
ABSTRACT

Title of dissertation: SCALABLE TECHNIQUES FOR SCHEDULING
AND MAPPING DSP APPLICATIONS ONTO
EMBEDDED MULTIPROCESSOR PLATFORMS

George F. Zaki, Doctor of Philosophy, 2013

Dissertation directed by: Shuvra S. Bhattacharyya (Chair/Advisor)
Professor
Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies

A variety of multiprocessor architectures has proliferated even for off-the-shelf

computing platforms. To make use of these platforms, traditional implementation frame-

works focus on implementing Digital Signal Processing (DSP) applications using special

platform features to achieve high performance. However, due to the fast evolution of the

underlying architectures, solution redevelopment is error prone and re-usability of exist-

ing solutions and libraries is limited. In this thesis, we facilitate an efficient migration

of DSP systems to multiprocessor platforms while systematically leveraging previous in-

vestment in optimized library kernels using dataflow design frameworks. We make these

library elements, which are typically tailored to specialized architectures, more amenable

to extensive analysis and optimization using an efficient and systematic process.

In this thesis we provide techniques to allow such migration through four basic

contributions:

1. We propose and develop a framework to explore efficient utilization of Single In-

struction Multiple Data (SIMD) cores and accelerators available in heterogeneous

multiprocessor platforms consisting of General Purpose Processors (GPPs) and

Graphics Processing Units (GPUs). We also propose new scheduling techniques

by applying extensive block processing in conjunction with appropriate task map-

ping and task ordering methods that match efficiently with the underlying architec-

ture. The approach gives the developer the ability to prototype a GPU-accelerated

application and explore its design space efficiently and effectively.

2. We introduce the concept of Partial Expansion Graphs (PEGs) as an implemen-

tation model and associated class of scheduling strategies. PEGs are designed to

help realize DSP systems in terms of forms and granularities of parallelism that are

well matched to the given applications and targeted platforms. PEGs also facili-

tate derivation of both static and dynamic scheduling techniques, depending on the

amount of variability in task execution times and other operating conditions. We

show how to implement efficient PEG-based scheduling methods using real time

operating systems, and to re-use pre-optimized libraries of DSP components within

such implementations.

3. We develop new algorithms for scheduling and mapping systems implemented us-

ing PEGs. Collectively, these algorithms operate in three steps. First, the amount

of data parallelism in the application graph is tuned systematically over many it-

erations to profit from the available cores in the target platform. Then a mapping

algorithm that uses graph analysis is developed to distribute data and task parallel

instances over different cores while trying to balance the load of all processing units

to make use of pipeline parallelism. Finally, we use a novel technique for perfor-

mance evaluation by implementing the scheduler and a customizable solution on

the programmable platform. This allows accurate fitness functions to be measured

and used to drive runtime adaptation of schedules.

4. In addition to providing scheduling techniques for the mentioned applications and

platforms, we also show how to integrate the resulting solution in the underlying

environment. This is achieved by leveraging existing libraries and applying the

GPP-GPU scheduling framework to augment a popular existing Software Defined

Radio (SDR) development environment — GNU Radio — with a dataflow founda-

tion and a stand-alone GPU-accelerated library. We also show how to realize the

PEG model on real time operating system libraries, such as the Texas Instruments

DSP/BIOS. A code generator that accepts a manual system designer solution as

well as automatically configured solutions is provided to complete the design flow

starting from application model to running system.

SCALABLE TECHNIQUES FOR SCHEDULING AND MAPPING
DSP APPLICATIONS ONTO EMBEDDED MULTICORE

PLATFORMS
by

George F. Zaki

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctory of Philosophy

2013

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Steven Tretter
Professor Manoj Franklin
Professor Raj Shekhar
Professor Ramani Duraiswami

c© Copyright by
George F. Zaki

2013

Dedication

To my family

ii

Acknowledgments

I give sincere thanks to professor Shuvra Bhattacharyya, my main advisor, for his

guidance, encouragement, and support. I am especially grateful for his experience and

connections that gave me opportunities to work on applicable research projects, for the

flexibility he gave me in choosing my research direction, and for his rigorous paper re-

view. Professor Bhattacharyya also helped me in teaching by providing me opportunities

to work as his teaching assistant and co-teacher. I learned from professor Bhattacharyya

how an advisor can help his students have a fruitful as well as enjoyable PhD experience.

I am thankful to my PhD dissertation committee - professor Steven Tretter, pro-

fessor Manoj Franklin, professor Raj Shekhar, and professor Ramani Duraiswami for

reviewing this thesis and giving me valuable feedback.

I would like to thank Dr. Will Plishker, my Postdoc, for the productive discussions,

detailed problem formulations, and hands-on assistance with my experiments.

I am thankful for the support of Texas Instruments Inc., which sponsored this re-

search by allowing me to be a Texas Instruments scholar. Specifically I would like to

thank Frank Fruth, Dr. Bogdan Kozanovic, Patel Piyush, and Charles Fosgate for giving

me the opportunity for real-world experience and for providing me with the necessary

tools, software, and development kits that I used to run experiments for this research.

I am so thankful to members of the Institute of Electronics and Telecommunications-

Rennes (IETR), notably Dr. Maxime Pelcat for the fruitful discussions and Karol Desnos

for sharing his experiences.

I thank the Laboratory for Telecommunications Sciences for their support, especial-

iii

ly professor Charles Clancy, Tim Oshea, and Nicholas McCarthy.

I am also grateful to the members of the DSPCAD group - Dr. Chung-Ching Shen,

Dr. Hojin Kee, Dr. Ruirui Gu, Dr. Nimish Sane, Dr. Hsiang-Huang Wu, Soujanya

Kedilaya, Inkeun Cho, Kishan Sudusinghe, Shenpei Wu, Zheng Zhou, llya Chukhman,

Lai-Huei Wang, Scott Kim, and Shuoxin Lin. The useful discussions we had helped me

truly enjoy working in the DSPCAD laboratory.

I would like to give my sincere thanks and gratefulness to my parents and all the

members of my family for their continuous sacrifice and encouragement throughout all

my life.

Last but not least, I thank my wife Alma Jean for her support, help, patience, and

for being my lovely partner during my last years as a doctoral student.

iv

Table of Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 5

1.2.1 Scheduling DSP Systems on Heterogeneous Processors 5
1.2.2 Exposing Parallelism and Dynamic Scheduling Opportunities for

DSP Applications . 7
1.2.3 Scheduling and Mapping of Partial Expansion Graphs 8
1.2.4 Integration of Scheduling Solutions with Design Environments . . 10

1.3 Dissertation Organization . 11
1.4 Summary . 12

2 Background 13
2.1 Dataflow Applications Models . 13

2.1.1 Formal Description . 13
2.1.2 Dataflow Interchange Format . 16
2.1.3 Streaming Application: Software Defined Radio 17
2.1.4 Pre-optimized Kernels: GNU Radio 18

2.2 Architecture Models . 20
2.2.1 Contemporary Platforms . 20
2.2.2 Model Elements . 22

2.3 Multiprocessor Scheduling . 24
2.4 Summary . 26

3 Scheduling DSP Systems on Heterogeneous GPP and GPU Platforms 27
3.1 Workflow Description . 27

3.1.1 Writing Accelerated Kernels . 29
3.1.2 Partitioning, Scheduling, and Mapping 30

3.2 Multi-objective Multicore Scheduler . 32
3.2.1 From Application Model to Block Processing DAGs 32
3.2.2 Architecture Model . 34
3.2.3 Problem Formulation . 35

3.3 Multiprocessor MLP Scheduler . 37
3.3.1 Basic Variables . 37
3.3.2 Constraints . 39
3.3.3 Objective . 41

3.4 Related Work and Contribution . 42
3.5 Summary . 44

v

4 Integration of the Heterogeneous Platform Scheduling Workflow with GNU Radio 45
4.1 FIR Filter Mapping to GPU Architecture 45
4.2 DIF Importer from GNU Radio . 48
4.3 GRGPU: GPU Acceleration in GNU Radio 50
4.4 Empirical Results . 53

4.4.1 GRGPU Profile . 54
4.4.2 Scheduler Empirical Results . 56

4.4.2.1 Test Setup . 56
4.4.2.2 Design Space Exploration 57

4.5 Related Work and Contribution . 60
4.6 Summary . 61

5 Partial Expansion Graphs 63
5.1 Introduction . 63
5.2 Partial Expansion of Dataflow Graphs 65

5.2.1 Formal Definition . 66
5.3 Buffer Manager . 68

5.3.1 Slot States . 70
5.3.2 Slot Size Selection . 72

5.4 Dynamic Scheduling . 74
5.5 Code Generation . 76
5.6 Evaluation . 80
5.7 Related Work and Contribution . 84
5.8 Summary . 87

6 Scheduling and Mapping of Partial Expansion Graphs 89
6.1 PEG Scheduling . 89
6.2 Particle Swarm Optimization . 92

6.2.1 PSO Problem formulation . 92
6.3 PEG Mapping Heuristic . 95
6.4 Generic Implementation . 99
6.5 Evaluation . 102

6.5.1 Experimental Setup . 102
6.5.2 Benchmarks . 103
6.5.3 Results . 105

6.6 Related Work and Contribution . 108
6.7 Summary . 110

7 Conclusions and Future Work 111
7.1 Static Systems . 111
7.2 Dynamic Systems . 114

Bibliography 117

vi

List of Figures

1.1 Design flow using a model based approach. 5

2.1 Example of a SDF graph. 15

2.2 Expressing parallelism using dataflow graphs. 16

2.3 GPU memory hierarchy. 22

2.4 A typical Texas Instruments evaluation board. 23

3.1 Example of an SDF graph for the mp-sched benchmark and its corre-

sponding BPDAG. 34

3.2 Example of typical off-the-shelf platform consisting of GPPs and GPUs

using the PCI bus as communication medium. 35

4.1 Implemented workflow for SDR applications described in GNU Radio. . . 46

4.2 Comparison of total running time versus number of outputs for FIR filter

implementation on different processors. 47

4.3 Multirate application exported to DIF. 49

4.4 GRGPU actors within H2D and D2H communicate data using the GPU

memory, avoiding unnecessary host/GPU transfers. 53

4.5 MP-sched SDR benchmark. 54

4.6 GRGPU overhead for various benchmarks. 56

4.7 Gantt chart for 2x5 mp-sched graph on 1 GPP and 1 GPU. 58

4.8 Design space for a 2x5 mp-sched graph on 1 GPP and 1 GPU for different

blocking factors. 59

vii

5.1 Expansion of a multirate SDF Graph. 65

5.2 Finite state machines for buffer slot states. 71

5.3 Updates of buffer states during graph execution. 73

5.4 PEG model evaluation benchmarks. 80

5.5 Speedups for different sources of parallelism using the PEG strategy. . . . 82

5.6 Efficiency of the PEG strategy for different computation to scheduling

ratios. 82

5.7 Comparison between round robin and dynamic scheduling of activations. 84

6.1 PEG-based scheduling workflow. 90

6.2 Input to the mapping heuristic. 97

6.3 Applying the mapping heuristic based on a given graph expansion. 98

6.4 Illustration of a customizable PEG-based implementation. 101

6.5 PEG scheduling evaluation benchmarks. 104

viii

List of Tables

4.1 Solver results for different mp-sched graphs. 58

4.2 Evaluation of our MLP formulation on multicore processors. 60

5.1 Average mean and half confidence interval between the dynamic and

round robin scheduling techniques. 84

6.1 PEG scheduling attributes for actors. 103

6.2 PEG Scheduling attributes for edges. 103

6.3 Speedups and expansion of the image registration benchmark 106

6.4 Speedups and expansion for the digital receiver benchmark. 106

6.5 Speedups and expansion for the SDR benchmark. 106

6.6 Mapping heuristic and system-in-the-loop overhead. 107

ix

List of Algorithms

1 Implementation of peeking attribute on a shared memory architecture. . . . 72

2 FAFA dynamic scheduling heuristic . 77

3 Particle swarm optimization . 93

4 PEG mapping heuristic. 96

x

Chapter 1

Introduction

1.1 Overview

Implementation of streaming digital signal processing applications, such as Long

Term Evolution (LTE), codecs for video and audio players, and Network Intrusion De-

tection systems (NIDs), has been constantly evolving over the past decades. Such imple-

mentation needs special attention to the requirement that these systems execute specific

sets of repeated tasks over long periods of product lifetime. Spending time in exploring

various design points can be important to derive low cost and efficient solutions that meet

the system requirements. The development workflow of these systems starts by choosing

appropriate DSP algorithms that achieve the desired system functionality. The algorithms

are then examined for implementation, usually starting with some sort of block diagrams

that represent the main system kernels and their interconnections. A target platform that

is estimated to satisfy the final product specifications is then chosen and design space

exploration is conducted.

Multiple platforms can be selected to implement such systems. Factors like time to

market (i.e., ease of development), power consumption, system throughput, latency, and

other metrics guide the selection of the final processing unit type or types (in the case

of heterogeneous platforms). Typical platforms span the range from Application Specific

Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGA)s, Programmable

1

Digital Signal Processors (PDSPs), Graphics Processing Units (GPUs), and General Pur-

pose Processors (GPPs).

Typically, numerous design decisions have to be taken in order to achieve efficient

algorithm realizations that meet the given platform capabilities and constraints. For ex-

ample, an efficient scheduling (mapping and ordering) of the given algorithm kernels to

the available computing units is required. Depending on the target platform, scheduling

objectives include different aspects to improve final performance metrics, such as latency,

throughput, and power consumption, while meeting platform limitations. The scheduling

problem is classically known to be NP complete [1]. In practice, designer experience,

as well as different heuristics or time-consuming, exact algorithms are applied to derive

scheduling solutions.

A wide range of digital signal processing applications are implemented on repro-

grammable software processing units such as programmable digital signal processors, G-

PUs and GPPs. Building systems on these kinds of off-the-shelf processing units has the

advantage of relatively shorter time to market, ease of development, code modification

and debugging. Classical systems development for these platforms has targeted single

core processors. Following Moore’s law and the necessity to limit the dissipated pow-

er on a single ship, performance gains in these processing platforms has more recently

been coming from increasing the number of cores on a single die instead of increasing

the frequency of single core. This can effectively increase the computational horsepower

on-chip while not adversely affecting power consumption. The complexity of a single

core varies from Single Instruction Multiple Data (SIMD) units in GPUs, Very Long In-

struction Word (VLIW) configurations in PDSPs, and more complex cores with branch

2

prediction and runtime speculation in GPPs accompanied with vector processing units.

Following this historical evolution of programmable platforms, developers of signal

processing systems are now often required to migrate their libraries of kernels that were

originally optimized to target single core processors to newer families of multicore pro-

cessors [2, 3]. Such migration can be performed using two approaches. The first approach

is to change the original serial algorithm for a kernel to a parallel one (e.g., from serial

addition to parallel reduction). This method requires the designer to go through much of

the development process for a new system and limits the ability to leverage previous code

development investments. In order to simplify this operation for many multicore architec-

tures, programming models and environments are being introduced to take advantage of

particular processors types, along with their associated forms of memory hierarchy and

communication facilities such as CUDA [4], OpenMP, MPI and OpenCL. The second

approach, which is called the Model Based Approach (MBA), requires refinement of the

original algorithm to a formal model in order to identify data dependencies between the

kernels and different sources of parallelism. These sources can be categorized as data,

task, and pipeline parallelism. Once this identification process is complete, the resulting

application model can be analyzed and implemented either manually or using automat-

ed tools to take advantage of the target parallel platform. Many existing tools use MBA

approaches, such as Ptolemy [5], StreamIt [6], PREESM [7], CAL [8], and DIF [9].

The first approach has the advantage of efficiently using all architecture features

but with the penalty of redeveloping a large portion of system “from the ground up”.

This operation has to be repeated with every new architecture. On the other hand, the

MBA leverages much of the prior investment in many systems, such as in application

3

specific design frameworks where fast design flows are facilitated by exploiting the com-

mon application structures of particular domains and rich libraries of elements tailored to

them. In this approach, required modifications are limited to kernel interface modifica-

tions needed to adhere to any new design models that are being applied, and to adaptations

for scheduling techniques that are needed to handle new target platform characteristics.

Figure 1.1 shows a high level illustration of a model based design approach for

signal processing systems. Here, a system designer starts by choosing appropriate models

to represent the application and the targeted platform. These descriptions along with basic

objectives and constraints are given as input to the scheduler. The scheduling solution is

then passed to a code generator with some adjusted system attributes defined in scenario

files. Once a design point is chosen and a working solution is implemented, profiling takes

place, and then relevant parameters are tuned. Implementation, profiling, and parameter

tuning can be iterated repeatedly until the final specifications are met or the designer

decides to revisit higher level goals of the targeted implementation.

A major advantage of this kind of design approach is the separation of the appli-

cation and platform representations. Such separation helps to preserve efforts used to

model and implement different system kernels across different platforms. Also as an

implementation is derived, various attributes that correspond to the application descrip-

tion, platform description or application-platform relationships can be described to allow

the system designer to reason about, fine tune and iterate systematically over alternative

solutions.

4

Application

Description

Scheduling

Working

System

Architecture

Description

Scheduling

Solution
Scenarios

Code Generator

Profile

Tune System

Parameters

Objectives

and

constraints

Pre-optimized

Kernels

Figure 1.1: Design flow using a model based approach.

1.2 Contributions

In this dissertation, we develop new techniques to perform MBA-based migration

of signal processing systems from single-core to multicore platforms. These techniques

are developed in order to allow designers to derive efficient solutions on state-of-the-art

platforms with high productivity. Starting from formal descriptions of the application

and target platform, we investigate techniques and analysis tools to facilitate optimization

and explore the design space when deriving an implementation. We demonstrate our new

design methods concretely through the following four main contributions.

1.2.1 Scheduling DSP Systems on Heterogeneous Processors

GPUs have mainly been used for image processing and graphics applications that

require single instruction multiple data processors. In recent years, they have also been

5

made available to be used for general purpose applications [4] [10]. With the availability

of hundreds of cores in GPUs and vector processing units in GPPs, system designers

are left with many decisions about how to split applications between GPUs and GPPs in

order to effectively use the underlying platforms while minimizing communication and

coordination overhead.

In our first contribution, we develop a framework to schedule and map DSP systems

implemented on such heterogeneous platforms. Starting from a formal model, we make

use of different types and levels of parallelism that exist in the application to efficiently use

the underlying heterogeneous platform. Our workflow starts by exploring different levels

of vectorization to efficiently use the SIMD units and increase the system throughput.

Then it uses a Mixed Linear Programming (MLP) formulation to model the partitioning

problem of the application between GPPs and GPUs. In this formulation, we account

for the difference in the execution time of every actor on various processors. Using the

information in the input application graph, the set of linear inequalities perform a graph

analysis to account for the communication overhead between the processors. The MLP

partitioner has the objective of reducing the total graph latency and the MLP solution

provides the mapping and ordering of the actors on the given processors. The design

space is systematically explored and the system designer can choose a solution that best

matches the constraints of the application.

6

1.2.2 Exposing Parallelism and Dynamic Scheduling Opportunities for

DSP Applications

Synchronous Dataflow (SDF) is among the most commonly used DSP-oriented

dataflow models [11]. In SDF, the number of tokens (data values) produced and consumed

at each actor (dataflow graph vertex) port is constant across each firing (invocation) of the

associated actor. Multiprocessor scheduling for an SDF graph conventionally involves

a transformation of the graph to its equivalent Homogeneous SDF (HSDF) form. Such

HSDF expansion is performed to more fully expose the parallelism in an SDF representa-

tion, including task and data parallelism. However, the HSDF expansion transformation

may in general produce an exponential increase in dataflow graph size — the numbers of

actors and edges (graph size) in the HSDF equivalent graph is in general not polynomial-

ly bounded in the size of the corresponding SDF graph. This expansion can thus lead to

very slow or memory consuming scheduler performance, which limits the effectiveness

of design space exploration and other analysis tasks. Furthermore, considering the typi-

cal number of cores in contemporary DSP platforms, the full parallelism exposed by an

HSDF expansion may not be beneficial because such parallelism (e.g., tens to hundreds

of parallelizable firings per scheduling iteration) may overwhelm the number of available

cores (e.g., the latest Texas Instruments TMS320C6678 processor has eight cores).

We present a scalable dataflow graph intermediate representation, called partial

expansion graphs (PEGs), and we present an implementation and scheduling strategy

that utilizes PEGs to realize DSP systems efficiently on multicore platforms. Intuitively,

PEGs provide benefits during the scheduling process by allowing designers and design

7

tools to tune the trade-offs involving dataflow graph (intermediate representation) com-

plexity and exposed parallelism based on relevant considerations, such as the amount of

parallelism that is available in the target platform. This allows scheduler construction and

exploration to proceed more effectively compared to always operating on fully expanded

HSDF graphs (high complexity / high parallelism exposure) or unexpanded SDF graphs

(low complexity / low exposure), which can be viewed as the extremes in the space of

possible PEG representations. We develop methods to tune PEG representations based on

application and architecture characteristics, systematically integrate PEG-based schedul-

ing into real time DSP operating systems, naturally express diverse forms of parallelism in

dataflow graphs, and perform buffer management operations associated with PEG repre-

sentations to dynamically distribute time-varying firing loads (i.e., when execution times

can vary dynamically).

1.2.3 Scheduling and Mapping of Partial Expansion Graphs

Implementation models such as the PEG model help system designers to realize

their applications in simpler, more efficient ways. However, complex spaces of design

parameters typically need to be explored in order to derive system implementations from

such models. We develop three main contributions in this thesis to help address the chal-

lenges associated with exploring such complex design spaces for multiprocessor DSP

system implementation.

First, we develop methods to optimize the amount and types of parallelism that an

application should expose to efficiently run on the platform that it is targeted to. For

8

an application that has a limited number of expandable (data parallel) actors, an exhaus-

tive search can be accomplished in reasonable time, while in other scenarios, the number

of permutations of expandable solutions can increase exponentially, and strategic explo-

ration of candidate solutions is required. Therefore, we address this problem using a

probabilistic search technique. In particular, we develop a Particle Swarm Optimization

(PSO) [12] approach, where each particle represents a specific amount of partial expan-

sion for the application. The particles collectively explore the solution space and generate

different PEG graphs.

Second, given an expanded PEG graph, a mapping solution that places every PEG

instance on an available core is required. We provide a mapping heuristic that enables

the underlying platform to use diverse forms of parallelism (i.e., allow different types of

parallel instances to run simultaneously). The heuristic has two objectives: 1) to utilize

data and task parallelism to speedup the application by identifying what we define as De-

lay Parallel Regions (DPRs), and 2) to map the corresponding DPR instances to different

cores. The second objective aims to balance the load across the set of available processor

cores in order to make use of pipeline parallelism.

Finally, after using the first two methods, described above, to schedule PEGs, ac-

curate evaluation of mapping candidates has to take place. In the context of probabilistic

search methods, such evaluation is often called “fitness evaluation” or “fitness function

evaluation.” Given the dynamic nature of PEG applications and the necessity of changing

system parameters at runtime, such as in LTE where the system is configured depend-

ing on the communication channel status, offline evaluation is not sufficient for accurate

performance estimation of an implementation. Therefore, we provide a novel method for

9

measuring the fitness function by implementing a generic solution that can be customized

easily for different types of expansion and mapping techniques. We also implement the

PSO engine and the mapping heuristic on the targeted platform in order to close the eval-

uation loop and update the solution parameters systematically and accurately. Although

we use a programmable digital signal processor as the embedded platform in our ex-

periments, our “embedded fitness evaluation” approach can be applied to other kinds of

platforms as well.

1.2.4 Integration of Scheduling Solutions with Design Environments

We make use of the proposed mapping workflow for GPP-GPU heterogeneous plat-

forms in the context of system design for software defined radio (SDR), which is an im-

portant signal processing application domain. Our experiments specifically build on a

popular design environment called GNU Radio [13] for developing SDR applications.

GNU Radio provides libraries of kernels and other utilities that facilitate application of

MBA-based design methods.

More specifically, we show how our new MBA-based design methods can be ap-

plied to integrate GNU Radio with a formal dataflow design framework that provides ca-

pabilities for optimized SDR implementation on multicore platforms. We achieve such an

integration through a novel method for automatically translating GNU Radio applications

into formal dataflow representations. This integration allows GNU Radio to employ a

variety of dataflow-based schedulers that effectively target heterogeneous multicore plat-

forms.

10

Dataflow formalisms provide our design flow with a structured, portable applica-

tion description that can be applied for systematic vectorization, latency optimization,

and other design objectives. These objectives can ultimately be incorporated into an S-

DR application through a GPU specific library of SDR actors. For this work, we have

constructed GRGPU, which is such a library written for GNU Radio. This integration

enables new target specific optimizations for performance improvement and provides en-

hanced retargetability. We demonstrate this new model based design flow for GNU radio

on a standard SDR benchmark.

Furthermore, we have developed a code generator to automate the realization of D-

SP systems modeled using PEG representations. Our code generator makes use of avail-

able Application Programming Interfaces (APIs) on digital signal processors, and auto-

matically generates deployable code for optimized application coordination and schedul-

ing.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In the next chapter, de-

scriptions of dataflow models, DSP applications and environments, architecture models,

and our targeted class of multiprocessor scheduling problems are given. In Chapter 3, we

explain the implementation of our model based approach to migrate and schedule DSP

applications onto heterogeneous multiprocessor platforms. In Chapter 4, we cover imple-

mentation details, integration with GNU Radio, and design space exploration techniques

associated with the framework proposed in Chapter 3. Formal definitions, operation and

11

evaluation of partial expansion graphs are presented in Chapter 5, while scheduling meth-

ods for PEG models are proposed in Chapter 6. Finally, conclusions and directions for

future work are discussed in Chapter 7.

1.4 Summary

In this chapter, we have motivated trade-offs between manually porting legacy

code to new multiprocessor platforms, and automating this process using model based

approaches. We discussed how to facilitate different parts of MBAs through the four

contributions of this dissertation.

First, we developed a workflow to schedule digital signal processing systems on het-

erogeneous platforms consisting of general purpose processors and graphics processing

units. Second, we discussed how to use the partial expansion graph as an implementation

model that expresses a carefully tuned amount of parallelism from an application model

depending on the target platform. Third, we discussed how to schedule and map PEG

graphs while profiling the solution using a novel method of implementing a generic solu-

tion on the targeted embedded platform. Fourth, we discussed how to complete the MBA

design loop by implementing code generators for our proposed workflow, and integrating

our scheduling solutions in the context of contemporary DSP design environments and

platforms.

12

Chapter 2

Background

In this chapter, we describe different application and platform models and how they

are used during the application-to-architecture mapping process.

2.1 Dataflow Applications Models

Dataflow models are widely used in design, analysis and implementation of DSP

systems. Different models exists to match various types of applications as synchronous

dataflow (SDF) [14], cyclo-static dataflow (CSDF) [15] for static models and and Boolean

dataflow (BDF) [16], core functional dataflow [17] for dynamic applications. A dataflow

model of an application captures important data dependency information between system

modules.

2.1.1 Formal Description

A dataflow graph G consists of set of vertexes V and a set of edges E. The vertexes

or actors represent computational functions, and edges represent FIFO buffers that can

hold data values, which are encapsulated as tokens. Depending on the application and

the required level of model-based decomposition, actors may represent simple arithmetic

operations, such as multipliers or more complex operations as turbo decoders.

A directed edge e(v1, v2) in a dataflow graph is an ordered pair of a source actor

13

v1 = src(e) and sink actor v2 = snk(e), where v1 ∈ V and v2 ∈ V . When a vertex

v executes or fires, it consumes zero or more tokens from each input edge and produces

zero or more tokens on each output edge. Synchronous data flow is a specialized form of

dataflow where for every edge e ∈ E, a fixed number of tokens is produced onto e every

time src(e) is invoked, and similarly, a fixed number of tokens is consumed from e every

time snk(e) is invoked. These fixed numbers are represented, respectively, by prd(e) and

cns(e). Some implementations of SDF graphs also support non destructive consumption

(peeking) of an integer number of tokens from an input edge. This integer (non-negative)

number is represented by the attribute peek(e) (peek(e) = 0 means that peeking is not

employed on e). Peek attributes are useful for actors that read histories of tokens such as

Finite Impulse Response (FIR) filters. Homogeneous Synchronous Data Flow (HSDF) is

a restricted form of SDF where prd(e) = cns(e) = 1 for every edge e.

Given an SDF graph G, a schedule for the graph is a sequence of actor invocations.

A valid schedule guarantees that every actor is fired at least once, there is no deadlock due

to token underflow on any edge, and there is no net change in the number of tokens on

any edge in the graph (i.e., the total number of tokens produced on each edge during the

schedule is equal to the total number consumed from the edge). If a valid schedule exists

forG, then we say thatG is consistent. For each actor v in a consistent SDF graph, there is

a unique repetition count q(v), which gives the number of times that v must be executed

in a minimal valid schedule (i.e., a valid schedule that involves a minimum number of

actor firing.

This minimal schedule executes a unit of execution that we refer to as one graph

iteration of the given SDF graph. Even though they are formulated in the context of

14

A11

1 2

A12

1
3

1

SRC

1

A21

1
2

A22

1 3

SNK

1

1

Figure 2.1: Example of a SDF graph.

sequential schedules, the concepts of repetition counts and graph iterations are also fun-

damental for multiprocessor scheduling of SDF graphs. Furthermore, associated with any

valid schedule S, there is a unique positive integerB, called the blocking factor of S, such

that S invokes each actor v exactly B × q(v) times [11]. This operation is also known as

vectorization of S.

In general, a consistent SDF graph can have many different valid schedules, and

these schedules can differ widely in the associated trade-offs in terms of metrics such

as latency, throughput, code size, and buffer memory requirements [18]. Figure 2.1

shows a typical SDF graph to model the mp-sched benchmark, which we describe later

in Chapter 4. The repetition counts for this example are: (SRC , 1), (A11 , 1), (A21 , 1),

(A12 , 2), (A22 , 2), (SNK , 6).

Using the dataflow model of an application, different design space exploration tech-

niques can be applied. Such techniques can be useful to detect and exploit possibilities

for parallel execution across actors, schedule actors for efficient execution, and derive

buffer bounds. Some of these analysis techniques can be particularly useful when the

DSP system is targeted to a multicore platform.

Figure 2.2 shows three sources of parallelism that can be naturally expressed when

15

A B
10 1

A

B

C

A0 B0 B

A1 B2 B

Data Parallelism: Actor B

can be expanded 10 times.

Task Parallelism: Actors B

and C can be scheduled

simultaneously.

Pipeline Parallelism:

Iterations 0 and 1 can be

scheduled simultaneously.

Figure 2.2: Expressing parallelism using dataflow graphs.

using dataflow graphs to model streaming applications. A multirate edge e is an edge that

has different values for prd(e) and cns(e). This means that the final repetition counts

for the source and the sink actors of e will be different. These edges can express data

(loop) parallelism in an application. Task parallelism is shown in a broadcast actor when

data flowing through the graph goes through two different chains that originate at a com-

mon actor. Finally, pipeline parallelism can be found when multiple instances of valid

schedules are executed simultaneously.

2.1.2 Dataflow Interchange Format

The Dataflow Interchange Format (DIF) [9] is a standard language and associated

software package that provide for mixed-grain specification, analysis and synthesis for

dataflow-based design and implementation of signal processing systems. DIF provides a

unified framework to facilitate technology transfer of applications among different DSP

design tools. In order to achieve this goal, the DIF front end includes various tools to

automate the importing and exporting of application between the DIF environment and

other dataflow-based design tools.

To facilitate rapid prototyping, designers can focus on describing the dataflow be-

16

havior of their application using the DIF package, which comes with a set of algorithms

and engines to analyze and optimize different application properties. These features of

DIF, together with a set of library module implementations that are targeted to a specific

platform, can be used to derive high quality embedded software implementations with a

high degree of automation [17].

The DIF Language (TDL) provides a language for representing DSP-oriented dataflow

application graphs. A distinguishing characteristic of TDL is support for a variety of d-

ifferent dataflow models of computation, and for integrating subsystems in different rep-

resentations so that individual subsystems can be represented and analyzed in terms of

dataflow techniques that are tailored towards the behaviors and constraints associated

with those subsystems.

2.1.3 Streaming Application: Software Defined Radio

In recent years, we have witnessed rapid growth in the computational capacity for

fixed and floating point arithmetic in processors. This has allowed radio tasks that could

once only be implemented in dedicated analog circuits, analog/digital ASICs, or FPGA

logic to now be achievable using software. Additionally numerous modern wireless com-

munications standards have chosen to exploit the low cost of computational resources

and have begun to significantly drive up the complexity of waveforms in order to achieve

improved spectral efficiency and coverage.

This increase in complexity has led to two choices for those building radios for these

standards: continue to fabricate vastly larger ASICs or explore software-based solutions.

17

With the increases in application complexity, ASIC-based solutions must consume many

more gates to implement all of the functions that the radio may need to perform, and

requires complex hardware state machines to orchestrate the interaction of the various

specialized subsystems. Software defined radio avoids much of these problems by reusing

computing resources on a more fine grained level. This reuse is achieved by simply

implementing all of the necessary routines in software, and implementing flow graphs for

signal processing routines in software [19] [20] [21].

As SDR applications have the parallelism and performance demands to be suit-

able for many of these nascent multicore architectures, this creates the potential of many

unique targets to be considered when going to implementation. SDR applications have

different levels of parallelism that can be exploited on multicore platforms, but design and

programming difficulties have inhibited the adoption of specialized multicore platform-

s like graphics processors (GPUs). Porting code to new architectures can be an error-

prone time-consuming process that involves careful tweaking of signal flow parameters

to achieve satisfactory performance.

2.1.4 Pre-optimized Kernels: GNU Radio

GNU Radio [13] is a software development framework that provides software de-

fined radio developers a rich library and a customized runtime engine to design and test

radio applications. GNU Radio is extensive enough to describe audio radio transceiver-

s, distributed sensor networks, and radar systems, and fast enough to run such systems

on off-the-self radio hardware and general purpose processors. Such features have made

18

GNU Radio an excellent rapid prototyping system, allowing designers to come to an

initial functional implementation quickly and reliably. GNU Radio was developed with

general purpose programmable systems in mind. Often initial SDR prototypes were fast

enough to be deployed on general purpose processors or needed few custom accelerators.

As new generations of processors were backwards compatible with software, GNU Ra-

dio implementations could track with Moore’s Law. As a result, programmable solutions

have been competitive with custom hardware solutions that required longer design time

and greater expense to port to the latest process generation.

GNU Radio is an open-source engine and has a collection of many common ra-

dio primitives. It allows users to specify a directed acyclic graph (DAG) by using a

Python script to instantiate previously-compiled blocks and interconnect them at run-

time. These blocks represent common signal processing operations, ranging from digital

filters to modulators to forward error correction. A hierarchical flow graph mechanism is

provided to allows primitive signal processing blocks to be rapidly connected together to

form a full flow graph. A typical flow graph begins with a data source block, proceeds

sequentially down a number of signal processing blocks, and then terminates in a data

sink block.

Between each block is a buffer that is managed transparently. Buffers are generally

refined into implementations that are appropriate for the targeted architecture and operat-

ing system. Most commonly the buffer implementations utilize memory allocated on the

heap and are carefully matched to the system page size. Blocks contain buffer readers and

writers that maintain their appropriate pointers into each of their input and output buffers,

all of which is typically transparent to the user.

19

GNU Radio currently has two automated run-time schedulers. The original one is

single-threaded. A topological sort of the blocks is executed in order, where each actor is

executed until its input buffer is exhausted. When the last block is completed, execution

resumes at the first block. The multithreaded scheduler instead instantiates each block

in its own thread, where mutexed buffered FIFO queues are used to pass data between

them. The second scheduler involves more system overhead, but allows GNU Radio to

run efficiently on multicore processor architectures.

2.2 Architecture Models

Many types of configurable platforms have been proposed to enhance throughput

and power consumption efficiency for DSP applications. Hardware platforms can be more

customizable for a given protocol specification but as the degree of freedom increas-

es, leveraging common architecture parameters becomes more challenging compared to

software platforms. In this section, the basic elements that customize these platforms are

described and an overview is given on contemporary devices.

2.2.1 Contemporary Platforms

Multiprocessor platforms include graphics processors, multicore general purpose

processors, tile architectures, and multicore digital signal processors. Even for off-the-

shelf computing platforms, a heterogeneous mix of multiprocessor devices is likely, in-

cluding at least one GPU and a multiprocessor GPP.

Figure 2.3 illustrates the architecture and memory hierarchy of a typical CUDA

20

GPU. This device consists of a number of streaming multiprocessor (SMs), where each

SM consists of multiple scalar processors (SPs). Following a Single Program Multiple

Thread (SIMT) paradigm, CUDA kernels can be configured into grids of blocks where

every block consists of a grid of threads. Every thread block or CUDA block gets assigned

to an SM, and threads within a block are executed using SPs. Currently an SM has eight

SPs where every group of 32 threads are simultaneously scheduled. To launch a kernel

that runs on a CUDA device, the host processor has to configure the number of CUDA

blocks, as well as the number of threads for each block. These numbers vary for different

applications depending on the amount of data parallelism that can be achieved.

The CUDA work flow consists of serial code running on the host machine and a

parallel kernel running on the device. Initially, the input data resides on the host memory.

Special functions are provided to copy the data from the host to device memory, where

the latter can be accessed by all the CUDA blocks. All SPs within an SM share 16KB

or 48KB of shared memory depending the compute capability. The shared memory has

lower latency and higher throughput than the device memory. Shared memory is cleared

after a kernel completes, making it necessary for the programmer to copy the partial

results back to the device memory between successive dependent kernels. Also, only

threads within a CUDA block can synchronize inside a kernel, whereas different thread

blocks can synchronize after a kernel launch.

Figure 2.4 shows another multiprocessor example, which is based on a family of

state-of-the-art Texas Instruments evaluation modules. The platform consists of several

fixed or floating point PDSP very long instruction word cores, where every core has its

own configured L1 cache or memory. New platforms also have shared L2 memories,

21

Multiprocessor N

Shared Memory

Single

Processor

Single

Processor

Single

Processor Multiprocessor 2

Shared Memory

Single

Processor

Single

Processor

Single

Processor

Device Memory

Multiprocessor 1

Shared Memory

Single

Processor

Single

Processor

Single

Processor

Figure 2.3: GPU memory hierarchy.

for which data access has comparable latency to private L2 memories. An Enhanced

Direct Memory Access (EDMA) switch fabric can be used to communicate between the

cores and the external world. The TI programming model is rich, with various tools

and application programming interfaces to create and schedule different types of threads,

perform Inter Processor Communication (IPC), and facilitate system development with

pre-optimized kernels.

In this dissertation, we are targeting a heterogeneous mix of off-the-shelf computing

platforms that are used in common workstations and equipped with pre-optimized signal

processing software packages such as GNU Radio. We also enhance the generality and

cross-platform aspect of our approach by targeting additional DSP platforms, such as the

Texas Instruments TMS320C6472 (six cores) evaluation modules equipped with real time

operating systems.

2.2.2 Model Elements

When mapping systematically from an application model to an architecture model,

the following parameters are important to consider in relation to the targeted architecture

22

PDSP

Core

PDSP

Core

PDSP

Core

L1 Cache

Program

&

Data

L1 Cache

Program

&

Data

L1 Cache

Program

&

Data

L2

Memory

L2

Memory

L2

Memory

Shared L2 Memory

EDMA with Switch Fabric

Peripheral Peripheral

Figure 2.4: A typical Texas Instruments evaluation board.

model.

• The number and type of processing units. Processing units can vary from complete

processors with elaborate instruction sets to customized hardware acceleration u-

nits. The number of processors and functional units gives us bounds on the amount

of parallelism that we can exploit from the application graph. Also, common DSP

functions can make use of of dedicated hardware that guides the process of actor-

to-processing-unit assignment.

• Memory hierarchy and communication schemes. The access speed, size and latency

per transaction of different memory levels affect the performance of DSP functions.

Values of these parameters give us guidelines on how much computation to perfor-

m per memory transaction in order to mask communication latency. Second, the

memory hierarchy affects where to place the FIFO buffers required between actors

(i.e., multiple data dependent actors can take advantage of communication through

23

fast but small memories).

Fully utilizing such a multiprocessor setup requires the identification of appropriate

parallelism in the application domain and the implementation of such parallelism effi-

ciently on the targeted platform. More significant challenges are posed to achieve effi-

cient multiprocessor mappings of DSP applications on heterogeneous platforms. When

deriving mappings onto heterogeneous multiprocessors, designers must in general bal-

ance computational loads, efficiently use the given processor types, and account for com-

munication costs. In many DSP systems, this problem is further complicated by multirate

application descriptions, and the need to satisfy latency constraints, as well as constraints

on throughput and power. In the next section we go over the basic decisions that a multi-

processor scheduler must address and different design trade-off.

2.3 Multiprocessor Scheduling

A variety of multiprocessor scheduling techniques can be applied to DSP applica-

tions. In this section, we discuss the different tasks involved in multiprocessor implemen-

tation, and then discuss issues related to the exploitation of parallelism for different types

of applications.

In [22], Kwok provides a survey of many scheduling algorithms and proposes new

scheduling techniques that provide efficient solutions over the state of the art, and can

scale across different kinds of parallel platforms.

Multiprocessor implementation involves a number of different tasks, which are enu-

merated below. A related decomposition of multiprocessor implementation, but one that

24

is focused specifically on the scheduling aspect, is presented in [23].

1. Clustering and assignment — this involves grouping subsets of actors into clusters,

and assigning each cluster to a processing unit.

2. Ordering — Ordering can take place at two levels. The first is ordering the exe-

cution of clusters that form the graph, and the second is ordering the execution of

actors within a single cluster.

3. Buffering — this includes calculating the sizes (capacities) for the FIFO buffers

that are required between different clusters and different actors.

4. Synchronization — two types of synchronization can take place. In the first for-

m, called barrier synchronization, all of the processing units wait until they reach

a certain point in the flow of execution. Once all processors arrive at this point,

they exchange results and then resume concurrent execution. This type of synchro-

nization usually appears in Single Program Multiple Data (SIMD) programming

models. The other form of synchronization occurs between multiple actors to avoid

buffer overflow and underflow.

Depending on the application graph type, the first three tasks can be performed at

compile-time or at run-time. Compile-time clustering, assignment, and buffering provide

low-overhead implementation, and can be applied by extracting statically schedulable re-

gions from the application [24]. Analysis of such regions can allow designers to explore

important trade-offs among context switching, parallel execution, and memory manage-

ment efficiency.

25

2.4 Summary

In this chapter, we have reviewed general literature for basic components in MBAs.

We have given a detailed explanation for dataflow graph models for DSP systems. We

have shown how different forms of parallelism can be expressed in such graphs, and re-

viewed DIF as one of the known design tools to express and compile such graphs. We

have discussed GNU Radio, an open source design environment that uses MBAs to real-

ize software defined radio applications. We have explained the architectures of two con-

temporary platforms — Texas Instruments programmable digital signal processors and

CUDA GPUs — followed by definitions of the basic tasks of multiprocessor scheduling

and mapping.

26

Chapter 3

Scheduling DSP Systems on Heterogeneous GPP and GPU Platforms

3.1 Workflow Description

As we discussed in the previous chapter, model based design has proved to be use-

ful in providing application developers with fast, flexible development environments, as

well as the ability to target heterogeneous processing units. Software based implemen-

tations have the ability to change to accommodate new standards while implicitly taking

advantage of Moore’s law through increases in processor performance. In this chapter,

we describe the steps of our proposed workflow in detail, and provide a new mixed lin-

ear programming formulation for heterogeneous multiprocessor scheduling. Preliminary

versions of this work have been presented in [25] and [26].

The design flow of our model based approach to migrating DSP applications onto

heterogeneous platforms is described in the following steps.

1. Designers develop a model of their DSP application using an appropriate model of

computation, and with no consideration at this stage for the underlying platform.

As the domain specific environment has an execution engine and a library of DSP

kernel components, designers can validate correct functionality of their application.

Architecture models for the underlying platforms can also be built independently

of the application at this stage.

27

2. If actors of interest are not in the available libraries for the selected target platform,

the designer writes accelerated versions of these actors (e.g., targeting the C, CUDA

or Verilog languages). Actor implementation at this stage focuses on exposing

parallelism in a parameterized way so that it can be tuned to match the targeted

hardware.

3. Through automated or manual processes (or some combination), instantiated actors

are assigned to specific processing elements in the targeted heterogeneous plat-

form. The available processing element types can include, for example, GPPs,

programmable digital signal processors, GPUs or hardware accelerators. This step

may be revisited often as part of an iterative system-level design space exploration

process.

4. Mapping results derived in the previous steps are utilized by integrating the original

application description with platform-specific libraries, and with software that is

automatically synthesized based on the selected mapping configurations. These

steps of integration and code generation combine to produce implementations that

can be experimented with on the targeted platform, and deployed as final solutions

when they are validated to satisfy the given application constraints.

The following sections cover the first three steps in detail, specifically as they relate

to our approaches for augmenting the design flow to accommodate new target platforms

and design environments, such as CUDA in the GNU Radio environment. In Chapter 4,

the last step is explained for the same programming environment.

28

3.1.1 Writing Accelerated Kernels

GNU Radio gives the designer a dataflow-based facility to describe the application

graph. Actors are individually accelerated using GPU specific tools. If an actor of in-

terest is not present in the GPU accelerated library, the developer switches to the GPU

customized programming environment, which in our case is CUDA. Also, other tools

such as OpenCl and [27] can also be used to implement such actors. We show in 3.2 that

actors are later profiled to be scheduled on the heterogeneous processors. The designer is

still saddled with difficult design decisions, but these decisions are localized to a single

actor. System level design decisions are orthogonal to this step of the design process.

While we do not aim to replace the programming approach of the actors functionality, the

following design strategy lends itself to later design space exploration by the developer.

As with other GPU programming environments, in CUDA designers must divide

their applications into levels of parallelism: threads and blocks, where threads represent

the smallest unit of a sequential task to be run in parallel and blocks are groups of thread-

s. In our experience, SDR actors vary in how to use thread level parallelism, but tend to

realize block level parallelism with parallelism at the sample level. The ability to tightly

couple execution between threads within a block creates a host of possibilities for the

basic unit of work within a block, be it processing a code word, multiplying and accumu-

lating for a tap, or performing an operation on a matrix. Because blocks are decoupled,

only fully independent tasks can be parallelized. For SDR those situations tend to arise

between channels or between samples on a single channel. Some samples may overlap

between blocks to support the processing of a neighboring sample, but this redundancy is

29

often more than offset by the performance benefits of parallelization.

The performance of this parallelization strategy is strongly influenced by the num-

ber of channels or the size of a chunk of samples that can be processed at one time. When

the application requests processing on a small chunk of sample, there are few blocks to

spread across a GPU leaving it under utilized, while large chunks enable high-utilization.

The performance difference between small and large chunks is non-linear due to the high

fixed latency penalty that both scenarios experience when transferring data to and from

the GPU and launching kernels. When chunks are small, GPU time is dominated by trans-

fer time, but when chunks are larger, computation time of the kernel dominates, which

amortizes the fixed penalty delay. As the application dictates these values, actors must be

written in a parameterized way to accommodate different size inputs.

3.1.2 Partitioning, Scheduling, and Mapping

Once actors are written, system level design decisions must be made, such as as-

signing which actors are to invoke GPU acceleration. With some applications, the best

solution may be to offload every actor that is faster on the GPU than it is on the GPP. But

in some cases, this greedy strategy fails to recognize the work that could occur simulta-

neously on the GPP, while the host thread with the kernel call waits for the GPU kernel

to finish. A general solution to the problem would consider application features such as

rates of firings, dependencies, and execution times on each platform of each actor, as well

as architectural features such as the number and types of processing elements, memories,

and topology.

30

When the application can be extracted into a formal dataflow model, schedulers

will not only respect these constraints but are able to optimize for buffer assignments.

The applicability of such techniques for specialized multicore platforms are still open

research, and this design flow enables greater experimentation with them for SDR appli-

cations. Manual scheduling and mapping is likely to continue to dominate smaller, more

homogeneous mappings, but a grounding in dataflow opens the door for new automation

techniques.

When targeting a GPU or other SIMD platform, vectorization must also be consid-

ered. More vectorization tends to lead to higher utilization of the platform (and therefore

higher throughput), but often at the expense of increased latency and buffer memory re-

quirements. Also an accelerator typically requires significant latency to move data to or

from the host processor, so sufficient data must be burst to the accelerator to amortize

such overheads. Ideally, application designers would be simply presented with a Pareto

curve of latency versus vectorization trade-offs so that an appropriate design point can be

selected. However, vectorization generally influences the efficiency of a given mapping.

Thus, to fully unlock the potential of heterogeneous multiprocessor platforms for DSP

systems, an automated way of arriving at quality solutions is desirable. In the next sec-

tion, a scheduler that accept the application and architecture descriptions and generates a

varieties of solutions that targets heterogeneous multiprocessors platforms equipped with

SIMD units is explained.

31

3.2 Multi-objective Multicore Scheduler

Automated techniques are useful as starting points for leveraging multiprocessing

platforms consisting of GPPs and GPUs, with SSE [28] acceleration and CUDA acceler-

ation. An important criterion to arriving at quality solutions in this context is the ability

to explore a variety of design points efficiently and accurately.

3.2.1 From Application Model to Block Processing DAGs

Increasing the throughput of individual actors can be performed By applying actor-

level vectorization (also referred to as block processing) [29] , we can process the max-

imum possible number of tokens per actor execution. For an SDF graph, this objective

can be achieved by using a flat schedule of the input graph. A flat schedule can be gen-

erated by deriving a topological sort, and invoking every actor v a number of times equal

to B × q(v). While flat schedules have the potential to improve processor utilization and

throughput, such schedules generally suffer from high memory usage. However, in this

proposal, our objective is to increase the utilization of SIMD cores and furthermore, the

available memory on a typical GPU is not a constraint for the class of SDR applications

that we are targeting. Given an acyclic SDF application graph G, our scheduling ap-

proach first generates a directed acyclic graph (DAG), which we call a block processing

DAG (BPDAG) T . T is isomorphic to G, meaning that the sets of vertexes and edges are

in one-to-one correspondence with one another. Each vertex t in T represents a vectorized

version of a specific vertex v in G with some vectorization factor k (i.e., t represents k

successive invocations of v). We refer to each vertex in a BPDAG as a task.

32

For platforms that consist of both GPPs and GPUs, different levels of parallelism

can generally be exploited in order to improve throughput. First, a fine grain level of data

parallelism can be applied by utilizing the SIMD cores available in GPUs and vector oper-

ation accelerators in GPPs (if available). This level can be exploited using vectorization.

A more coarse grain form of task parallelism is applied by mapping parallel tasks of the

application graph onto the available set multiple processors. Both forms of parallelism

may generally be exploited more effectively when B > 1, where B is the blocking factor.

Under such a scheduling approach, the latency for a single graph iteration may increase.

However, the latency for a block of B successive graph iterations may be reduced signif-

icantly, which leads to an increase in throughput (in terms of executed graph iterations

per unit time). Such a trade-off is favorable in many throughput-critical systems or in

applications where the increased latency does not exceed the given latency constraint.

In our workflow, we set the level of global vectorization before the mapping step to

properly inform the multiprocessor scheduler of the vectorized running time of the actors

in the application for each processor type. By doing so, we efficiently utilize the SIMD

cores by simultaneously firing multiple graph iterations. Therefore the basic multiproces-

sor scheduler objective is set to minimize the overall latency LB of B graph iterations,

which provides an optimized graph execution throughput of N/LB graph iterations per

unit time. Here B is a parameter than can be changed flexibly in our framework to help

explore the scheduling design space.

The BPDAG is sent to the core of our multiprocessor scheduling engine to perform

task mapping (assignment of tasks to cores) and ordering (ordering of tasks assigned to

the same core). BPDAG tasks are annotated with their running times, which generally

33

 !!"
!" #"

 !#"
!"

$"

!"

%&'"

!"

 #!"
!"

#"

 ##"
!" $"

%()"

!"

!"

!*"

 !!"
#*"

 !#"

!*"

%&'"

!*"

 #!"
#*"

 ##"

+*"

%()"

Original SDF Graph Corresponding BPDAG

Figure 3.1: Example of an SDF graph for the mp-sched benchmark and its corresponding
BPDAG.

are functions of the vectorization factors. Figure 3.1 shows an example of transforming

an SDR benchmark, called mp-sched and explained in Section 4.4, to its corresponding

BPDAG for a blocking factor of 10. This blocking factor generates the vectorization

factor and is used to derive each task in the BPDAG.

3.2.2 Architecture Model

Many platforms have been proposed to run SDR applications. A typical solution

consists of an RF front end, units that can perform digital signal processing (processors, IP

cores, etc.), and interconnection media. The system input is the digitized signal produced

by the analog to digital converter. In typical SDR platforms, the processing is executed by

multiple heterogeneous processors that are suitable for different actor operations. Actors

that perform control functions require complex pipelines and branch prediction units.

GPPs (e.g., Intel quad cores) are usually suitable for these actors. Another relevant type

of processor is the Single Instruction Multiple Thread (SIMT) type (e.g., NVIDIA GPUs).

These processors have less sophisticated cores that are able to process individual functions

on different data sets (e.g., symbol mapping and coding). Many physical layer actors

require this kind of data parallelism, and GPUs often exhibit good performance for such

34

ABKL'

@
,
+
+
<
:
24
#
9
,
:
'M
<
;
'

ABKN'

ABK'O'

"#

!#

G#

Figure 3.2: Example of typical off-the-shelf platform consisting of GPPs and GPUs using
the PCI bus as communication medium.

actors. Another possible operators are IP cores that are designed to efficiently execute

some of the algorithm operation as Fast Fourier Transform and Turbo Decoding. Usually

these core are implemented either on ASIC or Field Programmable Gate Arrays.

The target platform that we consider consists of a multicore GPP, possibly with

one or more SIMD accelerators (e.g., SSE extensions in Intel cores) accompanied with

one or more GPUs. All of the processors are assumed to be connected with an all-to-

all communication medium. Figure 3.2 shows an example for a typical platform. If two

dependent actors are allocated on the same processor, data movement will take place using

shared memory at zero cost; otherwise, communication occurs across a contention-based

communication medium (e.g., PCI bus).

3.2.3 Problem Formulation

The input to our multiprocessor scheduler consists of the task graph, a description

of the target platform; and profile data (for execution time estimation) for each task. The

objectives of the scheduler are to perform task assignment and ordering in order to meet

a given objective function under a given set of constraints. For assignment, the scheduler

35

is responsible for mapping tasks to processors and edges to communication media. Non-

preemptive operation is assumed for both tasks and edges (communication). The ordering

aspect of scheduling is required if multiple tasks (edges) are assigned to the same proces-

sor (medium). Execution times for tasks are the associated BPDAG vertexes processing

times (as determined by the actor profiles together with the associated vectorization fac-

tors), while execution times for edges are estimated as the data communication times. The

input to the multiprocessor scheduler consists of the following items.

a — Architecture description: The platform is described by a set P of processors

and a set β of communication buses.

b — Application description: The application model (input BPDAG) consists of a

set T of tasks, and edges E.

c — Dependency descriptions: Dataflow dependencies are defined by the src and

snk functions described in Section 2.1.

d — Task and edge profiles: The task and edge execution times are obtained by

simulating the tasks (edges) on different processors (communication media). These pro-

files are described by two functions: RTP(t ∈ T, p ∈ P)→ R defines the execution time

of task t on processor p, and REB(e ∈ E, b ∈ β)→ R defines the execution time of edge

e on bus b. Here, R is the set of positive real numbers.

e — Dependency analysis: Task t1 is said to be dependent on task t2 if there is a

path that starts at t1 and ends at t2. If no such path exists between t1 and t2, then they are

called parallel tasks. A similar concept can be applied to edges.

36

The actor dependency function AD : A × A→ {0, 1} is defined by the equation:

AD(a1, a2) =

1 if a1 and a2 are dependent

0 if a1 and a2 are parallel

The objectives of the scheduler are to perform task assignment and ordering in order

to meet a given objective function under a given set of constraints. For assignment, the

scheduler is responsible for mapping tasks to processors and edges to communication

media. Non-preemptive operation is assumed for both tasks and edges (communication).

The ordering aspect of scheduling is required if multiple tasks (edges) are assigned to

the same processor (medium). The input summarized in items a-e above is sent to the

multiprocessor scheduler in order to perform the operations of mapping and ordering.

3.3 Multiprocessor MLP Scheduler

The problem description in Section 6.2.1 can be solved using available heuristics

and optimal schedulers. As offline analysis is suggested to schedule static applications,

a mixed linear programming (MLP) heterogeneous multiprocessor scheduler is proposed

in order to find efficient solutions. The MLP scheduler consists of a set of equalities

and inequalities that describe the application and architecture graphs, solution variables,

constraints and objective.

3.3.1 Basic Variables

The basic MLP variables in our formulation are as follows.

37

• Mapping variables: ∀t ∈ T and ∀p ∈ P , XT [t, p] = 1 if task t is assigned to

processor p, and XT [t, p] = 0 otherwise. Similarly, ∀e ∈ E and b ∈ β, XE [e, b] =

1 if edge e is assigned to bus b, and XE [e, b] = 0 otherwise.

• Ordering variables: ∀ parallel tasks t1 and t2 that are assigned to the same proces-

sor, YT [t1, t2] = 1 if t1 is scheduled to run before t2, and YT [t1, t2] = 0 if t1 is

scheduled to run after t2. A similar formulation is applied for parallel edges.

• Actual running time: ∀t ∈ T , RT [t] is the actual (platform-dependent) execution

time of the task t depending on its mapping. Similarly, ∀e ∈ E, RE[e] is the actual

token transfer time for the edge e.

• Start time: ∀t ∈ T , ST [t] is the start time for execution of task t. ∀e ∈ E, SE [e] is

start time of data transfer across edge e. These variables will be controlled by the

dependencies expressed in the BPDAG and the ordering variables.

In this formulation, the basic variables (defined above) are used to derive a number of

other variables. These derivations are carried out so that we can use linear equations

to “detect” pairs of tasks that are assigned to the same processor. First we define the

variables ZTP [t1, t2, p], where t1 ∈ T , t2 ∈ T , p ∈ P , and t1 6= t2. ZTP [t1, t2, p] equals

one if t1 and t2 are both assigned to p, and equals zero otherwise. Clearly, this variable

depends on XT [t1, p] and XT [t2, p]. This dependency can be linearized according to the

following constraints:

• ZTP [t1, t2, p] ≥ XT [t1, p] + XT [t2, p]− 1

• ZTP [t1, t2, p] ≤ XT [t1, p]

38

• ZTP [t1, t2, p] ≤ XT [t2, p]

The first equation handles tasks are assigned to the same processor, while the other

two handle the three other cases. It can be shown that these equations dominate the

problem size, and as a result, they contribute significantly to the time required by the

applied solver.

Next, we define another set of variables ZT [t1, t2], where t1 ∈ T, t2 ∈ T, t1 6= t2.

ZT [t1, t2] equals one if the two tasks t1 and t2 are collocated. These variables can be

easily derived by the following inequality:

ZT [t1, t2] ≥
∑
p∈P

ZTP [t1, t2, p].

The derived variables ZT will be used in two cases. First, for collocated parallel

tasks, these variables help to adjust the start times of tasks based on their ordering. Sec-

ond, if a pair of tasks is connected by an edge, then these variables serve to make the

corresponding edge transfer time equal to zero, which is appropriate since the communi-

cation occurs through processor shared memory.

3.3.2 Constraints

We use the following inequalities to formulate our targeted heterogeneous schedul-

ing problem:

• Assignment: Every task (edge) is assigned to only one processor (communication

39

medium):

∀t ∈ T,
∑
p∈P

XT [t, p] = 1 and ∀e ∈ E,
∑
b∈β

XE [e, b] = 1

• Task running time: ∀t ∈ T , p ∈ P

RT [t] ≥ XT [t, p]×RTP [t, p]

• Edge running time: ∀e ∈ E, b ∈ β

RE[e] ≥ XE [e, b]×REB[e, b]−K × ZT [src(e), snk(e)]

where K is a very large number. The second term in this inequality models the

“edge zeroing process” (i.e., the process of setting an edge’s token transfer time to

zero) if the source and the sink tasks of the edge are assigned to the same processor.

• Starting times for dependent tasks: ∀e ∈ E

SE [e] ≥ ST [src(e)] +RT [snk(e)]

ST [snk(e)] ≥ SE [e] +RE(e)

40

These two equations guarantee the proper execution order of dependent tasks by

also taking into consideration relevant edge execution times.

• Starting times for parallel tasks: Orderings for parallel tasks can be achieved using

an adaptation of an equality from [30]: ∀ parallel tasks t1 ∈ T, and t2 ∈ T , t1 6=

t2 :

ST [t1] ≥ ST [t2] +RT [t2]−K(1− YT [t1, t2])−K × ZT [t1, t2]

ST [t2] ≥ ST [t1] +RT [t1]−K × YT [t1, t2]−K × ZT [t1, t2]

Note that the last term effectively disables these inequalities if the two tasks are not

collocated

3.3.3 Objective

Finally, the objective function minimized is the total graph latency (makespan) M ,

which can be specified by:

∀t ∈ T,M ≥ ST [t] +RT [t]

The solution of the formulated MLP problem is then sent to the workflow back-end

to generate a running system. In the next chapter, implementation of different parts of the

scheduling workflow is described for SDR systems used in the GNU Radio environment,

while targeting platforms consisting of off-the-shelf GPPs and GPUs.

41

3.4 Related Work and Contribution

Many previous research efforts have considered facilitation of DSP system imple-

mentation on new computing platforms. In this section, related work that considers ap-

plication and architecture modeling and multiprocessor scheduling is surveyed.

Various heuristics and mixed linear programming models have been suggested for

scheduling task graphs on homogeneous and heterogeneous processors (e.g., see [31]).

In these works, the problem formulations are developed to address different objective

functions and target platforms for implementing the input application graphs.

In [21], a dynamic multiprocessor scheduler for SDR applications is described. The

basic platform consists of a Universal Software Radio Peripheral (USRP), and cluster of

General Purpose Processors. A flexible framework for dynamic mapping of SDR compo-

nents onto heterogeneous multiprocessor platforms is described in [20].

In [32], the authors present a multicore scheduler that maps SDF graphs to a tile

based architecture. The mapping process is streamlined to avoid the derivation of equiv-

alent HSDF graphs which can involve significant time and space overhead.

Vectorization for single-processor implementation of SDF graphs has been studied

previously (e.g., see [29] and [33]). In [34] automatic “SIMDization” (conversion to a

form that utilizes SIMD acceleration on the target processor) of streaming programs from

a general purpose programming approach is proposed. A combination of SIMDization

techniques with homogeneous multiprocessor scheduling is also discussed.

In addition to the previous work, we target platforms that consist of multiple GP-

P and GPU components, and systematically integrate SDF vectorization and inter-actor

42

(task-level) parallel scheduling to optimize application throughput and latency on the tar-

geted class of heterogeneous multiprocessor platforms.

In the current GNU Radio engine, a strictly runtime multiprocessor scheduler is

used to run applications through dynamic scheduling. However, for a wide range of SDR

systems, offline profiling and analysis is possible, and more efficient scheduling solutions

can be computed statically. To exploit such static scheduling opportunities, we provide an

Mixed Linear Programming (MLP) formulation for the targeted multiprocessor schedul-

ing problem.

Our new scheduling technique shows how to make use of three levels of parallelism

in order to increase the system throughput. Our approach is restricted to acyclic SDF

graphs, which can be used to represent a broad class of practical SDR applications and

subsystems. Generalization of our techniques to graphs that contain cycles is a useful

direction for future work.

The primary contribution of this chapter is a novel workflow for scheduling S-

DF graphs while taking into account actor execution times, efficient vectorization, and

heterogeneous multiprocessor execution. This scheduling workflow is targeted carefully

towards heterogeneous platforms that consist of on the shelf GPPs and GPUs and appli-

cations described in a domain specific optimized language. Moreover, as offline analysis

can be used to generate efficient solutions, we present a novel mixed linear programming

multiprocessor scheduler.

43

3.5 Summary

In this chapter, we described the main steps of porting DSP applications to heteroge-

neous platforms consisting of GPPs and GPUs. We showed how careful actor implemen-

tation should be considered while targeting such processors, where data level parallelism

can be exploited efficiently through SIMT and vector processing units. In order to ful-

ly utilize such units, vectorization should be considered in order to increase the system

throughput. Therefore, we utilize different forms of parallelism in two steps. First, we

construct a model called the block processing DAG (BPDAG), where different configu-

rations for vectorization and pipeline parallelism can be represented. Then we send the

BPDAG to a scheduler to perform the mapping and ordering of tasks onto heterogeneous

processors.

We precisely defined the various input parameters and variables that are associat-

ed with our proposed multiprocessor scheduler. In addition to the profiling of applica-

tion graph actors for different processor types, we also described our architecture model,

which can accommodate heterogeneous mixes of processors. We developed a mixed lin-

ear programming (MLP) formulation for our targeted multiprocessor scheduling problem.

This MLP formulation has the objective of minimizing the total latency of multiple graph

iterations, where the number iterations to consider is taken as a parameter of the formula-

tion.

In the next chapter, we show in detail how our proposed workflow is integrated into

GNU Radio, and we conduct experiments to profile solutions obtained using our MLP

scheduler.

44

Chapter 4

Integration of the Heterogeneous Platform Scheduling Workflow with

GNU Radio

In this chapter, we show how to use the scheduling techniques explained in Chap-

ter 3 by implementing the design flow proposed in Figure 4.1. In this workflow, we use

GNU Radio as the runtime environment for SDR applications; and the dataflow inter-

change format (DIF) for dataflow graph representation, analysis, and optimization. Our

targeted heterogeneous platform consists of CUDA-enabled NVIDIA GPU and Intel X-

eon GPP devices. Preliminary versions of this work were presented in [35] and [36].

We start by an example of porting DSP kernels to new processing platforms as ex-

plained in Section 4.1. Then in Section 4.2, we show how to automatically import a GNU

Radio flowgraph to a formal description in DIF. Augmenting the GNU Radio flowgraph

with APIs that facilitate offloading actors assigned to run on GPUs is explained in Sec-

tion 4.3. Finally, we demonstrate the actual system realization and trade-offs between

different objectives in Section 4.4.

4.1 FIR Filter Mapping to GPU Architecture

Finite Impulse Response (FIR) filters are common actors used in many DSP ap-

plications. In an FIR filter, an output sample is derived as a sum of products of input

samples by the filter’s coefficients. In this implementation, we take advantage of pipeline

45

Data Flow

Scheduler

Data Flow

Graph

Throughput,

Latency

Constraints

Application

Graph

Multi-processors

Scheduler

Mapping and

Ordering

Schedule

GNU Radio Engine

Final

Implementation

Platform

Description

Actors Profiles

Library of Actors

Implementation

GNU Radio

Figure 4.1: Implemented workflow for SDR applications described in GNU Radio.

parallelism across the filter output samples by considering the production of every output

token as a separate dataflow graph iteration. For relatively large chunks of samples, the

CUDA kernel is configured such that the number of blocks is equal to double the number

of available streaming multiprocessors. By using this configuration, pipeline parallelism

can be achieved efficiently if each CUDA block is responsible for calculating a different

set of output samples. In other words, the required output samples are evenly distributed

across the employed CUDA blocks.

To overcome the inherent stateful property of FIR filtering (i.e., consecutive output

samples depend on some shared input samples), the input of every block contains an extra

set of delayed input samples equal to the number of filter taps. To reduce the number of

device memory accesses in our implementation, initially each of the threads performs

a load of a coalesced chunk of input elements to the shared memory of its associated

multiprocessor. Then each thread is responsible for calculating a single output sample.

After processing a set of inputs, the threads perform a block store of the calculated results

46

Figure 4.2: Comparison of total running time versus number of outputs for FIR filter
implementation on different processors.

to the GPU device memory.

Figure 4.2 compares FIR filter performance in terms of the execution times required

for GPU and GPP implementations. Even though the GPU can compute more floating

point operations per second than the GPP, using it becomes beneficial only if the amount

of output required is large enough to compensate for the communication overhead be-

tween the GPP DRAM and the GPU device memory. This number (i.e., the number of

processed outputs) can be added as an application attribute to help in deciding on actor-

to-processing-unit assignment. The execution time per input token is another important

attribute that not only takes into consideration the number of processing units but also the

behavior of relevant implementation details.

47

4.2 DIF Importer from GNU Radio

It is useful to express the dataflow structure of a DSP application using a language

that emphasizes the basic dataflow behavior (i.e. the DIF language). In this section, steps

towards building this model from GNU Radio is implemented.

In GNU Radio, all primitive blocks take one of the following two forms, which

becomes an important consideration for scheduling.

• Synchronous Blocks — Primitive blocks inheriting from a gr-sync-block always

maintain a fixed ratio of input items consumed to output items produced. This may

be 1-to-1 or N -to-M , but it is a fixed value and this is enforced by the methods

available to each block implementation.

• Non-Synchronous Blocks — Primitive blocks inheriting from a gr-block do not

need to maintain a fixed input to output item ratio. Instead, the work function

(core block functionality) determines during each execution how many items will

be consumed from the input buffer and how many will be produced in the output

buffer.

In this work, the goal is to develop new capabilities in DIF for synthesizing effi-

cient SDR implementations. Incorporating dataflow scheduling by generating a DIF file

through a new module in GNU Radio will allow us to perform more design space explo-

ration.

SDR blocks that have fixed production and consumption rates can be easily mapped

to SDF models. In this case, multiple optimization techniques can be applied at compile-

48

GRC

Figure 4.3: Multirate application exported to DIF.

time to meet specific platform constraints (e.g., see [9]). On the other hand, variable

rate actors can be mapped to the more flexible core functional dataflow model of com-

putation [17]. In this model, every actor has a set of modes such that the production an

consumption rates are fixed in each mode, but can vary across different modes. Core

functional dataflow representations are amenable to quasi-static scheduling. This for-

m of scheduling permits dynamic changes in dataflow behavior while fixing significant

portions of schedule structure at compile time, which generally increases efficiency and

predictability compared to conventional dynamic scheduling approaches. Quasi-static

scheduling for core functional dataflow graphs is addressed in [24].

An TDL importer was written to transform system descriptions from python scripts

in GNU Radio to equivalent TDL representations. Figure 4.3 shows a snapshot of a

system generated by the basic GNU radio graphical user interface and its corresponding

graph as generated by the DIF package.

The importer starts by flattening the application graph, and computing a topological

sort. Then for every block in the GNU Radio model, a DIF actor and its incident dataflow

49

edge connections are created and stored temporarily in linked lists. After traversing all of

the application graph blocks, the lists of actors and edges are exported to a TDL file using

the appropriate TDL syntax.

One difference between the GNU Radio representation format and that of DIF is

in the expression of dataflow production and consumption rates. In DIF, these rates are

represented as integer numbers of tokens produced and consumed for every actor invo-

cation. On the other hand, in GNU Radio, the rates are managed in terms of individual

floating point numbers that represent ratios between corresponding production and con-

sumption rates. Thus, part of the process of converting a GNU Radio representation to

TDL involves appropriate conversion of data associated with production and consumption

rates.

4.3 GRGPU: GPU Acceleration in GNU Radio

We augments GNU Radio, with a stand-alone GPU accelerated library. The fo-

cus of this API is to construct a back-end capable of integrating specialized multicore

solutions into a domain specific prototyping environment. This should facilitate the pre-

viously described dataflow based design flow, but should also enable these other works to

be applied in the field of SDR. Any solution targeting a complex multicore system is un-

likely to produce the optimal solution with its first implementation. The ability to quickly

generate and evaluate many solutions on a multicore platform should improve the effica-

cy the approach and ultimately the quality of the final solution. Therefore, this developed

approach gives an SDR developer the ability to prototype a GPU accelerated application

50

and explore its design space fast and effectively.

We have developed a set of GPU accelerated, GNU Radio actors in a separate,

stand-alone library called GRGPU. GRGPU extends GNU Radio’s build and install frame-

work to link against libraries in CUDA. The resulting actors may be instantiated alongside

traditional GNU Radio actors, meaning that designers may swap out existing actors for

GRGPU actors to bring GPU acceleration to existing SDR applications. The traditional

GNU Radio actors run unaffected on the host GPP, while the GRGPU actors utilize the

GPU.

When writing a new GRGPU actor, application developers start by writing a normal

GNU Radio actor including a C++ wrapper that describes the interface to the actor. The

GPU kernels are written in CUDA in a separate file and tied back to the C++ wrapper via

C functions such as device work(). Additional configuration information may be sent in

through the same mechanism. For example, the taps of a FIR filter typically need to be

updated only once or rarely during the execution, so instead of passing the tap coefficients

during each firing of the actor (taps sent from work() to device work() to the kernel call),

they could be loaded into device memory when the taps are updated in GNU Radio. The

CUDA compiler, NVCC, is invoked to synthesize C++ code which contains binaries of

the code destined for the GPU, but glue code formatted for C++. By generating the C++

instead of an object file directly, we are able to make use of the standard GNU build

process using libtool. Even though the original application description was in a different

language, the code is wrapped and built in the GNU standard way giving it compatibility

with previous and future versions of GNU and GNU Radio.

When a GNU Radio actor is instantiated, a new C++ object is created which stores

51

and manages the state of the actor. However, state in the CUDA file is not automatically

replicated, creating a conflict when more than one GRGPU actor of the same type is

instantiated. To work around this issue, we save CUDA (both host and GPU) state inside

the C++ actor, which includes GPU memory pointers of data already loaded to the GPU.

The state from the GPU itself is not saved inside the C++ object, but rather the pointers to

the device memory are. Data residing in the GPUs memory space is explicitly managed

on the host, so saving GPU pointers is sufficient for keeping the state of the CUDA portion

of an actor.

To minimize the number of host-to-GPU and GPU-to-host transfers, we introduce t-

wo actors, H2D and D2H, to explicitly move data to and from the device in the flow graph.

This allows other GRGPU actors to contain only kernels that produce and consume data

in the GPU memory. If multiple GPU operations are chained together, data is processed

locally, reducing redundant I/O between GPU and host as shown in Figure 4.4. In GNU

Radio, the host side buffers still exist which connect links between the C++ objects that

wrap the CUDA kernels. Instead of carrying data, these buffers now carry pointers to data

in GPU memory. From a host perspective, H2D and D2H transform host data to and from

GPU pointers, respectively.

While having both a host buffer and a GPU buffer introduces some redundancy,

it has a number of benefits which make this an attractive solution. First, there is no

change to the GNU Radio engine. The GNU Radio engine still manages data being

produced and consumed by each actor, so decisions on chunk size or invocation order

do not need to be changed with the use of GRGPU actors. Second, GPU buffers may

be safely managed by the GRGPU actors. With GPU pointers being sent through host

52

source H2D sink D2H
op

(GPU)

op

(GPU)

op

(GPU)

Figure 4.4: GRGPU actors within H2D and D2H communicate data using the GPU mem-
ory, avoiding unnecessary host/GPU transfers.

buffers, actors need only concern themselves with maintaining their own input and output

buffers. This provides dynamic flexibility (actors can choose to create and free memory

for data as needed) or static performance tuning (actors can maintain circular buffers

which they read and write a fixed amount of data to and from). Such schemes require

coordination between GRGPU actors and potentially information regarding buffer sizing,

but the designer does have the power to manage these performance critical actions without

redesigning or changing GRGPU. Future versions of GRGPU could provide a designers

with a few options regarding these schemes and even make use of the dataflow schedule or

other analysis to make quality design decisions. Finally, no extraneous transfers between

GPU and host occur. While the host and GPU buffers mirror each other, no transfers occur

between them, which avoids I/O latencies that can be the cause of application bottlenecks.

4.4 Empirical Results

We have implemented the proposed workflow, multiprocessor scheduler, and GNU

Radio integration. We have experimented with the framework using the mp-sched bench-

mark [13] shown in Figure 4.5. This benchmark is a synthetic benchmark with a pa-

rameterized structure that is representative of a broad class of practical signal flowgraph

structures. This benchmark describes a flow graph that consists of a rectangular grid

of FIR filters. The dimensions of this grid are parameterized by the number of stages

53

SRC

FIR

FIR

FIR

FIR

FIR

FIR

FIR

FIR

FIR

FIR FIR FIR

SNK

Number of Stages

N
u

m
b
er

 o
f

P
ip

el
in

es

Figure 4.5: MP-sched SDR benchmark.

(STAGES) and number of pipelines (PIPES). The total number of FIR filters is thus

equal to STAGES × PIPES . In this evaluation, the number of filter taps equals 60. This

benchmark represents a non-trivial problem for the multiprocessor scheduler as all actors

in different pipes can be executed in parallel. In practical GNU Radio system design,

designer input typically eliminates a significant part of the solution space by restricting

the allocation of some actors to specific processors.

4.4.1 GRGPU Profile

While GRGPU facilitates a fast path to implementation and consequently the de-

sign exploration of how to offload functionality to acceleration platforms, it does contain

overheads. To benchmark the overheads, we consider two application types: a lightly

loaded application graph and a heavily loaded application graph. Intuitively, the lightly

loaded graph isolates the minimum overheads associated with using GRGPU, while the

54

heavily loaded application indicates the overheads associated with compute intensive k-

ernels. We benchmark these applications on an NVIDIA GTX 260 in a box with a dual

core Xeon running at 3.0 GHz.

The structure of both the lightly and heavily loaded application graphs is the same

as that shown in Figure 4.4. A single source of samples is introduced into a chain of

operations, which for these tests are either all processed by the GPP or all accelerated with

the kernel. Samples are chunked into groups of 32k to be processed by the operations to

ensure some baseline level of vectorization available to the actor. In the lightly loaded

case, we use an operation that has typical CUDA vectorization capabilities, but has a

small compute load: constant add. In the heavily loaded case we replace this operation

with an operation well optimized for the GPU: a 32K point Fast Fourier Transform (FFT).

By cascading the FFTs, we are able to simulate significant compute loads with a single

actor type. The GPP implementation of the FFT is the SSE accelerated implementation

from the GNU Radio library, while the GRGPU implementation is based on the CUFFT

library released by NVIDIA.

The results for the two benchmarks are shown in Figure 4.6. In the lightly load-

ed case, the GPP implementation outperforms the GPU accelerated case regardless of

how many samples are to be processed. Because there is negligible speedup with the

constant add kernel, the GPU implementation does not overtake the performance of the

GPP. Instead, there is a fixed latency penalty of 200ms. This is incurred from a variety

of sources including transferring samples to the device, launching the kernel, and col-

lecting the results. There is also time spent in the GRGPU control logic that coordinates

the host thread queues with the device queues. While these penalties appear negligible

55

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

E
x
ec
u
ti
o
n
 t
im
e
(s
ec
s)

Thousands of samples processed

CPU - Light GPU - Light CPU - Heavy GPU - Heavy

Figure 4.6: GRGPU overhead for various benchmarks.

from a throughput standpoint, the latency penalty is currently high. In the heavily loaded

benchmark, the acceleration from the CUFFT library almost immediately makes up for

the latency overhead. The GPU approaches 40x acceleration over the SSE accelerated

GPP implementation.

4.4.2 Scheduler Empirical Results

4.4.2.1 Test Setup

The input files for the workflow shown in Figure 4.1 consist of the following.

• The SDF application graph described using the dataflow interchange format lan-

guage.

• Constraints on the blocking factor B, which are intended to be derived from con-

straints on memory requirements and overall application latency.

• A platform description that includes the available processors types and the number

of processors for each type.

56

• Profile information for every actor (edge) on the available processor types (commu-

nication media).

The first stage of the workflow consists of the SDF scheduler, which reads the

application SDF graph; calculates the repetition count q(v) for every actor v; reads the

global blocking factorB; and generates the corresponding BPDAG. Dependency analysis

will be performed to set the required values associated with task dependencies. These

operations are implemented using the DIF package.

In the second multiprocessor scheduler stage, the scheduler input is generated by

setting the run-time of every actor and edge. This run-time will depend on the number

of generated tokens per task invocation. The profiles of every actor for a given processor

type are stored as tables that are indexed by the number of produced tokens. In this way,

the tables are consistent with GNU Radio synchronous block descriptions. In this evalua-

tion, this step is repeated for different blocking factors (B values). The MLP formulation

is implemented using the GNU MathProg language [37]. This implementation consists

of two parts: the problem description and data section. The problem description speci-

fies the equalities and inequalities mentioned in sec 3.3 in a parameterized format. For

every platform and application graph, the data part described in 6.2.1 changes. The MLP

problem is solved using the IBM ILOG CPLEX optimizer.

4.4.2.2 Design Space Exploration

To evaluate our approach empirically, we selected a solution to implement within

GNU Radio. Figure 4.7 shows the mapping and ordering solution for a 2x5 mp-sched

57

CPU

GPU

PCI Bus

src FIR_21

FIR_11

FIR_22 FIR_14 FIR_15

e11 e14

FIR_12 FIR_13

e23 e2s

FIR_23 FIR_24 FIR_25

snk

Figure 4.7: Gantt chart for 2x5 mp-sched graph on 1 GPP and 1 GPU.

Table 4.1: Solver results for different mp-sched graphs.

Graph Size Platform Description Improvement Solver

PIPES STAGES GPPs GPUs % hours
2 5 1 1 55% 0.01
4 4 2 2 400% 0.49
6 6 3 3 494% 3.94
8 8 4 4 398% 19.6

graph running on a typical modern platform that consists of 1 GPP (Intel Xeon CPU

3GHz), 1 GPU (a NVidia GTX 260), and a PCI bus for a blocking factor B = 2048.

According to the model, this is a 55% performance improvement over an all-GPP im-

plementation and a 19% improvement over an all-GPU implementation. To validate the

model result, we implemented this design within GNU Radio using profiling for latency

per token and ensuring accuracy within 6 decimal places to the existing solution. With

GRGPU, our solution provided a 39% performance improvement over our empirical re-

sults for an all-GPP solution, and and a 21% improvement over an all-GPU solution. For

this level of vectorization (B = 2048), using both a GPU and GPP in the implementation

provides the best results, as the model indicates.

Figure 4.8 shows a graph of latency per iteration for different vectorization levels.

From the characteristic curves of the GPP and GPU implementations of the FIR actor, the

GPU is selectively used when I/O latency bound, but more heavily used when sufficient

58

0

1

2

3

4

5

6

7

8

9

10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1K 2K 4K 8K 16K 32K 64K

 (
m
ic
ro
se
co
n
d
s)

Blocking Factor (B)

Latency per iteration

(primary axis)

Overall Latency of B iterations.

(secondary axis)

(m
il
li
se
co
n
d
s)

Figure 4.8: Design space for a 2x5 mp-sched graph on 1 GPP and 1 GPU for different
blocking factors.

vectorization makes the problem compute bound for the GPU. Using this design space

graph, the designer can start by choosing the maximum allowable latency of the DSP

application, and then pick the design point that provides the maximum throughput that

can be supported for this latency.

Table 4.1 shows the solver running time for different mp-sched graphs on various

platforms. As GRGPU backend is the first attempt to implement SDR systems on hetero-

geneous platforms, we have added the amount of improvement of the scheduled mp-sched

graphs over the existing homogeneous GPP implementation in GNU Radio. For the re-

ported solver time, the solution gap ranges from 17% for the 4x4 graph to 67% for the 8x8

graph. By the solution gap, we mean the difference between the generally non-realizable

results obtained from the real-valued solutions produced by the solver, and the practical

results obtained from the corresponding integer valued solutions (derived by rounding the

solver solutions). In these experiments, the MLP solver was executed on an Intel Core 2

Duo processor at 3 GHz. It can be shown that the developed MLP problem formulation

59

Table 4.2: Evaluation of our MLP formulation on multicore processors.

Experiment 1 thread 4 threads 8 threads
Imp. Gap. Imp. Gap. Imp. Gap.

mp-4-4-2-2 400% 5.34% 400% 0% 400% 5.5%
mp-6-6-3-3 535% 37.07% 521% 38.32% 546% 35.12%
mp-8-8-4-4 612% 50.07% 574% 52.28% 588% 51.11%

can solve problems with size less than 64 nodes. For larger graphs, different scheduling

heuristics can be incorporated with our workflow to find efficient solutions [38].

We also evaluate the performance of our MLP formulation using a parallel version

of the IBM ILOG CPLEX solver running on an Intel i7-2600K CPU with a 3.4GHz clock

speed. Table 4.2 shows the results of these experiments. The digits in the column labeled

“Experiment” signify the numbers of PIPES, STAGES, GPPs, and GPUs, respectively.

The results show the best mapping solution obtained in a one day period (i.e., with one

day allotted on each run to execute the optimization process). We report the amount of

improvement (Imp.) over a baseline GPP implementation, and the solution gap. It is

important to note that in these experiments, the improvements in the solutions mainly

came from using higher-powered processors, while increasing the number of threads did

not provide significant gains for these experiments.

4.5 Related Work and Contribution

Actor implementation on GPUs is discussed in [27]. A GPU compiler is described

in order to take a naive actor implementation written in CUDA, and generate an efficient

kernel configuration that enhances the load balance on the available GPU cores, hides

memory latency, and coalesces data movement. This work can be used in our proposed

60

framework to enhance the implementation of individual software radio actors on a GPU.

Previous research to reduce the gap between application and multicore processor

modeling is reported in [39]. In this work, the authors develop a new programming lan-

guage that is able to describe SDR systems and their implementation on Single Instruction

Multiple Data platforms.

Many models of computation have been suggested to describe DSP systems. In [40],

the advantages and drawbacks of various models to describe SDR applications are inves-

tigated. Also different dataflow models that can be applied to various actors of an LTE

receiver are demonstrated. In [19], a hierarchical dataflow programming approach is sug-

gested to specify SDR graphs, and the Satisfiability Modulo Theory is used to formulate

the scheduling problem in order to increase system throughput subject to platform mem-

ory constraints.

In contrast to prior work, we begin with applications described in a domain spe-

cific environment (e.g., GNU Radio), and allow designers to use their existing optimized

libraries alongside GPU-accelerated library elements instead of requiring migration to a

new programming model.

4.6 Summary

In this chapter, we have empirically evaluated the workflow proposed in Chapter 3.

We started by discussing the advantages and drawbacks of implementing actors on GPUs.

For the FIR filtering example, we showed that the benefits of using a GPU come only

after a certain amount of vectorization is used. Also we noted that while increasing the

61

amount of vectorization, actor runtime on the GPU remains constant until all the SP are

utilized. Then we demonstrated an automated importer that we have developed in the DIF

framework. This importer translates applications written in a popular SDR system design

environment (i.e., GNU Radio) to SDF graphs in the DIF tool. This translation allows the

application designer to use all of the SDF analysis tools provided in DIF for a translated

GNU Radio specification.

We have chosen GNU Radio as our implementation environment in these experi-

ments as it is an open source environment that is widely supported by a large community.

We have applied GRGPU as the first heterogeneous back-end that can be integrated effi-

ciently with GNU Radio to support GPUs. We showed how GRGPU is implemented to

allow designers to easily swap their actors between GPP and GPU implementations with-

out changing the GNU Radio build structure. We minimized data movement between

GPUs and GPPs by saving GPU pointers instead of moving data back and forth between

the two kinds of processors.

We profiled the overhead of GRGPU and evaluated the effectiveness of our schedul-

ing workflow using relevant SDR benchmarks. We showed how a system designer can

automatically choose an appropriate blocking factor B for an application to satisfy given

latency and throughput requirements. Finally, we profiled the solution quality produced

by single and multi-threaded IBM ILOG CPLEX solvers on different processors. When

the MLP formulation is chosen, paying the price of spending more time to obtain the so-

lution (less than one day for typical GNU Radio applications) is rewarded by getting an

optimal solution for an embedded signal processing system that may run for several years

or more.

62

Chapter 5

Partial Expansion Graphs

5.1 Introduction

Many DSP systems, such as LTE communication systems, codecs for video and

audio players, and Network Intrusion Detection systems (NIDs), require dynamic adap-

tation and online reconfiguration for the implemented systems at runtime. In addition

to GPUs and GPPs, programmable digital signal processors (PDSPs) have demonstrated

major benefits for implementing such real time streaming applications due to their high

processing performance and low power consumption. PDSPs are widely used in mobile

applications, network trans-coding systems, and base station modems. PDSPs are often

shipped with large bodies of optimized libraries and legacy code that carefully utilize

the processor pipelines and different hardware accelerators for common signal process-

ing functions. In this chapter, we develop novel model based design and implementation

methods for PDSP-based realization of signal processing systems. A preliminary version

of this work was presented in [41].

We introduce in this chapter a novel implementation model called Partial Expansion

Graphs (PEG). We develop efficient scheduling techniques to efficiently map PEG-based

system representations into optimized implementations on PDSP platforms. These tech-

niques are designed to systematically explore and utilize different types of parallelism in

DSP applications.

63

Fully exploring data parallelism in DSP applications can be facilitated by transform-

ing SDF graphs to their equivalent HSDF representations [11]. However, this transforma-

tion can lead to an exponential expansion in graph size [42]. Using the PEG strategy,

we can avoid generating fully expanded HSDF representations while exposing an amount

of parallelism that is carefully tuned with respect to the capabilities of the target platfor-

m. Also, within the PEG representation, different types of parallelism — including data,

pipeline and task parallelism — can be naturally expressed and seamlessly integrated to

facilitate derivation of more efficient solutions.

For an important class of DSP applications, kernel execution times can exhibit sig-

nificant dependency, and are not known at compile time. This is the case, for example,

in communication systems such as LTE, where the modulation schemes are dependent on

the channel status. Also, different underlying platform issues such as caching, pipelining

and multithreading make it hard to predict execution times accurately. For such systems,

a dynamic scheduler that can postpone some scheduling decisions to runtime is useful to

enhance efficiency and robustness.

Using our proposed PEG strategy for load distribution helps in implementing dy-

namic scheduling algorithms that effectively distribute workloads associated with SDF

graphs. Furthermore, integration of such algorithms with Real Time Operating Systems

(RTOSs) can simplify the realization of working systems and facilitate reuse of previously

optimized DSP libraries and legacy code.

64

A B
M 1

C
1 M

A1

B1

C1

BM

CM

CM
2

-M

CM
2

A1

B1

C2

B3

B2

Buffer Manager

C1

C2

C1

a) Original multirate SDF graph.

b) Full expansion to a directly acyclic graph. c) Possible partial expansion.

Figure 5.1: Expansion of a multirate SDF Graph.

5.2 Partial Expansion of Dataflow Graphs

Classical multiprocessor scheduling of SDF graphs consists of transforming the in-

put SDF graph to its equivalent HSDF graph or Directed Acyclic Graph (DAG), as shown

in Figure 5.1-b. The DAG representation is derived from the HSDF representation by

simply removing all edges that have delays (initial tokens) on them. The DAG represen-

tation can then be passed to a conventional task graph driven multiprocessor scheduler to

generate a schedule for the given SDF graph onto to the available processors [43]. Con-

siderations can be incorporated so that the interprocessor communication costs associated

with the removed edges (edges with delay) are taken into account in construction of the

generated schedule (e.g., see [44, 45]). This technique suffers from two major disadvan-

tages.

First, for a graph that contains multirate edges, the number of generated vertices

and edges in the HSDF graph can grow exponentially as shown in Figure 5.1-b, which

65

hasM2+M+1 vertices. If this construction is extended to n ≥ 3 actors (i.e., as a chain of

actors connected by edges having production and consumption rates of M and 1, respec-

tively), then the number of HSDF graph vertices exceeds Mn. Considering the typical

number of processors in contemporary platforms, such excessive expansion of the graph

representation complicates the job of the multiprocessor scheduler, and may not always

lead to better solutions. Second, for applications in which schedules must be recomputed

or adapted at run-time, it is difficult to dynamically manage an HSDF representation in

terms of memory space and execution time overhead. Such dynamic schedule manage-

ment is important, for example, when actor execution times exhibit significant run-time

variation. However, the overhead of performing such management on an HSDF repre-

sentation can be prohibitive, thereby forcing use of inflexible static schedules that are not

matched to execution time dynamics, and perform poorly.

5.2.1 Formal Definition

Intuitively, a partial expansion graph (PEG) Gp = (Vp, Ep) is an undirected graph

that is used for scalable mapping of an SDF graph G onto a programmable platform.

The vertex set Vp = Ip
⋃
{BM}, where Ip corresponds to a set of instances, which

execute groups of successive actor firings, and BM is a special inter-vertex coordina-

tion actor called the buffer manager of the PEG. The edge set of the PEG is defined as

Ep = {{BM, i} | i ∈ Ip}— in other words, an (undirected) edge is connected between

the buffer manager and every other vertex in the PEG.

Each actor v in G corresponds to a set Iv of Nv instances in Gp (Iv ⊂ Ip), where the

66

mapping fv : V → Nv can be viewed as a design parameter of the PEG. Given a PEG,

and a vertex v in the corresponding SDF graph G, Nv is referred to as the instantiation

factor of v. In general, Nv is positive-integer-valued. However, if v has state (internal

actor variables whose values persist across firings), then Nv is always equal to 1.

Figure 5.1-c shows one possible partial expansion graph for the SDF graph of Fig-

ure 5.1-a. In this example, the original actors A, B and C, which satisfy q(A) = 1,

q(B) = M , and q(C) = M2, are expanded in Gp to NA = 1, NB = 3 and NC = 2

different groups of instances. Such expansion (or consolidation, when viewed in terms

of the underlying HSDF graph) could be done, for example, for reasons related to load

balancing, as discussed later in this chapter.

The partial expansion graph naturally expresses three fundamental forms of paral-

lelism in DSP applications — data, task and pipeline parallelism — in a scalable manner.

Data parallelism is represented when Nv > 1; task parallelism is shown when an actor

has more than one output edge; and pipeline parallelism is realized by inserting delays

between the source and the sink of the application, as illustrated with edge e10 of Fig-

ure 5.4-b. In the latter case, multiple iterations of the graph can be executed concurrently.

In contrast to the original SDF graph G, the PEG representation relates the actors

and edges in G to a particular multiprocessor implementation. The set of instances that

correspond to a given actor in the PEG can execute concurrently on the available proces-

sors. Therefore, in a platform with C cores where every instance is mapped to a different

core, we will have Nv ≤ C. Associated with every PEG instance, there is a unique k-

ernel (software code block) that executes the code provided with the corresponding SDF

actor v. A call to this kernel is called an activation of the associated PEG instance. An

67

activation can be viewed as a vectorized firing of v through the kernel associated with

v. Such an activation, which we denote by vec(v), consumes and produces an amount of

data equal to an integer multiple of the consumption and production rates of the input and

output edges, respectively, for v. This integer multiple is called the vectorization factor

of the associated activation. Thus, an activation executes a number of successive actor

firings that is equal to its vectorization factor. Use of vectorized firings for SDF graphs

has been studied extensively, starting with the foundational work of Ritz, Pankert and

Meyr [46]. Our PEG formulation provides a novel framework in which vectorization can

be integrated efficiently into multiprocessor scheduling contexts.

In the next section, we discuss the special buffer manager vertex BM , which is a

critical component in the definition and use of the PEG model.

5.3 Buffer Manager

In Section 5.2 we showed that dataflow along an edge e in the original graph will be

implemented and controlled using a state in the buffers manager process. In this section,

this functionality of the buffer managers using a Finite State Machine (FSM) implemen-

tation is explained. The FSM shows how to implement the peek attribute of an edge in

a shared memory system and to capture important platform attributes such as cache line

size in a given platform.

When implementing a PEG, the buffer manager vertex BM is mapped into a soft-

ware process that coordinates the sharing of state across instances that share the same

SDF graph actors, and coordinates data transfer between communicating instances that

68

are mapped to different processors. Within this process, there is a local state that stores

information corresponding to the edges in the enclosing PEG Gp, and special data pack-

ets, called PEG messages, that are associated with instances in Gp. A PEG message for a

PEG instance i encapsulates one more pointers to memory blocks that implement the SDF

graph edges incident to A(i), where A(i) denotes the SDF graph actor that corresponds

to i.

An instance i is activated when it receives a PEG message that contains a number of

pointers equal to the of number edges thatA(i) is connected to. These pointers have along

with them the required information for the positions and amounts of data to be consumed

from the referenced input buffer(s), and the data to be produced onto the referenced output

buffer(s). A PEG message is sent to the processor that contains an instance to schedule

its execution once all buffers associated with the instance are ready. Once the instance

finishes execution, it acknowledges BM by sending back the same PEG message. For

interprocessor communication across instances, we assume that buffers in shared memory

are used.

In order to guarantee the right ordering for producing and consuming tokens by dif-

ferent PEG instances, it is assumed that the buffer manager controls a contiguous block of

memory, where the size of the block is given by the associated buffer length. This length

is proportional to the number of instances Nv, which can be viewed as a parameter that

controls the classical trade-off between throughout and buffer space. Instances are de-

signed to run concurrently, therefore the buffer size should be large enough to provide the

required space so that all instances can read and write their tokens simultaneously. These

buffer lengths can be determined statically based on classical SDF analysis techniques

69

(e.g., see [44, 45]).

5.3.1 Slot States

In our model of PEG-based implementation, buffers are decomposed into slots,

where each slot is large enough (in terms of number of bytes) to store some number of

tokens that is less than or equal to the corresponding buffer size (i.e., the maximum token

capacity of the buffer). Associated with every slot s, there is a slot status variable ν(s),

which helps to select among the possible actions that can be performed on the slot. In our

implementation, ν(s) can have four possible values, which are summarized as follows.

• FREE state: The bytes that correspond to the slot are free to be overwritten by an

instance that produces tokens onto this buffer.

• CONS state: The bytes that correspond to the slot are ready to be read by an instance

that consumes tokens from this buffer.

• BUSY state: The underlying bytes are being either produced onto or consumed

from by an instance. This acts like a semaphore on the slot to help avoid race

conditions.

• ToPEEK state: If the value of the peek attribute (see Section 2.1) of an edge

is greater than zero, this status is given to a slot after tokens from it have been

consumed. This allows subsequent activations to non-destructively read the corre-

sponding tokens if they fall within the range to be peeked during an activation.

70

FREE

BUSY

CONS

Ack from a

source instance

Ack from a

sink instance

Source instance

is scheduled

Sink instance

is scheduled

FREE

BUSY

CONS

ToPEEK

Ack from a

source instance

Ack from a

sink instance

Last ToPEEK

element

Source instance

is scheduled

Sink instance

is scheduled

a) Buffer manager FSM for

zero peek edges.
b) FSM to support the peek attribute

in shared memory architectures.

Figure 5.2: Finite state machines for buffer slot states.

Figure 5.2-a illustrates the finite state machine (FSM) that the buffer manager im-

plements to change the states of slots for edges with zero-valued peek attributes. For a

delayless edge, all slots are originally in the FREE state. The buffer manager starts as-

signing buffer space to source instances and marks the corresponding slots as BUSY. As

the buffer is initially empty, the sink actors will be inactive. Upon reception of acknowl-

edge messages that confirm the completion of source activations, the buffer manager sets

the produced slots to the CONS state. If the number of slots that have the CONS status is

enough to trigger sink instances, the buffer manager sets them to BUSY and activates the

sinks. Finally, upon the completion of the sinks, the consumed slots are returned back to

the FREE state.

For buffers that have initial tokens (delays), and non-zero peeking values, the delay

tokens (i.e., the initial tokens that are placed in the buffer) represent initial values that

are consumed or peeked during the first activations of the sink instances. In this case,

the buffer manager executes the extended version of the FSM shown in Figure 5.2-b. In

this FSM, the buffer manager follows Algorithm 1 to change the status of a slot either to

71

the ToPEEK or FREE state. A slot is cleared to the FREE state only after guaranteeing

that it will not be read in any other subsequent activation. The algorithm also takes into

consideration that different sink instances have varying processing times and can finish

execution in a different order from that which they were assigned. This algorithm is

executed for every buffer state b that corresponds to an edge in order to update a pointer

called the peek pointer . This pointer indicates the last token position in the buffer space

to be peeked.

Algorithm 1: Implementation of peeking attribute on a shared memory architecture.
1: {Initialization}
2: for all local state b ∈ BM do
3: b.peek pointer ← last token position;
4: end for
5: {Upon Reception of a PEG message msg form an instance i}
6: for all input local state b of i do
7: if msg.peeked position == b.peek pointer then
8: b.peek pointer += msg.n consumed slots;
9: state of consumed slots← FREE;

10: {If previous activations have finished execution}
11: while b.state[peek pointer + 1] == ToPEEK do
12: b.state[peek pointer]← FREE;
13: b.peek pointer++;
14: end while
15: else
16: state of consumed slots← ToPEEK;
17: end if
18: end for

5.3.2 Slot Size Selection

The slot size L interacts with key performance factors including run-time buffer

manager overhead, cache performance, and allowable vectorization factors. Simulation

of alternative slot sizes within the structured framework of PEG-based implementation

72

!" #"

ToPEEK FREE FREE FREE FREE FREE

ToPEEK BUSY-prod BUSY-prod FREE FREE FREE

ToPEEK CONS BUSY-cons BUSY-prod BUSY-prod FREE

FREE ToPEEK BUSY-cons BUSY-prod BUSY-prod FREE

A slot

prd = 1, cns = 1, peek = 2, T = 1 byte, L = 3 bytes.
•  Buffer Initial delay tokens:

•  Buffer States:

Source instances 1 & 2 are producing tokens for the first two activations.

Source instances 1 and 2 are assigned activations 3 and 4. Sink instances 1 and 2 are consuming tokens.

Sink instance 1 acknowledges the end of execution and the corresponding slot is set to ToPEEK.

Initially:

Step1:

Step2:

Step3:

Figure 5.3: Updates of buffer states during graph execution.

can help to determine an efficient slot size for a given application/platform combination.

Figure 5.3 illustrates a simulation for executing the FSM in Figure 5.2-b for a slot size of

L = 3T , where T is the token size (in bytes). Important to notice is that the peek pointer

p may not always be aligned with the beginning or end of a slot. In this case, the entire

slot will be in the ToPEEK status while p is pointing into the slot, and the slot will be

cleared to the FREE state only after p falls outside the range of tokens covered by the

slot.

One straightforward way to set the slot size L for a buffer is to set it equal to the

minimal possible size, which is the token size (i.e., the number of bytes in a single token).

However, this fine granularity choice leads to relatively high buffer manager overhead

since frequent changing between slot states is required.

The slot size can be set more efficiently in conjunction with highly vectorized PEG

instances — i.e., PEG instances that have high vectorization factors. Applying large

vectorization factors (vec(i) >> 1) helps to amortize the overhead of Inter Processor

73

Communication (IPC), and function calls. Reducing this overhead can be accomplished

when s represents the status of multiple tokens. To optimize the setting of L, we set L to

be large enough so that the produced tokens from an activation can be consumed as soon

as they are ready. Equation 5.1 satisfies this condition:

L = gcd(prd(e)× vec(src(e)), cns(e)× vec(snk(e))). (5.1)

The slot size L can be useful also in the modeling of application/platform inter-

actions that involve caches. In cache enabled processors, such as the Texas Instruments

C64X+ family of PDSPs, operations to load, invalidate and write back memory segments

can only take place in terms of cache line sizes (e.g., 128 bytes). This means that the

memory that corresponds to a cache line cannot be simultaneously accessed by two pro-

cessors, otherwise a race condition can occur. This problem can be solved if L is chosen

to be a multiple of the cache line size. To guide efficient and correct buffer manager im-

plementation, this cache-based condition, along with Equation 5.1, guides the selection

of the slot size parameter to achieve correct and efficient implementation of the buffer

manager.

5.4 Dynamic Scheduling

The buffer managerBM schedules an activation only if the corresponding input and

output dataflow resources are available. Initially, all of the buffer states are checked and if

all ports connected to an instance i are ready, then BM sends a PEG message to schedule

the activation of i on its local processor. Once the activation completes execution, the

74

instance i sends an acknowledgment message to BM . The buffer manager then updates

the states of all of the buffers connected to i, and triggers subsequent instances for which

all input and output buffers are ready.

From the discussion in Section 5.2, instances can be viewed as threads that execute

activations. In this context, we distinguish between two scheduling sub-tasks: mapping

an instance i to be executed on a processing node p, and assigning and activation a to be

run by an instance i. These decisions highly affect the final system performance in terms

of latency and throughput, and can take place either at compile time or run-time. Also,

instances assigned to the same processor can interrupt one another depending on their

priorities. Intuitively, the mapping functions determine the maximum load on every pro-

cessor as the application executes. The separation of mapping and assignment decisions

gives the system designer the flexibility to either statically control the system behavior,

or postpone some scheduling decisions to run-time. In the experiments reported on in

this chapter, we fix the mapping decisions at compile time, and we compare between a)

taking the assignment decisions at compile time using classical methods, and b) taking

the assignment decisions dynamically at run-time.

Low priority instances can be preempted by higher priority ones if the resources re-

quired by the higher priority instances become available. Since the buffer manager always

checks for available resources before activation, deadlock is systematically avoided. As

execution of a PEG-driven SDF graph implementation proceeds, both data and task par-

allelism can be exploited, depending, respectively, on whether instances of the same actor

or instances of different actors execute at the same time. These two forms of parallelism

in general reduce the total latency of the application; however, they may not be sufficien-

75

t to utilize all of the processors, and some amount of pipeline parallelism (parallelism

across distinct graph iterations) may also need to be exploited.

We have developed Algorithm 2 to dynamically assign activations to instances of

a given actor. Upon receipt of a PEG message, it will schedule the next activation a to

execute if the local processor is idle or if a has higher priority compared to the currently

executing thread. The proposed heuristic uses a First Acknowledge First Assign (FAFA)

mechanism for the buffer manager BM to assign activations to instances. This mecha-

nism is based on the assumption that the instance that finishes its execution first is ready

to receive a new activation.

In Algorithm 2, the “instances allocation variable” i alloc stores the last activation

value that is assigned to every instance. The buffer manager later checks this value to

construct the PEG message to be sent when an activation is ready. The utility of this

scheduling approach is demonstrated in our experiments presented in Section 5.6.

5.5 Code Generation

Our proposed PEG-based implementation methodology can be realized on a plat-

form consisting of multiple processors that have an RTOS running on them. The basic

implementation model assumes that actor instances and the buffer manager will run within

threads. The operating system must also provide mechanisms to allocate shared memory

space, perform IPC to send and receive PEG messages, and schedule threads on individual

cores.

Input to the code generator consists of a library of algorithm kernels that represent

76

Algorithm 2: FAFA dynamic scheduling heuristic
1: {Initialization: Distribute the activations of an actor across the available instances}
2: for all actor v ∈ V do
3: for all instance i in Nv do
4: i alloc[v][i]← i;
5: end for
6: last act[v]← Nv;
7: end for
8: {Upon reception of a PEG msg}
9: for all buffer states b connected to that actor do

10: if b is input to i then
11: if msg.act == i alloc[b.src actor][msg.i id] then
12: i alloc[b.src actor][msg.i id]← ++last act[b.src actor];
13: end if
14: end if
15: if b is output to i then
16: if msg.act == i alloc[b.snk actor][msg.i id] then
17: i alloc[b.snk actor][msg.i id]← ++last act[b.snk actor];
18: end if
19: end if
20: end for

actors, a scheduling solution in terms of buffer lengths, amounts of expansion (numbers

of PEG instances) for the actors, instance-to-processor mappings, instance priorities, and

required implementation attributes (e.g., filter coefficients and values for initial token-

s). The output of the code generator is then a complete multi-core software realization

of the given SDF graph using the available Application Programming Interfaces (APIs)

associated with the targeted RTOS and processing platform. In this dissertation, we im-

plemented our PEG realization using the multithreading and IPC APIs provided by the

Texas Instruments DSP/BIOS RTOS.

DSP/BIOS is designed for multiple DSP platforms and is used by many devel-

opers to implement sophisticated real time systems. Besides the availability to create

threads and execute IPC required for the PEG implementation, it provides mechanisms

77

to implement different hardware interrupts, periodic functions, general I/O and memory

managers needed to run secondary system functions besides its main application. This

gives the designers the flexibility of adding additional event triggered tasks to the final

implementation as well as ease of migration of generated solution to new platforms.

Different algorithm and architecture attributes can be represented in the application

and platform models, and applied by the scheduler, code generator, and other relevant

tool components. Some of these attributes are related to dataflow graph or architectural

models while others are necessary for directing scheduling-related settings (e.g., buffer

lengths) and system functionality (e.g., filter coefficients). We refer to these attributes as

“individual element attributes” since they are associated with individual components in

an overall system design (e.g., actors, processors, or memory units).

Some of these attributes are originally defined in the application and architecture

graphs while others are related to implementation decisions that are derived by the sched-

uler. In many DSP systems, there is also a need to express cross attributes. This type

of attribute is in the form of (T, v), where T is some sort of tuple that can be defined

based on any number of elements in the system design, and v represents a value (of some

attribute-specific data type) that is associated with the corresponding tuple T .

An example of a cross attribute is an attribute that specifies the estimated running

time of an actor on a specific type of target processor. Such a cross attribute could natural-

ly be formulated as ((α, P), t) (a two-element tuple (α, P) together with a value t), where

α specifies an actor, P specifies a processor type, and t gives the estimated execution time

(e.g., in terms of cycle count) of actor α when it runs on a processor of type P .

The output of our developed code generator is in the form of embedded C code,

78

which can be compiled using the Texas Instruments C6000 compiler and linker. For

every actor in the system, a header file is generated, which contains information about the

number and types of edges that are connected to the actor in the form of integer identifiers.

An initialization function and an execution function are generated for every instance

in the system. The initialization function for an instance i runs at system start-up to set

up a “mailbox” (e.g., MessageQ in DSP/BIOS) for every other instance from which i

can receive PEG messages. Upon reception of a PEG message, the thread that wraps

an activation is scheduled. This wrapper is generated as the execution function for the

associated instance. Within this function, the PEG message is read from the MessageQ,

the actor kernel is called, and upon completion of the actor kernel, the PEG message is

acknowledged back to the buffer manager.

Similar to the instances, the buffer manager has an initialization function and an

execution function. The execution function is a pre-compiled library module that executes

the PEG scheduling model in terms of iteratively sending and receiving PEG messages,

updating buffer status values, and assigning activations to instances. The initialization

function is generated for every scheduler solution to allocate PEG messages, open remote

MessageQs, allocate the required buffers space, and allocate the buffer status array. It also

sets the dataflow attributes for every buffer state and initializes the associated pointers.

After parsing the given PEG-based scheduling solution, the code generator con-

structs a folder that contains the required .c, .h, and configuration files for every core in

the target platform. The generated multi-core implementation can then be compiled and

run for profiling or validation.

79

Source P1
Duplic

ate

P2a P2b

P3a P3b

Collect Sink

e1 e2

e3

e4

e5

e6 e8

e9

e7

SRC

25 1

a) Intrusion detection app

b) Pseudo-communication receiver application.

Figure 5.4: PEG model evaluation benchmarks.

5.6 Evaluation

We have implemented and experimented with the PEG strategy by using various

SDF-based benchmarks as DSP applications and DIF for dataflow graph specification.

The benchmarks were constructed to independently profile different PEG aspects, such as

speedups, dynamic scheduling characteristics, and buffer manager overhead. We executed

all of our experiments on a Texas Instruments TMS320C6472 six-core PDSP device with

769K-Byte shared memory and 608 K-Bytes of private, configurable L2 memory or cache

on each core. In these experiments, the buffer manager is implemented on a separate core,

while the other five cores implement the other PEG graph vertices (actor instances).

We carried out three experiments. For the first experiment, we implemented the

“pseudo-communication graph” shown in Figure 5.4-b. This application is representative

of the front end processing structure for a digital communication receiver. Input data is

80

received by the actor Source. Actor P1 represents a filter and has a positive-valued peek

attribute. The two parallel branches represent possible processing on the I-Q channels

and the last two actors, Collect and Sink, represent the application back-end. The focus

of this experiment is to measure the speedups for different sources of parallelism using

the PEG strategy — therefore, the actor loads (execution times), and the production and

consumption rates of different edges are manually adjusted to generate different graphs.

Figure 5.5 shows possible speedups for different application graph configurations

that are derived from the pseudo-communication synthetic “benchmark template” shown

in Figure 5.4-b. In the Task graph, the execution time loads of the two parallel branches

represent 44% of the total execution time load. However, using only task parallelism is

not sufficient to achieve a reasonable speedup, while mapping different instances of the

pipeline to different cores and combining both task and pipeline parallelism gives a sig-

nificantly better speedup of 4.15x. The Data graph illustrates use of the PEG strategy

to avoid full expansion. In this application model, the production and consumption rates

in the graph are adjusted such that actor P1 has a repetition count of 10. However, as

there are only 5 cores in the platform, P1 is partially expanded 5 times and its load con-

stitutes 81% of the total graph load. In this example, a speedup of 4.2x over single core

implementation is achieved by using the three different levels of parallelism. Finally, in

the Pipeline graph, all actors have the same load and good speedups can be achieved on-

ly using pipeline parallelism. As there are 9 instances in total, the maximum theoretical

speedup is 4.5x and our implementation achieves a speedup of 3.84x.

Our second experiment is summarized by Figure 5.6, which quantifies how the PEG

strategy can be useful to achieve speedups for different computation-to-scheduling ratios.

81

Task

Data

Task

Task+Pipeline Data+Task+Pipeline

Task+Pipeline

0

1

2

3

4

5

Task Graph Data Graph Pipeline Graph

S
p

ee
d

u
p

s

Figure 5.5: Speedups for different sources of parallelism using the PEG strategy.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11

S
p

ee
p

d
u

p
 (

M
a
x
 =

 4
.5

)

Computation to Scheduling Ratio

Figure 5.6: Efficiency of the PEG strategy for different computation to scheduling ratios.

This experiment is carried out on the Pipeline Graph described above. In this experiment,

all of the application actors have the same execution time load λ, which is assumed to be

a multiple of the scheduling load S. Here, by the “scheduling load”, we mean the average

number of cycles spent in the buffer manager to schedule one activation. The horizontal

axis represents the ratio of λ to S for different scenarios. For this experiment, we see that

for a ratio of 7:1 (or greater), reasonable speedups can be achieved. For lower ratios, the

granularity of computation is too small to adequately amortize the scheduling overhead.

Our third experiment, summarized in Figure 5.7, shows a comparison between the

82

FAFA algorithm for PEG-based dynamic scheduling and the conventional round robin

distribution of activations to instances. In this graph, we applied the Boyer-Moore string

matching actor shown in Figure 5.4-a [47]. This actor can be used in many important DSP

applications — e.g., in network intrusion detection, where incoming packets are searched

for sets of malicious strings.

The runtime of the Boyer-Moore actor can exhibit significant variation across d-

ifferent packets — e.g., depending on the target string position when a match is found.

The maximum standard deviation in runtime is achieved when the matching string can

be located in any position within the packet, and zero standard deviation means that all

matching strings are located in the middle of the packet. The horizontal axis shows the

normalized standard deviation for a single activation’s runtime compared to the maximum

standard deviation. Within the enclosing SDF graph, the Boyer-Moore actor has a repeti-

tion count of 25, but it is partially expanded on only 5 cores due to platform limitations.

The empirical results for this “embarrassingly parallel” but “unpredictable-load” appli-

cation show that both scheduling algorithms achieve the same speedup when there is no

variability in runtime. However, the PEG-based dynamic scheduler is 35% more efficient

than conventional methods when execution times exhibit high variability.

Since the results presented in Figure 5.7 show only the average speedups between

the dynamic scheduler and the round robin technique, a paired-t comparison is also con-

ducted to provide a more rigorous statistical analysis about the difference between the two

methods. To conduct this experiment, the same packet is used as input for both systems,

and the difference between the two methods is calculated. Table 5.1 shows the normalized

standard deviation, the difference in the mean speedup over 10 experiments, and the the

83

0

1

2

3

4

5

0 0.25 0.5 0.75 1

S
p

ee
d

u
p

 o
n

 5
 c

o
re

s

Normalized Standard Deviation

Dynamic

Round Robin

Figure 5.7: Comparison between round robin and dynamic scheduling of activations.

Table 5.1: Average mean and half confidence interval between the dynamic and round
robin scheduling techniques.

Normalized Standard Deviation 0.25 0.5 0.75 1
Difference in Mean Speedups 0.26 0.54 0.87 1.08
Half Confidence Interval 0.17 0.09 0.14 0.23

95% half confidence interval using a T distribution. With 95% confidence, our proposed

dynamic scheduling method shows superiority over the round robin method.

5.7 Related Work and Contribution

In [48], architecture and application models are presented to support the Algorith-

m Architecture Adequation (AAA) methodology. In this methodology, a medium-grain

architecture description is applied to capture possible parallelism in the underlying plat-

form. An algorithm description is accepted as a DAG annotated with worst case execution

times. Scheduling of the algorithm is performed to satisfy real time constrains without

usage of a real-time operating system (RTOS).

In [49], the StreamIt compiler is described to utilize different sources of parallelism

84

on coarse-grained multicore architectures. The input application is re-written using the

StreamIt language and describes an SDF graph using a subset of SDF modeling semantics.

Different graph transformation techniques are explored to amortize the computation to

communication ratio for different applications. Data parallelism is achieved by using a

static round-robin actor that distributes the loads on the given processors.

In [50], a comparison is provided between static and dynamic scheduling. The ob-

jective in this comparison is to profile and identify the sources of overhead in a dynamic

scheduler that is implemented for a certain model-based programming approach. In con-

trast, in this dissertation we develop an implementation framework for dynamic runtime

applications that builds on DSP RTOS technology. Potentially, insights from the com-

parison in [50] can be applied to further improve the performance of our implementation

framework.

An adaptive compilation framework that can track dynamic changes in the architec-

ture is presented in [51]. Low overhead runtime compilation is introduced to accommo-

date possible changes in resources in terms of the number of processors at runtime. The

system is originally compiled on a virtual platform using a higher number of cores and an

adaptation heuristic is implemented to remap the system onto fewer cores.

Online nested task parallelization depending on data set loads is discussed in [52]

and [53]. In these works, algorithms are presented to dynamically split an actor and

explore more parallelism depending on the actual actor load at runtime.

Scheduling adaptive DSP applications such as LTE is presented in [54]. In this

work, real time calculation of an efficient schedule is performed at runtime. A full ex-

pansion of the dynamic subgraph of the algorithm is suggested. Integration of dataflow

85

semantics with an RTOS is presented in [55].

Perhaps the closest prior work in relation to our PEG approach is the work presented

in [56]. Here, Baudisch, Brandt and Schneider suggest mechanisms to provide out of

order execution for dynamic dataflow graphs. A Central Buffer Station (CBS) is used to

handle instance activations. Algorithms in the CBS are inspired by the reservation stations

of the Tomasulo algorithm [57]. Operation of the CBS requires special operating system

and architecture support, such as certain atomic instructions and mechanisms for ensuring

sequential memory consistency. Our work differs from its approach in our emphasis

on model based foundations, including our novel PEG modeling formulation, and the

flexibility of applying our approach to arbitrary embedded signal processing platforms

without the need for any specialized architectural support.

In addition to the previous work, we propose partial expansion graphs (PEGs) as a

novel dataflow intermediate representation, and foundation to efficiently and effectively

schedule static dataflow applications on multiprocessor platforms without fully expanding

the SDF graph (into an equivalent HSDF or DAG representation). The proposed strategy

makes use of task, data, and pipeline parallelism in the application graph, and allows the

designer to easily port legacy code and optimized libraries to RTOS-based parallel imple-

mentations. Our strategy allows different scheduling techniques to be implemented to dy-

namically adapt scheduling decisions when execution times exhibit significant run-time

variations. Also, by integrating PEG-driven scheduling with RTOS-based implementa-

tion, we allow seamless coexistence of the main DSP application with any secondary

tasks that may be developed without use of dataflow models.

86

5.8 Summary

In this chapter, we presented the concept of partial expansion graphs (PEGs), which

is an implementation model to realize dynamic DSP systems on PDSPs. We showed

how this model helps to address two classical problem in SDF scheduling on multicore

platforms: 1) exponential HSDF graph expansion, and 2) dynamic execution times of

actors. In a PEG, a stateless actor can be partially expanded to a number of instances,

where coordination across instances is performed by a special process called the buffer

manager.

We showed in depth how the buffer manager maintains the state of each edge in

the application graph in terms of units called slots. We presented two platform-aware

algorithms to control slot states, and select slot sizes. Depending on the edge type, we

formulated two FSMs to control data access in buffers and support “peeking” capabili-

ties in shared memory architectures. We developed methods for dynamic scheduling in

the context of the PEG. These scheduling methods apply the first acknowledge, first as-

sign algorithm, and reduce runtimes over multiple activations by balancing the load over

different instances.

We discussed how to implement a code generator for the PEG, and how to in-

tegrate it with the Texas Instruments DSP/BIOS RTOS. Our code generator accepts as

input the application dataflow graph, architecture graph, and representations of designer-

specified PEG expansion and mapping solutions. Based on these input components, the

code generator automatically produces a running application that can be profiled using

the platform-specific simulator, and experimented with or deployed on the targeted PDSP

87

platform.

In the next chapter, we show to how automatically generate the expansion and map-

ping solutions for PEGs through the development of novel PEG-driven scheduling tech-

niques.

88

Chapter 6

Scheduling and Mapping of Partial Expansion Graphs

In this chapter, we present a novel scheduling technique for PEG-based realization

of DSP systems. In this technique, the scheduling process is divided into two stages,

called expansion and mapping. We also introduce a method for embedding our proposed

scheduling engine in the design loop, and within the targeted embedded platform. Such

embedded schedule evaluation allows designers to evaluate and search the design space

at runtime with high efficiency and accuracy.

6.1 PEG Scheduling

Searching the PEG design space consists of two parts: 1) finding the amount of

partial expansion for every data parallel actor, and 2) mapping the instances of the par-

tially expanded graph to the available PDSP cores. We introduce a two-stage scheduler

to efficiently carry out such a two-part optimization process. This scheduler is illustrat-

ed in Figure 6.1. In the first scheduling stage, the objective is to determine the amount

of data parallelism that is to be exploited, taking into account the available cores in the

underlying platform, and the costs associated with communication and coordination with

the buffer manager. While the first stage is focused on data parallelism, the second stage

ensures that the PEG instances are mapped to cores in a manner that efficiently integrates

opportunities for exploiting task and pipeline parallelism as well.

89

Initialize Swarm Particles

Expansion

Solution

Map Instances to Cores

PEG solution
Customizable Generic

Implementation

Update Swarm

Fitness

Function

Figure 6.1: PEG-based scheduling workflow.

An important feature of the PEG model is its utility in targeting dynamic applica-

tions in which instance execution times are not completely predictable. In such dynamic

situations, the overall fitness is a function of many varying and inter-related parameter-

s that are difficult to model. These include the quality of the mapping heuristic, and

unpredictable aspects of system behavior (e.g., the system load, operating system, com-

munication overhead, etc.). Therefore, the realization of only one solution can be highly

inefficient in some operational situations, and the design space should be explored using

different partial expansion solutions. In our two stage scheduler, the amount of partial

expansion is explored using a probabilistic search algorithm, and the mapping part is im-

plemented using a heuristic that leverages basic graph properties to explore the available

task and pipeline parallelism. Many kinds of probabilistic search techniques can be used

to search the partial expansion space for the set of actors in a dataflow graph. In this

work, we have formulated and implemented a particle swarm optimization (PSO) tech-

nique to perform this search process. Further details on our PSO-based PEG optimization

technique are presented in Section 6.2.

90

When an actorA is partially expanded, its overall average load over a given dataflow

graph iteration (i.e., q(A) firings) is distributed across its associated PEG instances. This

distribution (assignment of firings of actor A to PEG instances) is done with an effort

to balance the load in terms of the estimated execution time (i.e., to balance the total

estimated execution time of each PEG instance). Adjustments to the actor load in the PEG

can be realized by changing the amount of vectorization applied to the corresponding

actor activations. This step of vectorization can significantly reduce the runtime of the

instances that correspond to each actor, through the enhanced throughput provided by

vectorization, at the expense of added overhead in the buffer manager due to increased

buffer sizes.

An essential part of searching the design space using evolutionary algorithms is the

assessment of the generated solutions. This step is traditionally performed offline using

models of the application and the underlying architecture. Models can vary depending

on the accuracy level [7]. Given the dynamic nature of the targeted PEG applications,

effective models of offline use cannot be easily derived. For this reason, we develop

a generic implementation of the system and add it to the scheduling loop as shown in

Figure 6.1. This approach allows us to evaluate the optimization models at runtime, while

the system is executing, so that the models can be calibrated and adapted based on the

dynamic application characteristics encountered.

This generic implementation can be customized for each solution, as described in

Section 6.4. Therefore, by implementing the evolutionary algorithm and the mapping

heuristic on the targeted PDSP platform, the actual fitness of every solution is derived

based on actual execution characteristics, without the need for a system model.

91

6.2 Particle Swarm Optimization

Due to the possible dynamic behavior of a PEG application and as the multicore

mapping and scheduling problem is NP complete in the general case, a large design space

must be explored to determine the amounts of parallelism to apply to the different actors

represented in a PEG. On the single actor scale, the amount of expansion should balance

the computation-to-scheduling ratio. In other words, too much expansion of an actor can

lead to a degradation in performance due to high buffer manager overhead. At the applica-

tion level, different partial expansions for the application actors lead to different mapping

and scheduling solutions that introduce varying amounts of parallelism and overhead in

the final implementation.

Particle swarm optimization (PSO) was introduced as a computational optimization

method for non linear functions [12]. Originally inspired by how different swarms behave

in nature (e.g., swarms of fish and birds), particles in a PSO swarm collaborate by using

their best local fitness values as well as the swarm’s overall best value to update their next

“positions”. We select the PSO approach to adjust the amount of actor expansion during

iterative search for two reasons. First, it is relatively simple for the PSO technique to be

implemented on a PDSP or other embedded platform. Second, it matches naturally with

the PEG scheduling problem, as illustrated in Section 6.2.1.

6.2.1 PSO Problem formulation

An execution of a PSO consists of multiple PSO iterations. Given a dataflow graph

with number of actors n :=| V |, every particle p in our PSO swarm formulation encapsu-

92

lates a solution vector sp , where | sp |= n. Each dimension of sp corresponds to a distinct

actor v, and its value is the amount of partial expansion Nv of that actor.

The PSO swarm consists of a set of particles P . All particles p ∈ P also hold the

best solution vector bestp found by them. The best solution found, through the overall

PSO process up to a given point in time and by all particles in the swarm, is denoted by

bestS .

Algorithm 3: Particle swarm optimization
1: Initialize all particles p ∈ P ;
2: for all PSO iterations do
3: for all p ∈ P do
4: sol = map instances(sp);
5: initialize system(sol);
6: fitness = run(sol);
7: update bestp(fitness);
8: end for
9: update bestS ();

10: for all p ∈ P do
11: for all v ∈ V do
12: calculate local inertiap [v];
13: calculate global inertiap [v];
14: update sp();
15: end for
16: end for
17: end for
18: return bestS ;

Algorithm 3 shows how the PSO technique runs within our proposed PEG schedul-

ing workflow. First, current solutions of all particles are initialized randomly. In every

PSO iteration, the vector sp is passed to the mapping heuristic and the fitness of every

particle is evaluated. The vector bestp is calculated for every particle, and bestS is calcu-

lated for the swarm. The current solution of every particle sp is updated using two values:

local inertiap and global inertiap . local inertiap moves the current solution sp toward-

93

s its local best solution bestp , while global inertiap moves sp towards the swarm’s best

solution bestS . These “inertia values” are calculated by:

local inertiap [v] = rand() ∗ (bestp [v]− sp [v]) (6.1)

global inertiap [v] = rand() ∗ (bestS [v]− sp [v]) (6.2)

sp [v] = sp [v] + C1 ∗ local inertiap [v] + C2 ∗ global inertiap [v] (6.3)

Here, C1 and C2 are weighting factors that are adjusted to either explore more of

the solution space near the particle’s best position or to move more towards the swarm’s

best solution. In our experiments, we adjust both C1 and C2 empirically to 0.2. Also,

rand() returns a random integer between 0 and 9 to help the particle avoid getting stuck

in a local minima.

The integer value of every dimension in the solution space is bounded by the min-

imum and maximum expansion of every actor, which are denoted by min inst(v) and

max inst(v), respectively. After updating the current solution using Equation 6.3, the

expansion of every actor v is rounded to the nearest integer and reset to min inst(v) or

max inst(v) in case that sp [v] is inferior to or exceeds these values, respectively. During

the initialization phase, two solutions of interest are introduced in the swarm by setting

the expansion of every actor v to min inst(v) and max inst(v). These two solutions

represent the lower and upper bounds on the expansion for the actors. The PSO solution

of every particle sp is then sent to the mapping heuristic to allocate instances to cores, as

shown in the next section.

94

6.3 PEG Mapping Heuristic

After the amount of expansion for every actor is calculated, the mapping heuristic

distributes the PEG instances to the available processing cores while targeting two objec-

tives: to reduce the latency of a single graph iteration, and to increase the throughput of

the application. In this section, the mapping heuristic is described to show how the three

levels of parallelism are used to achieve these objectives. Data parallelism is enabled by

allocating the instances of a partially expanded actor to different cores. Similarly, task

parallel actors are identified using the bottom-level of every actor [38], and their corre-

sponding instances are mapped to be executed on parallel cores. The bottom-level of an

actor v is the length of the longest path from v to an exit actor (i.e., to an actor that is

not connected to any output edges). The length of the path is the sum of the actors that

exist on this path in terms of execution time. Finally, pipeline parallelism is achieved by

balancing the load on the available cores.

Without loss of generality, a dataflow graph in our design flow can be viewed as the

flow of tokens between one source node and one sink node (if needed, “dummy” source

and sink nodes can easily be inserted to enforce this assumption). In cyclic graphs, back

edges can be identified by the application designer and removed during the mapping step.

Such removal is valid in this context because we focus at this stage on parallelism within

a given graph iteration. In this part of the design flow, tokens are distributed onto multiple

data and task parallel instances that can run in parallel within one graph iteration. We

denote these sets of instances as Delay Parallel Regions (DPRs). A DPR is a general term

that depends on the application and platform. A DPR can be seen as a set of instances that

95

Algorithm 4: PEG mapping heuristic.
1: {Set the load of all cores to zero.}
2: for all c ∈ cores do
3: load[c] = 0;
4: end for
5: {Recalculate the weight of every instance.}
6: for all actor v ∈ V do
7: for all instance i ∈ Nv do
8: weight[v][i] = weight[v]/Nv;
9: mapping[v][i] = NULL;

10: end for
11: end for
12: while there are unmapped instances do
13: {Set all the cores to not used for the current DPR.}
14: for all c ∈ cores do
15: used[c] = FALSE;
16: end for
17: end DPR = FALSE;
18: begin = TRUE;
19: {Start a DPR mapping.}
20: while !end DPR do
21: {Identify a DPRL or a close task parallel actor.}
22: if begin then
23: v = identify DPRL();
24: begin = FALSE;
25: else
26: v = identify close task parallel actor(DPRL);
27: if v == NULL then
28: end DPR = TRUE;
29: break;
30: end if
31: end if
32: list L = Iv;
33: for all instance i ∈ L do
34: c = least loaded unused core();
35: if c == NULL then
36: end DPR = TRUE;
37: c = least loaded core();
38: end if
39: mapping[v][i] = c;
40: used[c] = TRUE;
41: load[c]+ = weight[v][i];
42: end for
43: end while
44: end while

96

core2

L = 90 L = 70 L = 120

DPR2DPR1

C
1

A
1 A

2 B
1

D
1

w = 10 w = 10 w = 5

w =7 w = 8

core1core0

a) Part of the original application b) Expanded PEG instances

c) Cores load at the beginning the mapping iteration

A

B

C

D

Si So

Figure 6.2: Input to the mapping heuristic.

has no data dependency among its corresponding actors. Thus, it is possible to execute

the actors in a DPR in parallel if there are enough cores.

Given a platform of three processing cores, Figure 6.2 shows part of a dataflow

graph that contains two DPRs. In this example, the average execution time of each actor

is represented by the symbol w, and the steady state load on each core at the beginning of

this mapping step is represented by the symbol L. The steady state load of a core is the

sum of the average execution times of all instances that are assigned to it. The first DPR

consists of actors A and B, and the second consists of actors C and D. In this example,

A is expanded to two instances A1 and A2.

Algorithm 4 provides a pseudocode specification of our mapping heuristic. Here,

scheduling a DPR involves a series of steps, where in each step an instance is chosen to

be mapped onto a given processing core.

Each DPR consists of a set of one or more actors M . The associated mapping

step allocates the available cores to the sets of all instances that correspond to the actors

Iv | v ∈ M in the DPR. The first set of instances corresponds to an actor called the DPR

97

L = 90

L = 120

core0

core2

L = 80

core1

(a)

L = 87

L = 125

core1

core2

L = 100

core0

(d)

L = 87

core1

L = 105

core0

L = 125

core2

(e)

L = 100

L = 120

core0

core2

(b)

L = 80

core1

L = 100

L = 125

core0

core2

(c)

L = 80

core1

A
1

A
2

A2 A2 A2
D

1

A1 A1 A1 A1

B
1 B1 B1

C
1 C1

Figure 6.3: Applying the mapping heuristic based on a given graph expansion.

Leader (DPRL), where IDPRL is the set of unmapped instances that have the highest load.

After mapping IDPRL, if there is still an unused core, as explained below, a subsequent

set of instances is chosen if its corresponding actor is a close task parallel actor relative

to the DPRL. Identification of a close task parallel actor is achieved by calculating the

bottom-level of every actor. Two actors are considered as close task parallel if there is no

data dependency between them and the difference of their corresponding bottom-levels is

minimum over all actor pairs that have no mutual data dependencies.

While mapping every instance, a core is chosen based on two consecutive criteria:

first, if none of the current DPR instances is assigned to it, and second, if it has the

lowest overall steady state load L of actors. The first criterion guarantees that data and

task parallel instances are actually executed in parallel, while the second criterion tries

to enhance the throughput of the system in case multiple graph iterations are executed

simultaneously.

The process of mapping a DPR terminates depending on the amount of expansion of

actors that comprise the DPR and the number of available cores. There are two different

98

cases that can lead to such termination:

1. Not all cores are used in the given DPR, and there are no more close task parallel

actors relative to the DPRL to be mapped.

2. All the cores are marked as used but not all the instances within a set Iv associated

with the DPR are mapped. In this case, the DPR mapping process continues until

all instances i ∈ Iv are mapped to cores.

For example, in Figure 6.3, the algorithm starts by identifying A as the DPRL and

maps its corresponding set IA = {A1, A2} to core1 and core0 , respectively. core1 is

chosen first as it is the most lightly loaded core. At this point, as there is still an unmapped

core within this DPR, B is identified as the close task parallel actor to A and its set

IB = {B1} will be mapped to core2 . After every step, the assigned core is marked as

“used” in the current DPR. As all cores are used in this DPR, a new DPRL is chosen (e.g.,

actor C in the shown graph) and the mapping process continues. Therefore C1 will be

assigned to core1 , and then D1 will be assigned to core0 .

6.4 Generic Implementation

We have implemented the PSO and the mapping heuristic on a state-of-the-art PDSP

(see Section 6.5 for specifications on the targeted PDSP device family). The generated

PEG scheduling solution is evaluated using a generic implementation that can be cus-

tomized to cover all possible solutions. The associated code generator, which we have

developed, reads the basic mapping attributes from a scenario file. These attributes in-

clude whether an actor is expandable or movable. If an actor is expandable, the minimum

99

and maximum numbers of instances are also given. The “true movable” attribute specifies

the set of processing cores that instances of a given actor can be assigned to. The “false

movable” attribute indicates that the instances of this actor will not be considered for relo-

cation. These two attributes allow the system designer to use previous experience to limit

the design space, prune selected suboptimal solutions, and guide the mapping heuristic

by pre-allocating some instances.

Given the scenario file, an actor instance is generated on every core where it can be

executed. As actor instances are actually activated upon receipt of a PEG message, the

generic solution can be customized by using the messages that correspond to instances

used in the solution and discarding the others. In this context, we define the working

PEG messages as the messages that correspond to used instances in the PEG scheduling

solution. For example, suppose that an actor A is movable to any of the cores of a given

multi-core platform. Then even if A is not partially expandable, an instance of A will be

generated on every core. However, only one PEG message will be used while running

the application. For expandable actors, the PEG messages that correspond to working

instances are used. By doing so, any generated solution can run and be profiled on the

targeted PDSP platform without a need for other implementations. The customizable

implementation for the subgraph introduced in Figure 6.2 is depicted in Figure 6.4 with

two possible expansions and mappings for actors A and C. The highlighted instances are

the ones used in the described implementation.

The evaluation starts by a call to the PSO algorithm to update the partial expansion

value for every actor. The PSO solution is passed to the mapping heuristic. Once the

solution is calculated, all the application buffers are reset to their initial conditions, and

100

core0

A

B D

C

core1

A

B D

C

core2

A

B D

C

Solution 1, A is expanded

in 1 instances, while C in 3

core0

A

B D

C

core1

A

B D

C

core2

A

B D

C

Solution 2, A is expanded in

2 instances, while C in 1

Figure 6.4: Illustration of a customizable PEG-based implementation.

the working PEG messages are activated. As shown in Figure 6.5(c), the token source

actor generates tokens to be consumed in multiple graph iterations. The execution of a

given solution starts by activating the token source actor and resetting the instrumentation

timers. The buffer manager takes control of running multiple iterations for the application,

and then activates the token sink actor and control returns back to the PSO algorithm to

collect performance measurements. The PSO stops the design space exploration after a

certain criterion is met, such as satisfying a given throughput requirement or reaching a

maximum number of PSO iterations.

101

6.5 Evaluation

6.5.1 Experimental Setup

To test our automatic PEG scheduler, we executed the tasks of the workflow pre-

sented in Figure 6.1, and made various measurements to assess the effectiveness of the

scheduler. We also validated the correctness of our customizable generic implementation,

described in Section 6.4, through different applications and scenarios. In this section, we

explain the setup that we have employed in these experiments.

The conducted experiments were run through many steps. The application graph-

s were written using the DIF language for dataflow graph specification [9], and using

the SDF modeling features within DIF. The applications were profiled and the average

load of every actor was calculated. In addition to the SDF-based model parameters, al-

l graph elements of the application model were annotated with PEG-related attributes

to facilitate our implementation of PEG analysis and optimization techniques using the

DIF framework intermediate representation. These PEG-related actor and edge attributes

are illustrated in Tables 6.1 and 6.2 respectively. We executed all of our experiments on

a Texas Instruments TMS320C6472 six-core PDSP device with 769 K-bytes of shared

memory and 608 K-bytes of private, configurable L2 memory or cache on each core.

The input files were passed to the code generator, which generates the generic so-

lution with pointers to the PSO algorithm and the mapping heuristic. The systems were

executed in this manner, and performance metrics were collected.

102

Table 6.1: PEG scheduling attributes for actors.

Parameter name Description Type

function name The actor call function string
max vectorization Maximum vectorization integer
movable Actor can be re-mapped Boolean
min inst Minimum partial expansion integer
max inst Maximum partial expansion integer
load Average actor load in cycles integer
number of cores Cores that can have an instance of that actor integer

Table 6.2: PEG Scheduling attributes for edges.

Parameter name Description Type

buffer length Buffer length in tokens integer
min state length Minimum value for the state in bytes integer
token type The type of tokens that the buffer holds string
back edge The actor is a back edge in cyclic application Boolean

6.5.2 Benchmarks

Several benchmarks are used to evaluate different aspects of our PEG-based auto-

mated scheduler. The three versions of the pseudo-communication graph introduced in

Chapter 5 are used to validate the ability of the mapping heuristic to capture different

forms of parallelism in the application.

We also constructed two dataflow graph models of practical signal processing ap-

plications — a digital receiver benchmark from [10], and an image registration algo-

rithm [58]. For these two applications, the actors’ loads were taken from the papers

referenced above. Figure 6.5(a) and Figure 6.5(b) depict the dataflow models that we

employed for these two applications. The expandable actors in the image registration

application are the sift-r and sift-l actors. From our profiling results, these two

actors consume 87% of the overall application execution time. In the digital receiver, the

expandable actor is the decoder actor, which consumes 61.5% of the execution time of

103

source fft
135k

de-

permutation
2522k

channel-

estimation
982k

de-

modulation
843k

decoder
8159k

de-

randomizer
625k

sink

(a) Digital receiver benchmark.

source

source-r
38.8k

source-t
83.7k

sift-r
4508k

sift-t
5223k

key-points-

matching

1140k

refinement

&

Transformation

192k

Sink

(b) Image registration benchmark.

source

P1a

P1b

sink

P4b P3b

P4a P3a

P2b

P2a

token

source

token

sink

(c) Software defined radio benchmark.

Figure 6.5: PEG scheduling evaluation benchmarks.

each graph iteration.

For all of these applications (the synthetic and practical ones), the solutions gen-

erated by our mapping heuristic are used to assign instances to cores. To test the PSO

algorithm and its ability to explore the PEG expansion space, we employed the mp-sched

4x2 benchmark, which was introduced in Chapter 4 and is illustrated in Figure 6.5(c).

In this graph, each of the actors in the two parallel pipelines can be partially expanded

up to 5 instances. This means that the solutions space consists of 58 = 390625 possible

expansions.

104

6.5.3 Results

All of the benchmarks that we experimented with were executed using five cores

on the targeted PDSP for the actor firings with the remaining (sixth) core employed by

the buffer manager. Therefore, unless otherwise stated, the maximum speedup is 5x com-

pared to the baseline of running the application without any overhead (i.e., buffer manager

and multi-core operating system overhead) on a single core.

The same speedups that were obtained manually in Chapter 5 for the three versions

of the pseudo-communication benchmark were obtained automatically in our experiments

using the mapping heuristic. The mapping heuristic made use of all three types of paral-

lelism (task, pipeline and data parallelism) to reach these levels of performance.

Table 6.3 and Table 6.4 show the best speedups observed in our experiments with

their corresponding numbers of instances of the partially expandable actors. The amount

of partial expansion in these experiments depends on the number of unrolled iterations of

the graph, which is controlled by the number of delay values in the application back edge

(i.e., the introduced edge that connects the application’s sink to its source, as shown in

Figure 6.5(c)). We emphasize that the delays on this back edge are imposed as a synthetic

constraint by the PEG-based scheduler to control the amount of inter-iteration parallelism

that is exposed.

As the number of partial expansion solutions is relatively small (25 solutions for the

image registration application and 5 solutions for the digital receiver), we ran an experi-

ment to generate all possible solutions for each of these benchmarks. We then compared

these solutions with the corresponding results derived by our PSO approach. For the im-

105

Table 6.3: Speedups and expansion of the image registration benchmark

Unrolled Runtime Speedup sift-r sift-t
Iterations (50 iterations) expansion expansion

1 173720 3.20x 5 5
2 133341 4.17x 2 2
3 119976 4.64x 3 4
4 116876 4.76x 3 2
5 118445 4.70x 4 4

Table 6.4: Speedups and expansion for the digital receiver benchmark.

Unrolled Runtime(K cycles) Speedup decoder
Iterations (50 iterations) expansion

1 345022 1.92x 5
2 226967 2.92x 4
3 202638 3.27x 3
4 202646 3.27x 3
5 202644 3.27x 4

age registration application, the PSO approach achieved 9% less speedup compared to the

best solution found using exhaustive search, while the PSO approach achieved the same

speedup as the best solution found using exhaustive search for the digital receiver.

Table 6.5 illustrates the ability of the PSO engine to find effective levels of expan-

sion for different application loads. All of the actors in this synthetic benchmark graph

have the same running time and the maximum single iteration speedup is 2.77x. For

the given exponential solution space, the optimization engine is able to adjust the expan-

sion of every actor in order to achieve a reasonable speedup without incurring excessive

Table 6.5: Speedups and expansion for the SDR benchmark.

Total load Runtime(K cycles) Speedup filters
(K cycles) (50 iterations) expansion

500000 188374 2.65x All filters→5

50000 29867 1.67x P1a & P2a→2
All others→3

15000 16663 0.9x All filters→1

106

Table 6.6: Mapping heuristic and system-in-the-loop overhead.

System Expansion Actors Instances Edges Mapping Buffers System
heuristic init. init.

Image no exp. 8 8 13 30.7K 40.2K 82.1K

registration full exp. 8 16 13 38.8K 44.4K 94.8K

Digital no exp. 8 8 9 33.4K 21.5K 65.8K

receiver full exp. 8 12 9 36.7K 21.9K 69.6K

SDR no exp. 12 12 13 67K 38.4K 116.5K

full exp. 12 44 13 99.1K 44.3K 155.8K

scheduling overhead. Here, by the “scheduling load”, we mean the average number of cy-

cles spent in the buffer manager to schedule one actor activation. For a high computation-

to-scheduling ratio, using the full platform ability to run data and task parallel actors

yields the best solutions. On the other hand, for lower computation-to-scheduling ratios,

partial or no expansion of actors is required to avoid excessive scheduling overhead. The

PSO algorithm can direct its particles to the find efficient solutions based on the character-

istics of the application and target platform. In this experiment, the PSO swarm consisted

of three particles and the best solution was found in 16 PSO iterations.

Table 6.6 reports the following quantities: the runtime of the mapping heuristic;

the overhead (time) required for buffer initialization; and the overall system initialization

overhead (time) for a single PSO particle. Here, each row represents the runtime for a

different benchmark with either no expansion or full expansion (i.e., max inst = 1 or

max inst = 5, respectively). The maximum overhead is less than 2% of the runtime of

the two practical benchmarks (the image registration and digital receiver applications).

Typically, different DSP applications have varying amounts of overall runtime, and it is

acceptable to spend some amount of time during execution to realize a more efficient

107

solution, depending on the required application latency.

6.6 Related Work and Contribution

In [49], a heuristic is presented to adjust the granularity of a streaming graph by

fusing actors with relatively small loads, and then separating the fused regions (clusters)

based on data parallelism. Software pipelining is then implemented to balance the load

on different processors. In [59], an integer linear programming formulation is presented

to select the optimal amount of partial expansion to generate balanced pipelined stages.

One expansion solution is then passed to a heuristic that schedules the order of execution

of instances to processors in order to reduce the application latency. These two methods

target applications where offline scheduling is performed and the runtimes of the actors

can be accurately modeled. In PEG scheduling, however, we perform the scheduling step

using execution on the embedded target platform as integral component, and we target

applications where the actors’ runtime can vary over time. Thus, our techniques are dif-

ferent in the solutions they provide are able to adapt over time as execution characteristics

change.

Distribution of dynamic activations at runtime has also been considered in previous

research. The authors of [60] targeted systems implemented using the Cell Broadband

Engine (CBE) architecture. For this heterogeneous platform, a dynamic scheduler is sug-

gested for implementation on the PowerPC Processing Element (PPE), with the rest of

the system functions being implemented on the eight Synergistic Processing Elements

(SPE). Data dependency is extracted by annotating the serial code with compiler prag-

108

mas, and the main scheduling work is performed by the compiler. A list of ready tasks is

maintained at runtime for tasks that resolve data dependency. These tasks are sent later

to the SPE for execution. In [61], dynamic scheduling is implemented to explore task

and data parallelism for applications implemented on the CBE. The PPE offloads tasks to

the SPE if the overall time for execution and communication is reduced. The amount of

exposed parallelism is fine-tuned for the RAxML application, which infers large phylo-

genetic trees. To reduce communication overhead, task parallelism is first explored, and

if the processor is under-utilized, data parallelism is explored next.

In contrast to these approaches, our PEG-based scheduling approach targets ap-

plications that are developed using model based design techniques — based on dataflow

models of computation — as opposed to annotating legacy code. Furthermore, through its

operation on coarse-grain dataflow graphs, as opposed to legacy code in procedural lan-

guages, our techniques are able to efficiently explore trade-offs and systematic integration

among task, data, and pipeline parallelism.

In [7], the authors divide the mapping and evaluation steps into two separate mod-

ules. The evaluation is performed using different models for the architecture where dif-

ferent models represent different levels of accuracy. In contrast to this, and many other

works that perform host-computer-based mapping evaluation, we perform evaluation of

alternative mapping results directly on the targeted embedded platform. This is allows for

more efficient evaluation of mapping candidates, as well as more accurate measurements

for the associated fitness functions.

109

6.7 Summary

In this chapter, we presented automated scheduling techniques for PEG-based sys-

tem realization, and presented the results of our experimental testing and validation of

these techniques.

We applied PSO methods to the PEG expansion problem, where each particle in

the swarm encapsulates specific amounts of partial expansion to apply to the actors in the

application. By using our proposed PSO technique, a design tool can efficiently evaluate

alternative expansion solutions and explore the design space systematically.

We also proposed a mapping algorithm for partially expanding a graph and apply-

ing the results of such expansion in a manner that takes into account diverse sources of

parallelism. In this approach, we group data and task parallel instances that can execute

concurrently into units that we refer to as “delay parallel regions” (DPRs). Instances that

belong to the same DPR are mapped onto different cores to exploit data and task par-

allelism. Pipeline parallelism is considered by trying to balance the overall load across

different processors, and avoiding the introduction of feedback paths (cyclic data depen-

dencies) across processors as actors and instances are mapped.

We demonstrated how to evaluate systems implemented using PEGs on PDSP plat-

forms by developing a customizable generic solution for embedded schedule evaluation.

Using this kind of generic solution, accurate profiling under dynamic conditions can be

carried out in the scheduling loop. We evaluated our workflow using various benchmark-

s and we reported the overhead of our PEG-based mapper and our generic solution for

embedded schedule evaluation.

110

Chapter 7

Conclusions and Future Work

With the continuous fast evolution of processing platforms and applications for sig-

nal processing systems, there is a growing need to allow designers to re-use prior in-

vestments in optimized software libraries tailored to specific types of processors. In this

dissertation, we facilitated this important form of reuse by showing how to use model

based approaches so that different types of applications can be migrated systematically

and efficiently to contemporary multicore processors. We targeted two types of appli-

cations: 1) static systems, where the application graph can be analyzed thoroughly at

compile time, and 2) dynamic systems, where actor execution times are not predictable

and the system needs to be reconfigured at runtime.

7.1 Static Systems

For static systems, we presented a workflow to migrate such systems to heteroge-

neous platforms consisting of general purpose processors equipped with vector processing

units, and general purpose graphics processing units (GPUs) that follow a single instruc-

tion multiple thread programming paradigm.

In the broad signal processing domain, static scheduling remains a popular and use-

ful tool in the design process (e.g., see [62]). We applied our statically-oriented workflow

to software defined radio (SDR) systems, where designers often attempt to leverage spe-

111

cial purpose multicore platforms in complex applications, and need to be able to quickly

arrive at an initial prototype to understand relevant performance trade-offs. In this contex-

t, we have presented a design flow that extends a popular SDR environment called GNU

Radio, lays the foundation for rigorous analysis based on formal models, and provides a

stand-alone library of GPU accelerated actors that can be applied within existing appli-

cations. GPU integration into an SDR-specific programming environment using GRGPU

allows application designers to quickly evaluate GPU accelerated implementations and

explore the design space of possible solutions at the system level. We also showed how

efficient utilization of SIMD cores can be achieved by applying extensive block process-

ing in conjunction with efficient mapping and scheduling.

We systematically decomposed the targeted scheduling problem into two parts: one

part that considers vectorization to make use of pipeline parallelism and utilize the avail-

able cores of vector- and graphics-oriented processors (e.g., GPU and SSE extensions),

and a second part that reduces the latency of multiple dataflow graph iterations on the

available set of heterogeneous multicore processors. We formulated the second part using

Mixed Linear Programming (MLP).

For coarse grain dataflow graphs, MLP provides optimal solutions in a timely man-

ner for many key SDR applications. In particular, our application on coarse grain graphs,

where operations are higher level signal processing operations, such as digital filters or

FFT units, allows MLP to operate with reasonable problem sizes that permit solutions

within reasonable time frames. We have shown that using actual GNU Radio benchmark-

s, solutions can be obtained within a 24 hour period. Such a one-day turnaround time is

acceptable in many embedded system domains because the implementations are intended

112

to be fixed or modified only very rarely once they are derived.

We showed how the time required to solve our MLP formulation scales using a

64-node version of the mp-sched benchmark, and how different types of processors can

improve the underlying MLP solver’s runtime. Additionally, we have developed the over-

all problem formulation in such a way that a heuristic can be used as an alternative to

MLP. In particular, such a heuristic can be applied to yield efficient, although generally

sub-optimal solutions with faster turnaround (e.g., for rapid prototyping scenarios). Al-

so, since an input to our workflow is the profile of actor execution times, GPU-targeted

actor implementation using CUDA, OpenCL, or other tools can be integrated by using

an appropriate simulator or evaluation platform to provide the required, platform-specific

execution time estimates.

In contrast to previous studies on GNU Radio benchmarking, which has focused on

different homogeneous, multicore GPP implementations, our experiments explored the

application of heterogeneous platforms to GNU Radio. Our comparison of the amount of

improvement over a baseline homogeneous GPP implementation shows how meaningful

speedups of up to 612% on 8 heterogeneous processors can be achieved.

Useful directions for future work for statically-oriented DSP system design (i.e.,

design involving SDF graphs in which actor execution times are reasonably predictable)

include the following.

• Graph transformation techniques for handling cyclic graphs — i.e., dataflow graphs

that incorporate feedback.

• Extension of GRGPU to multi-GPU platforms by customizing GPU actors to com-

113

municate and launch on specific GPUs.

• Experimenting with and optimizing the efficiency of our static system design work-

flow on different platforms and programming models.

7.2 Dynamic Systems

For dynamic applications, we showed how the strategic formulation and use of im-

plementation models to realize DSP systems can bridge the gap between oversimplifying

the system by using only abstract models, and losing the capacity for systematic design

space exploration by working only at the level of a customized implementation.

We presented a new intermediate model and associated implementation strategy

called the partial expansion graph (PEG). The PEG overcomes conventional problems

associated with exponential growth of SDF graph expansions, allowing parallelism to be

exposed and exploited judiciously based on levels that match reasonably to the target

platform. We have shown that significant speedups on a state-of-the-art multicore DSP

platform can be achieved using the proposed PEG methodology, and demonstrated higher

speedups, compared to classical round robin scheduling, by using PEG-based dynamic

scheduling techniques. We also presented experimental analysis that quantifies various

trade-offs associated with PEG-based implementation, and discussed integration with off-

the-shelf RTOSs.

Empirical results show that our PEG-based design strategy can 1) achieve signifi-

cant speedups on a state-of-the art multicore PDSP platform for static dataflow applica-

tions with predictable execution times, and 2) exceed classical scheduling speedups for

114

applications having execution times that can vary dynamically. This ability to handle

variable execution times is especially useful as DSP applications and platforms increase

in complexity and adaptive behavior, thereby reducing execution time predictability.

We presented a method for representing and exploring different amounts and type-

s of parallelism in DSP applications that are targeted for implementation on multicore

platforms. By using particle swarm optimization (PSO), we are able to explore the de-

sign space in terms of controllable amounts of expansion for each data parallel actor.

Our novel mapping heuristic can achieve high speedups for many applications by selec-

tively integrating different types of parallelism in application models. The effectiveness

of our proposed approach to evaluate different solutions is validated by implementing

the PSO, the mapping heuristic, and a customizable generic solution on a state-of-the-

art PDSP platform. In addition to providing automated code generation, we have shown

how designer experience can be incorporated within the automatically-derived solution-

s through various graph element parameters, which can be configured, for example, to

impose designer-specified constraints.

Useful directions for future work in dynamic DSP system design that are motivated

by this thesis include the following.

• Exploration of different techniques to implement buffer managers for runtime coor-

dination of PEG-based implementations. Such techniques could be developed, for

example, to provide different kinds of trade-offs, and platform-based customiza-

tions.

• Investigation of distributed buffer management techniques as an alternative to the

115

centralized buffer manager concept developed in this thesis.

• The systematic use within model based design frameworks of PDSP hardware fea-

tures such as the queue manager subsystem in the recently introduced Texas Instru-

ments KeyStone processor family [63].

116

Bibliography

[1] H. El-Rewini, H. H. Ali, and T. G. Lewis, “Task scheduling in multiprocessing
systems,” IEEE Computer Magazine, vol. 28, no. 12, pp. 27–37, 1995.

[2] Y-K Chen, C. Chakrabarti, S. Bhattacharyya, and B. Bougard, “Signal processing on
platforms with multiple cores: Part 1 — overview and methodologies,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 24–25, November 2009, Guest Editors’
Introduction.

[3] Y-K Chen, C. Chakrabarti, S. Bhattacharyya, and B. Bougard, “Signal processing
on platforms with multiple cores: Part 2 — design and applications,” IEEE Sig-
nal Processing Magazine, vol. 27, no. 2, pp. 20–21, March 2010, Guest Editors’
Introduction.

[4] NVIDIA CUDA C Programming Guide, April 2012, Version 4.2.

[5] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for DSP using
Ptolemy,” Journal of VLSI Signal Processing, vol. 9, no. 1, January 1995.

[6] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language for stream-
ing applications,” in Proceedings of the International Conference on Compiler Con-
struction, 2002.

[7] M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan, “Scalable compile-time scheduler
for multi-core architectures,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, 2009, pp. 1552–1555.

[8] J. Eker and J. W. Janneck, “CAL language report, language version 1.0 — docu-
ment edition 1,” Tech. Rep. UCB/ERL M03/48, Electronics Research Laboratory,
University of California at Berkeley, December 2003.

[9] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from the dataflow
interchange format,” in Proceedings of the International Workshop on Software and
Compilers for Embedded Systems, Dallas, Texas, September 2005, pp. 37–49.

[10] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system using graphics
processing unit,” IEEE Communications Magazine, vol. 48, no. 3, March 2010.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceedings of the
IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of
the IEEE International Conference on Neural Networks, November 1995.

[13] E. Blossom, “GNU radio: tools for exploring the radio frequency spectrum,” Linux
Journal, June 2004.

117

[14] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on Computers, vol. 36,
no. 1, pp. 24–35, 1987.

[15] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static dataflow,”
IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 397–408, February
1996.

[16] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs using the token
flow model,” in Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, April 1993.

[17] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional
DIF for rapid prototyping,” in Proceedings of the International Symposium on Rapid
System Prototyping, Monterey, California, June 2008, pp. 17–23.

[18] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded soft-
ware from synchronous dataflow specifications,” Journal of VLSI Signal Processing
Systems for Signal, Image, and Video Technology, vol. 21, no. 2, pp. 151–166, June
1999.

[19] Y. Lin, M. Kudlur, S. Mahlke, and T. Mudge, “Hierarchical coarse-grained stream
compilation for software defined radio,” in Proceedings of the International Con-
ference on Compilers, Architecture, and Synthesis of Embedded Systems, 2007, pp.
115–124.

[20] V. Marojevic, X. R. Balleste, and A. Gelonch, “A computing resource management
framework for software-defined radios,” IEEE Transactions on Computers, vol. 57,
no. 10, pp. 1399–1412, 2008.

[21] K. Zheng, G. Li, and L. Huang, “A weighted-selective scheduling scheme in an open
software radio environment,” in Proceedings of the IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, 2007, pp. 561–564.

[22] Y.-K. Kwok, High-Performance Algorithms for Compile-Time Scheduling of Paral-
lel Processors, Ph.D. thesis, The Hong Kong University of Science and Technology,
1997.

[23] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real time DSP,” in
Proceedings of the Global Telecommunications Conference, November 1989.

[24] W. Plishker, N. Sane, and S. S. Bhattacharyya, “A generalized scheduling approach
for dynamic dataflow applications,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, Nice, France, April 2009, pp. 111–116.

[25] W. Plishker, G. Zaki, S. S. Bhattacharyya, C. Clancy, and J. Kuykendall, “Applying
graphics processor acceleration in a software defined radio prototyping environmen-
t,” in Proceedings of the International Symposium on Rapid System Prototyping,
Karlsruhe, Germany, May 2011, pp. 67–73.

118

[26] G. Zaki, W. Plishker, S. Bhattacharyya, C. Clancy, and J. Kuykendall, “Vectoriza-
tion and mapping of software defined radio applications on heterogeneous multi-
processor platforms,” in Proceedings of the IEEE Workshop on Signal Processing
Systems, Beirut, Lebanon, October 2011, pp. 31–36.

[27] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for memory opti-
mization and parallelism management,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2010, pp. 86–97.

[28] Intel Corporation, Intel SSE4 Programming Reference, July 2007.

[29] S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for signal pro-
cessing systems,” in Proceedings of the International Conference on Application
Specific Array Processors, August 1992.

[30] D. Applegate and W. Cook, “A computational study of the job-shop scheduling
problem,” ORSA Journal on Computing, vol. 3, no. 2, pp. 149–156, 1991.

[31] R. Niemann and P. Marwedel, “Hardware/software partitioning using integer pro-
gramming,” in Proceedings of the European Design and Test Conference, 1996, pp.
473–479.

[32] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal, “Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs,” in Proceedings
of the Design Automation Conference, 2007.

[33] M. Ko, C. Shen, and S. S. Bhattacharyya, “Memory-constrained block processing
for DSP software optimization,” Journal of Signal Processing Systems, vol. 50, no.
2, pp. 163–177, February 2008.

[34] A. H. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke,
“MacroSS: macro-SIMDization of streaming applications,” in Symposium on Ar-
chitectural Support for Programming Languages and Operating Systems, 2010, pp.
285–296.

[35] G. Zaki, W. Plishker, T. OShea, N. McCarthy, C. Clancy, E. Blossom, and S. S. B-
hattacharyya, “Integration of dataflow optimization techniques into a software radio
design framework,” in Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, California, November 2009, pp. 243–247,
Invited paper.

[36] G. Zaki, W. Plishker, S. S. Bhattacharyya, C. Clancy, and J. Kuykendall, “Integra-
tion of dataflow-based heterogeneous multiprocessor scheduling techniques in GNU
radio,” Journal of Signal Processing Systems, vol. 70, no. 2, pp. 177–191, February
2013, DOI:10.1007/s11265-012-0696-0.

[37] A. Makhorin, “Modeling language GNU mathprog — language reference, draft
edition, for GLPK version 4.34,” Tech. Rep., Moscow Aviation Institute, December
2008.

119

[38] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list schedules
for parallel processing systems,” Communications of the ACM, vol. 17, no. 12, pp.
685–690, December 1974.

[39] M. Lin, L. Dung, and P. Weng, “A cardinal image compressor for capsule endo-
scope,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference,
November 2006.

[40] H. Berg, C. Brunelli, and U. Lucking, “Analyzing models of computation for soft-
ware defined radio applications,” in Proceedings of the International Symposium on
System-on-Chip, 2008.

[41] G. F. Zaki, W. Plishker, S. S. Bhattacharyya, and F. Fruth, “Partial expansion graphs:
Exposing parallelism and dynamic scheduling opportunities for DSP applications,”
in Proceedings of the International Conference on Application Specific Systems,
Architectures, and Processors, Delft, The Netherlands, July 2012, pp. 86–93.

[42] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A hierarchical multiprocessor
scheduling system for DSP applications,” in Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, California, Novem-
ber 1995, pp. 122–126 vol.1.

[43] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task
graphs to multiprocessors,” Journal of the Association for Computing Machinery,
vol. 31, no. 4, pp. 406–471, December 1999.

[44] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and
Synchronization, CRC Press, second edition, 2009.

[45] S. Stuijk, M. Geilen, and T. Basten, “Exploring tradeoffs in buffer requirements
and throughput constraints for synchronous dataflow graphs,” in Proceedings of the
Design Automation Conference, July 2006.

[46] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable synchronous
dataflow graphs,” in Proceedings of the International Conference on Application
Specific Array Processors, October 1993.

[47] R. Cole, “Tight bounds on the complexity of the Boyer-Moore string matching
algorithm,” in ACM-SIAM Symposium on Discrete Algorithms, 1991.

[48] T. Grandpierre and Y. Sorel, “From algorithm and architecture specifications to au-
tomatic generation of distributed real-time executives: a seamless flow of graphs
transformations,” in Proceedings of the International Conference on Formal Meth-
ods and Models for Codesign, 2003.

[49] M. I. Gordon, W. Thies, and Saman Amarasinghe, “Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs,” in Symposium on Architectural
Support for Programming Languages and Operating Systems, 2006.

120

[50] O. Arnold and G. P. Fettweis, “On the impact of dynamic task scheduling in hetero-
geneous MPSoCs,” pp. 17–24, 2011.

[51] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke, “Flex-
tream: Adaptive compilation of streaming applications for heterogeneous architec-
tures,” in Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, 2009.

[52] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin, “Lazy binary-splitting: a
run-time adaptive work-stealing scheduler,” in Proceedings of the Symposium on
Principles and Practices of Parallel Programming, 2010.

[53] O. Certner, Z. Li, P. Palatin, O. Temam, F. Arzel, and N. Drach, “A practical ap-
proach for reconciling high and predictable performance in non-regular parallel pro-
grams,” in Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, 2008.

[54] M. Pelcat, J.-F. Nezan, and S. Aridhi, “Adaptive multicore scheduling for the LTE
uplink,” in Proceedings of the NASA/ESA Conference on Adaptive Hardware and
Systems, 2010.

[55] Y. Oliva, M. Pelcat, J.-F. Nezan, J.-C. Prevotet, and S. Aridhi, “Building a RTOS for
MPSoC dataflow programming,” in Proceedings of the International Symposium on
System-on-Chip, 2011.

[56] D. Baudisch, J. Brandt, and K. Schneider, “Out-of-order execution of synchronous
data-flow networks,” in Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, 2012, pp. 168–175.

[57] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM Journal of Research and Development, vol. 11, no. 1, pp. 225–33, 1967.

[58] H.-H. Wu, Modeling and Mapping of Optimized Schedules for Embedded Signal
Processing Systems, Ph.D. thesis, Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, 2013.

[59] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream programs on mul-
ticore platforms,” in Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation, 2008, pp. 114–124.

[60] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a programming
model for the Cell BE architecture,” in Proceedings of the ACM/IEEE Conference
on Supercomputing, 2006.

[61] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D. Antonopoulos, “Dy-
namic multigrain parallelization on the cell broadband engine,” in Proceedings of
the Symposium on Principles and Practices of Parallel Programming, 2007, pp. 90–
100.

121

[62] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook of
Signal Processing Systems, Springer, 2010.

[63] Texas Instruments, Inc., 66AK2H12/06 Multicore DSP+ARM KeyStone II System-
on-Chip (SoC) Data Manual, November 2012.

122

