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Traditional parametric Common Cause Failure (CCF) models quantify the soft 

dependencies between component failures through the use of empirical ratio 

relationships. Furthermore CCF modeling has been essentially restricted to identical 

components in redundant formations. While this has been advantageous in allowing the 

prediction of system reliability with little or no data, it has been prohibitive in other 

applications such as modeling the characteristics of a system design or including the 

characteristics of failure when assessing the risk significance of a failure or degraded 

performance event (known as an event assessment). 

 

This dissertation extends the traditional definition of CCF to model soft dependencies 

between like and non-like components. It does this through the explicit modeling of 

 

 



soft dependencies between systems (coupling factors) such as sharing a maintenance 

team or sharing a manufacturer. By modeling the soft dependencies explicitly these 

relationships can be individually quantified based on the specific design of the system 

and allows for more accurate event assessment given knowledge of the failure cause.   

 

Since the most data informed model in use is the Alpha Factor Model (AFM), it has 

been used as the baseline for the proposed solutions. This dissertation analyzes the US 

Nuclear Regulatory Commission’s Common Cause Failure Database event data to 

determine the suitability of the data and failure taxonomy for use in the proposed cause-

based models. Recognizing that CCF events are characterized by full or partial presence 

of “root cause” and “coupling factor” a refined failure taxonomy is proposed which 

provides a direct link between the failure cause category and the coupling factors.  

 

This dissertation proposes two CCF models (a) Partial Alpha Factor Model (PAFM) 

that accounts for the relevant coupling factors based on system design and provide 

event assessment with knowledge of the failure cause, and (b)General Dependency 

Model (GDM),which uses Bayesian Network to model the soft dependencies between 

components. This is done through the introduction of three parameters for each failure 

cause that relate to component fragility, failure cause rate, and failure cause 

propagation probability. 
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Chapter 1: Introduction 

1.1. Introduction 
Recent events at the Japanese Fukushima Nuclear Power Plant have reminded us of the 

importance of protecting safety critical systems against failure causes which can 

overcome multiple levels of redundancy.  

 

Common Cause Failures (CCF) are ‘simultaneous’ failures of a number of components 

due to a common event. This phenomenon is usually caused by soft dependencies1 and 

can dominate system failure probabilities. These types of failures have the ability to cut 

through multiple layers of redundancy and cause unforeseen coincidental events that 

will put safety critical systems in jeopardy. 

 

 A Probabilistic Risk Assessment (PRA) studies and quantifies such risks. If CCF 

modeling is not included within the PRA, the system reliability model can result in a 

gross overestimation of system safety and reliability.  

 

Over the years, PRA has expanded as a management and decision tool beyond the 

simple quantification of system failure probabilities. In the nuclear industry PRAs are 

1 ‘Soft dependencies’ are dependencies with a probabilistic relationship.  
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increasingly used to support the following activities (Bates 1995): 

• decisions on safety and performance improvement, 

• evaluation of proposed modifications, 

• assessment of new designs, and 

• event assessment and significance determination.  

 

Whilst the current models allow for the quantification of soft dependencies at a system 

level, they are inadequate for providing further insight into the causes of CCF and 

informing options for protecting against this phenomenon. It has become evident that 

the commonly accepted CCF modeling methodology (Mosleh et al. 1998) and 

corresponding tools need to be enhanced to meet these PRA activities. 

 

Current CCF models can be broadly classified in two ways: qualitative or quantitative 

(Lindberg 2007). However both approaches have inherent weaknesses. Quantitative 

CCF models estimate CCF parameters using historic event data but do not currently 

model the system features needed to conduct these extended PRA activities, such as 

failure causes, coupling factors and defenses specific to the target system. Qualitative 

CCF models include the ability to account for the target system features, but rely on 

expert opinion for quantification and cannot incorporate historic data.  

 
A need exists for a data-informed causal CCF model which can provide both a 

qualitative investigation of a system while allowing evidence-informed modeling of 
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CCF events. This thesis will propose such a model and develop the supporting 

analytical processes and data taxonomy to ensure it can be practically implemented. 

1.2. Significance 
CCFs are usually much less frequent than the independent failures of the components 

involved. However, studies have shown that CCF events may still contribute between 

20% - 80% of the unavailability of safety systems within nuclear reactors (Werner 

1994). This is because, despite CCF events being infrequent, they can overcome all 

levels of redundancy and fail a complete system.  

 

Excluding CCF when modeling system reliability can result in a gross underestimation 

of failure probability. For example, consider a system which is required to provide 

power to a safety critical item. The system consists of two backup generators in parallel. 

Only one generator is required to power the safety critical item, with one redundant 

generator in case the other fails. Figure 1 shows a fault tree excluding CCF modeling, 

and figure 2 shows a fault tree including CCF modeling. 
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Figure 1: Fault Tree of redundant generator 

system not considering CCF 
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𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) + 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) 

             −𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴)𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) 

Figure 2: Fault Tree of redundant generator 

system considering CCF 

 

An Emergency Diesel Generator (EDG) may have a probability of failure-to-start of 

𝑃𝑃(𝐴𝐴) = 𝑃𝑃(𝐵𝐵) = 4.9𝐸𝐸-3. (Vesely et al. 1994). This provides a system failure 

probability, without consideration for CCF, of: 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵) 

= 2.4e-5 

 

The probability of an EDG failing due to common cause failure may be2 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) =

2 Calculated using a 𝛽𝛽 factor of 0.0316 (Wierman et al. 2007, p.78) 

4 

 

 

                                                 



 

1.55𝐸𝐸-4. Therefore the probability of an EDG failing due to an independent cause is 

𝑃𝑃(𝐴𝐴𝑖𝑖) = 𝑃𝑃(𝐴𝐴) − 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝑃𝑃(𝐵𝐵𝑖𝑖) = 4.745𝐸𝐸-3. Using the CCF modeling shown in 

Figure 2 gives the following system failure probability: 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) + 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) − 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴)𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) 

= 1.55𝑒𝑒-4 + (4.745𝑒𝑒-3)2 − (1.55𝑒𝑒-4)(4.745𝑒𝑒-3)2 

= 1.77e-4 

Table 1 shows a comparison of system modeling quantification with and without 

modeling CCF.  

 
Table 1: Comparison of results from modeling EDG power system failure 

 Probability of System 
Failure 

Expected number of 
failures 

Model excluding CCF 2.4e-5 1 in 41,649 demands 
Model including CCF 1.77e-4 1 in   5,638 demands 
Factor of difference 7.4 7.4 

 

As demonstrated in this simple example, omitting CCF within the PRA results in a 

predicted failure frequency 7.4 times more optimistic than is the case when CCF 

modeling is included.  

 

While this example has shown the importance of including CCF models within a 

system model, it also shows that in order to conduct more advanced analysis (such as 

prioritizing system upgrades or post event assessments of system safety), the CCF 

model needs to provide quantitative insights why CCF occur.  Without such insight, 

management of and protection from CCF becomes very difficult. 
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Very recently we were reminded of this field of study’s significance when a Japanese 

nuclear plant struggled to cool its reactor core following a major earthquake and 

tsunami in March 2011.  The earthquake provided a single event which would cause 

the near simultaneous failure of the external power, the emergency power supply and 

the cooling system reticulation. (Yamaguchi & Donn 2011) The combination of these 

sub-systems failing without common cause would be extremely unlikely. However, 

their failures were inter-dependent on vide a single coupling factor of being in the same 

location3.  

1.3. Objectives of the research  
The goal of this research is to develop a comprehensive CCF analysis methodology to 

enhance: 

• CCF analysis in PRA of operating systems. This form of analysis may be 

undertaken when the system design is known and failure data are available. 

While data on common cause failures may not be abundant, the independent 

failure rates of components are likely to be well known. Furthermore, softer 

contributors to the system (such as organizational factors) may be incorporated. 

3 It should be noted that natural phenomena such as the earthquake and tsunami are explicitly modelled 

within nuclear PRAs and therefore would not have been included within the CCF modelling scope. 

However, in non-nuclear PRAs this type of event is likely to have been included within the CCF model 

scope. A discussion on defining CCF in relation to CCF modelling is provided in chapter 3. 
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Specific extensions of PRA for operating systems include the ability to provide 

trade off analysis between different improvement activities.  

• CCF analysis in PRA of systems in design. This form of analysis will be 

characterized by a lack of system specific data. Accordingly, it will rely on 

incorporating evidence from many sources such as generic data, specific life 

tests and expert opinion. The CCF model may need to have a high level of 

detail to accurately capture system and component dependencies and influence 

design decisions. Extensions of the PRA activity during system design include 

the ability to quantify the affect different design options will have on the 

system failure probability. 

• CCF analysis in Event Assessments. This form of analysis will involve 

retrospective assessments intended to estimate the risk significance of known 

deficiencies within a system. The model will need to be detailed enough to 

ensure that the characteristics of the event being assessed can be accurately 

included within the model, enabling the update of remaining variables to reflect 

this condition. 

 

In order to support these applications, this dissertation will focus on the following 

research objectives: 

• To propose a unified understanding of the definition and scope of CCFs. 

• To propose a failure data taxonomy consistent with the unified definition of 

CCFs which can enable cause based CCF models. 
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• To propose a cause based data-informed CCF model. 

• To propose a comprehensive and scalable analysis process. 

1.3.1. Unified CCF Definition 

Since CCF began to be recognized as a phenomenon requiring special treatment, there 

has not been consensus over its definition. This is primarily because the definition of a 

CCF and the scope of CCF modeling within a particular system may be different. 

Modeling CCFs is only used to cover events which are not explicitly included within 

the wider PRA model. This means that the quantification of CCF can change 

significantly between PRAs. This issue is a product of conflicting CCF definitions and 

has limited a unified advancement of the discipline.  

 

An additional problem stems from the definition of a singular failure within a Common 

Cause Component Group (CCCG). This failure could be considered an ‘independent 

failure’ which will only manifest itself in single component failure, regardless of the 

CCCG size. Alternately, it could be considered a CCF failure with potential to cause 

other components to fail. Different interpretations of this failure type have prompted a 

myriad of different CCF models. 

 

This dissertation aims to define CCF such that it unifies the observable phenomenon 

and scope of CCF modeling. Furthermore, this definition aims to make clear the 

difference between a single and independent failure within a CCF context. 
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1.3.2. Propose Failure Data Taxonomy 

The treatment of CCF is complicated by the fact that CCF modeling aims to incorporate 

‘known unknowns’. We know that certain failures will occur, thereby affecting 

multiple components as propagated through soft dependencies. However, we typically 

don’t know the nature of these failures (otherwise they would have modeled explicitly). 

This makes a consensus on CCF definitions difficult to achieve.  

 

It is for this reason that traditional CCF models have focused on empirical relationships 

which allow the quantification of PRA models without a detailed definition of failure 

causes and coupling mechanisms. The symptom of this approach is that very little 

insight can be provided into the nature of CCFs. 

 

This dissertation will propose the data requirements for the Common Cause Failure 

Databases (CCFDB) such that there are consistent definitions of failure causes and 

coupling factors. These definitions will enable data to be recorded in support the CCF 

models proposed herein.  

1.3.3. Propose a cause-based data-informed CCF model 

Since the 1975, over 30 CCF models have been proposed, each addressing the 

particular concerns of their designer. Only a few have gained widespread use due to 

their support from data collection databases and their simplicity. The US Nuclear 

Regulatory Commission (NRC) adopted the data-informed parametric models of Alpha 
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Factor Model and the Multiple Greek Letter models (Mosleh et al. 1988) which 

provides a ‘black box’ analysis approach using impact vectors for data with little causal 

information. The UK nuclear industry has adopted the Unified Partial Method (UPM) 

(Brand & Gabbot 1993) which is a model that assesses system CCF susceptibility, 

providing an estimate based on expert opinion. UPM is a causal based model providing 

an excellent qualitative assessment of the system but cannot incorporate CCF event 

data to improve CCF parameter estimates.  

 

This dissertation will propose two models that can provide both a qualitative 

investigation of a system while producing evidence-informed system specific estimates 

of CCF probabilities.  

• Partial Alpha Factor Model (PAFM). The PAFM is an extension of the 

current Alpha Factor Model (AFM) that enables more advanced CCF analysis, 

but minimizes changes to the AFM methodology. This allows backward 

compatibility. 

• General Dependency Model (GDM). The GDM achieves the desired level of 

CCF modeling features without being constrained by current methods. Despite 

being ‘feature rich,’ it too minimizes complexity for the analyst and remains 

scalable.  

 
Figure 3 shows a summary of the gap in CCF modeling against quantitative and 

qualitative features.   
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Figure 3: Qualitative and quantitative features of proposed CCF models  (Lindberg 2007) 

 

To assess existing models, a list of desirable CCF model attributes has been developed 

and is contained in Table 2. These attributes are derived from the features required of 

a model to support likely PRAs activities that support decisions on new designs, 

improvements to existing designs and event assessments. These criteria will be also be 

used to assess the models proposed in this dissertation.  

 

The model criteria covers the following broad aims: 

• Describes System Features. It is desirable for the model to explicitly account 

for specific features of the target system in order to increase accuracy. The 

modeling of specific causes, coupling factors and defenses permits an improved 
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analysis outcome. This feature set mostly accounts for the qualitative features 

of the model. 

• CCCG Characteristics. This list assesses model accuracy by examining the 

assumptions made in creating the CCCGs. This feature set also contributes to 

the qualitative features of the model. 

• Event Assessment Capabilities. This list summarizes the ability for the model 

to support event assessment activities. 

• Parameter Estimation. This activity assesses how parameters may be estimated 

including their ability to use impact vectors, sources from other CCCG sizes 

and incorporate generic and target system data. This feature set mostly assesses 

the quantitative features of the model. 

• Uncertainty for Parameter Estimation. This metric describes the types of 

uncertainty that can be explicitly accounted for during the estimation of the 

model parameters.  

• Usability and Cultural Considerations. Despite some very capable CCF 

models, the PRA community has been reluctant to adopt methods that require 

significant time or complexity investment from the analyst. Therefore these 

considerations describe the usability of the model.  

Table 2: Criterion for CCF Model Assessment 
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Feature Description 
Explicitly Models System Features 
Models failure cause 
Models failure cause defense 
Models coupling factor 
Models coupling factor defense 
Models deeper causal levels 
Models cause condition / shock 
Models multiplicity of failures within CCCG 
Models includes consideration for rectification period 
Common Cause Component Grouping Characteristics 
Model non-symmetrical but similar components within the same CCCG 
Model different components within the same CCCG 
A component can be part of many CCCGs 
No limit to CCCG size 
Model different failure multiplicities within the CCCG  (k failures in n) 
Event Assessment Capabilities 
Event Assessment with knowledge of a failed component 
Event Assessment with knowledge of failure cause 
Uncertain Evidence - Partial Failures 
Uncertain Evidence- Virtual evidence of cause 
Parameter Estimation 
Impact Vector Method (including method for incorporating uncertainty) 
Expert estimations (in absence of any data) 
Account for reliability growth (discount previous failures) 
Update parameters with new evidence 
Incorporate evidence from different sized CCCGs 
Account for CCF which occurred in a different mission time 
Account for CCF data which has artificial separation in time due to demands being 
separate.  
Use system specific failure rate data combined with generic model parameter 
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Uncertainty Characteristics for Parameter Estimation 
Does not require distinguish between independent and single CCF failures 
Failures outside the mission period 
Uncertainty of shared cause 
Uncertainty of coupling factor 
Uncertainty in intervals due to staggered testing 
Partial failures and component degradation 
Usability and Cultural Considerations 
Backward compatible to Alpha Factor Model parameters 
The time investment required to implement the model is no more than the alpha factor 
model. 
Automatic parameter estimation is possible from the CCFDB/RADs 

 

1.4. Structure of the dissertation 
 

This dissertation presents each research objective sequentially throughout chapters.  

 

Introduction and background. Chapter 1 introduces the research topic and clearly 

outlines research objectives. Chapter 2 summarizes the current methodologies that 

quantify CCF effects. This includes a critical examination of limitations and 

assumptions used in the current methodologies. 

 

Objective 1: Unified CCF Definition. Chapter 3 provides a literature review, analysis 

and proposal for a unified definition of CCF. 

 

Objective 2: Failure data taxonomy. Chapter 4 provides a literature review, analysis of 

the CCF and proposal for a new failure data taxonomy to support future CCF models. 
14 

 

 



 

 

Objective 3: Propose a cause-based data-informed CCF model. Chapter 5 provides a 

literature review of previously proposed models. Chapter 6 will propose the PAFM, 

and Chapter 7 will propose the GDM. 

 

Summary and conclusions. Chapter 8 summarizes the proposals of this dissertation and 

documents future work required for implementation and areas of future research. 
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Chapter 2: Current CCF Analysis Methodology and its 

Limitations 

2.1. Introduction 
This chapter provides an overview of the current methodology for incorporating CCFs 

within a PRA. It will focus on key technical areas of the analysis and includes two 

simple examples. Limitations of the current methodologies will be identified and 

summarized at the conclusion of this chapter.  

 

There have been many reports detailing procedures and tools required to conduct CCF 

analysis within a PRA, however the focus of this chapter will be based on current NRC 

advice (Mosleh et al. 1998; Wierman et al. 2007). This is the most widely referenced 

CCF analysis methodology and has iteratively matured. (Mosleh 1991; Mosleh et al. 

1988; Mosleh et al. 1998; Fleming et al. 1983). The steps involved in conducting a CCF 

analysis are summarized in Figure 4.  
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Figure 4: Procedural framework for common cause failure analysis (Mosleh et al. 1998, p.10) 

1. SCREENING ANALYSIS 

1.1 Problem Definition and System Modeling 
1.1.1 Plant familiarization 
1.1.2 Identification of system and analysis boundary conditions 
1.1.3 Development of component level system fault tree 

 

1.2 Preliminary Analysis of CCF Vulnerabilities 
1.2.1 Qualitative screening 
1.2.2 Quantitative Screening  

 

2. DETAILED QUALITATIVE ANALYSIS 

2.1  Review of Plant Design and Operating Practices  
  
2.2  Review of Operating Experience 
  
2.3  Development of Cause-Defense Matrices 
  

3. DETAILED QUANTITATIVE ANALYSIS 

3.1  Common Cause Modeling 
3.1.1 Identification of common cause basic events (CCBEs) 
3.1.2 Incorporation of CCBEs into fault trees 
3.1.3 Parametric representation of CCBEs 
 

3.2 Data Analysis and Parameter Estimation 
3.2.1 Parameter estimation 
3.2.2 Basic event probability development 
  
3.3 System Quantification and Results Interpretation 
3.3.1 System unavailability quantification 
3.3.2 Results evaluation/sensitivity analysis 
3.3.3 Reporting 
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2.2. Describing CCFs 
Common Cause Failure result from the existence of two factors: 

• Failure Cause 

• Coupling Factor 

Failure Cause. The failure cause is the condition that the component failure can be 

attributed to. The failure cause affects the frequency of component failure, but by itself 

does not manifest CCF. The definition of cause can adapted to different levels such as 

‘proximity cause’ and ‘root cause’.  

• Proximity Cause: The readily identifiable condition that led to component 

failure. The proximity cause can be regarded as a symptom of the failure cause 

and not necessarily provide the complete understanding of what led to that 

failed condition.  

• Root Cause. The initiating cause of a causal chain which leads to a proximity 

cause and the eventual failure of the component.  

 

Coupling Factor. The coupling factor is the propagation mechanism that enables failure 

of multiple components. The coupling factor is a dependency between components 

which is not explicitly modeled. 

 

Defenses. Defenses are the parts of a system that protect against the failure cause or the 

coupling factor.  More robust defenses lower the rate of CCFs.  
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Common Cause Component Group (CCCG): A CCCG is a group of components which 

share coupling factors, making them susceptible to a common failure cause. 

  

CCFs are only a problem when failures occur within a timeframe that multiple 

components cannot provide their function. This is sometimes called ‘simultaneous 

failure.’ It should be noted that the term ‘simultaneous’ is relative. For components that 

can easily be repaired or replaced, this can be multiple failures within seconds, minutes 

or hours. For components which can never be replaced or repaired (such as on a space 

mission) simultaneity can be defined as the mission period which may be years or even 

decades.  

2.3. Problem Definition and System Modeling 
In order to illustrate the CCF analysis procedure, two example systems will be used.  

2.3.1. Example 1: Two Train EDG System 

The first example includes a two train EDG system in which the CCF analysis 

procedure can be shown in its most simplistic representation. The two generators are 

in standby to provide emergency power to the same power bus. Only one generator 

needs to run in order to provide sufficient power. A conceptual diagram is shown in 

Figure 5. The reliability block diagram for the system is shown in Figure 6. The failure 

probability for the EDG is assumed to be 𝑄𝑄𝑇𝑇 = 0.006. The fault tree with the system 
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failure rate is shown in Figure 7. 

 

Figure 5: Conceptual diagram for example 1- Two train EDG system 

 

 

Figure 6: Reliability block diagram for 

example 1- Two train EDG system 

 

Figure 7: Fault tree for example 1 – Two 

train EDG system 

  

A B 

A B 

P(A)=0.006  P(B)=0.006 

P(S) = P(A∩B) = 3.6e-5 
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The cut set for the first example system is: 

{𝐴𝐴, 𝐵𝐵} 

2.3.2. Example 2: Two Train EDG and Pump System 

The second system consists of a mixture of pumps and generators to highlight the 

complexity of CCF between component types with varying levels of dependency. The 

systems objective is to provide water to a cooling system. Only one pump needs to be 

running in order to provide sufficient water. A pump requires power from an 

Emergency Diesel Generator to operate. One of the trains has two pumps in 

redundancy, resulting in a total of three pumps for the system.  

 

The failure probability for an EDG is also assumed to be 𝑄𝑄𝑡𝑡
[𝐸𝐸] = 0.006 and the failure 

probability for a pump is assumed to be  𝑄𝑄𝑡𝑡
[𝑃𝑃] = 0.00204. A conceptual diagram of the 

system is shown in Figure 8. The reliability block diagram is shown in Figure 9. The 

fault tree with the system failure rate is shown in Figure 10. 
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Figure 8: Conceptual diagram for example 2- Two EDGs and three pump system 
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Figure 9: Reliability block diagram for example 2- Two EDGs and three pump system 
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Figure 10: Fault tree for example 2 – Two train EDG and pump system 

The cut sets for the second example system are: 

{𝐸𝐸1, 𝐸𝐸2} ;   {𝑃𝑃1, 𝐸𝐸2} ; {𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3}; {𝐸𝐸1, 𝑃𝑃2, 𝑃𝑃3}  

2.4. Preliminary Analysis of CCF Vulnerabilities 

2.4.1. Qualitative Screening 

Qualitative screening identifies potential vulnerabilities of the system and its 

components to CCF. This includes identifying the coupling factors that create a soft 

P(EDG1) = 6e-3 P(EDG2) = 6e-3 P(Pump1) = 2.04e-3 

P(Pump2) = 2.04e-3 
 

P(T1) = 8e-3 P(T2) = 6e-3 

P(S) = 4.82e-5 

P(Pump3) = 2.04e-3 
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(P1)
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dependency between components. The specific coupling factors which should be 

identified will be discussed in Chapter 3, however NUREG/CR-5485 (Mosleh et al. 

1998) recommends identifying components that share one or more of the following: 

• design, 

• hardware, 

• function, 

• installation, maintenance or 

operations staff 

• procedures, 

• interface, 

• location, or 

• environment. 

Any group of components which share similarities in one or more of these 

characteristics are assessed for CCF susceptibility. A group of components identified 

in this process is called a Common Cause Component Group (CCCG).  

 

For simplicity, these example systems will be assessed only for similar features in their 

install procedures, maintenance staff and location. Example 1 and example 2’s 

assessment is given in 

Table 3 and Table 4 respectively. 

 
Table 3: Qualitative dependency assessment for example 1 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (A) EDG IP Team X Room Y 
EDG 2 (B) EDG IP Team X Room Y 
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Table 4: Qualitative dependency assessment for example 2 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (E1) EDG Team X Room Y 
EDG 2 (E2) EDG Team X Room Y 
Pump 1 (P1) Pump V1.1 Team X Room Y 
Pump 2 (P2) Pump V2.8 Team X Room Y 
Pump 3 (P3) Pump V1.1 Team Y Room X 

 

At this point, the objective is a binary decision that concludes whether a set of 

components should form a CCCG based on their dependencies. Although not stated 

explicitly in this step, it will become evident that due to the assumption that a CCCG 

shares all coupling factors, it is impossible for a component to be a member of multiple 

CCCGs.  

 

For example 1, it is obvious that EDG 1 and EDG 2 share all coupling factors and so it 

is appropriate that they form a CCCG. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝐸𝐸] = {𝐴𝐴, 𝐵𝐵} 

 

For example 2, it is also obvious that EDG 1 and EDG 2 share all coupling factors and 

should form a CCCG. However, pump 1 and pump 2 share all coupling factors less the 

installation procedure. Pump 3 only has the installation procedure in common with 

pump 1. Furthermore, the EDGs and pumps are in the same location and exposed to 

the same environment, and also exposed to the same maintenance team. It is clear that 

components within this system share some dependencies, but not others. It is not clear 
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how the components should be divided into discrete CCCGs.  

 

Using the current methodology the EDGs would form one CCCG with pumps 1 and 2 

forming another despite the cross dependencies between components and the difference 

between the pumps.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝐸𝐸] = {𝐸𝐸1, 𝐸𝐸2} 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑃𝑃] = {𝑃𝑃1, 𝑃𝑃2} 

 

Limitation 1: The current methodology does not account for partial dependencies 

between components.  

 

Limitation 2: Due to limitation 1, the current methodology does not allow a 

component to be a member of multiple CCCGs. 

2.4.2. Quantitative Screening 

During quantitative screening, a simple CCF model is applied to the CCCGs identified 

in the previous step to determine which groups have no significant contribution to the 

system failure probability.  

 

These are usually components which are in series, or components which already have 

failure probabilities that are orders of magnitude less than the system failure 

probability. 

27 

 

 



 

 

For the examples, it is assumed that the CCCGs are significant elements of the system 

failure probability.  

2.5. Detailed Qualitative Analysis 
The next step is to conduct a detailed review of the plant specific context in order to 

tailor the CCF model to the specific system. This involves a qualitative assessment 

which uses the same basic methodology as the preliminary step, but involves more 

detail. A documented procedure and inspection checklist to records the potential failure 

causes, coupling mechanism and defenses specific to the system of interest. 

 

For the example systems, no further detail is required. 

2.6. Detailed Qualitative Analysis 

2.6.1. Identification of Common Cause Basic Events (CCBEs) 

A CCBE is an event involving failure of a specific set of components due to a common 

cause (Mosleh et al. 1998, p.41).  For example, in 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝐸𝐸] the basic event A is made 

up of the contributions from singular/independent failure events, 𝐴𝐴𝑖𝑖, and common 

cause failure events, 𝑋𝑋𝐴𝐴𝐴𝐴, which involve both components A and B. 𝐴𝐴𝑖𝑖 and 𝑋𝑋𝐴𝐴𝐴𝐴 are the 

CCBEs.  

 

The CCBE events for example 1 and two are shown in Table 5 and Table 6 respectively. 

28 

 

 



 

Table 5: CCBE for example 1 

Component Common Cause Basic Events 
EDG 1 (A) 𝐴𝐴𝑖𝑖 , 𝑋𝑋𝐴𝐴𝐴𝐴 
EDG 2 (B) 𝐵𝐵𝑖𝑖 , 𝑋𝑋𝐴𝐴𝐴𝐴 

 

Table 6: CCBE for example 2 

Component Common Cause Basic Events 
EDG 1 (𝐸𝐸1) 𝐸𝐸1,𝑖𝑖 , 𝑋𝑋𝐸𝐸1,𝐸𝐸2 
EDG 2 (𝐸𝐸2) 𝐸𝐸2,𝑖𝑖 , 𝑋𝑋𝐸𝐸1,𝐸𝐸2 
Pump 1 (𝑃𝑃1) 𝑃𝑃1,𝑖𝑖 , 𝑋𝑋𝑃𝑃1,𝑃𝑃2 
Pump 2 (𝑃𝑃2) 𝑃𝑃2,𝑖𝑖 , 𝑋𝑋𝑃𝑃1,𝑃𝑃2 
Pump 3 (𝑃𝑃3) 𝑃𝑃3 

 

In example 2, limitations 1 and 2 result in CCBEs that does not recognize simultaneous 

failure of an EDG and pump due to an extreme external environment or maintenance 

human error. Furthermore the coupling factors between pump 1 and 3 have been 

ignored. 

2.6.2. Incorporate CCBEs into fault trees 

In this step, the basic events are substituted with the CCBEs. For example the 

component level fault trees for events A and B (example 1) are shown in Figure 11.  
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Figure 11: Conversion of Basic Events to CCBE 

The fault tree for example 1 after substitution of CCBEs is shown in Figure 12. 

 

Figure 12: Fault tree for example 1 with CCBEs 

The cut sets for example 1 are now: 

{𝐴𝐴𝑖𝑖 , 𝐵𝐵𝑖𝑖} ; {𝑋𝑋𝐴𝐴𝐴𝐴}  

The fault tree for example 2 after substitution of CCBEs is shown in Figure 13. 

 

Basic Events Basic Event Fault Trees 
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Figure 13: Fault tree for example 2 with CCBEs 

The cut sets for example 2 are now: 

�𝐸𝐸1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� ;  �𝑃𝑃1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� ; �𝑃𝑃1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3�;  �𝐸𝐸1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3�; �𝑃𝑃3, 𝑋𝑋𝑃𝑃1,𝑃𝑃2�; �𝐸𝐸2,𝑖𝑖 , 𝑋𝑋𝑃𝑃1,𝑃𝑃2� ; �𝑋𝑋𝐸𝐸1,𝐸𝐸2�  

For larger fault trees, the inclusion of the CCBEs can lead to a proliferation of cut sets. 

This encourages the analyst to rely on software to solve the augmented fault tree.  

 

Limitation 3: CCBEs are modeled as independent events instead of mutually 

exclusive events. 

 

When events are modeled through the use of an OR gate, they are assumed to be 

independent events. However the CCBEs are mutually exclusive (i.e. not independent), 

therefore this modeling technique relies on rare event approximation for accuracy.  

S

E1

E1,i XE1,E2

P1

P1,i XP1,P2

E2

E2,i XE1,E2
P2

P2,i XP1,P2

P3
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For example, the basic event fault tree for event A is shown in Figure 14. 

 

Figure 14: Basic Event Fault Tree for A 

The assumption driving the identification of CCBEs is that the event A results from its 

singular/independent failure events or its common cause failures events. However we 

can see that the fault tree representation, A’, includes an additional term to adjust for 

independent, non-mutually exclusive event: 

𝑃𝑃(𝐴𝐴′) = 𝑃𝑃(𝐴𝐴𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) − 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) ≠ 𝑃𝑃(𝐴𝐴) 

 

Where the terms, 𝑃𝑃(𝐴𝐴𝑖𝑖) and 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) are orders of magnitude smaller than 1, the 

quantity 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) becomes insignificant. This is a particular instance of rare event 

approximation.  

 

The approximation can be seen with the following example. Assume: 
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𝑃𝑃(𝐴𝐴) = 𝑄𝑄𝑡𝑡 = 0.2, 𝛽𝛽 = 0.3 

𝑃𝑃(𝐴𝐴𝑖𝑖) = (1 − 𝛽𝛽)𝑄𝑄𝑡𝑡 = 0.14, 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝛽𝛽𝑄𝑄𝑡𝑡 = 0.06 

Then the probability of event A can be calculated as: 

𝑃𝑃(𝐴𝐴) = 𝑃𝑃(𝐴𝐴𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) 

= 0.14 + 0.06 

= 0.2 

However the basic event fault tree will calculate event A’ as: 

𝑃𝑃(𝐴𝐴′) = 𝑃𝑃(𝐴𝐴𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) − 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) 

= 0.14 + 0.06 − (0.14)(0.06) 

= 0.1916 

CCF, by their nature, are very rare events. In almost all cases, the events are rare enough 

for the difference to be insignificant. Regardless, this is an explicit assumption for this 

method. 

2.6.3. Parametric representation of CCBEs 

The next step involves transformation of system Boolean representation to an algebraic 

one involving probabilities of the basic events. For example 1, the cut sets can provide 

a system probability of failure using the following formula: 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) − 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖)𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) 

Using rare event approximation, this would be accurately estimated: 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) 

(Mosleh et al. 1998) go on to assume that the probabilities for each component will be 
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equal through the following formulation: 

𝑃𝑃(𝐴𝐴𝑖𝑖) = 𝑃𝑃(𝐵𝐵𝑖𝑖) = 𝑄𝑄1
(2) 

𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝑄𝑄2
(2) 

Where: 
𝑄𝑄𝑘𝑘

(𝑚𝑚) = basic event failure frequency/probability for k components 
failing within a common cause component group of size m, (1 
≤ k ≤ m). 

 
𝑄𝑄𝑘𝑘

(𝑚𝑚) is a parameter to the Basic Parameter (BP) CCF model which will be discussed 

further in Chapter 4. Using the assumption of symmetry and rare event approximation, 

the system failure probability for the example 1 system can be written as: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)�

2
+ 𝑄𝑄2

(2) 

 

This step is rarely conducted by hand and instead is evaluated by software. The problem 

then moves from constructing a system probability equation to quantification of the 

CCBEs that substitute into the fault tree basic events.  

 

For example 2, the system failure probability using the rare event approximation is: 

 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃�𝐸𝐸1,𝑖𝑖�𝑃𝑃�𝐸𝐸2,𝑖𝑖� + 𝑃𝑃�𝑃𝑃1,𝑖𝑖�𝑃𝑃�𝐸𝐸2,𝑖𝑖� + 𝑃𝑃�𝑃𝑃1,𝑖𝑖�𝑃𝑃�𝑃𝑃2,𝑖𝑖�𝑃𝑃(𝑃𝑃3)

+ 𝑃𝑃�𝐸𝐸1,𝑖𝑖�𝑃𝑃�𝑃𝑃2,𝑖𝑖�𝑃𝑃(𝑃𝑃3) + 𝑃𝑃(𝑃𝑃3)𝑃𝑃�𝑋𝑋𝑃𝑃1,𝑃𝑃2� + 𝑃𝑃(𝐸𝐸2.𝑖𝑖)𝑃𝑃�𝑋𝑋𝑃𝑃1,𝑃𝑃2�

+ 𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 

The probabilities for the CCBE events would be: 
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𝑃𝑃�𝐸𝐸1,𝑖𝑖� = 𝑃𝑃�𝐸𝐸2,𝑖𝑖� = 𝑄𝑄1
(2)[𝐸𝐸] 

𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� = 𝑄𝑄2
(2)[𝐸𝐸] 

𝑃𝑃�𝑃𝑃1,𝑖𝑖� = 𝑃𝑃�𝑃𝑃2,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃] 

𝑃𝑃�𝑋𝑋𝑃𝑃1,𝑃𝑃2� = 𝑄𝑄2
(2)[𝑃𝑃] 

𝑃𝑃(𝑃𝑃3) = 𝑄𝑄𝑡𝑡
[𝑃𝑃] 

Substitution into the system equation gives: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)[𝐸𝐸]�

2
+ �𝑄𝑄1

(2)[𝑃𝑃]. 𝑄𝑄1
(2)[𝐸𝐸]� �1 + 𝑄𝑄𝑡𝑡

[𝑃𝑃]� + 𝑄𝑄𝑡𝑡
[𝑃𝑃] �𝑄𝑄1

(2)[𝑃𝑃]�
2

+ 𝑄𝑄2
(2)[𝑃𝑃] �𝑄𝑄𝑡𝑡

[𝑃𝑃] + 𝑄𝑄1
(2)[𝐸𝐸]� + 𝑄𝑄2

(2)[𝐸𝐸] 

 

Limitation 4: Using the current methodology it is difficult to model asymmetrical 

components.  

Despite the qualitative analysis showing partial dependencies between components and 

a detailed assessment of plant specific conditions, the assumption of component 

symmetry severely restricts the options of including the qualitative findings within the 

model. Plant specific data may exist showing a different failure probability/rate for two 

similar components, which becomes difficult to include within this model.  

 

In example 2, the pumps 1 and 2 were not symmetrical as they had been installed using 

different procedures. This assumption fails to recognize that CCF is less likely to occur 

due to an incorrect installation procedure between the two pumps. Furthermore, it can 
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be seen that this formulation continues to ignore the dependency between the EDGs 

and the pumps stemming from exposure to the same maintenance team and external 

environment.  

 

(Mosleh et al. 1998) addresses this issue through the addition of extra CCBEs to offset 

the component symmetry. This approach is valid - however the difficulty comes in the 

quantification of the parameters where the symmetrical CCBEs need to have certain 

events removed for quantification. This requires manual modification during parameter 

estimation and requires the analyst to re-assess the database events for applicability, 

which can be onerous.  

2.6.4. Alpha Factor Model Parameterization 

The next step is to continue to parameterize the CCBEs using the CCF model of choice. 

The AFM is the most commonly used model within the US nuclear industry. 

Accordingly, CCBEs will be parameterized in this dissertation using this method. An 

overview of the AFM is provided within Chapter 4. Assuming the alpha parameters 

were estimated from data collected using staggered testing gives4: 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

. 𝛼𝛼𝑘𝑘. 𝑄𝑄𝑡𝑡 

4 Assumptions about the data used to estimate the alpha factors can change the basic parameter estimator. 

This depends on whether data was collected using a non-staggered or  staggered testing approach. 

Different estimators for these occasions are provided in (Mosleh et al. 1998).  
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where: 

�𝑚𝑚 − 1
𝑘𝑘 − 1 � =

(𝑚𝑚 − 1)!
(𝑘𝑘 − 1)! (𝑚𝑚 − 𝑘𝑘)!

 

𝑄𝑄𝑘𝑘
(𝑚𝑚)=   basic event failure frequency/probability for k components 

failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑄𝑄𝑡𝑡 = total failure frequency/probability of each component due to 
independent and common cause events.  

m  = the total number of components in the CCCG 
k   =  the number of components within a CCCG for example: k out 

of m components failure. 
 

For example 1 the basic events for each component are: 

𝑄𝑄1
(2) = 𝛼𝛼1𝑄𝑄𝑡𝑡 , 𝑄𝑄2

(2) = 𝛼𝛼2. 𝑄𝑄𝑡𝑡 

 

For example 2 the basic events for each component are: 

𝑄𝑄1
(2)[𝐸𝐸] = 𝛼𝛼1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸], 𝑄𝑄2

(2)[𝐸𝐸] = 𝛼𝛼2
[𝐸𝐸]. 𝑄𝑄𝑡𝑡

[𝐸𝐸] 

𝑄𝑄1
(2)[𝑃𝑃] = 𝛼𝛼1

[𝑃𝑃]𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝑄𝑄2

(2)[𝑃𝑃] = 𝛼𝛼2
[𝑃𝑃]. 𝑄𝑄𝑡𝑡

[𝑃𝑃] 

2.7. Data Analysis and Parameter Estimation 

2.7.1. Parameter Estimation – Impact Vectors 

Now that the structure and parameterization of the model is complete, the next step is 

to estimate the parameters of the chosen CCF model. In order to do this, data must first 

be collected and analyzed. 

 

The NRC have established a CCFDB which records CCF events and classifies them 
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according to an impact vector methodology (explained below). The taxonomy and 

uncertainty treatment is detailed in (Wierman et al. 2007) and review of the CCFDB 

and the classification taxonomy will be provided in Chapter 3.  

 

An impact vector is a numerical representation of a CCF event. For a CCCG size of m, 

the impact vector has m+1 elements. The impact vector element, denoted by 𝐹𝐹𝑘𝑘 equals 

1 if the failure of exactly k components failed during the event and 0 otherwise.  

𝐼𝐼ℎ = [𝐹𝐹0, 𝐹𝐹1, … , 𝐹𝐹𝑚𝑚] 

Where: 

𝐼𝐼ℎ = the ℎ𝑡𝑡ℎ hypotheses for an observed CCF event. Where 1 ≤
ℎ ≤ 𝐻𝐻.   

 

For example consider a CCCG size of m = 2. Possible impact vectors could be: 

(Wierman et al. 2007, p.57)  

𝐼𝐼1 = [1, 0, 0]    No components failed 

𝐼𝐼2 = [0, 1, 0]  One and only one component failed 

𝐼𝐼3 = [0, 0, 1]  Two components failed due to a shared cause 

 
Where there is uncertainty, the analyst provides a probability for each possible impact 

vector and aggregates them into a single vector. For example, if two components failed 

and the analyst was 90% confident it was a CCF (meaning there is 10% confidence that 

there were two independent failures), the resulting impact vector would be: (Wierman 

et al. 2007, p.58) 
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𝐼𝐼 ̅ = � 𝑤𝑤ℎ𝐼𝐼ℎ

𝐻𝐻

ℎ=1

 

𝐼𝐼1 = [0, 0, 1],     𝐼𝐼2 = [0, 2, 0] 

𝐼𝐼 ̅  =  0.9𝐼𝐼1  +  0.1𝐼𝐼2  =  [0, 0.2, 0.9] 

When events involve degraded states, the analyst assesses the degree of degradation, 

pk, that would have led to a failure during a typical mission as defined in the PRA and 

uses that value instead of 1 in the impact vector. When CCF events are distributed in 

time between occurrences, the impact vector method adjusts the impact vector values 

based on a binomial probability model. A detailed description of how impact vectors 

account for uncertainty is contained in (Wierman et al. 2007, p.58). 

  

Impact vectors can be mapped from generic data to plant specific analysis by assessing 

the applicability of each vector using a weighting factor. The specific method for 

impact vector mapping and assumptions in doing so will be discussed in section 0.  

 

The sum of the average impact vectors,  𝐼𝐼,̅  from 𝐽𝐽 CCF events can calculated as: 

𝑛𝑛 = [𝑛𝑛0, 𝑛𝑛1, … , 𝑛𝑛𝑚𝑚] 

where 

𝑛𝑛𝑘𝑘 = � 𝐹𝐹𝑘𝑘���(𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

 

𝑛𝑛𝑘𝑘      =  the total number of CCF basic events involving the failure of k 
similar component. 
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𝐹𝐹𝑘𝑘���(𝑗𝑗) = is the 𝑘𝑘𝑡𝑡ℎelement of the average impact vector for the 
𝑗𝑗𝑡𝑡ℎevent. 

 

Table 7 contains example data from an EDG. This data set is a simplified version of 

what is held within the NRC failure databases. The impact vector for each CCF event 

is shown next to the failure information.  

 

The sum of impact vectors for an EDG is: 

𝑛𝑛[𝐸𝐸] = [29400, 343, 7] 

The total failures are: 

𝑛𝑛𝐹𝐹
[𝐸𝐸] = � 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 343 + (2)(7) = 357 

The total demands are: 

𝑁𝑁1
[𝐸𝐸] = 𝑚𝑚 � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 2(29400 + 343 + 7) = 59500 

Where: 

𝑁𝑁𝑘𝑘 =  The number of demands on a subset group of components 
within the CCCG of size 𝑘𝑘. Assuming each time the system is 
demanded, all components are demanded gives 𝑁𝑁𝑘𝑘 = �𝑚𝑚

𝑘𝑘 �𝑁𝑁𝐷𝐷 . 
 
The failure rate is: 

𝑄𝑄𝑡𝑡
[𝐸𝐸] =

𝑛𝑛𝐹𝐹
[𝐸𝐸]

𝑁𝑁1
[𝐸𝐸] =

357
59500

= 0.006 

 

Table 9 contains example data from a pump. The sum of impact vectors for a pump is: 
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𝑛𝑛[𝑃𝑃] = [44433, 168, 7] 

This gives the following quantities: 

 𝑛𝑛𝐹𝐹
[𝑃𝑃] = 182, 𝑁𝑁1

[𝑃𝑃] = 89216, 𝑄𝑄𝑡𝑡
[𝐸𝐸] = 0.00204 

 

Limitation 5: The size of the CCCG for single failures are unknown. 

The population sizes for single failures (shown in red) are not currently recorded in the 

NRC failure databases. This means the failure may have had no possibility of being a 

CCF due to a lack of coupling factors, but should it have occurred where identical 

components were in redundancy, the whole CCCG may have failed. Instead, this value 

is assumed as the average value from the relevant CCF data points (Wierman & 

Kvarfordt 2011) which may be conservative or optimistic dependant on the 

circumstances. This is particularly relevant when mapping data from systems with a 

different number of components in the CCCG (using impact vector mapping) which 

will be discussed in section 0.  

 

  

41 

 

 



 

Table 7: Example Failure Data for Emergency Diesel Generator5 

Failure Data  Impact Vector 
Serial No. Fail Pop 

 
Cause  𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 

1 2 2 IP  0 0 1 
2 1 2 IP  0 1 0 
3 1 2 MH  0 1 0 
4 1 2 IP  0 1 0 
5 1 2 IP  0 1 0 
6 1 2 IP  0 1 0 
7 1 2 MH  0 1 0 
8 1 2 IP  0 1 0 
9 1 2 IP  0 1 0 
10 1 2 MH  0 1 0 
11 1 2 MH  0 1 0 
12 1 2 IP  0 1 0 
13 1 2 MH  0 1 0 
14 1 2 MH  0 1 0 
15 1 2 IP  0 1 0 
16 2 2 MH  0 1 0.5 
17 1 2 MH  0 1 0 
… … … …  … … … 
J 1 2 MH  0 1 0 

 Demands without failures  29400 0 0 
 TOTAL  29400 343 7 

 

Table 8: Summary of Impact Vectors for EDG by Cause 

Cause 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 
IP 

 
 

0 172.2 2.8 
MH 0 154.35 3.15 
EE 0 16.45 1.05 

No Failure 29400 0 0 
Total 29400 343 7 

 

5 Population sizes for single failure (shown in red) are not currently recorded in the NRC CCF database 

or RADS database. 
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Table 9: Example Failure Data for Pump6 

Failure Data  Impact Vector 
Serial No. Fail Pop 

 
Cause  𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 

1 1 2 IP  0 1 0 
2 1 2 MH  0 1 0 
3 1 2 EE  0 1 0 
4 1 2 EE  0 1 0 
5 1 2 EE  0 1 0 
6 1 2 MH  0 1 0 
7 2 2 MH  0 1.6 0.2 
8 1 2 MH  0 1 0 
9 1 2 EE  0 1 0 
10 1 2 EE  0 1 0 
11 1 2 MH  0 1 0 
12 1 2 MH  0 1 0 
13 1 2 MH  0 1 0 
14 1 2 MH  0 1 0 
15 1 2 MH  0 1 0 
16 2 2 MH  0 0 1 
17 1 2 EE  0 1 0 
… … … …  … … … 
J 1 2 EE  0 1 0 

 Demands without failures  44433 0 0 
 TOTAL  44433 168 7 

 

Table 10: Summary of Impact Vectors for Pump by Cause 

Cause 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 𝑭𝑭𝟎𝟎 
IP 

 
 

0 26.06625 0.18375 
MH 0 59.4125 1.8375 
EE 0 82.52125 4.97875 

No Failure 44433 0 0 
Total 44433 168 7 

 

6 Population sizes for single failure (shown in red) are not currently recorded in the NRC CCF database 

or RADS database. 
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2.7.2. Parameter Estimation - Alpha Factor Model 

The AFM parameter represents the failure ratios for each multiplicity of failure within 

the CCCG. Each αk factor is the probability that, given a failure has occurred, k 

components will fail. The AFM parameters are defined and calculated as (Mosleh et al. 

1998, p.76): 

 𝛼𝛼𝑘𝑘 =
𝑛𝑛𝑘𝑘

∑ 𝑛𝑛𝑗𝑗
𝑚𝑚
𝑗𝑗=1

  

𝛼𝛼𝑘𝑘 =  the fraction of total failure events/frequency that occur in the system 
resulting in k out of m failures. 

m =  the number of redundant components 
𝑛𝑛𝑘𝑘 =  the number of failure events/frequency which resulted in k 

components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

 

Figure 15 shows the representation of the alpha factors given the system failure data 

histogram of each failure multiplicity.  
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Figure 15: Representation of alpha factor parameters to failure and demand data-set 

 

For the EDG example the alpha factors can be calculated as: 

𝛼𝛼1
[𝐸𝐸] =

343
343 + 7

= 0.98 

𝛼𝛼2
[𝐸𝐸] =

7
343 + 7

= 0.02 

For the pump example, the alpha factors can be calculated as: 

𝛼𝛼1
[𝑃𝑃] =

168
168 + 7

= 0.96 

𝛼𝛼2
[𝑃𝑃] =

7
168 + 7

= 0.04 
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2.8. System Quantification and Results Interpretation 

2.8.1. System unavailability quantification 

In this step, parameter estimates are combined with the development of the CCBEs to 

quantify the system failure/unavailability probability (Mosleh et al. 1998).  

 

For example 1, the system failure probability is: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)�

2
+ 𝑄𝑄2

(2) 

Where: 

𝑄𝑄1
(2) = 𝛼𝛼1𝑄𝑄𝑡𝑡 , 𝑄𝑄2

(2) = 𝛼𝛼2. 𝑄𝑄𝑡𝑡 , 𝑄𝑄𝑡𝑡 = 0.006 

𝛼𝛼1 = 0.98, 𝛼𝛼2 = 0.02 

Substituting these values into the system equation gives a system failure probability of: 

𝑃𝑃(𝑆𝑆) = (𝛼𝛼1𝑄𝑄𝑡𝑡)2 + 𝛼𝛼2. 𝑄𝑄𝑡𝑡 

= (0.98 ×  0.006)2 + (0.02)(0.006) 

= 1.668𝑒𝑒-4 

Through the inclusion of CCF modeling, the failure probability of the system in 

example 1 has increased from 3.6e-5 (section 2.3.1) to 1.7e-4. This increase by a factor 

of 5 demonstrates the significance of CCF.  

 

For example 2, the system failure probability is: 
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𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)[𝐸𝐸]�

2
+ �𝑄𝑄1

(2)[𝑃𝑃]. 𝑄𝑄1
(2)[𝐸𝐸]� �1 + 𝑄𝑄𝑡𝑡

[𝑃𝑃]� + 𝑄𝑄𝑡𝑡
[𝑃𝑃] �𝑄𝑄1

(2)[𝑃𝑃]�
2

+ 𝑄𝑄2
(2)[𝑃𝑃] �𝑄𝑄𝑡𝑡

[𝑃𝑃] + 𝑄𝑄1
(2)[𝐸𝐸]� + 𝑄𝑄2

(2)[𝐸𝐸] 

Where: 

𝑄𝑄1
(2)[𝐸𝐸] = 𝛼𝛼1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸], 𝑄𝑄2

(2)[𝐸𝐸] = 𝛼𝛼2
[𝐸𝐸]. 𝑄𝑄𝑡𝑡

[𝐸𝐸], 𝑄𝑄𝑡𝑡
[𝐸𝐸] = 0.006 

𝛼𝛼1
[𝐸𝐸] = 0.98, 𝛼𝛼2

[𝐸𝐸] = 0.02 

𝑄𝑄1
(2)[𝑃𝑃] = 𝛼𝛼1

[𝑃𝑃]𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝑄𝑄2

(2)[𝑃𝑃] = 𝛼𝛼2
[𝑃𝑃]. 𝑄𝑄𝑡𝑡

[𝑃𝑃], 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 0.00204 

𝛼𝛼1
[𝑃𝑃] = 0.96, 𝛼𝛼2

[𝑃𝑃] = 0.04 

Substituting these values into the system equation gives a system failure probability of  

1.668e-4: 

 

Through the inclusion of CCF modeling, the failure probability of the system in 

example 2 has increased from 4.82e-5 (section 2.3.2) to 1.668e-4. This is an increase 

of a factor of 3.5. It should be noted that conservative alpha factors have been used, 

and increases may be orders of magnitude larger. 

2.8.2. Results Evaluation and Sensitivity Analysis 

A sensitivity analysis should now be conducted based around the following areas of 

uncertainty: (Mosleh et al. 1998) 

• system probability on variations of the inputs. 

• statistical inference on limited sample size. 
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• uncertainty on assumptions made in the model.  

• uncertainty introduced during data gathering and database development. 

This step will not be discussed further, however more detail can be found in (Mosleh 

et al. 1998). 

2.8.3. Reporting 

The analysis shall be documented such that its findings can be reproduced, focusing on 

assumptions and choice of data for parameter estimation. (Mosleh et al. 1998) 

2.9. Asymmetrical Components 
 

It has already been identified that the modeling of asymmetrical components is difficult 

using the alpha factor method (Limitation 4). This limitation showed that the specific 

system characteristics assume that all components within the CCCG are identical. The 

differences in coupling factors such as location, operator and maintenance staff or even 

manufacturer are not easily accounted for. There is further issue with the assumption 

of asymmetry between failure modes of the components.  

 

Limitation 6: Using the current methodology it is difficult to model dependencies 

between component failure modes.    
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The most basic event within a PRA is typically a component failure mode. For example, 

the two train EDG system fault tree used in example 1 may look like Figure 16. 

Power Failure
(S)

Failure of EDG 1

(A)
Failure of EDG 2

(B)

Failure To 
Run

A

Failure To 
Start

A

Failure to 
Run

B

Failure To 
Start

B
 

Figure 16: Two Train EDG Fault Tree with Failure Modes 

 

The dependency between the failure modes at the component level is accounted for 

through the OR Gate. The component will fail regardless of which failure mode occurs. 

However, the second generator showed strong coupling factors to the first and therefore 

should be modeled as part of a CCCG. The symmetry restriction requires that each part 

of the CCCG has the same failure rate. This means the Failure to Run (FTR) and Failure 

to Start (FTS) modes cannot be within the same CCCG. Instead there will be two 

CCCGs, a  𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹 and a 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹. 
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The result is an assumption of independence between failure modes. If both generators 

share the same building and the first generator fails to run due to the room being 

flooded, the model will believe there is no restriction on the second generator starting.  

 

This problem was described in (Mosleh et al. 1998) when discussing the need to model 

the asymmetrical situation of service water pumps in standby and continuous operation. 

This was treated through the addition of an extra basic event to account for 

asymmetrical features. However, quantification was a task which required 

reclassification of CCF events. (Jo 2005) suggested a simplified method that models 

the standby and running pumps separately, and then added an additional event of failure 

of all pumps. This method was more suitable to situations where the failure of all pumps 

was a fraction of the CCF events. (Kang et al. 2009) proposed a method which used 

primary and secondary components and uses a ratio of symmetrical and asymmetrical 

events in the quantification.  

 

In each case, the quantification activity relied on manual separation of the dataset into 

symmetrical and asymmetrical events for classification. The GDM proposed in this 

dissertation overcomes this issue by using the failure cause classification within the 

database, therefore allowing a more automated analysis process.  
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2.10. Impact Vector Mapping 
There are two types of differences between the system for which data is available and 

the target system.  These are qualitative and quantitative. Qualitative differences 

include the assessment of the system features and operating environment, and includes 

different size CCCGs. (Mosleh et al. 1998). Quantitative differences occur when the 

system in question contains CCCGs that are larger than those for which data exists, the 

impact vectors created from the database are required to be ‘mapped’ to the size of the 

target system. Mapping is a complex task, therefore this section will only summarize 

the ‘mapping up’ process. For more information refer to (Mosleh et al. 1998; Vaurio 

2007) 

 

‘Mapping up’ is required when the target system is using impact vectors from smaller 

sized CCCGs. The example used will be to map from a 2 component CCCG (𝑚𝑚 = 2) 

to a 4 component CCCG (𝑗𝑗 = 4), where 𝑚𝑚 is the size of data vector, and 𝑗𝑗 is the size of 

the target system).  So the question is, given a set of data from a 2 component group, 

what would the data look like if it had been a 4 component group.  

�𝐹𝐹0
(2), 𝐹𝐹1

(2), 𝐹𝐹2
(2)� → �𝐹𝐹0

(4), 𝐹𝐹1
(4), 𝐹𝐹2

(4), 𝐹𝐹3
(4), 𝐹𝐹4

(4)�  

2.10.1. Mapping Up Independent Events 

The mapping up of independent events is straightforward. If there are 𝑛𝑛1
(2) independent 

events in a two component system, then this should double if there were twice the 

number of components exposed (four components)- 
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𝑛𝑛1
(𝑗𝑗) =

𝑗𝑗
𝑚𝑚

𝑛𝑛1
(𝑚𝑚) 

𝑛𝑛1
(4) =

4
2

𝑛𝑛1
(2) 

2.10.2. Mapping Up :Lethal Shocks 

The NRC failure event database includes a classification that determines if an event 

was a lethal or non-lethal shock. For a lethal shock, it is assumed that the whole CCCG 

would fail, regardless of size. Therefore: 

𝑛𝑛𝑗𝑗
(𝑗𝑗) = 𝑛𝑛𝑚𝑚

(𝑚𝑚) for lethal shocks 

𝑛𝑛2
(2) = 𝑛𝑛4

(4) for lethal shocks 

2.10.3. Mapping Up Non-Lethal Shocks 

In order to map non-lethal shocks, a binomial distribution is used where 𝜌𝜌 is the 

conditional probability of each component failure given a shock. When mapping up, it 

is assumed that the parameter 𝜌𝜌 remains unchanged. For brevity, only the calculation 

‘to’ 𝑛𝑛2
(4) will be calculated. This is done using the following procedure: (Mosleh et al. 

1998) 

 

The general form of the Binomial Failure Rate (BFR) equation is: 

𝑛𝑛𝑘𝑘
(𝑚𝑚) = 𝜇𝜇(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘𝜌𝜌𝑘𝑘 
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Where: 

m  = is the size of the of the CCCG 
k   = is the number of failures 

 

The BFR equations for 'from' vector are (Mosleh et al. 1998, pp.C–13): 

𝑛𝑛0
(2) = 𝜇𝜇(1 − 𝜌𝜌)2 

𝑛𝑛1
(2) = 2𝜇𝜇(1 − 𝜌𝜌)𝜌𝜌 

𝑛𝑛2
(2) = 𝜇𝜇𝜌𝜌2 

The BRF equations for the 'to' vector are (Mosleh et al. 1998, pp.C–13): 

𝑛𝑛0
(4) = 𝜇𝜇(1 − 𝜌𝜌)4 

𝑛𝑛1
(4) = 4𝜇𝜇(1 − 𝜌𝜌)3𝜌𝜌 

𝑛𝑛2
(4) = 6𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2 

𝑛𝑛3
(4) = 4𝜇𝜇(1 − 𝜌𝜌)𝜌𝜌3 

𝑛𝑛4
(4) = 𝜇𝜇𝜌𝜌4 

The 𝑛𝑛2
(4) equations can be reformulated as contributions from the 𝑛𝑛𝑖𝑖

(2) terms where 0 ≤

𝑖𝑖 ≤ 𝑚𝑚. Table 11 compares the basic events from a 4 train system and a 2 train system 

to determine how often the 4 train elements would have been affected the 2 train 

elements.   
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Table 11: Comparison of 4 train and 2 train system basic events 

Basic Events 
in 4 Train Sys 

Basic Events 
in 2 Train Sys 

A 
B 
C 
D 

A 
B 
None 
None 

AB 
AC 
AD 
BC 
BD 
CD 

AB 
A 
A 
B 
B 
None 

ABC 
ABD 
ACD 
BCD 

AB 
AB 
A 
B 

ABCD AB 
 

From the table we can determine that 𝑛𝑛2
(4) is made up of  4

5
 from 𝑛𝑛1

(2) and 1
5
 from 𝑛𝑛2

(2). 

This is because if the data from a 2 train system is used, in a four train system the 

following events would have shown up as two failures AB, A, A, B, B, and None.  

 

Limitation 7: In impact mapping up, the contribution from demands has not been 

included as possible failure events. 

It should be noted, that the mapping from 𝑛𝑛0
(2) has not been included. In a two train 

system, some events may not have triggered any failure, that in a four train system may 

have failed one or more components. The relevant information is available, and so this 

issue can be rectified through a procedural change.  
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Recall that: 

𝑛𝑛2
(4) = 6𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2 

This equation can be reorganized such that it may be a function of the 𝑛𝑛𝑖𝑖
(2) events by 

splitting into the portions 4/5 as observed from 𝑛𝑛1
(2) and 1/5 as observed from 𝑛𝑛2

(2).  

𝑛𝑛2
(4) =

4
5

𝑛𝑛2
(4)

���
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛1

(2) 

+
1
5

𝑛𝑛2
(4)

���
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛2

(2)

 

Substituting  𝑛𝑛2
(4) = 6𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2 into this equation gives: 

𝑛𝑛2
(4) =

24
5

𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2
�����������

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑛𝑛1
(2)

+
6
5

𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2
���������
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛2

(2)

 

Now to make the first term as a function of 𝑛𝑛1
(2) and second term a function of 𝑛𝑛2

(2). 

𝑛𝑛2
(4) =

24
5 𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2

𝑛𝑛1
(2) 𝑛𝑛1

(2) +
6
5 𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2

𝑛𝑛2
(2) 𝑛𝑛2

(2) 

𝑛𝑛2
(4) =

24
5 𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2

2𝜇𝜇(1 − 𝜌𝜌)𝜌𝜌
𝑛𝑛1

(2) +
6
5 𝜇𝜇(1 − 𝜌𝜌)2𝜌𝜌2

𝜇𝜇𝜌𝜌2 𝑛𝑛2
(2) 

𝑛𝑛2
(4) =

12
5

(1 − 𝜌𝜌)𝜌𝜌 𝑛𝑛1
(2) +

6
5

(1 − 𝜌𝜌)2𝑛𝑛2
(2) 
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The final result for the mapping rule is7: 

𝑛𝑛2
(4) =

12
5

(1 − 𝜌𝜌)𝜌𝜌 𝑛𝑛1
(2) +

6
5

(1 − 𝜌𝜌)2𝑛𝑛2
(2) 

2.11. Event Assessment 

2.11.1. Event Assessment Using AFM 

Event assessment is an application of PRA in which observed equipment failures and 

outages are mapped into the risk model to obtain a numerical estimate of the event’s 

risk significance (Kelly et al. 2011). In conducting the event assessment, the PRA 

model has the observed failures instantiated as failed and the observed successes are 

left as possibilities.  

 

For every mission time the possible outcomes from the CCCG range from no failures 

to all failed.  After a failure occurs, the outcome of having zero failures ceases to be a 

possibility. Therefore the remaining options must have their probabilities normalized, 

according to the following rule, as shown in Figure 17 and Figure 18. 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)

𝑃𝑃(𝐵𝐵)  

7 Note that this result is different to the mapping rule provided in  (Mosleh et al. 1998; Mosleh et al. 

1988) 𝑃𝑃2
(4) = 5

2
𝜌𝜌(1 − 𝜌𝜌)𝑃𝑃1

(2) + (1 − 𝜌𝜌)2𝑃𝑃2
(2).  
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Figure 17: : The probability distribution for the number of failures at the end of a mission (O). 

 

Figure 18: The probability distribution for the number of failures at the end of a mission time 

(O), after a failure has been observed. 

 

The system failure probability for example 1 is given as: 

𝑃𝑃(𝑆𝑆) = 𝛼𝛼1
2𝑄𝑄𝑇𝑇

2 + 𝛼𝛼2𝑄𝑄𝑇𝑇 

If we assume that component B fails, then the conditional probability for S given B is: 

0hrs                                       1 x Time Period                                      24hrs 

0 
1 

2 

0 0 

𝑃𝑃(𝑂𝑂 = 𝑘𝑘) 

 

 

0hrs                                       1 x Mission Period                                      24hrs 

0 1 1 

2 

0 

𝑃𝑃(𝑂𝑂 = 𝑘𝑘) 
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𝑃𝑃(𝑆𝑆|𝐵𝐵) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)

𝑃𝑃(𝐵𝐵)  

B can fail from two of the cut sets provided: 

𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖|𝐵𝐵) =
𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖)

𝑃𝑃(𝐵𝐵) =
𝑄𝑄1

(2)𝑄𝑄1
(2)

𝑄𝑄𝑇𝑇
 

𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐵𝐵) =

𝑄𝑄2
(2)

𝑄𝑄𝑇𝑇
 

Summing these together we get: 

𝑃𝑃(𝑆𝑆|𝐵𝐵) = 𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖|𝐵𝐵) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴|𝐵𝐵) 

=
𝑄𝑄1

(2)𝑄𝑄1
(2) +  𝑄𝑄2

(2)

𝑄𝑄𝑇𝑇
 

= (𝛼𝛼1)2𝑄𝑄𝑇𝑇 + 𝛼𝛼2 

Substituting in parameter values gives: 

𝑃𝑃(𝑆𝑆|𝐵𝐵) = (𝛼𝛼1)2𝑄𝑄𝑇𝑇 + 𝛼𝛼2 

= (0.98)2(0.006) + 0.02 

= 0.02576 

 

The probability of system failure for example 1 has increased from 1.546e-4 to 0.02576 

with knowledge that component B has failed. If components A and B were independent, 

the probability of system failure would have been 0.006 which would have significantly 

under-estimated the event assessment. 

 

For example 2, if component 𝑃𝑃1 fails, then the conditional probability for S given 𝑃𝑃1 is: 
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𝑃𝑃(𝑆𝑆|𝑃𝑃1) =
𝑃𝑃(𝑆𝑆 ∩ 𝑃𝑃1)

𝑃𝑃(𝑃𝑃1)  

The calculation for each cutset is shown in Table 12. 

Table 12: Cut Sets for Example 2 in event assessment 

Cut Set 𝑷𝑷(𝑺𝑺 ∩ 𝑷𝑷𝟏𝟏)
𝑷𝑷(𝑷𝑷𝟏𝟏)  

Boolean 
Reduction 

Basic Parameter 

�𝐸𝐸1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖� �𝛼𝛼1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸]�
2
 

�𝑃𝑃1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼1

[𝑃𝑃]𝛼𝛼1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸] 

�𝑃𝑃1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3�
𝑃𝑃(𝑃𝑃1)  �𝛼𝛼1

[𝑃𝑃]𝑄𝑄𝑡𝑡
[𝑃𝑃]�

2
 

�𝐸𝐸1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖
∩ 𝑃𝑃3� 

𝛼𝛼1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸]𝛼𝛼1
[𝑃𝑃] �𝑄𝑄𝑡𝑡

[𝑃𝑃]�
2
 

�𝑃𝑃3, 𝑋𝑋𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝑃𝑃3 ∩ 𝑋𝑋𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃3 ∩ 𝑋𝑋𝑃𝑃1,𝑃𝑃2�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼2

[𝑃𝑃]𝑄𝑄𝑡𝑡
[𝑃𝑃] 

�𝐸𝐸2,𝑖𝑖 , 𝑋𝑋𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑋𝑋𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑋𝑋𝑃𝑃1,𝑃𝑃2�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸]𝛼𝛼2

[𝑃𝑃] 

�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝛼𝛼2
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸] 

 

Using rare event approximation and summing the last column of Table 12 gives 

𝑃𝑃(𝑆𝑆|𝑃𝑃1) = 6.120𝑒𝑒-3 which is an increase from the probability of system failure, 

𝑃𝑃(𝑆𝑆) = 1.668𝑒𝑒-4. 

2.12. Current Issues in CCF Modeling Specific to Event Assessment 
The limitations which have been identified during the CCF analysis are undesirable 

when conducting event assessments. These limitations are imposed by either the data 

collection method, the Basic Parameter Model or the Alpha Factor Model.  
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Limitation 7: Event assessments do not incorporate knowledge of the cause of 

failure nor the likelihood of propagation to other components. 

 

The primary issue is that the conditional probability only accounts for knowledge that 

a particular component failed. It has no regard for the cause of failure or whether that 

cause could be propagated through a coupling factor to other components.  

2.13. Mission Time 
Probability Risk Assessments (PRA) are made up of many different failure types which 

are motivated by different life units. For example, a ‘failure to start’ probability is 

determined by how many start demands are placed on the item. A ‘failure to run’ 

probability is determined by how many hours the component is required to run. In order 

to provide consistency across the PRA, a standard mission time is defined.  

 

For the purposes of the NRC scenarios which require the plant to be made safe, the 

mission period is determined as the time it takes to establish a safe and stable condition. 

Any failure during that time is undesirable, and the failure of all trains of a redundant 

system during that time will cause system failure.  

 

The determination of a mission time also affects how CCFs are defined, and 

subsequently recorded.  For example, a PRA defines the mission time as 24 hours, and 
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a faulty maintenance procedure caused two redundant pumps to fail. The first pump 

failed today, and the second one failed six days later. It is clear that if this had occurred 

during a plant shut-down, the dependent failure would not have failed the two train 

system, as the second pump would have lasted the 24 hours (i.e mission time).  

However if the mission time is changed to seven days, then the two failures would 

indeed be classed as a CCF. 

 

A change towards a longer definition of mission time means a transition to higher alpha 

factors. However, the data which has been recorded within the Common Cause Failure 

Database, has classified CCF events based on a 24 hour mission time. The impact 

classification rules allow for uncertainty by incorporating a ‘delay’ factor. However, as 

shown in Figure 19, because CCF events have been recorded within the CCF database 

based on a definition of two or more events occurring within 24 hours, the CCF 

database cannot assist in the quantification of parameters to PRAs where the mission 

time is different (for example, up to years for NASA missions).  
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Figure 19: Recording of CCF Events into CCFDB 

 
Limitation 9: The CCF database is required to have the safe definition of 
mission time in order to be used for parameter estimation.  
 

2.14. Summary of Issues 
This chapter has provided an overview of the methodology currently used for treating 

the soft dependencies responsible for the CCF phenomena within a PRA.  The 

methodology shown is based upon the US NRC guidance provided in (Mosleh et al. 

1998). Two examples have been used to assist in the explanation of the technique and 

to help show explicitly the limitations of the techniques. These limitations and the 

research objectives will form the basis for proposed changes to the CCF analysis 

methodology.  

1 Mission 24 Hours 

CCF Database 

48 Hours 

Can not be used for 48 Hour Mission 
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The primary limitations of the CCF analysis methodology, identified in this chapter, 

are: 

• Limitation 1: The current methodology does not account for partial 

dependencies between components.  

• Limitation 2: Due to limitation 1, the current methodology does not allow a 

component to be a member of multiple CCCGs. 

• Limitation 3: Common Cause Basic Events are modeled as independent events 

instead of mutually exclusive events. 

• Limitation 4: Using the current methodology it is difficult to model 

asymmetrical components.  

• Limitation 5: The size of the CCCG for single failures are unknown. 

• Limitation 6: Using the current methodology it is difficult to model 

dependencies between component failure modes.    

• Limitation 7: In impact mapping up, the contribution from demands has not 

been included as possible failure events. 

• Limitation 8: Event assessments do not incorporate knowledge on the cause of 

failure nor the likelihood of propagation to other components. 
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• Limitation 9: The CCF database is required to have the same definition of 
mission time in order to be used for parameter estimation. 

  

64 

 

 



 

Chapter 3: Definition of Common Cause Failure 

3.1. Introduction 
Despite the proliferation of literature on Common Cause Failure, there are still some 

inconsistencies and misinterpretation over its definition. This is predominately because 

the definition of a Common Cause Failure and the scope of Common Cause Failure 

modeling within a particular system may be different.  

 

The disclaimer at the beginning of NUREG/CR-4780 (Mosleh et al. 1988) 

demonstrates the lack of consensus regarding the definition of a CCF: 

It is not the purpose of this report to resolve, once and for all, the issues 

associated with attempts to provide a clear and unambiguous definition of 

the term common cause event…Here we define what common cause events 

mean to the system analyst. 

 

This chapter will cover a literature review of common cause failure definitions, discuss 

the important characteristics that create the phenomena of common cause failure, and 

propose a revised CCF definition.  
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The features of common cause failure which will be discussed are: 

• Multiplicity of failure 

• Simultaneity of failure 

• Functional failures versus component failure 

• Independent failure versus single failure 

• Explicit modeling of dependency versus implicit modeling 

• Redundancy of components 

• Symmetry of components 

3.2. Test Cases 
In order to explore the features of common cause failures, the following test cases have 

been created.  

 
Test Case 1. A mission time is defined as 48 hours. During the first 24 hours period, a 

pump failed due to an incorrect maintenance procedure cause. During the second 24 

hour period the second pump failure occurred also due to an incorrect maintenance 

procedure. The failure was rectified within minutes. The same procedure was used on 

the two pumps. Two failures occurred within the mission time, with a shared cause and 

coupling factor. 
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Pump 1                 
                 

Pump 2                 
                 

 
     Uptime  Downtime        Mission Time  

 

Figure 20: Test Case 1 scenario 

 

Test Case 2. A mission time is defined as 24 hours. The same events of test case 1 

occur where only one failure occurred during each mission, with a shared cause and 

coupling factor. The pumps were repaired within 6 hours.  

                 

Pump 1                 
                 

Pump 2                 
                 

 
     Uptime  Downtime        Mission Time  

 

Figure 21: Test Case 2 scenario 

 
 
Test Case 3. A mission time is defined as 24 hours. The same events of test case 1 

occur however it takes three days for each pump to be repaired. The two pumps are in 

redundancy and provide a safety critical function. Therefore during the second mission 

period, the safety function provided by the pumps failed. 
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Pump 1                 
                 

Pump 2                 
                 

 
     Uptime  Downtime        Mission Time  

 

Figure 22: Test Case 3 scenario 

 

Test Case 4. A mission time is defined as 24 hours. During a mission time two pumps 

were unable to perform their function, due to loss of AC power. The failure was 

functional; however the components were operable if AC power could be provided.  

 

Test Case 5. A mission time is defined as 24 hours. During a mission a fire occurred 

which destroyed the building including the two pumps. This failure mechanism and 

dependency had been explicitly modeled within the PRA.  

 

Test Case 6. A mission time is defined as 24 hours. The same events of Test Case 6 

occur however the fire and dependency between the pumps had not been explicitly 

modeled within the PRA.  

 

Test Case 7. A mission time is defined as 24 hours. During a mission time, a pump and 

a generator, which were co-located, failed due to extremely high ambient temperatures 

within the room. 
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Test Case 7. A mission time is defined as 24 hours. During a mission time, two pumps 

which were co-located, failed due to extremely high ambient temperatures within the 

room. One pump provided a safety function to the plant operation, while the second 

pump cleared storm water.  The two pumps were not in redundancy. 

 

Test Case 8. A mission time is defined as 24 hours. During a mission time, a pump and 

a generator, which were co-located, failed due to extremely high ambient temperatures 

within the room. 

3.3. Literature Review 
 

In WASH-1400 (Rasmussen 1975) the term Common Mode Failures (CMF) was used 

as an all-inclusive term. Almost any multiple failure event which are not independent 

were included in the CMF definition. (Rasmuson et al. 1979) discusses how the term 

Common Cause Failure is a preferred term and more specific in its meaning. 

 

A detailed literature review has been conducted by Smith and Watson in 1979, collating 

nine different definitions which had used 12 attributes to describe CCF (Smith & 

Watson 1980). Each definition was compared against the 12 attributes and found that 

none of the definitions agreed. Of unanimous agreement between the definitions was: 

• the requirement for multiple failures; 

69 

 

 



 

• the requirement for a shared cause; 

• no requirement that the components actually be challenged during the time it 

failed; 

• no requirement that a component should have the same failure mode (despite 

the term Common Mode Failure being popular).  

In response to this analysis, Smith and Watson proposed a new definition of CCF: 

Inability of multiple, first-line items to perform as required in a defined 

critical period of time due to a single underlying defect or physical 

phenomenon such that the end effect is judged to be a loss of one or more 

systems. 

 

In an earlier version of NUREG guidance on CCF, NUREG/CR-4790 (Mosleh et al. 

1988) the Common Cause Event is defined as: 

In the context of system modeling, common cause events are a subset of 

dependent events in which two or more component fault states exist at the 

same time, or in a short time interval, and are a direct result of a shared 

cause. 

 

Vaurio suggested that each analyst select the attributes essential for his definition and 

explain under what titles the other classification of failures have been placed. (Vaurio 
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1981) 

 

Paula, provided a review of the definition of CCF such that guidance can be provided 

on the data collection of such events (Paula 1995). Whilst acknowledging that CCF is 

defined by the analyst and both general and narrow definitions may be true, she added: 

CCF events are dependent failures resulting from causes that are not 

explicitly modeled. 

 

The primary reference for this thesis is NUREG/CR-5485 (Mosleh et al. 1998) which 

defines Common Cause Failure as: 

A CCF event consists of component failures that meet four criteria:  

(1) two or more individual components fail or are degraded, including 

failures during demand, in-service testing, or deficiencies that would have 

resulted in a failure if a demand signal had been received;  

(2) components fail within a selected period of time such that success of 

the PRA mission would be uncertain;  

(3) component failures result from a single shared cause and coupling 

mechanism; and  

(4) a component failure occurs within the established component 

boundary.  

 

Despite what seems to be a convergence in the definition of CCF, current literature still 
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uses and misuses these terms, adding to the confusion. For example (Kaufman et al. 

2000) uses the term Common Mode Failure and Ericson includes a definition of CMF 

which is the opposite to its early use (in WASH-1400): (Ericson II 2005) 

“Common Cause Failure (CCF). The failure (or unavailable state) of 

more than one component due to a shared cause during the system 

operation.” “A CCF is the simultaneous failure of multiple components 

due to a common or shared cause.” “CCFs include common mode failures 

(CMF), but CCF is much larger in scope and coverage.” 

“Common Mode Failure (CMF). The failure of multiple components in 

the same mode (NASA 2002). An event, which simultaneously affects a 

number of elements otherwise, considered to be independent.” “The term 

CMF, which was used in the early literature and is still used by some 

practitioners, is more indicative of the most common symptom of the CCF, 

but it is not a precise term for describing all of the different dependency 

situations that can result in a CCF event. A CMF is a special case of a 

CCF, or a subset of a CCF.” 
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3.4. Definition Discussion 

3.4.1. Multiplicity of Failure 

In order for there to be a common cause failure, there is little dispute that this will 

involve multiple failures. However, the concept of multiplicity is directly linked to the 

concept of simultaneity. The difference between a multiple failure in Test Case 1 and 

a multiple failure in Test Case 2 is the definition of simultaneity.  

3.4.2. Simultaneity  

The presence of a common cause failure can only cause system failure if the 

components fail in such a way that the functions from multiple components are 

concurrently unavailable.   

 

Simultaneity has two components to it, the first being the mission time and the second 

being the rectification time. 

 

Mission Time 

As discussed in section 2.13, the specification of a mission time is critical in order to 

define simultaneity. For example Test Case 1 and Test Case 2 had exactly the same 

events occur, however the definition of mission time changed. This means Test Case 1 

is a CCF and Test Case 2 is not.   
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The concern of multiple failures within the mission time may be independent of the 

rectification time. For example in Test Case 1, the components were repaired within 

minutes, and therefore it is unlikely the two components would fail simultaneously, 

however these multiple failures still place an uncertainty on the system to complete the 

mission, as repair is not certain. Therefore the NUREG/CR-5485 definition includes 

the condition “success of the PRA mission would be uncertain”. 

 

Rectification Time 

The mission time is critical in defining CCF events where components cannot be 

repaired, or have long repair times and the mission period is short. However, in most 

circumstances it is not the mission time that provides the definition of simultaneity, it 

is the rectification time. This makes the simultaneity part of the CCF definition 

different for each component type and dependent the specific maintenance support 

system.  

 

For example, Test Case 2 and Test Case 3 had exactly the same events occur except 

Test Case 3 had a longer repair time. Both test cases are not classified as CCF given 

the definition in NUREG/CR-5485 (Marshall et al. 1998) however the dependencies 

between the two pumps caused a system critical failure. Furthermore Test Case 1 had 

an almost instant repair time, so despite multiple failures occurring during the mission 

time, it is unlikely this would have affected the provision of the system critical function.  
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The CCF definition requires the concept that multiple components are unable to 

perform their function at the same time. This definition is more general than using a 

mission time and includes the ideas discussed regarding repair times.  

3.4.3. Functional Failure and Physical Failure (System Boundary) 

Components mail fail to perform their required functions by either having a failure 

within its system boundary, our having a failure occur outside its system boundary 

which fails to provide a necessary condition for the component to work.  

 

The definition provided by NUREG/CR-5485 (Marshall et al. 1998) recognizes this 

distinction between classes of dependencies, where most simplified definitions are 

deficient. This is shown through Test Case 4 where the pumps fail to perform their 

function due to the failure of shared dependency on AC power. This is not a CCF. 

 

The definition of a CCF must have a more than one failure, and therefore the definitions 

of single failure and independent failure are not required, except for the purposes of 

modeling. 

3.4.4. Independent and Common Cause Failures 

Many of the models require the separation of independent failure to common cause 

failures. This cannot be determined from the failure information itself, and is usually 

assumed to be the single failure observed within a CCCG.  Is a single failure within a 
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CCCG an ‘independent failure’ which would have caused only that component to fail, 

regardless of size of the CCCG, or is it a CCF failure which had the potential to cause 

other components to fail. Different interpretations of this question have prompted a 

myriad of different CCF models. 

 

The separation of single and independent failures only becomes a problem when using 

single failures to estimate the potential for CCF such as during impact vector mapping. 

If only a single failure occurred, regardless of whether a shared cause existed and there 

was potential for another component to fail, the fact remains that no common cause 

failure occurred.  

 

However, when using the information from a single failure to predict CCF behavior, 

this problem can be solved by acknowledging that failures occur probabilistically in 

the presence of a cause. A failure cause condition may be present to multiple 

components, but only one component fails. Each component’s failure rate is the sum 

of its failures from each cause. Each failure has the possibility of another component 

failing, should it share the same cause environment.  

 

With this understanding of the problem, the definition of independent failure is a 

failure, whose failure cause condition cannot be shared by other components. Therefore 

the definition of an independent failure is a function of the qualitative assessment 

discussed in section 2.4.1 and the cause of the failure. This definition allows for the 

76 

 

 



 

single failure of a component to still be understood as a CCF event.  

 

Using this understanding of independent failures and CCFs, the proposed General 

Dependency Model does not required a distinction to be made between independent 

and single failure events for modeling, other than through the qualitative assessment of 

coupling factors.  

 

By definition a CCF must have a more than one failure, and therefore the definitions 

of single failure and independent failure are not required, except for the purposes of 

modeling. 

3.4.5. Explicit and Implicit Dependencies 

The unexpected failure of multiple components occurs because the events leading to 

the failure had not been anticipated, despite known soft dependencies having existed 

between the components. As risk modelers learn more about a particular phenomenon 

(like extreme external environment events) more detailed models are created, and the 

dependencies between components, relating to that cause, become explicitly included 

within the model.  

 

This means the definition of Common Cause Failure will change between each PRA 

analysis, and depends on the level of detail to which the model explicitly includes 

dependencies between components. This is the first consideration which makes a CCF 
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definition dependent on the model instead of a definition of the system and 

interpretation of events. So the question becomes, whether the definition of CCF is a 

modeling concept, or whether it is a definable event given a system definition.  

 

Test Case 5 and 6 fail both pumps due to a fire.. Test Case 5 had this scenario explicitly 

modeled, and Test Case 6 did not. In the case of the CCFDB, such events are not 

recorded within the database, because it is common practice within the nuclear industry 

for these events to be modeled explicitly. Therefore the data which is recorded within 

the CCFDB itself is dependent on the modeling standards set by that industry.  

 

In using the definition for data collection and modeling, two options exist: 

• Exclude reference to modeling within the definition. This is the status quo, 

which provides a broad definition of CCF which allows for explicit or implicit 

modeling. This would result in both Test Case 5 and Test Case 6 being classified 

as CCFs. The activity of modeling external environmental events, or fire events 

within the nuclear industry would be considered a type of CCF modeling 

(despite it being explicit treatment of those failure causes). Furthermore the 

CCFDB only collects a portion of CCF events, those which support implicit 

CCF modeling.  

• Include reference to modeling within the CCF definition. By including 

modeling as part of the CCF definition means that CCF is a modeling concept 
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used to represent a sub-set of dependent failures. This means an observed event 

cannot be classified as a CCF unless there is knowledge of the PRA model used 

to represent the failure. Using this interpretation, Test Case 5 would not be a 

CCF, and Test Case 6 would be a CCF. 

The second option is an important step in reducing confusion over what a CCF is, and 

will be used in this thesis. It clarifies why in some industries failure due to fires may 

be classified as CCF and in others it is not. It explains the different sizes of alpha factors 

for identical systems where the models contain different levels of details. It also makes 

clear the important assumptions used when calculating generic model parameters to be 

used in other industries.  

 

The definition of a CCF requires the concept of modeling implicit dependency 

relationships. 

3.4.6. Redundant Components 

The most common application of CCF modeling is on redundant components. While 

the concept of CCF directly attacks the advantages of redundancy, it is not exclusive to 

redundant components. For example, Test Case 7 would be considered a CCF despite 

the two pumps not being in a redundant configuration.  

 

The definition for CCF does not require the concept of redundancy.  
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3.4.7. Identical Components 

The most common application of CCF modeling is on identical components. This is 

because the target of CCF modeling is redundancy and in many cases redundancy is 

provided through the installation of like components on parallel trains. The second 

reason is because almost all CCF modeling techniques require the assumption of 

symmetry in order to simplify the analysis. This is discussed in throughout Chapter 2.  

 

The phenomena of CCF is not restricted to identical components. For example, in Test 

Case 8 the generators both failed within a mission time due to a shared cause and 

coupling factor. This can be classified as a CCF event which involved two different 

component types.  

 

The definition for CCF does not require the concept of component symmetry.  

3.5. Proposed CCF Definition 
 

A CCF event consists of component failures that meet five criteria:  

(1) two or more individual components fail or are degraded, including failures during 

demand, in-service testing, or deficiencies that would have resulted in a failure if a 

demand signal had been received;  
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(2) components fail within a selected period of time such that multiple components are 

unable to perform their intended function or success of the PRA mission would be 

uncertain.  

(3) component failures result from a single shared cause and coupling mechanism; and  

(4) a component failure occurs within the established component boundary. 

(5) the dependency between components has not already been explicitly modeled. 

While this definition is very specific, a shortened version is also desirable. The following 

simple CCF definition is proposed; 

 

Unexpected simultaneous failure of two or more components due to a shared cause. 

 

Using this simple definition, the term ‘unexpected’ is to separate explicit and implicit failures, 

and the word ‘simultaneous’ is left as a descriptive term requiring further definition by the 

reader.  

 

Table 13 provides a comparison between the classification of the test cases given the 

NUREG/CR-5485 definition and the proposed definition.  

 

Table 13: Comparison of CCF definitions for each test case 

Test 
Case 

Test Case Feature NUREG/CR-
5485 

Proposed 

1 Two failures in mission time with shared 
cause and coupling factor, with instant 
repair. 

Yes Yes 
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2 Two failures, but not within the same 
mission time. 

No No 

3 Two failures, not within the same mission 
time, but due to extensive repair times cause 
system unavailability. 

No Yes 

4 Functional failure without component 
failure 

No No 

5 Failures explicitly modeled Yes No 
6 Failure implicitly modeled Yes Yes 
7 Different components failed Yes Yes 
8 Components not in redundancy fail Yes Yes 

  

82 

 

 



 

Chapter 4: Common Cause Failure Database Taxonomy 

Data for common cause failures is extremely difficult to obtain. Common Cause Failure 

events are rare events that even after over 20 years of data collection from joint nuclear 

data collection initiatives, the number of CCF events are in the hundreds (Wierman et 

al. 2007). Not only are the event infrequent, but it is difficult to detect a CCF even if 

failure data is abundant. Issues about the scope of CCF, as discussed in chapter 3, and 

manual review of failure events make data collection resource intensive.  

 

Due to the difficulties in obtaining CCF data, a key feature of all CCF models is to 

either use qualitative assessments and expert judgment, or maximize the use of the 

available data through the use of assumptions which may not be possible to verify. 

Despite quantitative models being proposed during the late 1970s, early 1980s 

(Fleming 1975; Mankamo 1977; Mosleh & Siu 1987; Vesely 1977) the availability of 

data to support such models was limited. In 1985 the first generic CCF model 

parameters were published as EPRI NP-3967, however the study had limitations that 

prevented the quantification of many models. Over the past 20 years a common goal 

has been to reach consensus for the methods of recording and classifying data and the 

collation of data from multiple sources into failure databases.  

 

There is a direct relationship between the way failure data is recorded and the ability to 

support CCF model quantification. For example in 2004 INL began recording the 
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failure cause for single failure events, and back-fit these classifications to data from 

1997 (Wierman 2013). This is a key information requirement for both the Partial Alpha 

Factor Model (PAFM) and the General Dependency Model (GDM) proposed within 

this thesis.  

 

Another key information requirement of the PAFM and GDM is clear relationship 

between the failure cause and the coupling factor.  For example, if a failure occurs and 

the cause is recorded in the failure database, the Partial Alpha Factor wants to know 

what coupling factors this failure could have propagated through.  The General 

Dependency Model quantifies the strength of each coupling factor using data from 

failure causes. This will be a difficult task if failure causes could have propagated 

through multiple coupling factors and visa versa.  

 

This chapter will assess the NRC Common Cause Failure Database (CCFDB) data to 

determine if the classification allows for inference of coupling factors from causes and 

if there is ambiguity between classifications.  

4.1. Literature Review 
The following section will provide a brief literature review of failure taxonomies for 

common cause failure events.  For brevity this review will not compare or list the 

classification taxonomies, as they have little impact on the objective of this chapter. 

The classification scheme and definition of terms will change between industries and 
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needs to be established by industry experts. Particular attention will be paid to the 

development of the classification scheme currently used within the CCFDB.  

 

In 1979, Hagan summarized the early classification schemes and found general 

agreement in their approach. In 1979 Edwards and Watson proposed a classification 

system which divided causes into Design, Construction, Procedural and 

Environmental, with 46 sub-categories (Edwards & Watson 1979). In 1988 

NUREG/CR-4780 summarized the PRA Procedures Guide, EPRI Integration 

Procedure Guide, the EPRI Event Classification Scheme for their effect on PRA. Many 

of the classification systems also classified the type of dependency, as the definition 

for common cause failure was also in a state of flux. All classification schemes had the 

notion of cause and coupling factor (Mosleh et al. 1988).  

 

Current guidance introduces classification systems for defenses, although these have 

more variability between taxonomies than the cause and coupling factor classifications. 

Significant failure classification guidance is currently provided in the following 

documents: 

• NUREG/CR-5485 is the current guidance on modeling common cause failures 

for the US nuclear industry and contains a coupling factor and failure cause 

classification system. A matrix is presented which shows the impact of different 

failure mechanisms against root causes and coupling factors. Many of the 

failure mechanisms show a one to many relationship. (Mosleh et al. 1998) 
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• NUREG/CR-6268 Rev 1 provides the current guidance on event data 

collection, classification and coding for the NRC CCFDB. The classification 

scheme used in this document will be discussed in more depth during this 

chapter. (Wierman et al. 2007) 

• Unified Partial Method is a popular CCF model within the UK and Europe. This 

methodology focuses on a qualitative assessment of defenses for causes and 

coupling factors (Brand & Gabbot 1993). In Zitrou’s Bayesian Network 

modeling of the UPM classification system, a many to many relationship exists 

between causes and coupling factors and she includes a method to treat 

dependencies between these factors within her model (Zitrou 2006a). Note that 

the UPM classification system is used for the UPM model, not for classifying 

failure data. 

• NEA/CSNI/R(2011)12 provides the current guidance for classifying failure 

data for contribution to the International Common Cause Failure Data 

Exchange (ICDE). (NEA 2011) 

In 2007, Lindberg mapped the current classification approaches together (NRC, ICDE 

and UPM). She also mapped which causes influence which defenses/coupling factors 

to create a qualitative tool called, Relations of Defences, Root Causes, and Coupling 

Factors (RDRC) diagrams. This allowed the combination of data from sources which 

were classified differently. Furthermore histograms are created from failure data to 
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determine which defenses or coupling factors would have influenced the most CCF 

events. This provides qualitative analysis support to decisions on where to invest in 

defenses against CCF. An example of this diagram is included as Figure 23. The 

relationship between coupling factors, failure causes and defenses can be seen.  

 

The primary purpose of having a failure and coupling factor classification system has 

been to provide understanding and insight into why CCF occurs and ways to defend 

against it. Until the requirements of the two models proposed in this thesis, there has 

not been a specific requirement to relate the classification concepts except through the 

conduct of qualitative analysis. 
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Figure 23: RDRC Diagram(Lindberg 2007, p.31) 

 

4.2. Analysis of NRC Common Cause Failure Database 
 

This section will compare the NRC CCFDB against NUREG/CR-6268 Rev 1, which 

provides the guidance on the classification of failure event data for inclusion in the 
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NRC CCFDB. The suitability of the failure classification taxonomy will be assessed 

for suitability to establish a one to one relationship between failure causes and defenses. 

4.2.1. CCFDB Classification System 

In order to interpret the CCFDB classification system, definitions for the terms used 

may be required. Appendix 2 has a reproduction of the classification definitions from 

NUREG/CR-6268 Rev 1. 

 

A comparison of the NUREG/CR-6268 Rev 1 and CCFDB failure cause taxonomy is 

contained in Table 14. A comparison of the NUREG/CR-6268 Rev 1  and CCFDB 

coupling factor taxonomy is contained in Table 15. 

 

The coupling factor taxonomy in the CCFDB is exactly the same as the NUREG. 

However the failure cause taxonomy has large differences. This highlights the 

difficulties with differences, not just between taxonomies, but also relevant to the same 

database evolving over time.  
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Table 14: Comparison of NUREF/CR-6268 Failure Cause Classification and the CCFDB 

Failure Cause Classification 
NUREG/CR-6268 CCFDB 

Design 
Installation / Construction Error Construction/installation error or inadequacy DC 
Design Error Design error or inadequacy DE 
Manufacturing Error Manufacturing error or inadequacy DM 
Design Modified Error     
Operations / Human 
Accidental Action Accidental human action HA 
Inadequate/Incorrect Procedure Inadequate maintenance HM 
Failure to Follow Procedure Human action procedure HP 
Inadequate Training     
Inadequate Maintenance     
External Environment 
Fire/Smoke Ambient environmental stress EA 
Humidity/Moisture State of other component EC 
High/Low Temperature Extreme environmental stress EE 
Electromagnetic Field     
Radiation     
Bio-organisms     
Contamination/Dust/Dirt     
Acts of Nature 
(Wind/Flood/Lightning/Snow/Ice)     
Internal to Component 
Normal Wear Internal to component, piece-part IC 
Internal Environment Internal environment IE 
Early Failure Setpoint drift IQ 
  Age/Wear IW 
Miscellaneous 
State of Other Component     
Unknown Unknown OK 
Other Other OT 
  Inadequate procedure PA 
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Table 15: Comparison of NUREF/CR-6268 Coupling Factor Classification and the CCFDB 

 
Coupling Factor Classification 

NUREG/CR-6268 CCFDB 
Environmental 
Enviro External Enviro External EE 
Enviro Internal Enviro Internal EI 
Hardware Design 
Hardware Design Parts Hardware Design Parts HDCP 
Hardware Design System Hardware Design System HDSC 
Hardware Quality 
Hardware Quality Install Hardware Quality Install HQIC 
Hardware Quality Manufacturing Hardware Quality Manufacturing HQMM 
Operations Maintenance 
Ops Maint Schedule Ops Maint Schedule OMTC 
Ops Maint Procedure Ops Maint Procedure OMTP 
Ops Maint Staff Ops Maint Staff OMTS 
Operations Operational 
Ops Ops Procedure Ops Ops Procedure OOOP 
Ops Ops Staff Ops Ops Staff OOOS 

 

4.2.2. Analysis of Observed CCF Events 

In order to provide a qualitative analysis of the CCFDB failure taxonomy, the observed 

CCF events are analyzed to determine if there is a correlation between the failure cause 

and the coupling factor. The distribution of CCF events is shown in Table 16. 

 

Note the colors used in Table 16 will be used to discuss a proposal for reclassification 

of the CCFDB in section 4.3. 
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Table 16: Comparison of failure cause and coupling factor for observed CCF events in the CCFDB 
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 Failure Cause EE EI HDCP HDSC HQIC HQMM OMTC OMTP OMTS OOOP OOOS 
'Construction/installation error inadequacy' 0 0 63 2 4 0 0 3 4 0 0 
'Design error or inadequacy' 3 2 38 7 2 0 1 3 0 1 1 
'Manufacturing error or inadequacy' 0 0 6 0 1 3 0 0 2 0 0 
'Ambient environmental stress' 3 2 0 0 0 0 1 0 0 1 0 
'State of other component' 2 0 4 13 0 0 1 0 0 0 0 
'Extreme environmental stress' 32 9 4 2 0 0 2 0 0 0 0 
'Accidental human action' 0 0 1 0 1 0 0 4 8 0 0 
'Inadequate maintenance' 2 1 1 1 0 0 3 2 0 0 0 
'Human action procedure' 0 0 2 0 0 0 0 3 3 1 0 
'Internal to component, piece-part' 0 4 17 4 0 3 43 9 0 0 0 
'Internal environment' 4 11 0 0 0 0 0 2 0 0 0 
'Setpoint drift' 0 0 1 0 0 0 0 1 0 0 0 
'Age/Wear' 1 1 3 1 0 1 3 0 0 0 0 
'Unknown' 0 0 1 0 0 0 0 0 0 0 0 
'Other' 0 0 4 2 0 0 1 0 1 0 0 
'Inadequate procedure' 0 0 2 0 0 0 1 24 7 1 0 
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Table 16 shows that for each cause there is a reasonable spread of coupling factors 

through which the cause can propagate. Likewise for each coupling factor there is a 

number of causes. For example, if a failure occurs due to design error, this data shows 

that there are 9 possible coupling factors that failure could propagate through. For 

another example, if two components share a maintenance procedure, there are 8 types 

of failure causes which could affect both components.  

 

This result suggests that there is no suitable relationship between the failure cause and 

coupling factor. Some classifications do not seem possible, such as construction errors 

propagating through an operator.  The construction error may be related to how the 

person uses the component, and they made the same error on the other component. 

What is the coupling factor which propagates the failure? If the operator also used 

another component of different type, it is unlikely the error would reoccur. If a different 

operator used the component with the construction error, would the same error have 

reoccurred, likely. So it is not the human operator which propagates the failure, it’s any 

component that shares the same construction.  

 

With a new requirement to link the coupling factor and failure cause together, it is 

evident that the classifications for the CCFDB would require redefinition to allow a 

cause based CCF model to use the data.  
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4.3. Failure Cause and Coupling Factor Taxonomy Proposal 
The previous section identified the need for a revised failure cause and coupling factor 

taxonomy. It should be noted that the purpose of this thesis is not to define the 

categories for a new taxonomy. This must be done in consultation with industry experts. 

Instead the proposal here is to identify the features of a suitable taxonomy and 

demonstrate what a proposed category would look like.  

 

In order for such a taxonomy to meet the needs of the proposed cause based models, 

the following attributes are desired. 

• Allow the coupling factor that a failure could propagate through to be inferred 

from the failure case. 

• Minimize ambiguity between definitions. 

• Not too complicated. 

• Allow the coupling factors between components to be assessed through a 

qualitative assessment. 

• Align to a method of quantitative modeling. 

 

An assessment has been made of the current taxonomy for attributes which meet these 

criteria. Table 16 contains green cells for failure cause categories and coupling factors 

which are suitable to keep. Yellow cells will be required to combine or divide into other 

categories. Red cells are proposed to be removed from the taxonomy.  
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The coupling factor categories were assessed as being excellent categories which have 

little ambiguity, and may easily be assessed through a qualitative assessment. Therefore 

a corresponding failure cause category must be identified.  Where a suitable failure 

cause category could be directly classified under the new taxonomy, a green cell is 

marked.  

 

Examples of yellow categories to be amended include accidental human action and 

human action procedure, where it’s not clear what coupling factor from a qualitative 

assessment would propagate these failures. If they were reclassified into either 

installation human error, maintenance human error, or operations human error it would 

match the coupling factors.  

 

A proposed taxonomy that achieves the desired features may look like Table 17, There 

is a direct relationship between the coupling factor and the failure cause. The list is 

manageable, with training the definitions could be unambiguous. 

 

Table 17: Proposed Cause and Coupling Factor Taxonomy 

Failure Cause Coupling Factor 
Installation Procedural Cause Same Install Procedure 
Installation Human Cause Same Install Team 
Component Design Deficiency Same Component Design 
System Design Deficiency Same System Design 
Age/Wear Same Age within Mission Period 
Component Manufacturer Fault Same Component and Manufacturer 
Operator Error Same Operators 
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Operation Procedure Error Same Operating Procedures 
Maintainer Error Same Maintenance Team 
Maintenance Procedure Error Same Maintenance Procedure 
Maintenance Schedule Error Same Maintenance Schedule 
Environment Internal Induced Same Fluid 
Environment External Induced. Same Location 

 

4.4. Summary 
An enabler for the success of the proposed CCF models is a failure event taxonomy 

which allows for inference to be made about the possible propagation means for a 

failure knowing only the failure cause.  

 

An assessment was conducted of the CCFDB and it was found that there is insufficient 

correlation between the failure cause and coupling factor categories for it to be used in 

its current form.  

 

The features of a suitable taxonomy system were described and a failure event 

taxonomy was proposed based on the existing coupling factor categories, for review by 

industry experts.  
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Chapter 5: Existing CCF models 

5.1. Introduction 
The phenomena of Common Cause Failure has been recognized as a consideration in 

design for some time. It was first discussed as a specific activity requiring special 

treatment in the early 1970s (Smith & Watson 1980). The first major use of a CCF 

failure model was in WASH 1400 probabilistic risk assessment of Nuclear Power Plant 

safety in 1975 (Rasmussen 1975). Since WASH 1400, over 30 different Common 

Cause Failure models have been proposed. A complete literature review of these 

models is included as appendix 1.  

 

This chapter will summarize the models which have been used to propose the model 

extensions discussed in Chapter 6 and 7. Each model will be described and reviewed 

for: 

• the principles for which the model has been created,  

• an opinion on the advantages and limitations of each model, and 

• a list of references which have informed the analysis.  
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5.2. Direct Estimates 
Direct estimate models consist of: 

• Direct Assessment (Qualitative) 

• Basic Parameter Model 

5.2.1. Direct Assessment (Qualitative) 

The direct assessment model can be considered as a procedure rather than a modeling 

technique. (Hirschberg 1985) discussed this approach in detail. It involves using the 

actual number of demands and the number of observed failures with multiplicity, 𝑖𝑖, and 

estimating the quantities of interest directly from the data set. For the purposes of this 

model 𝑖𝑖 is defined as any positive integer, and the quantities of interest for this case is 

defined as the common cause failure rate or common cause failure probability.   

This approach is typically simple and is less dependent upon sound knowledge of any 

mathematical or statistical skills. (Anude 1994) 

 

Advantages include: 

• The method is simple as there is minimal data required and minimal 

mathematical knowledge required to determine broad estimates. 

• The model is predicated on experience. 

Limitations include: 

• The model cannot estimate common cause failures for K out of N events for 

which it does not have data.  
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• Component symmetry is assumed (ie. XAB = XBC) 

• Does not allow for partial failure or component degradation 

• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architecture which may 

contribute or defend against CCF. 

5.2.2. Basic Parameter Model 

The basic parameter model was proposed by Fleming, et al. in 1983 (Fleming et al. 

1983) and calculates the CCF basic event directly from the data. This estimation is 

given by: (Mosleh et al. 1998)(Mosleh 1991) 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

𝑁𝑁𝑘𝑘
 

𝑄𝑄𝑘𝑘
(𝑚𝑚) =   basic event failure frequency/probability for k components 

failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑛𝑛𝑘𝑘 = the number of failure events which resulted in k components 
failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑁𝑁𝑘𝑘 = the number of demands on any k component in the common 
cause group. 

 
If it is assumed that each time the system is operated, all of the m components in the 

group are demanded, then. 8: 

8 This estimator can change depending on the scheme used to test components. This estimator is for non-

staggered testing. Other estimators and discussion on testing schemes is provided in NUREG /CR-5485 

(Mosleh et al. 1998) 
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𝑁𝑁𝑘𝑘 = �𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

�𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷

           non-staggered testing 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

𝑚𝑚 �𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷

       staggered testing           

ND = the number of demands on the system (or time T) 
 

The total component failure rate can be calculated as the sum of the CCBEs:  

𝑄𝑄𝑡𝑡 = � �𝑚𝑚 − 1
𝑘𝑘 − 1 � 𝑄𝑄𝑘𝑘

𝑚𝑚
𝑚𝑚

𝑘𝑘=1

 

Replacing 𝑄𝑄𝑘𝑘
(𝑚𝑚) with its estimator gives the following estimator for the total failure 

rate, Qt:  

𝑄𝑄𝑡𝑡 =
1

𝑚𝑚𝑁𝑁𝐷𝐷
� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

          non-staggered testing 

𝑄𝑄𝑡𝑡 =
1

𝑚𝑚2𝑁𝑁𝐷𝐷
� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

          staggered testing         

• Advantages include: 

• The method is simple as there are no intermediate steps in quantifying basic 

common cause events. 

• The model is intuitive. 

• Suitable for any amount of redundancy (for which data is available). 

• No need to differentiate between independent and common cause failures.  

Limitations include: 
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• The model cannot estimate common cause failures for redundancy 

configurations for which data is unavailable.  

• Component symmetry is assumed (ie. XAB = XBC) 

• Does not allow for partial failure or component degradation. 

5.3. Ratio Models 
Ratio models are based on the hypothesis that system specific estimates for CCF can 

be made by combining generic average ratio parameters with system specific 

single/total failure rates (Vaurio 2008). This provides the advantage that ratio models 

can be estimated from specific data collection activities such as the Common Cause 

Failure Data Base and applied to areas where CCF data may not exist.  

 

Ratio models have the following advantages: 

• There is a direct and intuitive quantity to the model parameters.  

• Generic ratio parameters can be calculated from generic data and then applied 

to plant specific single failure rates. This reduces the data requirements 

compared to direct estimate models.  

• Success data is not required to estimate the model parameters.  

The limitations of all ratio models discussed here include: 

• The model assumes a transferable empirical ratio between failure rates and 

Common Cause Failure rate. 

• The ratio models described here assume component symmetry. 
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• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architectures which may 

contribute or defend against CCF. 

• Confusion in the interpretation of single failures being modeled as independent 

failures, particularly when applying impact mapping rules.  

 

5.3.1. Beta Factor Model 

The Beta Factor Model, proposed by Fleming in 1975 (Fleming 1975), is a component 

failure ratio model which is one of the most popular where generic data used to estimate 

parameters are limited. It is still the most commonly used CCF model outside the 

nuclear industry (Hokstad & Rausand 2008). 

 

The basic parameters can be calculated as (Mosleh et al. 1998): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

(1 − 𝛽𝛽)𝑄𝑄𝑡𝑡    𝑘𝑘 = 1
               0               𝑚𝑚 > 𝑘𝑘 > 1

          𝛽𝛽𝑄𝑄𝑡𝑡          𝑘𝑘 = 𝑚𝑚   
 

𝑄𝑄𝑡𝑡 = The total failure probability of one component  
𝑚𝑚 = Common Cause Component Group size 
𝑘𝑘 = Number of failed components due to common cause failure 

 

The MLE parameter estimate is (Mosleh et al. 1998)9: 

9 This estimator can change depending on the scheme used to test components. This estimator is for non-
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𝛽̂𝛽 =
∑ 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚
𝑘𝑘=2

∑ 𝑘𝑘𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=1

 

𝑛𝑛𝑘𝑘 =number of events involving k components in a failed state 
m = the number of components within the CCCG 

 

β (usually between 0.01 and 0.3) (Anude 1994) is defined as the point estimate of the 

conditional probability that a unit failure is a Common Cause type. The Beta Factor 

model uses one parameter in addition to the total component failure probability to 

calculate the Common Cause failure probabilities regardless of the size of the Common 

Cause Component Group. 

 

The advantages of the Beta Factor model, in addition to the ratio model advantages are:  

• Simplicity compared to other ratio models.  

• Regardless of the number of components comprising the system, it requires the 

estimation of only two parameters. 

The limitations of the Beta Factor model, in addition to the ratio model limitations are: 

• The model does not acknowledge CCFs of various multiplicities within the 

Common Cause Component group. Failure can either be one component or the 

whole component group. (Hokstad 2004) 

staggered testing. Other estimators and discussion on testing schemes is provided in NUREG /CR-5485 

(Mosleh et al. 1998) 

103 

 

 

                                                 



 

• For most redundant systems, this model has been proven to be excessively 

conservative and pessimistic in predicting CCF failure rates. (Mosleh et al. 

1998) 

• Rigorous estimators for the beta factor model parameters are fairly difficult to 

obtain, although approximate methods have been developed and used in 

practice.(Mosleh et al. 1998) (Mosleh 1986) 

1.1.1. Partial Beta Factor (PBF) Model 

The Partial Beta Factor (PBF) model was first conceived by Edwards in 1982 and later 

developed by Johnston (Johnston 1987) to allow consideration for the target system 

dependencies and defenses.  After a qualitative analysis identifies CCCGs containing 

identical components and a criticality assessment of the effect from dependencies based 

on cut sets, a matrix is created allowing the different attributes leading to dependencies 

between the components to be evaluated. A Beta Factor is then created as a product of 

a number of partial beta derived from judgments of system defenses.  

𝛽̂𝛽 = � 𝛽𝛽𝑗𝑗
j

 

𝛽𝛽 = The beta factor for the Beta Factor model.  
𝛽𝛽𝑗𝑗 = The partial beta factors for defence  j attribute 

 

The basic parameters are the same as the beta factor model and calculated as: 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

(1 − 𝛽𝛽)𝑄𝑄𝑡𝑡    𝑘𝑘 = 1
               0               𝑚𝑚 > 𝑘𝑘 > 1

          𝛽𝛽𝑄𝑄𝑡𝑡          𝑘𝑘 = 𝑚𝑚   
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A limitation of this approach is that each partial beta factor multiplies the whole failure 

rate for defenses which may only affect a portion of the failure rate. Johnson proposed 

an extension to the PBF model where the failure rate is separated into specific causes 

and the Partial Beta Factor only adjusts that portion of the failure rate (Johnston 1987).  

𝑄𝑄𝑚𝑚,𝑖𝑖
(𝑚𝑚) = 𝑄𝑄𝑖𝑖 � 𝛽𝛽𝑗𝑗,𝑖𝑖

𝑖𝑖

, 𝑄𝑄𝑚𝑚
(𝑚𝑚) = � 𝑄𝑄𝑚𝑚,𝑖𝑖

(𝑚𝑚)

𝑖𝑖

 

𝑄𝑄𝑖𝑖 = The failure probability/rate of cause i. 
𝛽𝛽𝑗𝑗,𝑖𝑖 = The partial beta factor for defence  j and cause i 
 

It should be noted that the outcome of the Partial Beta Factor model is to arrive at a 

system specific Beta Factor, and as such multiplicity of failures within a common cause 

component group is not recognized.  

1.1.2. Alpha Factor Model (AFM) 

The alpha factor model (AFM) is a failure event ratio model that was first proposed by 

Mosleh and Siu in 1987 (Mosleh & Siu 1987). Each 𝛼𝛼𝑘𝑘 factor is the probability that 

given a failure it will fail k components out of m components within the CCCG. The 

AFM parameters are defined and calculated as (Mosleh et al. 1998): 

𝛼𝛼𝑘𝑘 =
𝑛𝑛𝑘𝑘

∑ 𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=1

 

 
m =  the number of redundant components 
𝑛𝑛𝑘𝑘 =  the number of failure events/frequency which resulted in k 

components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

𝛼𝛼𝑘𝑘 =  the fraction of total failure events/frequency that occur in the system 
resulting in k out of m failures. 
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The alpha factor method is used to estimate the basic event probabilities using (Mosleh 

et al. 1998) . 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = 𝑘𝑘 �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

.
𝛼𝛼𝑘𝑘

𝛼𝛼𝑡𝑡
. 𝑄𝑄𝑡𝑡       non-staggered test data 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

. 𝛼𝛼𝑘𝑘. 𝑄𝑄𝑡𝑡                   staggered test data 

where: 

�𝑚𝑚 − 1
𝑘𝑘 − 1 � =

(𝑚𝑚 − 1)!
(𝑘𝑘 − 1)! (𝑚𝑚 − 𝑘𝑘)!

         𝑎𝑎𝑎𝑎𝑎𝑎          𝛼𝛼𝑡𝑡 = � 𝑘𝑘𝛼𝛼𝑘𝑘

𝑚𝑚

𝑖𝑖=1

  

𝑄𝑄𝑘𝑘
(𝑚𝑚)=   basic event failure frequency/probability for k components 

failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑄𝑄𝑡𝑡 = total failure frequency/probability of each component due to 
independent and common cause events.  
 

This formulation has the property that that 𝛼𝛼1 +  𝛼𝛼2 + 𝛼𝛼3 + ⋯ +  𝛼𝛼𝑚𝑚 =  1 so that the 

αs are not mutually independent. (Vaurio 2008).  

   

Due to AFM’s ability to calculate its parameters directly from the impact vectors, the 

AFM is sometimes used as an intermediate step in calculating Beta Factor and MGL 

parameters. The relationship between these parameters is detailed for different systems 

within NUREG/CR-5485 (Mosleh et al. 1998).  

 

Advantages over the Beta Factor model are that the AFM model can model various 
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multiplicities of failure within the Common Cause Component Group and unlike the 

Beta and MGL methods, AFM’s parameters are directly related to measurable 

properties of the system and are usually calculated directly from observed data as 

impact vectors (Mosleh 1991). 

5.4. Shock Models 
 

Shock models are based on the hypothesis that each component within the CCCG 

undergoes shocks according to a Poisson process. For each component within the 

CCCG the shock is a Bernoulli trial which will fail the component with probability 𝜌𝜌.  

 

Most shock models are adoptions or simplifications of the multivariate exponential 

model derived by Marshall and Olkin in 1967 (Marshall & Olkin 1967). For these 

models the number of failed components, k, resulting from a shock is binomially 

distributed. Shock models strive to model the actual physical phenomena that result in 

CCF to occur.  

 

Shock models have the following advantages: 

• Can be used to model high levels of redundancy.(Anude 1994) 

• Can estimate CCF frequency even when CCF events have not been observed. 

(Atwood 1986) 

• Easier to adjust for different sizes CCCG groups. (Kvam & Martz 1995) 
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• Importing/exporting data for different sized systems is more accurate and often 

easier due to the ability to characterize the underlying probability of common 

cause failures. (Kvam & Martz 1995)   

 

Shock models have the following disadvantages: 

• Includes parameters which are difficult to measure with data (such as shock 

rates). 

• Requires demand/success data to calculate parameters. 

• Confusion in the interpretation of single failures being modeled as independent 

failures, particularly when applying impact mapping rules.  

• Lethal shocks need to be distinguished from multiple CCF failing all system 

components. 

• Assumes component symmetry (ie. XAB = XBC). 

• Assumes that given a shock has occurred, items will fail independently which 

may be violated in practice. (Anude 1994) 

• Assumes zero time to repair. (Atwood 1986)  

• Assumes renewal to as good as new. (Atwood 1986) 

• Assumes Constant Failure Rates. (Atwood 1986) 

• The ρ parameter is independent of the size of the CCCG. (Vaurio 1999) 

• Any subset of k components of a system of size m is equally vulnerable to 

exactly the same common-causes and stresses as in a system of size k, or 
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anything larger than k.  This results in the assumption that nk > nk+1 (the 

mapping rule). (Vaurio 1999) 

• Data is needed from a system with at least m=3 in order to solve the three 

unknowns. (Vaurio 2008) 

• The analyst needs to distinguish between a single CCF and a single independent 

failure. This can become subjective from fault reports leading to higher 

uncertainty. 

• No parameters are directly linked to the degree of system protection against 

CCFs. 

• Probability that the value of the binomial parameter ρ remains fixed across all 

system shocks despite each shock having different intensities and different 

sources. (Anude 1994) 

• Does not model different intensity shocks to the system. (Anude 1994) 

• Parameter calculation can be cumbersome. (Kvam 1993) 

• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architecture which may 

contribute or defend against CCF. 

5.4.1. Binomial Failure Rate Model 

The Binomial Failure Rate Model (BFRM) model was proposed by Vesely in 1977 

(Vesely 1977) to adapt the shock model proposed by Marshall and Olkin.  This model 

was motivated by estimation with less data than previously required and to describe the 
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underlying failure process generated by CCF events. It assumes that CCF occur when 

all m redundant components of a system are challenged by a shock at a rate of 𝜇𝜇. The 

number of resulting failures from each shock, k, is random with a binomial distribution 

with probability 𝜌𝜌.  

 

This model has also been known as the three-parameter BFR model with parameters, 

QI (or λ), μ and ρ. These parameters can be estimated using (Marshall et al. 1998): 

𝑄𝑄𝐼𝐼 =
𝑛𝑛𝐼𝐼

𝑚𝑚𝑁𝑁𝐷𝐷
 

� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝜌𝜌
𝑚𝑚. 𝑛𝑛𝑡𝑡

1 − (1 − 𝜌𝜌)𝑚𝑚       solve for ρ 

𝜇𝜇 =
𝑛𝑛𝑡𝑡

𝑁𝑁𝐷𝐷
.

1
1 − (1 − 𝑝𝑝)𝑚𝑚 

where 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑖𝑖=1

 

𝑛𝑛𝑘𝑘 = the number of failure events/frequency which resulted in k 
components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

𝑛𝑛𝐼𝐼  = the number of failure events/frequency which resulted in the 
independent failure of the component. 

𝑛𝑛𝑡𝑡  = total number of common cause failures. 
𝑁𝑁𝐷𝐷 = the number of demands on the system (or time T), can also be called 

NS 
 

The basic parameters can be calculated as (Vesely 1977): 
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𝑄𝑄𝑘𝑘
𝑚𝑚 = �

𝑄𝑄𝐼𝐼 + 𝜇𝜇. 𝜌𝜌(1 − 𝜌𝜌)𝑚𝑚−1 
𝜇𝜇. 𝜌𝜌𝑘𝑘(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘   

      where 𝑘𝑘 = 1       
where 2≤𝑘𝑘 ≤ 𝑚𝑚  

QI   =  the independent failure rate of each component 
Qkm  = basic event failure frequency/probability for k components failing 

within a common cause component group of size m, (1 ≤ k ≤ m). 
μ   = rate of shocks 
ρ   = probability of component failure given a shock 

 

The rate of failure of k components is simply the binomial probability of k in m 

components failing multiplied by the rate of shocks. The rate of failure for a single 

component is the independent failure rate plus the contribution of 1 component failing 

due to a common cause shock. Probability that the value of the binomial parameter ρ 

remains fixed across all system shocks. 

 

Due to its inaccuracy to real systems, the model presented here is rarely used (Mosleh 

et al. 1988) (Kvam 1998b); instead, a simple binomial shock model using the BFR 

model with lethal shocks is typically preferred. Note that the BFRM and β-factor model 

are the same for a two component system. (Rausand & Høyland 2003) 

5.4.2. Binomial with Lethal Shocks 

Atwood proposed an extension to the BFR model in 1986 that included an additional 

independent process of lethal shocks (Atwood 1986). In this model, each lethal shock 

will fail all components of the system at a rate of ω. 
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This model has also been known as the four-parameter BFR model with parameters, QI 

(or λ), μ, ρ and ω . These parameters can be calculated using [85]: 

𝑄𝑄𝐼𝐼 =
𝑛𝑛𝐼𝐼

𝑚𝑚𝑁𝑁𝐷𝐷
 

� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝜌𝜌
𝑚𝑚. 𝑛𝑛𝑡𝑡

1 − (1 − 𝜌𝜌)𝑚𝑚       solve for ρ 

𝜇𝜇 =
𝑛𝑛𝑡𝑡

𝑁𝑁𝐷𝐷
.

1
1 − (1 − 𝑝𝑝)𝑚𝑚 

𝜔𝜔 =
𝑛𝑛𝐿𝐿

𝑁𝑁𝐷𝐷
 

where 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑖𝑖=1

 

nk = the number of failure events/frequency which resulted in k 
components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

nI = the number of failure events/frequency which resulted in the 
independent failure of the component. 

nL = total number of lethal common cause failures. 
nt = total number of common cause failures. 
ND = the number of demands on the system (or time T), can also be called 

NS 

 

The basic parameters can be calculated as (Atwood 1986): 

𝑄𝑄𝑘𝑘
𝑚𝑚 = �

𝑄𝑄𝐼𝐼 + 𝜇𝜇. 𝜌𝜌(1 − 𝜌𝜌)𝑚𝑚−1 where 𝑘𝑘 = 1       
𝜇𝜇. 𝜌𝜌𝑘𝑘(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘       where 2≤𝑘𝑘 < 𝑚𝑚
𝜇𝜇. 𝜌𝜌𝑚𝑚 + 𝜔𝜔                   where 𝑘𝑘 = 𝑚𝑚      

 

QI = the independent failure rate of each component 
Qkm  =basic event failure frequency/probability for k components failing 

within a common cause component group of size m, (1 ≤ k ≤ m). 
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μ   =rate of shocks 
ρ   =probability of component failure given a shock 
ω  = rate of lethal shocks 

This extension has been found to be more accurate than the basic BFR model (Mosleh 

et al. 1988). The probability that the value of the binomial parameter ρ remains fixed 

across all system shocks. 

 

5.5. Interference Models 
Interference models also attempt to model the physical phenomena of CCF but without 

the shock model’s assumption of independence. Instead these models predict the 

number of failures by assuming random variables for component strength and load. 

When the load exceeds the strength a component is expected to fail. The more intense 

the load or the more depleted the strength then the higher the probability of failure. 

There is no explicit distinction between an independent and common cause failure 

event. 

 

Inference models have the following advantages: 

• Can be used to model high levels of redundancy.  

• Can estimate CCF frequency even when CCF events have not been observed. 

• Easier to adjust for different sizes CCCG groups. 

• Models different intensities of shocks to the system. 

113 

 

 



 

• Directly models the system’s protection against CCF through the resistance 

measure.  

• There is no need to distinguish between a single CCF and a single independent 

failure. 

• Lethal shocks are quantified by their shock intensity and included within the 

model formulation.  

• Importing/exporting data for different sized systems is more accurate and often 

easier due to the ability to characterize the underlying probability of common 

cause failures. (Kvam & Martz 1995)   

 

Interference models have the following disadvantages: 

• Requires a probability distribution to be estimated for shock and resistance 

intensities. This requires knowledge of the physical characteristics of the 

components and the data required to quantify distributions differs from just 

failure and success data. 

• Requires demand/success data to calculate parameters. 

• Assumes component symmetry (ie. XAB = XBC). 

• Assumes zero time to repair. 

• Assumes renewal to as good as new.  

• Assumes Constant Failure Rates.  
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• Any subset of k components of a system of size m is equally vulnerable to 

exactly the same common-causes and stresses as in a system of size k, or 

anything larger than k.  This results in the assumption that nk > nk+1 (the 

mapping rule). (Vaurio 1999) 

• No inference can be made given knowledge of the failure cause. 

• The model does not explicitly account for unique system architecture which 

may contribute or defend against dependencies between components.  

5.5.1. Common Load Model  

The Common Load model proposed by Mankamo and Kosonen in 1977 (Mankamo 

1977) is based on a load-strength interference methodology for describing the failure 

mechanism. The model interprets the failure mechanism as a load imposed on a 

component where the components strength is tested. A failure occurs when the 

resistance is not sufficient to withstand the load.  

 

When it comes to redundant systems of components, the load posed to the system is 

shared by all the components of the system equally, and a failure of certain multiplicity 

is determined by the number of components whose resistance is exceeded by the load. 

Both the load and the component resistance are described in terms of random variables 

and assumed probability distributions (Zitrou 2006b). 

 

The probability density function of the resistance, R, is denoted by 𝑓𝑓𝑅𝑅(𝑥𝑥) . In the event 

115 

 

 



 

of an occurrence of a random shock, S, with a probability density function of 𝑔𝑔𝑠𝑠(𝑥𝑥), 

then the event of having exactly k of the components fail simultaneously, is given as 

(Anude 1994): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = P(Rk ≤ 𝑆𝑆 < 𝑅𝑅𝑘𝑘+1) 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

𝑚𝑚!
𝑘𝑘! (𝑚𝑚 − 𝑘𝑘)!

�𝐹𝐹𝑅𝑅(𝑦𝑦)�𝑘𝑘�1 − 𝐹𝐹𝑅𝑅(𝑦𝑦)�𝑚𝑚−𝑘𝑘𝑔𝑔𝑠𝑠(𝑦𝑦)𝑑𝑑𝑑𝑑
∞

0
 

𝑆𝑆   =  the random variable for the shock intensity 
𝑅𝑅𝑘𝑘  = the random variable for resistance intensity where  

    𝑅𝑅1 ≤ 𝑅𝑅2 ≤ ⋯ ≤ 𝑅𝑅𝑛𝑛 
𝑔𝑔𝑠𝑠(𝑥𝑥)= the probability distribution for the shock random variable 
𝐹𝐹𝑅𝑅(𝑥𝑥)= the cumulative probability distribution for the resistance random 

variable 
𝑘𝑘  = the multiplicity of failure being investigated 
𝑚𝑚  = the number of components within the CCCG 

 

The model has a fixed number of parameters, independent of the size of the system. 

Like the Shock Models, the model can be applied to any failure multiplicities. The 

model assumes that the n components of a system have independent and identically 

distributed random resistances R1, R2 ... Rn. (Anude 1994) 

 

Cases of non-symmetry can be modeled by removing the assumption of identical 

distributed components and creating separate𝑓𝑓𝑅𝑅(𝑥𝑥) distributions for each component.  

5.6. Other Models 

5.6.1. Reliability Cut Off Method 

The Reliability Cut Off Methods was proposed by Bourne et. al in 1981 (Bourne et al. 
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1981) as a system level estimate of CCFs based on an assessment of the vulnerability 

of the system. No identification of CCCG is conducted and the methodology assumes 

that the unreliability of a system due to CCFs can never exceed some limiting values, 

determined by system design. These estimates do not involve the use of data and instead 

use generic estimates from experts.  

 

The original article for this model could not be obtained and so a full assessment could 

not be completed. 

5.6.2. Unified Partial Method 

The Unified Partial Method (UPM) (Brand & Gabbot 1993) is the current method 

which has been adopted by the UK nuclear industry. UPM is a methodology to assess 

the vulnerability of a system to CCF and uses one of two models to quantify its 

estimates, the Partial Beta Factor method for component level analysis, and the Cut-

Off method for system level analysis. Brand describes UPM as not being a complete 

method for dependent failure assessment, but a useful methodology for ‘standard 

systems’ (Mosleh et al. 1998). 

 

5.6.3. Influence Diagram Model (Zitrou 2006a) 

Zitrou in 2006 proposed an extension of the UPM model using influence diagrams and 

a more detailed mathematic formulation using Bayesian methods. The objective of 
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Zitrou’s research was to explore the modeling of CCF using advanced mathematical 

techniques (influence diagrams). Zitrou wanted to keep the desirable features of UPM 

where attributes of the system are included in the model, the ability to provide estimates 

in the absence of data and the simplistic application of the method by analysts. Zitrou 

wanted to use the influence diagram to extend UPM’s accuracy by modeling the 

dependency between defenses and improve the models quantitative estimates.  

 

Zitrou’s model consisted of the creation of an influence diagram which followed the 

convention of figure 5. (Zitrou 2006a, p.18) 

 
 

 

 

 

 

 

 

 

 

Figure 24: Zitrou General Influence Diagram Structure 

The specific taxonomy used to define the ID nodes were the same as for UPM. The 

specific dependencies between nodes were established using an expert elicitation 

D1 D2 Dn 

Defenses 

  … 

Root 
Causes 
  … Rm R1 

Coupling 
Factors 
  … Cz C1 

λ CCF 
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technique. 

 

Two unique elements are proposed in Zitrou’s model (Zitrou 2006a, p.257). 

• The definitions of the dependencies between defenses were established to 

determine if improving one defense would have a positive, negative or neutral 

effect on another defense. 

• A geometric scaling model was proposed which is used to quantify the effect 

of the defense levels on the probability of root causes and coupling factors. 

This model reduces the burden of the quantification process by allowing the 

root cause and coupling factor probability distributions to be determined based 

on a base defense level. The geometric scaling model can then scale the 

probability distributions dependent on the level of defense applicable.  

 

Zitrou’s model achieves the following objectives (Zitrou 2006a, p.254): 

• Incorporates the qualitative advantages of the UPM model. 

• After quantification by experts the model can be easily used by practitioners. 

• Extends the casual modeling of UPM to a finer level. 

• Captures the dependency between defenses. 

• Captures the uncertainty of the expert judgment. 

• Provides an investigative framework in which conditional probabilities can be 

explored. 
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Zitrou’s research goal was to conduct an exploration of using influence diagrams to 

model CCF. The thesis proposed a methodology and conducted the limited 

development of a quantification model on Emergency Diesel Generators using some 

expert estimation. The example model was not fully developed and verification against 

known system results was not conducted. The model did not consider incorporating 

data analysis techniques from CCF databases.  

5.6.4. CCF model for Event Assessment (Kelly et al. 2011) 

Kelly et al., have written a draft paper which demonstrates the inability of current 

models to conduct event assessments. The paper proposes using a Bayesian Network 

to model the causal relationship between root causes, failure mechanisms and the CCF 

event probability. Two methods of constructing this model are proposed: 

• The first model explicitly models the root causes and failure mechanisms 

specific to the component. 

• The second model uses the generic CCF taxonomy used by the INL CCF 

database.  

 

The paper focuses on conducting event assessments where a failure cause is known; as 

such the model does not include the coupling factors or defenses. An example of such 

a model is included as Figure 66. This paper expresses an ideology for CCF modeling 

but does not propose specific model construction or quantification details. This paper 

forms the objective of this research.  
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Figure 25: Bayesian network representing more general situation of multiple failure mechanisms 

and causes in a CCCG of two EDGs (Kelly et al. 2011, p.6) 

 

5.7. Model Comparison 
 

Each model has been assessed against the criteria set in the research objectives which 

is summarized in Table 18. A description of how these models have contributed to each 

proposed model will be provided in Chapter 6 and 7. 

121 

 

 



 

Table 18: Assessment of previous CCF Models 
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Feature Description BP BF PBF AFM BFRL CL RCO ID BN 
Explicitly Models System Features BP BF PBF AFM BFRL CL RCO ID BN 
Models failure cause N N P N N N P Y Y 
Models failure cause defense N N Y N N N Y N P 
Models coupling factor N N P N N N P Y N 
Models coupling factor defense N N Y N N N Y N N 
Models deeper causal levels N N N N N N N N Y 
Models cause condition / shock N N N N Y Y N N Y 
Models multiplicity of failures within CCCG Y N N Y Y Y N N Y 
Models includes consideration for rectification period N N N N N N N N N 
Common Cause Component Grouping Characteristics BP BF PBF AFM BFRL CL RCO ID BN 
Model non-symmetrical but similar components within the same CCCG N N N N N N N N Y 
Model different components within the same CCCG N N N N N N N N Y 
A component can be part of many CCCGs N N N N N N N N Y 
No limit to CCCG size Y Y Y Y Y Y Y Y Y 
Model different failure multiplicities within the CCCG  (k failures in n) Y N N Y Y Y N N Y 
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Event Assessment Capabilities BP BF PBF AFM BFRL CL RCO ID BN 

Event Assessment with knowledge of a failed component Y N N Y Y ? N Y Y 
Event Assessment with knowledge of failure cause N N N N N N N Y Y 
Uncertain Evidence - Partial Failures N N N N N N N Y Y 
Uncertain Evidence- Virtual evidence of cause N N N N N N N Y Y 
Parameter Estimation BP BF PBF AFM BFRL CL RCO ID BN 
Impact Vector Method (including method for incorporating uncertainty) Y P N Y Y N N N N 
Expert estimations (in absence of any data) Y Y Y Y Y Y Y Y Y 
Account for reliability growth (discount previous failures) N N N N N N N N N 
Update parameters with new evidence Y P N Y Y Y N N N 
Incorporate evidence from different sized CCCGs N P N P Y Y N N N 
Account for CCF which occurred in a different mission time N N N N N N N N N 
Account for CCF data which has artificial separation in time.  N N N N N N N N N 
Use system specific failure rate data combined with generic model parameter N Y N Y N N N N N 
Uncertainty Characteristics for Parameter Estimation BP BF PBF AFM BFRL CL RCO ID BN 
Does not require to distinguish between independent and single CCF failures Y Y Y Y N Y Y Y Y 
Failures outside the mission period Y P N Y Y N N N N 
Uncertainty of shared cause Y P N Y Y N N N N 
Uncertainty of coupling factor Y P N Y Y N N N N 
Uncertainty in intervals due to staggered testing P P N P P N N N N 
Partial failures and component degradation Y P N Y Y N N N N 
Usability and Cultural Considerations BP BF PBF AFM BFRL CL RCO ID BN 
Backward compatible to Alpha Factor Model parameters Y N N Y N N N N N 
The time investment is no more than the alpha factor model. Y Y Y Y Y N Y N N 
Automatic parameter estimation is possible from the CCFDB/RADs Y Y N Y Y N N N N 
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Chapter 6: Partial Alpha Factor Model (PAFM) 

6.1. Introduction 

6.1.1. Motivation for PAFM 

Impact vectors and data collection activities such as the ICDE database made 

quantitative CCF modeling accessible to analysts. However, as shown in Chapter 5, all 

models which rely on impact vectors, do not use the information about failure causes 

which exists within these databases. This information has only been used to obtain 

insights into the CCF phenomena through qualitative analysis (Lindberg 2007; 

Wierman et al. 2003a; Wierman et al. 2003b; Wierman et al. 2003d; Wierman et al. 

2003c). Since 2004 the failure causes for single failure data has also been recorded 

within the NRC CCFDB (Wierman 2013). This allows enough information to further 

conditionalize the Alpha Factor Model (AFM) parameters based on failure causes.  

 

The creation of the Partial Alpha Factor Model (PAFM) is motivated by the ability to 

allow event assessments to be conducted using knowledge of the failure cause, whilst 

minimizing changes to the already popular AFM methodology which is well 

understood by the nuclear industry. The AFM parameter estimates are typically 

conditionalized by component type, failure mode and multiplicity of failure. The 

PAFM will further conditionalize the alpha factor parameter by failure cause as shown 

in Figure 26. 
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Successful Demand Data (RADS) Failure Data 
 

Component 
Type 1 

Component 
Type 2 

Component 
Type 3 

Component 
Type 4 

 
Failure 
Mode 

1 

Failure 
Mode 

2 

Failure 
Mode 

3 
 

α1 α2 α3 
 

 
α2,A α2,B α2,C  α3,A α3,B α3,C 

 
Figure 26: Failure Event Conditionalisation 

This conditionalization has some limitations when limited data is available, however 

the system level estimates will be no worse than simple use of the AFM. This 

conditionalization has advantages other than event assessment such as the course 

modeling of asymmetrical dependencies between components. A complete comparison 

of the PAFM against previously proposed models will be discussed at the end of this 

chapter. 

6.1.2. Chapter Scope 

This chapter will discuss: 

• An overview of the model 

• Description of the model parameters. 

• Formulate the parameter estimation equations 

• Describe methods to quantifying parameters. 
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• Describe a system analysis method. 

• Describe an event assessment method. 

• Describe the data requirements for the model.  

• Summarize and evaluate the model. 

6.1.3. Examples 

In order to demonstrate CCF analysis using the PAFM, the same two examples used in 

Chapter 2 will be used. Example 1 is a two train EDG example where the system 

features of the components make them near identical, and example 2 is a mixed 

redundancy system of two EDGs and three pumps.  

6.2. Model Overview 
A brief overview of the PAFM’s use within the CCF analysis process will be provided 

to give context to the model parameter development. A more detailed account of how 

the PAFM is used within the PRA is provided in section 6.6. 

 

The PAFM uses the same CCF methodology as the AFM described in Chapter 2 with 

two key differences. A component may be a member of multiple CCCGs based on 

shared coupling factors. The alpha factors for each CCCGs basic events are calculated 

as a combination of partial alpha factors calculated using impact vectors for each failure 

cause.  Specifically the CCF analysis procedure has the following modifications: 
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1. Qualitative Screening (ref section 2.4.1on page 24).  A component may be a 

member of multiple CCCGs based on its coupling factor with other 

components. However, for each coupling factor, the component can only be 

member of one CCCG. Pump 1 shares its maintenance team and location with 

pump 2. Pump 1 also shares its installation procedure with pump 3. Pump 1 will 

be part of two common cause component groups, 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑋𝑋  = {𝑃𝑃1, 𝑃𝑃2} and 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑌𝑌 = {𝑃𝑃1, 𝑃𝑃3}. 

2. Identification of Common Cause Basic Events (ref section 2.6.1 on page 28). 

The CCCBEs will be constructed with consideration for all CCCGs which the 

component is a part of. E.g.  𝑃𝑃1 = 𝑃𝑃1,𝑖𝑖 + 𝑋𝑋𝑃𝑃1𝑃𝑃2 + 𝑌𝑌𝑃𝑃1𝑃𝑃3. 

3. Parameter Representation of CCBEs (ref section 2.6.3 page 33). The CCBEs 

are quantified using the Basic Parameter which accounts for multiple CCCGs. 

For example 𝑃𝑃�𝑃𝑃1,𝑖𝑖� = 𝑄𝑄1
(2), 𝑃𝑃�𝑋𝑋𝑃𝑃1𝑃𝑃2� = 𝑄𝑄2

(2)[𝑋𝑋] and 𝑃𝑃(𝑌𝑌𝐴𝐴𝐴𝐴) = 𝑄𝑄2
(2)[𝑌𝑌] 

4. Alpha Factor Model Parameterization (ref section 2.6.4 page 36). The new 

Basic Parameter values are quantified using a combination of partial alpha 

factors which will be described within this chapter. E.g. 

𝑄𝑄2
(2)[𝑋𝑋] = �𝑚𝑚𝑋𝑋 − 1

𝑘𝑘𝑋𝑋 − 1 �
−1

. 𝛼𝛼𝑘𝑘
[𝑋𝑋]. 𝑄𝑄𝑡𝑡. 

5. Parameter Estimation – Impact Vectors (ref section 2.7.1 page 37). The system 

total impact vectors are calculated for each failure cause within the database. 
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6. Parameter Estimation – Partial Alpha Factor Model (ref section 2.7.2 page 44). 

The partial alpha factors for each failure cause are calculated. The gamma 

parameter representing the frequency of each cause is calculated. The alpha 

factor for each CCCG (i.e 𝛼𝛼2
[𝑌𝑌]) is calculated. 

7. System Quantification and Results Interpretation. The remainder of the CCF 

analysis process is identical to using the AFM. 

6.3. Parameter Description 
The Partial Alpha Factor Model has two parameter types, partial alpha factors and 

gamma factors.  

 

Partial alpha factors are the alpha factors which are calculated for each coupling factor. 

Each partial alpha factor represents the strength of that coupling factor to transmit a 

failure to other components.  For example 𝛼𝛼2 is further split into 

𝛼𝛼2,𝐶𝐶𝐶𝐶1 … 𝛼𝛼2,𝐶𝐶𝐶𝐶𝐶𝐶 … 𝛼𝛼2,𝐶𝐶𝐶𝐶𝐶𝐶, where 𝐶𝐶𝐶𝐶𝐶𝐶 is the 𝑖𝑖𝑡𝑡ℎ coupling factor. 0 ≤ 𝑖𝑖 ≤ 𝑤𝑤.  

 

Gamma factors, represent the portion of system failures which have the potential to 

propagate through the coupling factor. For example 𝛾𝛾𝐶𝐶𝐶𝐶1is the portion of failures which 

have the potential to propagate through Coupling Factor 1.  

6.4. Parameter Estimation 
NUREG/CR-6823 discusses a number of methods for conducting data analysis and 
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parameter assessments, however this section will use two formulations of parameter 

estimation, a classical/frequentist interpretation using Maximum Likelihood Estimates 

and Bayesian methodology with conjugate priors. 

6.4.1. Partial Alpha Factor 

Classical Estimation 

The frequentist point estimate for the partial alpha factor is: 

 𝛼𝛼�𝑘𝑘,𝑖𝑖 =
𝑛𝑛𝑘𝑘,𝑖𝑖

𝑛𝑛𝑝𝑝,𝑖𝑖
  

𝛼𝛼𝑘𝑘,𝑖𝑖 =  a partial alpha factor which represents the portion of system 
failure events which resulted in k components failing within a 
common cause component group of size m, (1 ≤ k ≤ m) when 
there was a potential for failure propagation through 
coupling factor  i where i ∈ {1,2,3,…,w} 

𝑛𝑛𝑘𝑘,𝑖𝑖 =  the number of failure events/frequency which resulted in k 
components failing within a common cause component group 
of size m, (1 ≤ k ≤ m) of coupling factor  i where i ∈ 
{1,2,3,…,w} 

𝑛𝑛𝑝𝑝,𝑖𝑖 =  the total number of failure events/frequency which had the 
opportunity for the failure to propagate through coupling 
factor i where i ∈ {1,2,3,…,w}. 

 
When the failure cause taxonomy is defined in such a way that each cause could only 

propagate through one coupling factor (the topic of Chapter 4), this estimate becomes: 

 𝛼𝛼�𝑘𝑘,𝑖𝑖 =
𝑛𝑛𝑘𝑘,𝑖𝑖

𝑛𝑛𝑡𝑡,𝑖𝑖
  

where 

𝑛𝑛𝑡𝑡,𝑖𝑖 = � 𝑛𝑛𝑘𝑘,𝑖𝑖

𝑚𝑚

𝑘𝑘=1
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𝑛𝑛𝑡𝑡,𝑖𝑖 =  the total number of common cause failure events for coupling 
factor/cause i where i ∈ {1,2,3,…,w}. 

 

Bayesian Estimations 

Where a Beta distribution prior is used, 𝜋𝜋0(𝛼𝛼𝑘𝑘,𝑖𝑖; a𝑘𝑘,𝑖𝑖
0 , b𝑘𝑘,𝑖𝑖

0 ), the parameters for the 

posterior distribution of the partial alpha factor, 𝜋𝜋(𝛼𝛼𝑘𝑘,𝑖𝑖; ak,i, b𝑘𝑘,𝑖𝑖), is: 

 a𝑘𝑘,𝑖𝑖 = a𝑘𝑘,𝑖𝑖
0 + 𝑛𝑛𝑘𝑘,𝑖𝑖  

 b𝑘𝑘,𝑖𝑖 = b𝑘𝑘,𝑖𝑖
0 + 𝑛𝑛𝑝𝑝,𝑖𝑖 − 𝑛𝑛𝑘𝑘,𝑖𝑖  

 

When the failure cause taxonomy is defined in such a way that each cause could only 

propagate through one coupling factor (the topic of Chapter 4), then 𝑛𝑛𝑝𝑝,𝑖𝑖 = 𝑛𝑛𝑡𝑡,𝑖𝑖 and 

∑ 𝛼𝛼𝑘𝑘,𝑖𝑖
𝑚𝑚
𝑘𝑘=1 = 1. Now the partial alpha factor parameter vector for each cause, 𝜶𝜶𝒊𝒊, can be 

modeled with a Dirichlet distribution: 

𝜶𝜶𝒊𝒊 ∼ Dirichlet𝑚𝑚{𝝍𝝍𝑖𝑖} 

𝜶𝜶𝒊𝒊 =  the portion of failure events for each multiplicity of failure 
[𝛼𝛼1,𝑖𝑖 , 𝛼𝛼2,𝑖𝑖 , … , 𝛼𝛼𝑚𝑚,𝑖𝑖] for failure cause i. 

𝝍𝝍𝒊𝒊= the equivalent count of failure events for each multiplicity of 
failure with cause I  [𝜓𝜓1,𝑖𝑖 , 𝜓𝜓2,𝑖𝑖 , … , 𝜓𝜓𝑚𝑚,𝑖𝑖] 

 

 

The point estimates for each partial alpha factor can be obtained using: 

𝛼𝛼�𝑘𝑘,𝑖𝑖 =
𝜓𝜓𝑘𝑘,𝑖𝑖

∑ 𝜓𝜓𝑘𝑘,𝑖𝑖
𝑚𝑚
𝑘𝑘=1
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The parameter 𝜶𝜶𝒊𝒊, which is the unknown of interest (UOI), can be estimated using 

Bayes’ rule: 

𝑓𝑓(𝜶𝜶𝒊𝒊|𝒏𝒏𝒊𝒊) =
𝑓𝑓(𝜶𝜶𝒊𝒊)𝐿𝐿(𝒏𝒏𝒊𝒊|𝜶𝜶𝒊𝒊)

∑ 𝐿𝐿�𝒏𝒏𝒊𝒊�𝛼𝛼𝑗𝑗,𝑖𝑖�𝑓𝑓�𝛼𝛼𝑗𝑗,𝑖𝑖�𝑚𝑚
𝑗𝑗=1

 

Where: 

𝑓𝑓(𝜶𝜶𝒊𝒊)  = is the prior distribution of the parameter  𝜶𝜶𝒊𝒊 
𝐿𝐿(𝒏𝒏𝒊𝒊|𝜶𝜶𝒊𝒊)= is the likelihood equation for observing the evidence 𝒏𝒏𝒊𝒊 

given the parameters  𝜶𝜶𝒊𝒊. 
𝑓𝑓(𝜶𝜶𝒊𝒊|𝒏𝒏𝒊𝒊)= the posterior distribution of  𝜶𝜶𝒊𝒊 given the evidence  𝒏𝒏𝒊𝒊  
𝒏𝒏𝒊𝒊 = the number of failure events for each multiplicity of failure  

[𝑛𝑛1,𝑖𝑖 , 𝑛𝑛2,𝑖𝑖 , … , 𝑛𝑛𝑚𝑚,𝑖𝑖] for failure cause i. 
𝜶𝜶𝒊𝒊 =  the portion of failure events for each multiplicity of failure 

[𝛼𝛼1,𝑖𝑖 , 𝛼𝛼2,𝑖𝑖 , … , 𝛼𝛼𝑚𝑚,𝑖𝑖] for failure cause i. 
 

The likelihood equation of observing the number of failures in each failure cause 

category, 𝒏𝒏𝒊𝒊 = [𝑛𝑛1,𝑖𝑖 , 𝑛𝑛2,𝑖𝑖 , … , 𝑛𝑛𝑚𝑚,𝑖𝑖] is distributed as a multinomial distribution with 

parameters 𝜶𝜶𝒊𝒊 = [𝛼𝛼1,𝑖𝑖 , 𝛼𝛼2,𝑖𝑖 , … , 𝛼𝛼𝑚𝑚,𝑖𝑖]. 

𝒏𝒏𝒊𝒊 ∼ Multinomialm{𝑛𝑛𝑡𝑡,𝑖𝑖 , 𝜶𝜶𝒊𝒊} 

where 

𝑛𝑛𝑡𝑡,𝑖𝑖 = the number of failure events with cause i 
 
 

Therefore the hyper parameters, 𝝍𝝍𝒊𝒊, for the posterior 𝜶𝜶𝒊𝒊 given evidence 𝒏𝒏𝒊𝒊 using a 

Dirichlet prior with parameters, 𝝍𝝍𝒊𝒊,𝟎𝟎, is: 

𝝍𝝍𝒊𝒊 = 𝝍𝝍𝒊𝒊,𝟎𝟎 + 𝒏𝒏𝒊𝒊 

The choice of a prior distribution parameters, 𝝍𝝍𝒊𝒊,𝟎𝟎, depends on the availability of data 

and will be discussed in section 6.5. 
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6.4.2. Gamma Factor 

Classical Estimation 

The frequentist point estimate for the gamma factor is:  

 𝛾𝛾�𝑖𝑖 =
𝑛𝑛𝑝𝑝,𝑖𝑖

𝑛𝑛𝑡𝑡
  

𝛾𝛾𝑖𝑖 =  the portion of failure events which had the potential to 
propagate through coupling factor  i where i ∈ {1,2,3,…,w} 

𝑛𝑛𝑡𝑡 =  the total number of failure events/frequency. 
 

When the failure cause taxonomy is defined in such a way that each cause could only 

propagate through one coupling factor (the topic of Chapter 4), this estimate becomes: 

 𝛾𝛾𝑖𝑖 =
𝑛𝑛𝑡𝑡,𝑖𝑖

𝑛𝑛𝑡𝑡
  

and 

� 𝛾𝛾𝑖𝑖

𝑤𝑤

𝑖𝑖=1

= 1 

Bayesian Estimations 

Where a Beta distribution prior is used, 𝜋𝜋0(𝛾𝛾𝑖𝑖; a𝑖𝑖
0, b𝑖𝑖

0), the parameters for the posterior 

distribution of the partial alpha factor, 𝜋𝜋(𝛾𝛾𝑖𝑖; ai, b𝑖𝑖), is: 

 a𝑖𝑖 = a𝑖𝑖
0 + 𝑛𝑛𝑝𝑝,𝑖𝑖  

 b𝑖𝑖 = b𝑖𝑖
0 + 𝑛𝑛𝑡𝑡 − 𝑛𝑛𝑝𝑝,𝑖𝑖  

When the failure cause taxonomy is defined in such a way that each cause could only 

propagate through one coupling factor (the topic of Chapter 4), then 𝑛𝑛𝑝𝑝,𝑖𝑖 = 𝑛𝑛𝑡𝑡,𝑖𝑖 and 

∑ 𝛾𝛾𝑖𝑖
𝑤𝑤
𝑖𝑖=1 = 1. Now the gamma parameter vector, , can be modeled with a Dirichlet 

distribution: 
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𝜸𝜸 ∼ Dirichlet𝑤𝑤{𝝋𝝋} 

𝜸𝜸 =  the portion of failure events for each cause [𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑤𝑤] 
𝝋𝝋= the equivalent count of failure events for each cause 

[𝜑𝜑1, 𝜑𝜑2, … , 𝜑𝜑𝑤𝑤] 
 

The point estimates for each gamma factor can be obtained using: 

𝛾𝛾�𝑖𝑖 =
𝜑𝜑𝑖𝑖

∑ 𝜑𝜑𝑖𝑖
𝑤𝑤
𝑖𝑖=1

 

The parameter 𝜸𝜸, which is the unknown of interest (UOI), can be estimated using 

Bayes’ rule: 

𝑓𝑓(𝜸𝜸|𝒏𝒏𝒕𝒕) =
𝑓𝑓(𝜸𝜸)𝐿𝐿(𝒏𝒏𝒕𝒕|𝜸𝜸)

∑ 𝐿𝐿�𝒏𝒏𝒕𝒕�𝛾𝛾𝑗𝑗�𝑓𝑓�𝛾𝛾𝑗𝑗�𝑤𝑤
𝑗𝑗=1

 

Where: 

𝑓𝑓(𝜸𝜸)  = is the prior distribution of  the parameter  𝜸𝜸 
𝐿𝐿(𝒏𝒏𝒕𝒕|𝜸𝜸)= is the likelihood equation for observing the evidence 
𝑓𝑓(𝜸𝜸|𝒏𝒏𝒕𝒕)= the posterior distribution of  𝜸𝜸 given the evidence  𝒏𝒏𝒕𝒕  
𝒏𝒏𝒕𝒕 = the number of failure events for each cause  [𝑛𝑛𝑡𝑡,1, 𝑛𝑛𝑡𝑡,2, … , 𝑛𝑛𝑡𝑡,𝑤𝑤] 
𝜸𝜸 =  the portion of failure events for each cause [𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑤𝑤] 

 

The likelihood equation of observing the number of failures in each failure cause 

category, 𝒏𝒏𝒕𝒕 = [𝑛𝑛𝑡𝑡,1, 𝑛𝑛𝑡𝑡,2, … , 𝑛𝑛𝑡𝑡,𝑤𝑤] is distributed as a multinomial distribution with 

parameters 𝜸𝜸 = [𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑤𝑤]. 

𝒏𝒏𝒕𝒕 ∼ Multinomialw{𝑛𝑛𝑡𝑡 , 𝜸𝜸} 

where 

𝑛𝑛𝑡𝑡 = the number of failure events 
 
 

Therefore the hyper parameters, 𝝋𝝋, for the posterior 𝜸𝜸 given evidence 𝒏𝒏𝒕𝒕 using a 
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Dirichlet prior with parameters, 𝝋𝝋𝟎𝟎, is: 

𝝋𝝋 = 𝝋𝝋𝟎𝟎 + 𝒏𝒏𝒕𝒕 

The choice of a prior distribution parameters,  𝝋𝝋𝟎𝟎, depends on the availability of data 

and will be discussed in section 6.5. 

6.4.3. Assessed Alpha Factor 

Partial alpha factors may be converted back to alpha factors for use with CCBEs from each CCCG. This 

is done through summing the contributions from each coupling factor. 

𝛼𝛼′𝑘𝑘 = � 𝛾𝛾𝑖𝑖𝛼𝛼𝑘𝑘,𝑖𝑖
𝑖𝑖∈𝑟𝑟

 

𝒓𝒓    =  the coupling factors shared by the components within the 
CCCG being analysed, r⊆{1,2,3,…,w}. 

𝛼𝛼𝑘𝑘
′  =  the assessed alpha factor. This is the system alpha factor 

which only considers the coupling factors shared by the 
components within the CCCG where  2 ≤ 𝑘𝑘 ≤ 𝑚𝑚 

 

𝛼𝛼1 is the single failures and any contribution from coupling factors which are not 

shared. 

𝛼𝛼′1 = 1 − � � 𝛼𝛼′𝑘𝑘

𝑚𝑚

𝑘𝑘=2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

When components share all coupling factors (complete symmetry) this alpha factor 

estimate is equivalent to the AFM. Where components only share some coupling 

factors, this estimate of the alpha factor is reduced commensurate with the benefits of 

decoupling that particular feature. This will be demonstrated through the use of 

examples in section 6.6. 
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6.5. Parameter Quantification 
In estimating the PAFM parameters from data, it is assumed that the failure taxonomy 

allows for a one to one direct relationship between failure causes and coupling factors. 

This issue is discussed in Chapter 4. Occasions where a failure cause may propagate 

over multiple coupling factors are discussed in section 6.8.1.  

6.5.1. Using Impact Vectors 

Where component specific data exists, the evidence required to calculate the parameter 

estimations can be quantified using the impact vector methodology.  

 

The average impact vector for a CCF event can be represented with the inclusion of the 

failure cause: 

𝐼𝐼 ̅ = [𝐹𝐹0���, 𝐹𝐹1� , … , 𝐹𝐹𝑚𝑚����][Cause] 

Then the sum of average impact vectors for J events for a particular cause is: 

𝑛𝑛Ω,𝑖𝑖 = �𝑛𝑛1,𝑖𝑖 , … , 𝑛𝑛𝑚𝑚,𝑖𝑖� 

where 

𝑛𝑛𝑘𝑘,𝑖𝑖 = � 𝐹𝐹𝑘𝑘���(𝑗𝑗)[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝐽𝐽

𝑗𝑗=1
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶=𝑖𝑖

 

𝑛𝑛𝑘𝑘,𝑖𝑖     =  the total number of CCF basic events caused by i involving the 
failure of k similar components. 

 

Note, 𝑛𝑛0 is not included because a failure cause cannot be determined when there was 

no failure. 
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The quantities required to estimate the partial alpha factors and gamma factors can now 

be calculated as: 

𝑛𝑛𝑡𝑡,𝑖𝑖 = � 𝑛𝑛𝑘𝑘,𝑖𝑖

𝑚𝑚

𝑘𝑘=1

 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑡𝑡,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 

𝒏𝒏𝒕𝒕 = [𝑛𝑛𝑡𝑡,1, 𝑛𝑛𝑡𝑡,2, … , 𝑛𝑛𝑡𝑡,𝑤𝑤] 

𝒏𝒏𝒊𝒊 = [𝑛𝑛1,𝑖𝑖 , 𝑛𝑛2,𝑖𝑖 , … , 𝑛𝑛𝑚𝑚,𝑖𝑖] 

 

Using impact vectors to quantify the PAFM allows for the ability to use currently 

accepted mapping rules from systems with different CCCG sizes, include uncertainty 

around observed partial failures, coupling factors and time delays as provided in the 

impact vector methodology. 

6.5.2. Using Generic Data Sources 

Where detailed information about each failure cause is unknown the analyst may use 

data from generic data sources or from similar systems to create a prior distribution 

before incorporating system specific data. In doing so the analyst must be careful not 

to overstate the strength of the generic data to estimate the specific application.  

 

For example, a generator has been installed in a two train configuration, as per example 
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1; however the installation design is not common across industry. Both generators have 

been running continuously for 250 days (500 days in total). During that time there have 

been two failures, one caused by the installation procedure, and the other due to the 

external environment.  

 

Plant specific data is: 

𝑛𝑛Ω,𝐼𝐼𝐼𝐼 = [0, 1, 0] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀 = [0, 0, 0] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸 = [0, 1, 0] 

𝑛𝑛0 = 498 

The point estimate using the plant specific data is: 

𝑄𝑄𝑡𝑡 =
𝑛𝑛𝐹𝐹

𝑁𝑁1
=

2
500

= 0.004 

𝛼𝛼2,𝐼𝐼𝐼𝐼 =
0

1 + 0
= 0 𝛾𝛾𝐼𝐼𝐼𝐼 =

1
1 + 0 + 1

= 0.5 

𝛼𝛼2,𝑀𝑀𝑀𝑀 =
0

0 + 0
= 0 𝛾𝛾𝑀𝑀𝑀𝑀 =

0
1 + 0 + 1

= 0 

𝛼𝛼2,𝐸𝐸𝐸𝐸 =
0

1 + 0
= 0 𝛾𝛾𝐸𝐸𝐸𝐸 =

1
1 + 0 + 1

= 0.5 

 

The estimates from the plant specific data show a lack of data to estimate partial alpha 

factors and gamma factors. The analyst consults the CCFDB for generator data, as 

detailed in Table 7 (example 1 EDG data). This data shows a total of 35 failures in 5834 

days of operation. The generic data set is more plentiful than the plant specific data, 
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however the analyst believes the generic data is not completely representative due to 

this generator’s unique configuration.  

 

A summary of the generic data is: 

𝑛𝑛Ω,𝐼𝐼𝐼𝐼
[𝐸𝐸] = [0, 3, 1] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀
[𝐸𝐸] = [0, 14, 2] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝐸𝐸] = [0, 8, 2] 

𝑛𝑛0
[𝐸𝐸] = 2887 
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The point estimate using the generic data is: 

𝑄𝑄𝑡𝑡 =
𝑛𝑛𝐹𝐹

[𝐸𝐸]

𝑁𝑁1
[𝐸𝐸] =

35
5834

= 0.006 

𝛼𝛼2,𝐼𝐼𝐼𝐼
[𝐸𝐸] =

1
3 + 1

= 0.25 𝛾𝛾𝐼𝐼𝐼𝐼
[𝐸𝐸] =

4
4 + 16 + 10

= 0.13̇ 

𝛼𝛼2,𝑀𝑀𝑀𝑀
[𝐸𝐸] =

2
14 + 2

= 0.125 𝛾𝛾𝑀𝑀𝑀𝑀
[𝐸𝐸] =

16
4 + 16 + 10

= 0.53̇ 

𝛼𝛼2,𝐸𝐸𝐸𝐸
[𝐸𝐸] =

2
8 + 2

= 0.2 𝛾𝛾𝐸𝐸𝐸𝐸
[𝐸𝐸] =

10
4 + 16 + 10

= 0.33̇ 

 

The data from both information sources can be combined through Bayesian updating. 

However, in order for the plentiful generic data not to dominate the estimate, it should 

be adjusted by a weighting factor 𝑤𝑤𝑒𝑒 which is an engineering assessment of the strength 

between the component similarities and operating context for generic data against the 

target system.  

 

Therefore the hyper-parameters of the posterior distribution for the partial alpha factors 

can be calculated as: 

𝝍𝝍𝒊𝒊 = 𝝍𝝍𝒊𝒊,𝟎𝟎 + � 𝑤𝑤𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝒏𝒏𝒊𝒊,𝒆𝒆 

 
𝝍𝝍𝒊𝒊= the equivalent count of failure events for each multiplicity of 

failure with cause I  [𝜓𝜓1,𝑖𝑖 , 𝜓𝜓2,𝑖𝑖 , … , 𝜓𝜓𝑚𝑚,𝑖𝑖] 
𝒏𝒏𝒊𝒊,𝒆𝒆 = the number of failure events for each multiplicity of failure  

[𝑛𝑛1,𝑖𝑖 , 𝑛𝑛2,𝑖𝑖 , … , 𝑛𝑛𝑚𝑚,𝑖𝑖] for failure cause i from evidence source e. 
𝑤𝑤𝑒𝑒 = evidence weighting factor 
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Therefore the hyper-parameters of the posterior distribution for the gamma factors can 

be calculated as: 

𝝋𝝋 = 𝝋𝝋𝟎𝟎 + � 𝑤𝑤𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝒏𝒏𝒕𝒕,𝒆𝒆 

𝝋𝝋= the equivalent count of failure events for each cause 
[𝜑𝜑1, 𝜑𝜑2, … , 𝜑𝜑𝑤𝑤] 

𝒏𝒏𝒕𝒕,𝒆𝒆 = the number of failure events for each cause  [𝑛𝑛𝑡𝑡,1, 𝑛𝑛𝑡𝑡,2, … , 𝑛𝑛𝑡𝑡,𝑤𝑤] 
from source e. 

𝑤𝑤𝑒𝑒 = evidence weighting factor 
 

 

The analyst makes an engineering assessment that 𝑤𝑤𝑒𝑒 for the generic data is 0.3. This 

avoids non-zero elements, allows for the generic data to influence the estimate but not 

dominate the plant specific data. The following example shows the calculation for the 

EE alpha factor using a Novick and Hall improper prior (see section 6.5.4):  

𝝍𝝍𝐸𝐸𝐸𝐸,0 = [0, 0]  

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝐸𝐸] = [8, 2], 𝑤𝑤𝑒𝑒1 = 0.3 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸 = [1, 0], 𝑤𝑤𝑒𝑒2 = 1 

Now: 

𝝍𝝍𝒊𝒊 = 𝝍𝝍𝒊𝒊,𝟎𝟎 + � 𝑤𝑤𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝒏𝒏𝒊𝒊,𝒆𝒆 

= [0, 0] + �
12
5

,
3
5

� + [1,0] 

= [3.4, 0.6] 
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The point estimate for the partial alpha factor is now: 

𝛼𝛼2,𝐸𝐸𝐸𝐸 =
0.6

3.4 + 0.6
= 0.15 

 

The following example shows the calculation for the EE gamma factor using a Novick 

and Hall improper prior (see section 6.5.4):  

𝝋𝝋𝟎𝟎 = [0, 0,0]  

𝒏𝒏𝐭𝐭,𝒆𝒆𝒆𝒆
[𝑬𝑬] = [4, 16, 10], 𝑤𝑤𝑒𝑒1 = 0.3 

𝒏𝒏𝒕𝒕,𝒆𝒆𝒆𝒆 = [1, 0, 1], 𝑤𝑤𝑒𝑒2 = 1 

Now: 

𝝋𝝋 = 𝝋𝝋𝟎𝟎 + � 𝑤𝑤𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝒏𝒏𝒕𝒕,𝒆𝒆 

= [0, 0,0] + �
6
5

,
24
5

, 3� + [1,0,1] 

= [2.2, 5.8, 4] 

The point estimate for the EE gamma factor is now: 

𝛾𝛾�𝐸𝐸𝐸𝐸 =
4

2.2 + 5.8 + 4
= 0.33̇ 

 

The engineering assessment of the weighting factor affects the strength of the data from 

a particular evidence source. Table 19 shows the effect which different weighting 

factors have in the estimation of 𝛼𝛼2,𝐸𝐸𝐸𝐸 and 𝛾𝛾𝐸𝐸𝐸𝐸. A strong weighting factor has the 

posterior point estimate more towards the estimate from the generic data source, a weak 
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prior allows for non-zero estimates which allow the plant specific data to dominate.  

 

Table 19: Comparison of weighting factor strengths 

𝛼𝛼2,𝐸𝐸𝐸𝐸 
Plant 

Specific 

𝛼𝛼2,𝐸𝐸𝐸𝐸 
Generic 

Data 

𝑤𝑤𝑒𝑒1 
Weight 
Factor 

Posterior  
𝛼𝛼2,𝐸𝐸𝐸𝐸 
Point 

Estimate 

 𝛾𝛾𝐸𝐸𝐸𝐸 
Plant 

Specific 

𝛾𝛾𝐸𝐸𝐸𝐸 
Generic 

Data 

𝑤𝑤𝑒𝑒1 
Weight 
Factor 

Posterior 
𝛾𝛾𝐸𝐸𝐸𝐸 

Point 
Estimate 

0 0.2 0 0.00  0.5 0.33 0 0.5 
0 0.2 0.2 0.13  0.5 0.33 0.2 0.375 
0 0.2 0.4 0.16  0.5 0.33 0.4 0.35714

3 
0 0.2 0.6 0.17  0.5 0.33 0.6 0.35 
0 0.2 0.8 0.18  0.5 0.33 0.8 0.34615

4 
0 0.2 1 0.18  0.5 0.33 1 0.34375 

 

6.5.3. Informative Prior Distributions 

The objective of the prior distribution is to capture the belief the analyst has about the 

Unknown Of Interest (UOI). Where the prior distribution captures an assessment of the 

analyst’s believe, it is known as a subjective prior. A detailed treatment of informative 

priors used in PRA analysis is provided in (Siu & Kelly 1998). 

 

Population Variability Prior 

A common method for formulating an informative prior is to construct a distribution 

of the variability of the UOI across the population. Methods such as the Two-stage 

Bayes, Hierarchical Bayes and Empirical Bayes methods achieve this with subtle 

differences in their approach (Siu & Kelly 1998). The procedure is to estimate the 

variability of the UOI across a population. For example the PAFM parameters may be 
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calculated for each plant within the USA. A histogram of the plan values is then created 

and a distribution fitted. This then forms the prior distribution, and the collection of the 

plant specific data has the UOI estimate converge towards where that specific plant fits 

into the population variability function.  The method of dividing the population into 

sub-populations could be applied across different component types, plant types, plant 

locations, component manufacturers etc. 

 

This approach has the advantage of informing the estimate of parameters based on the 

variability seen across the population. For example alpha factors are generally between 

0.2 and 0.001 and using this method would provide a quantitative assessment of this 

range.  

 

The method for calculating the population variability function which becomes the prior 

requires industry wide data collection, such as the CCFDB. The specific method for 

dividing the data would require analysis to minimize variability.  

 

Expert Elicitation 

The procedure for elicitation of quantitative estimates from experts has been proposed 

by multiple authors  (Cooke 1991; O’Hagan et al. 2006; Zitrou 2006b). In addition 

many mathematical techniques have been proposed to combine expert’s estimates, treat 

bias, and account for overlapping knowledge (Garthwaite et al. 2005; Kadane & 

Wolfson 1998; Mumpower & Stewart 1996; Skjong & Wentworth 2001) The NRC has 
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provided practical guidance on expert elicitation through (Meyer & Booker 1990; 

Ronald et al. 2005) 

 

Two important characteristics must be quantified when using an expert’s assessment 

of PAFM values.  

• Cause Frequency. The portion of failures which occur due to a specific cause 

is affected by the gamma parameter. Due to the operating, environmental and 

design context of each system the likelihood of some causes may approach zero. 

For example items which do not undergo maintenance will have a zero 

probability of a maintenance procedural or maintenance human failure cause.  

• Strength of Failure Propagation. The partial alpha factor represents the 

likelihood that a failure will propagate to other components. The deterministic 

relationship of coupling factors is captured in the qualitative assessment during 

the analysis procedure. However where coupling factors exist, system specific 

characteristics can be captured through the expert elicitation process.  

6.5.4. Non-informative Prior Distributions 

When prior knowledge is vague, it is often desirable to have a repeatable, defendable 

prior which represents our lack of knowledge of the system. (Atwood 1996) It is 

particularly easy to justify a non-informative prior where there is a substantial amount 

of information which will make the assumptions used to form a prior insignificant.  

144 

 

 



 

However, when limited evidence is available, the prior can dominate the estimate and 

can be difficult to justify. (Siu & Kelly 1998) A detailed account for the philosophy, 

purpose and construction of non-informative priors can be found in (Kass & 

Wasserman 1996) and use of non-informative priors in PRA are described in (Siu & 

Kelly 1998). This section will briefly describe the non-informative Dirichlet priors that 

can be used for the estimation of the partial alpha factors and gamma factors.  

 

Despite these non-informative priors allowing a repeatable prior distribution, the 

analyst must still apply engineering judgment to ensure that where causes cannot exist 

within the specific system, the gamma factor for that cause remains zero. The occasion 

when failure propagation cannot occur (alpha factors zero) can be accounted for in the 

creation of CCCGs. 

 

Uniform Distribution 

The uniform distribution assigns an equal probability to each unknown of interest 

(UOI).  This is known as the principle of indifference. and can be represented with the 

Dirichlet parameters, 𝜽𝜽𝟎𝟎 equal to(Yang & Berger 1998): 

𝜋𝜋0(𝜽𝜽) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝑑𝑑([1,1, … ,1]) 

 

  

145 

 

 



 

Jeffreys Prior Distribution 

Proposed by Jeffrey in 1961, this prior is calculated as 𝜋𝜋0(𝜃𝜃) = �det(𝑰𝑰𝜃𝜃) where 𝑰𝑰𝜃𝜃 is 

the Fisher information matrix. This derivation is motivated by the fact that it is not 

dependent upon a set of parameter variables that is chosen to describe the parameter 

space. The Jeffrey Prior parameters for the Dirichlet distribution are: 

𝜋𝜋0(𝜽𝜽) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝑑𝑑 ��
1
2

,
1
2

, … ,
1
2

�� 

 

Novick and Hall’s Improper Prior 

Novick and Hall defined an “indifference prior” by selecting the parameters of a 

conjugate prior which is improper and provides the minimum necessary samples to the 

posterior (Kass & Wasserman 1996). An improper prior distribution is where the 

distribution does not integrate to 1. The parameters for the Dirichlet which meet Novich 

and Hall’s criteria is: 

𝜋𝜋0(𝜽𝜽) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝑑𝑑([0,0, … ,0]) 

 

The analyst must be careful when using such a prior as it can lead to zero estimates of 

the UOI, 𝜃𝜃.  

6.5.5. Using Alpha Factors as a Constraint 

This chapter so far has discussed methods to quantify PAFM parameters where very 

little or no data exists. There may however be occasions where the alpha factors are 
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known, but the failure causes for the impact vectors is unknown. In this unique situation 

the same procure of using priors, expert opinions, generic data sources and plan specific 

data sources may be used, with the additional constraint that: 

𝛼𝛼"𝑘𝑘 = � 𝛾𝛾𝑖𝑖𝛼𝛼𝑘𝑘,𝑖𝑖
𝑖𝑖

 

where 

𝛼𝛼"𝑘𝑘= the known alpha factor for a specific system 
 

There are two primary methods through which adjustments can be made for ensuring 

this constraint is met: 

• Adjust the gamma factor distribution 

• Adjust the partial alpha factor distribution 

 

Adjust the Gamma Factor Distribution 

The most likely reason for differences between generic data and the known alpha factor 

is due to different failure rates for each cause based on plant specific characteristics. 

For example plants which operate in different temperature ranges or use different water 

sources will have different distributions for each failure cause. Using an engineering 

assessment about the specific differences of a particular system, the analyst can adjust 

the gamma factors such that the alpha factor constraint is met. 
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Adjust the Partial Alpha Factors 

The partial alpha factors represent the strength of failure propagation given the 

opportunity. This factor can change between specific systems based on the soft 

defenses of the system such as degrees of separation, or differences between 

components. Using an engineering assessment about the specific differences of a 

particular system, the analyst can adjust the gamma factors such that the alpha factor 

constrain is met. 

6.6. PAFM in System Analysis 
This section describes the system analysis procedure when using the PAFM. The two 

examples used to demonstrate this procedure are the same two examples described in 

Chapter 2. A two train EDG system with perfect symmetry and a system with two EDG 

and three pumps with mixed redundancy. 

 

 

Figure 27: Reliability block diagram for 

example 1- Two train EDG system 

 

Figure 28: RBD for example 2, two EDG 

three pump system. 

A B 
E1 E2 

P3 P2 P1 
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This section focuses on calculating the system probability and may skip some 

qualitative steps of the process for simplicity. 

6.6.1. Qualitative Analysis 

The purpose of the qualitative analysis is to form common cause component groups 

(CCCGs) which group components together based on their shared coupling factors.  

 

A component may be a part of multiple CCCGs based on one or more shared attributes. 

However a component cannot be part of multiple CCCGs for the one attribute. 

Components which share a CCCG must have the same failure rate/probability. This 

results in the PAFM being able to model asymmetrical coupling factors but not 

asymmetrical components and failure rates/probabilities. 

 

The qualitative assessment for example 1 and example 2 are in Table 20 and  

Table 21 respectively. 

Table 20: Qualitative dependency assessment for example 1 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (A) EDG IP Team X Room Y 
EDG 2 (B) EDG IP Team X Room Y 

  

Table 21: Qualitative dependency assessment for example 2 

Component Install Procedure Maintenance 
Staff 

Location 
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EDG 1 (E1) EDG Team X Room Y 
EDG 2 (E2) EDG Team X Room Y 
Pump 1 (P1) Pump V1.1 Team X Room Y 
Pump 2 (P2) Pump V2.8 Team X Room Y 
Pump 3 (P3) Pump V1.1 Team Y Room X 

 

In example 1 it is clear that the two EDG share all coupling factors and should form 

one CCCG.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝐸𝐸] = {𝐴𝐴, 𝐵𝐵} 

In example 2 while the EDGs are again symmetrical, pumps 1 and 2 only share the 

same maintenance team and location, pumps 1 and 3 share an installation procedure. 

Therefore pump 1 will become part of two CCCGs. The EDG and pumps do share 

features, however due to the inability to model asymmetrical component failure rates, 

these dependencies cannot be modeled (as per the AFM). Therefore the CCCGs for 

example 2 are: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑋𝑋 = {𝐸𝐸1, 𝐸𝐸2} 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑍𝑍  = {𝑃𝑃1, 𝑃𝑃2} 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑌𝑌 = {𝑃𝑃1, 𝑃𝑃3} 

6.6.2. Identification of Common Cause Basic Events 

The CCBEs will be constructed with consideration for all CCCGs which the component 

is a part of. If a component was part of multiple CCCGs, then the CCBEs for both 

CCCGs would be added.  
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The CCBE events for example 1 and example 2 are shown in Table 22 and Table 23 

respectively. 

Table 22: CCBE for example 1 

Component Common Cause Basic Events 
EDG 1 (A) 𝐴𝐴𝑖𝑖 , 𝑋𝑋𝐴𝐴𝐴𝐴 
EDG 2 (B) 𝐵𝐵𝑖𝑖 , 𝑋𝑋𝐴𝐴𝐴𝐴 

 

Table 23: CCBE for example 2 

Component Common Cause Basic Events 
EDG 1 (𝐸𝐸1) 𝐸𝐸1,𝑖𝑖 , 𝑋𝑋𝐸𝐸1,𝐸𝐸2 
EDG 2 (𝐸𝐸2) 𝐸𝐸2,𝑖𝑖 , 𝑋𝑋𝐸𝐸1,𝐸𝐸2 
Pump 1 (𝑃𝑃1) 𝑃𝑃1,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2, 𝑌𝑌𝑃𝑃1,𝑃𝑃3 
Pump 2 (𝑃𝑃2) 𝑃𝑃2,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2 
Pump 3 (𝑃𝑃3) 𝑃𝑃3,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3 

6.6.3. Incorporate into Fault Tree 

The CCBEs are incorporated into the fault tree as per Chapter 2.  

The fault tree for example 1 after substitution of CCBEs is shown in Figure 29. 
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Figure 29: Fault tree for example 1 with CCBEs 

The cut sets for example 1 are now: 

{𝐴𝐴𝑖𝑖 , 𝐵𝐵𝑖𝑖} ; {𝑋𝑋𝐴𝐴𝐴𝐴}  

The fault tree for example 2 after substitution of CCBEs is shown in Figure 30. 

 

Figure 30: Fault tree for example 2 with CCBEs 

S

E1

E1,i XE1,E2

P1

P1,i ZP1,P2

E2

E2,i XE1,E2
P2

P2,i ZP1,P2

YP1,P3
P3

P3,i YP1,P3
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The cut sets for example 2 with CCBEs are: 

�𝐸𝐸1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� ;  �𝑃𝑃1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� ; �𝑃𝑃1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖�;  �𝐸𝐸1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖�; 

�𝑃𝑃3,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2�; �𝐸𝐸2,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2�; �𝑃𝑃2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3�; �𝐸𝐸2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3�; 

�𝑍𝑍𝑃𝑃1,𝑃𝑃2, 𝑌𝑌𝑃𝑃1,𝑃𝑃3�;  �𝑋𝑋𝐸𝐸1,𝐸𝐸2�  

 

Note that the cut set �𝑍𝑍𝑃𝑃1,𝑃𝑃2, 𝑌𝑌𝑃𝑃1,𝑃𝑃3� treats the failure of a single component due to 

different causes in separate CCCGs as independent, not mutually exclusive. This is the 

same assumption used to separate individual and common cause basic events and may 

have minimal influence. 

 

One problem with this approach is that the CCBEs are treated as independent events, 

instead of mutually exclusive.  This  

6.6.4. Parametric representation of CCBEs 

The parameter representation of the CCBEs are the same as Chapter 2. For example 1 

the CCBEs are equal to: 

𝑃𝑃(𝐴𝐴𝑖𝑖) = 𝑃𝑃(𝐵𝐵𝑖𝑖) = 𝑄𝑄1
(2) 

𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝑄𝑄2
(2) 

The example 1 system equation is now: 

𝑃𝑃(𝑆𝑆) = 𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)�

2
+ 𝑄𝑄2

(2) 
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For example 2 the CCBEs are equal to: 

𝑃𝑃�𝐸𝐸1,𝑖𝑖� = 𝑃𝑃�𝐸𝐸2,𝑖𝑖� = 𝑄𝑄1
(2)[𝐸𝐸] 

𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� = 𝑄𝑄2
(2)[𝑋𝑋] 

𝑃𝑃�𝑃𝑃1,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃1] 

𝑃𝑃�𝑃𝑃2,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃2] 

𝑃𝑃�𝑃𝑃3,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃3] 

𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2� = 𝑄𝑄2
(2)[𝑍𝑍] 

𝑃𝑃�𝑌𝑌𝑃𝑃1,𝑃𝑃3� = 𝑄𝑄2
(2)[𝑌𝑌] 

In comparison to the AFM, the pumps are not symmetrical and so: 

𝑄𝑄1
(2)[𝑃𝑃1] ≠ 𝑄𝑄1

(2)[𝑃𝑃2] ≠ 𝑄𝑄1
(2)[𝑃𝑃3] 

Using rare event approximation, the example 2 system equation is now: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)[𝐸𝐸]�

2
+ 𝑄𝑄1

(2)[𝑃𝑃1]𝑄𝑄1
(2)[𝐸𝐸] + 𝑄𝑄1

(2)[𝑃𝑃1]𝑄𝑄1
(2)[𝑃𝑃2]𝑄𝑄1

(2)[𝑃𝑃3] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄1

(2)[𝑃𝑃2]𝑄𝑄1
(2)[𝑃𝑃3]

+ 𝑄𝑄1
(2)[𝑃𝑃3]𝑄𝑄2

(2)[𝑍𝑍] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄2

(2)[𝑍𝑍] + 𝑄𝑄1
(2)[𝑃𝑃2]𝑄𝑄2

(2)[𝑌𝑌] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄2

(2)[𝑌𝑌]

+ 𝑄𝑄2
(2)[𝑍𝑍]𝑄𝑄2

(2)[𝑌𝑌] + 𝑄𝑄2
(2)[𝑋𝑋]  

6.6.5. Partial Alpha Factor Model Parameterization 

The Basic Parameter values are quantified using assessed alpha factors which only add 

the contribution from the relevant dependencies.  

 

First, the CCBEs are quantified as per Chapter 2, except using assessed alpha factors.  
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𝑄𝑄𝑘𝑘
(𝑚𝑚) = �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

. 𝛼𝛼′𝑘𝑘. 𝑄𝑄𝑡𝑡 

For example 1 the basic events for each component are: 

𝑄𝑄1
(2) = 𝛼𝛼′1𝑄𝑄𝑡𝑡 , 𝑄𝑄2

(2) = 𝛼𝛼′2. 𝑄𝑄𝑡𝑡 

Due to the components being in perfect symmetry, the assessed alpha factors have a 

contribution from all coupling factors.  

𝛼𝛼′2 = � 𝛾𝛾𝑖𝑖𝛼𝛼2,𝑖𝑖
𝑖𝑖={𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}

 

𝛼𝛼′1 = 1 − 𝛼𝛼′2 

For example 2 the basic events for each component are: 

𝑄𝑄1
(2)[𝑃𝑃] = 𝛼𝛼′1

[𝑃𝑃]𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝑄𝑄2

(2)[𝑃𝑃] = 𝛼𝛼′2
[𝑃𝑃]. 𝑄𝑄𝑡𝑡

[𝑃𝑃] 

For example 2 the EDGs are symmetrical and therefore the basic events are: 

𝑄𝑄1
(2)[𝐸𝐸] = 𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸], 𝑄𝑄2

(2)[𝑋𝑋] = 𝛼𝛼′2
[𝑋𝑋]. 𝑄𝑄𝑡𝑡

[𝐸𝐸] 

𝛼𝛼′2
[𝑋𝑋] = � 𝛾𝛾𝑖𝑖

[𝐸𝐸]𝛼𝛼2,𝑖𝑖
[𝐸𝐸]

𝑖𝑖={𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}

 

𝛼𝛼′1
[𝐸𝐸] = 1 − 𝛼𝛼′2

[𝑋𝑋] 

For example 2, the pumps in 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑍𝑍 only share the maintenance team and external 

environment. The assessed alpha factors will not include the contribution from 

installation procedures.  

𝑄𝑄2
(2)[𝑍𝑍] = 𝛼𝛼′2

[𝑍𝑍]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] 

𝛼𝛼′2
[𝑍𝑍] = � 𝛾𝛾𝑖𝑖

[𝑃𝑃]𝛼𝛼2,𝑖𝑖
[𝑃𝑃]

𝑖𝑖={𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}
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The pumps in 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑌𝑌 only share installation procedure and the assessed alpha factor 

will not include the contribution from maintenance team and external environment.  

𝑄𝑄2
(2)[𝑌𝑌] = 𝛼𝛼′2

[𝑌𝑌]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] 

𝛼𝛼′2
[𝑌𝑌] = � 𝛾𝛾𝑖𝑖

[𝑃𝑃]𝛼𝛼2,𝑖𝑖
[𝑃𝑃]

𝑖𝑖={𝐼𝐼𝐼𝐼}

 

The assessed alpha factors for each pump may now be calculated as the remaining 
failure events.  

𝑄𝑄1
(2)[𝑃𝑃1] = 𝛼𝛼′1

[𝑃𝑃1]. 𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝛼𝛼′1

[𝑃𝑃1] = 1 − 𝛼𝛼′2
[𝑍𝑍] − 𝛼𝛼′2

[𝑌𝑌] 

𝑄𝑄1
(2)[𝑃𝑃2] = 𝛼𝛼′1

[𝑃𝑃2]. 𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝛼𝛼′1

[𝑃𝑃2] = 1 − 𝛼𝛼′2
[𝑍𝑍] 

𝑄𝑄1
(2)[𝑃𝑃3] = 𝛼𝛼′1

[𝑃𝑃3]. 𝑄𝑄𝑡𝑡
[𝑃𝑃], 𝛼𝛼′1

[𝑃𝑃3] = 1 − 𝛼𝛼′2
[𝑌𝑌] 

6.6.6. Parameter Estimation – Impact Vectors  

Impact vectors are calculated for each CCF event as per Chapter 2. The sum of the 

average impact vectors must be conducted for each cause.  

 

For the examples, the data and average impact vectors for an EDG are contained in 

Table 7 on page 42. The sum of the EDG average impact vectors for each cause is: 

𝑛𝑛Ω,𝐼𝐼𝑃𝑃
[𝐸𝐸] = [0, 172.2, 2.8] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀
[𝐸𝐸] = [0, 154.35, 3.15] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝐸𝐸] = [0, 16.45, 1.05] 

𝑛𝑛0
[𝐸𝐸] = 29400 

The data and average impact vectors for a pump are contained in  

156 

 

 



 

Table 9 on page 43.  
The sum of the pump average impact vectors for each cause is: 

𝑛𝑛Ω,𝐼𝐼𝐼𝐼
[𝑃𝑃] = [0, 26.0663, 0.1838] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀
[𝑃𝑃] = [0, 59.4125, 1.838] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝑃𝑃] = [0, 82.5213, 4.9788] 

𝑛𝑛0
[𝑃𝑃] = 44433 

6.6.7. Parameter Estimation – Partial Alpha Factor Model  

In order to calculate the assessed alpha factors, the partial alpha factors and gamma 

factors must be calculated: 

 

For the EDG example, the partial alpha factors and gamma factors can be calculated 

as: 

𝛼𝛼2,𝐼𝐼𝐼𝐼
[𝐸𝐸] =

2.8
172.2 + 2.8

= 0.016 𝛾𝛾𝐼𝐼𝐼𝐼
[𝐸𝐸] =

175
175 + 157.5 + 17.5

= 0.5 

𝛼𝛼2,𝑀𝑀𝑀𝑀
[𝐸𝐸] =

3.15
154.35 + 3.15

= 0.020 𝛾𝛾𝑀𝑀𝑀𝑀
[𝐸𝐸] =

157.5
175 + 157.5 + 17.5

= 0.45 

𝛼𝛼2,𝐸𝐸𝐸𝐸
[𝐸𝐸] =

1.05
16.45 + 1.05

= 0.060 𝛾𝛾𝐸𝐸𝐸𝐸
[𝐸𝐸] =

17.5
175 + 157.5 + 17.5

= 0.05 

 

The assessed alpha factors for example 1 can now be calculated as: 

𝛼𝛼′
2 = � 𝛾𝛾𝑖𝑖𝛼𝛼2,𝑖𝑖

𝑖𝑖={𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}
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= (0.5)(0.016) + (0.45)(0.02) + (0.05)(0.06) 

= 0.02 

and 

𝛼𝛼′
1 = 1 − 𝛼𝛼′

2 = 0.98 

For the pump example, the partial alpha factors and gamma factors can be calculated 

as: 

𝛼𝛼2,𝐼𝐼𝐼𝐼
[𝑃𝑃] =

0.18375
26.06625 + 0.18375

= 0.007 𝛾𝛾𝐼𝐼𝐼𝐼
[𝑃𝑃] =

26.25
26.25 + 61.25 + 87.5

= 0.15 

𝛼𝛼2,𝑀𝑀𝑀𝑀
[𝑃𝑃] =

1.8375
59.4125 + 1.8375

= 0.03 𝛾𝛾𝑀𝑀𝑀𝑀
[𝑃𝑃] =

61.25
26.25 + 61.25 + 87.5

= 0.35 

𝛼𝛼2,𝐸𝐸𝐸𝐸
[𝑃𝑃] =

4.97875
82.52125 + 4.97875

= 0.0569 𝛾𝛾𝐸𝐸𝐸𝐸
[𝑃𝑃] =

87.5
26.25 + 61.25 + 87.5

= 0.50 

The assessed alpha factors can now be calculated as: 

𝛼𝛼′2
[𝑋𝑋] = � 𝛾𝛾𝑖𝑖

[𝐸𝐸]𝛼𝛼2,𝑖𝑖
[𝐸𝐸]

𝑖𝑖={𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}

= 0.02 

𝛼𝛼′2
[𝑍𝑍] = � 𝛾𝛾𝑖𝑖

[𝑃𝑃]𝛼𝛼2,𝑖𝑖
[𝑃𝑃]

𝑖𝑖={𝑀𝑀𝑀𝑀,𝐸𝐸𝐸𝐸}

= 0.03895 

𝛼𝛼′2
[𝑌𝑌] = � 𝛾𝛾𝑖𝑖

[𝑃𝑃]𝛼𝛼2,𝑖𝑖
[𝑃𝑃]

𝑖𝑖={𝐼𝐼𝐼𝐼}

= 0.00105 

𝛼𝛼′1
[𝑃𝑃1] = 1 − 𝛼𝛼′

2
[𝑍𝑍] − 𝛼𝛼′

2
[𝑌𝑌] = 0.96 

𝛼𝛼′1
[𝑃𝑃2] = 1 − 𝛼𝛼′

2
[𝑍𝑍] = 0.96105 

 𝛼𝛼′1
[𝑃𝑃3] = 1 − 𝛼𝛼′

2
[𝑌𝑌] = 0.99895 

6.6.8. System Quantification and Results Interpretation.  
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The parameter estimates may now be substituted back into the system equations.  

 

For example 1, the system equation is: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)�

2
+ 𝑄𝑄2

(2) 

Where: 

𝑄𝑄1
(2) = 𝛼𝛼′1𝑄𝑄𝑡𝑡 , 𝑄𝑄2

(2) = 𝛼𝛼′2. 𝑄𝑄𝑡𝑡 , 𝑄𝑄𝑡𝑡 = 0.006 

𝛼𝛼1
′ = 0.98, 𝛼𝛼′2 = 0.02 

Therefore the system failure probability is: 

𝑃𝑃(𝑆𝑆) = (𝛼𝛼′1𝑄𝑄𝑡𝑡)2 + 𝛼𝛼′2. 𝑄𝑄𝑡𝑡 

= (0.98 × 0.006)2 + (0.02)(0.006) 

= 1.546𝑒𝑒-4 

The system failure probability for example 1 using the AFM method was 1.025e-3, 

which is equal to the PAFM system failure probability. Example 1 demonstrates that 

where each component shares all coupling factors, the PAFM and AFM results are 

equal.  

 

For example 2, instead of calculating the system probability of failure using the system 

equation, the following quantities can be placed into the fault tree for calculation: 

𝑃𝑃�𝐸𝐸1,𝑖𝑖� = 𝑃𝑃�𝐸𝐸2,𝑖𝑖� = 𝑄𝑄1
(2)[𝐸𝐸] = 𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸] = 5.88𝑒𝑒-3 

𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� = 𝑄𝑄2
(2)[𝑋𝑋] = 𝛼𝛼′2

[𝑋𝑋]. 𝑄𝑄𝑡𝑡
[𝐸𝐸] = 1.2𝑒𝑒-4 

𝑃𝑃�𝑃𝑃1,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃1] = 𝛼𝛼′1

[𝑃𝑃1]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 1.9584-3 
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𝑃𝑃�𝑃𝑃2,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃2] = 𝛼𝛼′1

[𝑃𝑃2]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 1.9605𝑒𝑒-3 

𝑃𝑃�𝑃𝑃3,𝑖𝑖� = 𝑄𝑄1
(2)[𝑃𝑃3] = 𝛼𝛼′1

[𝑃𝑃3]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 2.0379𝑒𝑒-3 

𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2� = 𝑄𝑄2
(2)[𝑍𝑍] = 𝛼𝛼′2

[𝑍𝑍]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 7.95𝑒𝑒-5 

𝑃𝑃�𝑌𝑌𝑃𝑃1,𝑃𝑃3� = 𝑄𝑄2
(2)[𝑌𝑌] = 𝛼𝛼′2

[𝑌𝑌]. 𝑄𝑄𝑡𝑡
[𝑃𝑃] = 2.1𝑒𝑒-6 

Substitution back into the system equation gives: 

𝑃𝑃(𝑆𝑆) = �𝑄𝑄1
(2)[𝐸𝐸]�

2
+ 𝑄𝑄1

(2)[𝑃𝑃1]𝑄𝑄1
(2)[𝐸𝐸] + 𝑄𝑄1

(2)[𝑃𝑃1]𝑄𝑄1
(2)[𝑃𝑃2]𝑄𝑄1

(2)[𝑃𝑃3] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄1

(2)[𝑃𝑃2]𝑄𝑄1
(2)[𝑃𝑃3]

+ 𝑄𝑄1
(2)[𝑃𝑃3]𝑄𝑄2

(2)[𝑍𝑍] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄2

(2)[𝑍𝑍] + 𝑄𝑄1
(2)[𝑃𝑃2]𝑄𝑄2

(2)[𝑌𝑌] + 𝑄𝑄1
(2)[𝐸𝐸]𝑄𝑄2

(2)[𝑌𝑌]

+ 𝑄𝑄2
(2)[𝑍𝑍]𝑄𝑄2

(2)[𝑌𝑌] + 𝑄𝑄2
(2)[𝑋𝑋] 

= 1.668𝑒𝑒-4 

 

The system failure probability/rate is calculated as 1.668e-4. This is a similar result to 

Chapter 2 for the AFM. The PAFM mixes assuming independence between failure 

causes (between CCCGs) and assuming mutually exclusive events (by addition 

parameters in an assessed alpha factor). This means the PAFM will provide system 

reliability estimates between the AFM and the GDM estimate.  

6.7. PAFM in Event Assessment 
While the Partial Alpha Factor Model also allows for the modeling of components 

which share different dependencies with different components, the primary means for 

calculating partial alpha factors is for use in event assessment.  
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The two event assessment scenarios will be presented: 

• Event assessment with knowledge of a component failure 

• Event assessment with knowledge of a component failure and failure cause 

In order to demonstrate each method, example 1 of symmetrical EDGs will be used. 

6.7.1. Knowledge of Failure 

As the PAFM is based on the AFM, the same procedure described in Section 2.11 may 

be used.  

 

The system failure probability for example 1 is given as: 

𝑃𝑃(𝑆𝑆) = (𝛼𝛼′1𝑄𝑄𝑡𝑡)2 + 𝛼𝛼′2. 𝑄𝑄𝑡𝑡 

If we assume that component B fails, then the conditional probability for S given B is: 

𝑃𝑃(𝑆𝑆|𝐵𝐵) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)

𝑃𝑃(𝐵𝐵)  

The system can still fail from either cut set {𝐴𝐴𝑖𝑖 , 𝐵𝐵𝑖𝑖} or {𝑋𝑋𝐴𝐴𝐴𝐴}. Therefore the system 

equation (using rate event approximation) is the sum of the following two equations: 

𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖|𝐵𝐵) =
𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖)

𝑃𝑃(𝐵𝐵) =
𝑄𝑄1

(2)𝑄𝑄1
(2)

𝑄𝑄𝑇𝑇
=

𝛼𝛼1 𝑡𝑡𝛼𝛼1𝑄𝑄𝑡𝑡

𝑄𝑄𝑡𝑡
= (𝛼𝛼′1)2𝑄𝑄𝑡𝑡 

𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐵𝐵) =

𝑄𝑄2
(2)

𝑄𝑄𝑇𝑇
=

𝛼𝛼2𝑄𝑄𝑡𝑡

𝑄𝑄𝑡𝑡
= 𝛼𝛼′2 

Summing these together gives: 

𝑃𝑃(𝑆𝑆|𝐵𝐵) = 𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖|𝐵𝐵) + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴|𝐵𝐵) 

= (𝛼𝛼′
1)2𝑄𝑄𝑇𝑇 + 𝛼𝛼′2 
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Substituting in parameter values gives: 

𝑃𝑃(𝑆𝑆|𝐵𝐵) = 𝛼𝛼′
1
2𝑄𝑄𝑡𝑡 + 𝛼𝛼′

2 

= (0.98)2(0.006) + 0.02 

= 0.02576 

It is not surprising that this is the same answer as Chapter 2, given the same system 

equations. 

 

For example 2, if component 𝑃𝑃1 fails, then the conditional probability for S given 𝑃𝑃1 is: 

𝑃𝑃(𝑆𝑆|𝑃𝑃1) =
𝑃𝑃(𝑆𝑆 ∩ 𝑃𝑃1)

𝑃𝑃(𝑃𝑃1)  

The calculation for each cutset is shown in Table 25. 

Table 24: Cut Sets for Example 2 in event assessment 

Cut Set 𝑷𝑷(𝑺𝑺 ∩ 𝑷𝑷𝟏𝟏)
𝑷𝑷(𝑷𝑷𝟏𝟏)  

Boolean 
Reduction 

Basic Parameter 

�𝐸𝐸1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖� �𝛼𝛼′1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸]�
2
 

�𝑃𝑃1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′1

[𝑃𝑃1]𝛼𝛼′1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸] 

�𝑃𝑃1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′1

[1]𝛼𝛼′1
[𝑃𝑃2]𝛼𝛼′1

[𝑃𝑃3] �𝑄𝑄𝑡𝑡
[𝑃𝑃]�

2
 

�𝐸𝐸1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3� 𝛼𝛼′1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸]𝛼𝛼′1
[𝑃𝑃2]𝛼𝛼′1

[𝑃𝑃3] �𝑄𝑄𝑡𝑡
[𝑃𝑃]�

2
 

�𝑃𝑃3,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝑃𝑃3,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃3,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′1

[𝑃𝑃3]𝛼𝛼′2
[𝑍𝑍]𝑄𝑄𝑡𝑡

[𝑃𝑃] 

�𝐸𝐸2,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸]𝛼𝛼′2

[𝑍𝑍] 

�𝑃𝑃2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝑃𝑃2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑃𝑃2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′

1
[𝑃𝑃2]𝛼𝛼′

2
[𝑌𝑌]𝑄𝑄𝑡𝑡

[𝑃𝑃] 
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�𝐸𝐸2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′

1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸]𝛼𝛼′
2
[𝑌𝑌] 

�𝑍𝑍𝑃𝑃1,𝑃𝑃2, 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3�
𝑃𝑃(𝑃𝑃1)  𝛼𝛼′2

[𝑍𝑍]𝑄𝑄𝑡𝑡
[𝑃𝑃]𝛼𝛼′2

[𝑌𝑌] 

�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2 ∩ 𝑃𝑃1�
𝑃𝑃(𝑃𝑃1)  

𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝛼𝛼′2
[𝑋𝑋]𝑄𝑄𝑡𝑡

[𝐸𝐸] 

 

Using rare event approximation and summing the last column of Table 25 gives 

𝑃𝑃(𝑆𝑆|𝑃𝑃1) = 6.120𝑒𝑒-3. At higher levels of significant figures this estimate is slightly less 

than the AFM. This reduction in probability has occurred through the recognition that 

Pump 1 and Pump 2 are not coupled by Installation Procedure, which was not possible 

to account for using the AFM.  

6.7.2. Knowledge of Failure Cause 

Where the failure cause is known, the system equation can be updated using: 

𝑃𝑃(𝑆𝑆|𝐵𝐵𝑖𝑖) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖)

𝑃𝑃(𝐵𝐵𝑖𝑖)  

where 

𝐵𝐵𝑖𝑖 =  is the failure of component B due to cause 𝑖𝑖. 
 

 

Given 𝐵𝐵𝑖𝑖 has occurred, the system can now fail from the following cut sets {𝐴𝐴𝐼𝐼 , 𝐵𝐵𝐼𝐼,𝑖𝑖} or 

{𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖}, where the c subscript denotes the cause of the event. Therefore: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖) = 𝑃𝑃(𝐴𝐴𝐼𝐼)𝑃𝑃�𝐵𝐵𝐼𝐼,𝑖𝑖� + 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖) 

The events 𝐵𝐵𝐼𝐼,𝑖𝑖 and 𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖 relate to the single and CCF failure events which make up 
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event 𝐵𝐵𝑖𝑖 = 𝐵𝐵𝐼𝐼,𝑖𝑖 ∪ 𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖. The probability of these events can be calculated using partial 

alpha factors: 

𝑃𝑃�𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖� = 𝛼𝛼2,𝑖𝑖𝑃𝑃(𝐵𝐵𝑖𝑖) 

𝑃𝑃�𝐵𝐵𝐼𝐼,𝑖𝑖� = 𝛼𝛼1,𝑖𝑖𝑃𝑃(𝐵𝐵𝑖𝑖) 

Therefore: 

𝑃𝑃(𝑆𝑆|𝐵𝐵𝑖𝑖) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖)

𝑃𝑃(𝐵𝐵𝑖𝑖)  

=
𝑃𝑃(𝐴𝐴𝐼𝐼)𝑃𝑃�𝐵𝐵𝐼𝐼,𝑖𝑖� + 𝑃𝑃�𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖�

𝑃𝑃(𝐵𝐵𝑖𝑖)  

=
𝛼𝛼′

1𝑄𝑄𝑡𝑡𝛼𝛼1,𝑖𝑖𝑃𝑃(𝐵𝐵𝑖𝑖) + 𝛼𝛼2,𝑖𝑖𝑃𝑃(𝐵𝐵𝑖𝑖)
𝑃𝑃(𝐵𝐵𝑖𝑖)  

= 𝛼𝛼′
1𝛼𝛼1,𝑖𝑖𝑄𝑄𝑡𝑡 + 𝛼𝛼2,𝑖𝑖 

Table 25 shows the event assessment result for example 1 given different failure causes. 

This result shows that the system failure probability depends on the strength of the 

coupling factor to propagate failures. For example, Install Procedure has the largest 

partial alpha factor, which also gives the largest event assessment result. 
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Table 25: Event Assessment for Example 1 with different failure causes 

Cause 𝑷𝑷(𝑺𝑺|𝑩𝑩𝑪𝑪) System Failure Probability 𝜶𝜶𝟐𝟐,𝒄𝒄 
Unknown 𝑃𝑃(𝑆𝑆|𝐵𝐵) 0.0258 0.0200 
Install Procedure Error 𝑃𝑃(𝑆𝑆|𝐵𝐵𝐼𝐼𝐼𝐼) 0.0128 0.0070 
Maintenance Human Error 𝑃𝑃(𝑆𝑆|𝐵𝐵𝑀𝑀𝑀𝑀) 0.0357 0.0300 
External Environment Shock 𝑃𝑃(𝑆𝑆|𝐵𝐵𝐸𝐸𝐸𝐸) 0.0624 0.0569 

 

For example 2, if component 𝑃𝑃1 fails due to cause Maintenance Human (MH), then the 

conditional probability for S given 𝑃𝑃1,𝑀𝑀𝑀𝑀 is :  

𝑃𝑃�𝑆𝑆�𝑃𝑃1,𝑀𝑀𝑀𝑀� =
𝑃𝑃�𝑆𝑆 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 

 

The calculation for each cut set is shown in Table 26. 
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Table 26: Cut Sets for Example 2 in event assessment 

Cut Set 𝑷𝑷�𝑺𝑺 ∩ 𝑷𝑷𝟏𝟏,𝑴𝑴𝑴𝑴�
𝑷𝑷�𝑷𝑷𝟏𝟏,𝑴𝑴𝑴𝑴�

 
Boolean Reduction Basic Parameter 

�𝐸𝐸1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖� �𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸]�

2
 

�𝑃𝑃1,𝑖𝑖 , 𝐸𝐸2,𝑖𝑖� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝐸𝐸2,𝑖𝑖 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑃𝑃1,𝑖𝑖,𝑀𝑀𝑀𝑀 ∩ 𝐸𝐸2,𝑖𝑖�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 𝛼𝛼1,𝑀𝑀𝑀𝑀

[𝑃𝑃1] 𝛼𝛼′1
[𝐸𝐸]𝑄𝑄𝑡𝑡

[𝐸𝐸] 

�𝑃𝑃1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖� 𝑃𝑃�𝑃𝑃1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3,𝑖𝑖 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑃𝑃1,𝑖𝑖,𝑀𝑀𝑀𝑀 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3,𝑖𝑖�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 𝛼𝛼1,𝑀𝑀𝑀𝑀

[𝑃𝑃1] 𝛼𝛼′1
[𝑃𝑃2]𝛼𝛼′1

[𝑃𝑃3]�𝑄𝑄𝑡𝑡
[𝑃𝑃]�

2
 

�𝐸𝐸1,𝑖𝑖 , 𝑃𝑃2,𝑖𝑖 , 𝑃𝑃3,𝑖𝑖� 𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3,𝑖𝑖 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝐸𝐸1,𝑖𝑖 ∩ 𝑃𝑃2,𝑖𝑖 ∩ 𝑃𝑃3,𝑖𝑖� 𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸]𝛼𝛼′1

[𝑃𝑃2]𝛼𝛼′1
[𝑃𝑃3]�𝑄𝑄𝑡𝑡

[𝑃𝑃]�
2
 

�𝑃𝑃3,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝑃𝑃3,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑃𝑃3,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2,𝑀𝑀𝑀𝑀�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 𝛼𝛼′1

[𝑃𝑃3]𝑄𝑄𝑡𝑡
[𝑃𝑃]𝛼𝛼2,𝑀𝑀𝑀𝑀

[𝑍𝑍]  

�𝐸𝐸2,𝑖𝑖 , 𝑍𝑍𝑃𝑃1,𝑃𝑃2� 𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑍𝑍𝑃𝑃1,𝑃𝑃2,𝑀𝑀𝑀𝑀�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 𝛼𝛼′1

[𝐸𝐸]𝑄𝑄𝑡𝑡
[𝐸𝐸]𝛼𝛼2,𝑀𝑀𝑀𝑀

[𝑍𝑍]  

�𝑃𝑃2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝑃𝑃2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀� = 0 0 

�𝐸𝐸2,𝑖𝑖 , 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝐸𝐸2,𝑖𝑖 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀� = 0 0 

�𝑍𝑍𝑃𝑃1,𝑃𝑃2, 𝑌𝑌𝑃𝑃1,𝑃𝑃3� 𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑍𝑍𝑃𝑃1,𝑃𝑃2,𝑀𝑀𝑀𝑀 ∩ 𝑌𝑌𝑃𝑃1,𝑃𝑃3�

𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�
 𝛼𝛼2,𝑀𝑀𝑀𝑀

[𝑍𝑍] 𝛼𝛼′2
[𝑌𝑌]𝑄𝑄𝑡𝑡

[𝑃𝑃] 

�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2 ∩ 𝑃𝑃1,𝑀𝑀𝑀𝑀�
𝑃𝑃�𝑃𝑃1,𝑀𝑀𝑀𝑀�

 
𝑃𝑃�𝑋𝑋𝐸𝐸1,𝐸𝐸2� 𝛼𝛼′2

[𝑋𝑋]𝑄𝑄𝑡𝑡
[𝐸𝐸] 

 

Using rare event approximation and summing the last column of Table 26 gives 

𝑃𝑃�𝑆𝑆�𝑃𝑃1,𝑀𝑀𝑀𝑀� = 6.053𝑒𝑒-3, which is slightly lower than the estimate without causes, 

𝑃𝑃(𝑆𝑆|𝑃𝑃1) = 6.120𝑒𝑒-3, because MH has a lower propagation probability, 𝛼𝛼2,𝑀𝑀𝑀𝑀 than the 

general alpha factor 𝛼𝛼2
[𝑌𝑌].  Table 27 shows the probability of system failure for each 

cause of Pump 1. 

  

166 

 

 



 

Table 27: Event Assessment for Example 2 with different failure causes 

Cause 𝑷𝑷�𝑺𝑺�𝑷𝑷𝟏𝟏,𝑪𝑪� System Failure Probability 
Unknown 𝑃𝑃(𝑆𝑆|𝑃𝑃1) 6.120e-3 
Install Procedure Error 𝑃𝑃�𝑆𝑆�𝑃𝑃1,𝐼𝐼𝐼𝐼� 6.100e-3 
Maintenance Human Error 𝑃𝑃�𝑆𝑆�𝑃𝑃1,𝑀𝑀𝑀𝑀� 6.053e-3 
External Environment Shock 𝑃𝑃�𝑆𝑆�𝑃𝑃1,𝐸𝐸𝐸𝐸� 6.154e-3 

 

6.8. Data Collection Requirements 

6.8.1. Desirable Data Collection Attributes 

In order to conduct impact vector analysis with the partial alpha factor model, the 

following data collection attributes are desirable. Where this data is not currently 

available within the CCFDB, the assumption required to use the CCFDB is stated. 

 

The failure cause is recorded for single and multiple failure events 

In order for PAFM model parameter estimates to be based on data, the failure cause for 

single and multiple failure events is required. This is currently available in the CCF 

database. 

 

The potential coupling factors through which failure propagation could occur is 

recorded. Data which makes up the failure event databases are recorded from real 

systems which have varying degrees of coupling factors between them.  Therefore it 

would be ideal if a failure database system recorded the potential coupling factors 

through which a failure could have propagated, for each recorded failure. This would 
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require a significant increase in the resources required to record failure data. 

 

Where this data is unavailable, the following assumption is made: 

PAFM Data Assumption 1: All components within the CCCG are 

susceptible to all failure causes and have perfect symmetry within the 

CCCG. That is to say that failure causes have an equal probability of 

propagation to each component within the CCCG. This assumption is 

already used in the Basic Parameter Model and the Alpha Factor Model. 

 

A mutually exclusive, one to one relationship between failure causes and coupling 

factors 

The previous data collection attribute is unlikely to be economical to achieve. Therefore 

a failure data taxonomy was proposed in Chapter 4, to minimize the impact of 

assumptions required to overcome this data deficiency.  

 

During the analysis of historic data, single failures have very little information about 

the possible propagation paths for the failure, other than the failure cause. Where a one 

to one relationship between failure cause and coupling factor exists, an assumption may 

be made that the single failure had the potential to propagate only through its paired 

coupling factor. Furthermore, where a cause can propagate through multiple coupling 

factors, the discriminatory ability of the partial alpha factor model to quantify event 

assessments based on coupling factors is reduced.   
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Using this data taxonomy introduces the following assumption: 

Assumption 2.  Given knowledge of a failure cause, the coupling factors 

over which the cause could propagate are known. 

The occasion when a one to one relationship does not exist will be discussed in section 

6.8.2. 

 

Size of Common Cause Component Groups for Single Failures 

Currently the size of the CCCG for single failures is not recorded. This information is 

required for the construction of impact vectors during the parameter estimation step. 

Where the CCCG size for the single failure is different to the target system, the impact 

vector is required to be mapped to the new size, as detailed in section 0. Table 28 shows 

how the impact vectors for target system can change dramatically when using different  

assumptions of CCCG size for an observed single failure.  

 

Table 28: Demonstration of impact vectors changing for target system based on assumption of 

CCCG size for observed single failure 

Assumed CCCG size 
for observed failure 
event 

Impact Vector of 
Single Failure  
 

Equivalent impact vector after 
being mapped to CCCG size of 
4 

1 [1] [4, 0, 0, 0] 
2 [1,0]   [2, 0, 0, 0] 
3 [1,0,0]   [1.33, 0, 0, 0] 
4 [1,0,0,0]   [1, 0, 0, 0] 
5 [1,0,0,0,0]   [0.8, 0, 0, 0] 
6 [1,0,0,0,0,0]  [0.66, 0, 0, 0] 
7 [1,0,0,0,0,0,0]  [0.57, 0, 0, 0] 
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Currently this quantity is estimated as an average of CCCG sizes recorded on the 

multiple failure CCF events (Wierman & Kvarfordt 2011).  

 

Where this data is unavailable, the following assumption is made: 

PAFM Data Assumption 3: The size of the CCCG for each single failure 

event is the same as the average CCCG size for multiple failure events. 

6.8.2. When a one to one relationship between cause and coupling factor does not 
exist. 

The following section will demonstrate the use of the PAFM where a failure data 

taxonomy allows for a failure cause to propagate through multiple coupling factors.  

 

Table 29 shows the failure data for a system. The items in red text are data which is not 

currently found within the CCFDB. Of particular note is the addition of a column 

“Potential CF” which is an assessment of which coupling factors that particular failure 

could propagate through.  

  

170 

 

 



 

Table 29: Example data when a failure cause can propagate through multiple coupling factors 

# No. Fail Pop 
Size 

Cause Potential CF Coupling 
Factor 

  Impact Vector 
F1 F2 

1 1 2 PC 1 CF1     1 0 
2 1 2 PC 2 CF1, CF2     1 0 
3 2 2 PC 3 CF2 CF2   0 1 
4 1 2 PC 1 CF1, CF2     1 0 
5 1 2 PC 3 CF1     1 0 
6 2 2 PC 1 CF1, CF2 CF2   0 1 
7 1 2 PC 2 CF1, CF2     1 0 
8 1 2 PC 2 CF1     1 0 
9 2 2 PC 1 CF1 CF1   0 1 
10 2 2 PC 1 CF1, CF2 CF2   0 1 
      TOTAL 6 4 
 

This example shows that of all the observed failure events, four were CCF of two 

components, and six were single failures. Therefore: 

𝛼𝛼1 = 0.6, 𝛼𝛼2 = 0.4 

The partial alpha factors can be estimated as: 

𝛼𝛼2,𝐶𝐶𝐶𝐶1 =
𝑛𝑛2,𝐶𝐶𝐶𝐶1

𝑛𝑛𝑝𝑝,𝐶𝐶𝐶𝐶1
=

1
9

 

𝛼𝛼2,𝐶𝐶𝐶𝐶2 =
𝑛𝑛2,𝐶𝐶𝐶𝐶2

𝑛𝑛𝑝𝑝,𝐶𝐶𝐶𝐶2
=

3
6

 

The gamma factors can be estimated as: 

𝛾𝛾𝐶𝐶𝐶𝐶1 =
𝑛𝑛𝑝𝑝,𝐶𝐶𝐶𝐶1

𝑛𝑛𝑡𝑡
=

9
10
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𝛾𝛾𝐶𝐶𝐶𝐶2 =
𝑛𝑛𝑝𝑝,𝐶𝐶𝐶𝐶2

𝑛𝑛𝑡𝑡
=

6
10

 

The assessed alpha factor for a symmetrical two train system is: 

𝛼𝛼2 = 𝛾𝛾𝐶𝐶𝐶𝐶1𝛼𝛼2,𝐶𝐶𝐶𝐶1 + 𝛾𝛾2𝛼𝛼2,𝐶𝐶𝐶𝐶2 

=
9

10
.
1
9

+
6

10
.
1
2

 

= 0.4 

This simple example shows an application of the PAFM where a cause has the potential 

to propagate through multiple coupling factors. The estimates for the partial alpha 

factor and gamma factor were able to be obtained, if given the information about the 

potential coupling factor avenues for each observed failure. When used in this way, the 

gamma factors do not sum to 1, and are not distributed with a multinomial distribution. 

The ability for the PAFM parameters to estimate the system alpha factors was 

demonstrated. 

6.9. Model Assessment 
The Partial Alpha Factor Model provides one additional level of detail to include in the 

assessment of common cause failures compared to the AFM. It does however use the 

same empirical ratio methods of the alpha factor model and therefore most of the issues 

which exist with the current methodology remain. The PAFM parameters can be used 

to assist in the quantification of the General Dependency Model parameters.  
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6.9.1. Model Advantages 

The aim of the PAFM is to extend the AFM such that event assessments can be 

conducted with knowledge of the failure cause.  Given quantified parameters, the 

PAFM model achieves this with minimal changes to the AFM methodology. 

 

Specifically the advantage of the PAFM over other CCF models are summarized as: 

• Allows greater resolution on event assessments. 

• Intuitive extension to the AFM analysis methodology. 

• A ratio model allowing the use of target system failure rates. 

• Can reward target system defenses that decouple dependencies. 

• Can use AFM for system analysis, and the PAFM for event assessment.  

• The PAFM can be calculated from the CCFDB. 

• PAFM parameter estimates will be no worse than if the PRA used the AFM. 

 

6.9.2. PAFM Limitations 

Due to the PAFM using an AFM methodology and due to the nature of CCF data the 

PAFM has a number of limitations: 

• The description of the target system features such as cause and coupling factor 

features and defenses is limited. 
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• Many of the failure causes will have no observed CCF events and therefore the 

parameter estimates rely more on the prior knowledge. 

• As per the AFM, it is difficult to model components with different failure 

probabilities within the same CCCG (symmetrical failure probabilities) 

• In order to use the CCFDB, it must be assumed that each component within the 

CCCG for the observed failure has the potential for propagation of that cause 

through a coupling factor. This assumption may not be true and will produce 

an optimistic estimate. 

• Impact vector mapping is still required if data is from a different size CCCG.  

6.9.3. Compare Against Model Criteria 

Table 30 provides a comparison of the PAFM features compared to previously 

proposed models.  
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Table 30: Assessment of the PAFM compared to previous CCF models 
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Feature Description PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Explicitly Models System Features PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Models failure cause Y N N P N N N P Y Y 
Models failure cause defense N N N Y N N N Y N P 
Models coupling factor Y N N P N N N P Y N 
Models coupling factor defense P N N Y N N N Y N N 
Models deeper causal levels N N N N N N N N N Y 
Models cause condition / shock N N N N N Y Y N N Y 
Models multiplicity of failures within CCCG Y Y N N Y Y Y N N Y 
Models includes consideration for rectification period N N N N N N N N N N 
Common Cause Component Grouping Characteristics PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Model non-symmetrical but similar components within the same CCCG Y N N N N N N N N Y 
Model different components within the same CCCG N N N N N N N N N Y 
A component can be part of many CCCGs Y N N N N N N N N Y 
No limit to CCCG size Y Y Y Y Y Y Y Y Y Y 
Model different failure multiplicities within the CCCG  (k failures in n) Y Y N N Y Y Y N N Y 
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Event Assessment Capabilities PAFM BP BF PBF AFM BFRL CL RCO ID BN 

Event Assessment with knowledge of a failed component Y Y N N Y Y ? N Y Y 
Event Assessment with knowledge of failure cause Y N N N N N N N Y Y 
Uncertain Evidence - Partial Failures N N N N N N N N Y Y 
Uncertain Evidence- Virtual evidence of cause N N N N N N N N Y Y 
Parameter Estimation PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Impact Vector Method (including method for incorporating uncertainty) Y Y P N Y Y N N N N 
Expert estimations (in absence of any data) Y Y Y Y Y Y Y Y Y Y 
Account for reliability growth (discount previous failures) N N N N N N N N N N 
Update parameters with new evidence Y Y P N Y Y Y N N N 
Incorporate evidence from different sized CCCGs Y N P N P Y Y N N N 
Account for CCF which occurred in a different mission time N N N N N N N N N N 
Account for CCF data which has artificial separation in time due to 
d d  b i  t   

N N N N N N N N N N 
Use system specific failure rate data combined with generic model 

t  
Y N Y N Y N N N N N 

Uncertainty Characteristics for Parameter Estimation PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Does not require distinguish between independent and single CCF failures Y Y Y Y Y N Y Y Y Y 
Failures outside the mission period Y Y P N Y Y N N N N 
Uncertainty of shared cause Y Y P N Y Y N N N N 
Uncertainty of coupling factor Y Y P N Y Y N N N N 
Uncertainty in intervals due to staggered testing P P P N P P N N N N 
Partial failures and component degradation Y Y P N Y Y N N N N 
Usability and Cultural Considerations PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Backward compatible to Alpha Factor Model parameters Y Y N N Y N N N N N 
The time investment is no more than the alpha factor model. Y Y Y Y Y Y N Y N N 
Automatic parameter estimation is possible from the CCFDB/RADs Y Y Y N Y Y N N N N 
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Chapter 7: General Dependency Model 

7.1. Introduction 

7.1.1. Motivation 

The motivation for the General Dependency Model is to achieve the research objectives 

without consideration for the constraints of the current methodology.  

 

The objectives for the General Dependency Model are to: 

• Enable event assessment with knowledge of the failure event’s characteristics. 

• Model the increased and decreased propensity of a system to experience CCF 

based on the system features such as causes, coupling factors and defenses. 

• Model asymmetrical dependency relationships.  

• Model asymmetrical components.  

• Retain the modeling of different multiplicities of failures. 

• Allow for parameter estimation using the impact vector methodology. 

• Allow an analysis procedure which is no more complex than using the AFM. 

 

The General Dependency Model design has been motivated by features of existing CCF 

models covered in Chapter 5. A brief summary of those motivations are provided 

below.  
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Influence Diagram Model and Event Assessment Model (Kelly et al. 2011). Both of 

these models are based on a Bayesian Network, which has also been chosen for the 

General Dependency Model for the following reasons: 

• The Bayesian Network can show complex causal relationships throughn an 

intuitive graphical representation.  

• The Bayesian Network can model soft dependencies between random variables 

(as opposed to deterministic dependencies which fault trees and event trees are 

limited to).  

• The Bayesian Network allows a complex join probability distribution to be 

quantified through local probability relationships.  

• The Bayesian Network model is an advanced field of study which already has 

mathematical algorithms and software packages to calculate the relationship 

between random variables and evidence propagation. This allows this thesis to 

focus on model construction without the need for complex details to 

demonstrate the model’s capabilities.  

 

Unified Partial Method (Brand & Gabbot 1993). UPM is a combination of the Partial 

Beta Factor Model (Johnston 1987) and the Reliability Cut of Method (Bourne et al. 

1981). The essential feature of both methods is a subjective assessment of the defenses 

and dependencies which exist within the system. An essential feature of the GDM is to 

encode the specific results found within the qualitative assessment of the system into 

the model structure (see section 2.4.1) 
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 Shock Models. Shock models explicitly model the cause condition (shock) to the 

system and model a failure through a fragility parameter, 𝑝𝑝𝑖𝑖, in the presence of a shock. 

This allows the modeling of any level of redundancy without having data from systems 

with the same CCCG sizes. The GDM model also models failure based on the cause 

condition frequency and component fragility.  

 

The shock model approach has been criticized for inaccuracy at high levels of 

redundancy. This is because of the assumption that all components receive the same 

shock. The GDM model assumes that the propagation of the shocks to each component 

is probabilistic and this assumption can be controlled through use of the GDM 

parameters. Furthermore the shock models assume perfect symmetry of components 

which may be unlikely for large CCCGs. GDM accounts for asymmetrical features of 

large CCCGs. 

 

Ratio models.   Ratio models such as the Beta Factor (Fleming 1975) provide an 

empirical relationship between common cause failure and single failures. GDM uses a 

similar concept, except instead of the empirical ratio being used to model failure 

propagation, it is used to model cause condition propagation. For example, the 

probability that a cause condition is present on multiple components is modeled using 

a ratio metric. By modeling the cause condition instead of the failures, the GDM 

approach avoids the need to distinguish between a single failure and an independent 
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failure. 

 

The PAFM (chapter 6) uses ratio parameters for each failure cause. GDM will use the 

PAFM values as an intermediary step to estimate its parameters. This provides the 

ability to quantify GDM parameters using industry data and ensure the GDM is 

consistent with the AFM estimates.  

 

7.1.2. Chapter Scope 

This chapter will discuss: 

• An overview of the model 

• An overview of Bayesian Networks 

• Description of the model structure 

• Description of the model parameters. 

• Formulate the parameter estimation equations 

• Describe methods to quantifying parameters. 

• Describe a system analysis method. 

• Describe an event assessment method. 

• Describe the data requirements for the model.  

• Summarize and evaluate the model. 

• Describe extension and future work required to implement the model. 
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7.1.3. Examples 

In order to demonstrate CCF analysis using the General Dependency Model, the same 

two examples used in Chapter 2 and Chapter 6 will be used.  Example 1 is a two train 

example with identical EDGs. Example 2 is a mixed redundancy system consisting of 

two EDGs and three pumps.  

 

7.2. Model Structure 

7.2.1. Component Failure Probability 

The General Dependency Model defines the component failure rate, 𝑄𝑄𝑡𝑡 is the 

combination of component failure probabilities for each failure cause. To the 

component, each cause is independent of each other and using rare event approximation 

the component failure probability can be calculated as: 

𝑃𝑃(𝐴𝐴) = 𝑄𝑄𝑡𝑡 = � 𝑄𝑄𝑡𝑡,𝑖𝑖

𝑤𝑤

𝑖𝑖=1

 

𝐴𝐴   =  A random variable for the failure of component A 
𝑄𝑄𝑡𝑡= The total failure probability for a component 
𝑄𝑄𝑡𝑡,𝑖𝑖= The failure probability of a component due to cause  𝑖𝑖. 
 

The ‘cause’ is defined as a cause condition from which a failure can occur. The 

probability that a cause condition exists for cause 𝑖𝑖 is: 

𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝑄𝑄𝐸𝐸,𝑖𝑖 

𝐶𝐶𝑖𝑖   =  A random variable for the existence of cause condition i.  
𝑄𝑄𝐸𝐸,𝑖𝑖= The cause condition probability of cause  𝑖𝑖. 
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In the presence of an cause condition, 𝐶𝐶𝑖𝑖, the probability that the component fails is 𝑝𝑝𝑖𝑖. 

Therefore the probability of component failure due to cause 𝑖𝑖 is: 

𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑝𝑝𝑖𝑖   =  the probability a component fails when tested by cause i.  
 

The failure of component 𝐴𝐴, is the union of contributions from each failure cause. Using 

rare event approximation this equals: 

𝑃𝑃(𝐴𝐴) = � 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

𝑤𝑤

𝑖𝑖=1

 (rare event approximation) 

Without the assumption of rare event approximation, P(A) can be calculated using: 

𝑃𝑃(𝐴𝐴) = 1 − ��1 − 𝑄𝑄𝑡𝑡,𝑖𝑖�
𝑤𝑤

𝑖𝑖=1

 

= 1 − ��1 − 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
𝑤𝑤

𝑖𝑖=1

 

 This concept is shown in Figure 31. 
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Figure 31: GDM Basic Events 

7.2.2. Component Dependency 

Thus far the model has included the cause conditions and failure probabilities which 

are local to a component. It is possible that multiple components share the same cause 

condition due to a coupling factor. The presence of coupling factors between 

components is identified during the qualitative assessment of the target system features 

(see section 2.4.1). By coupling the cause condition, instead of failure causes, the model 

can now better describe the physical phenomena of CCF. It may be possible for a cause 

condition to affect many different components (like extreme temperatures). By 

separating the cause condition, and the response of the component to that cause 

condition, it is easier to model asymmetrical relationships.  

𝑝𝑝1 

A 

𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 

𝑃𝑃(𝐴𝐴) = 𝑄𝑄𝑇𝑇 
𝑃𝑃(𝐴𝐴) = 1 − ��1 − 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�

𝑤𝑤

𝑖𝑖=1

 

Traditional Basic Event GDM Basic Event 

A 

𝑝𝑝2 𝑝𝑝3 

𝑃𝑃(𝐶𝐶1) = 𝑄𝑄𝐸𝐸,1 

 

𝑃𝑃(𝐶𝐶2) = 𝑄𝑄𝐸𝐸,2 

  𝑃𝑃(𝐶𝐶3) = 𝑄𝑄𝐸𝐸,3 
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Figure 32 shows an EDG and pump which share the same location. If the EDG suffers 

from an extreme environmental condition, then the pump will also experience the same 

condition (or shock). The difference between the EDG and pump in the presence of 

such an cause condition, is the fragility of each component to withstand the shock, 𝑝𝑝𝑖𝑖. 

 

Figure 32: GDM Coupling Components 

7.2.3. Propagation of Cause Condition 

The model, thus far, has assumed the propagation of a cause condition to other 

components is certain, where a coupling factor exists. However the propagation of a 

cause is likely to be probabilistic. For example, a maintenance tradesman is 

inexperienced and conducts a maintenance error on an EDG. The tradesman progresses 

to maintain a second EDG. Despite the two components being coupled by the same 

maintainer, the likelihood of the second EDG suffering the same maintenance error is 

probabilistic.  

EDG 
E1 

𝐶𝐶1
[𝐸𝐸1]

 𝐶𝐶2
[𝐸𝐸1]

 𝐶𝐶𝐸𝐸𝐸𝐸
[𝐸𝐸1,𝑃𝑃1]

 

GDM Basic Event 

Pump 
P1 

𝐶𝐶1
[𝑃𝑃1]

 𝐶𝐶2
[𝑃𝑃1]

 

𝑝𝑝1
[𝐸𝐸1] 

𝑝𝑝2
[𝐸𝐸1] 𝑝𝑝𝐸𝐸𝐸𝐸

[𝐸𝐸1] 𝑝𝑝𝐸𝐸𝐸𝐸
[𝑃𝑃1] 𝑝𝑝1

[𝑃𝑃1] 𝑝𝑝2
[𝑃𝑃1] 

184 

 

 



 

This model structure is problematic because the model: 

• cannot model scenarios where components have high fragility to an cause 

condition, and a low probability of CCF, and 

• cannot account for defenses against cause condition propagation such as 

protecting against external environmental cause conditions by moving 

components into separate rooms. 

The GDM separates the local cause condition for each component. Local cause 

conditions can propagate to other components probabilistically using a coupling 

strength factor, 𝜂𝜂𝑖𝑖. Figure 33 shows conceptually how the GDM model can account for 

high fragility and low coupling factor strength through the use of local cause condition 

nodes. 
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Figure 33: Conceptual propagation of cause condition through coupling factor 

 

The coupling factor strength, 𝜂𝜂𝑖𝑖, needs to scale between the following two extremes: 

• 𝜂𝜂𝑖𝑖 = 0. When the coupling factor strength is zero, there is no chance that the 

local cause condition at one component can propagate to the second component. 

However the second component may still fail from an independent occurrence 

of that cause condition.  

• 𝜂𝜂𝑖𝑖 = 1. An cause condition at either component means that the same cause 

condition is present at the other component.  

In order to model these limits, the cause condition probability, 𝑄𝑄𝐸𝐸,𝑖𝑖 is split into 

𝐶𝐶𝐸𝐸𝐸𝐸 

EDGA  
Failure 

EDGB  
Failure 

EDGA  
Failure 

EDGB  
Failure 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐵𝐵] 𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴] 

High Fragility 
1.  EDGA fails 
2.  High probability of EE 
3.  High probability of EDGB failure 
4.  High 𝛼𝛼2 

High Fragility With CF Defense 
1.  EDGA fails 
2.  High probability of EEA 
3.  Low probability of EEB 
4.  Low probability of EDGB failure 
5.  Low 𝛼𝛼2 

𝜂𝜂𝐸𝐸𝐸𝐸 
𝑝𝑝𝐸𝐸𝐸𝐸

[𝐴𝐴]
 𝑝𝑝𝐸𝐸𝐸𝐸

[𝐵𝐵]
 

𝑝𝑝𝐸𝐸𝐸𝐸
[𝐴𝐴]

 𝑝𝑝𝐸𝐸𝐸𝐸
[𝐵𝐵]

 

𝑃𝑃(𝐶𝐶𝐸𝐸𝐸𝐸) = 𝑄𝑄𝐸𝐸 
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independent (𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖) and common error (𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖) probabilities.  

𝑃𝑃(𝑋𝑋𝑖𝑖) = 𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑃𝑃(𝐼𝐼𝑖𝑖) = 𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑋𝑋𝑖𝑖  = random variable for the common cause condition for  cause i. 
𝐼𝐼𝑖𝑖   =  random variable for the independent cause condition for  

cause i.  
𝜂𝜂𝑖𝑖  = the coupling factor strength for cause i. 

 

The common cause condition and independent cause condition are mutually 

exclusive events. Therefore the local cause condition probability is the sum of the 

independent and common cause condition probabilities. 

𝐶𝐶𝑖𝑖 = 𝐼𝐼𝑖𝑖 ∪ 𝑋𝑋𝑖𝑖 

𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸 = 𝑄𝑄𝐼𝐼𝐸𝐸,𝐸𝐸𝐸𝐸 + 𝑄𝑄𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸 

𝐶𝐶𝑖𝑖   =  A random variable for the existence of cause condition i.  
𝑄𝑄𝐸𝐸,𝑖𝑖= The cause condition probability of cause  𝑖𝑖. 

 

Figure 33 shows the construction of the GDM model with consideration for a 

coupling factor strength parameter. 
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Figure 34: Conceptual construction of the GDM model 

7.2.4. Parameter Description 

A strength of GDM is the relationship between the model parameters and the features 

of the target system. This subsection will review how the GDM parameters should be 

interpreted. 

 

For each failure cause classification, the GDM has three parameters, the component 

fragility, the cause condition probability, and the coupling factor strength. 

 

Fragility. 𝑝𝑝𝑖𝑖 is the probability a component will fail given that a cause condition is 

EDGA  
Failure 

EDGB  
Failure 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐵𝐵] 
 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 

𝑝𝑝𝐸𝐸𝐸𝐸
[𝐴𝐴]

 𝑝𝑝𝐸𝐸𝐸𝐸
[𝐵𝐵]

 

𝐼𝐼𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝑋𝑋𝐸𝐸𝐸𝐸

[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝐸𝐸𝐸𝐸
[𝐵𝐵] 
 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑄𝑄𝑡𝑡,𝐸𝐸𝐸𝐸 = 𝑝𝑝𝐸𝐸𝐸𝐸
[𝐸𝐸]𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸  𝑄𝑄𝑡𝑡,𝐸𝐸𝐸𝐸 = 𝑝𝑝𝐸𝐸𝐸𝐸

[𝐸𝐸]𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸  

𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸 = 𝑄𝑄𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸 + 𝑄𝑄𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸 𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸 = 𝑄𝑄𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸 + 𝑄𝑄𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸 
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evident for cause 𝑖𝑖. It is a measure of the components ability to resist failure. The 

component’s fragility is affected by such things as the component’s design, materials, 

derating and compliance to reliability durability standards. 

 

Cause Condition Probability.  𝑄𝑄𝐸𝐸,𝑖𝑖 is the probability that the Cause condition for 

cause 𝑖𝑖 is present. The cause condition probability represents the frequency and 

strength of failure causes. It is a function of features such as quality assurance, process 

maturity, human performance shaping factors. This parameter is similar to the Binomial 

Failure Rate Model’s, rate of shocks. The term has been renamed to recognize that a 

cause condition may exist for extended periods of time, and therefore may not be 

considered a shock. This consideration will be discussed in more detail below.  

 

Coupling Factor Strength. 𝜂𝜂𝒊𝒊 is the probability that if an cause condition exists at a 

component, that it will be propagated to other components. The coupling factor strength 

is a measure of defenses against coupling factors, and of the repeatable nature of the 

cause condition. 

 

Central questions for the physical interpretation of the GDM parameters are: 

• Can multiple cause conditions (shocks) test the system during a single mission 

period? 

• Is the term 𝑄𝑄𝐸𝐸,𝑖𝑖 a rate or a probability? 

• Can a cause condition last over multiple mission periods?  

• Can multiple cause conditions exist in the one cause category at the same time, 

and does this increase the probability of failure? 
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These are important questions, which can be analyzed in context of the interpretations 

taken by previously proposed CCF models. First the outcome of the model must be 

restated.  

 

Multiple Events Occurring During A Mission Period 

A reasonable question, when relating the CCF model to the physics of the phenomena 

is whether multiple cause conditions (or shocks), of the same cause, may exist during 

a single mission period. Examples of this may be multiple maintenance procedural 

errors occur during a service, or when multiple independent installation errors occurred 

on a component. How does the model interpret such events? 

 

PRA models quantify the probability of failure during a mission period or average 

unavailability. In order to do this, each basic event must quantify the probability of 

failure for the mission period or the average unavailability. All CCF models to date 

(see appendix 1), have proposed CCF as a mission reliability figure, without 

consideration for repair (see section 2.2 and 3.4.2). The investigation of GDM to 

consider repair times, and hence provide an unavailability probability is left to future 

research (see section 8.7.1).  

 

The term 𝑄𝑄𝑡𝑡,𝑖𝑖 quantifies the probability of a component to fail during the mission. The 

mission is modeled as a single event, and therefore the model does not allow for a 
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component cannot fail multiple times during a single mission. From an interpretation 

point of view, the analyst can only observe the result at the end of the mission period, 

where the question is asked, “Did the component fail due to cause 𝑖𝑖”. The answer to 

this question can only be a single failure or no failure. 

 

The same interpretation must be used when using impact vectors. As discussed in 

section 3.4.2, the definition of a common cause failure, for the purposes of creating 

impact vectors must include the mission time. Therefore the impact vector is equivalent 

to an observation at the end of a mission period where the question is asked, “How 

many components in the CCCG failed due to a shared cause?”. The answer provides 

no insight if multiple shocks occurred during the mission, only the outcome at the end.  

 

The cause condition term, 𝑄𝑄𝐸𝐸,𝑖𝑖, is also required to conform to the interpretation 

restrictions of 𝑄𝑄𝑡𝑡,𝑖𝑖 and the impact vector. The mission period is considered a single 

event, after which we ask, “Was a cause condition present?”. Therefore the PRA model 

cannot explicitly account for multiple shocks occurring. On occasions where multiple 

shocks are common, this will be modeled through either an increase in the cause 

condition rate, 𝑄𝑄𝐸𝐸,𝑖𝑖 or through an artificial decrease in the fragility term, 𝑝𝑝𝑖𝑖.  

 

A mathematical solution to overcome this problem will be discussed at the end of the 

section ‘Cause Condition As a Rate’. This solution will not be implemented as part of 

this thesis due to a reliance on the assumptions used to create impact vectors.  
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Cause Condition As a Rate 

In conducting probability modeling, it is important to distinguish between a rate of 

occurrence, and a probability. A rate has a dimension such as, ‘per demand’, or ‘per 

hour’, while a probability is dimensionless and ranges between 0 and 1.  

 

During Chapter 2 the basic parameter term 𝑄𝑄𝑘𝑘
(𝑚𝑚) was referred to as a probability or rate. 

(Mosleh et al. 1998) defines 𝑄𝑄𝑘𝑘
(𝑚𝑚) as a probability, while defining 𝑄𝑄𝑡𝑡 as a failure 

frequency (a rate). The relationship between the two terms is: 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

. 𝛼𝛼𝑘𝑘. 𝑄𝑄𝑡𝑡                   staggered test data 

 

The first term is a combination calculation and dimensionless. The 𝛼𝛼𝑘𝑘𝑘𝑘 term is a ratio 

metric and also dimensionless. So if 𝑄𝑄𝑡𝑡 has a dimension, then so must 𝑄𝑄𝑘𝑘
(𝑚𝑚). Further 

confusion can be provided through the definition of the basic parameter term and the 

Binomial Failure Rate Model (Atwood 1986): 

𝑄𝑄𝑘𝑘
𝑚𝑚 = �

𝑄𝑄𝐼𝐼 + 𝜇𝜇. 𝜌𝜌(1 − 𝜌𝜌)𝑚𝑚−1 where 𝑘𝑘 = 1       
𝜇𝜇. 𝜌𝜌𝑘𝑘(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘       where 2≤𝑘𝑘 < 𝑚𝑚
𝜇𝜇. 𝜌𝜌𝑚𝑚 + 𝜔𝜔                   where 𝑘𝑘 = 𝑚𝑚      

 

 

The terms 𝜇𝜇 and 𝑄𝑄𝐼𝐼 are the rate of common shocks, and the independent failure rates 

respectively. The remaining terms involving 𝜌𝜌 are the binomial distribution resulting 

in a probability which is dimensionless. In essence, the formula multiplies a shock rate 

with a probability of failure to get a failure rate, which is similar to the GDM 
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calculation, 𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖.  

 

What is the effect of defining failure probabilities using rates? 

 

To remove ambiguity from the following discussion lets define 𝜆𝜆𝐸𝐸,𝑖𝑖 as the cause 

condition (shock) rate, and 𝑄𝑄𝐸𝐸,𝑖𝑖 as the probability that an error existed during the 

mission period, 𝑡𝑡𝑀𝑀. Assuming the rate of each occurrence is exponentially distributed 

between arrival times, at a constant rate, 𝜆𝜆𝐸𝐸,𝑖𝑖, then the probability of receiving 𝑘𝑘 shocks 

during a mission period is calculated using the Poisson distribution: 

𝑃𝑃(𝐾𝐾 = 𝑘𝑘) =
�𝜆𝜆𝐸𝐸,𝑖𝑖 𝑡𝑡𝑀𝑀�𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆𝐸𝐸,𝑖𝑖 𝑡𝑡𝑀𝑀 

 

Where the rate parameter is in the same dimensions as the mission period (i.e a ‘per 24 

hours’ rate where 𝑡𝑡𝑀𝑀 = 24ℎ𝑟𝑟𝑟𝑟) the Poisson distribution becomes: 

𝑃𝑃(𝐾𝐾 = 𝑘𝑘) =
𝜆𝜆𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆𝐸𝐸,𝑖𝑖  
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As discussed in the previous section, the term 𝑄𝑄𝐸𝐸,𝑖𝑖 is the probability that one or more 

shocks occurred during the mission period. Therefore the cause condition rate can be 

converted to a mission probability value using: 

𝑄𝑄𝐸𝐸,𝑖𝑖 = 𝑃𝑃(𝐾𝐾 > 1) = 1 − 𝑃𝑃(𝐾𝐾 = 0) 

= 1 − 𝑒𝑒−𝜆𝜆𝐸𝐸,𝑖𝑖  

  

Table 31 shows a comparison of 𝜆𝜆𝐸𝐸,𝑖𝑖 and 𝑄𝑄𝐸𝐸,𝑖𝑖 terms to see where they can be used 

interchangeably. It shows that for rare events (less than 0.001) the terms approximately 

equal each other, 𝜆𝜆𝐸𝐸,𝑖𝑖 ≈ 𝑄𝑄𝐸𝐸,𝑖𝑖.  

 

Table 31: Comparison of probability and rate metrics 

𝝀𝝀𝑬𝑬,𝒊𝒊 𝑸𝑸𝑬𝑬,𝒊𝒊 
100 1 
10 0.999955 
1 0.632121 
0.1 0.095163 
0.01 0.00995 
1E-03 1.00E-03 
1E-04 1.00E-04 
1E-05 1.00E-05 
1E-06 1.00E-06 

 

 Therefore the interchangeability of rates and probabilities which has occurred within 

the CCF literature uses a rare event approximation assumption. For the purposes of this 

thesis, 𝑄𝑄𝐸𝐸,𝑖𝑖 will represent the probability a cause condition occurs during the mission 

period, and not a rate metric. This is because the rare event approximation assumption 
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may not be true, as will be seen in section 7.6. 

 

With the Poisson distribution being introduced, the answer to the question of 𝑄𝑄𝑡𝑡,𝑖𝑖 

modeling multiple shocks may now be answered. The Poisson distribution provides a 

probability value for each possible number of shocks which may occur during a mission 

period. If two shock occur, then the probability of failure is 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖
2 or 1 −

(1 − 𝑝𝑝𝑖𝑖)2. So a general formula for modeling 𝑄𝑄𝑡𝑡,𝑖𝑖 with multiple shocks is: 

𝑄𝑄𝑡𝑡,𝑖𝑖 = ��1 − (1 − 𝑝𝑝𝑖𝑖)𝑗𝑗� �
�𝜆𝜆𝐸𝐸,𝑖𝑖 �

𝑗𝑗

𝑗𝑗!
𝑒𝑒−𝜆𝜆𝐸𝐸,𝑖𝑖 �

∞

𝑗𝑗=1

  

 

This additional complexity in modeling multiple shocks will not be considered further 

in this thesis, as the quantification methods use the impact vector methodology which 

assumes either a cause condition existed or not. 

 

Cause Conditions with Extended Durations 

Another reasonable question regarding physical interpretation of the GDM parameter 

𝑄𝑄𝐸𝐸,𝑖𝑖 regards the concept that an cause condition may have existed for multiple mission 

periods. An example a installation error may have been in existence for years before a 

failure was observed. How does the GDM interpret such an event? 
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The parameter 𝑄𝑄𝐸𝐸,𝑖𝑖 has been defined as the probability an cause condition exists during 

a mission period, regardless of how many shocks occur during the mission, nor with 

regard to whether the condition originated during that mission. In this regard, 𝑄𝑄𝐸𝐸,𝑖𝑖 may 

represent a ratio of mission periods with a cause condition over the total mission 

periods. Using this interpretation it is easy for 𝑄𝑄𝐸𝐸,𝑖𝑖 to approach 1, especially for long 

duration cause conditions such as installation procedural errors. Therefore the 

assumption in the rare event approximation used in the previous section to use 𝜆𝜆𝐸𝐸,𝑖𝑖 ≈

𝑄𝑄𝐸𝐸,𝑖𝑖 may not be true. 

 

Parameter Interpretation and Comparison 

The preceding sections have discussed the interpretation of the GDM parameters in 

relation to the mechanics of how CCFs occur. The model parameters represent discrete 

parts of the CCF phenomena, modeling cause strength, coupling factor strength and 

component fragility. However due to limitations in modeling techniques use in PRA, 

impact vectors and the GDM model itself the parameters may become more abstract, 

as per the other CCF models. Therefore the model parameters may only form an 

indication of its intended representation. 

 

7.3. Bayesian Networks 
This section will provide an overview of Bayesian Networks to enable an 

understanding of the construction of the General Dependency Model. The section will 
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attempt to be brief, and focus the features of a Bayesian Network.  

 

Bayesian Network Example 

To expedite the introduction of Bayesian Networks, a famous example of a house 

burglary will be used (Pearl 1988). The problem statement is (Korb & Nicholson 2004): 

“You have a new burglar alarm installed. It reliability detects burglary, 

but also responds to minor earthquakes. Two neighbors, John and Mary, 

promise to call the police when they hear the alarm. John always calls 

when he hears the alarm, but sometimes confuses the alarm with the 

phone ringing and calls then also. On the other hand, Mary likes loud 

music and sometimes doesn’t hear the alarm. If an earthquake occurs it 

is likely to be reported on the radio news. Given evidence about who has 

and hasn’t called and a radio report, you’d like to estimate the 

probability of a burglary” 

 

The Bayesian Network for this example is shown in Figure 35. 
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Figure 35: Bayesian Network for Burglary Example 

7.3.1. Bayesian Network Components 

Bayesian Networks are a graphical structure for representing the probabilistic 

relationships among a large number of variables and doing probabilistic inference with 

those variables (Neapolitan 2003). 

 

A Bayesian Network consists of a number of components: 

• Nodes and values (Random variables) 

• Structure (Dependencies) 

 𝑷𝑷(𝑨𝑨|𝑬𝑬𝒊𝒊, 𝑩𝑩𝒋𝒋) 
 𝑬𝑬 𝑬𝑬 𝑬𝑬� 𝑬𝑬� 
 𝑩𝑩 𝑩𝑩�  𝑩𝑩 𝑩𝑩�  
𝑨𝑨  0.95 0.94 0.29 0.001 

 

 𝑷𝑷(𝑩𝑩) 
𝑩𝑩  0.02 
 

 𝑷𝑷(𝑩𝑩) 
𝑩𝑩  0.01 
 

 𝑷𝑷(𝑹𝑹|𝑬𝑬𝒊𝒊) 
 𝑬𝑬 𝑬𝑬� 

𝑹𝑹 0.40 0 
 

 𝑷𝑷(𝑱𝑱|𝑨𝑨𝒙𝒙) 
 𝑨𝑨 𝑨𝑨� 
𝑱𝑱 0.9 0.05 

 

 𝑷𝑷(𝑴𝑴|𝑨𝑨𝒙𝒙) 
 𝑨𝑨 𝑨𝑨� 
𝑴𝑴 0.70 0.01 
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• Conditional Probabilities (Conditional Probability Tables) 

Nodes represent random variables of event outcomes. Events may represent predicted 

events, explanatory events or evidence variables. For the burglary example, the random 

variables represent the following events: 

E: Earthquake occurs 
B: Burglary occurs 
A: Alarm occurs 
J: John calls 
M: Mary calls 
R: Radio reports earthquake 

  

Each random variable has distribution over the possible outcomes for the event called 

states. The states for a node are required to be mutually exclusive and exhaustive. For 

the burglary example, each node has two states {True, False}.  

 

Structure captures the qualitative dependency between variables. These are 

represented as arcs and can be interpreted as having a causal direction, or simply a node 

being conditional on another node. For the burglary example an Earthquake or Burglary 

may cause the alarm to sound. Therefore links from the earthquake node (E) and 

burglary node (B) are directed to the alarm node (A).  

 

Conditional Probability quantifies the dependency relationship between the nodes. 

This is done by populating the Conditional Probability Table for each node.  
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For example, the events, Earthquake and Burglary are parent nodes with no conditional 

events. They have a probability of occurring or 0.01 and 0.02 respectively. The 

probability of John calling is dependent on whether an alarm actually occurred.  If the 

alarm sounded, then its highly likely that John would have called (P=0.9), however if 

no alarm was sounding, John may still call due to mistaking the phone ring (P=0.05). 

So the strength of each dependency is encoded into the Bayesian Network through the 

quantification of local conditional probability values.  

7.3.2. Bayesian Network Features 

 

Conditional Independence is key to understanding how evidence propagates through 

a Bayesian Network. When two events are conditionally independent if they are 

independent of each other given knowledge of a 3rd event. For example in Figure 36(A), 

the node C is conditionally independent from A given B. (𝑃𝑃(𝐴𝐴|𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐶𝐶|𝐵𝐵).  For 

example, if we know the alarm sounded, then the probability that John calls us is 

independent of what triggered the alarm. For the remaining shapes (Korb & Nicholson 

2004): 

  (A) (𝑃𝑃(𝐴𝐴|𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐶𝐶|𝐵𝐵): Conditionally independent 

  (B) (𝑃𝑃(𝐴𝐴|𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐶𝐶|𝐵𝐵): Conditionally independent 

  (C) (𝑃𝑃(𝐴𝐴|𝐴𝐴 ∩ 𝐵𝐵) ≠ 𝑃𝑃(𝐶𝐶|𝐵𝐵): Conditionally dependent 
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Figure 36: (A) Causal chain (B) common cause (C) common effect 

 

Joint Probability Distribution. A Bayesian Network may be considered a graphical 

representation of a joint probability distribution where: 

𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑃𝑃(𝑥𝑥1)𝑃𝑃(𝑥𝑥2|𝑥𝑥1) … 𝑃𝑃(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1) 

For the burglary example, the joint probability distribution for the network can be 

written as: 

𝑃𝑃(𝑿𝑿) = 𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐸𝐸|𝐵𝐵)𝑃𝑃(𝑅𝑅|𝐸𝐸, 𝐵𝐵)𝑃𝑃(𝐴𝐴|𝑅𝑅, 𝐸𝐸, 𝐵𝐵)𝑃𝑃(𝑀𝑀|𝐴𝐴, 𝑅𝑅, 𝐸𝐸, 𝐵𝐵)𝑃𝑃(𝐽𝐽|𝑀𝑀, 𝐴𝐴, 𝑅𝑅, 𝐸𝐸, 𝐵𝐵) 

= 𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐸𝐸)𝑃𝑃(𝑅𝑅|𝐸𝐸)𝑃𝑃(𝐴𝐴|𝐸𝐸, 𝐵𝐵)𝑃𝑃(𝑀𝑀|𝐴𝐴)𝑃𝑃(𝐽𝐽|𝐴𝐴) 

Where    

𝑿𝑿 = {𝐽𝐽, 𝑀𝑀, 𝐴𝐴, 𝑅𝑅, 𝐸𝐸, 𝐵𝐵} 

Marginal Distributions can be calculation for a node by integrating out the nuisance 

parameters from the joint probability distribution. Efficient algorithms exist for 

conducting this calculation. The marginal distributions for each node in the burglary 

problem are shown in Figure 37. This represents the probability of each event occurring 

with no evidence applied to the Bayesian Network model. Note our current belief of a 

burglary is 0.01. 
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Figure 37: Marginal Distributions for burglary example. 

 

Diagnostic Reasoning is where information is known about the symptoms and so our 

beliefs about the causes are updated. For example if Mary called to say that she heard 

the alarm, we can apply that event to the Bayesian Network, and our updated update 

out beliefs that a burglary occurred. Our new belief of burglary with this new evidence 

is 0.31. (Figure 38 (A)) 

 

Predictive Reasoning is where information is known about the causes and we update 

our belief about their effects. For example if we felt an earthquake, we could predict 

the probability that Mary will call about the alarm. (Figure 38 (B)) 

 

Explaining Away is where different causes are eliminated to estimate the actual cause. 

For example, if the alarm was sounded, the three possible causes are earthquake, 

burglary and malfunction. Despite earthquakes and a burglary having no relationship, 

by eliminating earthquakes from the causes it increases our belief that a burglary caused 

the alarm. (Figure 38 (C)) 
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Figure 38: (A) Diagnostic Reasoning  (B) Predictive Reasoning  (C) Explaining Away 
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7.4. GDM Bayesian Network Structure 
This section will cover how the conceptual GDM covered in section 7.2 is implemented 

within a Bayesian Network.  

7.4.1. Component Failure Node 

Recall that the component failure may occur due to a failure from any cause, as shown 

in Figure 39. 

 

Figure 39: GDM Basic Events 

To represent this in the Bayesian Network, the Conditional Probability Table for the 

component node, must be calculated given the state of the cause condition nodes. For 

example, where the system has three possible causes, the probability of component A 

failing when only one cause condition exists is: 

𝑝𝑝1 

𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 

A 

𝑝𝑝2 𝑝𝑝3 

𝑃𝑃(𝐶𝐶1) = 𝑄𝑄𝐸𝐸,1 

 

𝑃𝑃(𝐶𝐶2) = 𝑄𝑄𝐸𝐸,2 

  𝑃𝑃(𝐶𝐶3) = 𝑄𝑄𝐸𝐸,3 

  

𝑃𝑃(𝐴𝐴) = 1 − ��1 − 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
𝑤𝑤

𝑖𝑖 1
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𝑃𝑃(𝐴𝐴|𝐶𝐶1, 𝐶𝐶2���, 𝐶𝐶3���) = 𝑝𝑝1 

𝑃𝑃(𝐴𝐴|𝐶𝐶1���, 𝐶𝐶2, 𝐶𝐶3���) = 𝑝𝑝2 

𝑃𝑃(𝐴𝐴|𝐶𝐶1���, 𝐶𝐶2���, 𝐶𝐶3) = 𝑝𝑝3 

However when multiple causes are present, the probability of component A failing is 

the union from each failure cause: 

𝑃𝑃(𝐴𝐴|𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3���) = 1 − (1 − 𝑝𝑝1)(1 − 𝑝𝑝2) 

𝑃𝑃(𝐴𝐴|𝐶𝐶1, 𝐶𝐶2���, 𝐶𝐶3) = 1 − (1 − 𝑝𝑝1)(1 − 𝑝𝑝3) 

𝑃𝑃(𝐴𝐴|𝐶𝐶1���, 𝐶𝐶2, 𝐶𝐶3) = 1 − (1 − 𝑝𝑝2)(1 − 𝑝𝑝3) 

𝑃𝑃(𝐴𝐴|𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3) = 1 − (1 − 𝑝𝑝1)(1 − 𝑝𝑝2)(1 − 𝑝𝑝3) 

Therefore the conditional probability table for a component node is: 

Table 32: CPT for Control Node 

   𝑪𝑪𝟑𝟑       𝑪𝑪𝟑𝟑���     
 𝑪𝑪𝟐𝟐  𝑪𝑪𝟐𝟐���   𝑪𝑪𝟐𝟐   𝑪𝑪𝟐𝟐���   
𝐴𝐴 State 𝑪𝑪𝟏𝟏 𝑪𝑪𝟏𝟏��� 𝑪𝑪𝟏𝟏 𝑪𝑪𝟏𝟏��� 𝑪𝑪𝟏𝟏 𝑪𝑪𝟏𝟏��� 𝑪𝑪𝟏𝟏 𝑪𝑪𝟏𝟏��� 

A 

1 − 
(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝2) 
(1 − 𝑝𝑝3) 

1 − 
(1 − 𝑝𝑝2) 
(1 − 𝑝𝑝3) 

1 − 
(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝3) 

𝑝𝑝3 
1 − 

(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝2) 

𝑝𝑝2 𝑝𝑝1 0 

𝑨𝑨� 
(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝2) 
(1 − 𝑝𝑝3) 

(1 − 𝑝𝑝2) 
(1 − 𝑝𝑝3) 

(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝3) 

1 − 𝑝𝑝3 
(1 − 𝑝𝑝1) 
(1 − 𝑝𝑝2) 

1 − 𝑝𝑝2 1 − 𝑝𝑝1 1 

 

7.4.2. Cause Condition Nodes 

The cause condition nodes required the concept of a local cause condition for each 

component, 𝑄𝑄𝐸𝐸,𝑖𝑖, and the ability to propagate that cause condition to other components 

with probability 𝜂𝜂𝑖𝑖 . This is done by splitting the cause condition probability into a 
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common cause condition, 𝑃𝑃(𝑋𝑋𝑖𝑖) = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖, and an independent cause condition, 𝑃𝑃(𝐼𝐼𝑖𝑖) =

(1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖. See Figure 40 for the conceptual model structure for the cause condition 

nodes. 

 

 

Figure 40: Conceptual cause condition modeling 

The local cause condition, 𝐶𝐶𝑖𝑖, is the union of the independent cause condition, 𝐼𝐼𝑖𝑖, and 

common condition, 𝑋𝑋𝑖𝑖. These two events are mutually exclusive. 

𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝑃𝑃(𝐼𝐼𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝑖𝑖) − 𝑃𝑃(𝐼𝐼𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖) 

where 

𝑃𝑃(𝐼𝐼𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖) = 0 

Modeling mutually exclusive events, where only one event has a dependency to other 

nodes is difficult to achieve in a Bayesian Network model. Therefore the following 

EDGA  
Failure 

EDGB  
Failure 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐵𝐵] 
 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 

𝐼𝐼𝐸𝐸𝐸𝐸
[𝐴𝐴] 
 

𝑋𝑋𝐸𝐸𝐸𝐸
[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝐸𝐸𝐸𝐸

[𝐵𝐵] 
 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸 = 𝑄𝑄𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸 + 𝑄𝑄𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸 𝑄𝑄𝐸𝐸,𝐸𝐸𝐸𝐸 = 𝑄𝑄𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸 + 𝑄𝑄𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸 
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modeling options will be discussed: 

• Mutually exclusive node state 

• Rare event approximation 

• Control Nodes 

Mutually Exclusive Node States 

In a Bayesian Network, mutually exclusive events are modeled through the different 

node states. Therefore a node may exist which have three states for a cause node: 

𝐶𝐶𝑖𝑖 ∈ {No Cause, Independent Cause, Common Cause} 

 

Using such a node to model the cause conditioning within Figure 41 and Figure 42 is 

problematic for the following reasons: 

• Links can only be established from node to node. Therefore there is no way to 

propagate the common cause condition, without also influencing other nodes 

with the independent cause condition (Figure 41).  

• Bayesian Networks are Directed Acyclic Graphical (DAG) model. This 

requires the structure of the Bayesian Network to have no cyclic links, and 

links can only represent one causal direction. Therefore it is not clear whether 

a link should be established from 𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] →  𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] or 𝐶𝐶𝐸𝐸𝐸𝐸
[𝐵𝐵] →  𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴].(Figure 42) 
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Figure 41: Problem with propagating the common cause condition 

 

Figure 42: Problem with propagating the common cause condition 

 

It is clear that additional nodes are required to model the independent and common 

cause condition nodes. 

  
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴] 

State Probability 
No Cause 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
Independent (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

Common 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

  
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
State Probability 
No Cause 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
Independent (1

− 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

Common 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

EDGA  
Failure 

 

EDGB  
Failure 

 

  
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴] 

State Probability 
No Cause 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
Independent (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
Common 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

  
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
State Probability 
No Cause 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
Independent (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
Common 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

EDGA  
Failure 

 

EDGB  
Failure 
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Rare Event Approximation 

Another option is to model the common cause condition and independent cause 

condition as parent nodes to a local cause node as shown in Figure 65.   

 

Figure 43: Problem with propagating the common cause condition 

During construction of the local cause condition node, the occasion where both the 

common cause and independent cause condition nodes are true, need to be defined. 

Although this is an impossible scenario, given the two nodes are mutually exclusive 

there is little doubt that the result is a cause condition at the local node. The probability 

of a cause condition at the local node is given as: 

  
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴] 
 𝑰𝑰𝑬𝑬𝑬𝑬  𝑰𝑰𝑬𝑬𝑬𝑬  𝑰𝑰�𝑬𝑬𝑬𝑬  𝑰𝑰�𝑬𝑬𝑬𝑬 
State 𝑿𝑿𝑬𝑬𝑬𝑬 𝑿𝑿�𝑬𝑬𝑬𝑬 𝑿𝑿𝑬𝑬𝑬𝑬 𝑿𝑿�𝑬𝑬𝑬𝑬 
𝐶𝐶𝐸𝐸𝐸𝐸 1 1 1 0 
𝐶𝐶𝐸𝐸𝐸𝐸����� 0 0 0 1 

 

  
𝑋𝑋𝐸𝐸𝐸𝐸

[𝐴𝐴,𝐵𝐵] 
State Prob 
𝑿𝑿𝑬𝑬𝑬𝑬 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑿𝑿�𝑬𝑬𝑬𝑬 1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

EDGA  
Failure 

 

  
𝐼𝐼𝐸𝐸𝐸𝐸

[𝐴𝐴] 
State Prob 
𝑰𝑰𝑬𝑬𝑬𝑬 (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑰𝑰�𝑬𝑬𝑬𝑬  1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 

𝑁𝑁𝐸𝐸𝐸𝐸
⬚  
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𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝑃𝑃(𝐶𝐶𝑖𝑖|𝐼𝐼𝑖𝑖 , 𝑋𝑋𝑖𝑖)𝑃𝑃(𝐼𝐼𝑖𝑖)𝑃𝑃(𝑋𝑋𝑖𝑖) + 

               𝑃𝑃(𝐶𝐶𝑖𝑖|𝐼𝐼𝑖𝑖 , ~𝑋𝑋𝑖𝑖)𝑃𝑃(𝐼𝐼𝑖𝑖){1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)} + 

               𝑃𝑃(𝐶𝐶𝑖𝑖|~𝐼𝐼𝑖𝑖 , 𝑋𝑋𝑖𝑖){1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)}𝑃𝑃(𝑋𝑋𝑖𝑖) + 

              𝑃𝑃(𝐶𝐶𝑖𝑖|~𝐼𝐼𝑖𝑖 , ~𝑋𝑋𝑖𝑖){1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)}{1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)} 

 

𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝑃𝑃(𝐼𝐼𝑖𝑖) + 𝑃𝑃(𝑋𝑋𝑖𝑖) − 𝑃𝑃(𝐼𝐼𝑖𝑖)𝑃𝑃(𝑋𝑋𝑖𝑖) 

In order for the events 𝐼𝐼𝑖𝑖 and 𝑋𝑋𝑖𝑖 to be treated as mutually exclusive events, the term 

𝑃𝑃(𝐼𝐼𝑖𝑖)𝑃𝑃(𝑋𝑋𝑖𝑖) is required to be zero. However if 𝑃𝑃(𝐼𝐼𝑖𝑖) and 𝑃𝑃(𝑋𝑋𝑖𝑖) are orders of magnitude 

smaller than 1, the quantity 𝑃𝑃(𝐼𝐼𝑖𝑖)𝑃𝑃(𝑋𝑋𝑖𝑖) becomes insignificant. Using a software 

solution for GDM, this significance could be measured against a threshold, and the 

simplification made where appropriate.  

 

Mutually Exclusive Control Nodes 

While CCF events are rare, and CCF events for cause 𝑖𝑖 even rarer, it may be possible 

that the cause condition probabilities, 𝑄𝑄𝐼𝐼𝐼𝐼 and 𝑄𝑄𝐶𝐶𝐶𝐶 are not small enough for the rare 

event approximation to be appropriate. This would occur where the components have 

low fragility, as seen by the equation, 𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖. 

 

Therefore a solution is required to accurately model mutually exclusive events, without 

assumption. (Fenton et al. 2012) reviewed implementations of mutually exclusive node 

methods within a Bayesian Network, and proposed the following solution.  
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All possible mutually exclusive states are created as parent nodes to a control node. 

The control node has a child node which represents the desired combined node. 

 

 

Figure 44: Structure of mutually exclusive Bayesian network 

 

The control node has a state for each mutually exclusive event, plus a “Not 

Applicable” (NA) state. For each state of the control node, the Conditional 

Probability Table (CPT) has a ‘1’ where the parental node is true and all other 

nodes are false.  All other combinations of the parental nodes have a ‘1’ in the NA 

A 
Pump 

B 
Generator 

𝐿𝐿𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐿𝐿𝐸𝐸𝐸𝐸

[𝐵𝐵] 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

𝐼𝐼𝐸𝐸𝐸𝐸
[𝐴𝐴] 
  

𝑋𝑋𝐸𝐸𝐸𝐸
[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐴𝐴] 
  

Control 

Cause Condition 

No Cause Independent 
Cause 

Common 
Cause 

Independent 
Cause 

No Cause 

Cause Condition 

Control 
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state. The CPT for the control node is shown in Table 33. 

Table 33: CPT for Control Node 

   𝑵𝑵𝒊𝒊       𝑵𝑵𝒊𝒊���     
 𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   
𝐿𝐿𝑖𝑖 State 𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  

𝑵𝑵𝒊𝒊 0 0 0 1 0 0 0 0 
𝑰𝑰𝒊𝒊 0 0 0 0 0 1 0 0 
𝑿𝑿𝒊𝒊 0 0 0 0 0 0 1 0 
𝑵𝑵𝑵𝑵 1 1 1 0 1 0 0 1 

 

The control node is forces the probability for each state back to its mutually 

exclusive state through the application of virtual evidence to the control node. 

Virtual evidence can be applied directly is many software packages. Virtual 

evidence can also be applied by creating an additional child node, placing the 

virtual evidence into the CPT and instantiating the new node true (Pearl 1988, 

p.46). The structure of the BN model including the virtual evidence node is shown 

in Figure 45. 
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Figure 45: Structure of mutually exclusive Bayesian network with VE 

The weights for the virtual evidence to be applied as virtual evidence is (Fenton et al. 

2012): 

𝑤𝑤𝑁𝑁,𝑖𝑖 =
𝜏𝜏

[1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)][1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)] =
𝜏𝜏

�1 − (1 − 𝜂𝜂𝑖𝑖) 𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
 

=
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

 

𝑤𝑤𝐼𝐼,𝑖𝑖 =
𝜏𝜏

[1 − 𝑃𝑃(𝑁𝑁𝑖𝑖)][1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)] =
𝜏𝜏

𝑄𝑄𝐸𝐸,𝑖𝑖�1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
 

A 
Pump 

B 
Generator 

𝐿𝐿𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐿𝐿𝐸𝐸𝐸𝐸

[𝐵𝐵] 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

𝐼𝐼𝐸𝐸𝐸𝐸
[𝐴𝐴] 
  

𝑋𝑋𝐸𝐸𝐸𝐸
[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐴𝐴] 
  

Control 

Cause Condition 

No Cause Independent 
Cause 

Common 
Cause 

Independent 
Cause 

No Cause 

Cause Condition 

Control 
VE 

True 
VE 

True 
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=
1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)

2
 

 

𝑤𝑤𝑋𝑋,𝑖𝑖 =
𝜏𝜏

[1 − 𝑃𝑃(𝑁𝑁𝑖𝑖)][1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)] =
𝜏𝜏

𝑄𝑄𝐸𝐸,𝑖𝑖�1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖�
 

=
1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

 

𝑤𝑤𝑁𝑁𝑁𝑁,𝑖𝑖 = 0 

 

Where 𝜏𝜏 is a normalizing constant: 

𝜏𝜏 =
1

[1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)][1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)] +
1

[1 − 𝑃𝑃(𝑁𝑁𝑖𝑖)][1 − 𝑃𝑃(𝑋𝑋𝑖𝑖)] +
1

[1 − 𝑃𝑃(𝑁𝑁𝑖𝑖)][1 − 𝑃𝑃(𝐼𝐼𝑖𝑖)] 

 

The CPT for the virtual evidence node is shown in Table 34: 

Table 34: CPT for Virtual Evidence Node 

𝑉𝑉𝑉𝑉𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 NA 

True 𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 
1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 0 

False 1 −
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 
1 + 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 1 

 

It can be shown that with the virtual evidence applied, the probability of each state of 

the control node reflect the mutually exclusive states of the parent nodes. Appendix 3 

provide the calculations to show: 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖|𝑉𝑉𝑖𝑖) = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑖𝑖) 
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𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖|𝑉𝑉𝑖𝑖) = 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖) = 𝑃𝑃(𝐼𝐼𝑖𝑖) 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖|𝑉𝑉𝑖𝑖) = (1 − 𝑄𝑄𝐸𝐸,𝑖𝑖) = 𝑃𝑃(𝑁𝑁𝑖𝑖) 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁|𝑉𝑉𝑖𝑖) = 0 

Local Cause Condition Node 

The control node has four states, however the local cause condition node is only 

interested in whether there is a cause present or not. Therefore the CPT for the local 

cause condition node, 𝐶𝐶𝑖𝑖 is: 

Table 35: CPT for Local Cause Condition Node 

𝐶𝐶𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 𝑵𝑵𝑵𝑵 
𝑪𝑪𝒊𝒊 0 1 1 0 
𝑪𝑪𝒊𝒊�  1 0 0 1 

 

The marginal probability for the local cause condition node is: 

𝑃𝑃�𝐶𝐶𝑖𝑖�𝑉𝑉𝑖𝑖 � = � 𝑃𝑃�𝐶𝐶𝑖𝑖 �𝐿𝐿𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐿𝐿𝑖𝑖,𝑗𝑗�𝑉𝑉𝑖𝑖 �
𝑗𝑗

 

= (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

= 𝑄𝑄𝐸𝐸,𝑖𝑖 

𝑃𝑃�𝐶𝐶𝚤𝚤� �𝑉𝑉𝑖𝑖 � = � 𝑃𝑃�𝐶𝐶𝚤𝚤
�����𝐿𝐿𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐿𝐿𝑖𝑖,𝑗𝑗�𝑉𝑉𝑖𝑖 �

𝑗𝑗

 

= 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
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Cause Condition Parent Nodes 

The Conditional Probability Tables for the three parent nodes, 𝑋𝑋𝑖𝑖 , 𝐼𝐼𝑖𝑖 , 𝑁𝑁𝑖𝑖 are: 

Table 36: CPT for Common Cause Condition 𝑿𝑿𝒊𝒊 

𝑋𝑋𝑖𝑖 State  
𝑋𝑋𝑖𝑖 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑋𝑋𝚤𝚤�  1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 37: CPT for Independent Cause Condition 𝑰𝑰𝒊𝒊 

𝐼𝐼𝑖𝑖 State  
𝐼𝐼𝑖𝑖 (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
𝐼𝐼𝚤𝚤� 1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 38: CPT for No Cause Condition 𝑵𝑵𝒊𝒊 

𝑁𝑁𝑖𝑖 State  
𝑁𝑁𝑖𝑖 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑁𝑁𝚤𝚤�  𝑄𝑄𝐸𝐸,𝑖𝑖 

7.4.3. Graphical Representation of GDM 

This section consolidates the Bayesian Network structure and conditional probability 

tables, and provides an example structure that would be used for example An 

abbreviated graphical representation of GDM will be proposed.  

 

Complete Representation 

Recall that example 1 has the following features as shown in Figure 46 and Table 39.  

• Two components 

• Three cause types 

• Shared coupling factors for each cause 
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•  

Figure 46: Reliability block diagram for example 1- Two train EDG system 

Table 39: Qualitative dependency assessment for example 1 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (A) EDG IP Team X Room Y 
EDG 2 (B) EDG IP Team X Room Y 

 

Figure 47 shows the structure of a GDM model for example 1. 

 

A B 
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Figure 47: Example GDM Bayesian Network structure for example 1  
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𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴]

 𝐶𝐶𝐼𝐼𝐼𝐼
[𝐵𝐵]

 𝐶𝐶𝑀𝑀𝑀𝑀
[𝐵𝐵]

 𝐶𝐶𝐸𝐸𝐸𝐸
[𝐵𝐵]

 

𝐼𝐼𝐼𝐼𝐼𝐼
[𝐴𝐴]

 
𝐼𝐼𝑀𝑀𝑀𝑀

[𝐴𝐴]
 

 
𝐼𝐼𝐸𝐸𝐸𝐸

[𝐴𝐴]
 𝐼𝐼𝐼𝐼𝐼𝐼

[𝐵𝐵]
𝐼𝐼𝑀𝑀𝑀𝑀

[𝐵𝐵]
 

 
𝐼𝐼𝐸𝐸𝐸𝐸

[𝐵𝐵]
 

𝑋𝑋𝐼𝐼𝐼𝐼
[𝐴𝐴,𝐵𝐵] 𝑋𝑋𝑀𝑀𝑀𝑀

[𝐴𝐴,𝐵𝐵]
 

 
𝑋𝑋𝐸𝐸𝐸𝐸

[𝐴𝐴,𝐵𝐵]
 

 

𝐶𝐶𝐼𝐼𝐼𝐼
[𝐴𝐴]

 
𝐶𝐶𝑀𝑀𝑀𝑀

[𝐴𝐴]
 

 
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐴𝐴]
 

 
C1

 
C2

 
𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵]
 

 

V
 

V
 

V
 V

 
V
 

V
 

𝑁𝑁𝐼𝐼𝐼𝐼
[𝐴𝐴]

𝑁𝑁𝑀𝑀𝑀𝑀
[𝐴𝐴]

 

 
𝑁𝑁𝐸𝐸𝐸𝐸

[𝐴𝐴]
 

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐵𝐵]

 

𝑁𝑁𝑀𝑀𝑀𝑀
[𝐵𝐵]

 

 
𝑁𝑁𝐼𝐼𝐼𝐼

[𝐴𝐴]

Component Node, A and B 

 

Common Cause  
Condition 𝑿𝑿𝒊𝒊 

𝑋𝑋𝑖𝑖 State  
𝑋𝑋𝑖𝑖 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑋𝑋𝚤𝚤�  1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 
Independent Cause  
Condition 𝑰𝑰𝒊𝒊 

𝐼𝐼𝑖𝑖 State  
𝐼𝐼𝑖𝑖 (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
𝐼𝐼𝚤𝚤� 1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 
No Cause Condition 𝑵𝑵𝒊𝒊 

𝑁𝑁𝑖𝑖 State  
𝑁𝑁𝑖𝑖 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑁𝑁𝚤𝚤�  𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Control Node, 𝑳𝑳𝒊𝒊 
   𝑵𝑵𝒊𝒊       𝑵𝑵𝒊𝒊���     
 𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   
State 𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  

𝑵𝑵𝒊𝒊 0 0 0 1 0 0 0 0 
𝑰𝑰𝒊𝒊 0 0 0 0 0 1 0 0 
𝑿𝑿𝒊𝒊 0 0 0 0 0 0 1 0 
𝑵𝑵𝑵𝑵 1 1 1 0 1 0 0 1 

 
 
 
 
 

Virtual Evidence Node, 𝑽𝑽𝒊𝒊 
State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 NA 

True 𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 
1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 0 

False 1 −
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 
1 + 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 1 
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Compact Representation 

Most of the nodes shown in Figure 47 are created to correctly treat the propagation of 

the cause condition. When displaying such a model, the items of interest to the analyst 

are: 

• The specific coupling factor which components share. For example “Turbine 

Building” is the specific coupling factor for a shared location.  

• The local cause conditions for each component. The analyst may want to 

instantiate a known cause condition for event assessment.  

 

Therefore a compact representation of the GDM would be useful. The nodes 

𝐿𝐿𝑖𝑖 , 𝑁𝑁𝑖𝑖 , 𝐼𝐼𝑖𝑖 , 𝑋𝑋𝑖𝑖 can be combined to describe a particular feature of the system which 

couples components together. This combination of nodes in a fully specified GDM 

model to a compact representation can be seen in Figure 48 and Figure 49 respectfully. 

This compact representation can be implemented in Bayesian Network software using 

Object Orientated Bayesian Network nodes.  

 

The compact representation allows the structure of the Bayesian Network to be easily 

conveyed to the analyst, while a software solution may decide whether a complete 

mutually exclusive implementation is adopted or whether the rare event approximation 

model is used.  
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Figure 48: Nodes from the GDM Model which may be combined for visual representation 

 

Figure 49: Compact representation of GDM 

A 
Pump 

B 
Generator 

𝐿𝐿𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐿𝐿𝐸𝐸𝐸𝐸

[𝐵𝐵] 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

𝐼𝐼𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝑋𝑋𝐸𝐸𝐸𝐸

[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝐸𝐸𝐸𝐸
[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐵𝐵] 
  

𝑁𝑁𝐸𝐸𝐸𝐸
[𝐴𝐴] 
  

VE 
True 

VE 
True 

A 
Pump 

B 
Generator 

𝐶𝐶𝐸𝐸𝐸𝐸
[𝐴𝐴] 𝐶𝐶𝐸𝐸𝐸𝐸

[𝐵𝐵] 
  

Location X 
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7.5. Parameter Estimation 
For each cause the Bayesian Network is fully specified once the three parameters 

𝑝𝑝𝑖𝑖 , 𝑄𝑄𝐸𝐸,𝑖𝑖 , 𝜂𝜂𝑖𝑖 are known. However, using data from the NRC failure databases, the 

observable quantities are: 

• The failure rate for a component due to cause 𝑖𝑖, 𝑄𝑄𝑡𝑡,𝑖𝑖. 

• The propensity for common cause failure due to cause 𝑖𝑖 in a perfectly 

symmetrical CCCG, 𝛼𝛼2,𝑖𝑖. The choice of parameter 𝛼𝛼2,𝑖𝑖 will be discussed in 

section 7.5.2.  

  

A classical and Bayesian formulation will be discussed for each parameter estimate. 

7.5.1. GDM Relationship to 𝑸𝑸𝒕𝒕,𝒊𝒊 

The failure probability for cause 𝑖𝑖, 𝑄𝑄𝑡𝑡,𝑖𝑖 is an observable metric which can assist in the 

calculation of the GDM parameters through the relationship: 

𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

This section will detail the estimation method for 𝑄𝑄𝑡𝑡,𝑖𝑖 from impact vectors.  
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Classical Estimation 

The frequentist point estimate for the failure probability of a component due to cause 

𝑖𝑖, 𝑄𝑄𝑡𝑡,𝑖𝑖 is: 

𝑄𝑄𝑡𝑡,𝑖𝑖 =
𝑛𝑛𝐹𝐹,𝑖𝑖

𝑁𝑁1
 

𝑛𝑛𝐹𝐹,𝑖𝑖 =  the total number of failures due to cause 𝑖𝑖. 
𝑁𝑁1 =  the total number of demands on a single component. 

 

Note, this estimate is a rate which can be converted to a mission probability metric as 

discussed in section 7.2.4. 

 

The quantities, 𝑛𝑛𝐹𝐹,𝑖𝑖 and  𝑁𝑁1 are component event data, as opposed to CCF event data 

(see Glossary). For example, if two components are in redundancy, assume that when 

the system is demanded, both components are demanded. In the first demand, 

component 1 fails. In the second demand, component 2 fails, in the third demand, no 

components fail. Then each component was demanded 3 times, making a total of 6 

component demands for the system with two failures. The failure probability is 2 6� =

1
3� .   

 

This number of failure due to a cause, 𝑛𝑛𝐹𝐹,𝑖𝑖 and the number of demands on the 

components, 𝑁𝑁1, may be available from the target system failure data where a cause 

has been recorded against each failure.  
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Bayesian Estimations 

Where a Beta distribution prior is used, 𝜋𝜋0(𝑄𝑄𝑡𝑡,𝑖𝑖; a𝑖𝑖
0, b𝑖𝑖

0), the parameters for the posterior 

distribution of the cause failure probability, 𝜋𝜋(𝑄𝑄𝑡𝑡,𝑖𝑖; a,i, b𝑖𝑖), is: 

 a𝑖𝑖 = a𝑖𝑖
0 + 𝑛𝑛𝐹𝐹,𝑖𝑖  

 b𝑖𝑖 = b𝑖𝑖
0 + 𝑁𝑁1 − 𝑛𝑛𝐹𝐹,𝑖𝑖  

 

The point estimate for 𝑄𝑄𝑡𝑡,𝑖𝑖 is: 

 𝑄𝑄�𝑡𝑡,𝑖𝑖 =
ai

ai + bi
 

 

The choice of a prior distribution parameters, a𝑖𝑖
0 and b𝑖𝑖

0, depends on the availability of 

data and has been discussed in section 6.5. 

7.5.2. GDM Relationship to 𝜶𝜶𝟐𝟐,𝒊𝒊 

The CCF data measures the strength of a coupling factor through the frequency of CCF 

events observed. In the AFM, this is quantitatively measured through the use of alpha 

factors. The calculation of alpha factors for each cause has already been discussed 

through the calculation of Partial Alpha Factors (see Chapter 6). Therefore 𝛼𝛼2,𝑖𝑖 it is a 

convenient measure to use for the GDM.  

 

A key difference between GDM and the PAFM, is the calculation of higher 

multiplicities of failure. GDM uses a an assumption that each component has a 
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Bernoulli trial in the presence of a cause condition, and will fail with probability 𝑝𝑝𝑖𝑖. 

Therefore the higher multiplicities of failure are not explicitly modeled, which is 

similar in concept to the Binomial Failure Rate Model (BFRM).  

 

Furthermore the assumption required to estimate the PAFM parameters required that 

all components within the CCCG were perfectly symmetrical in design, use and 

dependencies. The higher the size of a CCCG, the less likely it is this assumption is 

satisfied. Therefore it is proposed that only the second alpha factor is required. This has 

the advantage that there is likely to be much more data on CCCGs with two 

components, than larger groups.  

 

In order to obtain a relationship between 𝛼𝛼2,𝑖𝑖 and GDM, the results from the event 

assessment of a two train, perfect symmetry, system will be analyzed. Recall from 

section 6.7.2 that the probability of failure for component 𝐴𝐴𝑖𝑖, given knowledge of 

component B failing due to cause 𝑖𝑖, is:   

𝑃𝑃(𝐴𝐴𝑖𝑖|𝐵𝐵𝑖𝑖) = 𝛼𝛼1,𝑖𝑖
2 𝑄𝑄𝑡𝑡 + 𝛼𝛼2,𝑖𝑖 

 

Following the event assessment calculations for example 1, it can be seen that the 𝛼𝛼2 

term is the probability of CCF (calculated from the cut set {𝑋𝑋𝐴𝐴𝐴𝐴,𝑖𝑖}, while the remaining 

term,  𝛼𝛼1,𝑖𝑖
2 𝑄𝑄𝑡𝑡, is the normalized probability of independent failure for component 𝐴𝐴𝑖𝑖 .  
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The same calculation can be done using GDM. The node 𝐶𝐶𝑖𝑖
[𝐵𝐵] is instantiated as true, 

and the probability for the second component is calculated, 𝑃𝑃 �𝐴𝐴𝑖𝑖�𝐶𝐶𝑖𝑖
[𝐵𝐵]�. The 

calculations to conduct the algebraic solution for each node are cumbersome, therefore 

the detailed calculations are contained in appendix 4.  

 

𝑃𝑃 �𝐴𝐴𝑖𝑖�𝐶𝐶𝑖𝑖
[𝐵𝐵]� =

𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖(𝜂𝜂𝑖𝑖 − 1)2

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 − 𝑄𝑄𝐸𝐸,𝑖𝑖(𝜂𝜂𝑖𝑖 − 1) + 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 

During this calculation it can be seen that the term 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 is the probability of CCF. The 

remaining term, is the normalized probability of independent failure for component  

 

Therefore, when the GDM model is calculated for two components with perfect 

symmetry: 

𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 = 𝛼𝛼2 

The estimators for 𝛼𝛼2,𝑖𝑖were provided in section 6.4.1, and repeated here for 

completeness.  

 

Classical Estimation 

When the failure cause taxonomy is defined in such a way that each cause could only 

propagate through one coupling factor (the topic of Chapter 4), the frequentist point 

estimate for the partial alpha factor is:: 

 𝛼𝛼2,𝑖𝑖 =
𝑛𝑛2,𝑖𝑖

𝑛𝑛𝑡𝑡,𝑖𝑖
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where 

𝑛𝑛𝑡𝑡,𝑖𝑖 = � 𝑛𝑛𝑘𝑘,𝑖𝑖

2

𝑘𝑘=1

 

 
𝛼𝛼2,𝑖𝑖  =  a partial alpha factor which represents the portion of system 

failure events which resulted in 2 components failing within a 
common cause component group of size 2. when there was a 
potential for failure propagation through coupling factor  i 
where i ∈ {1,2,3,…,w} 

𝑛𝑛𝑘𝑘,𝑖𝑖 =  the number of failure events/frequency which resulted in k 
components failing within a common cause component group 
of size m, (1 ≤ k ≤ 2) of coupling factor  i where i ∈ 
{1,2,3,…,w} 

𝑛𝑛𝑡𝑡,𝑖𝑖 =  the total number of common cause failure events for coupling 
factor/cause i where i ∈ {1,2,3,…,w}. 

 

Bayesian Estimations 

Where a Beta distribution prior is used, 𝜋𝜋0(𝛼𝛼2,𝑖𝑖; a2,𝑖𝑖
0 , b2,𝑖𝑖

0 ), the parameters for the 

posterior distribution of the partial alpha factor, 𝜋𝜋(𝛼𝛼2,𝑖𝑖; a2,i, b2,𝑖𝑖), is: 

 a2,𝑖𝑖 = a2,𝑖𝑖
0 + 𝑛𝑛2,𝑖𝑖  

 b2,𝑖𝑖 = b2,𝑖𝑖
0 + 𝑛𝑛𝑡𝑡,𝑖𝑖 − 𝑛𝑛2,𝑖𝑖  

The point estimates for each partial alpha factor can be obtained using: 

𝛼𝛼�2,𝑖𝑖 =
a2,i

a2,𝑖𝑖 + b2,𝑖𝑖
 

The choice of a prior distribution parameters, a2,𝑖𝑖
0  and b2,𝑖𝑖

0 , depends on the availability 

of data and has been discussed in section 6.5. 

 

7.5.3. Estimation Using Observed Data 
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The following relationships have been established: 

𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

𝛼𝛼2,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 

 

Where, the terms, 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 are observable. With three unknowns and two equations. 

To complete the estimation of the GDM parameters, one of the three parameters must 

be estimated through other means. Quantification of the following options will be 

discussed in section 7.6: 

• Direct assessment from data which represents a parameter. 

• Using constraints from asymmetrical components (see below).  

• Assume 𝜂𝜂𝑖𝑖 = 1 as per Binomial Failure Rate Model. 

• Estimate from parametric failure model, such as human reliability models for 

human cause conditions, 𝑄𝑄𝐸𝐸,𝑖𝑖 or load strength interference model for 𝑝𝑝𝑖𝑖. 

• Engineering assessment. 

• Solve using data from higher levels of alpha factors. 

 

When components share a coupling factor. The common cause condition must be equal 

to all components. Where a component has already been parameterized, the remaining 

components have a third constraint on their parameters, this allowing the system of 
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equations to be solved.  The third equation is: 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Each type of cause lends itself better to different types of estimation techniques for the 

third parameter (discussed further in section 7.6): 

• Human Error Cause. The area of Human Reliability Assessments is rich with 

literature and parametric models.  Therefore human causes may be best suited 

to parametric modeling to estimate 𝑄𝑄𝐸𝐸,𝑖𝑖 or 𝜂𝜂𝑖𝑖. Failing this, an engineering 

assessment of 𝜂𝜂𝑖𝑖 would be the next best option.  

• Procedural Error Cause. Where components are coupled by the same 

procedure, it is highly likely that if one component is affected, then all shared 

components may be affected. Therefore procedural errors may be suitable for 

the assumption 𝜂𝜂𝑖𝑖 = 1 or an expert elicitation estimate of 𝜂𝜂𝑖𝑖 . 

• Environmental Error Cause. Unlike the other causes, environmental cause 

conditions may be detectable using sensors. In such cases, 𝑄𝑄𝐸𝐸,𝑖𝑖 may be 

estimated directly from cause condition data. Where this is not possible, the 

propagation of environmental causes will change between systems depending 

on the location and building design housing components. Therefore 

environmental causes may be suitable for an expert elicitation estimate of 𝜂𝜂𝑖𝑖. 

•  
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7.5.4. Parameter Uncertainty Calculation 

The GDM parameters are calculated from observable values, and estimated values 

which have uncertainty distributions. The parameters, 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 are quantified as 

Beta distributions. The estimation of the third parameter through means described in 

section 7.6 is likely to have a Beta distribution.  

 

The multiplication/division of random variables distributed with a Beta distribution 

does not have a closed form. Therefore the uncertainty distribution of the remaining 

GDM parameters must be calculated using numerical procedures, such as Monte Carlo 

simulation.  

7.6. Parameter Quantification 
For this section it is assumed that the failure taxonomy allows for a one to one, direct 

relationship between failure causes and coupling factors. This issue is discussed in 

Chapter 4.  

7.6.1. Direct Estimates 

It may be possible that sufficient data is available to directly estimate the parameters 

for the GDM.  This is only likely for observable cause conditions (even when failure 

does not occur) such as for extreme external environment, and so will only be briefly 

covered here.  
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Note that the direct estimates provided here have used a mission period metric, however 

they can equally be defined as a rate, such as per demand or per hour and converted to 

a mission period as detailed in section 7.2.4. 

 

Fragility (𝒑𝒑𝒊𝒊) 

If a cause condition can be measured, then the parameter 𝑝𝑝𝑖𝑖 may be directly estimated 

from data.  

 

Let 𝑛𝑛𝐸𝐸,𝑖𝑖 be the number of mission periods for which the cause condition existed. Let 

𝑛𝑛𝐹𝐹,𝑖𝑖 be the number of failures due to the cause condition 𝑖𝑖. Then the fragility may be 

directly estimated using: 

𝑝𝑝𝚤𝚤� =
𝑛𝑛𝐹𝐹,𝑖𝑖

𝑛𝑛𝐸𝐸,𝑖𝑖
 

𝑛𝑛𝐹𝐹,𝑖𝑖 =  the total number of failures due to cause 𝑖𝑖. 
𝑛𝑛𝐸𝐸,𝑖𝑖 =  the number of mission periods for which cause condition i 

existed.  
 

Care must be used in definition 𝑛𝑛𝐸𝐸,𝑖𝑖 in the context of the mission period. 𝑛𝑛𝐸𝐸,𝑖𝑖 is the 

number of mission periods for which the cause condition existed. This means that one 

incident which lasts over many mission periods may contribute to multiple counts of 

𝑛𝑛𝐸𝐸,𝑖𝑖.  Therefore direct estimates of fragility are best suited to short events relative to 

the mission period.  
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Cause Condition Probability (𝑸𝑸𝑬𝑬,𝒊𝒊) 

If a cause condition can be measured, then the cause condition probability, 𝑄𝑄𝐸𝐸,𝑖𝑖 may be 

directly estimated from data.  

 

Let 𝑛𝑛𝐸𝐸,𝑖𝑖 be the number of mission periods for which the cause condition 𝑖𝑖 existed and 

𝑛𝑛𝑚𝑚 be the number of missions over the period of data collection. Then the error rate 

may be directly estimated using: 

𝑄𝑄�𝐸𝐸,𝑖𝑖 =
𝑛𝑛𝐸𝐸,𝑖𝑖

𝑛𝑛𝑚𝑚
 

𝑛𝑛𝐸𝐸,𝑖𝑖 =  the number of mission periods for which cause condition i 
existed.  

𝑛𝑛𝑚𝑚 =  the total number of mission periods.  
 
 

Direct estimates of the cause condition probability is best suited to short events relative 

to the mission period. 

 

Coupling Factor Strength (𝜼𝜼𝒊𝒊) 

If a cause condition can be measured in multiple locations, then the coupling factor 

strength, 𝜂𝜂𝑖𝑖, may be directly estimated from data. 

 

Let 𝑛𝑛𝐼𝐼𝐼𝐼,𝑖𝑖 be the number of mission periods for which the cause condition 𝑖𝑖 existed 

locally at a component, without occurring at other components. Let 𝑛𝑛𝐶𝐶𝐶𝐶,𝑖𝑖 be the number 

of Mission period for which the cause condition 𝑖𝑖 existed at multiple components. Then 
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the coupling factor strength may be directly estimated using: 

𝜂̂𝜂𝑖𝑖 =
𝑛𝑛𝐸𝐸,𝑖𝑖

𝑛𝑛𝑚𝑚
 

𝑛𝑛𝐸𝐸,𝑖𝑖 =  the number of mission periods for which cause condition i 
existed.  

𝑛𝑛𝑚𝑚 =  the total number of mission periods.  
 
 

Direct estimate of the coupling factor strength is best suited to short events relative to 

the mission period. 

7.6.2. Using Impact Vectors and Causes 

Where component specific data exists, the evidence required to calculate 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 

can be quantified using the impact vector methodology, where the impact vector size 

has been adjusted to 𝑚𝑚 = 2.  

 

Consider that the average impact vector for a CCF event can be represented with the 

inclusion of the failure cause: 

𝐼𝐼 ̅ = [𝐹𝐹0���, 𝐹𝐹1� , 𝐹𝐹2���][Cause] 

Then the sum of average impact vectors for J events for a particular cause is: 

𝑛𝑛𝑘𝑘,𝑖𝑖 = � 𝐹𝐹𝑘𝑘���(𝑗𝑗)[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝐽𝐽

𝑗𝑗=1
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶=𝑖𝑖

 

𝑛𝑛𝑘𝑘,𝑖𝑖     =  the total number of CCF basic events caused by i involving the 
failure of k similar components. 
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Note, 𝑛𝑛0 is not included because a failure cause cannot be determined when there was 

no failure. 

 

The quantities required to estimate the 𝑄𝑄𝑡𝑡,𝑖𝑖 can now be calculated as: 

𝑛𝑛𝐹𝐹,𝑖𝑖 = � 𝑘𝑘𝑛𝑛𝑘𝑘,𝑖𝑖

2

𝑘𝑘=1

 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

2

𝑘𝑘=1

 

𝑁𝑁1 = 2 �𝑛𝑛𝑡𝑡 + � 𝐹𝐹0���(𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

� 

The quantities required to estimate the 𝛼𝛼2,𝑖𝑖 can now be calculated as: 

𝑛𝑛𝑡𝑡,𝑖𝑖 = � 𝑛𝑛𝑘𝑘,𝑖𝑖

2

𝑘𝑘=1

 

 

Using impact vectors to quantify these observable parameters allows for the ability to 

use currently accepted mapping rules from systems with different CCCG sizes and to 

include uncertainty around observed partial failures, coupling factors and time delays 

as provided by the impact vector methodology. 

 

Generic data sources in the form of impact vectors may also be used, with an 

engineering assessment of the weighting factor based on the strength of the data from 

a particular source. This method is discussed in detail in section 6.5.2. 
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7.6.3. Coupling Factor Strength Assumption 

One means to solve the simultaneous equations is to assume that the coupling factor 

strength is equal to one (𝜂𝜂𝑖𝑖 = 1). This assumption would be equivalent to the Binomial 

Failure Rate Model which explicitly models that all components share a shock equally.  

 

Some cause conditions are better suited to this assumption. Candidates include 

environmental causes where components share the same environment or procedural 

causes where the same procedure is used on multiple components.  Human coupling 

factors are not well suited to this assumption, as the occurrence of the same human 

error on multiple components is probabilistic.  

7.6.4. Existing Parametric Model Estimate 

An advantage of the GDM parameters is that they can be interpreted according to the 

physics of CCF, as discussed in section 7.2.4. Many techniques have been developed 

to estimate these quantities. This section will provide an overview, however the use 

and integration of such models is left as a recommendation for future research.  

 

Many of the causes related to CCF are related to human error such as installation human 

error (IH), maintenance human error (MH), operations human error (OH). The GDM 

parameters which require estimation are (Bell & Holroyd 2009): 

• 𝑄𝑄𝐸𝐸,𝑖𝑖 the probability of an existing human cause condition which could fail the 

component. This quantity may be directly related to the Human Error 
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Probability which is the objective of almost all Human Reliability Assessment 

(HRA) models such as THERP and SLIM-MAUD.  

• 𝜂𝜂𝑖𝑖 the probability that a human error may be repeated to other components. This 

probability is more difficult to estimate using HRA, however it is directly 

related to the Performance Shaping Factors used to conduct such assessments, 

and a literature review may find suitable methods are available.  

• 𝑝𝑝𝑖𝑖 the fragility of a component in the presence of a human error. This 

component is generally not considered in HRA, and is usually considered to 

equal 1, making the HEP the failure probability due to human reliability. A 

literature review may reveal consideration for component fragility in the 

presence of human error.  

The Human Reliability Assessment models may incorporate data, but also allows for 

estimation procedures using generic values to adjust estimates through performance 

shaping factors. Only one GDM parameter requires estimation in order to solve the 

simultaneous equations if also using available impact vector data. 
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There are no known parametric modeling techniques for procedural causes. Many 

environmental models exist for the prediction of environmental conditions (Steppeler 

et al. 2003), however a detailed literature review and analysis is required to determine 

their suitability for integration with GDM.  

 

7.6.5. Prior Distributions 

Prior distributions are required for the observable quantities, 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 and most 

importantly for the estimation of the GDM parameters required to solve the 

simultaneous equations. 

 

Section 6.5.3 provides detail on the use of the following informative prior distributions.  

• Population Variability Prior. This method is particularly well suited to the 

estimation of the component fragility 𝑝𝑝𝑖𝑖, as the parameter is a function of the 

component, which may be reasonably consistent between systems. The 

parameter 𝑄𝑄𝐸𝐸,𝑖𝑖 is mostly a function of the operating environment and is likely 

to change between systems. The parameter 𝜂𝜂𝑖𝑖 is mostly a function of the system 

and support system design, and is better suited to engineering judgment. 

• Expert Elicitation. While all parameters may have expert elicitation conducted, 

the parameter 𝜂𝜂𝑖𝑖 is particularly well suited to this method, due to its close 

relationship with the physical interpretation of a CCF, and due to the need to 
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customize this estimate based on characteristics of the system. When expert 

elicitation is used for any GDM parameter, such an estimate can account for 

specific defenses or vulnerabilities which exist in the target system. 

Section 6.5.4 provides detail on the reasons to use a non-informative prior and provides 

an overview of common Beta distribution non-informative priors that may be used.  

 

7.7. GDM in System Analysis 
 

The General Dependency Model uses a similar overall process for conducting a CCF 

analysis as Chapter 2. The following main differences are apparent. 

 

Identification of CCCGs. The AFM methodology requires the identification of CCCGs 

based on a qualitative assessment of similarities between components. The focus is on 

redundant systems, and on identical components. The GDM methodology requires the 

same qualitative analysis which will identify common features to any of the 

components. This assessment can be conducted without regard to the component type 

or redundancy configuration. However the definition of the common feature is 

important in defining a coupling factor strength later in the process.  

 

PRA Structure. The current AFM methodology modifies the PRA model by splitting 

basic events into CCBEs. This procedure is manual and obfuscates the original PRA 
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structure. The GDM methodology does not require the modification of the basic event 

node structure. Instead the dependencies are modeled through the Bayesian Network 

which links to the original PRA basic events. This however is not feasible as a manual 

task, and so software is required to automate this. The advantage with this approach is 

that the detail of dependency modeling can be hidden from the PRA user, except for 

the details required to conduct the analysis (see section 7.4.3 for a description of the 

compact graphical representation of the GDM).  

 

Parameter Quantification. The GDM model has parameters for each failure cause 

which results in many more parameters requiring estimation. Furthermore the GDM 

parameter estimation procedure described in section 7.5 and 7.6 shows that the 

parameter estimates are not directly observable and may require further modeling or 

non-data informed methods to complete parameter quantification. The AFM procedure 

allows for the estimation of parameters directly from the observable data, without 

solving for extra parameters.   

 
This section describes the system analysis procedure when using the GDM. The two 

examples used to demonstrate this procedure are the same two examples described in 

Chapter 2 and Chapter 6. A two train EDG system with perfect symmetry and a system 

with two EDG and three pumps with mixed redundancy. 

 

Unlike Chapter 2 and 6, the final quantification of the model will be conducted using 
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Bayesian Network software, instead of manual calculations. 

7.7.1. Qualitative Analysis 

The purpose of the qualitative analysis is to identify common features between 

components. The analyst is required to define a threshold as to how far they would 

consider components to share the same feature. This definition of the boundaries for a 

common characteristic should be documented. The barriers which prevent failure 

propagation within this common characteristic will be considered a defense and 

quantified by 𝜂𝜂𝑖𝑖. For example, a common location may be defined as being in the same 

building. Where components are in separate rooms, this separation will be recognized 

through a 𝜂𝜂𝑖𝑖 < 1. Note that it is possible to model multiple levels of influencing factors 

and dependency, which will be discussed in section 7.11.1. 

 
The qualitative assessment for example 1 is shown in Table 40. 

Table 40: Qualitative dependency assessment for example 1 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (A) EDG IP Team X Room Y 
EDG 2 (B) EDG IP Team X Room Y 

  

Installation Procedure (EDG IP). Is the same EDG installation procedure for both 

components.  

 

Maintenance Staff (Team X).  Defined as common at the team level. The team members 
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change, and a different person may be conducting the maintenance on each EDG.  

 

Location (Room Y). The two EDGs are next to each other in the same room.  

 

The qualitative assessment for example 2 is shown in Table 41. 
 

Table 41: Qualitative dependency assessment for example 2 

Component Install Procedure Maintenance 
Staff 

Location 

EDG 1 (E1) EDG Team X Room Y 
EDG 2 (E2) EDG Team X Room Y 
Pump 1 (P1) Pump V1.1 Team X Room Y 
Pump 2 (P2) Pump V2.8 Team X Room Y 
Pump 3 (P3) Pump V1.1 Team Y Room X 

 

Installation Procedure: 

• (EDG) Is the same EDG installation procedure for both EGD components.  

• (Pump V1.1) Installation procedure for pump at plant commissioning. 

• (Pump V2.8) Installation procedure from a different company, installed at a 

later date. 

Maintenance Staff.  

• (Team X). Defined as common at the team level. Team X is the onsite 

maintenance team. The team members change, and a different person may be 

conducting the maintenance on different components. 
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• (Team Y). Defined at the team level. Team Y is an offsite contractor. The 

people provided for this task may change, but are always from the same 

company.  

Location.  

• (Room X) Defined at the room level. Each room has separate climate control.  

• (Room Y) Defined at the room level. Each room has separate climate control.  

7.7.2. Create GDM Structure with Common Characteristics 

Nodes are created representing the shared characteristics of the system. The 

dependencies between the component and the shared characteristics are created with 

links. 

 

Figure 50 shows the GDM structure for example 1. Note that the local conditions are 

linked where the qualitative analyses showed they shared a condition. Furthermore the 

shared conditions are named, not just by the type of cause, but by the specific shared 

characteristic (eg. Room Y).  
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Figure 50: GDM Structure for Example 1 

 

Figure 51 shows the GDM structure for example 2. The local cause conditions have 

been removed for brevity. Again, nodes represent the shared characteristics with links 

to create the dependency between the local conditions of each component. 

 

AND 
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Figure 51: GDM Structure for Example 2 

 

While Figure 51 has been arranged for presentation in this thesis, in a software 

application it may be presented to the user using ‘properties’ of the basic event as 

shown in Figure 52. 

 

 

 

 
OR 

AND 

AND 

OR 
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System Failure
(S)

EDG 1
(E1)

Pump 1
(P1)

EDG 2
(E2)

Pump 2
(P2)

Pump 3
(P3)

 

Component EDG  Pump  EDG  Pump        Pump 

Location Room Y  Room Y  Room Y  Room Y  Room X 

Install Proc EDG  Pump1.1  EDG  Pump2.8  Pump1.1 

Maint Team Team X  Team X  Team X  Team X  Team Y 

….. ……  ……  ……  ……   
Figure 52: GDM Structure for Example 2 analyst interface 

 

An alternative representation could be shown in a software implemented solution to 

this step.  
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7.7.3. Identify Constraints from Observable Quantities 

For each cause the parameters 𝑄𝑄𝐸𝐸,𝑖𝑖, 𝜂𝜂𝑖𝑖, 𝑝𝑝𝑖𝑖 is required to be estimated. This will be done 

in two steps: 

• Identify constraints from observable quantities. 

• Estimate parameters within constraints. 

 

For each cause, the quantities 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 can be calculated as constraints.  

 

For example 1, recall the following impact vectors for the EDG, by cause: 

𝑛𝑛Ω,𝐼𝐼𝐼𝐼
[𝐸𝐸] = [0, 172.2, 2.8] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀
[𝐸𝐸] = [0, 154.35, 3.15] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝐸𝐸] = [0, 16.45, 1.05] 

𝑛𝑛0
[𝐸𝐸] = 29400 

 

The 𝑄𝑄𝑡𝑡,𝑖𝑖 for each cause can be calculated by calculating the total number of mission 

periods and the total number of failures for each cause. The 𝑄𝑄𝑡𝑡,𝑖𝑖 estimate and 𝛼𝛼2,𝑖𝑖 

estimates are shown in Table 42. Note that 𝛼𝛼2,𝑖𝑖 estimates were calculated in section 

6.6.7.  

 

𝑁𝑁1 = 2 �𝑛𝑛𝑡𝑡 + � 𝐹𝐹0���(𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

� 
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= 2(29400 + 175 + 157.5 + 17.5) 

= 59500 

 

Table 42: Estimation of 𝑸𝑸𝒕𝒕,𝒊𝒊for EDG 

Number of failures 𝑸𝑸𝑬𝑬,𝒊𝒊Estimate 𝜶𝜶𝟐𝟐,𝒊𝒊 Estimate 

𝑛𝑛𝐹𝐹,𝑖𝑖 = � 𝑘𝑘𝑛𝑛𝑘𝑘,𝑖𝑖

2

𝑘𝑘=1

 𝑄𝑄𝑡𝑡,𝑖𝑖 =
𝑛𝑛𝐹𝐹,𝑖𝑖

𝑁𝑁1
 See section 6.6.7 

𝑛𝑛𝐹𝐹,𝐼𝐼𝐼𝐼
[𝐸𝐸] = 172.2 + (2)(2.8) 

= 177.80 
𝑄𝑄𝑡𝑡,𝐼𝐼𝐼𝐼

[𝐸𝐸] = 2.988𝑒𝑒-3 𝛼𝛼2,𝐼𝐼𝐼𝐼
[𝐸𝐸] = 0.016 

𝑛𝑛𝐹𝐹,𝑀𝑀𝑀𝑀
[𝐸𝐸] = 154.35 + (2)(3.15) 

= 160.65 
𝑄𝑄𝑡𝑡,𝑀𝑀𝑀𝑀

[𝐸𝐸] = 2.700𝑒𝑒-3 𝛼𝛼2,𝑀𝑀𝑀𝑀
[𝐸𝐸] = 0.020 

𝑛𝑛𝐹𝐹,𝐸𝐸𝐸𝐸
[𝐸𝐸] = 16.45 + (2)(1.05) 

= 18.55 
𝑄𝑄𝑡𝑡,𝐸𝐸𝐸𝐸

[𝐸𝐸] = 3.118𝑒𝑒-4 𝛼𝛼2,𝐸𝐸𝐸𝐸
[𝐸𝐸] = 0.060 

 

For example 2, recall the following impact vectors for the Pump, by cause: 

𝑛𝑛Ω,𝐼𝐼𝐼𝐼
[𝑃𝑃] = [0, 26.06625, 0.18375] 

𝑛𝑛Ω,𝑀𝑀𝑀𝑀
[𝑃𝑃] = [0, 59.4125, 1.8375] 

𝑛𝑛Ω,𝐸𝐸𝐸𝐸
[𝑃𝑃] = [0, 82.52125, 4.97875] 

𝑛𝑛0
[𝑃𝑃] = 44433 
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The 𝑄𝑄𝑡𝑡,𝑖𝑖 for each cause can be calculated by calculating the total number of mission 

periods and the total number of failures for each cause. The 𝑄𝑄𝑡𝑡,𝑖𝑖 estimate and 𝛼𝛼2,𝑖𝑖 

estimates are shown in Table 43. Note that 𝛼𝛼2,𝑖𝑖 estimates were calculated in section 

6.6.7.  

𝑁𝑁1 = 2 �𝑛𝑛𝑡𝑡 + � 𝐹𝐹0���(𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

� 

= 2(44433 + 26.25 + 61.25 + 87.5) 

= 89216 

 

Table 43: Estimation of 𝑸𝑸𝒕𝒕,𝒊𝒊for Pump 

Number of failures 𝑸𝑸𝑬𝑬,𝒊𝒊Estimate 𝜶𝜶𝟐𝟐,𝒊𝒊 Estimate 

𝑛𝑛𝐹𝐹,𝑖𝑖 = � 𝑘𝑘𝑛𝑛𝑘𝑘,𝑖𝑖

2

𝑘𝑘=1

 𝑄𝑄𝑡𝑡,𝑖𝑖 =
𝑛𝑛𝐹𝐹,𝑖𝑖

𝑁𝑁1
 See section 6.6.7 

𝑛𝑛𝐹𝐹,𝐼𝐼𝐼𝐼
[𝑃𝑃] = 26.42 𝑄𝑄𝑡𝑡,𝐼𝐼𝐼𝐼

[𝑃𝑃] = 2.963𝑒𝑒-4 𝛼𝛼2,𝐼𝐼𝐼𝐼
[𝑃𝑃] = 0.007 

𝑛𝑛𝐹𝐹,𝑀𝑀𝑀𝑀
[𝑃𝑃] = 63.09 𝑄𝑄𝑡𝑡,𝑀𝑀𝑀𝑀

[𝑃𝑃] = 7.071𝑒𝑒-4 𝛼𝛼2,𝑀𝑀𝑀𝑀
[𝑃𝑃] = 0.03 

𝑛𝑛𝐹𝐹,𝐸𝐸𝐸𝐸
[𝑃𝑃] = 92.48 𝑄𝑄𝑡𝑡,𝐸𝐸𝐸𝐸

[𝑃𝑃] = 1.0366𝑒𝑒-3 𝛼𝛼2,𝐸𝐸𝐸𝐸
[𝑃𝑃] = 0.0569 

 

7.7.4. Estimate Parameters within Constraints. 

In the previous section the observable quantities, 𝑄𝑄𝑡𝑡,𝑖𝑖 and 𝛼𝛼2,𝑖𝑖 were calculated. These 

can now be used as constraints to solve the simultaneous equations: 
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𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

𝛼𝛼2,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Where, 𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖, is unknown, one of the parameters, 𝑝𝑝𝑖𝑖, 𝑄𝑄𝐸𝐸,𝑖𝑖, 𝜂𝜂𝑖𝑖 must be estimated by the 

means discussed in section 7.6. During this step the analyst must focus on estimating 

the parameters for each component, not the component group. This is because each 

component has unique features within the system, as will become evident in example 

2.  

 

The GDM parameters will be estimated for example 1. Due to the components being 

symmetrical, the estimates can be completed for a generic EDG and used for both 

EDGs. First, the coupling factor strength parameter will be estimated using the 

common characteristic description provided in section 7.7.1 

 

Installation Procedure (EDG IP). The installation procedure is the same for all EDG. 

If there was an error on one EDG the same error will be evident on the second EDG. 

Therefore the coupling factor strength is estimated as 1. 𝜂̂𝜂𝐸𝐸𝐸𝐸
[Rm Y] = 1. 

 

Maintenance Staff (Team X).  Different people conduct the maintenance, however they 

are from the same team. The probability of an error propagating is low. The coupling 
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factor estimate is low. 𝜂̂𝜂𝐸𝐸𝐸𝐸
[Tm X] = 0.2.  

 

Location (Room Y). The two EDGs are next to each other in the same room. If one EDG 

is subjected to an extreme environment, the other is highly likely to be subjected to the 

same condition. Therefore the coupling factor strength is estimated as 1. 𝜂̂𝜂𝐸𝐸𝐸𝐸
[Rm Y] = 0.8. 

 

Using the provided estimates, the remaining parameters may be calculated. The results 

are shown in Table 44. 

Table 44: GDM Parameter Estimates for example 1 EDG 

Cause 𝑸𝑸𝒕𝒕,𝒊𝒊 𝜶𝜶𝟐𝟐,𝒊𝒊 𝑸𝑸𝑬𝑬,𝒊𝒊 𝒑𝒑𝒊𝒊 𝜼𝜼𝒊𝒊 
EDG 1 
IP: EDG 0.002988 0.016000 0.186765 0.016000 1 
MH: Team X 0.002700 0.020000 0.027000 0.100000 0.2 
EE: Room Y  0.000312 0.060000 0.004157 0.075000 0.8 
EDG 2 
IP: EDG 0.002988 0.016000 0.186765 0.016000 1 
MH: Team X 0.002700 0.020000 0.027000 0.100000 0.2 
EE: Room Y  0.000312 0.060000 0.004157 0.075000 0.8 

 

For example 2, the parameters for the EDG have already been calculated from example 

1, therefore only the parameters for the pumps are required to be estimated. As stated 

at the start of this section, the aim is to quantify the GDM parameters for each 

component. The pumps within example 2 are not symmetrical and therefore greater 

care must be used when estimating the parameters. 

 

In order to maintain consistency in the modeling parameters, the common cause 
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condition failure probability 𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 must be equal for all components which share a 

characteristic. A review of the EDG data estimates and coupling factor reveals that 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 has already been estimated for causes MH-Team X and EE-Room Y which is 

relevant to pump 1 and 2. If  𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 is known the system of equations becomes: 

𝑄𝑄𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

𝛼𝛼2,𝑖𝑖 = 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

Solving for the GDM parameters gives: 

𝑄𝑄𝐸𝐸,𝑖𝑖 = �
𝑄𝑄𝑡𝑡,𝑖𝑖𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖

𝛼𝛼2,𝑖𝑖
 

𝜂𝜂𝑖𝑖 = �
𝛼𝛼2,𝑖𝑖𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖

𝑄𝑄𝑡𝑡,𝑖𝑖
 

𝑝𝑝𝑖𝑖 = �
𝛼𝛼2,𝑖𝑖𝑄𝑄𝑡𝑡,𝑖𝑖

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖
 

 

For example, the common cause condition for a maintenance human error from team 

X is calculated as: 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑀𝑀𝑀𝑀
[Tm X] = 𝜂𝜂𝑀𝑀𝑀𝑀

[𝐸𝐸1]𝑄𝑄𝑀𝑀𝑀𝑀
[𝐸𝐸1] 

= (0.2)(0.027) 

= 5.4e-3 

Using this quantity and the observable parameters for a pump  
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�𝑄𝑄𝑡𝑡,𝑀𝑀𝑀𝑀
[𝑃𝑃] = 7.071𝑒𝑒-4,  𝛼𝛼2,𝑀𝑀𝑀𝑀

[𝑃𝑃] = 0.03�, the GDM parameters for pump 1 and 2, cause 

MH can be solved: 

  

𝑄𝑄𝐸𝐸,𝑀𝑀𝑀𝑀
[𝑃𝑃,𝑇𝑇𝑇𝑇 𝑋𝑋] = �

𝑄𝑄𝑡𝑡,𝑖𝑖𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖

𝛼𝛼2,𝑖𝑖
= 1.128𝑒𝑒-2 

𝜂𝜂𝑀𝑀𝑀𝑀
[𝑃𝑃,𝑇𝑇𝑇𝑇 𝑋𝑋] = �

𝛼𝛼2,𝑖𝑖𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖

𝑄𝑄𝑡𝑡,𝑖𝑖
= 0.479 

𝑝𝑝𝑀𝑀𝑀𝑀
[𝑃𝑃,𝑇𝑇𝑇𝑇 𝑋𝑋] = �

𝛼𝛼2,𝑖𝑖𝑄𝑄𝑡𝑡,𝑖𝑖

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖
6.268𝑒𝑒-2 

Table 45Table 45 shows the parameter estimates using the constraints and engineering 

assessment. Numbers in red denote where the parameter estimate require 𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 as a 

constraint in asymmetrical modeling. 

 

With the pump parameters MH: Team X and EE:Room Y being estimated using 𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 

the remaining parameters require an engineering assessment to quantify at least one 

parameter.  

 

Installation Procedure (Pump IPV1.1). The installation procedure is the same for pump 

1 and 3.  If there was an error on one pump the same error will be evident on the second 

EDG. Therefore the coupling factor strength is estimated as 1. 𝜂̂𝜂𝐼𝐼𝐼𝐼
[P1.1] = 1. 
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Installation Procedure (Pump IPV2.8). Pump 2 does not share an installation procedure 

with another component; therefore the definition of common condition cannot be 

quantified. 𝜂̂𝜂𝐼𝐼𝐼𝐼
[P2.8] = 1. 

 

Maintenance Staff (Team Y).  Pump 3 does not share a maintenance team with another 

component; therefore the definition of common condition cannot be quantified. 

𝜂̂𝜂𝑀𝑀𝑀𝑀
[Tm Y] = 1.  

 

Location (Room X). Pump 3 does not share a room with another component; therefore 

the definition of common condition cannot be quantified. 𝜂̂𝜂𝐸𝐸𝐸𝐸
[Tm X] = 1. 

 

Table 45: GDM Parameter Estimates for example 2 

Cause 𝑸𝑸𝑪𝑪𝑪𝑪,𝒊𝒊 𝑸𝑸𝒕𝒕,𝒊𝒊 𝜶𝜶𝟐𝟐,𝒊𝒊 𝑸𝑸𝑬𝑬,𝒊𝒊 𝒑𝒑𝒊𝒊 𝜼𝜼𝒊𝒊 
EDG 1 
IP: EDG 0.18676 0.00299 0.01600 0.18676 0.01600 1.000 
MH: Team X 0.00540 0.00270 0.02000 0.02700 0.10000 0.200 
EE: Room Y  0.00333 0.00031 0.06000 0.00416 0.07500 0.800 
EDG 2 
IP: EDG 0.18676 0.00299 0.01600 0.18676 0.01600 1.000 
MH: Team X 0.00540 0.00270 0.02000 0.02700 0.10000 0.200 
EE: Room Y  0.00333 0.00031 0.06000 0.00416 0.07500 0.800 
Pump 1 
IP: Pump 1.1 0.04233 0.00030 0.00700 0.04233 0.00700 1.000 
MH: Team X 0.00540 0.00071 0.03000 0.01128 0.06268 0.479 
EE: Room Y  0.00333 0.00104 0.05690 0.00778 0.13318 0.427 
Pump 2 
IP: Pump 2.8 0.04233 0.00030 0.00700 0.04233 0.00700 1.000 
MH: Team X 0.00540 0.00071 0.03000 0.01128 0.06268 0.479 
EE: Room Y  0.00333 0.00104 0.05690 0.00778 0.13318 0.427 
Pump 3 
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IP: Pump 1.1 0.04233 0.00030 0.00007 0.04233 0.00700 1.000 
MH: Team Y 0.02357 0.00071 0.00054 0.02357 0.03000 1.000 
EE: Room X  0.01822 0.00104 0.00039 0.01822 0.05690 1.000 

7.7.5. Calculate Model 

Once the GDM parameters have been estimated, the Conditional Probability Tables for 

the Bayesian Network can be populated according to section 7.4. The model can then 

be calculated using software.  

 

For example 1 the completed Bayesian Network is shown in Figure 53. The probability 

of system failure is 1.440e-4 which is close to the same calculation using the AFM and 

PAFM of 1.546e-4. The GDM estimate is lower because the failure rate from each 

cause is being treated as an independent event, instead of a simple sum. This causes 

each component reliability to be lower than the point estimate from the combined data. 

When component failures rates are not rare events (greater than 0.01), the difference 

between AFM and GDM system estimates will become more pronounced. 

 

Furthermore, for larger  CCCGs the AFM and the GDM model will not be equivalent, 

as the higher alpha factors have not been used to calculate the GDM parameter 

estimations.  
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Figure 53: GDM system analysis results for example 1 

 

The completed Bayesian Network for example 2 is shown in Figure 54. The system 

failure probability is 2.152e-4 which is higher than the AFM estimate and PAFM of 

1.668e-4. This is due to the additional dependencies between the pumps and EDG 

which have been modeled.  

  

 

AND P(A) = 0.00599 P(B) = 0.00599 

P(S) = 1.440-4 
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Figure 54: GDM system analysis results for example 2 

7.8. GDM in Event Assessment 
A strength of the GDM model is the flexibility when conducting event assessments.  

The three event assessment scenarios will be presented: 

• Event assessment with knowledge of a component failure 

 
OR 

AND 

AND 

OR 

 

 

P(S) = 2.152-4 
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• Event assessment with knowledge of a component failure and failure cause 

• Event assessment with virtual evidence about the component failure cause 

7.8.1. Knowledge of Failure 

The procedure for conducting event assessment using the Bayesian Network is very 

straight forward. The analyst applies evidence to the node in the software package and 

the other node values are updated.  

 

Therefore the probability of system failure given B has failed is shown in Figure 55. 

 

 

Figure 55: Event assessment for component A failing using GDM 

The event assessment using GDM gives 𝑃𝑃(𝑆𝑆|𝐵𝐵)  =  0.0240, which is slightly less than 

the AFM and PAFM estimate of 0.0258. This is due to GDM modeling failures from 

each cause as independent events, as opposed to the PAFM which mostly treats them 

as mutually exclusive. Example 1 shows that GDM may be considered equivalent for 

 
AND P(A) = 1 P(B) = 0.0240 

P(S) = 0.0240 
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a two train symmetrical system to the AFM. 

 

GDM also presents a diagnostic function by estimating which local cause is likely to 

have caused the failure. As can be seen in Figure 55, the most likely cause is an 

installation error at 59%. Furthermore the probability of a local cause condition existing 

at component B has also increased. For example the probability that a maintenance 

human cause condition is at component B increased from 0.03 to 0.11. This information 

may be useful for diagnostics and guiding root cause analysis. This demonstrates the 

visual advantages to modeling CCF within a Bayesian Network.  

 

The event assessment of P1 failing on example 2 is shown in Figure 56. 
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Figure 56: Event assessment for component P1 failing using GDM 

The system failure probability is 3.810e-2 which is higher than the AFM estimate and 

PAFM of 6.120e-3. This is because on pump failure, the cause may be due to the 

maintenance team or external environment which is a cause shared by the EDGs. The 

Bayesian Network propagated this possibility to the EDGs and increases their 

probability of failure.  

7.8.2. Knowledge of Failure Cause 

Where the failure cause is known, the system equation can be updated by instantiating 

 
OR 

AND 

AND 

OR 

 

 

P(S) = 0.03810 

258 

 

 



 

the local cause node as true. Figure 57 shows the event assessment for example 1 where 

component A failed due to Maintenance Human (MH) error, while causes IP and EE 

at EDG1 remain unconfirmed. The evidence has once again propagated through the 

Bayesian Network and updated the probability that a cause condition exists at 

component B.  

 

Of note, the probability that the cause MH exists at EDG 2 is 0.22 which is an increase 

from 0.027 due to the addition of the common cause condition from component A, 

where 𝜂𝜂𝑀𝑀𝑀𝑀
[𝐸𝐸] = 0.2. This is the expected result calculated algebraically in section 7.5.2 

and appendix 4. 

 

 

Figure 57: Event assessment for component A failing from cause MH using GDM 

 

The probability of system failure given knowledge about each cause, is provided in 

Table 46. The estimates for each cause occur either side of the marginal distribution 

 

AND P(A) = 1 P(B) = 0.0255 

P(S) = 0.0255 
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when the cause is not known.  

Table 46: Event Assessment for Example 1 with different failure causes 

Cause 𝑷𝑷(𝑺𝑺) System Failure Probability 
Unknown 𝑃𝑃(𝑆𝑆|𝐴𝐴) 0.0240 
Install Procedure Error 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝐼𝐼𝐼𝐼) 0.0225 
Maintenance Human Error 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝑀𝑀𝑀𝑀) 0.0255 
External Environment Shock 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝐸𝐸𝐸𝐸) 0.0663 

 
 

For example 2, an event assessment where Pump 1 has failed due to a Maintenance 

Human cause condition is shown in Figure 58. 

 

Figure 58: Event assessment for component P1 failing due to EE using GDM 

 
OR 

AND 

AND 

OR 

 

 

P(S) = 0.05265 
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The EDG1, EDG2, Pump 1, and Pump 2 all share the same maintenance team. With 

Pump 1 failing due to a human error from that maintenance team, the Bayesian Network 

now propagates this evidence, and increases our belief that EDG1, EDG2 and Pump 2 

could fail.  

 

The event assessment of Pump 1 failing due to installation procedure is shown in Figure 

59. 

 

Figure 59: Event assessment for component P1 failing due to IP using GDM 

With an error identified in the Pump V1.1 Installation Procedure, it is clear that this has 

 
OR 

AND 

AND 

OR 

 

 

P(S) = 0.01351 
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no effect on the EDGs or Pump 2 which was installed using a different procedure. 

Therefore the only Pump 3 has an increased probability of failure due to it sharing the 

same procedure.  

 

The probability of system failure for each possible cause for Pump 1 is contained in 

Table 47.  The table includes a comparison between the PAFM and the GDM estimates. 

The GDM estimates are higher because they include many more dependencies. The 

PAFM estimates cannot account for shared dependencies between components (or 

component failure modes, if that was included in the model).  

Table 47: Event Assessment for Example 2 with different failure causes 

Cause 𝑷𝑷(𝑺𝑺) PAFM GDM 
Unknown 𝑃𝑃(𝑆𝑆|𝐴𝐴) 6.120e-3 0.03810 
Install Procedure Error 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝐼𝐼𝐼𝐼) 6.100e-3 0.01351 
Maintenance Human Error 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝑀𝑀𝑀𝑀) 6.053e-3 0.05265 
External Environment Shock 𝑃𝑃(𝑆𝑆|𝐴𝐴, 𝐶𝐶𝐸𝐸𝐸𝐸) 6.154e-3 0.03789 

 

7.8.3. Uncertain Knowledge of Failure Cause 

Reports on CCFs failures may be difficult to interpret the characteristics of the failure. 

The impact methodology was created to allow for the uncertainty in a CCF failure to 

be captured correctly within a failure database. The Bayesian Network also allows for 

interpretation uncertainty when conducting event assessments.  

 

When a variable is not absolutely known and the observer has a distribution over the 

variable’s possible values this is often referred to as 'Uncertain Evidence' or 'Soft 
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Evidence'.  There are two types of uncertain evidence, 'Virtual Evidence' and 'Jeffrey’s 

Rule' (Darwiche 2009, p.39). Virtual Evidence is where the uncertainty of the variable 

has been considered independently of the currently held beliefs, and as such has also 

been labeled the ‘nothing else considered method’ (Darwiche 2009, p.39). Jeffrey’s 

Rule is an estimate of the random variable probability after evidence has been applied 

by placing limitations on the posterior belief of the variable. Jeffrey’s Rule has also 

been labeled the ‘all things considered’ method. This section will only discuss Virtual 

Evidence.  

 

Virtual Evidence can be applied where the analyst is unsure of a node’s state, but has 

new evidence to change their belief. Such evidence during event assessment might be 

available from an initial incident investigation where the failure cause cannot 

distinguish between a design failure and a manufacturing failure.  

 

The analyst must estimate the odds that each node is true over the other node states. 

For example, a belief that a cause condition node is 50:50, provides no new evidence 

to the Bayesian Network and therefore the marginal distributions of the nodes will not 

change. However, if the analyst believes a node state is 90:10 based only on new 

evidence, then the Bayesian Network will combine this estimate with the historical 

evidence which was used to quantify the parameters and provide an updated estimate 

of the nodes across the network.  
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For example, the circumstances behind the failure of Pump 1 in example 2 are not clear. 

The analyst believes there is a 30:70 odds that the failure was due to cause Maintenance 

Human, and a 70:30 odds that the failure was due to Installation Procedure. The 

external environment cause has been ruled out.  

 

Figure 60 shows the Bayesian Network where evidence has been applied to the Room 

Y node so that no external environmental condition exists. With only two options for a 

failure cause, there is a probability of 0.71 that the failure was caused by Maintenance 

Human. Figure 61 shows the Bayesian Network including the virtual evidence which 

captures the analyst’s odds about the failure cause. Given this new evidence, the 

probability that the failure was caused by Maintenance Human has dropped to 0.32. 
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Figure 60: Event assessment for component Pump 1 prior to applying virtual evidence 

 

OR 

AND 

AND 

OR 

 

 

P(S) = 0.03831 
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Figure 61: Event assessment for component EDG 1 after applying virtual evidence 

7.9. Data Collection Requirements 
 

The data collection requirements are the same as for the Partial Alpha Factor model, 

and discussed in detail in 0.  In summary the desired data inputs are: 

• The failure cause is recorded for single and multiple failure events. 

• The potential coupling factors through which failure propagation could occur 

is recorded. 

 

OR 

AND 

AND 

OR 
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• A mutually exclusive, one to one relationship between failure causes and 

coupling factors exist. 

• The size of the CCCG for single failures is recorded. 

 

In addition to those considerations discussed in chapter 6, it is likely that the GDM 

model will require an assessment of whether failure events are a lethal shock. This 

data requirement will be discussed as part of extensions to the proposed GDM 

model. This data is already recorded as part of the NRC failure database.  

7.10. Model Assessment 
The General Dependency Model aims to provide a cause based CCF model which can 

be quantified using data from general and specific failure databases. Furthermore the 

GDM aims to extend CCF model past traditional limitations such as asymmetrical 

components, customized coupling and cause strengths and the ability to conduct cause 

based event assessments in an efficient way.  

 

This section will briefly describe the advantages, limitations and conduct a comparison 

of the GDM with other proposed CCF models.  

7.10.1. Model Advantages 

The GDM has a number of benefits compared to other CCF models: 

• Allows greater resolution on event assessments. 
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• Event assessments can be conducted easily without manual quantification of 

random variables.  

• Backward compatible to an equivalent AFM, for small size CCCGs. 

• The model parameters have a physical interpretation to assist with comparison 

and engineering assessments.  

• The model can use target system failure rates combined with generic alpha 

factors to quantify parameters.  

• The model allows for a rich description of the target system features such as 

cause and coupling factor features and defenses. 

• The model can account for asymmetrical components. 

• The model can account for system specific mitigation defenses through direct 

adjustment of the parameters.  

• The model incorporates failure data in estimation of its parameters. 

• The Bayesian Network does not modify the structure of the PRA fault tree and 

basic events.   
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7.10.2. GDM Limitations 

Due to the increased complexity of GDM and an attempt to model the physical process 

of CCF, the GDM has the following limitations: 

• The use of a Bayesian Network requires a software tool to account for its 

complexity. 

• The model parameters are not directly observable. 

• The model parameters may not be fully specified by the observable data 

metrics.  

• Many of the failure causes will have no observed CCF events and therefore the 

parameter estimates rely more on the prior knowledge. 

• In order to use the NRC failure databases, it must be assumed that each 

component within the CCCG for the observed failure has the potential for 

propagation of that cause through a coupling factor. This assumption may not 

be true and will produce an optimistic estimate. 

• Impact vector mapping is still required if data is from a different size CCCG. 

• Is not equivalent to AFM when outside the following requirements: 

o By assuming each failure cause event is independent, the model 

accounts for occasions where failure cause events intersect. This means 

the resulting failure rate is slightly less than the AFM estimates. 
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o There are large Common Cause Component Groups.  

 

A limitation of this research has been the ability to test the model against data where 

the assumptions are clear. Therefore it will be left to future research, with the assistance 

of an agency such as the NRC, to conduct the following tasks: 

• Test the model for larger CCCGs against failure data where the assumption of 

perfect symmetry can be established.  

• Propose a failure taxonomy which minimizes subjectivity of classifications, and 

establishes a one to one relationship between coupling factors and failure 

causes.  

• Refine the procedures for considering asymmetrical components and their 

common cause condition probabilities.  

7.10.3. Compare Against Model Criteria 

Table 30 provides a comparison of the GDM features compared to previously proposed 

models.  
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Table 48: Assessment of the GDM compared to previous CCF models 

 G
en

er
al

 D
ep

en
de

nc
y 

M
od

el
 

Pa
rt

ia
l A

lp
ha

 F
ac

to
r 

M
od

el
 

B
as

ic
 P

ar
am

et
er

 

B
et

a 
Fa

ct
or

 

Pa
rt

ia
l B

et
a 

Fa
ct

or
 

A
lp

ha
 F

ac
to

r 
M

od
el

 

B
in

om
ia

l F
ai

lu
re

 R
at

e 
M

od
el

 w
ith

 L
et

ha
l S

ho
ck

s 

C
om

m
on

 L
oa

d 

R
el

ia
bi

lit
y 

C
ut

 O
ff

 

In
flu

en
ce

 D
ia

gr
am

 

B
ay

es
ia

n 
N

et
w

or
k 

Feature Description GDM PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Explicitly Models System Features GDM PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Models failure cause Y Y N N P N N N P Y Y 
Models failure cause defense P N N N Y N N N Y N P 
Models coupling factor Y Y N N P N N N P Y N 
Models coupling factor defense P P N N Y N N N Y N N 
Models deeper causal levels Y N N N N N N N N N Y 
Models cause condition / shock Y N N N N N Y Y N N Y 
Models multiplicity of failures within CCCG Y Y Y N N Y Y Y N N Y 
Models includes consideration for rectification period N N N N N N N N N N N 
Common Cause Component Grouping Characteristics  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Model non-symmetrical but similar components within the same 
CCCG 

Y Y N N N N N N N N Y 
Model different components within the same CCCG Y N N N N N N N N N Y 
A component can be part of many CCCGs Y Y N N N N N N N N Y 
No limit to CCCG size Y Y Y Y Y Y Y Y Y Y Y 
Model different failure multiplicities within the CCCG  (k 
f il  i  ) 

Y Y Y N N Y Y Y N N Y 
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Event Assessment Capabilities  PAFM BP BF PBF AFM BFRL CL RCO ID BN 

Event Assessment with knowledge of a failed component Y Y Y N N Y Y ? N Y Y 

Event Assessment with knowledge of failure cause Y Y N N N N N N N Y Y 

Uncertain Evidence - Partial Failures Y N N N N N N N N Y Y 

Uncertain Evidence- Virtual evidence of cause Y N N N N N N N N Y Y 
Parameter Estimation  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Impact Vector Method (including method for incorporating 

t i t ) 
P Y Y P N Y Y N N N N 

Expert estimations (in absence of any data) Y Y Y Y Y Y Y Y Y Y Y 
Account for reliability growth (discount previous failures) N N N N N N N N N N N 
Update parameters with new evidence Y Y Y P N Y Y Y N N N 
Incorporate evidence from different sized CCCGs P Y N P N P Y Y N N N 
Account for CCF which occurred in a different mission time N N N N N N N N N N N 
Account for CCF data which has artificial separation in time due 
t  d d  b i  t   

N N N N N N N N N N N 
Use system specific failure rate data combined with generic 

d l t  
Y Y N Y N Y N N N N N 

Uncertainty Characteristics for Parameter Estimation  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Does not require distinguish between independent and single 
CCF f il  

Y Y Y Y Y Y N Y Y Y Y 
Failures outside the mission period Y Y Y P N Y Y N N N N 
Uncertainty of shared cause Y Y Y P N Y Y N N N N 
Uncertainty of coupling factor Y Y Y P N Y Y N N N N 
Uncertainty in intervals due to staggered testing P P P P N P P N N N N 
Partial failures and component degradation Y Y Y P N Y Y N N N N 
Usability and Cultural Considerations  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Backward compatible to Alpha Factor Model parameters Y Y Y N N Y N N N N N 
The time investment is no more than the alpha factor model. P Y Y Y Y Y Y N Y N N 
Automatic parameter estimation is possible from the 
CCFDB/RAD  

P Y Y Y N Y Y N N N N 
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7.11. Extensions and Future Development of GDM 
 

The General Dependency Model discussed within this thesis has focused on proposing 

a model which could replace the AFM. There are however a number of possible 

extensions which could be made in order to improve the model’s accuracy or flexibility 

for use in other cases. Furthermore, beyond the research conducted as part of this thesis 

there are areas which require further work in order to make GDM a mature CCF model.  

7.11.1. Scalability 

Due to the use of a Bayesian Network, the GDM can model multiple levels of causality. 

(Kelly et al. 2011) proposed a conceptual CCF model which uses a Bayesian Network 

to model failure mechanisms such as ‘Exhaust Valve Insert Fails’ or ‘Fuel Racks Bind’.  

 

The General Dependency Model is flexible enough to include such detail by either (1) 

using the GDM cause condition construct, or (2) using normal Bayesian Network nodes 

to model probabilistic dependencies. Redefining the GDM cause condition construct is 

reasonably straight forward, as the definition of cause condition is not confined to a 

level of causality. However, an alternative approach is to create a network of nodes 

between the cause condition and the component failure. 

 

Figure 62 shows an example of a GDM model with intermediate nodes, and in this case 

modeling failure mechanisms similar to (Kelly et al. 2011). This example shows how 
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the failure mechanism probabilities can be influenced by the presence of a cause 

condition. Furthermore the failure mechanisms may be local, or they may affect more 

than one component. For example a coolant water pipe rupture may influence the 

failure of both EDGs through a cascading failure. A more detailed proposal for physics-

based CCF modeling using Bayesian Networks is provided in (Mohaghegh et al. 2011) 

 

Figure 62: GDM with intermediate nodes 

 

In addition to intermediate nodes, it is important to recognize the higher level 

influences within the system. This may simply model higher levels of coupling as 

defined in the qualitative assessment. For examples 1 and 2 the location cause condition 

was defined as being in the same room. However components which are within the 

same building may also experience CCF due to a shared shock, or the fact that the 

 
AND 
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components on a particular site are geographically co-located. 

 

In addition to physical traits of the system, the organizational factors may be included 

within the model. Factors which could be included are the maturity of the organization, 

quality of an internal training program, common technical training institutes, morale, 

risk management maturity, common decision makers, etc. For an example of a 

modeling framework to link human and organizational root causes to a GDM model 

see (Mohaghegh & Mosleh 2009; Mohaghegh et al. 2009; Mosleh & Goldfeiz 1997) 

 

Figure 63 shows an example where higher level influences have been modeled as parent 

nodes to the GDM model. 
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Figure 63: GDM with parent nodes 

The Bayesian Network construct provides an excellent means to add additional layers 

to modeled causality and dependencies between basic events in the PRA. This will be 

limited by the ability to quantify the additional nodes of the network. Where specific 

research develops such models, it may be added to GDM structure.   

7.11.2. Lethal Shocks 

The GDM does not explicitly model the relationship of multiple failure events. Instead 

it treats these events as a symptom of each component being tested by the existence of 

a shared cause condition. This is analogous to the Binomial Failure Rate Model.  

 

 
AND 
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Using the 𝛼𝛼2,𝑖𝑖 parameter in estimating the GDM parameter guarantees that the GDM 

model will be faithful to empirical relationships for smaller component groups. For 

larger component groups the Binomial Failure Rate model was found to be inaccurate, 

and therefore the concept of lethal shocks was introduced (Mosleh et al. 1998). The 

Binomial Failure Rate Model and the General Dependency Model are different in the 

following ways: 

• BFRM assumes all components are symmetrical. GDM recognizes asymmetry 

in both the dependency and the cause strength.  

• BFRM assumes that all components receive the same shock. GDM recognizes 

that the shock may or may not propagate to other components of the coupled 

components.  

• BFRM is calculated without consideration for the failure causes and specific 

coupling factors. GDM is customized to the cause characteristics 

• BFRM splits the failure frequency into independent and dependent. GDM 

explicitly calculates single failure frequency for only those failure causes 

which have no coupling factor.  

 

In particular the larger the CCCG, the more likely the assumption of symmetry is 

violated. The ability for GDM to more accurately model features of the target system 

may allow for accurate estimations for large similar component groups, however this 

cannot be validated without the support of industry experts to assist in the isolation of 

a number of datasets with known assumptions about symmetry.  
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It may be required that GDM is extended to model lethal shocks separately to non-

lethal shocks. The NRC failure database already classifies failure events in terms of 

lethality. The method of integration into GDM is left for future research but options 

available include: 

• Multi-state nodes. Currently the cause condition nodes are ‘Cause’ or ‘No 

Cause’.  A third state may be introduced as ‘Lethal Cause’. 

• A separate network. A simplistic network could be added to the cause 

conditioning modeling to represent lethal shocks.  

7.11.3. Consistency of Asymmetrical Components 

The GDM system analysis methodology and event assessment procedures have shown 

how asymmetrical components may be modeled with the GDM. While the model is 

already capable of this, improvements can be made to the procedures for ensuring 

consistency, particularly when there are more than two asymmetrical components that 

require integration. The consideration for such integration will be briefly discussed 

here, however a detailed analysis is left for future research. 

 

The key to integrating asymmetrical components is the separation of the existence of a 

cause condition and the reaction the component has to this cause condition. Similar 

concepts are included within the inference and shock models previously proposed.  

 

Considerations required to formulate a consistent approach for asymmetrical 
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components are: 

• Resolving the issues around the definition of a cause condition such as those 

discussed in section 7.2.4 which include: 

o Interpretation of multiple shocks during a mission period; 

o Interpretation of shocks with different intensities; 

o Accounting for non-impulse shocks (cause conditions) which remain 

for many mission periods. 

o Accounting for simultaneous multiple cause conditions. 

• The possibility of solving for the third GDM parameter using information from 

two asymmetrical components. 

• The requirement to minimize error when estimating GDM parameters using 

data from more than two asymmetrical components.  

7.11.4. Uncertain Evidence In Event Assessment 

The use of uncertainty in event assessment was described in section 7.8.3 with the 

caveat that the virtual evidence estimate must be independent of evidence already used 

to quantify model. This estimate might be difficult to make as the expert is required to 

put aside all previously held beliefs about the frequency of such events and objectively 

quantify their estimate based on the new evidence. 
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The alternative measure is to use Jeffrey’s Rule which is an estimate of the posterior 

values, and the remainder of the joint probability distribution is updated such that it 

meets this constraint. This estimate is also problematic for the experts because they are 

combining numerous sources subjectively including informative priors, evidence from 

other parts of the model, historic evidence used to quantify parameters and now the 

new evidence from the event of interest. Virtual evidence is called the ‘nothing else 

considered’ method. Jeffrey’s rule is called the ‘all things considered’ method 

(Darwiche 2009).  

 

There exists a need for an ‘audit of things considered’ method. Experts can estimate 

the quantity in a metric they are comfortable with, and be explicit in the evidence they 

have considered in their estimate. Any evidence overlap between the expert’s estimate 

and what has already been considered in the model can now be treated. For example an 

estimate may include information about the historic causes of a failure, and the 

evidence found from the failure investigation but not consider evidence which has been 

entered about another component. This auditing technique could list all sources of 

evidence which have been used to formulate the posterior distribution of the unit of 

interest, and the expert can tick whether they have knowledge of that evidence and if it 

was considered in their estimate. Any information which is not within the audit can be 

entered as new evidence. 

 

This topic will be recommended for future research.  
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7.11.5. Failure Taxonomy Development  

As detailed in chapter 4, the current CCF taxonomy used within the NRC failure 

databases has ambiguity when making inference about which failure causes could 

propagate through which coupling factors.  

 

The development of an unambiguous failure classification taxonomy must be 

conducted in consultation with the industry for which the CCF model will be used. 

7.11.6. Prior Estimations 

A convenient and defendable method of creating a prior distribution is to use a 

population variability function, as detailed in section 6.5.3. This prior can overcome 

problems associated with parameter estimates which equal zero and can provide 

significant bounds on the possible values which a parameter may take.  

 

The development of such priors is dependent on the failure taxonomy and industry. The 

development of such priors is  left as a future task. 

7.11.7. Unbiased Estimators 

The estimators for GDM may be bias for the following reasons: 

• Data is collected as if causes are mutually exclusive, however GDM assumes 

that causes are independent. Therefore component failure rates are less than 
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those observed directly from data. This problem becomes prominent only when 

probability of failure is greater than 0.01.  

• Data collected is subject to different testing schemes. This particularily affects 

components in standby where their functional state may be tested through a 

staggered or non-staggered theme. Furthermore once a failure is found the 

maintainer may test other components not part of the schedule. Different testing 

schemes provide different bias within the data.  The GDM estimators need to 

be developed for each testing scheme.  

 

7.11.8. Integration of Existing Parametric Models 

Section 7.6.4 described the suitability of existing models to quantify GDM parameters. 

Specifically, human reliability assessment models exist which may enable the 

estimation of GDM parameters for human related causes. A literature review and 

methods for integrating such models are left as a future task.  

7.11.9. Software and Procedure Development 

GDM has a reasonably simple analysis methodology, but requires software to calculate 

the required outputs. The system analysis procedure essentially involves a qualitative 

assessment for coupling factors, the classification of each basic event into those 

coupling factor categories, and the quantification of three parameters for each 
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dependency.  

 

The system analysis procedure does not require an understanding of Bayesian 

Networks to complete, and may be completely conducted through a graphical user 

interface which only displays the event trees and fault trees of the original PRA.  

 

In event assessment there are significant benefits to displaying the updated probabilities 

of the cause conditions. This need not be displayed through a Bayesian Network, but 

may be presented to the user as an event assessment dashboard.  

 

Furthermore, in conducting tasks such as the qualitative assessment, event assessment 

or use of uncertain data, checklists and procedures may be developed such that the task 

is intuitive and easy to conduct.  

 

Previous CCF models have been proposed which overcome many of the disadvantages 

of the popular AFM. However they have failed either through difficulty in 

obtaining/incorporating data or through the complexity of the analysis process. The 

analysis of CCF using GDM requires software. It is left as a future task to develop such 

software that the complexities of constructing the Bayesian Network are shielded from 

the user and only a simple, intuitive, software guided analysis process remains.   
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Chapter 8: Conclusion 

8.1. Introduction 
 

The aim of this final chapter is to discuss the topics covered within this thesis, provide 

a summary of the proposals made, review the advantages and limitations of each 

proposal and discuss the extent to which the research objectives have been met. Finally 

areas for further research into common cause failure will be identified.  

8.2. Review of research objectives and goals 
 

The goal of this research was to develop a comprehensive CCF analysis methodology 

that enhances the discipline of PRA to conduct the following tasks: 

• CCF analysis in the PRA of operating system in particular allowing the analysis 

to recognize system specific features such as inter-component dependencies 

and CCF defenses. 

• CCF analysis of systems in design, in particular allowing the effect of different 

design decisions to be quantified in the absence of plant specific data. 

• CCF analysis in Event Assessments, in particular the ability to include 

characteristics of the failure event which allow an assessment of the probability 

for CCF. 
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To support this goal, research objectives were specified and achieved as follows: 

 

Propose a unified understanding of the definition and scope of CCFs. This objective 

has been met through a literature review covering the ambiguity in CCF definition, an 

analysis of the attributes of CCF and through a proposed redefinition of CCF which 

addresses the identified issues and attributes. 

 

Propose a failure data taxonomy consistent with the unified CCF definition which can 

enable cause based CCF models.  This research objective has been met through the 

analysis of the CCFDB for suitability to support the cause based CCF models. It was 

found to be insufficient and an alternative failure classification scheme was developed. 

 

Propose a cause based, data informed CCF model. This research objective has been 

met through the proposal of two new CCF models. The first is based on an extension 

of the Alpha Factor Model with minimal changes to the analysis process. The second 

model is based on a Bayesian Network which requires modification to traditional 

analysis process. 

 

Propose a comprehensive and scalable analysis process. This research objective has 

been met by analyzing the current CCF analysis process for both system design and 

event assessment. For each proposed CCF model, a new analysis process was 

developed and demonstrated.  
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8.3. Common Cause Failure Definition 
 

The definition of Common Cause Failure has many different meanings depending on 

the context, industry and whether the term is being used to describe modeling or the 

general description of a failure phenomenon. Consequently there is a lack of consensus 

regarding a definition which is consistent in a modeling and phenomenon context.  

 

Using the CCF definition from NUREG/CR-5485 as a baseline, the following areas 

were found to require further clarification. 

 

CCF defined within a PRA modeling concept.  

Previous CCF definitions have described CCFs as a phenomenon without reference to 

modeling. However CCF modeling is only conducted on dependencies not explicit 

within the PRA model. As models become more detailed in their treatment of 

dependencies, the definition of a CCF for that model also changes. This means that two 

models for the same scenario may have different meanings of the term CCF.     

 

A definition is required to understand why multiple components of a system may fail 

due to unforeseen circumstances, and to support data collection activities and define 

the scope of CCF modeling. Therefore the decision as to whether to have the definition 

of CCF dependent on the PRA model gives two options: 
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• Exclude reference to modeling within the definition. This is the status quo, 

which provides a broad definition of CCF which allows for explicit or implicit 

modeling. This definition would mean any dependent failure would be 

considered a CCF regardless of whether it is explicitly modeled or not. CCF 

modeling would only model a fraction of CCFs in a PRA model, and the 

CCFDB only collects a portion of CCF events due to it ignoring more explicit 

dependent failures.  

• Include reference to modeling within the CCF definition. Including modeling 

as part of the CCF definition implies that CCF is a modeling concept used to 

represent a sub-set of dependent failures. This means an observed event cannot 

be classified as a CCF unless there is knowledge of the PRA model used to 

represent the failure. 

It is this problem which creates the most confusion about the definition of CCF. 

Without resolving this issue there is no definitive way to differentiate a CCF compared 

to a commonly understood dependent failure which does not help support data 

collection activities or the progression of CCF modeling. This thesis proposes that the 

definition for CCF includes reference to whether the failure dependency is explicitly or 

implicitly modeled.  

 

Simultaneity 

The undesirable effect of CCF is when two or more components are unable to perform 
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their function at the same time. All CCF modeling has focused on the probability of 

component failure during a defined mission period. An extension to the concept of 

simultaneity is consideration that the probability of two or more components being 

unavailable to perform their function at the same time is linked to how quickly a 

component is repaired. A small addition to the definition has been proposed to clarify 

this.  

 

Proposed Definition 

The following amended CCF definition is proposed. 

 

A CCF event consists of component failures that meet five criteria:  

(1) two or more individual components fail or are degraded, including failures during 

demand, in-service testing, or deficiencies that would have resulted in a failure if a 

demand signal had been received;  

(2) component failures occur within a specified period of time such that multiple 

components are unable to perform their intended function or success of the PRA 

mission would be uncertain; 

(3) component failures result from a single shared cause and coupling mechanism;  

(4) a component failure occurs within the established component boundary; and 

(5) the dependency between components has not already been explicitly modeled. 
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8.4. CCF Failure Taxonomy 
 

To enable the quantification of the proposed cause based CCF models, failure events 

must be classified such that there is a clear relationship between the failure cause and 

the coupling factor. The Partial Alpha Factor needs to know the coupling factors a 

failure could have propagated through. The General Dependency Model quantifies the 

strength of each coupling factor using data from failure causes. This aim is best 

achieved if there is a mutually exclusive, one to one relationship between the failure 

cause and coupling factor.  

 

An assessment was conducted of the CCFDB and it was found that there is insufficient 

correlation between the failure cause and coupling factor categories for it to be used in 

its current form.  

 

The features of a suitable taxonomy were described and a failure event taxonomy was 

proposed based on the existing coupling factor categories, for review by industry 

experts.  

 

8.5. CCF Model – Partial Alpha Factor Model 

8.5.1. Overview 

The Alpha Factor Model is the most popular quantitative model in use, and is well 
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supported by the data collection and classification systems available. Therefore the 

Partial Alpha Factor Model aims to provide a cause based model which uses the same 

analysis methodology and data sources as the AFM. 

 

The PAFM is quantified using two parameters, the partial alpha factors (𝛼𝛼𝑘𝑘,𝑖𝑖) and the 

gamma factors (𝛾𝛾𝑖𝑖).  The partial alpha factors represent the multiplicity of failures in a 

common cause component group, given a failure has occurred from cause 𝑖𝑖.  The 

gamma factors represent the portion of failure events which are due to cause 𝑖𝑖. Given 

an assessment of the coupling factors between two components, the ‘assessed alpha 

factors’ may be calculated as: 

𝛼𝛼′𝑘𝑘 = � 𝛾𝛾𝑖𝑖𝛼𝛼𝑘𝑘,𝑖𝑖
𝑖𝑖=𝑟𝑟

 

𝒓𝒓    =  the coupling factors shared by the components within the 
CCCG being analysed, r⊆{1,2,3,…,w}. 

𝛼𝛼𝑘𝑘
′  =  the assessed alpha factor. This is the system alpha factor 

which only considers the coupling factors shared by the 
components within the CCCG where  2 ≤ 𝑘𝑘 ≤ 𝑚𝑚 

 

Where the components share all coupling factors, the assessed alpha factor is equivalent 

to the AFM parameters.  

 

The analysis process is the same as the AFM with the following significant differences: 

• A Common Cause Component Group (CCCG) is formed around symmetry of 

shared causes. This means a component may be a member of multiple CCCGs. 
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• Common Cause Basic Events are creates for each CCCG, and result in more 

than would have been required using the AFM. 

• Parameter estimation occurs for each cause, instead of at the failure mode level.  

8.5.2. Advantages 

The primary advantages of the PAFM is the ability to customize the CCF model to 

relevant coupling factors between components and conduct event assessments with 

knowledge of the cause whilst using a familiar AFM methodology.  

 

Specifically the advantages of the PAFM over other CCF models are summarized 

below:  

• Allows greater resolution on event assessments. 

• Backward compatible to an equivalent AFM. 

• Intuitive extension to the AFM analysis methodology. 

• A ratio model allowing the use of target system failure rates. 

• Can reward target system defenses that decouple dependencies. 

• Can use AFM for system analysis, and the PAFM used for event assessment.  

• Using the assumptions contained in section 6.8.1, the PAFM can be calculated 

from the CCFDB. 

• PAFM parameter estimates will be no worse than if the PRA used the AFM. 

A detailed comparison of the PAFM features against the other CCF models is provided 
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in Table 30 on page 175. 

8.5.3. Limitations 

Due to the PAFM using an AFM methodology and the nature of CCF data, the PAFM 

has a number of limitations: 

• The description of the target system features such as cause and coupling factor 

features and defenses is limited. 

• Many of the failure causes will have no observed CCF events and therefore the 

parameter estimates rely more on the prior knowledge. 

• As per the AFM, it is difficult to model components with different failure 

probabilities within the same CCCG (symmetrical failure probabilities) 

• In order to use the CCFDB, it must be assumed that each component within the 

CCCG for the observed failure has the potential for propagation of that cause 

through a coupling factor. This assumption may not be true and will produce 

an optimistic estimate. 

• Impact vector mapping is still required if data is from a different size CCCG.  
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8.6. CCF Model - General Dependency Model 

8.6.1. Overview 

The General Dependency Model aims to provide a feature rich, cause based CCF model 

that can be quantified using a CCF database. Significant objectives include: 

• The ability to conduct event assessments using uncertain evidence and 

knowledge of the failure cause; 

• The ability to model features of the target system including cause frequency, 

coupling factor strength and system defenses;  

• The ability to model asymmetrical components; and 

• The ability to quantify using impact vectors. 

 

The model uses three parameters for each cause, the component fragility (𝑝𝑝𝑖𝑖), the cause 

condition probability (𝑄𝑄𝐸𝐸,𝑖𝑖), and the coupling factor strength (𝜂𝜂𝑖𝑖). These parameters 

allow the separation modeling of cause conditions (i.e a flood), to the reaction 

equipment have to that failure cause (i.e probability of failure given a flood). The 

coupling factor strength describes the ability of system to propagate the cause 

condition, not the failure (i.e a flood propagating to a different buildings). This allows 

for the modeling of asymmetrical components and gives greater flexibility in modeling 

features of the target system. 
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The structure of GDM uses a Bayesian Network. This allows for a flexible model which 

can easily propagate evidence through the PRA model and give flexibility in integrating 

additional factors such as higher levels of dependency or organizational factors. 

 

The implementation of GDM requires a soft solution. Using such a solution allows for 

a CCF analysis process which focuses on the analyst describing the features of each 

component, instead of changing the PRA structure. Bayesian Network software also 

allows for a very straightforward event assessment procedure and a rich graphical 

interface to interpret event assessments results. 

8.6.2. Advantages 

The advantages of the GFM over other CCF models are that it: 

• Allows greater resolution on event assessments. 

• Event assessments can be conducted easily without manual quantification of 

random variables.  

• Backward compatible to an equivalent AFM, for small size CCCGs. 

• The model parameters have a physical interpretation to assist with comparison 

and engineering assessments.  

• The model can use target system failure rates combined with generic alpha 

factors to quantify parameters.  

• The model allows for a rich description of the target system features such as 

cause and coupling factor features and defenses. 
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• The model can account for asymmetrical components. 

• The model can account for system specific mitigation defenses through direct 

adjustment of the parameters.  

• The model incorporates failure data in estimation of its parameters. 

• The Bayesian Network does not modify the structure of the PRA fault tree and 

basic events.   

A detailed comparison of the GFM features against the other CCF models is provided 

in Table 48 on page 271 

8.6.3. Limitations 

Due to the increased complexity of GDM and an attempt to model the physical process 

of CCF, the GDM has the following limitations: 

•  The use of a Bayesian Network requires a software to account for its 

complexity. 

• The model parameters are not directly observable. 

• The model parameters may not be fully specified by the observable data 

metrics.  

• Many of the failure causes will have no observed CCF events and therefore the 

parameter estimates rely more on the prior knowledge. 
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• In order to use the NRC failure databases, it must be assumed that each 

component within the CCCG for the observed failure has the potential for 

propagation of that cause through a coupling factor. This assumption may not 

be true and will produce an optimistic estimate. 

• Impact vector mapping is still required if data is from a different size CCCG. 

8.6.4. Future Work for GDM 

The General Dependency Model requires further development in order to become a 

usable capability by PRA practitioners. Furthermore, a number of extensions are 

recommended for investigation to enhance the model’s capabilities.  

 

A limitation of this research has been the ability to test the model against data where 

the assumptions are clear. Therefore it will be left to future research, with the assistance 

of an agency such as the NRC, to conduct the following tasks: 

• Test the model for larger CCCGs against failure data where the assumption of 

perfect symmetry can be established.  

• Propose a failure taxonomy which minimizes subjectivity of classifications, and 

establishes a one to one relationship between coupling factors and failure 

causes.  

• Produce non-bias estimators considering the assumption of independent events 

and testing scheme.  
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• Refine the procedures for considering asymmetrical components and their 

common cause condition probabilities.  

A number of implementation activities and enhancements which require further work 

are described in detail in section 7.11 and listed below: 

• Create a methodology for integrating higher level influences into GDM such as 

organizational factors.  

• Create a methodology for integrating intermediate nodes between cause 

conditions and the failure of components. 

• Investigate the inclusion of lethal shocks and compare against industry data for 

larger common cause component groups. 

• Develop a consistent methodology for the inclusion of asymmetrical 

components into the GDM. This activity includes: 

o Resolving the issues around the definition of a cause condition such as 

multiple shocks during a mission and shocks which last multiple 

mission periods (see section 7.2.4) 

o The possibility of solving for the third GDM parameter using 

information from two asymmetrical components. 

o The requirement to minimize error when estimating GDM parameters 

using data from more than two asymmetrical components.  
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o The difference between a common cause condition on similar items, 

versus a common cause condition on asymmetrical components. 

• Develop a methodology to enable experts to provide evidence through a 

‘evidence audit procedure’ detailed in section 7.11. 

• Develop a failure cause classification which meets the requirements detailed in 

chapter 4, and reclassify events in the failure database. 

• Using the data within the failure database, develop population variability 

distributions which can be used as prior distributions for parameter estimation. 

• Investigate parametric models which may be used to estimate parameters of the 

GDM such as human reliability assessment models. 

• Investigate a parametric means of adjusting GDM parameters for different 

levels of defenses.  

• Develop software and procedures to automate the system analysis and event 

assessment tasks such as creation of the GDM structure and population of node 

conditional probability tables. 

8.7. Future Research 
During the conduct of this research, a number of issues with CCF modeling were 

identified which are recommended for future research. The following activities relate 

to all CCF models, not just to those proposed within this thesis. 
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8.7.1. Time Relationship of CCF (Repair Time, Mission Time, Aging) 

Common Cause Failures are dependent on the time between failure in a number of 

ways. Despite this there is very little consideration for explicit modeling of these 

relationships which can severely limit CCF modeling’s scope and the ability for CCF 

databases to be used in other industries.  

 

Repair Time 

The undesirable effect cause by CCF is when multiple components fail to provide their 

function at the same time. Depending on the repair time this could be minutes, hours, 

even years and independent of the mission period. However all formulations to date 

have ignored the repair time as a consideration. A proposed topic for further research 

is to investigate the integration of repair times into the model calculations. 

 

This topic is discussed in more detail in section 3.4.2. 

 

Changes to Mission Time 

In most cases a CCF has been defined as the failure of multiple components during a 

defined PRA mission time.  When this definition is used to collect data it means that a 

change in mission time definition will change which failures from a database will be 

considered CCF.   

 

For example if the nuclear industry created a database of CCF using a definition of a 
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24 hours  mission period, then failures which occurred 2 months apart will be classified 

as single failures. However if NASA wishes to use the database to quantify its CCF 

model, and defines its mission period of 5 years, then if two failures occurred 2 months 

apart it would be considered a CCF.  The alpha factors for CCF will be much higher 

for the NASA mission, however there is no way to adjust the nuclear industry database 

to account for this new mission time.  

 

It is recommended that a method for recording failures is investigated such that the 

analyst can define a mission period, and recalculate their CCF parameters. This topic 

is discussed in more detail in section 2.13. 

 

Aging 

When studying observed CCF events, many show that after the initiation of a cause 

condition, the probability of a simultaneous failure depends on the aging characteristic 

of the condition.  For example, if a maintenance error occurs when installation a filter. 

The component may work perfectly for the first week, but the error has accelerated the 

time to failure.  So the probability of CCF increases after the initiation event.  

 

It is recommended that this aging characteristic be further investigated to determine if 

it can be used to better estimate CCF rates.  
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8.7.2. Existing Parametric Model Estimate 

Section 7.6.4 described the suitability of existing models to quantify GDM parameters. 

Specifically, human reliability assessment models exist which may enable the 

estimation of GDM parameters for human related causes. A literature review and 

methods for integrating such models are left as a future task.  

 

8.7.3. Quantitative Defense Modeling 

An ultimate objective of CCF modeling is to quantify the effect that defenses have on 

cause frequencies, coupling factor strengths and component fragility. This is done 

qualitatively using UPM. Despite some methods being proposed (Hakansson 2011; 

Zitrou 2006a), there currently exists no data-informed quantitative model.  

 

In order to provide a data informed model for defenses, consideration must be given to 

how defenses can be classified when recording failure events.  For example, Figure 64 

shows how failure event information must include the defense levels to allow inference 

of target system failure rates and CCF parameters.  
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Figure 64: Recording of Failures into CCFDB with consideration for defenses 

 

It is recommended that further research is conducted to propose a quantitative method 

for estimating the effect of system defenses, and research into the data requirements to 

support the model.  

8.8. Conclusion 
This research has proposed a methodology for modeling CCF with explicit 

consideration for failure causes and coupling factors. Central to this ability is the 

proposal of two CCF models. The Partial Alpha Factor Model is an extension of the 

popular Alpha Factor Model which minimizes additional complexity. The General 

Dependency Model provides a feature rich CCF analysis capability through an 

1 Mission 24 Hours 

CCF Database 

Used for same circumstances with lower defenses? 

Higher level of 
defences caused 
no CCF events to 
be recorded 
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increased complexity. 

 

In order to quantify cause based CCF models, this thesis reviewed the suitability of the 

current CCFDB failure event classification taxonomy and found it to be insufficient. 

An alternative classification method has been proposed which allows inference of the 

coupling factors to be made with knowledge of the failure cause.  

 

Finally this research investigated the definition of Common Cause Failures, and why 

census on its interpretation has not been achieved. An alternative definition has been 

proposed.  
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Appendices 1: Literature Review of CCF Models 

1.1. Introduction 
This literature review proposes the following broad classifications of CCF models: 

• Direct Estimate. This classification includes all models which estimate CCF 

parameters without assumptions outside directly observed system failure rates.  

• Ratio Models. Ratio models estimate the percentage of a components failure 

rate which is caused by common cause. This allows ratios to be estimated from 

generic data and applied to systems where only a failure rate is known.  

• Shock Models. Shock models are based on the hypothesis that each component 

within the CCCG undergoes shocks according to a Poisson process. For each 

component within the CCCG the shock is a Bernoulli trial which will fail the 

component with probability ρ. This includes models where a probability 

distribution is assigned to the parameter 𝜌𝜌. 

• Interference Models. Interference models also attempt to model the physical 

phenomena of CCF but without the shock model’s assumption of independence. 

Instead these models predict the number of failures by assuming random 

variables for component strength and load. When the load exceeds the strength 

a component is expected to fail. The more intense the load or the more depleted 

the strength than the higher the probability of failure.  
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• Other Models. This contains all the models which did not fit neatly into the 

other categories. This included implicit models and a square root bounding 

method.  

 

This chapter will conclude with a summary of the model classifications and a table 

comparing the assumptions and limitations of each model.  

 

1.2. Direct Estimates 
Direct estimate models consist of: 

• Direct Assessment (Qualitative) 

• Basic Parameter Model 

1.2.1. Direct Assessment (Qualitative) 

The direct assessment model can be considered as a procedure rather than a modeling 

technique. (Hirschberg 1985) discussed this approach in detail. It involves using the 

actual number of demands and the number of observed failures with multiplicity, 𝑖𝑖, and 

estimating the quantities of interest directly from the data set. For the purposes of this 

model 𝑖𝑖 is defined as any positive integer, and the quantities of interest for this case is 

defined as the common cause failure rate or common cause failure probability.   

This approach is typically simple and is less dependent upon sound knowledge of any 
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mathematical or statistical skills. (Anude 1994) 

 

Advantages include: 

• The method is simple as there is minimal data required and minimal 

mathematical knowledge required to determine broad estimates. 

• The model is predicated on experience. 

Limitations include: 

• The model cannot estimate common cause failures for K out of N events for 

which it does not have data.  

• Component symmetry is assumed (ie. XAB = XBC) 

• Does not allow for partial failure or component degradation 

• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architecture which may 

contribute or defend against CCF. 

1.2.2. Basic Parameter Model 

The basic parameter model was proposed by Fleming, et al. in 1983 (Fleming et al. 

1983) and calculates the CCF basic event directly from the data. This estimation is 

given by: (Mosleh et al. 1998)(Mosleh 1991) 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

𝑁𝑁𝑘𝑘
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𝑄𝑄𝑘𝑘
(𝑚𝑚) =   basic event failure frequency/probability for k components 

failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑛𝑛𝑘𝑘 = the number of failure events which resulted in k components 
failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑁𝑁𝑘𝑘 = the number of demands on any k component in the common 
cause group. 

 
If it is assumed that each time the system is operated, all of the m components in the 

group are demanded, then. 10: 

𝑁𝑁𝑘𝑘 = �𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷                                                     

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

�𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷

           non-staggered testing 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

𝑛𝑛𝑘𝑘

𝑚𝑚 �𝑚𝑚
𝑘𝑘 � 𝑁𝑁𝐷𝐷

       staggered testing           

ND = the number of demands on the system (or time T) 
 

The total component failure rate can be calculated as the sum of the CCBEs:  

𝑄𝑄𝑡𝑡 = � �𝑚𝑚 − 1
𝑘𝑘 − 1 � 𝑄𝑄𝑘𝑘

𝑚𝑚
𝑚𝑚

𝑘𝑘=1

 

Replacing 𝑄𝑄𝑘𝑘
(𝑚𝑚) with its estimator gives the following estimator for the total failure 

rate, Qt: 

 

10 This estimator can change depending on the scheme used to test components. This estimator is for 

non-staggered testing. Other estimators and discussion on testing schemes is provided in NUREG /CR-

5485 (Mosleh et al. 1998) 
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𝑄𝑄𝑡𝑡 =
1

𝑚𝑚𝑁𝑁𝐷𝐷
� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

          non-staggered testing 

𝑄𝑄𝑡𝑡 =
1

𝑚𝑚2𝑁𝑁𝐷𝐷
� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

          staggered testing         

Advantages include: 

• The method is simple as there are no intermediate steps in quantifying basic 

common cause events. 

• The model is intuitive. 

• Suitable for any amount of redundancy (for which data is available). 

• No need to differentiate between independent and common cause failures.  

Limitations include: 

• The model cannot estimate common cause failures for redundancy 

configurations for which data is unavailable.  

• Component symmetry is assumed (ie. XAB = XBC) 

• Does not allow for partial failure or component degradation. 

1.3. Ratio Models 
Ratio models are based on the hypothesis that system specific estimates for CCF can 

be made by combining generic average ratio parameters with system specific 

single/total failure rates (Vaurio 2008). This provides the advantage that ratio models 

can be estimated from specific data collection activities such as the Common Cause 

Failure Data Base and applied to areas where CCF data may not exist.  
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Ratio models have the following advantages: 

• There is a direct and intuitive quantity to the model parameters.  

• Generic ratio parameters can be calculated from generic data and then applied 

to plant specific single failure rates. This reduces the data requirements 

compared to direct estimate models.  

• Success data is not required to estimate the model parameters.  

The limitations of all ratio models discussed here include: 

• The model assumes a transferable empirical ratio between failure rates and 

Common Cause Failure rate. 

• The ratio models described here assume component symmetry. 

• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architecture which may 

contribute or defend against CCF. 

• Confusion in the interpretation of single failures being modeled as independent 

failures, particularly when applying impact mapping rules.  

 

Ratio models can be further classified into: 

• Component failure ratio models. The ratio is calculated as a count of the number 

of component failures which occur in different configurations which includes: 
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• Event failure ratio models. The ratio is calculated as a ratio of different types of 

events. A single event may have multiple component failures.  

1.3.1. Beta Factor Model 

The Beta Factor Model, proposed by Fleming in 1975 (Fleming 1975), is a component 

failure ratio model which is one of the most popular where generic data used to estimate 

parameters are limited. It is still the most commonly used CCF model outside the 

nuclear industry (Hokstad & Rausand 2008). 

 

The basic parameters can be calculated as (Mosleh et al. 1998): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

(1 − 𝛽𝛽)𝑄𝑄𝑡𝑡    𝑘𝑘 = 1
               0               𝑚𝑚 > 𝑘𝑘 > 1

          𝛽𝛽𝑄𝑄𝑡𝑡          𝑘𝑘 = 𝑚𝑚   
 

𝑄𝑄𝑡𝑡 = The total failure probability of one component  
𝑚𝑚 = Common Cause Component Group size 
𝑘𝑘 = Number of failed components due to common cause failure 

 

The MLE parameter estimate is (Mosleh et al. 1998)11: 

𝛽̂𝛽 =
∑ 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚
𝑘𝑘=2

∑ 𝑘𝑘𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=1

 

𝑛𝑛𝑘𝑘 =number of events involving k components in a failed state 
m = the number of components within the CCCG 

11 This estimator can change depending on the scheme used to test components. This estimator is for 

non-staggered testing. Other estimators and discussion on testing schemes is provided in NUREG /CR-

5485 (Mosleh et al. 1998) 
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β (usually between 0.01 and 0.3) (Anude 1994) is defined as the point estimate of the 

conditional probability that a unit failure is a Common Cause type. The Beta Factor 

model uses one parameter in addition to the total component failure probability to 

calculate the Common Cause failure probabilities regardless of the size of the Common 

Cause Component Group. 

 

The Beta Factor model is a special cause of the Multiple Greek Letter (MGL) model 

where there are only two components within the CCCG. (Mosleh et al. 1998). 

 

The advantages of the Beta Factor model, in addition to the ratio model advantages are:  

• Simplicity compared to other ratio models.  

• Regardless of the number of components comprising the system, it requires the 

estimation of only two parameters. 

The limitations of the Beta Factor model, in addition to the ratio model limitations are: 

• The model does not acknowledge CCFs of various multiplicities within the 

Common Cause Component group. Failure can either be one component or the 

whole component group. (Hokstad 2004) 

• For most redundant systems, this model has been proven to be excessively 

conservative and pessimistic in predicting CCF failure rates. (Mosleh et al. 

1998) 
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• Rigorous estimators for the beta factor model parameters are fairly difficult to 

obtain, although approximate methods have been developed and used in 

practice.(Mosleh et al. 1998) (Mosleh 1986) 

1.3.2. C-Factor Model 

The C-Factor model was introduced by Evans et al. (Evans et al. 1984) which is 

essentially exactly the same as the Beta Factor model with a different interpretation of 

how the ratio factor should be defined. The C-Factor assumes that the ratio parameter 

which can be transferred to the specific system under analysis is defined as a ratio of 

the individual failure rate, not the total failure rate (Hokstad & Rausand 2008): 

𝑄𝑄𝑚𝑚
(𝑚𝑚) = 𝐶𝐶𝑄𝑄1

(𝑚𝑚) 

 

The C-factor method was developed in an attempt to use the Licensee Event Report 

(LER) summary data to provide estimates of common cause failure probabilities. The 

C factor estimator was the fraction of observed root causes of failures that either did, 

or were judged to have the potential to, result in multiple failures. (Evans et al. 1984) 

 

The advantages and limitations of the C-Factor model are the same as the Beta Factor 

model.  

1.3.3. Multiple Beta Factor (MBF) Model  

Hokstad  suggested that the reason for the success of the Beta Model is due to its 
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extreme simplicity; and to be a success, and proposed a generalized beta model known 

as the Multiple Beta Factor Model, must be as simple to use in practice (Hokstad 2004) 

(Hokstad et al. 2006). This simplicity can be achieved by letting the CCF system failure 

rate for a KooM configuration be calculated as: 

𝑄𝑄𝑘𝑘
𝑚𝑚  =  𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. 𝛽𝛽𝑄𝑄𝑡𝑡 

𝛽𝛽         = Beta Factor 
𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = is a configuration factor taking into account the reliability 

structure of the K-out-of-N system number of components within the 
CCCG 

When the configuration factor, 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, equals one, the model is equivalent to the Beta 

Factor model.   

The parameter estimate is (Hokstad 2004): 

𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = � �
𝑀𝑀
𝑗𝑗 � 𝐺𝐺𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑗𝑗=𝑚𝑚−𝑘𝑘+1

  𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 = 1,2, … , 𝑚𝑚 − 1 

𝐺𝐺𝑗𝑗,𝑚𝑚 =
𝑔𝑔𝑗𝑗,𝑚𝑚

𝑄𝑄𝑄𝑄
= �(−1)𝑖𝑖 �

𝑚𝑚 − 𝑗𝑗
𝑖𝑖 � � 𝛽𝛽𝑥𝑥

𝑗𝑗−1+𝑖𝑖

𝑥𝑥=2

𝑚𝑚−𝑗𝑗

𝑖𝑖=0

  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 2,3, … , 𝑚𝑚 

𝛽𝛽𝑥𝑥 = The probability that component x fails given another component has 
already failed. 𝛽𝛽𝑥𝑥 = 𝑃𝑃𝑃𝑃 (𝐴𝐴𝑥𝑥+1|𝑥𝑥 ∩ … ∩ 𝐴𝐴𝑥𝑥) where 𝐴𝐴𝑥𝑥is a r.v for the 
event that component x fails.  

𝑚𝑚 = Common Cause Component Group size 
𝑘𝑘 = Number of failed components due to common cause failure 

Further details on the estimation of the MBF parameters are found in (Hokstad 2004). 

Advantages over the MGL model is that once the parameters have been estimated the 

calculation of the basic parameters is greatly simplified. A limitation is that the 

probability of k-out-of-n failing is independent of the size of n. 
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1.3.4. Multiple Dependent Failure Fraction (MDFF) 

This Method was proposed by Stamatelatos in 1982 (Stamatelatos 1982) and originally 

developed for a system of three identical units. This method was modified and extended 

to four by Hirschberg (Hirschberg 1985).  

 

MDFF is a generalization of the β factor method and can be stated mathematically in 

the following equation(Anude 1994): 

𝜆𝜆 =  𝜆𝜆𝑟𝑟  +  𝜆𝜆𝑐𝑐  =  𝜆𝜆𝑟𝑟  +  𝜆𝜆𝜆𝜆 ∑ 𝑓𝑓𝑓𝑓 = 𝑁𝑁
𝑛𝑛=2 𝜆𝜆𝜆𝜆 +  𝑓𝑓𝑓𝑓       

λr =Independent Failure rate component 
λc = CCF rate component = λn∑ 𝑓𝑓𝑓𝑓 𝑁𝑁

𝑛𝑛=2  
fn = fraction of n failures (n=2,... N) 
f= fraction of CCFs  
 

Results of the β factor approach are usually more conservative than those of MDFF. 

 

The original articles for this model could not be obtained and so a full assessment could 

not be completed.  

1.3.5. Partial Beta Factor (PBF) Model 

The Partial Beta Factor (PBF) model was first conceived by Edwards in 1982 and later 

developed by Johnston (Johnston 1987) to allow consideration for the target system 

dependencies and defenses.  After a qualitative analysis identifies CCCGs containing 

identical components and a criticality assessment of the effect from dependencies based 

on cut sets, a matrix is created allowing the different attributes leading to dependencies 
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between the components are evaluated. A Beta Factor is then created as a product of a 

number of partial beta derived from judgments of system defenses.  

𝛽̂𝛽 = � 𝛽𝛽𝑗𝑗
j

 

𝛽𝛽 = The beta factor for the Beta Factor model.  
𝛽𝛽𝑗𝑗 = The partial beta factors for defence  j attribute 

 

The basic parameters are the same as the beta factor model and calculated as: 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

(1 − 𝛽𝛽)𝑄𝑄𝑡𝑡    𝑘𝑘 = 1
               0               𝑚𝑚 > 𝑘𝑘 > 1

          𝛽𝛽𝑄𝑄𝑡𝑡          𝑘𝑘 = 𝑚𝑚   
 

 

A limitation of this approach is that each partial beta factor multiplies the whole failure 

rate for defenses which may only affect a portion of the failure rate. Johnson proposed 

an extension to the PBF model where the failure rate is separated into specific causes 

and the Partial Beta Factor only adjusts that portion of the failure rate (Johnston 1987).  

𝑄𝑄𝑚𝑚,𝑖𝑖
(𝑚𝑚) = 𝑄𝑄𝑖𝑖 � 𝛽𝛽𝑗𝑗,𝑖𝑖

𝑖𝑖

, 𝑄𝑄𝑚𝑚
(𝑚𝑚) = � 𝑄𝑄𝑚𝑚,𝑖𝑖

(𝑚𝑚)

𝑖𝑖

 

𝑄𝑄𝑖𝑖 = The failure probability/rate of cause i. 
𝛽𝛽𝑗𝑗,𝑖𝑖 = The partial beta factor for defence  j and cause i 
 

It should be noted that the outcome of the Partial Beta Factor model is to arrive at a 

system specific Beta Factor, and as such multiplicity of failures within a common cause 

component group is not recognized.  
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1.3.6. Multiple Greek Letter Model  

Multiple Greek Letter (MGL) Model is a component failure ratio model which the same 

number of parameters as components within the Common Cause Component Group. 

This model was introduced by Fleming and Kalinowski (Fleming & Kalinowski 1983) 

as an extension to the Beta Factor model. The additional parameters were introduced 

to account for (Anude 1994): 

• higher component redundancies,  

• failure multiplicities greater than unity, and  

• different probabilities of failures for subgroups of the common cause 

component group. 

The basic parameters can be calculated as (Mosleh et al. 1998): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) =

1
�𝑚𝑚−1

𝑘𝑘−1 �
�� 𝜌𝜌𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� (1 − 𝜌𝜌𝑘𝑘+1)𝑄𝑄𝑡𝑡 

𝑄𝑄𝑡𝑡 = The total failure probability of one component  
𝑚𝑚 = Common Cause Component Group size 
𝑘𝑘 = Number of failed components due to common cause failure 
𝜌𝜌𝑖𝑖 = The MGL parameter. 𝜌𝜌1 = 1, 𝜌𝜌2 = 𝛽𝛽, 𝜌𝜌3 = 𝛾𝛾, 𝜌𝜌4 = 𝛿𝛿, … , 𝜌𝜌𝑚𝑚−1 = 0 

 

The MGL estimators are defined as a ratio of the number of components that fail within 

different configurations. For example 2𝑛𝑛2 is the number of components which have 

failed as part of a CCF event involving two components. This is in contrast with the 

Alpha Factor Model which defines its parameters in terms of CCF event counts, not 

component failure counts. For example, the first three parameters of the MGL model 

are described as: 
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• β the conditional probability that the cause of a component failure will be 

shared by one or more additional components, given that a specific component 

has failed. 12 

𝛽̂𝛽 =
∑ 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚
𝑘𝑘=2

∑ 𝑘𝑘𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=1

 

𝑛𝑛𝑘𝑘 =number of events involving k components in a failed state 
m = the number of components within the CCCG 

• γ the conditional probability that the cause of a component failure that is shared 

by one or more components will be shared by two or some additional 

components, given that two specific components have failed. 13 

𝛾𝛾� =  
∑ 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚
𝑘𝑘=3

∑ 𝑘𝑘𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=2

 

• δ the conditional probability that the cause of a component failure that is shared 

by two or more components will be shared by three or more additional 

components given that three specific components have failed. 14 

𝛿̂𝛿 =  
∑ 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚
𝑘𝑘=4

∑ 𝑘𝑘𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=3

 

 

A detailed description of the MGL model is provided in NUREG/CR-5485 (Mosleh et 

al. 1998) including conversions between MGL and AFM.  

12 This estimator is for non-staggered testing.  (Mosleh et al. 1998) 
13 This estimator is for non-staggered testing.  (Mosleh et al. 1998) 
14 This estimator is for non-staggered testing.  (Mosleh et al. 1998) 
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Advantages over the Beta Factor model is that the MGL model can model various 

multiplicities of failure within the Common Cause Component Group.  

1.3.7. Alpha Factor Model (AFM) 

The alpha factor model (AFM) is a failure event ratio model that was first proposed by 

Mosleh and Siu in 1987 (Mosleh & Siu 1987). Each 𝛼𝛼𝑘𝑘 factor is the probability that 

given a failure it will fail k components our of m component within the CCCG. The 

AFM parameters are defined and calculated as (Mosleh et al. 1998): 

𝛼𝛼𝑘𝑘 =
𝑛𝑛𝑘𝑘

∑ 𝑛𝑛𝑘𝑘
𝑚𝑚
𝑘𝑘=1

 

 
m =  the number of redundant components 
𝑛𝑛𝑘𝑘 =  the number of failure events/frequency which resulted in k 

components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

𝛼𝛼𝑘𝑘 =  the fraction of total failure events/frequency that occur in the system 
resulting in k out of m failures. 

 
 

The alpha factor method is used to estimate the basic event probabilities using (Mosleh 

et al. 1998) . 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = 𝑘𝑘 �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

.
𝛼𝛼𝑘𝑘

𝛼𝛼𝑡𝑡
. 𝑄𝑄𝑡𝑡       non-staggered test data 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �𝑚𝑚 − 1

𝑘𝑘 − 1 �
−1

. 𝛼𝛼𝑘𝑘. 𝑄𝑄𝑡𝑡                   staggered test data 

where: 

�𝑚𝑚 − 1
𝑘𝑘 − 1 � =

(𝑚𝑚 − 1)!
(𝑘𝑘 − 1)! (𝑚𝑚 − 𝑘𝑘)!

         𝑎𝑎𝑎𝑎𝑎𝑎          𝛼𝛼𝑡𝑡 = � 𝑘𝑘𝛼𝛼𝑘𝑘

𝑚𝑚

𝑖𝑖=1
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𝑄𝑄𝑘𝑘
(𝑚𝑚)=   basic event failure frequency/probability for k components 

failing within a common cause component group of size m, (1 
≤ k ≤ m). 

𝑄𝑄𝑡𝑡 = total failure frequency/probability of each component due to 
independent and common cause events.  
 

This formulation has the property that that 𝛼𝛼1 +  𝛼𝛼2 + 𝛼𝛼3 + ⋯ +  𝛼𝛼𝑚𝑚 =  1 so that the 

αs are not mutually independent. (Vaurio 2008).  

   

Due to AFM’s ability to calculate its parameters directly from the impact vectors, the 

AFM is sometimes used as an intermediate step in calculating Beta Factor and MGL 

parameters. The relationship between these parameters is detailed for different systems 

within NUREG/CR-5485 (Mosleh et al. 1998).  

 

Advantages over the Beta Factor model is that the AFM model can model various 

multiplicities of failure within the Common Cause Component Group and unlike the 

Beta and MGL methods, AFM’s parameters are directly related to measurable 

properties of the system and are usually calculated directly from observed data as 

impact vectors (Mosleh 1991). 

 

1.4. Shock Models 
 

Shock models are based on the hypothesis that each component within the CCCG 

undergoes shocks according to a Poisson process. For each component within the 
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CCCG the shock is a Bernoulli trial which will fail the component with probability 𝜌𝜌.  

 

Most shock models are adoptions or simplifications of the multivariate exponential 

model derived by Marshall and Olkin in 1967 (Marshall & Olkin 1967). For these 

models the number of failed components, k, resulting from a shock is binomially 

distributed. Shock models strive to model the actually physical phenomena that results 

in CCF to occur.  

 

Shock models have the following advantages: 

• Can be used to model high levels of redundancy.(Anude 1994) 

• Can estimate CCF frequency even when CCF events have not been observed. 

(Atwood 1986) 

• Easier to adjust for different sizes CCCG groups. (Kvam & Martz 1995) 

• Importing/exporting data for different sized systems is more accurate and often 

easier due to the ability to characterize the underlying probability of common 

cause failures. (Kvam & Martz 1995)   

 

Shock models have the following disadvantages: 

• Includes parameters which are difficult to measure with data (such as shock 

rates). 

• Requires demand/success data to calculate parameters. 
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• Confusion in the interpretation of single failures being modeled as independent 

failures, particularly when applying impact mapping rules.  

• Lethal shocks need to be distinguished from multiple CCF failing all system 

components. 

• Assumes ccomponent symmetry (ie. XAB = XBC). 

• Assumes that given a shock has occurred, items will fail independently which 

may be violated in practice. (Anude 1994) 

• Assumes zero time to repair. (Atwood 1986)  

• Assumes renewal to as good as new. (Atwood 1986) 

• Assumes Constant Failure Rates. (Atwood 1986) 

• The ρ parameter is independent of the size of the CCCG. (Vaurio 1999) 

• Any subset of k components of a system of size m is equally vulnerable to 

exactly the same common-causes and stresses as in a system of size k, or 

anything larger than k.  This results in the assumption that nk > nk+1 (the 

mapping rule). (Vaurio 1999) 

• Data is needed from a system with at least m=3 in order to solve the three 

unknowns. (Vaurio 2008) 

• The analyst needs to distinguish between a single CCF and a single independent 

failure. This can become subjective from fault reports leading to higher 

uncertainty. 
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• No parameters are directly linked to the degree of system protection against 

CCFs. 

• Probability that the value of the binomial parameter ρ remains fixed across all 

system shocks despite shocks having different intensities and different sources. 

(Anude 1994) 

• Does not model different intensity shocks to the system. (Anude 1994) 

• Parameter calculation can be cumbersome. (Kvam 1993) 

• No inference can be made given knowledge of the failure cause. 

• The model cannot account for unique system architecture which may 

contribute or defend against CCF. 

1.4.1. Binomial Failure Rate Model 

The Binomial Failure Rate Model (BFRM) model was proposed by Vesely in 1977 

(Vesely 1977) to adapt the shock model proposed by Marshall and Olkin.  This model 

was motivated by estimation with less data than previously required and to describe the 

underlying failure process generated by CCF events. It assumes that CCF occur when 

all m redundant components of a system are challenged by a shock at a rate of 𝜇𝜇. The 

number of resulting failures from each shock, k, is random with a binomial distribution 

with probability 𝜌𝜌.  

 

This model has also been known as the three-parameter BFR model with parameters, 

QI (or λ), μ and ρ. These parameters can be estimated using (Marshall et al. 1998): 
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𝑄𝑄𝐼𝐼 =
𝑛𝑛𝐼𝐼

𝑚𝑚𝑁𝑁𝐷𝐷
 

� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝜌𝜌
𝑚𝑚. 𝑛𝑛𝑡𝑡

1 − (1 − 𝜌𝜌)𝑚𝑚       solve for ρ 

𝜇𝜇 =
𝑛𝑛𝑡𝑡

𝑁𝑁𝐷𝐷
.

1
1 − (1 − 𝑝𝑝)𝑚𝑚 

where 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑖𝑖=1

 

𝑛𝑛𝑘𝑘 = the number of failure events/frequency which resulted in k 
components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

𝑛𝑛𝐼𝐼  = the number of failure events/frequency which resulted in the 
independent failure of the component. 

𝑛𝑛𝑡𝑡  = total number of common cause failures. 
𝑁𝑁𝐷𝐷 = the number of demands on the system (or time T), can also be called 

NS 
 

The basic parameters can be calculated as (Vesely 1977): 

𝑄𝑄𝑘𝑘
𝑚𝑚 = �

𝑄𝑄𝐼𝐼 + 𝜇𝜇. 𝜌𝜌(1 − 𝜌𝜌)𝑚𝑚−1 
𝜇𝜇. 𝜌𝜌𝑘𝑘(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘   

      where 𝑘𝑘 = 1       
where 2≤𝑘𝑘 ≤ 𝑚𝑚  

QI   =  the independent failure rate of each component 
Qkm  = basic event failure frequency/probability for k components failing 

within a common cause component group of size m, (1 ≤ k ≤ m). 
μ   = rate of shocks 
ρ   = probability of component failure given a shock 

 

The rate of failure of k components is simply the binomial probability of k in m 

components failing multiplied by the rate of shocks. The rate of failure for a single 
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component is the independent failure rate plus the contribution of 1 component failing 

due to a common cause shock. Probability that the value of the binomial parameter ρ 

remains fixed across all system shocks. 

 

 

Due to its inaccuracy to real systems, the model presented here is rarely used (Mosleh 

et al. 1988) (Kvam 1998b); instead, a simple binomial shock model using the BFR 

model with lethal shocks is typically preferred. Note that the BFRM and β-factor model 

are the same for a two component system. (Rausand & Høyland 2003) 

1.4.2. Binomial with Lethal Shocks 

Atwood proposed an extension to the BFR model in 1986 that included an additional 

independent process of lethal shocks (Atwood 1986). In this model, each lethal shock 

will fail all components of the system at a rate of ω. 

 

This model has also been known as the four-parameter BFR model with parameters, QI 

(or λ), μ, ρ and ω . These parameters can be calculated using [85]: 

𝑄𝑄𝐼𝐼 =
𝑛𝑛𝐼𝐼

𝑚𝑚𝑁𝑁𝐷𝐷
 

� 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝜌𝜌
𝑚𝑚. 𝑛𝑛𝑡𝑡

1 − (1 − 𝜌𝜌)𝑚𝑚       solve for ρ 

𝜇𝜇 =
𝑛𝑛𝑡𝑡

𝑁𝑁𝐷𝐷
.

1
1 − (1 − 𝑝𝑝)𝑚𝑚 
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𝜔𝜔 =
𝑛𝑛𝐿𝐿

𝑁𝑁𝐷𝐷
 

where 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑖𝑖=1

 

nk = the number of failure events/frequency which resulted in k 
components failing within a common cause component group of size 
m, (1 ≤ k ≤ m). 

nI = the number of failure events/frequency which resulted in the 
independent failure of the component. 

nL = total number of lethal common cause failures. 
nt = total number of common cause failures. 
ND = the number of demands on the system (or time T), can also be called 

NS 

 

The basic parameters can be calculated as (Atwood 1986): 

𝑄𝑄𝑘𝑘
𝑚𝑚 = �

𝑄𝑄𝐼𝐼 + 𝜇𝜇. 𝜌𝜌(1 − 𝜌𝜌)𝑚𝑚−1 where 𝑘𝑘 = 1       
𝜇𝜇. 𝜌𝜌𝑘𝑘(1 − 𝜌𝜌)𝑚𝑚−𝑘𝑘       where 2≤𝑘𝑘 < 𝑚𝑚
𝜇𝜇. 𝜌𝜌𝑚𝑚 + 𝜔𝜔                   where 𝑘𝑘 = 𝑚𝑚      

 

QI = the independent failure rate of each component 
Qkm  =basic event failure frequency/probability for k components failing 

within a common cause component group of size m, (1 ≤ k ≤ m). 
μ   =rate of shocks 
ρ   =probability of component failure given a shock 
ω  = rate of lethal shocks 

This extension has been found to be more accurate than the basic BFR model (Mosleh 

et al. 1988). The probability that the value of the binomial parameter ρ remains fixed 

across all system shocks. 

1.4.3. Rho Distribution Models 
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The major limiting assumption of the BFRM is that for each shock, the probability of 

k components failing, ρ, is constant. This is improbable as each shock to the system is 

likely to have a different intensity. Three very similar models modeled 𝜌𝜌 to be a random 

variable with a beta distribution: 

• The Random Probability Shock model as suggested by Hokstad in 1988. 

(Hokstad 1988).  

• The Distributed Failure Probability model was proposed by Hughes in 1986. 

(Hughes 1987) 

• The BFR Mixture Model was proposed by Kvam in 1998 (Kvam 1998b)  

(Vaurio 1999). An adaption was made to allow a non-parametric distribution 

for 𝜌𝜌. (Kvam 1998a) 

These models provides the ability to include various degrees of dependence between 

components through the combination of the β-Factor model and the BFR model. The 

β-factor and BFR models are special cases of the RPS model.  

 

The model replaces the BFRM fixed parameter ρ with a beta distribution: 

𝜌𝜌~𝐵𝐵(𝑟𝑟, 𝑠𝑠) 

In the RPS model the beta distribution parameters 𝑟𝑟 and 𝑠𝑠 are transformed into more 

meaningful parameters Q and D:  

𝑄𝑄 =
𝑟𝑟

𝑟𝑟 + 𝑠𝑠
              and            𝐷𝐷 =

1
𝑟𝑟 + 𝑠𝑠 + 1
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Q is the mean of the beta distribution and therefore can be defined as the point estimate 

of ρ. D can be related to the variance of the beta distribution and is considered to be a 

measure of dependence on the outcomes of the shocks to various components. (Zitrou 

2006b) 

 

1.4.4. Multinomial Failure Rate Model 

The Multinomial Failure Rate Model (MFR) was proposed by Apostolakis and Moieni 

in 1987 (Apostolakis & Moieni 1987). This is a shock model which prescribes the 

condition ϕ1 + ϕ2 +…+ϕm = 1. Where ϕk is the conditional fraction of exactly k failures 

in the event of a system shock (Anude 1994).  

 

The original articles for this model could not be obtained and so a full assessment could 

not be completed.  

1.4.5. Stochastic Reliability Analysis Models 

The Stochastic Reliability Analysis (SRA) Models were proposed by Dörre in 1989 

(Dörre 1989). This model differs in approach to others by assuming that dependent 

failure is the basic phenomenon, while independent failure refers to a special limiting 

case. This results in a shock model which replaces ρ with any distribution g(ρ) in a 

more general case to the BFR Mixture Model.  
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This model recognizes that the total failure rate for a component is simply the sum of 

the failure rates for different causes. CCF event modeling is treated as a special cause 

where the failure causes are shared. The model was criticized over confusion regarding 

definition of the causes and environments (Parry 1989). 

1.4.6. Trinomial Failure Rate Model 

The Trinomial Failure Rate Model (TFR) was proposed by Han et al. in 1989 (Han et 

al. 1989). This is shock model which amends the binary states of ‘working’ or ‘fail’ to 

include a ‘grey’ condition. This grey condition includes partial failures, incipient 

failures and potential failures. The probability of a component state is split between ρ, 

q and r for failed, grey and operating state respectively, given a CCF shock occurs to 

the system.  

 

Models which use the impact vector methodology, the ‘grey condition’ is accounted 

for through methods which deal with uncertainty. 

1.4.7. Multi-Class Binomial Failure Rate Model 

The Multi-Class Binomial Failure Rate (MCBFR) model was first proposed by 

Hauptmanns in 1996 (Hauptmanns 1996). This model attempts to maximize the 

information available from the collected CCF data to increase the accuracy of the BFR 

model. It achieves this by assigning observations to different classes according to their 

technical characteristics and applying the BFR formulation to each of these classes. 
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The results are determined by a superposition of BFR expressions for each class with 

a coupling factor.  

 

This model attempts to determine the actual shock rate of the failure modes by 

extracting data from other systems and applying this through a coupling factor to the 

system being analyzed. The model increases the sources of data which can be used to 

analyses a system from other systems subject to the same failure mechanism. This is at 

the cost of requiring more information from the data and introducing some subjectivity. 

𝑄𝑄𝑘𝑘
𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑄𝑄𝐼𝐼 + 𝑣𝑣. � ℎ𝑙𝑙𝜌𝜌𝑙𝑙(1 − 𝜌𝜌𝑙𝑙)𝑚𝑚−1

𝐿𝐿

𝑙𝑙=1

𝑣𝑣. � ℎ𝑙𝑙𝜌𝜌𝑙𝑙
𝑘𝑘(1 − 𝜌𝜌𝑙𝑙)𝑚𝑚−𝑘𝑘

𝐿𝐿

𝑙𝑙=1

        

  
     

where 𝑘𝑘 = 1           
  

where 2≤𝑘𝑘 ≤ 𝑚𝑚

 

where: 

� ℎ𝑙𝑙

𝐿𝐿

𝑙𝑙=1

= 1,                                𝑙𝑙 = 1, … , 𝐿𝐿,                                  𝑣𝑣 = 𝜇𝜇 + 𝜔𝜔 

QI   = the independent failure rate of each component 
Qkm  =basic event failure frequency/probability for k components failing 

within a common cause component group of size m, (1 ≤ k ≤ m). 
μ   =rate of shocks 
ω  = rate of lethal shocks 
v  = total shock rate 
𝜌𝜌𝑙𝑙   =probability of component failure via mechanism l, given a shock 
ℎ𝑙𝑙   =conditional probability that a shock will cause component failures 

via  mechanism l. 

The lethal shock rate is incorporated into the total shocks to the system because the 

case where all components fail will be handled by the separation of the failure 

329 

 

 



 

mechanisms and the coupling factor. The parameter estimates for this model are 

detailed in (Hauptmanns 1996).  

 

While the model adjusts the fragility parameter based on the cause/mechanism the 

shock rate remains a single rate/probability. Does not model different intensity shocks 

to the system. Parameter calculation can be cumbersome. 

1.4.8. The Coupling Model 

The Coupling Model was first proposed by Kreuser and Peschke in 1997 (Kreuser & 

Peschke 1997) (Kreuser & Peschke 2001). It is an extension of the BFR driven by the 

necessity to capture the uncertainty in the interpretation of data from each CCF event 

when applied to the system of interest. The Coupling Model captures two additional 

sources of uncertainty; translation uncertainty and interpretation uncertainty.  

 

Translation uncertainty describes the uncertainty of CCF data coming from various 

sources from the system of interest, and is captured by a new parameter called the 

Applicability Factor, f.  

 

Interpretation uncertainty stems from the classification of the component failure state 

across particular classes (eg. failed, degraded, incipient) which can be unclear or 

missing in collected data. The interpretation uncertainty is captured in a mixture of beta 

distributions which capture the uncertainty of the parameter p from the Binomial 
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Failure Rate model which in this model is called the Coupling Factor. The approach to 

weigh the interpretation uncertainty between the alternative outcomes is similar in 

approach to the treatment of interpretation uncertainty used in creating impact vectors 

discussed in Chapter 2.  

 

The basic parameters can be calculated as (Kreuser & Peschke 2001): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = � 𝑃𝑃𝑗𝑗,𝑘𝑘 𝑚𝑚⁄

𝑁𝑁

𝑗𝑗=1

 

𝑃𝑃𝑗𝑗,𝑘𝑘 𝑚𝑚⁄ =
𝑇𝑇𝐶𝐶𝐶𝐶𝐹𝐹𝑗𝑗 . 𝑓𝑓𝑗𝑗

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
�

𝑚𝑚
𝑘𝑘

� 𝑝𝑝𝑗𝑗
𝑘𝑘�1 − 𝑝𝑝𝑗𝑗�𝑚𝑚−𝑘𝑘

 

TCCF  =  failure detection time (test interval) 
Tobs  = the total observation time. 
𝑓𝑓𝑗𝑗  = applicability factor 
𝜌𝜌𝑗𝑗  = coupling factor 
 

 

The advantage of the Coupling model is that it calculates the coupling strength based 

on the observed phenomenon for each CCF event and it includes the mechanisms to 

quantify uncertainties in expert judgments and observed data when estimating CCF 

probabilities (Kreuser & Peschke 2001).  

1.4.9. Bayes Testing and Estimation BFR Model 

The Bayes Testing and Estimation BFR Model was proposed by Kvam and Martz in 

1995 (Kvam & Martz 1995).  This model recognized that most BFR models need to 

distinguish between independent failures and CCF from system shocks, which can be 
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difficult because a single failure could have been independent or the result that only 

one component failure from a system shock. Likewise two components failing could 

be a coincidence of two independent failures or two components failing from a system 

shock. This model does not require this distinction to be made.  

 

This model attempts to limit the number of parameters as opposed to most BFR 

extensions due to increased difficulty in estimating parameters. This is done by 

considering CCF as lethal shocks only. The parameter 𝜌𝜌 has been modeled as a random 

variable with a beta distribution. 

 

This model is restricted to systems of low redundancy due to the assumption all CCF 

are lethal.  

1.5. Interference Models 
Interference models also attempt to model the physical phenomena of CCF but without 

the shock model’s assumption of independence. Instead these models predict the 

number of failures by assuming random variables for component strength and load. 

When the load exceeds the strength a component is expected to fail. The more intense 

the load or the more depleted the strength than the higher the probability of failure. 

There is no explicit distinction between an independent and common cause failure 

event. 
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Inference models have the following advantages: 

• Can be used to model high levels of redundancy.  

• Can estimate CCF frequency even when CCF events have not been observed. 

• Easier to adjust for different sizes CCCG groups. 

• Does model different intensities of shocks to the system. 

• Directly models the system’s protection against CCF through the resistance 

measure.  

• There is no need to distinguish between a single CCF and a single independent 

failure. 

• Lethal shocks are quantified by their shock intensity and included within the 

model formulation.  

• Importing/exporting data for different sized systems is more accurate and often 

easier due to the ability to characterize the underlying probability of common 

cause failures. (Kvam & Martz 1995)   

 

Interference models have the following disadvantages: 

• Requires a probability distribution to be estimated for shock and resistance 

intensities. This requires knowledge of the physical characteristics of the 

components and the data required to quantify distributions differs from just 

failure and success data. 

• Requires demand/success data to calculate parameters. 
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• Assumes component symmetry (ie. XAB = XBC). 

• Assumes zero time to repair. 

• Assumes renewal to as good as new.  

• Assumes Constant Failure Rates.  

• Any subset of k components of a system of size m is equally vulnerable to 

exactly the same common-causes and stresses as in a system of size k, or 

anything larger than k.  This results in the assumption that nk > nk+1 (the 

mapping rule). (Vaurio 1999) 

• No inference can be made given knowledge of the failure cause. 

• The model does not explicitly account for unique system architecture which 

may contribute or defend against dependencies between components.  

1.5.1. Common Load Model  

The Common Load model proposed by Mankamo and Kosonen in 1977 (Mankamo 

1977) is based on a load-strength interference methodology for describing the failure 

mechanism. The model interprets the failure mechanism as a load imposed on a 

component where the components strength is testes. A failure occurs when the 

resistance is not sufficient to withstand the load.  

 

When it comes to redundant systems of components, the load posed to the system is 

shared by all the components of the system equally, and a failure of certain multiplicity 

is determined by the number of components whose resistance is exceeded by the load. 
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Both the load and the component resistance are described in terms of random variables 

and assumed probability distributions (Zitrou 2006b). 

 

The probability density function of the resistance, R, is denoted by 𝑓𝑓𝑅𝑅(𝑥𝑥) . In the event 

of an occurrence of a random shock, S, with a probability density function of 𝑔𝑔𝑠𝑠(𝑥𝑥), 

then the event of having exactly k of the components fail simultaneously, is given as 

(Anude 1994): 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = P(Rk ≤ 𝑆𝑆 < 𝑅𝑅𝑘𝑘+1) 

𝑄𝑄𝑘𝑘
(𝑚𝑚) = �

𝑚𝑚!
𝑘𝑘! (𝑚𝑚 − 𝑘𝑘)!

�𝐹𝐹𝑅𝑅(𝑦𝑦)�𝑘𝑘�1 − 𝐹𝐹𝑅𝑅(𝑦𝑦)�𝑚𝑚−𝑘𝑘𝑔𝑔𝑠𝑠(𝑦𝑦)𝑑𝑑𝑑𝑑
∞

0
 

𝑆𝑆   =  the random variable for the shock intensity 
𝑅𝑅𝑘𝑘  = the random variable for resistance intensity where  

    𝑅𝑅1 ≤ 𝑅𝑅2 ≤ ⋯ ≤ 𝑅𝑅𝑛𝑛 
𝑔𝑔𝑠𝑠(𝑥𝑥)= the probability distribution for the shock random variable 
𝐹𝐹𝑅𝑅(𝑥𝑥)= the cumulative probability distribution for the resistance random 

variable 
𝑘𝑘  = the multiplicity of failure being investigated 
𝑚𝑚  = the number of components within the CCCG 

 

The model has a fixed number of parameters, independent of the size of the system. 

Like the Shock Models, the model can be applied to any failure multiplicities. The 

model assumes that the n components of a system have independent and identically 

distributed random resistances R1, R2 ... Rn. (Anude 1994) 

 

Cases of non-symmetry can be modeled by removing the assumption of identical 

distributed components and creating separate𝑓𝑓𝑅𝑅(𝑥𝑥) distributions for each component.  
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1.5.2. Inverse Stress-Strength Interference Model (ISSI) 

The Inverse Stress Strength Interface Model (ISSI) was proposed by Guey in 1984 

(Guey 1984) to minimize the data requirements when compared to the Common Load 

Model. By inverting the expressions for the interference models, a relationship between 

the model parameters and the known failure rates and dependencies shown I the data.  

The specific formulas depend on the distributions assumed for the resistance and shock 

PDFs. 

 

The ISSI methods, discussed in detail by Guey, demonstrate a series of assumptions 

and techniques to estimate an interference model using different levels of available 

evidence such as failure rates and laboratory tests.  

1.5.3. Harris Model 

The Harris Model was proposed by Harris in 1986 as an extension to the Common Load 

Model (Harris 1986) to allow to different mission times and partial failures.  

 

Let 𝑁𝑁(𝑡𝑡) be the number of shocks arriving at or before time t, where 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇. If 

𝑁𝑁(𝑇𝑇) shocks have arrived in [0, 𝑇𝑇], the arrival times are designated by 0 < 𝑡𝑡1 < . . . <

𝑡𝑡𝑛𝑛 < 𝑇𝑇. The shocks have random, independent and identically distributed magnitudes, 

𝑋𝑋(𝑡𝑡1), 𝑋𝑋(𝑡𝑡2), … , 𝑋𝑋(𝑡𝑡𝑛𝑛). Each component has a resistance magnitude with random 

variable 𝑌𝑌1, 𝑌𝑌2, … , 𝑌𝑌𝑚𝑚. Component 𝑖𝑖 fails at time 𝑡𝑡𝑗𝑗 when 𝑋𝑋�𝑡𝑡𝑗𝑗� > 𝑌𝑌𝑖𝑖. Then 𝑘𝑘 

components fail at time 𝑡𝑡𝑗𝑗 wherever 𝑌𝑌𝑘𝑘 < 𝑋𝑋�𝑡𝑡𝑗𝑗� ≤ 𝑌𝑌𝑘𝑘+1. (Anude 1994) 
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In order to model the degraded state of components, the additional function 𝐻𝐻(𝑥𝑥, 𝑦𝑦) is 

introduced (Anude 1994): 

𝑌𝑌𝑖𝑖�𝑡𝑡𝑗𝑗
∗� = 𝐻𝐻 �𝑌𝑌𝑖𝑖�𝑡𝑡𝑗𝑗�, 𝑋𝑋�𝑡𝑡𝑗𝑗�� 

The original article for this model could not be obtained and so a full assessment could 

not be completed.  

1.5.4. Knowledge Based Multi-dimension CCF Model (KBMD) 

The Knowledge Based Multi-Dimension CCF Model (KBMD) was proposed by 

Liyang Xie in 1998 (Xie 1998). The KBMD model presents the ‘root cause’ and 

‘coupling mechanism’ as a random variable representing the environment load which 

provides dependencies. This model recognizes that the system will be exposed to many 

different environmental ‘shocks‘; therefore, the model superimposes these load-

strength relationships through multi-dimension environment load-component strength 

interference analysis. The KBMD model uses a discretization of the continuous model 

in  order to simplify this complex multi load strength superposition.  

 

This model also accounts for multiple failure events occurring between inspection 

intervals by comparing real CCF failure (instantaneous detection) to the relative CCF 

(detection at inspection intervals).  
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1.6. Other Models 

1.6.1. Square Root Bounding Method 

The Square Root Bounding Method was developed by the United States Reactor Safety 

Study: WASH 1400 (Rasmussen 1975), and further refined by Martin and Wright in 

1987 (Martin & Wright 1987). The method has been criticized for lacking practical 

foundations. It makes two major assumptions, that the failure probability of the 

redundant system cannot be higher than the failure probability of a component, and the 

system failure probability cannot be lower than the system failure probability without 

CCF (Anude 1994). 

𝑃𝑃𝑠𝑠 ≤ 𝑃𝑃𝐶𝐶 ≤ 𝑃𝑃𝑖𝑖 

PC  =failure probability of system with CCF 
Ps  =failure probability of system without CCF 
Pi  =failure probability of a single item 
 

One further assumption is that the value of PC follows a log-normal distribution 

symmetrical about Ps and Pi. The median to this distribution is found to be (Anude 

1994): 

𝑃𝑃𝐶𝐶 = �𝑃𝑃𝑆𝑆. 𝑃𝑃𝑖𝑖 

Despite being one of the first CCF models used, it is no longer used.  

1.6.2. Implicit Method 

The Implicit Method was introduced by Fleming, K.N. and Mosleh, A. in 1985 

(Fleming & Mosleh 1985). In this method, the fault trees are built without considering 

CCF and then the algebraic system unreliability expression is derived. The expression 
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is then evaluated to ensure that the contribution of CCF is correctly included. This 

procedure is commonly used with many of the models as a qualitative means to identify 

dominant CCCGs. 

 

Implicit methods are inappropriate to the CCF analysis for large-scale fault trees. This 

method, usually the algebraic expression of system unreliability is not easy to derive. 

This makes the implicit method feasible only in hand-calculating the unreliability of 

relatively small systems. Implicit methods consider CCF in the process of analysis 

rather than in modeling stage; thus, they do not need to perform the monotonous basic 

event expansion to include CCF. (Vaurio 1998) 

 

1.6.3. Reliability Cut Off Method 

The Reliability Cut Off Methods was proposed by Bourne et. al in 1981 (Bourne et al. 

1981) as a system level estimate of CCFs based on an assessment of the vulnerability 

of the system. No identification of CCCG is conducted and the methodology assumes 

that the unreliability of a system due to CCFs can never exceed some limiting values, 

determined by system design. These estimates do not involve the use of data and instead 

use generic estimates from experts.  

 

The original article for this model could not be obtained and so a full assessment could 

not be completed. 
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1.6.4. Unified Partial Method 

The Unified Partial Method (UPM) (Brand & Gabbot 1993) is the current method 

which has been adopted by the UK nuclear industry. UPM is a methodology to assess 

the vulnerability of a system to CCF and uses one of two models to quantify its 

estimates, the Partial Beta Factor method for component level analysis, and the Cut-

Off method for system level analysis. Brand describes UPM as not being a complete 

method for dependent failure assessment, but a useful methodology for ‘standard 

systems’ (Mosleh et al. 1998). 

 

1.6.5. Influence Diagram Model (Zitrou 2006a) 

Zitrou in 2006 proposed an extension of the UPM model using influence diagrams and 

a more detailed mathematic formulation using Bayesian methods. The objective of 

Zitrou’s research was to explore the modeling of CCF using advanced mathematical 

techniques (influence diagrams). Zitrou wanted to keep the desirable features of UPM 

where attributes of the system are included in the model, the ability to provide estimates 

in the absence of data and the simplistic application of the method by analysts. Zitrou 

wanted to use the influence diagram to extend UPM’s accuracy by modeling the 

dependency between defenses and improve the models quantitative estimates.  

 

Zitrou’s model consisted of the creating of an influence diagram which in general terms 

followed the convention of figure 5. (Zitrou 2006a, p.18) 
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Figure 65: Zitrou General Influence Diagram Structure 

The specific taxonomy used to define the ID nodes were the same as for UPM. The 

specific dependencies between nodes were established using an expert elicitation 

technique. 

Two unique elements are proposed in Zitrou’s model (Zitrou 2006a, p.257). 

• The definitions of the dependencies between defenses were established to 

determine if improving one defense would have a positive, negative or natural 

effect on another defense. 

• A geometric scaling model was proposed which is used to quantify the effect 

of the defense levels on the probability of root causes and coupling factors. This 

model reduces the burden of the quantification process by allowing the root 

cause and coupling factor probability distributions to be determined based on a 

base defense level. The geometric scaling model can then scale the probability 

distributions dependent on the level of defense applicable.  

D1 D2 Dn 

Defenses 

  … 

Root 
Causes 
  … Rm R1 

Coupling 
Factors 
  … Cz C1 

λ CCF 
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Zitrou’s model achieves the following objectives (Zitrou 2006a, p.254): 

• Incorporates the qualitative advantages of the UPM model. 

• After quantification by experts the model can be easily used by practitioners. 

• Extends the casual modeling of UPM to a finer level. 

• Captures the dependency between defenses. 

• Captures the uncertainty of the expert judgment. 

• Provides an investigative framework in which conditional probabilities can be 

explored. 

 

Zitrou’s research was to conduct an exploration of using influence diagrams to model 

CCF. The thesis proposed a methodology and conducted the limited development of a 

quantification model on Emergency Diesel Generators using some expert estimation. 

The example model was not fully developed and verification against known system 

results was not conducted. The model did not consider incorporating data analysis 

techniques from CCF databases.  

 

1.6.6. CCF model for Event Assessment (Kelly et al. 2011) 

Kelly et al., have written a draft paper which demonstrates the inability of current 

models to conduct event assessments. The paper proposes using a Bayesian Network 

to model the causal relationship between root causes, failure mechanisms and the CCF 

event probability. Two methods of constructing this model are proposed: 

• The first model explicitly models the root causes and failure mechanisms 

specific to the component. 
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• The second model uses the generic CCF taxonomy used by the INL CCF 

database.  

 

The paper focuses on conducting event assessments where a failure cause is known; as 

such the model does not include the coupling factors or defenses. An example of such 

a model is included as Figure 66. This paper expresses and ideology for CCF modeling 

but does not propose specific model construction or quantification details. This paper 

forms the objective of this research.  

 

Figure 66: Bayesian network representing more general situation of multiple failure mechanisms 

and causes in a CCCG of two EDGs (Kelly et al. 2011, p.6) 

 

1.6.7. Physics-Based CCF 

In 2011, Mohaghegh et al., proposed a model to explicitly model the failure 

mechanisms which may couple components (Mohaghegh et al. 2011). This involves 
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modeling the individual failure mechanisms such as fatigue and wear, applying a 

mechanistic approach to determine the interaction of the failure mechanism between 

components, and then integrating the physics of failure model into the PRA. The paper 

provides a theoretical foundation for using such a model. The methods current 

limitations are acknowledged such as expanding the physics of failure models from the 

material level to the component level and the lack of physics of failure modeling for 

many of the required failure mechanisms.  

 

This model has further challenges such as the move from implicit to explicit modeling 

which puts into question whether the failures could be classified as CCF (see chapter 

3). CCF models account for the known-unknowns. We know unexpected failures will 

occur that will fail multiple components, but we don’t know the failure mechanism. 

Therefore such a model is unlikely to be able to model unexpected shocks such as a 

person positioning a ladder such that it fails two EDGs or an outbreak of jelly fish 

clogging water intakes. Despite these challenges, the proposed model proposed an 

excellent foundation to move failures from CCF models to explicit modeling within 

PRAs.  

1.7. Model Comparison  
Each model has been categorized based on the features of the model and its 

assumptions. The summary of model classification is shown in Figure 67. The features 

of each model is compared in Table 49. 
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Figure 67: Classification of CCF Models 
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Table 49: Comparison of CCF model features 
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Feature Description GDM PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Explicitly Models System Features GDM PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Models failure cause Y Y N N P N N N P Y Y 
Models failure cause defense P N N N Y N N N Y N P 
Models coupling factor Y Y N N P N N N P Y N 
Models coupling factor defense P P N N Y N N N Y N N 
Models deeper causal levels Y N N N N N N N N N Y 
Models cause condition / shock Y N N N N N Y Y N N Y 
Models multiplicity of failures within CCCG Y Y Y N N Y Y Y N N Y 
Models includes consideration for rectification period N N N N N N N N N N N 
Common Cause Component Grouping Characteristics  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Model non-symmetrical but similar components within the same 
CCCG 

Y Y N N N N N N N N Y 
Model different components within the same CCCG Y N N N N N N N N N Y 
A component can be part of many CCCGs Y Y N N N N N N N N Y 
No limit to CCCG size Y Y Y Y Y Y Y Y Y Y Y 
Model different failure multiplicities within the CCCG  (k 
f il  i  ) 

Y Y Y N N Y Y Y N N Y 
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Event Assessment Capabilities  PAFM BP BF PBF AFM BFRL CL RCO ID BN 

Event Assessment with knowledge of a failed component Y Y Y N N Y Y ? N Y Y 

Event Assessment with knowledge of failure cause Y Y N N N N N N N Y Y 

Uncertain Evidence - Partial Failures Y N N N N N N N N Y Y 

Uncertain Evidence- Virtual evidence of cause Y N N N N N N N N Y Y 
Parameter Estimation  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Impact Vector Method (including method for incorporating 

t i t ) 
P Y Y P N Y Y N N N N 

Expert estimations (in absence of any data) Y Y Y Y Y Y Y Y Y Y Y 
Account for reliability growth (discount previous failures) N N N N N N N N N N N 
Update parameters with new evidence Y Y Y P N Y Y Y N N N 
Incorporate evidence from different sized CCCGs P Y N P N P Y Y N N N 
Account for CCF which occurred in a different mission time N N N N N N N N N N N 
Account for CCF data which has artificial separation in time due 
t  d d  b i  t   

N N N N N N N N N N N 
Use system specific failure rate data combined with generic 

d l t  
Y Y N Y N Y N N N N N 

Uncertainty Characteristics for Parameter Estimation  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Does not require distinguish between independent and single 
CCF f il  

Y Y Y Y Y Y N Y Y Y Y 
Failures outside the mission period Y Y Y P N Y Y N N N N 
Uncertainty of shared cause Y Y Y P N Y Y N N N N 
Uncertainty of coupling factor Y Y Y P N Y Y N N N N 
Uncertainty in intervals due to staggered testing P P P P N P P N N N N 
Partial failures and component degradation Y Y Y P N Y Y N N N N 
Usability and Cultural Considerations  PAFM BP BF PBF AFM BFRL CL RCO ID BN 
Backward compatible to Alpha Factor Model parameters Y Y Y N N Y N N N N N 
The time investment is no more than the alpha factor model. P Y Y Y Y Y Y N Y N N 
Automatic parameter estimation is possible from the 
CCFDB/RAD  

P Y Y Y N Y Y N N N N 
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Appendices 2: Detailed Description of Existing Failure Data 

Taxonomy 

2.1. Introduction 
The following are verbatim definitions for the CCF classification taxonomy contained 

in NUREG/CR-6268 Rev 1 (Wierman et al. 2007). This reproduction is to aid in the 

understanding of chapter 4. 

2.2. Failure Causes: 
Design/construction/manufacture Inadequacy. 

Encompasses actions and decisions taken during design, manufacture, or installation of 

components both before and after the plant is operational. 

 

Operations/Human Error (Plant staff error) 

Represents causes related to errors of omission and commission on the part of plant 

staff.  This category includes accidental actions and failure to follow procedures for 

construction, modification, operation, maintenance, calibration, and testing.  It also 

include ambiguity, incompletelness or error in procedures for operation and 

maintenance of equipment.  This includes inadequacy in construction, modification, 

administrative, operational, maintenance, test and calibration procedures. 
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External Environment: 

Represents causes related to a harsh external environment that is not within component 

design specifications.  Specific mechanisms include electromagnetic interference, 

fire/smoke, impact loads, moisture (sprays/floods etc) radiation, abnormally high or 

low temperature, and acts of nature. 

 

Internal to Component: 

Associated with the malfunctioning of something internal to the component.  Internal 

causes result from phenomena such as normal wear or other intrinsic failure 

mechanisms.  It includes the influence of the internal environment of a component.  

Specific mechanisms include erosion/corrosion vibration, internal contamination, 

fatigue and wear out/end of life. 

 

State of other component: 

The component is functionally unavailable because of failure of a supporting 

component or system.  CCF events exclude those events that have dependencies that 

would reasonably be expected to be modeled in an individual plant examination or PRA 
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Unknown: 

Used when the cause of the component state cannot be identified. 

 

Other: 

Used when the cause cannot be attributed to any of the previous cause categories.  This 

category is most frequently used for cases of setpoint drift. 

2.3. Coupling Factor Definitions 

2.3.1. Environmental Based 

Environmental External:   

Refers to all redundant systems/components exposed to the same external 

environmental stresses (e.g flood, fire, high humidity and earthquake).  The impact of 

several of these environmental stresses in normally modeled explicitly in current PRAs 

(by analyzing the phenomena involved and incorporating their impact into the 

plant/system models.) Other environmental causes such as high humidity and 

temperature fluctuations are typically considered in CCF analysis and treated 

parametrically. 

 

Environment Internal: 

Refers to commonality of multiple components in terms of the medium of their 

operation such as internal fluids (water, lube oil, gas etc) 
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2.3.2. Design Based 

 Hardware design system: 

System-level coupling factors include features of the system or groups of components 

external to the components that can cause propagation of failures to multiple 

components. 

 

Hardware design Parts: 

Component-level coupling factors represents features within the boundary of each 

component. 

2.3.3. Quality Based 

Quality Install: 

Covers both initial and later modifications and refers to the same 

construction/installation staff, construction/installation procedure, 

construction/installation testing/verification procedure and the construction/installation 

schedule. 

 

Quality manufacturing: 

Refers to the same manufacturing staff, quality control procedure, manufacturing 

method and material. 
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2.3.4. Maintenance Based 

Operations Maintenance Schedule: 

Maintenance/Test/Calibration schedule refers to the Maintenance/Test/Calibration 

activities on multiple components being performed simultaneously or sequentially 

during the same event. 

 

Operations Maintenance Procedure: 

Refers to propagation of errors through procedural errors and operator interpretation of 

procedural steps.  It is recognized that for non-diverse equipment, it is impractical to 

develop and implement diverse procedures. 

 

Operations Maintenance Staff: 

Refers to the same maintenance/test/calibration team being in charge of maintaining 

multiple systems/components 

2.3.5. Operation Based 

Operations Operational Procedure: 

Refers to the cases when operation of all (functionally or physically) identical 

components is governed by the same operating procedures.  Consequently, any 

deficiency in the procedures could affect these components.  Sometimes, a set of 

procedures or combination of procedure and human action act as the proximate cause 

and coupling factor.  In other cases, a common procedure results in failure or multiple 
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failures of multiple trains. 

 

Operations Operational Staff: 

Refers to the events that result in the same operator (team of operators) is assigned to 

operate all trains of a system, increasing the probability that operator errors will affect 

multiple components simultaneously. 
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Appendices 3: Calculation of Mutually Exclusive Nodes 

Using Control Node 

The following appendix shows algebraically that the probability of each state in the 

control node is equal to the mutually exclusive parent node probabilities.  

3.1. The Bayesian Network 
The Bayesian Network which provides modeling of the cause conditions is shown in 

Figure 68.  

 

Figure 68: Structure of mutually exclusive Bayesian network with VE 
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The Conditional Probability Tables for the three parent nodes, 𝑋𝑋𝑖𝑖 , 𝐼𝐼𝑖𝑖 , 𝑁𝑁𝑖𝑖 are: 

Table 50: CPT for Common Cause Condition 𝑿𝑿𝒊𝒊 

𝑋𝑋𝑖𝑖 State  
𝑋𝑋𝑖𝑖 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑋𝑋𝚤𝚤�  1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 51: CPT for Independent Cause Condition 𝑰𝑰𝒊𝒊 

𝐼𝐼𝑖𝑖 State  
𝐼𝐼𝑖𝑖 (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
𝐼𝐼𝚤𝚤� 1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 52: CPT for No Cause Condition 𝑵𝑵𝒊𝒊 

𝑁𝑁𝑖𝑖 State  
𝑁𝑁𝑖𝑖 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑁𝑁𝚤𝚤�  𝑄𝑄𝐸𝐸,𝑖𝑖 

 

The Conditional Probability Table for the control node, 𝐿𝐿𝑖𝑖 is: 

Table 53: CPT for Control Node 

   𝑵𝑵𝒊𝒊       𝑵𝑵𝒊𝒊���     
 𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   
𝐿𝐿𝑖𝑖 State 𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  

𝑵𝑵𝒊𝒊 0 0 0 1 0 0 0 0 
𝑰𝑰𝒊𝒊 0 0 0 0 0 1 0 0 
𝑿𝑿𝒊𝒊 0 0 0 0 0 0 1 0 
𝑵𝑵𝑵𝑵 1 1 1 0 1 0 0 1 
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The Conditional Probability Table for the virtual evidence node, 𝑉𝑉𝑖𝑖, and is instantiated 

True, is: 

Table 54: CPT for Virtual Evidence Node 

𝑉𝑉𝑉𝑉𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 NA 

True 
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 0 

False 1 −
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 1 + 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 1 

 

 

The Conditional Probability Table for the local cause condition node, 𝐶𝐶𝑖𝑖 is: 

Table 55: CPT for Local Cause Condition Node 

𝐶𝐶𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 𝑵𝑵𝑵𝑵 
𝑪𝑪𝒊𝒊 0 1 1 0 
𝑪𝑪𝒊𝒊�  1 0 0 1 

 

3.2. Calculate Control Node States 
 

Prior to the updating with the virtual evidence, the probability that the control node is 

within each state is:  

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖) = � � � 𝑃𝑃�𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖�𝑁𝑁𝑖𝑖,𝑗𝑗 , 𝐼𝐼𝑖𝑖,𝑘𝑘 , 𝑋𝑋𝑦𝑦�𝑃𝑃�𝑁𝑁𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐼𝐼𝑖𝑖,𝑘𝑘�𝑃𝑃�𝑋𝑋𝑦𝑦�
𝑦𝑦𝑘𝑘𝑗𝑗

= {1}�𝑄𝑄𝐸𝐸,𝑖𝑖��1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� + {0} … + {0}

= 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖
2 �1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖� 
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𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖) = � � � 𝑃𝑃�𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖�𝑁𝑁𝑖𝑖,𝑗𝑗 , 𝐼𝐼𝑖𝑖,𝑘𝑘 , 𝑋𝑋𝑦𝑦�𝑃𝑃�𝑁𝑁𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐼𝐼𝑖𝑖,𝑘𝑘�𝑃𝑃�𝑋𝑋𝑦𝑦�
𝑦𝑦𝑘𝑘𝑗𝑗

= {1}�𝑄𝑄𝐸𝐸,𝑖𝑖��(1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� + {0} … + {0}

= 𝑄𝑄𝐸𝐸,𝑖𝑖
2 (1 − 𝜂𝜂𝑖𝑖)�1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� 

 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖) = � � � 𝑃𝑃�𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖�𝑁𝑁𝑖𝑖,𝑗𝑗 , 𝐼𝐼𝑖𝑖,𝑘𝑘, 𝑋𝑋𝑦𝑦�𝑃𝑃�𝑁𝑁𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐼𝐼𝑖𝑖,𝑘𝑘�𝑃𝑃�𝑋𝑋𝑦𝑦�
𝑦𝑦𝑘𝑘𝑗𝑗

= {1}�1 − 𝑄𝑄𝐸𝐸,𝑖𝑖��1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� + {0} … + {0}

= �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖��1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� 

 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁) = � � � 𝑃𝑃�𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁�𝑁𝑁𝑖𝑖,𝑗𝑗 , 𝐼𝐼𝑖𝑖,𝑘𝑘, 𝑋𝑋𝑦𝑦�𝑃𝑃�𝑁𝑁𝑖𝑖,𝑗𝑗�𝑃𝑃�𝐼𝐼𝑖𝑖,𝑘𝑘�𝑃𝑃�𝑋𝑋𝑦𝑦�
𝑦𝑦𝑘𝑘𝑗𝑗

 

= 0 

 

Each state of the control node can be updated given the virtual evidence using the 

following formula: 

𝑃𝑃(𝐿𝐿𝑖𝑖|𝑉𝑉𝑖𝑖) =
𝑃𝑃(𝐿𝐿𝑖𝑖)𝑃𝑃(𝑉𝑉𝑖𝑖|𝐿𝐿𝑖𝑖)

∑ 𝑃𝑃�𝐿𝐿𝑖𝑖,𝑗𝑗�𝑃𝑃�𝑉𝑉𝑖𝑖�𝐿𝐿𝑖𝑖,𝑗𝑗�𝑗𝑗
 

  

357 

 

 



 

The denominator is a normalization constant which can be calculated as 𝜏𝜏: 

𝜏𝜏 = � 𝑃𝑃�𝐿𝐿𝑖𝑖,𝑗𝑗�𝑃𝑃�𝑉𝑉𝐴𝐴�𝐿𝐿𝑖𝑖,𝑗𝑗�
𝑗𝑗

 

= 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖
2 �1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖� �

1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
�

+ 𝑄𝑄𝐸𝐸,𝑖𝑖
2 (1 − 𝜂𝜂𝑖𝑖)�1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� �

𝑄𝑄𝐸𝐸,𝑖𝑖(𝜂𝜂𝑖𝑖 − 1) + 1
2

�

+ �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖��1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� �
𝑄𝑄𝐸𝐸,𝑖𝑖

2
� 

𝜏𝜏 =
𝑄𝑄𝐸𝐸,𝑖𝑖�1 − 𝑛𝑛𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)�

2
 

 

The probability for each state of 𝐿𝐿𝑖𝑖 given virtual evidence is: 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖|𝑉𝑉𝑖𝑖) =
𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖)𝑃𝑃(𝑉𝑉𝑖𝑖|𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖)

𝜏𝜏

=
2𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2 �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)� �1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�

2𝑄𝑄𝐸𝐸,𝑖𝑖 �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)� �1 − 𝑛𝑛𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
 

= 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖|𝑉𝑉𝑖𝑖) =
𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖)𝑃𝑃(𝑉𝑉𝑖𝑖|𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖)

𝜏𝜏

=
2𝑄𝑄𝐸𝐸,𝑖𝑖

2 (1 − 𝜂𝜂𝑖𝑖)�1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖� �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)�

2𝑄𝑄𝐸𝐸,𝑖𝑖 �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)� �1 − 𝑛𝑛𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
 

= 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖) 
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𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖|𝑉𝑉𝑖𝑖) =
𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖)𝑃𝑃(𝑉𝑉𝑖𝑖|𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖)

𝜏𝜏

=
2�1 − 𝑄𝑄𝐸𝐸,𝑖𝑖��1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖��1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�𝑄𝑄𝐸𝐸,𝑖𝑖

2𝑄𝑄𝐸𝐸,𝑖𝑖 �1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)� �1 − 𝑛𝑛𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖�
 

= (1 − 𝑄𝑄𝐸𝐸,𝑖𝑖) 

 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁|𝑉𝑉𝑖𝑖) =
𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁)𝑃𝑃(𝑉𝑉𝑖𝑖|𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁)

𝜏𝜏
 

= 0 

 

3.3. Summary 
This appendix has shown algebraically that the probability for each state of the control 

node is equivalent to the probability of the mutually exclusive parent nodes. 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑋𝑋𝑖𝑖|𝑉𝑉𝑖𝑖) = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑖𝑖) 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝐼𝐼𝑖𝑖|𝑉𝑉𝑖𝑖) = 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖) = 𝑃𝑃(𝐼𝐼𝑖𝑖) 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑖𝑖|𝑉𝑉𝑖𝑖) = (1 − 𝑄𝑄𝐸𝐸,𝑖𝑖) = 𝑃𝑃(𝑁𝑁𝑖𝑖) 

𝑃𝑃(𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑁𝑁|𝑉𝑉𝑖𝑖) = 0 
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Appendices 4: Calculation of Event Assessment for GDM 

Example 1 

The following appendix shows algebraically the probability of a component B failing, 

𝑃𝑃(𝐵𝐵), given knowledge that component A has failed from cause 𝑖𝑖 ; 𝑃𝑃 �𝐵𝐵𝑖𝑖�𝐶𝐶𝑖𝑖
[𝐴𝐴]�. 

4.1. The Bayesian Network 
The Bayesian Network which provides modeling of the cause conditions is shown in 

Figure 69.  
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[𝐴𝐴] 
  

𝑋𝑋𝑖𝑖
[𝐴𝐴,𝐵𝐵] 𝐼𝐼𝑖𝑖
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Figure 69: Structure of mutually exclusive Bayesian network with VE 

 

The Conditional Probability Tables for the three parent nodes, 𝑋𝑋𝑖𝑖 , 𝐼𝐼𝑖𝑖 , 𝑁𝑁𝑖𝑖 are: 

Table 56: CPT for Common Cause Condition 𝑿𝑿𝒊𝒊 

𝑋𝑋𝑖𝑖 State  
𝑋𝑋𝑖𝑖 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑋𝑋𝚤𝚤�  1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 57: CPT for Independent Cause Condition 𝑰𝑰𝒊𝒊 

𝐼𝐼𝑖𝑖 State  
𝐼𝐼𝑖𝑖 (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 
𝐼𝐼𝚤𝚤� 1 − (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 

Table 58: CPT for No Cause Condition 𝑵𝑵𝒊𝒊 

𝑁𝑁𝑖𝑖 State  
𝑁𝑁𝑖𝑖 1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 
𝑁𝑁𝚤𝚤�  𝑄𝑄𝐸𝐸,𝑖𝑖 

 

The Conditional Probability Table for the control node, 𝐿𝐿𝑖𝑖 is: 

Table 59: CPT for Control Node 

   𝑵𝑵𝒊𝒊       𝑵𝑵𝒊𝒊���     
 𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   𝑰𝑰𝒊𝒊   𝑰𝑰�𝒊𝒊   
𝐿𝐿𝑖𝑖 State 𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  𝑪𝑪𝒊𝒊 𝑪𝑪𝒊𝒊�  

𝑵𝑵𝒊𝒊 0 0 0 1 0 0 0 0 
𝑰𝑰𝒊𝒊 0 0 0 0 0 1 0 0 
𝑿𝑿𝒊𝒊 0 0 0 0 0 0 1 0 
𝑵𝑵𝑵𝑵 1 1 1 0 1 0 0 1 
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The Conditional Probability Table for the virtual evidence node, 𝑉𝑉𝑖𝑖, and is instantiated 

True, is: 

Table 60: CPT for Virtual Evidence Node 

𝑉𝑉𝑉𝑉𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 NA 

True 
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 1 − 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 0 

False 1 −
𝑄𝑄𝐸𝐸,𝑖𝑖

2
 

𝑄𝑄𝐸𝐸,𝑖𝑖(1 − 𝜂𝜂𝑖𝑖)
2

 1 + 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖

2
 1 

 

The Conditional Probability Table for the local cause condition node, 𝐶𝐶𝑖𝑖 is: 

Table 61: CPT for Local Cause Condition Node 

𝐶𝐶𝑖𝑖 State 𝑵𝑵𝒊𝒊 𝑰𝑰𝒊𝒊 𝑿𝑿𝒊𝒊 𝑵𝑵𝑵𝑵 
𝑪𝑪𝒊𝒊 0 1 1 0 
𝑪𝑪𝒊𝒊�  1 0 0 1 

4.2. Calculate Evidence Propagation 
 

Table 62 to Table 70 show the marginal distribution values for each state of the nodes.  

 

Note that the subscribe used to denote cause, 𝑖𝑖, has been omitted for brevity. All 

parameters are for a single cause.  
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Table 62: Cause Condition Node �𝑪𝑪[𝑨𝑨]� 

State �𝑪𝑪𝒊𝒊
[𝑨𝑨]� 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐴𝐴]�𝑉𝑉1
[𝐴𝐴]� 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐴𝐴]�𝐶𝐶𝑖𝑖
[𝐴𝐴], 𝑉𝑉1

[𝐴𝐴]� 
Equation � 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐴𝐴]�𝑉𝑉1
[𝐴𝐴]�

𝑗𝑗

 𝑃𝑃 �𝐶𝐶𝑖𝑖
[𝐴𝐴]|𝐶𝐶𝑖𝑖

[𝐴𝐴], 𝑉𝑉1
[𝐴𝐴]� 

Cause       �𝑪𝑪𝟏𝟏
[𝑨𝑨]� 𝑄𝑄𝐸𝐸 1 

No Cause �𝑪𝑪𝟐𝟐
[𝑨𝑨]� 1 − 𝑄𝑄𝐸𝐸 0 

 

Table 63: Virtual Evidence Node �𝑽𝑽[𝑨𝑨]� 

State �𝑉𝑉𝑖𝑖
[𝐴𝐴]� 𝑃𝑃 �𝑉𝑉𝑖𝑖

[𝐴𝐴]�𝑉𝑉1
[𝐴𝐴]� 

Equation  
𝑽𝑽𝟏𝟏

[𝑨𝑨] 1 

𝑽𝑽𝟐𝟐
[𝑨𝑨] 0 
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Table 64: Control Node �𝑳𝑳[𝑨𝑨]�: 

State �𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃(𝐿𝐿𝑗𝑗

[𝐴𝐴]) 𝑃𝑃(𝐿𝐿𝑗𝑗
[𝐴𝐴]|𝑉𝑉1

[𝐴𝐴]) 𝑃𝑃(𝐿𝐿𝑗𝑗
[𝐴𝐴]|𝑉𝑉1

[𝐴𝐴], 𝐶𝐶1
[𝐴𝐴]) 

Equation � � � �𝑃𝑃 �𝑁𝑁𝑘𝑘
[𝐴𝐴]� 𝑃𝑃 �𝐼𝐼𝑦𝑦

[𝐴𝐴]� 𝑃𝑃(𝑋𝑋𝑥𝑥)
𝑥𝑥𝑦𝑦𝑘𝑘

∗ 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐴𝐴]�𝑁𝑁𝑘𝑘

[𝐴𝐴], 𝐼𝐼𝑦𝑦
[𝐴𝐴], 𝑋𝑋𝑥𝑥�� 

𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃(𝑉𝑉1

[𝐴𝐴]|𝐿𝐿𝑗𝑗
[𝐴𝐴])

∑ 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃 �𝑉𝑉1

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]�𝑗𝑗

 
𝑃𝑃 �𝑉𝑉1

[𝐴𝐴]|𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃(𝐶𝐶1

[𝐴𝐴]|𝐿𝐿𝑗𝑗
[𝐴𝐴])

∑ 𝑃𝑃 �𝑉𝑉1
[𝐴𝐴]|𝐿𝐿𝑗𝑗

[𝐴𝐴]� 𝑃𝑃 �𝐶𝐶1
[𝐴𝐴]�𝐿𝐿𝑗𝑗

[𝐴𝐴]�𝑗𝑗

 

Nil  �𝐿𝐿1
[𝐴𝐴]� ( )( ) ( )( )1 1 1 1E E EQ Q Qη η− − − +  1 EQ−  0 

Ind �𝐿𝐿2
[𝐴𝐴]�  ( )( )2Q Q 1 1E Eη η− −   ( )1 EQη−  1 − 𝜂𝜂 

CC �𝐿𝐿3
[𝐴𝐴]�  ( )( )2 1 1E EQ Qη η − +   EQη  𝜂𝜂 

NA �𝐿𝐿4
[𝐴𝐴]� 0 0 0 

 

Table 65: No Cause Condition Node �𝑵𝑵[𝑨𝑨]� 

State �𝑁𝑁𝑘𝑘
[𝐴𝐴]� 𝑃𝑃(𝑁𝑁𝑘𝑘

[𝐴𝐴]) 𝑃𝑃(𝑁𝑁𝑘𝑘
[𝐴𝐴]|𝐶𝐶1

[𝐴𝐴]) 
Equation 𝑃𝑃 �𝑁𝑁𝑘𝑘

[𝐴𝐴]� 𝑃𝑃 �𝑁𝑁𝑘𝑘
[𝐴𝐴]� ∑ 𝑃𝑃 �𝐶𝐶1

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃(𝐿𝐿𝑗𝑗

[𝐴𝐴]|𝑁𝑁𝑘𝑘
[𝐴𝐴])𝑗𝑗

∑ 𝑃𝑃 �𝑁𝑁𝑘𝑘
[𝐴𝐴]� ∑ 𝑃𝑃 �𝐶𝐶1

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐴𝐴]�𝑁𝑁𝑘𝑘
[𝐴𝐴]�𝑗𝑗𝑘𝑘

 

Nil Cause �𝑁𝑁1
[𝐴𝐴]� 1 − 𝑄𝑄𝐸𝐸 0 

Cause       �𝑁𝑁2
[𝐴𝐴]� 𝑄𝑄𝐸𝐸 1 
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Table 66: Independent Cause Condition Node �𝑰𝑰[𝑨𝑨]� 

State �𝐼𝐼𝑦𝑦
[𝐴𝐴]� 𝑷𝑷(𝐼𝐼𝑦𝑦

[𝐴𝐴]) 𝑷𝑷 �𝐼𝐼𝑦𝑦
[𝐴𝐴]�𝐶𝐶1

[𝐴𝐴]� 
Equation 𝑃𝑃 �𝐼𝐼𝑦𝑦

[𝐴𝐴]� 𝑃𝑃 �𝐼𝐼𝑦𝑦
[𝐴𝐴]� ∑ 𝑃𝑃 �𝐶𝐶1

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐴𝐴]�𝐼𝐼𝑦𝑦
[𝐴𝐴]�𝑗𝑗

∑ 𝑃𝑃 �𝐼𝐼𝑦𝑦
[𝐴𝐴]� ∑ 𝑃𝑃 �𝐶𝐶1

[𝐴𝐴]�𝐿𝐿𝑗𝑗
[𝐴𝐴]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐴𝐴]�𝐼𝐼𝑦𝑦
[𝐴𝐴]�𝑗𝑗𝑦𝑦

 

𝐼𝐼1
[𝐴𝐴] (1 − 𝜂𝜂)𝑄𝑄𝐸𝐸 1 − 𝜂𝜂 

𝐼𝐼2
[𝐴𝐴] 1 − (1 − 𝜂𝜂)𝑄𝑄𝐸𝐸 𝜂𝜂 

 

Table 67: Common Cause Condition Node  (𝑿𝑿𝒙𝒙) 

State (𝑋𝑋𝑥𝑥) 𝑃𝑃(𝑋𝑋𝑥𝑥) 𝑃𝑃 �𝑋𝑋𝑥𝑥�𝐶𝐶1
[𝐴𝐴]� 

Equation 𝑃𝑃(𝑋𝑋𝑥𝑥) 𝑃𝑃(𝑋𝑋𝑥𝑥) ∑ 𝑃𝑃 �𝐶𝐶1
[𝐴𝐴]�𝐿𝐿𝑗𝑗

[𝐴𝐴]� 𝑃𝑃(𝐿𝐿𝑗𝑗
[𝐴𝐴]|𝑋𝑋𝑥𝑥)𝑗𝑗

∑ 𝑃𝑃(𝑋𝑋𝑥𝑥) ∑ 𝑃𝑃 �𝐶𝐶1
[𝐴𝐴]�𝐿𝐿𝑗𝑗

[𝐴𝐴]� 𝑃𝑃(𝐿𝐿𝑗𝑗
[𝐴𝐴]|𝑋𝑋𝑥𝑥)𝑗𝑗𝑥𝑥

 

𝑋𝑋1 𝜂𝜂𝑄𝑄𝐸𝐸 𝜂𝜂 
𝑋𝑋2 1 − 𝜂𝜂𝑄𝑄𝐸𝐸 1 − 𝜂𝜂 
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Table 68: Control Node �𝑳𝑳[𝑩𝑩]� 

State �𝐿𝐿𝑗𝑗
[𝐵𝐵]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐵𝐵]� 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]�𝑉𝑉1

[𝐵𝐵]� 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]�𝑉𝑉1

[𝐵𝐵], 𝐶𝐶1
[𝐴𝐴]� 

Equation � � � �𝑃𝑃 �𝑁𝑁𝑘𝑘
[𝐵𝐵]� 𝑃𝑃 �𝐼𝐼𝑦𝑦

[𝐵𝐵]� 𝑃𝑃(𝑋𝑋𝑥𝑥)
𝑥𝑥𝑦𝑦𝑘𝑘

∗ 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]�𝑁𝑁𝑘𝑘

[𝐵𝐵], 𝐼𝐼𝑦𝑦
[𝐵𝐵], 𝑋𝑋𝑥𝑥�� 

𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]� 𝑃𝑃 �𝑉𝑉1

[𝐵𝐵]�𝐿𝐿𝑗𝑗
[𝐵𝐵]�

∑ 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]� 𝑃𝑃 �𝑉𝑉1

[𝐵𝐵]�𝐿𝐿𝑗𝑗
[𝐵𝐵]�𝑗𝑗

 
𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐵𝐵]|𝐶𝐶1
[𝐴𝐴]� 𝑃𝑃 �𝑉𝑉1

[𝐵𝐵]�𝐿𝐿𝑗𝑗
[𝐵𝐵]�

∑ 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]|𝐶𝐶1

[𝐴𝐴]� 𝑃𝑃 �𝑉𝑉1
[𝐵𝐵]�𝐿𝐿𝑗𝑗

[𝐵𝐵]�𝑗𝑗

 

Nil �𝐿𝐿1
[𝐵𝐵]� ( )( ) ( )( )1 1 1 1E E EQ Q Qη η− − − +  1 EQ−  (1 − 𝜂𝜂).

𝑄𝑄𝐸𝐸 − 1
𝜂𝜂𝜂𝜂𝐸𝐸 − 1

 

Ind �𝐿𝐿2
[𝐵𝐵]�  ( )( )2Q Q 1 1E Eη η− −   ( )1 EQη−  𝑄𝑄𝐸𝐸(𝜂𝜂 − 1)2

1 − 𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐸𝐸(𝜂𝜂 − 1) 

CC �𝐿𝐿3
[𝐵𝐵]�  ( )( )1 1E EQ Qη η − +   𝜂𝜂 

 
𝜂𝜂 

NA �𝐿𝐿4
[𝐵𝐵]� 0  0 
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Table 69: Cause Condition Node �𝑪𝑪[𝑩𝑩]� 

State �𝑪𝑪𝒊𝒊
[𝑩𝑩]� 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐵𝐵]�𝑉𝑉1
[𝐵𝐵]� 𝑃𝑃 �𝐶𝐶1

[𝐵𝐵]�𝑉𝑉1
[𝐵𝐵], 𝐶𝐶1

[𝐴𝐴]� 
Equation � 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐵𝐵]�𝐿𝐿𝑗𝑗
[𝐵𝐵]� 𝑃𝑃 �𝐿𝐿𝑗𝑗

[𝐵𝐵]�𝑉𝑉1
[𝐵𝐵]�

𝑗𝑗

 � 𝑃𝑃 �𝐶𝐶1
[𝐵𝐵]�𝐿𝐿𝑗𝑗

[𝐵𝐵]� 𝑃𝑃 �𝐿𝐿𝑗𝑗
[𝐵𝐵]�𝑉𝑉1

[𝐵𝐵], 𝐶𝐶1
[𝐴𝐴]�

𝐿𝐿𝐴𝐴=𝑙𝑙𝐴𝐴

 

Cause       �𝑪𝑪𝟏𝟏
[𝑩𝑩]� 𝑄𝑄𝐸𝐸 

𝜂𝜂 +
𝑄𝑄𝐸𝐸(𝜂𝜂 − 1)2

1 − 𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐸𝐸(𝜂𝜂 − 1) 

No Cause �𝑪𝑪𝟐𝟐
[𝑩𝑩]� 1 − 𝑄𝑄𝐸𝐸 

1 − 𝜂𝜂 −
𝑄𝑄𝐸𝐸(𝜂𝜂 − 1)2

1 − 𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐸𝐸(𝜂𝜂 − 1) 

 

Table 70: Second Component Node (𝑩𝑩) 

State (𝑩𝑩) 𝑃𝑃 �𝐵𝐵�𝑉𝑉1
[𝐵𝐵]� 𝑃𝑃 �𝐵𝐵�𝑉𝑉1

[𝐵𝐵], 𝐶𝐶1
[𝐴𝐴]� 

Equation � 𝑃𝑃 �𝐵𝐵�𝐶𝐶𝑖𝑖
[𝐵𝐵]� 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐵𝐵]�𝑉𝑉1
[𝐵𝐵]�

𝑖𝑖

 � 𝑃𝑃 �𝐵𝐵�𝐶𝐶𝑖𝑖
[𝐵𝐵]� 𝑃𝑃 �𝐶𝐶𝑖𝑖

[𝐵𝐵]�𝑉𝑉1
[𝐵𝐵], 𝐶𝐶1

[𝐴𝐴]�
𝑖𝑖

 

𝑩𝑩 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸 
𝑝𝑝𝑖𝑖𝜂𝜂 +

𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸(𝜂𝜂 − 1)2

1 − 𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐸𝐸(𝜂𝜂 − 1) 

𝑩𝑩�  1 − 𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸 
1 − 𝑝𝑝𝑖𝑖𝜂𝜂 −

𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸(𝜂𝜂 − 1)2

1 − 𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐸𝐸(𝜂𝜂 − 1) 
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4.3. Summary 
This appendix has shown algebraically the probability of a component B failing, 𝑃𝑃(𝐵𝐵), 

given knowledge that component A has failed from cause 𝑖𝑖 ; 𝑃𝑃 �𝐵𝐵𝑖𝑖�𝐶𝐶𝑖𝑖
[𝐴𝐴]�. 

 

𝑃𝑃(𝐵𝐵𝑖𝑖|𝐶𝐶𝑖𝑖
[𝐴𝐴]) = 𝑝𝑝𝑖𝑖𝜂𝜂𝑖𝑖 +

𝑝𝑝𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖(𝜂𝜂𝑖𝑖 − 1)2

1 − 𝑄𝑄𝐸𝐸,𝑖𝑖 − 𝑄𝑄𝐸𝐸,𝑖𝑖(𝜂𝜂𝑖𝑖 − 1) 
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Notation 
General notation 

𝑃𝑃(𝑋𝑋)  The probability of event X 
 

𝑋𝑋[𝐸𝐸]  A parameter which is related to component type ‘E’.  
 

𝐴𝐴𝑖𝑖  The independent failure of event A 
 

𝑋𝑋𝐴𝐴𝐴𝐴  The common cause failure event of components A and B.  
 

𝑚𝑚  The size of a common cause component group. 
 

𝑘𝑘  A multiplicity of failure within a common cause component group. (𝑘𝑘 
failures out of 𝑚𝑚 components) 
 
 

𝑤𝑤  The number of coupling factor features which are being assessed in 
the target system. 
 
 

Component event count parameters 

𝑄𝑄𝑇𝑇  The total failure frequency/probability of each component due to 
independent and common cause events.  
 

𝛽𝛽  A parameter of the Beta Factor Model. This is the portion of an 
individual component’s failure probability/rate which is a common 
cause failure. 
 

𝑁𝑁1  The total number of component demands. Assuming that each time the 
system is demanded, all components are demanded the following 
relationship exists between 𝑁𝑁𝐷𝐷 and 𝑁𝑁1: 

𝑁𝑁𝑘𝑘 = 𝑚𝑚𝑁𝑁𝐷𝐷 
 

𝑛𝑛𝐹𝐹  The total number of component failures. 

𝑛𝑛𝐹𝐹 = � 𝑘𝑘𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 

𝑝𝑝𝐼𝐼  Component fragility to cause 𝑖𝑖. (GDM parameter) 
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𝜂𝜂𝑖𝑖  Coupling factor strength for cause 𝑖𝑖. (GDM parameter) 
 

𝑄𝑄𝐸𝐸,𝑖𝑖  Cause condition probability for cause 𝑖𝑖. (GDM parameter) 
 

𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖  The independent cause condition probability for a component 
𝑄𝑄𝐼𝐼𝐼𝐼,𝑖𝑖 = (1 − 𝜂𝜂𝑖𝑖)𝑄𝑄𝐸𝐸,𝑖𝑖 

 
𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖  The common cause condition probability for a component. 

𝑄𝑄𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑄𝑄𝐸𝐸,𝑖𝑖 
 

CCF event count parameters 

𝐼𝐼ℎ  the ℎ𝑡𝑡ℎ hypotheses for an observed CCF event. Where 1 ≤ ℎ ≤ 𝐻𝐻. 
 

𝐼𝐼 ̅ the average impact vector for a CCF event. This is the weighted sum 
of all hypotheses for the event. 

𝐼𝐼 ̅ = � 𝑤𝑤ℎ𝐼𝐼ℎ

𝐻𝐻

ℎ=1

 

 
𝐹𝐹𝑘𝑘���(𝑗𝑗)  the 𝑘𝑘𝑡𝑡ℎ element of the average impact vector where (0 ≤ 𝑘𝑘 ≤ 𝑚𝑚) for 

the 𝑗𝑗𝑡𝑡ℎ event where (0 ≤ 𝑗𝑗 ≤ 𝐽𝐽) 
 

𝑛𝑛𝑘𝑘  the total number of CCF basic events involving the failure of 𝑘𝑘 
components within a CCCG. 

𝑛𝑛𝑘𝑘 = � 𝐹𝐹𝑘𝑘(𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

 

𝑛𝑛𝑡𝑡  the total number of common cause failure events. 

𝑛𝑛𝑡𝑡 = � 𝑛𝑛𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 

𝑁𝑁𝐷𝐷  The number of demands on the CCCG (assuming that each time the 
system is demanded, all components are demanded) 

𝑁𝑁𝐷𝐷 = �
𝑚𝑚
𝑘𝑘

�
−1

𝑁𝑁𝑘𝑘 = 𝑛𝑛0 + 𝑛𝑛𝑡𝑡 
 

𝑁𝑁𝑘𝑘  The number of demands on a subset group of components within the 
CCCG of size 𝑘𝑘.  (assuming that each time the system is demanded, 
all components are demanded) 
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𝑁𝑁𝑘𝑘 = �
𝑚𝑚
𝑘𝑘

� 𝑁𝑁𝐷𝐷 
 

𝑄𝑄𝑘𝑘
(𝑚𝑚)  Basic event failure frequency/probability for 𝑘𝑘 components failing 

within a common cause component group of size 𝑚𝑚, (1 ≤  𝑘𝑘 ≤  𝑚𝑚). 
This is a parameter of the Basic Parameter Model. For example, in a 
three train system of components A, B and C: 
      𝑄𝑄1

(3) = 𝑃𝑃(𝐴𝐴𝑖𝑖) = 𝑃𝑃(𝐵𝐵𝑖𝑖) = 𝑃𝑃(𝐶𝐶𝑖𝑖) 
      𝑄𝑄2

(3) = 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴) = 𝑃𝑃(𝑋𝑋𝐵𝐵𝐵𝐵) 
      𝑄𝑄2

(3) = 𝑃𝑃(𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴) 
 
The basic parameter estimator is: 

𝑄𝑄𝑘𝑘
(𝑚𝑚) =

𝑛𝑛𝑘𝑘

𝑁𝑁𝑘𝑘
 

 
𝛼𝛼𝑘𝑘  An alpha factor which is a parameter of the alpha factor model. This 

is the fraction of CCF failure event where 𝑘𝑘 components fail within 
the CCCG. (1 ≤  𝑘𝑘 ≤  𝑚𝑚). 
 

𝑛𝑛𝑘𝑘,𝑖𝑖  the number of failure events/frequency which resulted in k 
components failing within a common cause component group of size 
m, (1 ≤ k ≤ m) of coupling factor  i where i ∈ {1,2,3,…,w}. 
 

𝑛𝑛𝑝𝑝,𝑖𝑖  the total number of failure events/frequency which had the opportunity 
for the failure to propagate through coupling factor i where i ∈ 
{1,2,3,…,w}. 
 

𝑛𝑛𝑡𝑡,𝑖𝑖  the total number of common cause failure events for coupling 
factor/cause i where i ∈ {1,2,3,…,w}. 
 

𝛼𝛼𝑘𝑘,𝑖𝑖  a partial alpha factor which represents the portion of system failure 
events which resulted in k components failing within a common cause 
component group of size m, (1 ≤ k ≤ m) when there was a potential for 
failure propagation through coupling factor  i where i ∈ {1,2,3,…,w}. 
 

a, b Beta distribution parameters for the distribution of parameter 𝜃𝜃 where 
𝜃𝜃~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎, 𝑏𝑏). This is used for Bayesian estimators of parameters 
which range from 0 ≤ 𝜃𝜃 ≤ 1. 
 

𝛼𝛼𝑘𝑘
′   the assessed alpha factor. This is the system alpha factor which only 

considers the coupling factors shared by the components within the 
CCCG.  
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𝜸𝜸  the portion of failure events for each cause [𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑤𝑤] 

 
𝝋𝝋  the equivalent count of failure events for each cause [φ1, φ2, … , φ𝑤𝑤] 
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Glossary 
 
Basic Event An event in a reliability logic model that represents the state 

in which a component or group of components is 
unavailable and does not require further development in 
terms of contributing cases. 
 

Common Cause Event An unexpected dependent failure in which two or more 
component fault states exist simultaneously, or within a 
short time interval, and are a direct result of a shared cause. 
The failure is classified as unexpected if it has not been 
explicitly modeled within a PRA.  
 

Common Cause Basic 
Event 

In system modeling, a basic event that represents the 
unavailability of a specific set of components because of 
shared causes that are not explicitly represented in the 
system logic model as other basic events. 
 

Common Cause 
Component Group 

A group (usually similar in mission, manufacturer, 
maintenance, environment, etc) of components that are 
considered to have a high potential for failure due to the 
same cause or causes.  
 

Common Cause 
Failure Model 

The basis for quantifying the frequency of common cause 
events. Examples include the beta factor, alpha factor, basic 
parameter, and the binomial failure rate models.  
 

Component An element of plant hardware designed to provide a 
particular function. 
 

Component Boundary The component boundary encompasses the set of piece parts 
that are considered to form the component. 
 

Component State Component state defines the component status in regard to 
its intended function. Two general categories of component 
states are available and unavailable. 
 

Conditional 
Probability Table 

The CPT defined the probability of each state of a Bayesian 
Network node, conditional on the state of parent nodes. 
 

Coupling 
Factor/Mechanism 

A system feature which is shared by multiple components 
such that it creates a dependency. 
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Defense Any operational, maintenance, and design measures taken 

to diminish the frequency and/or consequences of common 
cause failures. 
 

Event An event is the occurrence of a component state or group of 
component states. 
 

Event (CCF 
Perspective) 

The count process as observed at the CCCG level. Multiple 
failures from a single demand are considered one event. 
 

Event (Component 
Perspective) 

The count process as observed at the component level. A 
single CCF event from a CCF Event Perspective will have 
multiple demands and failures from a Component Level 
Perspective.  
 

Failure Mechanism The history describing the event and influences leading to a 
given failure. 
 

Failure Mode A description of the component failure in terms of the 
component function that was actually or potentially 
unavailable.  
 

Impact Vector As assessment of the impact an event (CCF Event 
Perspective) would have on a common cause component 
group. The impact is usually measured as the number of 
failed components out of a set of similar components in the 
common cause component group. 
 

Independent Basic 
Events 

Two basic events, A and B, are statistically independent if, 
𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵) therefore 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵), where 
𝑃𝑃(𝑋𝑋) denotes the probability of event X. 
 

Mutually Exclusive Events which cannot occur at the same time. A and B are 
mutually exclusive if 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 0. 
 

Rare Event 
Approximation 

Where the following approximation is used, 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) ≅
𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) instead of the correct formula 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =
𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵). This can be used where 𝑃𝑃(𝐴𝐴 ∩
𝐵𝐵) << 𝑃𝑃(𝐴𝐴) and 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) << 𝑃𝑃(𝐵𝐵).  
 

Soft Dependencies Soft dependencies have a probabilistic relationship. For 
example if one component failed, there is a probability that 
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a second component could fail through a shared cause such 
as a manufacturer error, or shared maintenance procedure 
 

Soft Evidence Uncertain evidence used in the ‘all things considered’ 
method. Soft Evidence is treated with Jeffrey’s Rule. 
(Darwiche 2009) 
 

Train A train is a success path for a system. A two train system 
has two paths in redundancy. 
 

Uncertain Evidence Evidence where the observer has a distribution of beliefs 
over the possible outcomes. This includes virtual evidence 
and soft evidence.  
 

Virtual Evidence Uncertain evidence used in the ‘nothing else considered’ 
method. (Darwiche 2009) 
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Abbreviations 
AFM Alpha Factor Model 

 
BFR / BFRM Binomial Failure Rate Model 

 
BN Bayesian Network 

 
BP Basic Parameter (a parameter to the Basic Parameter Model) 

 
CCBE Common Cause Basic Event 

 
CCCG Common Cause Component Group 

 
CCF Common Cause Failure 

 
CCFDB Common Cause Failure Database (NRC) 

 
CPT Conditional Probability Table 

 
EDG Emergency Diesel Generator 

 
RBD Reliability Block Diagram 

 
PRA Probability Risk Assessment 

 
UOI Unknown Of Interest 
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