of lines then being used to intersect each cell. The line

generation time is therefore not included in the running times for the algorithms.

For each number of lines we measured the times the algorithms took to com-

pute the intersection counts for a single cell both on the CPU and in the parallel
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implementations on the GPU. The timing for each algorithm is broken down into

the steps listed in figures 5.5, 5.6, and 5.7. For the GPU Reduction algorithm we

measured the time required to send the lines to the GPU and trace them (“Trace

lines”), as well as the time required to perform the parallel reduction operation and

read back the resulting histogram (“Do reduction”), which was implemented using

the CUDA Thrust library [105]. For the GPU Lists algorithm we again measured

the time required to send the lines to the GPU and trace them (“Trace lines”), as

well as the time required to read the segment length lists back to the CPU and

convert them into a histogram (“Count lengths”). The total time includes these

times as well as the time required for any other miscellaneous tasks. In addition to

these times, all algorithms took about 270 ms to load the cell volume data from the

disk. We also list speedup factors which show how many times faster each parallel

GPU implementation is over the serial implementation on the CPU. Note that the

best parallel GPU implementation can be over two orders of magnitude faster than

the serial CPU implementation.

On the current-generation GPU listed in the caption of table 5.3 the best

performing algorithm was Atomic, followed closely by Lists. In addition to this

GPU we also tested the algorithms on several older-generation GPUs, an NVIDIA

Quadro NVS 285 and an NVIDIA Quadro NVS 290. On these GPUs the Lists

algorithm was actually slightly faster than Atomic. We suspect the reason for this

is that the implementation of atomic operations has been improved in the current

generation of GPUs.

Once the cell histograms have been produced they are either used to train an
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Num lines 103 104 105 106

Generate lines (ms) 0.163 1.35 12.9 126

CPU Algorithm

Total time (ms) 50.1 492 4915 49154

GPU Algorithm – Atomic

Total time (ms) 3.56 6.74 45.7 450

Speedup factor 14.1 73.0 108 109

GPU Algorithm – Reduction

Trace lines (ms) 0.388 0.467 1.55 17.1

Do reduction (ms) 13.4 19.1 80.0 708

Total time (ms) 14.1 20.1 83.4 743

Speedup factor 3.55 24.5 58.9 66.2

GPU Algorithm – Lists

Trace lines (ms) 0.277 0.450 1.55 15.9

Count lengths (ms) 2.90 6.48 49.2 466

Total time (ms) 3.52 7.35 52.7 501

Speedup factor 14.2 66.9 93.3 98.1

Table 5.3: Results of intersecting a cell with different numbers of lines. The CPU

algorithm was run on an Intel Xeon X5260 (using only one core) with 8 GB of RAM.

The GPU algorithms were run on an NVIDIA Tesla C2050. The dimensions of the

cell volume data were 512× 512× 20. The threshold was 3.0 and the minimum gap

length was 8.0. 78



SVM classifier (if they are in the training set), or are classified by a trained SVM.

For this work we used the SVM implementation in LIBSVM [103]. Training a linear

SVM on our test data set of 41 cell histograms took about 23.9 ms. Once the SVM

is trained, new cell histograms can be classified in about 17.4 ms each.

In addition to running time we also measured the classification correctness

of our algorithm when intersecting the cells with different numbers of lines. To

compute the percentage of correct classification for each trial we used 10-fold cross

validation. This means that we divided the data set of 41 cells into 10 groups of

approximately equal size, trained the machine learning algorithm on 9 of the groups,

and measured the percent correct classification of the 10th. An example of one fold

is given in table 5.4. This was repeated 10 times, each time using a different group

to test the classification correctness. The percent correct classification of all the

groups was then averaged. The average percent correct classifications are given in

figure 5.9.

This data demonstrates the progressive nature of our algorithm. For a small

number of lines the classification accuracy is about 50%, which is what would be

expected from random guessing. As the number of intersected lines increases, so

does the classification accuracy until it levels off at a maximum. If, after a certain

number of lines have been intersected, the user desires additional accuracy, then the

already-computed lines can be re-used and only the additional lines will need to be

intersected. The algorithm can therefore provide rough results quickly, which can

then be improved to the desired accuracy with additional running time.
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Actual Nanofiber Nanofiber Spun-Coat Spun-Coat

Classified as Nanofiber Spun Coat Spun-Coat Spun-Coat

Table 5.4: Example of one fold of the validation of a trained SVM model. Histograms

were generated using the GPU Lists algorithm with threshold 3.0 and minimum gap

length 8.0. An SVM was trained with 19 nanofiber cells and 18 spun-coat cells. An

additional 2 nanofiber cells and 2 spun-coat cells were set aside to be classified by

the model. Of these 4 cells, 3 were classified correctly.

5.7 Future Work

One interesting area of potential future work would be to take advantage of

the progressive nature of the algorithm during the SVM classification. Rather than

simply generating the histogram using the full number of lines and then performing

the classification, we could instead generate the histogram using some small initial

number of lines and then check the certainty of the classification. If the classification

was still doubtful then the histogram could be improved by intersecting the cell with

more lines, while if the classification was sufficiently certain then the results could be

returned immediately. For an SVM, the certainty of the classification could perhaps

be measured by the distance of the query point from the hyperplane dividing the

two regions of classification.
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Figure 5.9: Percent correct classification of differentiated and non-differentiated

stem cells. This data was generated using the GPU Lists algorithm with threshold

3.0 and minimum gap length 8.0.

Although we have only applied the algorithm to cell data, the algorithm is

general enough that it could potentially be applied to any type of 3D data, such as

CAD models or protein molecules. The use of the algorithm to classify other data

types could be another interesting avenue for future work.

5.8 Conclusions

We described an algorithm that can classify hBMSCs (human Bone Marrow

Stromal Cells) as having been grown on a differentiation-inducing 3D PCL nanofiber

scaffold or on a non-differentiation-inducing 2D PCL spun-coat film. The algorithm

takes 3D cell image data and intersects it with randomly generated rays that connect

the sides of a cylinder that bounds the cell. The lengths of ray segments that are

within the cell are used to generate a histogram. These histograms can then be
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used as sample points to train a machine learning algorithm such as a support

vector machine (SVM), which can then be used to classify future cells.

Our algorithm is easily parallelizable and is also progressive, allowing it to

provide a rough histogram quickly and then refine it as desired. Our parallel GPU

implementation can convert a cell into a histogram representation suitable for ma-

chine learning training or classification by intersecting it with 106 lines in about 450

ms, representing an over 100-fold speedup from the serial CPU implementation. By

applying the algorithm to our test data set of 41 cells we were able to achieve 82.9%

correct classification using 10-fold cross validation. This rapid 3D image analysis al-

gorithm can be used to classify differentiating and non-differentiating stem cells for

high-throughput screening of 3D tissue scaffolds. The algorithm used 3D cell image

data in order to take advantage of the benefits of 3D culture and to capture the

effects of 3D scaffold structure on cell shape. The approach has been demonstrated

using stem cell image data from 1-day cultures, which enables identification of dif-

ferentiating cells at a much earlier stage than is possible with osteogenic markers,

which can require weeks of culture
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Chapter 6

Future Work

A current trend in science is the generation of large amounts of data, both

from measurement and from computer simulation. Various sources have referred

to this phenomenon as the generation of “Big Data”. At the same time, computer

processor clock speeds have stopped increasing, forcing hardware manufacturers

to resort to parallelism to continue to increase processing power. Unfortunately,

algorithms designed for the traditional serial processing model are often not able to

take advantage of this parallel computing ability. To keep up with Big Data, we

must design future algorithms using data-parallel techniques.

There are several potential next steps that could be taken from the work

described in this thesis. One possibility would be to combine the Gaussian Radial

Basis Function (RBF) fitting from Chapter 2 with the stem cell classification from

Chapter 5. The use of RBFs could enable several different improvements in the

classification algorithm.

The first improvement would involve the use of an analytical Gaussian blur of

the RBF representation. As different levels of blur are applied, the cell shape would

change in a certain way that could be characteristic of a differentiated or non-

differentiated cell. The line intersection length histograms from Chapter 5 could

then be generated for each of these different blur levels, and used as additional
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information for the Support Vector Machine (SVM) training and classification.

The second improvement would involve the use of the Gaussian RBF’s ana-

lytic differentiability to compute the mean curvature at random points on the cell’s

implicit surface. Mean curvatures of the implicit surface could be computed directly

from the volumetric data using the formulas from Goldman [106]. These curvature

samples could then be put into histograms just as the line intersection lengths were

in Chapter 5, and used as additional information for the classification of the cells.

Another potential piece of future work would be to combine the Confluent

Visualization from Chapter 4 with the stem cell and surface data from Chapter 5.

Biologists believe that the geometry of the material which a stem cell rests on can

induce the cell to undergo differentiation. It would therefore be useful to study the

geometric interaction between the cell surface and the surface of the material on

which it is resting. Confluent Visualization could enable this by allowing only the

portions of one surface that are in contact with the other surface to be visualized.

A final direction for potential future work is in the area of cybersecurity. Com-

panies, governments, and consumers depend on secure and reliable computer net-

works and data products, but as technology becomes more complex, security threats

also become more complicated. The scale of network traffic data is truly staggering

and our ability to collect such data has far surpassed our ability to meaningfully

analyze it. Visual representations and interaction technologies provide a powerful

mechanism for allowing an analyst to see and understand large amounts of infor-

mation at once. The development of data-parallel visual representation algorithms

could be an important step towards the solution of this problem.
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pleman, D.M. Collard, and A.J. Garćıa. Multivalent integrin-specific lig-
ands enhance tissue healing and biomaterial integration. Science translational
medicine, 2(45):45ra60, 2010.

[83] A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher. Matrix elasticity directs
stem cell lineage specification. Cell, 126(4):677–689, 2006.

[84] S.H. Parekh, K. Chatterjee, S. Lin-Gibson, N.M. Moore, M.T. Cicerone, M.F.
Young, and C.G. Simon. Modulus-driven differentiation of marrow stromal
cells in 3d scaffolds that is independent of myosin-based cytoskeletal tension.
Biomaterials, 32(9):2256–2264, 2011.

[85] M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk,
C.D.W. Wilkinson, and R.O.C. Oreffo. The control of human mesenchymal
cell differentiation using nanoscale symmetry and disorder. Nature materials,
6(12):997–1003, 2007.

91



[86] G. Kumar, C.K. Tison, K. Chatterjee, P.S. Pine, J.H. McDaniel, M.L. Salit,
M.F. Young, and C.G. Simon Jr. The determination of stem cell fate
by 3d scaffold structures through the control of cell shape. Biomaterials,
32(35):9188–9196, 2011.

[87] G. Kumar, M.S. Waters, T.M. Farooque, M.F. Young, and C.G. Simon.
Freeform fabricated scaffolds with roughened struts that enhance both stem
cell proliferation and differentiation by controlling cell shape. Biomaterials,
2012.

[88] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, FC Marini,
DS Krause, RJ Deans, A. Keating, DJ Prockop, and EM Horwitz. Minimal
criteria for defining multipotent mesenchymal stromal cells. the international
society for cellular therapy position statement. Cytotherapy, 8(4):315–317,
2006.

[89] J. Makower, A. Meer, and L. Denend. Fda impact on us medical technology
innovation: a survey of over 200 medical technology companies. Arlington
(Virginia): National Venture Capital Association, 2010.

[90] C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber. Geo-
metric control of cell life and death. Science, 276(5317):1425–1428, 1997.

[91] J. Folkman and A. Moscona. Role of cell shape in growth control. 273, 1978.

[92] R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, and C.S. Chen. Cell
shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment.
Developmental cell, 6(4):483–495, 2004.

[93] M.D. Treiser, E.H. Yang, S. Gordonov, D.M. Cohen, I.P. Androulakis,
J. Kohn, C.S. Chen, and P.V. Moghe. Cytoskeleton-based forecasting of stem
cell lineage fates. Proceedings of the National Academy of Sciences, 107(2):610–
615, 2010.

[94] J.T. Elliott, M. Halter, A.L. Plant, J.T. Woodward, K.J. Langenbach, and
A. Tona. Evaluating the performance of fibrillar collagen films formed at
polystyrene surfaces as cell culture substrates. Biointerphases, 3(2):19–28,
2008.

[95] J. Lovmand, J. Justesen, M. Foss, R.H. Lauridsen, M. Lovmand, C. Modin,
F. Besenbacher, F.S. Pedersen, and M. Duch. The use of combinatorial to-
pographical libraries for the screening of enhanced osteogenic expression and
mineralization. Biomaterials, 30(11):2015–2022, 2009.

[96] J. Simon, G. Carl, Y. Yang, V. Thomas, S.M. Dorsey, and A.W. Morgan. Cell
interactions with biomaterials gradients and arrays. Combinatorial Chemistry
& High Throughput Screening, 12(6):544–553, 2009.

92



[97] F.S. Collins. Reengineering translational science: the time is right. Science
translational medicine, 3(90):90cm17–90cm17, 2011.

[98] J.H. Sung and M.L. Shuler. A micro cell culture analog (µcca) with 3-d hydro-
gel culture of multiple cell lines to assess metabolism-dependent cytotoxicity
of anti-cancer drugs. Lab Chip, 9(10):1385–1394, 2009.

[99] E. Krausz, R. de Hoogt, E. Gustin, F. Cornelissen, T. Grand-Perret,
L. Janssen, N. Vloemans, D. Wuyts, S. Frans, A. Axel, et al. Translation
of a tumor microenvironment mimicking 3d tumor growth co-culture assay
platform to high-content screening. Journal of Biomolecular Screening, 2012.

[100] M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, C. Lomas,
M. Mendiola, D. Hardisson, S.A. Eccles, et al. Advances in establishment
and analysis of three-dimensional tumor spheroid-based functional assays for
target validation and drug evaluation. BMC biology, 10(1):29, 2012.

[101] A. Cardone, R.K. Gupta, and M. Karnik. A survey of shape similarity as-
sessment algorithms for product design and manufacturing applications. In
Journal of Computing and Information Science in Engineering. Citeseer, 2003.

[102] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten.
The weka data mining software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[103] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

[104] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[105] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010.
Version 1.3.0.

[106] R. Goldman. Curvature formulas for implicit curves and surfaces. Computer
Aided Geometric Design, 22(7):632–658, 2005.

93


