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Steel welded tubular joints have been widely used in traffic signal support structures 

for economic and aesthetic reasons. However, they are susceptible to fatigue cracking 

which may lead to structural failure such as collapse, thus pose a threat to driver’s 

safety. To address this issue, this study is focused on fatigue test, modeling and 

prognosis of the fatigue crack growth in full-scale welded tubular joints of traffic 

signal support structures.  

Fatigue test of six full-scale welded tubular joint specimens fabricated based on real 

design for signal support structure is conducted to obtain crack growth data. Details 

of test setup and results are reported in this dissertation. Two types of fatigue crack 



  

growth models are proposed for two regimes of fatigue crack development in welded 

tubular joints: the linear elastic fracture mechanics (LEFM) model for the slow crack 

growth regime (denoted as Stage II here) and the empirical failure model for the rapid 

crack growth regime (denoted as Stage III). Details of these two models including 

their mathematical expressions, stochastic parameters, sensitivity analysis and model 

application, are given in the dissertation.  

A sensor-driven structural health prognosis procedure that has an explicit stochastic 

measurement error term and thus can model the sensor performance degradation over 

monitoring period is proposed. The prognosis procedure involves the Bayesian 

theorem and Markov Chain Monte Carlo (MCMC) sampling for updating the 

structural degradation model using sensor data. An extreme value theory (EVT) based 

tail fitting method is proposed to reduce the heavy burden on data transmission and 

computing involved in sensor driven prognosis. This method employs moment 

estimator to calculate the small quantiles of the prognosis results by using a small 

portion of available sensor data.  

Finally, fatigue test data acquired in this study are used to examine the proposed 

fatigue life prognosis procedure. Both the LEFM based fatigue crack growth model 

and the empirical failure model are studied for fatigue life prognosis application. 

Prognosis results show that the prognosis procedure is able to provide good estimate 

of the fatigue crack growth curve of welded tubular joints in signal support structures 

if certain conditions are met. 
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Chapter 1: Introduction  

There have been a lot of fatigue induced structural collapses of cantilevered traffic 

signal support structures in many states in the United States (Dexter and Ricker 2002). 

Some of the accidents happen on highway and the signal mast arm falling over fast 

moving vehicle poses high threat to drivers. The study of the fatigue behavior of 

welded tubular joints in traffic signal structures has drawn growing attention in the 

past decade (Hartnagel and Barker 1999; Heeden 1999; Kashar et al 1999; Dexter and 

Ricker 2002; Ocel et al 2006). Most of the reported research work focus on fatigue 

design. In this dissertation study, the focus is the fatigue crack growth of the welded 

tubular joints in the signal support structures and how to use fatigue growth data for 

fatigue life prediction.  

1.1 Research motivation 

Tubular structures have become increasingly popular for economic and aesthetic 

reasons. Application of tubular elements in welded structures possesses several 

advantages, the main among them being low weight characteristics, reached owing to 

optimum geometric characteristics of sections and reduction of external loadings on 

the structure (Lobanov and Garf 1998). So far, tubes with different shape of sections 

(e.g. circular hollow section (CHS), rectangular hollow section (RHS)) are frequently 

used in structures such as traffic signal support structures, cranes, wind turbine 

supports, bridges and offshore structures etc. These sections are generally connected 

by welding. Many of them contain CHS or RHS members and connections that 

employ circumferential fillet welds.  
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Despite the popularity of the tubular structures in application, brittle failures 

subsequent to fatigue cracking have been observed. There have been many reports of 

cracking in the tubular structures in the vicinity of the welded connections (Dexter 

and Ricker 2002). Fatigue cracks typically start at highly stressed locations such as 

weld terminations of specific structural details. The stresses reach peak values near 

the weld toe of the joints. The fatigue performance of welded tubular connections is 

of particular importance for the safety of welded steel tubular structures subjected to 

repeated loading such as signal support structures. The traffic signal support accidents 

in the USA (Hartnagel and Barker 1999; Heeden 1999; Kashar et al 1999; Dexter and 

Ricker 2002; Ocel et al 2006) have demonstrated the criticality of fatigue growth 

modeling and prognosis of this type of tubular structure in order to develop an 

effective strategy for fatigue monitoring and maintenance scheduling.  

Fatigue behavior of welded tubular structure has been extensively studied in the past 

decades while a large portion of the research work has been done on offshore 

structures and bridges. In comparison with the tubular joints in offshore structures 

and bridges, welded tubular joints commonly found in signal support structures 

exhibit notable differences such as member dimensions (both absolute and relative), 

the loads affecting the joint, and joint fabrication procedures. For example, a major 

difference between tubular structure in bridges and signal support structure lies in the 

thickness of the tubes. The thickness of the tube wall in signal support structure is 

much smaller, usually at the level of 6 to 10 mm (Kaczinski et al 1998) while tubes 

with wall thickness up to 70 mm is not uncommon in bridges (Dauner et al 1998). 

Evidences from the fatigue tests (Schumacher and Nussbaumer 2006) have 
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demonstrated the effect of size on the fatigue strength of welded tubular joints. 

Therefore, research on welded tubular joints in signal support structures is needed to 

contribute to the knowledge base on welded tubular structure such as determining the 

parameter values of fatigue growth model.  

As for the existing research related to fatigue problem of tubular joints in traffic 

signal support, most of them are on the fatigue resistance evaluation and design issues 

(e.g., Kaczinski et al 1998, Fouad et al 2003, Dexter and Ricker 2002). Not much 

study has been reported on its crack growth modeling and fatigue life prognosis. In 

order to study the fatigue crack growth behavior of the welded tubular joints in traffic 

signal support structures, fatigue test has to be conducted to obtain experimental data 

on the crack growth behavior. Meanwhile, models that describe the fatigue crack 

growth behavior are in need. For fatigue crack growth model, a commonly used one 

is the Paris Law (Paris et al 1961). Bowness and Lee (1999) modified the Paris law to 

adapt it to the welded tubular joints in offshore structure and bridges. The limitation 

of the Paris law is that it is only applicable to fatigue stage II. For the failure stage of 

fatigue stage III, however, not much research has been done on how to model it. Yet it 

is of great interest since catastrophic failure could happen in this ultimate stage. If the 

crack growth can be properly modeled, collapse can be predicted to avoid potential 

catastrophic failure caused by fatigue cracking.  

Besides the modeling of fatigue crack growth, another important issue about tubular 

joints fatigue problem is how to implement the prognosis of its fatigue life. Lots of 

research has been conducted on the development of fatigue prognosis methods. 

However, currently available structural health prognosis methods are mostly based on 
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conventional nondestructive testing (NDT) data, which has limited availability in 

both time and space. With emerging monitoring system featuring continuous and 

online data collection, conventional health prognosis method needs to be revised to 

accommodate new features and requirements for a sensor-driven health prognostic 

system such as continuous sensor data stream and sensor performance variation. For 

example, during long term monitoring project, the sensor itself could degrade in its 

performance. How to model the sensor degradation and its effect on prognosis result 

are important research topics. Also, as online structural health monitoring (SHM) 

system can provide continuously collected sensor data on demand, how to effectively 

utilize the abundant sensor data is another question being raised in practice since 

transmitting and processing large amount of sensor data requires considerable 

communication bandwidth and computing resource. A notable method is to only use 

those monitoring data with significant values that exceed a pre-specified performance 

threshold (Frangopol et al 2008; Strauss et al 2008). However, this method discards 

most of the information and the obtained result is deterministic. Since small quantiles 

or extreme values of the prognosis results (e.g. Remaining Useful Life (RUL)) are 

often of more interest, an alternative solution could be the use of tail fitting 

techniques (e.g. the extreme value theory (EVT)) to obtain the prognosis result. Yet 

how to apply the tail fitting techniques in fatigue prognosis needs to be explored. 

1.2 Research objectives and scopes 

The primary goal of this research is to study the fatigue crack growth and fatigue life 

prognosis for steel welded tubular joints in traffic signal support. To accomplish this 

goal, the following specific objectives are defined: (1) select proper models for 
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fatigue crack growth modeling at different stages of the fatigue process; (2) conduct 

full-scale fatigue test of welded tubular joints from signal support structures and 

record the crack propagation pattern during the fatigue test; (3) develop a sensor-

driven structural health prognosis procedure which is applicable to fatigue problems; 

(4) apply the proposed fatigue model and the prognosis procedure to welded tubular 

joints using fatigue test data and examine their performance in the tubular joints 

fatigue problem. 

To achieve the above objectives, the following analytical and experimental research 

tasks are carried out for this research: 

(1) A linear elastic fracture mechanics (LEFM) model and an empirical failure 

model are introduced for fatigue crack growth modeling of welded tubular joints 

in traffic signal structure. The LEFM model is modified from the Paris Law to 

describe the fatigue crack propagation behavior of welded tubular joints in traffic 

signal structure. Factors and parameters of the model are discussed. The 

empirical failure model applies to fatigue stage III. It directly includes the fatigue 

life as an explicit parameter in the equation. Details and discussions of these two 

models are provided such as model derivation, model parameters, sensitivity 

study and limitations, etc.   

(2)  Fatigue tests of six full-scale welded tubular joints specimens from traffic 

signal support. The specimens comprised of CHS mast arm welded to transverse 

plate are fabricated based on real signal support design for the state of Maryland. 

MTS servo-hydraulic loading system is used to apply constant amplitude loading 

to the specimens. Beach-marking is implemented in one test specimen to observe 



 

 6 

 

the crack growth behavior. Strain gauges are installed on specimens to obtain the 

stress data. Various nondestructive techniques (microscope, dye penetrant etc.) 

are used to track the crack propagation during the fatigue test. The crack surface 

features are also examined after test.  

(3) A sensor-driven structural health prognosis procedure is proposed. The 

proposed procedure utilizes Bayesian theorem for updating of the structural 

degradation model. Markov Chain Monte Carlo (MCMC) sampling is used to 

calculate the posterior distributions of the stochastic parameters in the structural 

degradation model. Limit state function and risk acceptance level are defined to 

obtain the fatigue life. The prognosis procedure is extended to study the two 

features of sensor-driven prognosis: sensor performance degradation over long-

term monitoring and excessive amount of data obtained from structural health 

monitoring system. 

To incorporate the sensor performance degradation in long-term monitoring 

process, the error term in the structural degradation model is split into two terms: 

the measurement error term and the model error term. Stochastic process (e.g. 

Gaussian process, Wiener process) is used to represent the measurement error 

term. In order to effectively extracting key prognosis information from massive 

amount of sensor data that could be generated by on-line SHM system, an EVT 

based tail fitting method is proposed which can reduce the computation demand 

by 80% while still preserving key information. 

(4) With the obtained data from fatigue test, the proposed fatigue prognosis 

procedure is applied to the fatigue test data to examine its performance in welded 
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tubular joints fatigue application. Both the LEFM model and the empirical failure 

model are employed as the degradation model for the prognosis of fatigue life in 

different fatigue stages respectively. Prognosis results such as crack growth curve 

and fatigue lives for both cases are compared and discussed. 

1.3 Organization of dissertation 

This dissertation is organized as follows: Chapter 2 reviews the current state of 

knowledge on tubular structure fatigue modeling and prognosis. Chapter 3 presents 

the two fatigue growth models: the LEFM model and the empirical failure model. 

Chapter 4 presents the test setup and results for the fatigue test of six full-scale 

welded tubular joint specimens. Chapter 5 describes a sensor-driven structural health 

prognosis procedure which utilizes Bayesian theory and the Markov Chain Monte 

Carlo (MCMC) sampling. Sensor degradation is introduced into the model by the 

measurement error term. An EVT based prognosis method is also described. In 

Chapter 6, the proposed fatigue models and the prognosis procedure are applied to 

welded tubular joints using the fatigue test data. Finally, Chapter 7 summarizes the 

major findings of this dissertation research and future work.  
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Chapter 2: Literature Review  

This chapter reviews the state of knowledge of fatigue modeling and prognosis, in the 

context of welded tubular joints. The review is presented in two sections. Section 2.1 

presents the general approaches of fatigue modeling followed by a brief description of 

fatigue tests conducted on welded tubular joints in traffic signal structures in Section 

2.2. Section 2.3 introduces prognosis methods. Knowledge about nondestructive 

testing (NDT) based prognosis and sensor-driven prognosis is also presented in this 

section. 

2.1 Fatigue modeling  

2.1.1 Stress-life approach 

The stress-life approach is the most commonly used approach in industry to estimate 

the fatigue life. This approach states that three factors determine the fatigue life of a 

steel structure: (1) the number of loading cycles the structure undertakes; (2) the 

stress range induced by the load at the fatigue detail location; (3) the type of 

structures including fatigue detail geometry and materials (Fisher et al 1998). A 

regression analysis of experiment data for a specific type of structural detail would 

reveal a linear relation between the logarithm of stress range and fatigue life. This 

forms the base of the AASHTO fatigue design rules. In the stress-life approach, the 

fatigue life of a specific steel structure can be expressed as Eqn. (2.1), 

log log( )N A m                                             (2.1) 

In Eqn. (2.1), N is the fatigue life (in cycles). m and A are the slope and intercept 

obtained from regression analysis of experiment data (Chotickai 2005). In the 
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AASHTO LRFD Bridge Design Specifications (3
th

 edition, 2004), each type of steel 

structure is classified into fatigue category A to E'. For each category, the value of A is 

provided. For steel structure, m is approximately 3.0 for simplicity of use (Keating 

and Fisher 1986).  

2.1.2 Linear elastic fracture mechanics method 

Fatigue assessment based on linear elastic fracture mechanics (LEFM) is related to 

the stress distribution analysis in the vicinity of a crack tip. Since it is based on theory 

of elasticity, linear stress-strain relationship is assumed (Fisher et al 1998). In the 

LEFM approach, stress intensity factor K is defined to characterize the stress field 

around the crack tip. The stress intensity factor is a function of the crack size and the 

applied remote stress. It is often expressed as, 

K WY a                                                   (2.2) 

In Eqn. (2.2), σ represents the applied remote stress. a is the crack size (e.g. crack 

length, crack depth etc.). Y represents the correction of stress due to geometry of the 

structure and crack (e.g. semi-elliptical shape of the crack or existence of welded 

attachment at the crack tip etc.). W represents the non-uniform distribution of the 

stress around the crack tip caused by residual stress, stress concentration etc. (Fisher 

et al 1998) The detailed expression of Eqn. (2.2) would vary for different fatigue 

details. A great number of expressions for W and Y have been developed by 

researchers using either regression from experiment data or finite element analysis. 

Paris and Erdogan (Paris et al 1961) developed the well-known equation as the Paris 

Law, which is given below as Eqn. (2.3). 
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 
mda

C K
dN

                                             (2.3)  

In Eqn. (2.3), da/dN is the crack growth rate. ΔK is the stress intensity factor range 

which is the subtraction of Kmin from Kmax. C and m are material related constants. It 

can be observed from Eqn. (2.3) that linear relation exists between the logarithm of 

crack growth rate (da/dN) and the stress intensity factor range (ΔK). As the intercept 

and slope, C and m can thus be obtained from linear regression of fatigue test data.  

Eqn. (2.3) can only be used for the stable stage of fatigue crack growth. It cannot be 

applied to the initiation stage or the final rapid crack growth stage. At the initiation 

stage, the crack growth is very slow and unpredictable. At the final stage, the crack 

growth rate accelerate rapidly and the linear relation between log(da/dN) and log(ΔK) 

no longer holds. Three stages are distinguished based on this. The initiation stage is 

considered as stage I. The linear stage shown in Figure 2.1 is considered as stage II 

and the final stage is considered as stage III. Also two limits are defined using the 

value of K for the fatigue crack growth. One limit is the threshold value ΔKth. If ΔK is 

below ΔKth, the crack would not propagate. The other limit is the facture toughness Kc. 

When the maximum stress intensity factor Kmax approaches Kc, unstable crack growth 

would occur (Sobczyk and Spencer Jr 1992). Figure 2.1 shows the relation between 

da/dN and ΔK.  

2.1.3  Cumulative fatigue damage analysis 

As a linear cumulative fatigue damage theory, the Palmgren-Miner’s rule is first 

proposed by Palmgren in 1924 and further developed by Miner in 1945 (Miner 1945). 

Based on the Palmgren-Miner’s rule, the fatigue damage induced by cyclic loading is 
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defined as Eqn. (2.4). 

1 1

k k
i

i

i i i

n
D D

N 

                                                  (2.4) 

In Eqn. (2.4), Ni is the fatigue resistance at stress range i. ni is the loading cycles at 

stress range i. Palmgren-Miner’s rule assumes that the damage fractions resulting 

from a specific stress range level is proportional to the number of load cycle applied 

at that stress range level. It neglects the effect of load sequence and average stress. 

The damage caused by each cycle in the load history is considered to be independent.       

Despite these assumptions, this method gives reasonable correlation with test data. It 

is advised by AASHTO LRFD Bridge Design Specifications (3
rd

 Edition, 2004) to 

estimate the cumulative damage due to its ease of use.   

2.2 Fatigue tests on tubular joints in signal support structure 

Traffic signal support arm mast collapse has been seen in the past several decades 

(Dexter and Ricker 2002). After the accident in Michigan in 1990 (Culp et al 1990), 

AASHTO mandated the revision of the design code for traffic signal structures. Its 

fatigue problem started to draw more attention from researchers (Ocel et al 2006; 

Hartnagel and Barker 1999; Heeden 1999; Kashar et al 1999). A few experiments 

have been conducted to study the fatigue strength of welded tubular joints commonly 

found in traffic signal structures. Those experiments examined a variety of fatigue 

related design issues for the welded tubular joints in signal structures. A brief review 

of some of these experiments is provided next.  

2.2.1 Test for fatigue resistance evaluation  

An important objective of a majority of the fatigue tests on tubular joints in signal 
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support structure is to study the fatigue resistance (Gilani and Whittaker, 2000a, b; 

Koenigs 2003; Ocel et al 2006).   

Gilani and Whittaker (2000a, b) conducted analytical and experimental study on 

fatigue behavior of traffic tubular structures. Four types of specimens tested, one with 

pole section and three with mast arms. Results show that the fatigue performance of 

the pole specimen is between Category D and C while the fatigue performance of the 

the mast arms is between Category E and D. 

Valmont is a large company manufacturing signal support structures etc. It conducted 

fatigue test to proof-test its signal support structure design after the release of the 

2001 AASHTO specifications (Ocel et al 2006). The tube-to-transverse plate 

connections were tested with three different details: fillet-welded sockets, fillet-

welded sockets reinforced with gusset plates, and full-penetration welds. 20 

specimens were tested. Results of the Valmont testing showed that the fatigue 

resistance described by the 2001 AASHTO Specifications for all details tested is 

conservative with only one exception.   

Koenigs (2003) did experiment on mast arm socket connections to examine if it 

should be categorized as fatigue category E' detail. A total of 59 specimens were 

tested. Their test data falls into Category E' and it was concluded by Koenigs (2003) 

that the tested socket connection belongs to Category E' detail. 

2.2.2 Test for stress evaluation 

Researchers from Illinois Department of Transportation and University of Missouri-

Columbia (South 1997) investigated the stress level and stress concentration for the 

traffic signal structure separately (South 1997; Alderson 1999).   
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In the second phase of the research conducted by South (1997) at the Illinois 

Department of Transportation Physical Research Laboratory, cantilevered signal 

structure was instrumented with strain gauges placed on the mast arms and the anchor 

bolts in their lab test. Wind load is simulated in the lab test. Rainflow data of the 

stress calculated from measurements are reported. Strain gauges were placed to 

measure the hot-spot stress. They were placed 0.79 mm away from the weld toe with 

the gauge grid center 1.20 mm from the weld toe. In order to calculate the stress 

concentration factor (SCF), the nominal stress range was also calculated from 

mechanics equations. With both hotspot stress and nominal stress, the calculated 

SCFs have a mean value of 1.78 and a standard deviation of 0.014.  

For the research conducted by Alderson (1999) at the University of Missouri-

Columbia, two real signal support structures were short-term monitored in field with 

strain gauges in addition to lab test of five specimens. The recorded maximum truck 

gust induced stress range was 14.1 MPa. The measured out-of-plane stresses caused 

by wind gust have larger value than the in-plane stresses. The percentage of out-of-

plane stresses exceeding the CAFL is 35.1% while all the in-plane stresses were 

below it. Also, No observation about galloping was obtained.  

2.2.3 Test for weld evaluation 

A few researchers (Miki et al 1981; Alderson, 1999) have conducted fatigue test to 

study the fatigue strength of fillet welded tube-to-transverse-plate connections.  

Miki et al (1981) conducted fatigue test of 12 specimens at Lehigh University. 6 of 12 

specimens have equal-leg fillet welds and the other 6 specimens have unequal-leg 

fillet welds (longer weld on the tube side). The test result shows that equal-leg fillet 
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welds have a resistance slightly worse than Category E', and the unequal-leg fillet 

welds had a fatigue resistance slightly better than Category E'.  

Researchers at the University of Missouri-Columbia (Alderson 1999) conducted 

research to investigate the fatigue problem of tubular joints in traffic signal structure. 

Five mast arm specimens were tested under constant amplitude fatigue loading with a 

stress range of 55.2 MPa. Three specimens have unequal weld leg and two with equal 

weld leg. Results do not suggest improved fatigue resistance with unequal weld leg 

design which is different from the conclusion drawn from tests conducted by Miki et 

al (1981).  

2.2.4 Test for non-destructive method evaluation 

Following the collapse of two cantilevered traffic signal poles in Wyoming 

(Deschamp 2002), the Wyoming Department of Transportation sponsored a research 

project to investigate non-destructive methods suitable for crack inspection of these 

structures including acoustic emissions (AE).  The majority of the specimens tested 

were in-service structures. Test was also conducted using a hydraulic actuator to 

apply the cyclic loads. The actuator was operated in displacement control.  

2.3 Fatigue prognosis  

2.3.1  NDT based prognosis 

Conventional NDT-data driven structural health prognosis techniques have been 

studied by researchers (see, e.g., Lu and Meeker 1993; Zhao et al 1994, 1996; Zheng 

and Ellingwood 1998; Enright and Frangopol 1999; Zhang and Mahadevan 2001; 

Chung et al 2006; Wang et al 2008). Madsen (1987) developed a strategy to use NDT 
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measurements to update the failure probability through a probabilistic degradation 

model. Lu and Meeker (1993) proposed a general degradation model with Gaussian 

error term of independent identical distribution (i.i.d) to predict the time-to-failure 

distribution. Zhao and Haldar (1994) studied the uncertainty in the NDT 

measurements and its effect on the prognosis procedure. Detectability and accuracy 

were explicitly modeled as two uncertainty sources in the measurements. Zhang and 

Mahadevan (2000) also used Bayesian theorem to update the selected probabilistic 

model for prognosis purpose. Robinson and Crowder (2000) extended the application 

of degradation model for prognosis by incorporating the Markov Chain Monte Carlo 

(MCMC) algorithm in the updating process. The MCMC algorithm enables sampling 

from posterior distribution of model parameters so more complicated degradation 

model can be used. Perrin et al (2007) also implemented Bayesian updating and 

MCMC simulation for fatigue fracture prognosis application. All these prognosis 

methods are based on the use of limited amount of NDT data. 

2.3.2 Sensor driven prognosis 

Sensor may degrade in its performance over long-term monitoring. However, not too 

much work has been done on incorporating the special features of sensors in a 

continuous monitoring system into structural health prognosis procedure. Gebraeel et 

al (2005) used stochastic procedures to model sensor measurements and derived a 

closed-form posterior distribution for both exponential and linear sensor degradation 

model. In their research, two stochastic models for general random error term were 

used and it was found that Wiener process fits the data better than the i.i.d. Gaussian 

process. 
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Popularity in using structural health monitoring (SHM) system to generate sensor 

data for quantitative condition assessment and prognosis is growing. Using multiple 

sensor data has the advantage of reduced uncertainty in general degradation model 

through estimating the likelihood function in Bayesian updating with measured data. 

In a study by Coppe et al (2009), all available sensor data were used for the prognosis 

to obtain the distribution of the likelihood function in Bayesian updating.  

As online SHM system can provide continuously collected sensor data at demand, 

how to transmit massive sensor data is another question being raised in practice since 

transmitting and processing large amount of sensor data requires considerable 

communication bandwidth and computing resource. For example, the Wind and 

Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge in 

Hong Kong, has over 800 sensors which are currently generating 140 Mbytes-per-

hour sensor data (Ko 2003). An even higher data rate could be produced with the use 

of high-resolution or high dynamic range sensors such as 24-bit sensors. This is 

especially true in the context of wireless data transmission and post hazardous events 

like strong earthquakes. A notable method is to only use those significant monitoring 

data that exceed a pre-specified performance threshold (Frangopol et al 2008; Strauss 

et al 2008). The prognosis will then be based on these extreme data only. By doing so, 

the amount of sensor data transmitted and consequently prognosis computation can be 

considerably reduced.  

Many structural deterioration phenomena such as corrosion or fatigue-induced 

cracking are usually slowly evolving processes that take quite some time to develop. 

Therefore, periodical or on-demand monitoring can be carried out for such structural 
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limit states under normal operating conditions. Periodical monitoring at proper time 

interval could reduce the risk of unexpected failure while keeping the costs of data 

acquisition, transmission, storage and processing down.  

On-demand monitoring is triggered whenever severe loading events such as overload 

or earthquake happen. Even for periodical monitoring, performing prognosis such as 

computing RULs using full sensor data set can be a daunting task due to the heavy 

demand on computational resources. Since unexpected failure might lead to 

catastrophic consequence, it is critical to know the small quantiles of the estimated 

RULs. Considering the fact that decision makers are often more interested in the 

small quantile or extreme values of the estimated RULs, it is not necessary to obtain 

the full probabilistic distribution of the RULs as a random variable. Therefore, 

estimation of the tail parts or extreme values of the RUL distributions based on a 

selected and thus reduced sensor data set would be of interest to SHM applications.  

Continuous monitoring generates scattered data set due to uncertainties associated 

with environment conditions and instrumentation measurement error. To use the full 

sensor data set for RUL calculation could be very time consuming. The extreme value 

theory (EVT) is employed to reduce computation demand without losing much 

accuracy. EVT makes statistical inference about the upper tail of a random variable 

without the need of knowing its true distribution. EVT is employed to allow only a 

small percentage of total available sensor data to be actually used for estimating the 

tail quantile of the RUL. Estimators from EVT are often used to predict high quantile 

values for the distribution of prognosis results. A variety of estimators have been 

developed for EVT, such as the Hill estimator (Hill 1975), PWM estimator (Hosking 
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and Wallis 1987), and moment estimator (Dekkers et al 1989), etc. Moment estimator 

is selected here for its ability to discern a light tail distribution more efficiently than 

the Hill estimator (Resnick 1997). In many applications such as fatigue life prognosis 

or corrosion prognosis, the distribution of the RULs is usually bounded and not 

heavily tailed.  
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Figure  2.1. Schematic of typical fatigue-crack-growth behavior 
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Chapter 3: Fatigue Deterioration Models for Welded 

Tubular Structure 

3.1 Introduction 

Welded tubular joints are commonly used structural joint form in traffic signal 

support. There have been many reports of the fatigue cracking in the vicinity of the 

welded connections (Dexter and Ricker 2002). The fatigue behavior of this type of 

welded tubular joints is the study object of this chapter. For fatigue crack 

development, usually three stages can be distinguished, as shown in Figure 3.1. Stage 

I is the initiation stage. At this stage, the crack propagation is very slow and difficult 

to predict. Its propagation rate depends on the microstructure of the material. Stage II 

is the rapid propagation stage. Paris Law governs the crack propagation rate and 

linear relation exists between the logarithm of crack growth rate and stress intensity 

factor (SIF) range in this stage. Stage III is the final stage when the crack growth 

becomes unstable as maximum stress intensity factor (Kmax) approaches fracture 

toughness (Kc). Considering the different features of crack growth associated with 

these three stages, different deterioration models may be proposed for each stage.  

This chapter presents two distinct types of fatigue growth models for welded tubular 

joints: the linear elastic fracture mechanics (LEFM) model and the empirical failure 

model. Both models take crack size data as the input. The LEFM model has been 

used for the modeling of crack growth at stage II while the empirical failure model is 

intended for the modeling of crack growth at stage III. As for stage I, since the crack 

size is very small and its growth rate is hard to determine, no discussion of prognosis 
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in this early stage of fatigue growth will be made here.  

In Chapter 3.2, the LEFM model is introduced. It is modified from the Paris Law to 

adapt to the specific application in welded tubular joints. Equations to calculate 

factors (correction factors and magnification factors) in the LEFM model are 

introduced to consider the stress concentration at the hot-spot of tubular joints. Size 

effects of the tubular joints (e.g. tube diameter, tube wall thickness) are taken into 

account by the LEFM model. Certain parameters in the LEFM model are treated as 

stochastic parameters to incorporate the uncertainty inherent in the fatigue 

deterioration process. Sensitivity study of the stochastic parameters is conducted. The 

LEFM model governs the second stage of fatigue crack growth. However, it is not 

applicable to the third stage of fatigue crack growth. In order to model the crack 

growth in stage III, the empirical failure model is introduced in Chapter 3.3. It is 

derived from the material failure equation (Voight 1989). Parameters of the empirical 

failure model are discussed. Examples are presented to illustrate its use for real crack 

growth data modeling.  

3.2 LEFM model  

3.2.1 Model description  

3.2.1.1 Model assumptions 

A schematic plot of the tubular joint studied is given as Figure 3.2. Crack usually 

happens along the weld toe due to the high stress level caused by stress concentration. 

A general assumption made in this study is that initial defects in the welded tubular 

joints are small, semi-elliptical surface cracks along the weld toe. Its major radius is 

denoted as c and minor radius is denoted as a. The ratio between these two radiuses 
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(a/c) is called aspect ratio. The relation between a and c for the semi-ellipse suggested 

by Vosikovsky et al (1985) for welded T-joints is adopted in this study and listed in 

Eqn. (3.1).   

2

1 2 3( / ) ( / ) if a/T < 0.25
/

0.2 if a/T  0.25

x a T x a T x
a c

    
 


                      (3.1) 
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
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  
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2 10.5x x  
, 

2

3 0 1 0 2 0( / ) ( / ) ( / )x a c x a T x a T    
 

In Eqn. (3.1), T denotes the thickness of the plate where the crack initiates. Figure 3.4 

gives a schematic plot of how the crack locates at the welded T-butt joint. Eqn. (3.1) 

shows that aspect ratio is related to the initial crack length a0, initial aspect ratio (a/c)0 

and the plate thickness T. An example of aspect ratio evolvement is given as Figure 

3.3 with a0=0.2 mm and (a/c)0 =0.5. Also, the wall thickness T is assumed to be 6.4 

mm. In Figure 3.3, the aspect ratio is at its maximum value at the beginning and then 

monotonically decreases at the early stage of the crack propagation. It enters a plateau 

when the crack depth penetrates 1/4 of the tube wall thickness and becomes constant. 

3.2.1.2 General model 

According to Walbridge (2005), the fatigue model based on the Paris-Erdogan Law 

(Paris et al 1961) is modified as Eqn. (3.2) for tubular joint.  

( )m m

eff th

da
C K K

dN
                                               (3.2) 

In Eqn. (3.2), ΔKth is the threshold stress intensity factor range. ΔKeff is the range of 
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effective stress intensity factor (SIF) expressed as Eqn. (3.3),  

,max ,minmax( ,  0) max( ,  0)eff app op app opK K K K K                      (3.3) 

In which, Kapp,max, Kapp,min denotes the maximum and minimum applied SIF. Kop 

denotes the applied stress intensity level at which the crack tip would open upon 

loading. 

To calculate Kapp,max and Kapp,min, finite element analysis can be used. However, finite 

element analysis is very demanding in computing, especially for complex structures 

like welded tubular joints. For practical application of the prognosis method, 

approximation needs to be made when calculating effective SIF. The equation 

proposed by Bowness and Lee (1999) for welded tubular joints is used in this study as 

Eqn. (3.4), 

,[ (1 DOB) DOB]app m m b b hs appK Mk Y Mk Y a                      (3.4) 

where Mkm and Mkb are the magnification factors for the membrane and bending 

stress cases. These two factors are used to quantify the stress intensity as a result of 

the presence of the weld and attachment. Ym and Yb are correction factors for the 

membrane and bending stress cases given the crack as surface semi-elliptical crack. 

σhs,app is the applied hot-spot stress at the location of interest, usually at the weld toe. 

Extrapolation method is used to acquire this number from measured strain data.  DOB 

is the degree of bending. 

In this study, the crack closure effect and the threshold for the SIF range are not 

considered, thus Kop and Kth are set to be zero. Eqn. (3.3) is simplified into Eqn. 

(3.5):  

,max ,mineff app appK K K                                              (3.5) 
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Consequently Eqn. (3.2) can be transformed into Eqn. (3.6): 

, ,max , ,min[( (1 DOB) DOB) ( ) ]m

m m b b hs app hs app

da
C Mk Y Mk Y a

dN
              

(3.6)  

3.2.1.3 Factors and parameters 

Magnification factors: Mkm and Mkb  

Equations to calculate Mkm and Mkb were proposed by Bowness and Lee (1999) using 

parametric study based on finite element analysis. The original equations are derived 

based on the T-butt joint as shown in Figure 3.4. Equations are derived from the 

database obtained from finite element analysis. These equations are approximately 

used for tubular joints in practice (Bowness and Lee 1999; Walbridge 2005). One 

thing to note is that the equations for Mk are only valid for cracks with a depth less 

than ninety percent of the tube wall thickness. Equations for magnification factor at 

the deepest point of as-welded tubular joints are provided in Appendix A. 

Correction factors: Ym and Yb  

Equations to compute Ym and Yb were originally proposed by Raju and Newman 

(1979) based on the SIF acquired from a three-dimensional, finite element analysis of 

semi-elliptical cracks in finite elastic plates. Figure 3.5 shows a schematic plot of the 

semi-elliptical crack in the finite plate concerned. Equations for the correction factors 

are provided in Appendix B. 

DOB 

Degree of bending is defined as Eqn. (3.7):  

b

b m

DOB


 



                                                   (3.7) 

In Eqn. (3.7), σb is the bending stress and σm is the membrane stress. 
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Hot-spot stress: σhs,app  

Extrapolation method is applied to acquire the hot-spot stress range. In order to 

implement extrapolation method, several strain gauges needs to be put next to the 

welding toe in parallel. The extrapolation region for the strain gauges is provided in 

Table 3.1 (Romeijn 1994; Zhao et al 2001). T denotes the thickness of the tube wall. 

Rt denotes the external radius of the tube. Linear extrapolation method is adopted here 

for calculation of the hot-spot stress range. Two strain gauges are spaced from Lr,min 

to Lr, max. A sketch of the extrapolation region is given as Figure 3.6. 

3.2.1.4 Fatigue life 

In order to estimate the fatigue life, critical crack depth ac needs to be defined. For the 

critical crack depth ac, full wall thickness or half wall thickness have been used (Zhao 

and Haldar 1996; Cremona 1996). Since a majority of the fatigue life will be spent at 

the crack initiation stage, small variation in critical crack depth definition would only 

have minor effect on the estimated total fatigue life (Moan and Song 2000). Thus the 

critical crack depth for the welded tubular joints is defined as 0.9 of the tube wall 

thickness in this study which is consistent with the conditions for equations of factors 

Mk and Y.  

After defining ac, fatigue life N can be calculated by integrating Eqn. (3.2) from a0 to 

ac. The expression of N is given as Eqn. (3.8). N0 denotes the initial load cycle. 

0
0

, ,max , ,min[( (1 DOB) DOB) ( ) ]

ca

c ma
m m b b hs app hs app

da
N N

C Mk Y Mk Y a  
 

         


 

(3.8) 

3.2.2 Stochastic parameters  

Fatigue behavior bears a lot of uncertainty. The values of the parameters in the LEFM 
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model thus differ a lot from case to case. Type of structures, material properties and 

environment etc. would all have impact on the parameters. A lot of fatigue tests on 

different type of structures with different material properties and environment 

conditions have been conducted to obtain a statistic data for those model parameters.  

In order to consider those uncertainties, it is necessary to make the general model 

stochastic. Here, selected parameters in the model are considered as stochastic 

parameters to represent the uncertainties in the model.  

Common to the LEFM fatigue model, a0 and C are considered as the two stochastic 

parameters. Examples of the recommended distributions for different cases of a0 and 

C are listed in Table 3.2 and Table 3.3 (Chung 2005). As for the application to welded 

tubular joint fatigue, Walbridge (2005) suggested that a0 follows a lognormal 

distribution with a mean value of 0.2 mm and standard deviation of 0.045; C follows 

a lognormal distribution with a mean value of 2.33x10
-13

 and standard deviation of 

1.38x10
-13

. Also, for welded tubular joints, aspect ratio is an important parameter to 

its fatigue. Yet the initial aspect ratio is very difficult to determine. Therefore, it is 

also assumed to be a stochastic parameter which follows a lognormal distribution 

with a mean value of 0.5 and a standard deviation of 0.16. In sum, three parameters a0, 

C, (a/c)0 are selected  as stochastic parameters in this study. Due to the lack of data 

specifically for the tubular joints in signal support structure, recommended values for 

those three stochastic parameters (a0, C, (a/c)0) from Walbridge (2007) for the 

application of tubular joints in bridges are adopted here as an example. The values are 

summarized in Table 3.4. In later chapters, the fatigue test results based on full-scale 

lab tests of tubular joints in signal support structure conducted at University of 



 

 27 

 

Maryland, College Park will be used to derive the values for those stochastic 

parameters. All other parameters are considered deterministic.  

Figures 3.7 to 3.9 show examples of the crack growth curves. All values for 

deterministic parameters in Eqn. (3.6) are listed in Table 3.5. All values for stochastic 

parameters are given in Table 3.4. Two parameters out of the three stochastic 

parameters are made deterministic by fixing at their µ values while the third 

parameter is set to be varying from its µ value to µ±2σ. The correspondent curves of 

mean, 2.3% quantile and 97.7% quantile are plotted for each case. It can be seen that 

in Figure 3.9, the three curves have the largest dispersion while in Figure 3.7, they 

have the smallest dispersion. This shows that C has the most significant impact on 

their crack growth curves while (a/c)0 has the smallest effect among all three 

stochastic parameters.  

Because Paris Law is only valid for fatigue stage II, the proposed LEFM model for 

welded tubular joint structure fatigue is naturally only applicable in fatigue stage II. 

3.3 Empirical failure model 

3.3.1 Introduction of basic model 

Many material failure phenomena are preceded by clear accelerating rates of strain, 

displacement and seismicity (Cornelius and Scott 1993). Voight (1989) proposed a 

relation between the acceleration in a geophysical precursor Ω (such as strain or 

number of earthquakes) and its rate for conditions of constant stress and temperatures, 

shown below as Eqn. (3.9) (Bell et al 2011). 

2

2
( )

d d
G

dt dt

 
                                                      (3.9) 
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Quantities that can be represented by Ω include strains for deforming alloys, metals, 

polymers, concrete, soil, rock, or ice. Fields of potential application of Eqn. (3.9) 

include materials science, various branches of engineering, and the earth sciences. 

Eqn. (3.9) may also apply (at least approximately) to predominantly rate-independent 

applications, such as some cases of fatigue (rate-independent repeated loading) 

(Voight 1989). 

According to Main et al (1991), rates of crack growth increase exponentially with 

crack length in many cases (Kilburn and Voight 1998). Eqn. (3.9) can be implemented 

for such case of material failure (e.g. volcano eruption).  As for the case of fatigue 

cracking, at its final stage with the presence of large “unstable” crack, the crack 

growth rate would increase sharply. According to the Forman Equation shown in Eqn. 

(3.10) (Forman et al 1967), clear acceleration of crack growth rate occurs at the final 

stage when ΔK approaches (1-R)·Kc. Kc denotes the fracture toughness of the steel 

specimen. R is the stress ratio (Smin/Smax).  

log( ) log( ) log( ) log[(1 ) ]c
da C m K R K K

dN
                       (3.10) 

Thus, potentially Eqn. (3.9) can be applied to estimate the fatigue failure time, for 

which the crack length can be taken as the precursor signal.  

3.3.2 Derivation of explicit model  

Eqn. (3.9) can be transformed into Eqn. (3.11) to represent the final stage of cracking 

before catastrophic failure (Kilburn and Voight 1998).  

1 1

0 0( ) ( ) ( )
d d

t t
dt dt

  
                                          (3.11) 

In Eqn. (3.11), Ω denotes the damage index. γ is an rate related coefficient. t0 is the 
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initiation time. tf is the total life from t0. By letting t0 = 0, Eqn. (3.11) can be 

transformed into Eqn. (3.12)  

( ) ln( ) lnf ft t t t                                                (3.12) 

Based on many curve fitting test of fatigue test data, Eqn. (3.12) is further modified 

by making the second term at right hand side of the equation an independent 

parameter as shown in Eqn. (3.13). Eqn. (3.13) is chosen as the empirical failure 

model for fatigue failure. 

1 2( ) ln( )ft t t                                                   (3.13) 

In this study, the damage index, Ω(t) is the fatigue crack length although other 

parameters such as hot-spot strain potentially could also be used as the damage index . 

tf is the fatigue failure time (counted from t0). γ1, γ2 and tf are parameters which 

depend on the material properties, geometrical properties and external loading 

conditions. One advantage of applying the empirical failure model for prognosis is 

that the failure time tf is explicitly treated as a parameter in the equation and its value 

can be directly obtained by updating its distribution using sensor data. In this way, no 

additional failure criterion needs to be defined (e.g., for the LEFM based prognosis, a 

critical fatigue size has to be defined first). In this dissertation study, the potential use 

of Eqn. (3.13) for fatigue prognosis is examined using real fatigue test data.  

In the empirical failure model described by Eqn. (3.13), γ1 determines the growth rate 

of the damage index Ω. γ2 represents the intersection with y-axis. Figures 3.10 to 3.12 

show the effect of the three parameters on the curve. The initial values are γ1 = -

13.312, γ2 = 173.64, tf = 5.34x10
5
. For each figure, the value of one of the three 

parameters is varied while the other two parameters are kept constant.  
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A case study is presented next to show the feasibility of using the empirical failure 

model for fatigue prognosis. 

3.3.3 Case study  

In order to examine how well the empirical failure model would fit real fatigue crack 

growth data, fatigue crack data from the experiments done by Virkler et al (1978) is 

used for curve fitting. In their test (Virkler et al 1978), 68 replicate fatigue tests with 

the same loading on specimens with the same design were implemented on 2024-T3 

aluminium alloy under constant load amplitudes. Crack length trajectories were 

recorded for each test. All tests started with an initial crack length of 9.0 mm and tests 

were terminated at the crack length of 49.80 mm. Mean values of the crack length 

data at specific load cycles are calculated from these test data. This crack growth data 

set has also been used in statistical analysis of fatigue crack growth and prognosis by 

other researchers (Perrin et al 2007; Guan et al 2012). A set of the mean crack length 

data is used here. The crack length data is fitted with the empirical failure model. 

Figure 3.13 shows the fitted curve with the fitted model expressed as: Ω(t)=-

13.312*ln(5.34x10
5
-t)+173.64. In Figure 3.13, the residuals of the fitted curve are 

also plotted. They are all quite small comparing with the measurements indicating 

that the model fits the data well. Moreover, the coefficient of determination (R
2
) is 

selected as the index to evaluate how well the model describes the behaviour of the 

data. More details about R
2
 application can be found in Steel and Torrie 1960. The 

closer R
2
 value is to 1, the better the model describe the data. In this case, R

2
 is 

calculated to be 0.9989. It suggests that the model fits the crack growth data very well.  
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3.4 Conclusions 

The LEFM model can be used to describe the fatigue growth of welded tubular joints 

at fatigue stage II. Stochastic parameters are introduced to incorporate the uncertainty 

in the fatigue crack propagation. Sensitivity studies show that C has greatest impact 

on the crack growth rate in the LEFM model. One advantage of the LEFM model is 

that it represents the effect of structural/material properties (C, m) and external 

loading (Δσ) using three parameters and have been validated by many fatigue data. 

However, one fundamental assumption for the LEFM model is that the crack shape is 

assumed to be semi-elliptical. Also, it is limited to the application on cracks with 

depth less than 0.9 of the tube wall thickness. When fatigue crack depth exceeds this 

limit, the LEFM model is no longer valid.   

To complement the LEFM model for later stage crack propagation modelling, the 

empirical failure model is proposed. It can be used to model fatigue crack propagation 

till failure. One feature of the empirical failure model is that it includes the failure 

time tf as an explicit parameter in the model (The failure time tf is defined as the time 

when the specimen becomes unstable and is no longer able to carry load). In 

prognosis practice, tf is directly obtained by model updating of the empirical failure 

model. A case study of real fatigue data is performed to demonstrate that the 

empirical failure model can fit real fatigue crack growth data.  A detailed comparison 

of the LEFM model and empirical failure model is given in Table 3.6. 
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Table 3.1. Extrapolation region 

CHS 
Lr,min 0.4T 

Lr,max 0.09Rt 

Rt:  external radius of the tube 

Table 3.2. Examples of a0 distribution for different applications 

Detail 
Initial crack size a0 (unit: mm) 

Reference source 
D.T. Mean COV 

Tubular joint Exponential 0.110 1 Kirkemo (1988) 

Tubular joint Lognormal 0.730 1.07 
Shetty and Baker 

(1990) 

Tubular joint Lognormal 0.200 0.225 Walbridge (2005) 

Cover plate Lognormal 0.508 0.5 
Yazdani and Albrecht 

(1987) 

Gusset Plate Lognormal 0.100 0.2 

Righiniotis and 

Chryssanthopoulos 

(2003) 

Fillet welded joint Lognormal 0.124 0.34 
Engesvik and Moan 

(1983) 

Stiffener to 

Bottom Flange 
Lognormal 0.600 0.1 Cremona (1996) 

D.T. = Distribution type; COV = Coefficient of Variation 

Table 3.3. Examples of C distribution for different applications 

Material Environment 
C (mm/cycle)·(N/mm

-3/2
)
m
 Reference 

source D. T. Mean COV 

A36 Air Lognormal 1.783x10
-12

 0.221 
Klingerman and 

Fisher (1973) 

A514 Air Lognormal 5.335x10
-13

 0.088 
Barsom and 

Novak (1977) 

HSLA Steel Air Lognormal 1.54x10
-12

 0.226 
Yazdani and 

Albrecht (1989) 

A36, A588 Air Lognormal 1.97x10
-12

 0.076 
Barsom and 

Novak (1977) 

A36, A588 Aqueous Lognormal 5.58x10
-12

 0.15 
Yazdani and 

Albrecht (1989) 

D.T. = Distribution type 
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Table 3.4. Stochastic parameter values of the LEFM based fatigue growth model 

 
C 

(mm/cycle)·(N/mm
-3/2

)
m
 

Initial crack 

depth a0 

(mm) 

Initial crack 

aspect ratio 

(a/c)0 

Mean 2.33x10
-13

 0.2 0.5 

Standard deviation 1.38x10
-13

 0.045 0.16 

 

Table 3.5. Deterministic parameter values used for steel welded tubular fatigue model 

Tube wall thickness 

T (mm) 
6.4 

DOB 

(degree of bending) 
1 

Weld toe angle θ () 45 
Hot-spot stress range 

Δσ (MPa) 
100 

Weld footprint length Lw (mm) 6.4 m 3.0 

Half plate width b (mm) 200   

 

Table 3.6. Comparison of the LEFM model and the empirical failure model 

 LEFM model   Empirical failure model 

Form differential equation explicit model 

Input  crack length, stress range crack length 

Failure time 

estimation 

additional failure criteria 

needed 

tf explicitly expressed in model 

as a parameter 

Application fatigue stage II only Late stage of fatigue stage II & 

stage III 
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Figure  3.1. Fatigue crack propagation 

 

 

Figure  3.2. Example of tubular structure 
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Figure  3.3. Fatigue crack aspect ratio curve with a0=0.2 mm and (a/c)0 =0.5; (T=6.4 

mm) 

 

 

Figure  3.4. Nomenclature for T-butt joint (Bowness and Lee, 1999) 
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Figure  3.5. Semi-elliptical surface crack in a finite plate (Newman and Raju, 1981) 

 

 

Figure  3.6. Hot-spot stress extrapolation region 
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Figure  3.7. LEFM model with varying values of (a/c)0 

 

 

Figure  3.8. LEFM model with varying values of a0 
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Figure  3.9. LEFM model with varying values of C 

 

 

Figure  3.10. Empirical failure model with varying values of γ1 
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Figure  3.11. Empirical failure model with varying values of γ2 

 

 

Figure  3.12. Empirical failure model with varying values of tf 
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Figure  3.13. Curve fitting of data from the fatigue experiment reported by Virkler et 

al (1978)  
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Chapter 4: Fatigue Test of Welded Tubular Joints in 

Signal Support Structure  

4.1 Introduction 

Fatigue behavior of weleded tubular structure has been extensively studied in the past 

decades. However, most of the research have been focused on offshore structure or 

bridges. In comparison with tubular joints in offshore structures and bridges, welded 

tubular joints commonly found in signal support structures and cranes exhibit notable 

differences such as member dimensions (both absolute and relative), the loads 

affecting the joint, and joint fabrication procedures. For the research related to tubular 

joints in signal support structure, most of them are based on stress-life approach. 

During the lab test, only the fatigue life is recorded with little information about the 

crack propagation.   

In order to obtain experiment data about the fatigue crack propagation for tubular 

joints on signal support structure and gain some experience on the fatigue behavior of 

such structures, full-scale lab fatigue test on typical tubular joints from signal support 

structure is carried out. Crack propagation data are recorded. Details of the fatigue 

test are introduced in this chapter. Description of the test program is firstly provided 

including the introduction of test specimen, test setup, loading plan and 

instrumentation. Next, test result is provided followed by discussion. Fatigue tests 

were carried out on six welded tubular joint specimens. The full-scale round signal 

mast arms with welded transverse plate were fabricated based on real signal support 

design for the state of Maryland. Static tests were first carried out to investigate the 
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hot-spot stress distribution at the welded toe of the joint. Then, cyclic fatigue loading 

was implemented. During the fatigue test, fatigue crack size was monitored with a 

digital microscope. Tubular members were instrumented with uni-axial metal foil 

strain gauges. Data of crack location and size, applied load range and hot-

spot/nominal strain were recorded. Those data were used for fatigue prognosis later.  

4.2 Description of the test program 

4.2.1 Test specimen 

In the report by Kaczinski et al (1998), fatigue details of structural supports for traffic 

signal are listed. Among them, Detail 16 is a typical fatigue detail of welded tubular 

joints, which is a fillet-welded tube-to-transverse-plate connection (See Figure 4.1). 

This fatigue detail is selected for fatigue test because it is commonly used as column-

to-base-plate or mast-arm-to-flange-plate socket connections in traffic signal supports. 

The detail is categorized as fatigue category E' (Kaczinski et al 1998).  

Six identical full-scale specimens were fabricated in accordance with the mast-arm-

to-flange plate connection design for signal support structures in Maryland. The full-

scale test specimens were fabricated by Millerbernd Manufacturing Co. These 

specimens are labeled as WTJ1 to WTJ6 for later reference. Dimensions of these test 

specimens are shown in Figure 4.2. The specimen is comprised of two components - a 

tapered seam-welded steel tube made of ASTM A572 steel and a traverse plate made 

of ASTM A36 steel. The steel tube is inserted into the transverse plate and welded 

together using fillet weld, as shown in Figure 4.2. The transverse plate is a rectangular 

plate measuring 0.4572 m (18 inches) x 0.3048 m (12 inches) x 0.0508 m (2 inches). 

The tube’s length is 1.524 m (5 feet). A taper rate of 0.0118 m/m (0.14 inches/foot) 
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for the diameter is applied, which leads to a variation of external diameter tapering 

from 0.254 m (10 in) to 0.236 m (9.3 in) at its open end. The thickness of the tube 

wall is 6.35 mm (1/4 inches). 

4.2.2 Test setup and loading plan 

Figure 4.3 shows a picture of the test setup. The transverse plate of the test specimen 

is anchored to the reaction frame with bolts. MTS servo-hydraulic loading system 

(dynamic 244.31 linear hydraulic actuator and FlexTest GT controller) was used to 

apply cyclic loading to the test specimen. Cyclic load with constant amplitude is 

applied vertically at the free end of the specimen with the servo-controlled hydraulic 

actuator. However, test of WTJ6 used a different loading scheme in order to apply a 

beach-marking method for fatigue growth marking which employs an alternating 

loading scheme with two different load ranges. According to Aghakouchak and 

Stiemer (2001), almost all signal support structures that have been tested in the field 

have natural frequencies in the range 0.5 Hz to 2 Hz. Therefore, the loading frequency 

in this test is set to be 1.5 Hz.   

4.2.3 Instrumentation 

Two types of data are acquired during the fatigue test: surface crack length (only for 

three specimens WTJ4 to WTJ6) and strains at specified locations (for all 6 

specimens). For strain measurement, metal foil strain gauges (Vishay model EA-06-

125AC-350 and EA-06-250BF-350) were used. Each test specimen has ten strain 

gauges, labeled as SG1 to SG10 for reference. The instrumentation plan for the strain 

gauges is shown in Figure 4.4. Nine out of the ten gauges are placed at the two 

sections of the specimen. Section A is located at the weld toe and Section B is 0.305 
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m (12 inches) away from the weld toe. SG1 and SG2 are placed at the top of the tube 

at 0° from the top ridge line of the tube to measure hot-spot stress. SG1 is the one 

closer to the weld toe. Extrapolation method is applied with the readings of those two 

strain gauges to calculate the hot-spot stress range (Zhao et al 2001).  SG3, SG4 and 

SG5 are placed at the 22.5°, 45° and 180° position in Section A to monitor the hot-

spot strain distribution along the perimeter of the weld toe. SG7 to SG10 are placed at 

0°, 90°, 180°, 270° in Section B (see Figure 4.4) to measure the nominal strain. SG6 

is to measure the hoop strain.  

Figure 4.5 illustrates the strain instrumentation. Figure 4.5a shows the position of the 

strain gauges on the test specimen. The strain gauges are connected to the data 

acquisition system (Pacific Instruments 6000, strain gage card 6038) using cables. 

Figure 4.5b provides a close-up view of the hot-spot strain gauges. It is seen that SG1, 

SG3 and SG4 are next to the weld toe and perpendicular to circumferential weldment 

while SG6 is parallel to the weldment. 

For crack monitoring and sizing, a digital microscope (model AM7013MZTS 

polarizing microscope) is used. In the test, a magnification factor of 50 is used to see 

the fatigue crack. Larger magnification is not possible because of blocked view by the 

90 degree angle between the transverse plate and the tube at the weld toe, which 

makes it impossible to get the smaller view depth required for higher magnification 

factor. The detection and size measurement of fatigue cracks using the digital 

microscope depends on crack opening width under cyclic loading. Once the crack 

opening width is large enough to be identified in microscope image, the crack is 

detected. During the fatigue test, crack growth is periodically monitored using the 
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digital microscope. At the early stage of crack growth, crack length is measured every 

10,000 cycles while at the final stage of the crack propagation; measurement is taken 

every 5,000 cycles. Figure 4.6 shows the microscope on the specimen tube. 

4.3 Test result and discussion 

Fatigue tests were terminated after crack propagation became unstable. Strain and 

load data was recorded in all specimens. For crack length data, specimens WTJ1 to 

WTJ2 were used for crack measurement technique training and adjustment purpose. 

Crack length propagation data was not kept. WTJ3 failed prematurely at 2.18x10
5
 

load cycle which was totally unexpected and thus no crack measurement was 

performed. In addition to the digital microscope for crack measurement, alternative 

methods such as dye penetrant, phased array ultrasonic sensor were also tested to 

examine techniques for early-stage crack propagation measurement, but did not work 

as well as the digital microscope on the steel tube specimens. It is found in this test 

that microscope can identify initiating crack earlier than dye penetrant or phased array 

ultrasonic technique.  

4.3.1 Crack length measurement 

Table 1 lists the total load cycle numbers and the final overall crack length at the test 

termination for all six specimens which show a large dispersion. It is noted that for 

WTJ1 and WTJ2, the test was terminated at a smaller overall crack length than the 

other four specimens because these two specimens are mainly tested for training and 

adjustment purpose. However, they both entered the final unstable crack propagation 

stage at the time of test termination. These data points of total load cycles falls 
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between the AASHTO fatigue category C and E although the AASHTO fatigue 

category designation for this detail is category E'. This result is also found to be in 

agreement with the test results reported by Archer and Gurney et al (1970) on similar 

test specimens.  

An image of WTJ1 specimen showing the fatigue crack highlighted with dye 

penetrant is presented in Figure 4.7. The crack can be clearly seen as a dark red line 

along the weld toe and the crack is approximately 6 cm in length when this picture 

was taken. Figure 4.8 gives two pictures of fatigue cracks taken by the digital 

microscope on WTJ6. Figure 4.8a shows the crack with a length of 2.4 cm which was 

imaged at 1.22x10
5
 load cycle. Figure 4.8b shows the crack imaged at 3.55x10

5 
load 

cycle (near the end of its loading) when the crack length is about 30 cm.  

Figures 4.9 to 4.11 show the crack length growth pattern recorded for specimens 

WTJ4 to WTJ6. For all three specimens, the crack almost always initiated near the 

top ridge of the specimen where the maximum stress range occurs at the weld toe 

(this is also the location where steel tube seam weld meets the circumferential fillet 

weld, supposedly leading to a higher chance for weld defect) and then gradually 

propagate in both directions along the weld toe. For all three specimens, the crack 

propagates faster on the south side of the tube. This might be due to the imperfect 

alignment between the actuator and the specimen. The actuator position is slightly 

away from the center of the tube towards the south side. Therefore, the strain level on 

the south side of the tube would be slightly higher than that of the north side. It leads 

to the faster crack propagation on the south side.  

Using the digital microscope, crack can be identified as early as when its length 
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reaches 10 mm. For example, for WTJ5, the crack was first identified at 13 mm. At 

the final stage of the fatigue test, the fatigue crack penetrates the full thickness of the 

steel tube and crack opening width can reach about 2 mm under the peak load. Crack 

growth curves for specimens WTJ4 to WTJ6 are plotted in Figure 4.12. For WTJ6, 

Miner’s rule is applied to correct the recorded data from beach-marking loading into 

that of constant amplitude loading with bending moment range at weld toe section 

∆M = 39.55 MPa-m as given in Table 1. Detailed descriptions of the crack 

measurement for each specimen are provided below, 

WTJ1  

The crack was first seen with naked eye at load cycle number N = 560,687 cycles. 

Dye penetrant was immediately applied to highlight the crack. The crack length was 

approximately 60 mm at that time point. For the initial 565,068 load cycle, a steel 

extension tube with the length of 0.2286 m (9 inch) and diameter of 0.2032 m (8 

inches) was installed at the free end of the test specimen as a loading fixture 

connecting the actuator and the specimen. However, friction between the steel 

extension tube and the test specimen caused strong noise which overwhelmed the 

acoustic emission signal in the piezoelectric paint AE sensor mounted on the 

specimen. Therefore, the test specimen was repositioned by shifting a distance of 

0.305 m (1 foot) towards the actuator and the actuator is directly on top of the test 

specimen after removing the extension tube. The fatigue test was terminated at load 

cycle number N = 619,000 when the overall crack length reached 251 mm.  

WTJ2 

Crack was not visible to naked eye until load cycle number N = 941,700. Since the 
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load cycle was already 1.5 times that of the previous specimen, load range was 

increased from 22.06 kN to 22.58 kN at load cycle number N = 941,700 cycles to 

accelerate the test. Digital microscope, dye penetrant and phased array were applied 

to measure the crack length. Conclusion is drawn that phased array and dye penetrant 

techniques are not working well to perform crack length measurement when crack 

length and opening is still very small. Digital microscope gives the most reliable 

result among the three methods in terms of crack length measurement. Multiple 

cracks were identified at different locations along the fillet weld toe. The test was 

terminated at load cycle number N = 12.46x10
5
 cycles. At that time point, the 

multiple cracks merged into one long crack with an overall length of 181 mm. 

WTJ3 

WTJ3 was cyclically loaded to 120,462 loading cycles and no crack was identified. 

Based on the experience gained from specimens WTJ1 and WTJ2, it was believed 

that no crack should happen before load cycle number N = 200,000 cycles. Therefore, 

overnight fatigue loading was applied without checking the crack. However, in the 

next morning when N = 217,800 cycles, a crack with the length of over 30 cm had 

already occurred along the weld toe in the specimen. The test was then terminated and 

thus no crack length data was measured. 

WTJ4 

The crack was firstly seen at load cycle number N = 3.87x10
5
 with a length of 10 mm 

using the digital microscope. Crack length was then periodically measured. At N = 

582,281 cycles, the test was terminated with a total crack length of 342 mm.  

WTJ5 
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The crack was first identified at N = 191,251 with a crack length of 13 mm. Test was 

terminated at N = 390,098 with a total crack length of 337 mm. 

WTJ6 

Crack was first identified at N = 122,620 cycles with a crack length of 24 mm. The 

crack was not symmetric about the seam weld of the tube. The crack length grew to 

35.8 mm at load cycle number N = 355,171 cycles. Beach marking loading of 10,000 

load cycle with a load range from 14.63 kN to 27.78 kN was applied five times at N = 

180,000 to 190,000; N = 220,000 to 230,000; N = 260,000 to 270,000; N = 300,000 to 

310,000 and N = 340,000 to 350,000 to generate beach marks on fracture surface. 

Figures 4.9 to 4.11 give the crack initiation and propagation plots for WTJ4 to WTJ6. 

4.3.2 Load and strain  

Loading parameters for fatigue test of WTJ4 to WTJ6 are listed in Table 4.1. The 

loading history for WTJ4 is shown in Figure 4.13. Its amplitude varies from 0.91 kN 

to 27.43 kN with the load range of 26.52 kN. For WTJ4, displacement control mode 

was used to operate the servo-hydraulic actuator. At the final stage, the crack became 

very large. The stiffness of the test specimen dropped. The applied load range 

dropped consequently with the constant displacement range of loading. As seen in 

Figure 4.13, the load range started to drop gradually at around 5.0x10
6
 load cycle and 

it eventually went below 15 kN at the test termination. For WTJ5, mixed 

displacement control mode and force control mode were used to keep the load range 

constant. The load range is 26.48 kN as shown in Figure 4.14. Figure 4.15 shows the 

load history of WTJ6. Before N = 1.8x10
5
, the load range was kept constant. Starting 

from N = 1.8x10
5
, alternating loading scheme with two different load ranges were 
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executed every forty thousand load cycle, among which first ten thousand cycles have 

a load range from 14.63 kN to 27.78 kN and the following thirty thousand cycles 

have a load range of 1.39 kN to 27.78 kN. As mentioned before, this alternating 

loading scheme was implemented to generate beach-marks in fracture surface.  

The strain distributions under static loading for specimens WTJ4 to WTJ6 at the two 

sections along the tube are plotted in Figures 4.16 to 4.18. It is observed that for all 

three specimens the SG1 strain at the top of the steel tube always had the maximum 

value. Additionally, the strain measurements close to the weld toe at Section A are 

much larger than those at Section B. This signifies the existence of large stress 

concentration close to the weld toe.  

For all three specimens, the strain levels at Section B are close to each other except 

for the reading of SG7 of WTJ6 which is smaller than that of WTJ4 and WTJ5. This 

might be caused by the seam weld on the top of the tube. Because of the existence of 

the seam weld, SG7 has to be placed away from the center line instead of putting 

exactly on top of the weld (see Figure 4.5a). The different width of the seam weld for 

each specimen caused the location of SG7 on the tube section to be slightly different 

from specimen to specimen. For WTJ6, the width of the seam weld is a little wider 

than WTJ4 and WTJ5, makes the placement of SG7 further away from the center line 

which leads to reduced strain readings.  

As for Section A, strain readings from specimen WTJ4 and WTJ6 have similar strain 

reading while the readings from WTJ5 are smaller for SG1, SG3 and SG4. This 

difference signifies different stress concentration levels in these three specimens. 

Strain histories of SG1, SG2 and SG7 in specimens WTJ4 to WTJ6 are shown in 
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Figures 4.19 to 4.21 respectively. For WTJ4, Figure 4.19 shows that the strain 

readings from all three gauges remained relatively unchanged at the initial stage but 

dropped rapidly at final stage. One thing worth noting here is that for SG1 and SG2, 

their reading started dropping as early as around N = 4.4x10
5
 load cycle due to local 

strain relaxation caused by the propagating crack. On the contrary, the reading of SG7 

dropped later at N = 5.0x10
6
 due to reduced load range. This feature of local strain 

relaxation caused by fatigue crack can be used for fatigue failure warning or even 

fatigue life prognosis. For WTJ5, it is seen in Figure 4.20 that the readings of SG7 at 

Section B kept nearly constant even at the final stage when the crack reached 

enormously large size. However, for SG1 and SG2, since they are located very close 

to the crack, the strain at their locations dropped substantially due to cracking. The 

strain history of WTJ6 in Figure 4.21 also shows decreasing strain at the final stage of 

fatigue loading. Also, Figure 4.21 shows the impact of beach-marking on strain 

readings.  

Using the strain recordings from SG1 and SG2, the hot-spot stress range can be 

derived by adopting a linear extrapolation method. The distances of SG1 and SG2 

from weld toe are 3.84 mm and 14.06 mm respectively. For example, the strain ranges 

for SG1 and SG2 of WTJ5 is 1137.0  and 606.9  respectively. The extrapolated 

strain at the hot-spot location is 1337.7  for which the calculated stress range is 

267.5 MPa. Schematics of hot-spot strain extrapolation for specimens WTJ4 to WTJ6 

are plotted in Figures 4.22 to Figure 4.24. Table 4.2 lists the hot-spot strain range 

readings for WTJ4 to WTJ6. All three specimens have large strain ratio between SG1 

reading and SG2 reading (between 1.78-1.87). This confirms again that large stress 
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concentration did occur at the weld toe of the welded tubular joint specimens. These 

hot-spot stress will be used in fatigue prognosis study in the following chapter.  

4.3.3 Fracture surface features 

The facture surfaces of specimens WTJ1, WTJ4, WTJ5 and WTJ6 were opened and 

examined for surface features after the completion of the fatigue test. Three zones of 

fatigue propagation are identified from the fracture surface of all four specimens: the 

origin zone, the slow fracture zone and the fast fracture zone, as shown in Figures 

4.25 to 4.32. This is consistent with current understanding of fatigue fracture surface 

features (see, e.g., Sachs 2005). At the origin zone, the crack development is very 

slow and the fracture surface is darker in color. For the slow fracture zone, the 

fracture surface become lighter in color and is relatively smooth since the propagation 

of crack at this stage is steady and stable. The last phase of crack development 

corresponds to the fast fracture zone on the fracture surface, which becomes rough 

and irregular compared with the slow fracture zone. In Figures 4.25 to 4.32, pictures 

of these three zones are shown for specimens WTJ1, WTJ4, WTJ5 and WTJ6. 

For WTJ1, dye penetrant was applied when the crack was first seen with naked eye. 

The dried red ink of the dye penetrant left a red water mark on the fracture surface, as 

shown in Figure 4.33. The red watermark recorded the crack front at the time when 

the dye penetrant was sprayed. The watermark clearly shows a semi-elliptical shape, 

which has a length (2c) of 62 mm and a depth (a) of 6 mm. The aspect ratio for the 

semi-elliptical crack front is thus around 0.2. This is in good agreement with the 

assumed aspect ratio value of 0.2 suggested by Vosikovsky et al (1985). Therefore for 

WTJ1, the aspect ratio assumption is supported with experimental observation. 
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For specimen WTJ6, beach-marking method is applied to generate crack front prints 

on the fracture surface at specified load cycles. A total of five marks are supposed to 

occur according to the loading plan. From Figure 4.34, it can be seen that there are 

only three beach marks visible on the fracture surface. Those three are believed to be 

the marks from the first three beach marking loading. This is confirmed using digital 

microscope. The last two marks are missing because the crack has penetrated the tube 

wall thickness before these two marks could occur and the specimen entered the fast 

propagation stage. The crack in specimen WTJ6 has multiple initiations which 

correspond to the multiple dark spots at the origin in Figure 4.31. Therefore, the 

shape of the beach mark is not semi-elliptical as expected. The first beach mark has a 

surface length of 33 mm and a depth of 1.5 mm. The second beach mark has a length 

of 55 mm and depth of 2.5 mm. The third beach mark has a length of 94 mm and 

depth of 5m. The aspect ratio is no longer consistent with the assumed aspect ratio 

value since it is applicable for single crack initiation only. 

Schematics of fatigue crack growth over the fracture surface of specimen WTJ1, 

WTJ4, WTJ5 and WTJ6 are also presented in Figures 4.35 to 4.38. The three crack 

propagation zones are marked in the figures.    

4.4 Conclusions 

Fatigue tests on six identical welded tubular joint specimens are carried out. Test data 

of applied load, strain and crack information are acquired. The strain data shows that 

high stress concentration occurred at hot-spot locations near weld toe. Fatigue crack 

initiates at the weld toe on the top ridge of the tube specimens and propagate along 

the weld toe in both directions. Recorded load data shows that with crack propagating 
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along the weld toe, the stiffness of the test specimen decreases considerably due to 

reduced tube section area at the fractured section location.  

As for the crack length measurement, three different techniques were tested including 

dye penetrant, phased array ultrasonic and digital microscope. It is found that digital 

microscope is able to detect small cracks before the other two techniques could.  

Generally speaking, crack detection and measurement is very challenging when the 

crack length is small (e.g., less than 10 mm). 

By applying dye penetrant on WTJ1 and beach marking on WTJ6, the crack front 

shape is recorded on fracture surface. The water mark left on the fracture surface of 

WTJ1 by dye penetrant ink has a semi-elliptical shape with an aspect ratio of 0.2, 

which is in close agreement with the assumed aspect ratio value at that stage. Yet for 

the beach marks on WTJ6, because of multiple crack initiations, they are not exactly 

semi-elliptical in shape and have aspect ratio values much larger than the assumed 

aspect ratio values for single crack.  

By examining the crack surface of specimens WTJ1, WTJ4, WTJ5 and WTJ6, it can 

be concluded that crack propagation can be divided into three stages according to the 

surface features of the fracture surface: the origin zone, the slow fracture zone and the 

fast fracture zone. Each stage corresponds to a different surface features over the 

fracture surface. 
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                        Table 4.1. Fatigue test parameters of the six test specimens 

 

Shear Force Bending Moment 

Test 

termination 

load cycle & 

crack length 

Pmax (kN) Pmin (kN) ∆P 
Mmax 

(kN-m) 

Mmin 

(kN-m) 
∆M 

(x10
5
 

cycles) 
(mm) 

WTJ1 25.35 3.43 21.92 45.72 6.19 39.53 6.19 251 

WTJ2 24.82 2.76 22.06 37.20 4.14 33.06 12.46 181 

WTJ3 27.93 1.77 26.16 41.86 2.65 39.20 2.18 320 

WTJ4 27.43 0.91 26.52 41.11 1.36 39.74 5.82 342 

WTJ5 28.30 1.82 26.48 42.41 2.73 39.68 3.90 337 

WTJ6 27.78 1.39 26.39 41.63 2.08 39.55 3.55 358 

 

Table 4.2. Strain range at hot-spot 

 
SG1 

(με) 

SG2 

(με) 

Ratio (SG1/ 

SG2) 

WTJ4 1390.7 779.6 1.78 

WTJ5 1137.0 606.9 1.87 

WTJ6 1301.2 717.6 1.81 
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Figure  4.1. Fatigue detail of fillet-welded Mast-Arm-to-Column connection (Detail 

16) (from Kaczinski et al 1998) 

 

 

Figure  4.2. Dimension of test specimen (unit: m) 
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Figure  4.3. Fatigue test setup 

 

 

 

Figure  4.4. Location of strain gauges 
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(a) 

 

(b) 

 

Figure  4.5. View of strain gauges on specimen 
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Figure  4.6. Measuring crack size using digital microscope 

 

 

 

Figure  4.7. Crack at the weld toe of test specimen (dark red line identified with dye 

penetrant) 
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(a) Load cycle N = 127,800 

 

(b) Load cycle N = 355,100 

 

Figure  4.8. Microscope image of fatigue crack growth in WTJ6: (a) Initial stage; (b) 

Crack at failure 
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Figure  4.9. Fatigue crack initiation and propagation on WTJ4 

 

 

Figure  4.10. Fatigue crack initiation and propagation on WTJ5 
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Figure  4.11. Fatigue crack initiation and propagation on WTJ6 

 

 

 

Figure  4.12. Crack growth curves 
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Figure  4.13. Load history of fatigue test for WTJ4 

 

Figure  4.14. Load history of fatigue test for WTJ5 
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Figure  4.15. Load history of fatigue test for WTJ6 

 

 

Figure  4.16.  Strain distribution over the sections of WTJ4: (a) Section A; (b) Section 

B 



 

 65 

 

 

Figure  4.17. Strain distribution over the sections of WTJ5: (a) Section A; (b) Section 

B 

 

Figure  4.18. Strain distribution over the sections of WTJ6: (a) Section A; (b) Section 

B 
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Figure  4.19. Strain history recorded in fatigue test of WTJ4 
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Figure  4.20. Strain history recorded in fatigue test of WTJ5 
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Figure  4.21. Strain history recorded in fatigue test of WTJ6 
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Figure  4.22. Schematics of hot-spot strain extrapolation of WTJ4 

 

 

Figure  4.23. Schematics of hot-spot strain extrapolation of WTJ5  
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Figure  4.24. Schematics of hot-spot strain extrapolation of WTJ6 
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 (a) 

 

(b) Origin zone 

 
 

Figure  4.25. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ1 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (a), (b) 
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(c) Slow fracture zone 

 

(d) Fast fracture zone 

 

Figure  4.26. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ1 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (c), (d) 
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(a) 

 

(b) Origin zone 

 

Figure  4.27. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ4 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (a), (b) 
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(c) Slow fracture zone 

 

(d) Fast fracture zone 

 

Figure  4.28. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ4 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (c), (d) 
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(a) 

 

(b) Origin zone 

 

Figure  4.29. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ5 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (a), (b) 
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(c) Slow fracture zone 

 

(d) Fast fracture zone 

 

Figure  4.30. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ5 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (c), (d) 
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(a) 

 

(b) Origin zone 

 

Figure  4.31. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ6 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (a), (b) 
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(c) Slow fracture zone 

 

(d) Fast fracture zone 

 

Figure  4.32. Pictures of crack propagation zones on the fracture surface of specimen 

WTJ6 (magnification factor for microscopic image labeled 1, 2, 3 = 65): (c), (d) 
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Figure  4.33. Dye penetrant mark on WTJ1 

 

Figure  4.34. Beach marks on WTJ6 (magnification factor = 43) 



 

 80 

 

 

Figure  4.35. Crack propagation along surface for WTJ1 

 

 

Figure  4.36. Crack propagation along surface for WTJ4 
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Figure  4.37. Crack propagation along surface for WTJ5 

 

 

Figure  4.38. Crack propagation along surface for WTJ6 
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Chapter 5: Structural Health Prognosis Procedure 

5.1 Introduction 

This chapter presents a general procedure for sensor-driven structural health 

prognosis and probabilistic maintenance scheduling. The proposed procedure utilizes 

Bayesian theorem for updating the structural degradation model. Markov Chain 

Monte Carlo (MCMC) sampling is employed to calculate the posterior distributions 

of the stochastic parameters in the structural degradation model. Bayesian updating 

allows the use of dynamic diagnostic information with prior knowledge for improved 

prognosis such as risk analysis and remaining useful life (RUL) estimation.  

In this chapter, the general prognosis procedure is extended to consider two unique 

features associated with sensor driven prognosis. One feature is the sensor 

performance degradation in long-term monitoring. In order to account for this feature, 

the error term in the structural degradation model is divided into two terms: the 

measurement error term and the model error term. Stochastic process is used to 

represent these two terms. The other feature is the massive amount of sensor data that 

could be generated from on-line structural health monitoring (SHM) system. How to 

effectively extract key prognosis information out of massive amount of sensor data is 

of interest. An extreme value theory (EVT) based method is proposed which can 

reduce the computation demand by 80% while still preserving the key information of 

sensor data.  

5.2 General degradation model  

In the proposed general sensor-driven probabilistic health prognosis procedure, a 
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general structural degradation model with random parameters is defined, in which the 

error term are divided into two types of errors. Bayesian theorem is applied to update 

the parameter distributions of the structural degradation model with sensor data. 

MCMC is implemented to sample from posterior distributions of the random 

parameters. Risk analysis and RUL estimation can be carried out with specific limit 

state function and risk acceptance level. The proposed sensor-driven structural health 

prognosis method can perform updating of multiple random parameters with multiple 

measurement inputs. A flowchart illustrating the general procedure is shown in Figure 

1. In this section, the general structural degradation model is firstly introduced. 

5.2.1 General form 

The proposed sensor-driven structural health prognosis procedure is based on a 

stochastic structural degradation model which models the variation of an engineering 

system over time. In nondestructive testing (NDT) data driven degradation model, a 

single probabilistic error term is commonly incorporated to account for the overall 

uncertainty associated with the model and measurements. In the proposed sensor-

driven health prognosis procedure, however, this general error term is explicitly 

divided into two separate terms: measurement error and model error. This approach 

reflects the fact that sensor performance (in terms of measurement error) generally 

varies (usually deteriorates) with time, and thus needs to be described with a time-

evolving stochastic process. The model error term represents the unknown factors in 

modeling the system. The stochastic structural degradation model can be expressed as, 

       mdl msmy t =F t,α,β +ε t +ε t                              (5.1) 

where y(t) is the degradation index which can be directly measured or indirectly 
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identified from sensor data (e.g., features of fused sensor data), and t denotes the time. 

F(t,α,β) is a function describing the evolution of the system. α is the model parameter 

vector containing quantities related to system properties, i.e., α=[α1, α2…αj]. Due to 

the uncertainties commonly associated with the model parameters, they can be 

described as random variables following pre-specified probability distributions. β is 

the environmental input vector which includes quantities (e.g. strain) resulting from 

loading such as temperature, or any other excitations to the system. εmdl and εmsm 

represents the model error and measurement error respectively. 

5.2.2 Error term modeling 

5.2.2.1 Measurement error 

Modeling the measurement error should be derived from the characteristics of sensors 

used for continuous online monitoring system for structural health diagnosis and 

prognosis. Compared with NDT inspection data based approaches, sensor-driven 

monitoring and prognosis procedure has the following features (also summarized in 

Table 5.1): sensor data are continuous, abundant, real-time (or nearly real-time) 

collected; sensor data with multiple modalities are available. Data analysis in such 

online monitoring system generally requires automated execution due to huge amount 

of data stream collected every day. Another feature of sensors in long-term 

monitoring system is that their performance would vary (usually deteriorate) over the 

time due to the degradation of the sensors themselves. Uncertainty in sensor data 

(measurement error) thus needs to be explicitly modeled as an evolving stochastic 

process. Gebraeel et al (2005) studied two types of stochastic processes: Gaussian 

process and Wiener process. He concluded that the model with Brownian motion 

assumption for the error term fits the data better. A few researchers have adopted the 
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Wiener process to model error term in prognosis application. (Doksum and Hoyland 

1993; Whitmore 1995; Gebraeel et al 2005). Here, considering the sensor degradation, 

the Wiener process is used as an example to demonstrate the updating procedure. 

Under this assumption, εmsm(t1), [εmsm(t2)-εmsm(t1)], …., [εmsm(ti)-εmsm(ti-1)] are 

independent normal random variables with zero mean, i.e., 

2

1 1[ ( ) ( )] (0, ( ))msm i msm i msm i it t N t t                                 (5.2) 

In certain cases, the sensor exhibits little degradation during monitoring mission, 

under such cases, the measurement error can simply be treated as following Gaussian 

process. Under this assumption, εmsm(t1), εmsm(t2), …., εmsm(ti) are independent normal 

random variables with zero mean, i.e., 

2( ) (0, )msm i msmt N                                    (5.3) 

5.2.2.2 Model error 

The model error term represents the aggregated influence by various factors because 

the degradation model never holds exactly in practice. In this study, the model error 

term is assumed to follow the Gaussian process. For any given time t, the model error 

term εmdl(t1), εmdl(t2), …., εmdl(ti)  also follow independent normal distribution as 

shown in Eqn. (5.4): 

2( ) (0, )mdl i mdlt N                                              (5.4) 

Independence between the measurement error and model error is assumed. 

5.3 Bayesian updating and Markov Chain Monte Carlo simulation 

5.3.1 Bayesian updating with implicit degradation model 

Without updating using monitoring data, uncertainty in the model parameters may 
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lead to large variance in the predicted value of the degradation index, which 

subsequently affects the accuracy of risk analysis and maintenance management. With 

data related to the damage index from monitoring system, initial model parameter 

distributions can be updated with measured data thus reducing the uncertainty in the 

prediction. Bayesian theory is used here for updating the model parameters with 

sensor data.  

5.3.1.1 Updating with sensor degradation considered 

Let Y=[y(t1), y(t2) …y(tk)] denote the measurement data. ti is the time of measurement. 

From the assumptions for model error and measurement error, we come to the 

conclusion that y(ti)-y(ti-1) follows normal distribution.    

2 2

1 1 1( ) ( ) ( ( , ) ( , ), ( ) 2 )i i i i msm i i mdly t y t N F t F t t t                     (5.5) 

It should be noted that for y(t1), its distribution is slightly different from Eqn. (5.5) 

and can be expressed as 
2 2

1 1( ( , ), )msm mdlN F t t    . Under the assumption of the 

Wiener process for measurement error and model error, as well as the independence 

between measurement error and model error, the covariance between any two 

different measurement increments equals zero. Also, according to Eqn. (5.4), the 

measurement increments follow normal distribution. Therefore, it can be concluded 

that for given values of α, measurement increments, [y(t1), y(t2)-y(t1),…, y(tk)-y(tk-1)] 

are mutually independent. Therefore, given the values for α, the conditional 

probability density function (PDF) of f(Y|α) can be expressed as: 

1 2 1 1

1 12

( ) ( ( ), ( ) ( ),..., ( ) ( ) )

( ( ) ) ( ( ) ( ) )

k k

k

i ii

f Y f y t y t y t y t y t

f y t f y t y t

 

 





  

  
                 (5.6) 

In Eqn. (5.6), 
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(5.7) 

Using the Bayesian theorem, their posterior distribution can be computed using Eqn. 

(5.8), 

( | ) ( )
( | )

( | ) ( )

f Y f
f Y

f Y f d

 


  





                                (5.8) 

Therefore, it is seen that the posterior distribution for α can be updated using 

monitoring data.  

5.3.1.2 Updating without sensor degradation considered 

y(ti) is a normal distribution with its mean value of F(ti,α) and its variance equal to 

(σmsm
2
+σmdl

2
). Meanwhile, its distribution is truncated to keep y(ti) non-negative. The 

truncated conditional probability density function f(y(ti)|α) is shown below :  

2

2 22

2 2

1 ( ( ) - ( , ))
exp(- )

2( )2
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( , )( ( ) | ) 1- (- )
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 


 
 

  
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


              (5.9) 

As for f(Y|α), it is calculated using Eqn. (5.10) below, 

1 2( ) ( ( ), ( ),..., ( ) )kf Y f y t y t y t                                     (5.10) 

After f(Y|α) is obtained, f(α|Y) can be calculated using Eqn. (5.8). 
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5.3.2 Markov Chain Monte Carlo simulation  

F(t,α,β) may have a large number of random system parameters that would make 

computing f(α|Y) difficult to do because of multi-dimensional integration being 

involved. For higher dimensions, analytic evaluation of this posterior distribution is 

infeasible, while numerical evaluation as an alternative approach might be equally 

difficult and inaccurate in greater dimension (Gilks et al 1996). Generally speaking, if 

the dimension exceeds three, an alternative method would be used instead of 

numerical integration. Furthermore, occasionally, there is even no explicit form for 

the degradation model. Under such situation, closed form expression for the posterior 

distribution would not be available. In order to overcome these two problems, MCMC 

simulation, which is suitable for simulating high dimension PDF, is selected here as 

the alternative approach to calculate the posterior distribution. 

The MCMC method draws samples from a pre-specified distribution by running a 

constructed Markov Chain that will converge after certain number of loops. The 

Metropolis-Hastings algorithm (Metropolis et al 1953; Hastings 1970) is employed 

here for sample drawing from the posterior distribution, which is described below in 

details (Gilks et al 1996). Figure 5.2 illustrates a single loop of the Metropolis-

Hastings Algorithm. 

1. Initializing the stochastic parameters, i.e., let α 
0 

= [x
0
]. Set t = 0. At any time step t 

= i, the value of α
i
 is expressed as [x

i
]. 

2. Propose a probability density Q(α', α
i
). Using this density function, a new state α' = 

[x'] can be generated out of the current state α
i 
= [x

i
].                      

3. Calculate J value with the measurements Y as below,  
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( ' ) ( ')
min(1, )

( ) ( ' )

i

i i

f Y Q
J

f Y Q

  
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



 

4. Draw U from a uniform distribution U[0,1]. If U < J, set α
i+1 

= α'; otherwise, let 

α
i+1

= α
i
. 

A new sample α
i+1

 is now available based on the previous sample α
i
.
 
Repeat Step 1 to 

Step 4 for a pre-specified number of cycles.  

In the above procedure, a random walk sampler is adopted, and the proposal function 

is thus symmetric, i.e.,  

( ' ) ( ')i iQ Q     

J can be simplified into Eqn. (5.11), 

( ' )
min(1, )

( )i

f Y
J

f Y




                                          (5.11) 

For the MCMC calculation, the initial samples may not follow the specified 

distribution. Yet they will gradually converge to the specified distribution. Therefore, 

the criterion for the convergence of the samples has to be defined before-hand. The 

samples after convergence are gathered to represent the posterior distributions. An 

index for judging the convergence as proposed by Gelman and Shirley (2010) is 

adopted in this study. A total of m parallel sequences each with a length of n samples 

are first generated using the given algorithm. The j-th sample in the i-th sequence is 

labeled as Ψij. The index can then be expressed as,   

ˆ( )ˆ Var
R

W


                                                    (5.12) 

In Eqn. (5.13), 
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If R̂  reaches a value close to one, the chain is considered to converge. Usually, 

more than 10 chains are needed to calculate the index. In Gelman and Shirley’s study 

(2010), a value of 1.2 is recommended as the threshold for the convergence. In 

another word, the samples are considered to have converged once the index falls 

below 1.2.  

After the samples representing the posterior distribution are generated, the failure 

probability as well as RUL of the system can be determined.  

A template code of the MCMC sampling is provided in Appendix C. 

5.3.3 Risk analysis and remaining useful life updating 

After updating the probability distribution of the random parameters in the 

degradation model, the estimated degradation index can be recalculated from the 

updated model. With many sensor data being collected at almost the same time, the 

estimated degradation index at any time instant follows a statistical distribution due to 

the uncertainty associated with the system and measured data. 

In order to estimate the RUL of the concerned system, two terms need to be defined: 

limit state function and risk acceptance level. Usually, the limit state function is given 

as Eqn. (5.14), (Shinozuka 1983) 
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 , , 0crg y F t                                               (5.14) 

Due to the uncertainty in the degradation model, F(t,α,β) follows a distribution at any 

time instant t, when the updating is done. From Eqn. (5.14), the probability of failure 

can be calculated as, 

 ( ) [ , , 0]f crP t P y F t                              (5.15) 

Risk acceptance level is defined as the critical failure probability value below which a 

system is considered safe and beyond which the system is considered unsafe and thus 

action needs to be taken for maintaining the system. Suppose a risk-acceptance level 

of R% is specified to compute the RUL using Eqn. (5.16), RUL is the value of t at 

which 

                                                                %fP t R                                               (5.16) 

An illustration of how RUL estimation can be performed is given in Figure 5.3. In 

this figure, the horizontal axis denotes the in-service time. In-service time is defined 

as the interval between the time the structure first opened to service and current time 

when structural health prognosis is performed. Service life is defined as the total life 

of the concerned structure from its first opening to service till its failure. Given the 

definition, there is the relationship that service life is the sum of in service time and 

RUL. Different combination of ycr and R% might yield different RUL estimations 

such as next inspection time. Values for ycr and R% must be determined from code 

specifications or empirical data. Maintenance operation can be scheduled based on 

such RUL information. 
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5.4 EVT-based structural prognosis method  

The above introduced prognosis procedure utilize a single set of sensor data for 

structural prognosis. In real case of structural monitoring project, hundreds sets of 

sensor data can be obtained within a short time during which structural condition 

presumably would not change under normal operating conditions. In such condition, 

for each set of sensor data, a corresponding RUL value can be determined through the 

prognosis procedure. Therefore, hundreds of model updating and RUL estimation 

have to be carried out. Subsequently, distribution fitting can be applied to determine a 

probabilistic distribution for the RULs from which the quantile values can be 

computed. However, this approach is computationally very demanding because of the 

Bayesian updating process and MCMC sampling involved. Since unexpected failure 

might lead to catastrophic consequence, it is critical to know the small quantiles of 

the estimated RULs. Considering the fact that decision makers are often more 

interested in the small quantile or extreme values of the estimated RULs, it is not 

necessary to obtain the full probabilistic distribution of the RULs as a random 

variable. Therefore, estimation of the tail parts or extreme values of the RUL 

distributions based on a selected and thus reduced sensor data set would be of interest 

to SHM applications.  

In this study, the EVT is introduced to reduce computation demand without losing 

much accuracy. EVT makes statistical inference about the upper tail of a random 

variable without the need of knowing its true distribution. EVT allows only a small 

percentage of total available sensor data to be actually used for estimating the tail 

quantile of the RUL. Estimators from EVT are often used to predict high quantile 



 

 93 

 

values for the distribution of prognosis results. A variety of estimators have been 

developed for EVT, such as the Hill estimator (Hill 1975), PWM estimator (Hosking 

and Wallis 1987), and moment estimator (Dekkers et al 1989), etc. Moment estimator 

is selected here for its ability to discern a light tail distribution more efficiently than 

the Hill estimator (Resnick 1997) since in many applications such as fatigue life 

prognosis the distribution of the RULs is usually bounded and not heavily tailed.     

As for the proposed EVT-based prognosis method using moment estimator in this 

study, only k out of n measurements (normally k << n) are used for model updating 

and RUL estimation by implementing the moment estimator. The k largest 

measurements selected from the full sensor data set are used as the input to the 

structural health prognosis. The k RUL values are computed accordingly using these 

largest measurements. If it can be proved that these k RUL values represent the 

smallest values among all RUL values, moment estimator can be applied on the set of 

k RUL values to estimate the small quantile values of the underlying RUL distribution. 

Information such as small quantile estimates for the RUL can be obtained accordingly. 

However, the computational demand for the EVT-based structural health prognosis 

can be cut substantially to nearly k/n of the original computing time (normally k << n). 

A flowchart for this method is given in Figure 5.4. 

5.4.1 Moment estimator method for univariate EVT  

Moment estimator method for univariate EVT is used to approximate the high 

quantiles for sample distributions using only a small portion of the available samples. 

A high quantile Xp is defined as P(x>Xp) = p where p approaches zero. Assume that Xn 

≥ Xn-1 ≥ …≥ Xn-(k-1) ≥ X(n-k)…≥ X1 are the order statistics of the total n data samples 
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available. Moment estimator method uses the largest m samples (i.e., Xn , Xn-1, …, Xn-

m+1) to approximate Xp (n>>m). According to Moment estimator method, the quantile 

estimator ˆ ( )pX k  is defined in Eqn. (5.17) below, 

 

ˆ( )( ) 1
ˆ ˆ( ) ( ) [ ]

ˆ

k

p n k

e

k

np
X k X a k








                             (5.17) 

Where k = 1, 2, …, m. Xn-k  is the (n-k)th order statistic of n samples. ˆ( )a k  is the 

moment estimator for scale function which can be calculated as Eqn. (5.18). ˆ( )k  is 

the moment estimator for extreme value index  , which can be estimated using Eqn. 

(5.19). ˆ
e  is the estimated value for   derived from estimator ˆ( )k .  
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In Eqns. (5.17) and (5.19),   ( )jM k  is calculated as Eqn. (5.20),  

  
1

0

1
( ) [log log( )]

k
j

j n i n k
i

M k X X
k



 


                             (5.20) 

In which Xn-i is the (n-i)th order statistic of n samples, and j = 1, 2.  

To determine ˆ
e , a common approach is to calculate ˆ( )k  for k = 1, 2, …m. Then, 

plot ˆ( )k  against k, and the average of ˆ( )k  within a certain range (usually for 

sufficiently large k values) is ˆ
e . The value of ˆ

e  can be used to assess whether the 

sample data is heavy tailed or not. For example, the distribution of the sample data is 

heavy tailed if  ˆ
e  is positive, and vice versa. Hill estimator is preferred in estimating 
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the high quantile value. 

After ˆ
e  is obtained, a similar process can be applied to determine Xp by first plotting 

ˆ ( )pX k  against k, and then calculating the average of ˆ ( )pX k  within a certain range 

that shows less fluctuation in ˆ ( )pX k (usually when k is sufficiently large).  

The above moment estimator method uses a relatively small portion (m << n) of the 

sample data that has larger values. To estimate low quantiles that may be of interest in 

certain applications, only slight adjustment can be made to the above process. For 

instance, in the RUL quantile estimation, low quantile values are desired. The above 

procedure can be applied to the reciprocal of the RULs. 

Danielson (2001) suggested that the optimal value for the sample size m is 

2

2 1
( )

sd

sdO n







 
 in applying the above moment estimator. ρsd is the second order index for 

the EVT theorem and n is the original total sample size. For example, for a total 

sample size of n = 500,100 samples (i.e. m = 100) may be adequate to estimate the 

high quantile value, thus using only 20% samples. 

5.4.2 First-order stochastic dominance for posterior distribution  

The EVT method is applied to the calculation of RULs. Therefore, the lower portion 

of RUL needs to be calculated from damage index values using the Bayesian updating, 

which is the most demanding part computation-wise in the EVT based prognosis 

process. If monotonicity condition between damage index and prognosis results such 

as RUL values is satisfied (monotonically increasing or decreasing), only m out of n 

damage index values would be used to calculate the smallest RUL values; thus it 

lowers the computation load by 100*(n-m)/n percentage.   
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To show the monotonicity condition, the first-order stochastic dominance of the 

posterior distribution f(α|Y) after Bayesian updating (see Eqn. (5.8)) is first examined. 

First-order stochastic dominance is defined as follows (Cox, 2002): for two random 

variables X and Y, X first order stochastic dominance Y if and only if FX(a) ≤ FY(a) for 

all a. (F(a) is the cumulative probability density function for a).  Milgrom (1981) 

proved that the strict monotone likelihood ratio property (MLRP) of the likelihood 

function f(Y|α) is both a necessary and sufficient condition for the first-order 

stochastic dominance of the posterior distributions in Bayesian updating. Therefore, 

in Eqn. (5.8), if the likelihood function f(Y|α) satisfies the strict MLRP (as shown 

below), the first-order stochastic dominance for the posterior distribution f(α|Y) can 

be assured.   

According to Milgrom (1981), the density function f(•|θ) has the strict MLRP if Eqn. 

(5.21) below holds for every x > z and ˆ  , 

       ˆ ˆ| | | | 0f x f z f x f z                          (5.21) 

Assume a total of nms measurement segments are carried out and each measurement 

segment contains nsg data samples. For the EVT-based prognosis method, the 

measured data within each measurement segments are ranked and regroup the 

measured data into nsg new sets by rank statistics (e.g., all largest data values will be 

regrouped into one set, etc.). Two such sets y1 and y2 are chosen: y1 = [y11, y12, …, 

y1n_ms] and y2 = [y21,y22,…y2n_ms], where y1i > y2i. The general error term ε(N) = εmdl(N) 

+ εmsm(N) is assumed to follow the Gaussian process and always follow the same 

normal distribution of N ~ (0, σ
2
). Two values α1 and α2 (assuming α1 > α2) are 

randomly sampled from the stochastic parameter α. The joint conditional probability 
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f(yj|αi) (j = 1, 2; and i = 1, 2) of y1 and y2 follows normal distribution of N ~ (F(αi), σ
2
) 

from Eqn. (5.1), which can be expressed as, 
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where i = 1, 2 and j = 1, 2; k = 1…nms. Eqn. (5.23) is derived from Eqn. (5.22) as, 
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      (5.23) 

where j = 1, 2 and k = 1, 2, …, nms. It can be observed that Eqn. (5.23) is 

monotonically increasing with yj as long as F(1) > F(2). Strict MLRP is thus 

demonstrated for the likelihood function of f(yj|αi)  and the first-order stochastic 

dominance of the posterior distribution f(α|Y) in Eqn. (5.8) is verified.  

Because of the first-order stochastic dominance of the posterior distribution if F(t,α,β) 

is also monotonic with α, it can be concluded that monotonicity between 

measurements y and estimated RUL holds given the same limit state condition and 

acceptance level. For a variety of degradation processes, the monotonicity between 

the measured damage index data y and model parameter α exists. For example, the 

fatigue crack length in the Paris Law-based fatigue degradation model (Paris et al. 

1961) monotonically increases with the two parameters C and m. For steel rebar 

corrosion problem, the depth for the hemispherical pit also monotonically increases 

with the pitting current (Harlow and Wei 2001). For application in these fields, EVT-

based prognosis method is applicable. 

In summary, three prerequisite conditions have to be satisfied in order to use the 

proposed EVT-based prognosis method: (1) A stochastic degradation model with a 
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measurable damage index as the independent variable is established; (2) A limit state 

function is defined in terms of the damage index; (3) A monotonicity condition 

between the damage index value and RUL exists. Once these three conditions are 

satisfied, the proposed EVT based prognosis method can be used for other limit states 

than those described in the two case studies next. A real structure is a system 

comprised of many components and its failure might be caused by one of the system’s 

components. Therefore, the system’s failure probability and RUL can be easily 

determined using systems theory once the failure probability and RUL of each 

individual component’s limit state is known. Two important examples on fatigue 

cracking and rebar pitting corrosion are given in this paper to illustrate the 

implementation of this method. The RUL in this paper refers to the component rather 

than the system.  

5.5 Case study 

5.5.1 Fatigue prognosis of Yellow Mill Pond bridge-general procedure                           

The Yellow Mill Pond Bridge is located on the Connecticut Turn pike I- 95 in the City 

of Bridgeport, Connecticut. The bridge was first opened to traffic in January 1958. 

This bridge consists of 28 simple-span cover-plated steel I-girders crossing the 

Yellow Mill Pond Channel. The dimensions for the beam are given as follows: Flange 

Width = 0.4191 m; Flange Thickness = 0.0320 m; Cover Plate Thickness = 0.0318 m; 

Web Thickness = 0.0190 m; Weld Leg = 0.0160 m.  

Fatigue cracking was first observed at the Yellow Mill Pond Bridge in 1970 (Fisher et 

al 1981). Fatigue crack growth resulted in complete fracture of a tension flange in one 

of the girders. Several inspections were made between 1970 and 1979. In 1976, 1977, 
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1979, cover plates on the Yellow Mill Pond Bridge were inspected for fatigue cracks. 

Using ultrasonic NDE method, Fatigue cracks were found in the vicinity of the cover 

plate welds. A sketch of the cover plate and the crack location is presented in Figure 

5.5. 

The stress range due to the traffic was recorded in 1971, 1973 and 1976. Maximum 

stress ranges as high as 72.4 MPa (10.5 ksi) were measured at the end weld of the 

cover plates (Fisher et al 1981). Since this bridge is well studied by many researchers 

(Fisher et al 1981; Yazdani and Albrecht 1987; Zhao and Haldar 1994) and as such 

verified fatigue data are readily available, the fatigue data from this bridge is used in 

this research as an example to illustrate the application of the structural health 

prognosis procedure. A specified procedure of sensor driven fatigue prognosis for the 

Yellow Mill Pond bridge cover plate is shown in Figure 5.6.  

Initial crack length 

In his paper, Fisher (1984) stated that for most welding details of steel bridges, initial 

cracks usually would exist at the very beginning. Therefore, they made an assumption 

that the initial crack starts to propagate from the first loading cycle. In this research, it 

is also assumed that initial crack exists before loading starts.   

For thick cover plate, Yazdani and Albrecht (1987) used a lognormal distribution with 

a mean value of 0.0508 cm and coefficient of variation (COV) equal to 0.5 for initial 

crack length. These values are also adopted here for the health prognosis of the cover 

plate fatigue details on the Yellow Mill Pond Bridge.     

Critical crack length 

The critical crack size is defined as the crack size above which the fatigue limit state 
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(i.e., failure) is assumed to occur. In practical applications, it can be determined by 

either fracture mechanics or a serviceability criterion (Zhao and Haldar 1996).   

To avoid unexpected failure, people usually take the relatively conservative value 

which is from serviceability criterion as the critical crack size. Zhao and Haldar (1996) 

suggested that the width or the thickness of a fatigue detail can be used as the critical 

crack size.  

In this study, the serviceability criterion is adopted to determine the critical crack size. 

The flange thickness is taken as the critical crack size, i.e., acr = flange thickness = 

3.20 cm. 

Correction factor 

For cover plate fatigue, the correction factors are calculated as (Fisher et al 1979),  

1

( )
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E k
  

1.211 0.186 /sG a b    

1wG   (for AASHTO fatigue categories E and E') 

0.4348

SCF

1+6.789( )
g

F

G
a

T

                                      (5.24) 

SCF 3.539 ln( ) 1.981 ( ) 5.3798
cp

F F

TZ

T T
                         (5.25) 

where a is the crack length along miner axis (i.e., in the direction of crack depth), b is 

the crack length along major axis (usually crack’s surface length). Tcp is the cover-

plate thickness, TF  is the flange thickness. Z is the weld leg size. E(k) is the complete 

elliptical integral of the second kind with k defined as k
2 

= (c
2
-a

2
)/c

2
.  
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Material Constants 

Usually, among the two materials constants, parameter C is assumed to follow a 

lognormal distribution, while crack growth exponent constant m is treated as 

deterministic. The crack growth exponent m = 3 is proposed out of basic crack growth 

rate data from structural steels as well as test data on welded members (Yazdani and 

Albrecht 1987). Parameter C is found to be with a mean value of 3.92x10
-12

 and COV 

of 0.63 (m for crack size and MPa  for K).  

Crack measurements 

For fatigue cracks associated with the cover plate detail, the crack is assumed to be 

semi-elliptical surface crack. In November 1973, the east ends of Beams 2 and 3 of 

the eastbound roadway of Span 10 were inspected; fatigue cracks were discovered 

(Fisher et al 1981). In Beam 2, a crack with a depth of 0.95 cm was identified. In 

November 1976, during a brief inspection of Span 13, four large cracks were 

observed. These cracks are about 1.27 cm deep. Crack lengths measurements are 

summarized in Table 5.2. For illustration purpose, it is assumed here that these 

measurements are from the same crack measuring instrument so that the dependence 

of the instrument degradation can be retained. Using these crack information, the 

RUL of this specific cover-plate detail can be estimated.  

Here, standard deviation for the model error is assumed to be 1.5x10
-4 

at the first 

measurement moment similar to the number used by Robinson (2000). Ultrasonic 

inspection along with other NDT techniques was used to detect the crack size on 

Yellow Mill Pond Bridge (Fisher et al 1981). At present days, one commonly used 

crack size measurement technique is the ultrasonic phased array sensors. For example, 
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measured crack length within a 0.2 mm error, which is on the order of 1x10
-4

, can be 

achieved using ultrasonic phased array sensor probes (Satyanarayan et al 2007). 

Therefore, we assume that σmsm is also 1x10
-4

. It is anticipated that as ultrasonic 

sensing technique advances, in-situ ultrasonic phased array sensor can achieve this 

level of accuracy in the future.  

Total fatigue load cycle 

The average daily truck traffic (ADTT) determines the load history of a bridge. It was 

reported by Fisher et al (1981) that the ADTT on Span 10 has increased from 3,000 to 

6,700 for the years 1958-1975. The ADTT estimated from weigh-in-motion data 

collected by Connecticut Department of Transportation is 20,692 in 2009. To simplify, 

the following traffic flow model is adopted, 

( 1) ( ) (1 )ADTT i ADTT i r                                    (5.26) 

The annual traffic growth rate is set to be 3.38%. Eqn. (5.26) yields the traffic loading 

volume as: In 1973, total number of passed trucks is 2.65x10
7
; In 1977, total number 

of passed trucks is 3.35x10
7
. One loading cycle for each truck passage is adopted here. 

Stress range history 

In the July 1971 study, electrical-resistance strain gages were installed on the bridges 

(Fisher et al 1981). They were placed at two locations on the interior beams: One at 

the mid-span, the other at a location about 102 mm away from the end of the primary 

cover plate. All of them were under the web on either the flange or primary cover 

plate. Also, other measurements have been done to obtain the strain history in 1973 to 

1974, and in June 1976. The measurements for the highest stressed girder yielded a 

Miner stress range of 13.1 MPa (Fisher, 1984).  In this study, since m = 3 is adopted, 
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the equivalent constant amplitude stress range is equal to the Miner stress range. 

According to fatigue theory, the earliest cracks usually occur at locations with the 

most severe condition. They usually first initiate at the details where have the largest 

effective stress range applies. The equivalent constant amplitude stress range is set to 

be 13.1 MPa in this study to estimate the fatigue life.  

Model updating 

Bayesian updating was carried out given the two measurements in 1973 and 1976. 

The MCMC method was applied to sample from joint posterior distributions of 

random parameters C and a0. 100,000 samples were generated for each updating. The 

samples drawn for a0 and C are shown in Figure 5.7. The posterior distribution for 

these two parameters has changed from the prior distribution. Comparison between 

prior and posterior distribution for a0 and C can be seen in Figure 5.8. For the 

posterior distribution, the mean values for both a0 and C have increased. This means 

the initial mean values for the parameters are smaller than the true values in this case. 

Meanwhile, the coefficients of variance for both have decreased. This is attributed to 

the new information flown in which reduces the uncertainty in the model parameters. 

Parameter comparison is provided in Table 5.3. With the samples of the random 

parameters, the fatigue crack growth curve is calculated and shown in Figure 5.9a. 

Also, the fatigue crack growth curve with initial parameters distributions is plotted as 

Figure 5.9b. It is seen that the updated crack growth curve fits the measurements 

much better than the initial crack growth curve. Meanwhile, the distribution for the 

estimated crack length after updating becomes narrower than the one without 

updating, as shown in Figure 5.9.  
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Risk analysis and fatigue life estimation 

In the AASHTO S-N approach, the allowable S-N curve is set two standard deviations 

from the mean. For normal distribution, the cumulative density function of (μ-2σ) 

equals 2.3%. In this study 2.3% is adopted as the risk acceptance level for the bridge 

detail of cover plate following the research by Yazdani and Albrecht (1987). It is 

expected that inspections are required at the considered fatigue detail location 

whenever the failure probability reaches 2.3%. Maintenance action is also planned at 

that time based on the inspection results. After generating the samples by MCMC 

simulation, failure probability curve can be calculated. Next inspection time estimated 

from the failure probability curve is given in Table 5.4. 

Given the risk acceptance level at 2.3%, the estimated service life before next 

inspection is 26.5 years from the updated model while the estimated service life 

without updating is 22.1 years. This means the initial degradation model without 

updating yields a conservative prediction. As an example, Figure 5.10 plots the 

distribution of fatigue crack length estimated after 30 million load cycles. Results 

from both the initial model and updated models are given in the figure. It is seen in 

this figure that the estimated crack length distribution from the initial model has a 

quite heavy tail on the right side. But for the updated crack length distribution, it is 

not heavy tailed. Since the risk acceptance is as small as 2.3%, given the critical crack 

length, the resulting RUL estimation is determined primarily based on the right-side 

tail of the crack length distribution. This explains why the estimated RUL from the 

initial model would be smaller than that from the updated model even though the 

mean value of crack length distribution from the initial model is smaller than that 
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from updated model.  

In real application, for a specific component, the true parameter values might be in 

the tail of the prior distribution. If prediction is still made based on the initial 

distribution, this might lead to unexpected failure, or more frequent inspection 

because of false alarm. Here in this example, it leads to a more frequent inspection 

schedule than the result with updated model, and thus requires additional resources. 

Therefore, updating of the model with new information from sensing system plays an 

important role in better prediction of the degradation.  

During long term structural monitoring, sensor itself might degrade in performance. 

For example, certain types of sensors such as piezoelectric material based ultrasonic 

guided wave sensors and strain gages exhibit data quality degradation as sensors age 

and deteriorate in performance. In the proposed sensor-driven prognosis procedure, 

the example used to illustrate the concept deals with fatigue crack length 

measurement, which are often done using ultrasonic guided wave sensors. This is also 

verified in others’ research, e.g., Cobb et al (2009) mentioned that sensor degradation 

is one among the factors causing the variance in sensor data. Therefore, in the 

proposed procedure, sensor degradation is modeled with sensor data quality 

deterioration in terms of measurement error variance. Besides the initial assumption 

of msm = 1x10
-4

, another measurement variance value: msm = 2x10
-4 

is considered for 

the stochastic process of measurement error.  

The results from the two msm values are compared in Figure 5.10 and Figure 5.11. In 

Figure 5.10, given different msm values, the PDFs for estimated crack length at Load 

Cycle N = 3x10
7
 are plotted.  In Figure 5.11, failure probability curves from different 
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setup are plotted. It is seen in Figure 5.10 that the updated crack length distributions 

have different kurtosis. The smaller the msm is, the more concentrated the updated 

PDF becomes. This is because msm represents the uncertainty in measurements. msm 

of smaller value means that less uncertainty exists in measurements, thus less 

uncertainty would transfer into the updated RULs from measurements.  In Figure 5.11, 

we can see that msm = 2x10
-4

 leads to a more conservative estimated RUL than msm 

= 1x10
-4

. The updated service life for msm = 1x10
4
 is 27.4 Years while the updated 

service life for msm = 2x10
-4

 is 26.5 Years, as shown in Figure 5.11. The results show 

the effect of sensor performance degradation and the importance of its proper 

modeling.  

5.5.2 Fatigue prognosis of Yellow Mill Pond bridge- EVT method  

The cover plate fatigue problem is still taken as the example to illustrate the EVT 

method in this section. Due to lack of continuous sensor data (largely because 

technology was not available then) for fatigue crack length and availability of only 

limited number of data, the crack depth data are numerically simulated using 

inspection data as reference. For the sake of EVT based prognosis, it is assumed that 

during the first measurement segment in 1973, the true crack depth is 9.7 mm. The 

measurement error is assumed to follow stationary Gaussian process with zero mean 

and standard deviation of 2. 500 sensor data of the crack depth were simulated from 

normal distribution of N(9.7, 4). Also, the histogram of the crack depth data is plotted 

in Figure 5.12. The model error term is assumed to be zero here for simplicity.  

Bayesian updating of the fatigue degradation model and prognosis are to be carried 

out based on the 500 sensor data. For EVT based method, the largest 100 sensor data 
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are used for updating the degradation model which yields 100 RULs correspondingly. 

Updating is implemented for each measured data. For each updating, 100,000 

samples are generated for MCMC simulation. RUL values are then estimated from 

the updated degradation model. According to the monotonicity, these 100 RUL values 

are the smallest among total 500 RUL values. Next, the small quantile estimation (e.g., 

1%) can be calculated using the 100 smallest RUL values. By doing so, the total 

computation time can be reduced by 80%. The crack depth data and its corresponding 

estimated RULs is plot in Figure 5.13. 

1/RULi is used to implement the EVT estimators following Eqns. (5.17) to (5.20). 

First, the extreme value index γ is estimated, as shown in Figure 5.14. ˆ
e (the 

estimated value of γ) is calculated to be -0.3234 as shown in Figure 5.14a. The 

negative value here implies that the distribution for the reciprocals of RULs is not 

heavy tailed. It is bounded on the right side. The selection of quantile in real 

application needs to be justified based on either structural failure criteria or 

serviceability limit states. Here, several quantile values estimated from moment 

estimators are presented along with those from distribution fitting. For example, by 

substituting the 100 RULs into Eqn. (5.17) and letting p = 0.005, this quantile X0.005 is 

estimated to be 2.57x10
-8

, as shown in Figure 5.14b. The corresponding RUL value is 

thus equal to 3.88x10
7
. Also, several other small quantiles are calculated using the 

moment estimator, as listed in Table 5.5.  

For comparison purpose, distribution fitting method is also implemented. All the 500 

RULs are calculated using the given 500 sensor data. Then, distribution fitting was 

performed using the 500 RUL values. Statistical regression analysis shows that as 
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distribution with left boundary, log-logistic distribution provides a good fit to the 

RUL data. The PDF of the log-logistic distribution is given as Eqn. (5.27). Parameters 

for the fitted log-logistic distribution have the following values: s = 5.8241, l = 

1.8884×10
7
, η = 3.1321×10

7
.  

  
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1

1
s s

s x x
f x

l l l

 
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           
    
 

                        (5.27) 

Quantile estimations from the two different approaches are given in Table 5.5. All 

estimations for the same quantile values have small difference (less than 3% for this 

case study). The cumulative distribution curve for the fitted log-logistic distribution 

as well as estimated quantile values from moment estimator are plot in Figure 5.15. It 

is observed that all the quantile values are very close to each other. Therefore, it can 

be concluded that the proposed EVT-based prognosis method provides a good 

estimation while reducing the computation demand by 80%.  

5.6 Conclusions 

This chapter presents a sensor-driven structural health prognosis procedure in which 

sensor performance variation is explicitly modeled in the structural degradation 

model. By modeling sensor performance using stochastic process, uncertainty 

associated with sensor performance variation over time can be characterized and thus 

better decision making can be made in the prognosis procedure. The prognosis 

procedure is capable of using sensor data of multiple modalities to update multiple 

random parameters in the stochastic structural degradation model. Application of this 

procedure to fatigue damage found in the Yellow Mill Pond Bridge is used to 

illustrate the procedure.  
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Because of their different characteristics (especially over the time), the error term in 

the stochastic degradation model is divided into two stochastic error terms: sensor 

measurement error and model error. Proper modeling of the sensor measurement error 

is crucial to characterize the impact of sensor performance variation (usually 

deterioration) over time. From the parametric study, it is observed that sensor 

degradation rate does have an impact on the prognosis result. In the fatigue 

application example, different values of the stochastic model parameters for the 

sensor measurement error process alter the estimated crack length distribution as well 

as the predicted RUL of the fatigue detail. Long-term experimental data to support the 

sensor performance degradation model is thus needed.  

The proposed sensor-driven structural health prognosis procedure has the potential for 

automated execution when implemented in modern continuous monitoring system. 

Such system generates huge amount of sensor data that have not been well utilized. 

However, these large amounts of sensor data can be used in the proposed procedure to 

provide additional dimension information about the effect of sensor performance 

variation for decision making.  

The EVT-based structural health prognosis method is also presented with the aim of 

reducing sensor data transmission and computing demand from prognosis. In order to 

do this, moment estimator from EVT is used to estimate the quantile values for the 

RUL of the monitored structures.  

One advantage of the EVT-based prognosis method is that only a small fraction 

(usually < 20%) of the full sensor data set are actually used in Bayesian updating and 

RUL calculation. This is very appealing because the Bayesian updating is 
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computationally demanding and thus time consuming. For example, in the example of 

fatigue prognosis, fatigue crack growth model usually takes an implicit form which 

leads to iterative computation for crack depth. Therefore, the EVT-based prognosis 

method could save the computation time and make the prognosis more efficient 

without sacrificing much accuracy.  

The EVT-based prognosis method requires the condition of monotonicity between the 

damage index and RUL. In this study, error term is assumed as Gaussian process. For 

likelihood functions following normal distribution, the monotonicity condition is 

proven for the fatigue crack growth model.   
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Table 5.1. Comparison of sensor-driven and NDT data-driven structural health 

prognosis 

 Sensor-driven   NDT data driven 

Data collection Continuous, or on-demand 

(e.g., after natural hazard) 

Periodic 

Dataset for 

updating 

Huge amount of sensor data 

that are continuously collected 

Very limited  

Decision variable Uncertainty factors are better 

characterized. (e.g., error is 

derived from field measured 

data, and modeled as 

stochastic process); More 

uncertainty factors can be 

incorporated (e.g., 

temperature, sensor 

performance, etc.), which 

offer additional dimension in 

decision making,  

Deterministic (error in 

measurement and interpretation 

is based on lab calibration test, 

not based on real field 

measurement) 

Major factor 

affecting its 

accuracy 

Limitation of sensor 

specification (this is fixable as 

technology evolves) 

Technician’s skill and 

experience (too costly to fix 

human error (through more 

training and practice) and may 

never be possible) 

Location with 

difficult access  

Yes No 

Autonomous 

Execution 

Yes No 

 

Table 5.2. Fatigue crack data from NDT at Yellow Mill Pond Bridge 

Years Crack depth measured (cm) 

November, 1973 0.95 

November, 1976 1.27 

 

Table 5.3. Parameter comparison between prior and posterior distribution of a0 and C 

 a0 (cm) C ((m/cycle)·(N/m
-3/2

)
3
) 

 Mean COV Mean COV 

Prior 0.0508 0.5000 3.92x10
-12

 0.6300 

Posterior 0.1403 0.1953 6.43x10
-12

 0.0518 
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Table 5.4. RUL predicted for the Yellow Mill Pond Bridge based on cover plate 

fatigue detail in 1976 

2.3% failure Initial (1958) Updated (1976) 

Total Service Life (Years) 22.1 26.5 

RUL (Years) after 1976 4.1 8.5 

Table 5.5. Comparison of estimated fatigue RUL values from moment estimator and 

distribution fitting 

Quantile 0.002 0.005 0.01 0.02 0.05 

RUL from Moment Estimator 

(load cycles 1×10
7
) 

3.880 3.944 4.010 4.094 4.248 

RUL from distribution fitting 

(load cycles1×10
7
) 

3.770 3.880 3.980 4.093 4.263 

Difference Ratio 2.8% 1.6% 0.7% 0.0% -0.4% 
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Figure  5.1. Sensor driven structural prognosis procedure 

 
  Figure  5.2.  Single loop of MCMC sampling 
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Figure  5.3. Schematics of RUL estimation using a stochastic degradation model 

 

 

Figure  5.4. EVT-based structural health prognosis procedure 
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Figure  5.5. Schematics of fatigue details of bridge cover plate 

 

 

Figure  5.6. Fatigue prognosis for cover plate  
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Figure  5.7.  Samples of a0 and lnC from updated distribution using MCMC 

 

Figure  5.8. Probability distribution of model parameters, a0 and C, before and after 

updating 
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Figure  5.9. Variation of estimated degradation index (i.e., fatigue crack): (a) with 

updating; (b) without updating 
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Figure  5.10.  Distribution of fatigue crack length (estimated after 30 million load 

cycles) 

 

 

Figure  5.11. Failure probability of the cover plate fatigue detail on the Yellow Mill 

Pond Bridge predicted from structural health prognosis procedure 
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Figure  5.12. Histogram of simulated fatigue crack depth data 

 

 

Figure  5.13. Crack depth data and corresponding estimated RULs 
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Figure  5.14. Extreme value index and quantile estimation 

 

 

Figure  5.15. Cumulative distribution of fatigue RUL 
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Chapter 6:  Prognosis Study of Fatigue Test Specimens 

6.1 Introduction 

In this chapter, fatigue prognosis of three fatigue test specimens is carried out using 

the proposed prognosis procedure. Prognosis with the linear elastic fracture 

mechanics (LEFM) model and empirical failure model are both studied. Prognosis 

using the fatigue test data is first performed with the LEFM model. Crack length data 

from earlier stage with smaller values are used as input to update the LEFM model 

and predict fatigue crack growth. Results are compared with that from traditional 

linear regression method. Then, prognosis with the empirical failure model is carried 

out using all measured crack length data available till the termination of the test. 

Limitations of the empirical failure model in fatigue data fitting are discussed and a 

data selection method based on coefficient of determination values is proposed to 

improve the goodness of fit.  

6.2 Prognosis using the LEFM model 

Specimens WTJ1 and WTJ2 were used for crack measurement technique training and 

adjustment purpose. Therefore, crack length propagation data was not kept. WTJ3 

failed prematurely at 2.18x10
5
 load cycle which was totally unexpected and thus no 

crack measurement was performed. Therefore, only crack length data for three 

specimens WTJ4 to WTJ6 are available for prognosis study. In this chapter, all 

prognoses are done using the crack length data obtained from specimens WTJ4 to 

WTJ6. 
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6.2.1 Model updating and crack depth propagation prediction 

6.2.1.1 Crack length data and aspect ratio 

The values of both deterministic and stochastic parameters for the adopted LEFM 

model are listed in Table 6.1 and Table 6.2. The LEFM model uses the crack depth a 

as the input data. Since the crack depth is much more difficult to measure especially 

at early stage, surface crack length was measured instead and crack depth is derived 

from the measured crack length value using a pre-specified relationship named aspect 

ratio. Aspect ratio is defined as the ratio of crack depth to half crack length (a/c). 

According to the equations for aspect ratio, aspect ratio keeps decreasing from initial 

value to 0.2 when the crack depth reaches 25 percent of the tube wall thickness. After 

that, the aspect ratio is considered as a constant value of 0.2 until the failure. As for 

signal support structures tested in this study, it has a relatively thin wall with a wall 

thickness T of 6.4 mm. The LEFM model is only valid for crack with a depth less 

than 0.9T, which is 5.76 mm in this study. The corresponding crack length 2c = 57.6 

mm. After the maximum crack length is exceeded, the structure is considered to have 

reached its fatigue life corresponding to a critical crack length of 0.9T. Only crack 

length data smaller than 57.6 mm is thus used for the prognosis in the present study of 

the LEFM model.  

Crack depth data used for prognosis are plotted in Figures 6.1 to 6.3 for specimens 

WTJ4 to WTJ6 respectively. The crack length data were firstly measured using a 

digital microscope. Then, crack depths were derived from the crack length data based 

on aspect ratio equations. Since the smallest marking on the paper tape measure 

placed along the weld toe is 1 mm for reading under microscope, the measurement 

error for crack size is within 1 mm if no cognitive bias is incurred. By assuming the 
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general error term is on the same order of magnitude as the measurement error, it is 

assumed to have the standard deviation of 1 for use in this fatigue life prognosis study.  

6.2.1.2 Model parameter distribution updating 

With the crack length measurements, the distributions for the three stochastic 

coefficients C, a0, and (a/c)0 of the fatigue growth model are updated using the 

proposed prognosis procedure for specimens WTJ4 to WTJ6. The updated mean 

values for these stochastic parameters are listed in Table 6.2.  The mean value of 

parameter C deviates from the prior value of 2.0x10
-13

 to updated value of 1.84x10
-14

 

for specimen WTJ4 while the mean values for a0 and (a/c)0 change a little (all within 

15% difference). This is in agreement with the findings reported by Walbridge (2005). 

Their sensitivity study shows the LEFM model is mostly sensitive to parameter C. 

For parameter C, many factors could impact its value such as material properties and 

it would deviate from experiment to experiment. Experiments on full-scale specimens 

are thus important to determining reliable C values for specific applications. Also, for 

the updated mean value of C, the results from WTJ5 and WTJ6 (5.37x10
-14

 and 

6.03x10
-14

) are close to each other while the C value for WTJ4 (1.84x10
-14

) is much 

smaller. As for the LEFM model, the larger value C has, the faster the crack growth 

rate becomes and the smaller the fatigue life is. Therefore, this is consistent with the 

situation that WTJ4 has a fatigue life much larger than the fatigue lives of WTJ5 and 

WTJ6. 

6.2.1.3 Crack depth growth prediction  

Figures 6.1 to 6.3 also provide the crack depth growth curve estimated with the 

updated fatigue growth model for specimens WTJ4 to WTJ6 respectively. It is seen 

from Figure 6.2 that the fatigue growth model with updated parameters is in good 
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agreement with the measured crack size data for WTJ5. Also, Figure 6.1 gives a good 

fit for WTJ4 although the first two data points are deviating a little from the predicted 

curve. This might be due to the measurement error since the readings of the first two 

data are small with tiny crack opening. For WTJ6, the updated curve does not capture 

the crack growth trend reflected by the measured data as shown in Figure 6.3. This 

might be caused by multiple crack initiation. As mentioned in the discussion of crack 

surface features in Chapter 4, there are several dark initiation spots and ratchet marks 

observed on the fracture surface of WTJ6. This also causes the beach marks not to be 

semi-elliptical. Also, the aspect ratios for these marks are comparatively small (0.046, 

0.046, 0.053) due to the multiple crack initiation. Therefore, the assumed aspect ratio 

equation for WTJ6 does not hold true for the actual crack shape. The crack did not 

penetrate the tube wall thickness before load cycle reached 270,000 based on beach 

marks. However, using the assumed aspect ratio relationship for updating the LEFM 

based fatigue crack growth model, fatigue crack would have fully penetrated the tube 

wall thickness before load cycle number N = 180,000. This caused the predicted crack 

growth curve not match well with the measured data. 

It is noted in Figure 6.2 that for the early stage (before 190,000 load cycle) of the 

predicted crack growth curve, there are no measured data available due to the 

limitation of the crack measurement technique. The updated model gives a prediction 

of how crack propagation would likely be in the early stage. An updated value of 

initial crack depth a0 is also obtained from model updating. Crack growth curves 

corresponding to the 5%, 50% (median), and 95% quantiles are plotted in Figure 6.2.  

Another thing worth noting is that the LEFM based fatigue growth model is only 
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valid before the crack reaches ninety percent of the tube wall thickness when the 

structure is considered to fail. However, the crack would further propagate after this 

before it becomes completely unstable and load capacity drops substantially. 

Therefore, the calculated fatigue life from this model is more conservative in 

comparison with the total number of load cycle at test termination.  

6.2.2 Discussions 

6.2.2.1 Linear regression  

The fatigue prognosis procedure applies the Bayesian theorem and MCMC when 

updating the fatigue growth model to obtain posterior distributions for the fatigue 

model parameters. Another commonly used approach for determining the parameter 

values in a deterministic fatigue growth model (e.g., Paris Law) is the linear 

regression method. It uses the log-log linear form of the Paris law as Eqn. (6.1). 

log( / ) log( ) log( )da dN m K C                                       (6.1) 

The data of da/dN and ΔK is used to curve fit the value of m as the slope and the 

value of log(C) as the intercept (Yazdani and Albrecht 1987). Since m is usually 

considered constant in updating based on Bayesian theorem, it is also assumed to be 

constant (i.e., m = 3.0) here for the linear regression. Only the value of C is to be 

regressed using the linear regression. For the initial crack depth a0, it takes the mean 

value of prior distribution from LEFM model assumptions. 

The linear regression results for specimens WTJ4 to WTJ6 and corresponding 

prognosis curve are presented in Figures 6.4 to 6.6 respectively. For example, in 

Figure 6.5a, C is obtained from linear regression. The coefficient of determination is 

0.8446 and the mean square error is 0.1815. Using this regressed C value for the 
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fatigue growth model, the crack growth curve is plotted in Figure 6.5b. Clearly, the 

fatigue growth curve using regressed values deviates considerably from the measured 

data. Similar situations can also be observed in Figure 6.4 and Figure 6.6. Possible 

reason for the large deviation is that small regression residual error in the log-log 

linear form of the Paris law equation could lead to large error in its non-linear form.  

6.2.2.2 Comparisons  

A comparison of Figure 6.2 and Figure 6.5b suggests that the result from the Bayesian 

method fits the measured crack data better than that of the regression method. Similar 

results can also be seen in WTJ4 and WTJ6 as shown in Figures 6.1 to 6.6. A 

summary of the regression results are listed in Table. 6.3. Also, comparison of the 

results between the two different methods can be made by looking at Table 6.4. 

Conclusion can be drawn that when the regressed values for C and m are used for the 

LEFM based fatigue growth model, the obtained crack growth curve does not fit the 

measured data well, evidenced by the large deviation between these two. Also, 

another disadvantage of the linear regression method comparing with the Bayesian 

updating procedure is that it can only update the parameters of C and m.  On the other 

hand, the Bayesian procedure can update any combination of stochastic parameters. 

6.3 Prognosis using empirical failure model 

In this dissertation study, discussion of the empirical failure model is restricted to 

fatigue cases with constant amplitude loading only. Therefore, it is necessary to 

convert the recorded crack length data from the fatigue test into those with constant 

amplitude loading first. Miner’s rule is employed here to do this. 
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6.3.1 Corrected load cycle number  

According to the Miner’s rule (Miner 1945), the damage induced by a single loop is 

considered to be the multiplication of load cycle and the stress range. In this fatigue 

test, load is applied at the end point of the cantilevered specimen. The stress range is 

proportional to the range of the applied moment. Miner’s rule can be applied to the 

loading record and transfer it into constant amplitude loading. The equivalent loading 

cycle number can be calculated using Eqn. 6.2. 

1

i k

i i

i
e

e

N M

N
M






                                                   (6.2) 

In Eqn. (6.2), Mi is the bending moment acting at the end section of the test specimen. 

Ni is the number of loading cycle at the load level Mi.  Ne is the equivalent load cycle 

number at the load level Me.  

WTJ1:  

The cyclic load range was kept constant at the early stage of the test. However, the 

length of the arm from load point to the weld toe was adjusted from 1.83 m (6') to 

1.52 m (5') at load cycle no. N = 560,678 during the test. The moment at the weld toe 

before the loading setup adjustment is taken as Me.  Ne is calculated to be 6.09x10
5 

which is smaller than the recorded value of 6.19 x10
5
. 

WTJ2:  

The target cyclic load range was increased from 22.06 kN to 25.08 kN at load cycle 

number N = 941,700 to accelerate the test till the termination of the test at N = 12.46 

x10
5
. Me is chosen to be the bending moment value before the load increase. Ne is 

calculated as 13.38x10
5
 which is larger than the recorded total load cycle of 12.46 
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x10
5
. 

WTJ4: 

Displacement control mode is used throughout the test. The target displacement of the 

actuator kept constant. At the final stage of the crack propagation, the bending 

stiffness of the tube decreased due to large crack. Hence, the applied moment dropped 

at the final stage of loading although displacement parameters are kept the same. The 

corrected total load cycle number Ne is 5.78x10
5
 while the recorded total load cycle is 

5.82x10
5
. The difference is less than 1% of the fatigue life of WTJ4. 

WTJ5:  

The target loading was kept constant throughout the test. Ne equals the recorded value. 

WTJ6: 

Beach marking method is used, two load ranges are applied. Using the bending 

moment value for the larger load range as Me, the calculated equivalent total load 

cycle number Ne is equal to 3.40x10
5
 which is smaller than the total load cycle of 

3.55x10
5
. 

One notable thing is that after transforming the crack length record for all specimens 

into equivalent constant loading condition, the resulting fatigue life Ne still varies a 

lot from specimen to specimen even though similar moment is applied. The 

equivalent load cycle is also named corrected load cycle here. Table 6.5 lists the 

corrected fatigue life for all six specimens. 

For comparison purpose, both the uncorrected crack growth curve from direct 

measurement and the corrected crack growth curve are shown in Figure 6.7. It is seen 

that for WTJ4, the two curves overlap each other except for the final stage when the 
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load range started dropping due to cracking. For WTJ5, they are identical since the 

load range is kept constant all the time. For WTJ6, the two curves started to deviate 

from each other when beach-marking loading started. 

6.3.2 Data segment selection method  

One feature of the empirical failure model is that the growth rate of the modeled 

degradation process should be monotonically increasing. However, in reality, the 

crack growth rate might slow down occasionally due to various reasons, for example, 

reduced fatigue load range. In such cases, multiple acceleration stages could happen 

during the fatigue crack propagation process. Under such condition, it is preferred 

that the data set is divided into several segments and the empirical failure model is 

updated for the stages with monotonically increasing rate only. In order to automate 

this in prognosis practice, a data selection method based on the coefficient of 

determination (R
2
) is proposed in this study.  

For data set with monotonically increasing rate, generally increasing number of data 

points would improve the goodness of fit for the updated model. Therefore, the R
2
 

value would get closer to 1 when more data points become available. Small 

fluctuation might exist in R
2
 values due to the uncertainty and noise in the measured 

data and the degradation process. Yet no significant drop of R
2
 value should happen. 

However, if deceleration in the measured data is observed, the goodness of fit of the 

empirical model to the data set would also deteriorate which will be reflected as the 

sudden drop of R
2
 value. In this study, a data selection procedure based on this 

observation is proposed. A flow chart illustrating this procedure is shown in Figure 

6.8. With each data point taken in and the Bayesian updating executed, the R
2
 value is 
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examined to see if a new acceleration stage starts. If a relatively large drop of R
2
 

value occurs, it is concluded that a new acceleration stage begins and all previous 

data points are discarded. The selection of a small constant value δ in the criterion is 

to avoid misinterpretation of data fluctuation (e.g. caused by noise) into new 

acceleration stage.   

6.3.3 Prognosis result without data selection 

In order to perform prognosis using the empirical failure model, initial estimated 

parameter values for the model have to be provided as the prior distribution. One 

thing to mention here is that the load cycle number ti applied to the empirical failure 

model is the load cycle since the first measurement. It represents the time interval of 

the crack propagation at final stage. And a relation exits between failure time tf and 

total fatigue life Tf as given in Eqn. (6.3)  

1.f fT t t                                              (6.3) 

In Eqn. (6.3), t1 denotes the load cycle at the first measurement. 

In this study, linear regression is applied on the crack length data of specimens WTJ4 

to WTJ6 to determine the initial parameter values for γ1, γ2 and tf. In practice, initial 

values can be derived from similar applications with recorded data. The results are 

listed in Table 6.6. The mean values and standard deviation are calculated using linear 

regression results for the three specimens.  

The distribution of γ1, γ2 and tf are updated using crack measurements for each 

specimen using the empirical failure model based prognosis procedure. The error 

term in the general degradation model is still assumed to follow normal distribution 

with zero mean and standard deviation of 1, which is the same as those of the LEFM 
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model. Each time a new data point is obtained, updating is performed using all 

available data within the current data segment and a new set of updated parameter 

values are calculated. The fatigue life Tf with updated tf values for specimens WTJ4 to 

WTJ6 are given in Figures 6.9, 6.11 and 6.13 respectively. Also, the corresponding 

coefficients of determination (R
2
) for all three specimens are plotted in Figures 6.10, 

6.12, and 6.14 respectively.  

Figure 6.9 shows that for WTJ4, the estimated Tf converges near load cycle 

number N = 5.35x10
5
 with an estimated Tf equal to 5.78x10

5
 cycles.  This is very 

close to the corrected load cycle at test termination which is 5.76x10
5
. In this case, the 

empirical failure model based prognosis method is able to give some early-warning 

before the complete structural failure. For WTJ6, Tf also converges as early as around 

2.5x10
5
 cycles as shown in Figure 6.13 while the load cycle at test termination is 

3.4x10
5
, leaving a remaining fatigue life of 9x10

4
 cycles before complete failure. For 

WTJ5, however, Tf fluctuates to some extent in the updating process, as shown in 

Figure 6.11. By looking at the R
2
 plot for WTJ5 in Figure 6.12, it is seen that a 

sudden decrease in the R
2
 value occurs in between N = 2.8x10

5
 and N = 3x10

5
. 

Meanwhile, the R
2
 value at later stage of the prognosis for WTJ5 is around 0.95 

which is smaller than the R
2
 value for WTJ4 and WTJ6. This indicates that the 

empirical failure model does not fit the whole data set of WTJ5 well. By looking at 

the crack growth curve for WTJ5 in Figure 6.7, it can be seen that there exists a 

deceleration stage for crack propagation around N = 3x10
5
. This coincides with the 

sudden drop of the R
2
 value. In order to make the empirical failure model applicable 

to WTJ5, the data selection method based on R
2
 needs to be applied.   
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6.3.4 Prognosis result with data selection 

The prognosis for WTJ5 is performed again, but augmented with the R
2
 data selection 

method. The constant value of  is set to be 0.03 based on some tests. For different 

application, this value might vary. At N = 3.0169x10
5

, there is a sudden drop for R
2
 

value. Therefore, according to the procedure presented in the flowchart shown in 

Figure 6.8, all data before N = 3.0169x10
5 

are discarded. Updating is implemented 

using refreshed data points collected after that point. The variation of R
2
 in the 

updating process is shown in Figure 6.15a. It is seen that the R
2
 value gradually 

increases and approaches 1. The Tf result is shown in Figure 6.15b. Comparing the 

results in Figure 6.15b with Figure 6.11, it can be observed that Tf converges in 

Figure 6.15b. A comparison of the curve fitting result between the updating with and 

without data selection is shown in Figure 6.16a and b. It can be clearly seen that with 

the data selection, the prognosis method gives a better fitting. 

6.3.5 Discussion   

Prognosis using the empirical failure model is able to provide a good estimation for 

the failure time tf. As an explicit parameter, the failure time tf is directly obtained from 

updating of the empirical failure model using measured data. No definition of the 

limit state is necessary in comparison with the prognosis based on LEFM model.  

One limitation of the empirical failure model is that it can only fit the deterioration 

process which has monotonically increasing growth rate. In real application, the 

growth rate might not be monotonic. In order to make the empirical failure model 

applicable to such cases, a data selection method is proposed which can determine the 

part of the collected data suitable for model updating and prognosis use. The data set 
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of WTJ5 from the tubular fatigue test is used as an example to demonstrate the data 

selection method. With the data selection method, the empirical failure model based 

prognosis method is demonstrated to be able to yield a good estimate of the fatigue 

failure time tf for welded tubular joints fatigue applications.  

6.4 Fatigue life comparisons 

AASHTO gives the fatigue life equation as Eqn. 6.3. According to AASHTO, the test 

specimens fall into fatigue category E' with A = 1.28x10
11

. m is usually assumed to be 

equal to 3. 

mN A                                                    (6.4) 

The calculated fatigue lives for WTJ1 to WTJ6 are listed in Table 6.7. The 

corresponding stress ranges are equivalent stress ranges extrapolated from the time 

history of the measured nominal strain. Also listed in Table 6.7 are the load cycles at 

test termination. Since all tests are terminated at the time when surface crack length 

along the welding toe is at least 20 cm. It is considered that the load cycle at test 

termination should be close to the true failure load cycle.  Table 6.7 shows that for all 

six specimens, the estimated fatigue lives using Eqn. (6.4) are much smaller than the 

load cycle at test termination. Figure 6.17 presents the load cycle at test termination 

for the six specimens in S-N chart together with test results for similar tubular joints 

by others (Archer and Gurney, 1970). In the figure, it is clearly seen that the test 

results fall between fatigue category C and category E, which are in good agreement 

with the experimental results on similar specimens by Archer and Gurney. (1970). 

Another thing worth noting is that the fatigue lives for the six specimens are widely 

scattered. The large dispersion observed in the fatigue crack development makes 
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fatigue monitoring an important tool for predicting structural failure caused by fatigue 

cracking. 

Table 6.8 lists the estimated fatigue life from both LEFM model based prognosis and 

empirical failure model based prognosis. It can be observed that the estimated fatigue 

life using empirical failure model is quite close to the load cycle at test termination 

(difference less than 1%). However, the estimated fatigue life based on LEFM model 

is always smaller than the load cycle at test termination (50% to 80%). This is 

explained by the limit state function defined for the LEFM based prognosis method. 

In this study, penetration of 90% of the wall thickness is defined as the limit state and 

the corresponding crack length is about 5.8 cm. However, in fatigue test, the crack 

could keep propagating along the weld toe well over 20cm without collapse. One 

thing to note is that although the empirical failure model based prognosis is able to 

obtain an accurate estimation of the failure time, it can only converge to the accurate 

estimation at later stage when less than 10% of the fatigue life remains. Still, it has 

the potential of complementing the current fatigue life prognosis method and can 

provide early-warning to avoid catastrophic structural failure like collapse. 

6.5 Conclusions 

Crack length data from fatigue test of welded tubular joint specimens are used for 

demonstrating the application of two prognosis procedures based on distinct fatigue 

growth models, the LEFM model and the empirical failure model. The proposed 

prognosis procedure has certain advantages over traditional linear regression method. 

First of all, it is capable of multi-parameter updating. Also, the updated model fits the 

data better than that from the linear regression. By applying the prognosis procedure 



 

 135 

 

based on LEFM model, an updated fatigue model is made available for predicting its 

fatigue life.  

Using the stochastic LEFM model, it is found that the crack growth curve from the 

updated model agrees reasonably well with the measured data. Updated distributions 

of the stochastic parameters such as the parameter C, initial crack depth a0 and initial 

crack aspect ratio (a/c)0 are obtained for three specimens and they are compared with 

the deterministic values of C regressed using traditional approach from the da/dN vs. 

K dataset. This adds to the knowledge on the fatigue behavior of welded tubular 

joints in signal support structures. Using the updated stochastic fatigue growth model, 

a continuous crack growth curve can be established. This can be used for 

understanding how fatigue crack propagates in its early development stage, when the 

crack is still too small (e.g., crack length < 1mm) to measure with current 

instrumentation technique. 

Prognosis based on LEFM model leads to conservative results (50% to 80% of the 

load cycle at test termination) due to the selected limit state definition. However, for 

the empirical failure model based prognosis, its estimated fatigue life is quite close to 

the load cycle at test termination (less than 1% difference). The limitation for 

prognosis based on this model is that it is mostly applicable to the final stage of 

fatigue crack growth and thus has less margin for safety and possible preventive 

action. However, its main application is to provide early-warning signal before 

catastrophic structural failure.   
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Table 6.1. Deterministic parameters of fatigue growth model 

Tube wall 

thickness 

T (mm) 

Weld toe 

angle 

 () 

Weld 

footprint 

length 

Lw (mm) 

half plate 

width 

b (mm) 

m 

DOB 

(degree of 

bending) 

6.4 45 6.4 200 3.0 1 

 

Table 6.2. Stochastic parameters of fatigue growth model 

 
C 

((mm/cycle)·(N/mm
-3/2

)
m
 

Initial crack 

depth a0 

(mm) 

Initial crack 

aspect ratio 

(a/c)0 

Prior mean value before 

updating 
2.00x10

-13
 0.2 0.5 

Updated mean value, 

specimen WTJ4 
1.84x10

-14
 0.1662 0.4899 

Updated mean value, 

specimen WTJ5 
5.37x10

-14
 0.1860 0.4879 

Updated mean value, 

specimen WTJ6 
6.03x10

-14
 0.1867 0.4901 

 

Table 6.3. Linear regression result 

 C ((mm/cycle)·(N/mm
-3/2

)
m
 s (mean square error) R

2
 

WTJ4 2.45x10
-14

 0.1633 0.8695 

WTJ5 4.09x10
-15

 0.1385 0.8446 

WTJ6 2.04x10
-14

 0.2496 -0.2160 

 

Table 6.4. Comparison of the regressed result with model updating result 

 C ((mm/cycle)·(N/mm
-3/2

)
m
 m 

Prior 2.00x10
-13

 3 

WTJ4 
Regression 2.45x10

-14
 3 

Updated mean 1.84x10
-14

 3 

WTJ5 
Regression 4.09x10

-15
 3 

Updated mean 5.37x10
-14

 3 

WTJ6 
Regression 2.04x10

-14
 3 

Updated mean 6.03x10
-14

 3 
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Table 6.5. Corrected load cycle number using Miner’s rule 

Specimen 
Recorded total load 

cycle (x10
5
) 

Corrected load 

cycle Ne (x10
5
) 

Correspondent loading 

moment range Me (kN-m) 

WTJ1 6.19 6.09 39.53 

WTJ2 12.46 13.38 33.06 

WTJ3 2.18 2.13 39.20 

WTJ4 5.82 5.76 39.74 

WTJ5 3.90 3.90 39.68 

WTJ6 3.55 3.40 39.55 

 

Table 6.6. Updated stochastic parameters for the empirical failure model 

Parameter WTJ4 WTJ5 WTJ6 mean std COV 
Distributi

on Type 

γ1 7.66 8.10 5.12 6.96 1.61 0.23 
Lognorm

al 

γ2 96.56 100.87 67.95 88.46 17.89 0.20 
Lognorm

al 

tf 137,281 198,847 232,551 189,559 48,309 0.26 Normal 

 

Table 6.7. Fatigue life data of test specimens 

Specimen 

Nominal stress 

range at weld toe 

(MPa) 

Estimated fatigue 

life from AASHTO 

(x10
5
 cycles) 

Load cycle at test 

termination 

(x10
5
 cycles) 

WTJ1 111.04 0.93 6.19 

WTJ2 111.10 0.93 12.46 

WTJ3 125.00 0.66 2.18 

WTJ4 127.70 0.61 5.82 

WTJ5 125.70 0.64 3.90 

WTJ6 116.94 0.93 3.55 
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Table 6.8. Fatigue life estimations for specimens WTJ4, WTJ5 and WTJ6 

Specimen 

Corrected load 

cycle at test 

termination 

(x10
5
 cycles) 

Mean value of 

estimated fatigue 

life (LEFM model, 

x10
5
 cycles) 

Mean value of 

estimated fatigue 

life (Empirical 

failure model, x10
5
 

cycles) 

WTJ4 5.78 4.74 5.78 

WTJ5 3.90 2.77 3.90 

WTJ6 3.40 1.68 3.52 
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Figure  6.1. Predicted crack growth curve for WTJ4 

 

Figure  6.2. Predicted crack growth curve for WTJ5 
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Figure  6.3. Predicted crack growth curve for WTJ6 
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Figure  6.4. (a) Linear regression of fatigue growth model parameters; (b) Predicted 

fatigue crack growth prognosis using linear regression data from WTJ4 
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Figure  6.5. (a) Linear regression of fatigue growth model parameters; (b) Predicted 

fatigue crack growth prognosis using linear regression data from WTJ5 
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Figure  6.6. (a) Linear regression of fatigue growth model parameters; (b) Predicted 

fatigue crack growth using linear regression data from WTJ6 



 

 144 

 

 

Figure  6.7. Comparison between corrected crack growth curve and original measured 

crack growth curve 

 
Figure  6.8. Flowchart of R

2
 based data selection method  
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Figure  6.9. Updated fatigue life for test specimen WTJ4  

 

Figure  6.10. R
2
 variation in model updating for test specimen WTJ4  
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Figure  6.11. Updated fatigue life for test specimen WTJ5  

 

Figure  6.12. R
2
 variation in model updating for test specimen WTJ5  
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Figure  6.13. Updated fatigue life for test specimen WTJ6 

 

Figure  6.14. R
2
 variation in model updating for test specimen WTJ6  
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Figure  6.15. Results of WTJ5 with data selection 
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(a) Curve fitting without data selection 

 
(b) Curve fitting with data selection 

 
Figure  6.16. Comparison of curve fitting with final updated parameter values without 

and with R
2
 based data selection. 
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Figure  6.17. S-N curves of the welded tubular joint specimens in comparison with 

other test data (Archer and Gurney 1970)  
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Chapter 7: Conclusions and Future Work  

7.1 Conclusions 

The presented work intends to advance the knowledge of fatigue crack growth 

behaviour and its prognosis of welded tubular joints in traffic signal support 

structures. Specifically, the following findings are made in this research:  

 Two types of fatigue crack growth models proposed for different fatigue 

development regimes in the welded tubular joints of traffic signal support 

structures.  

The linear elastic fracture mechanics (LEFM) model describes the fatigue crack 

growth behaviour of the welded tubular joints during the slow crack growth 

regime (stage II). As a complement to the LEFM model, the empirical failure 

model (EFM) is proposed for fatigue crack growth modeling in the fast crack 

growth regime (stage III). This empirical failure model incorporates the failure 

time as an explicit parameter, and thus can directly update the failure time 

through model updating. Knowing the failure time in advance is crucial to 

preventing complete structural failure caused by fatigue cracking.   

 Full-scale fatigue test conducted on six full-scale welded tubular joint specimens 

from traffic signal support structures to investigate their fatigue crack growth 

behaviour.  

The fatigue life of the six fatigue test specimens in this study falls between 

AASHTO fatigue categories C and E. The experimentally derived fatigue life is 

thus better than the AASHTO fatigue category E' designated for this fatigue detail. 
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From the test results, it is found that the fatigue lives of the six test specimens are 

widely scattered. It is noted that fatigue life prediction using the stress-life 

approach does not reflect the large deviation in the test results. 

For all specimens, high stress concentration at the weld toe is confirmed by 

measured strain data. The ratios of strain readings from two neighbouring strain 

gauges at hot-spot are between 1.78 and 1.87. This coincides well with the fact 

that all cracks initiate at the weld toe on the top ridge of the tube specimens, and 

propagate along the weld toe in both directions. 

The semi-elliptical crack shape assumed in this study for surface fatigue crack is 

confirmed in at least one specimen by the water mark from dried dye penetrant 

on the fracture surface with an aspect ratio of 0.2. By examining the fracture 

surface in four test specimens, three zones of crack propagation are identified 

according to the surface features of the fracture surface: the origin zone with 

darker color, the slow fracture zone with relatively smooth surface and lighter 

color and the fast fracture zone with rough surface and in some cases with 

friction rubbing marks.                

 A sensor-driven structural health prognosis procedure incorporating  long-term 

sensor performance degradation effect proposed  

The prognosis procedure is capable of using sensor data of multiple modalities to 

update multiple random parameters in the stochastic structural degradation model. 

The general error term in the stochastic structural degradation model is divided 

into two stochastic error terms: measurement error and model error because of 

their different characteristics (especially over the time). Stochastic process is 
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applied to model the sensor measurement error to consider the sensor degradation 

effect. From the parametric study results, it is observed that sensor degradation 

rate does have an impact on the prognosis result. Proper modelling of sensor 

measurement error is crucial to characterizing the impact of sensor performance 

variation (usually deterioration) over time.  

 An extreme value theory (EVT) based structural health prognosis method 

proposed to reduce sensor data transmission and computing demand  in 

prognosis  

The EVT-based prognosis method uses moment estimator to estimate quantile 

values for the remaining useful life (RUL) of monitored structures. The 

advantage of the EVT-based prognosis method is that only a small fraction 

(usually < 20%) of the full sensor data set is actually used in model updating and 

RUL calculation. This is very appealing because model updating is 

computationally demanding due to the massive amount of data available from 

online structural health monitoring system. The EVT-based prognosis method 

could save the computation time, and make the prognosis more efficient without 

sacrificing much accuracy.  

 Prognosis with the two fatigue crack growth models tested using fatigue test data.   

It is found that the crack growth curve given by the updated LEFM model agrees 

reasonably well with measured data. Updated distributions of the stochastic 

parameters are obtained for the welded tubular joints in signal support structures 

such as the parameter C, initial crack length a0 and initial crack aspect ratio (a/c)0. 

This adds to the knowledge on the fatigue behavior of welded tubular joints in 
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signal support structures. Using the updated LEFM fatigue growth model, 

continuous crack growth curves can be derived. This can be used for 

understanding how fatigue crack growth in its early initiation stage when the 

crack is still too small (e.g., crack length < 1 mm) to measure with current 

instrumentation technique. 

The empirical failure model exhibits good performance in fitting with the crack 

length data at later stage of fatigue crack development. Estimation of the fatigue 

life from prognosis using the empirical failure model is quite close to the load 

cycle number at test termination (less than 1% difference). Although the estimate 

converges at a later stage of the fatigue cracking process (less than 10% of the 

total fatigue life), the empirical failure model based prognosis method is still able 

to give some early-warning before complete structural failure. 

7.2 Future work 

Future research work along the line of the research presented in this dissertation is 

recommended as follows: 

 Application of the empirical failure model is illustrated using  crack length data 

in this study since crack growth is a direct damage index correlated with the 

severity of fatigue damage. However, alternative damage indices such as strain or 

displacement can potentially be used for the empirical failure model. Future work 

is suggested to extend the potential application of the empirical failure model into 

other types of measured data.  

 In order to apply the sensor-driven structural health prognosis method, a 

degradation model together with measurable damage index from structural health 
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monitoring system is required. However, such kinds of models are not always 

available for complicated situations such as the multiple crack initiations 

observed in this study. . Further study is recommended for experimental test and 

modelling of the fatigue behaviour of welded tubular joints with multiple crack 

initiations. 

 For sensor degradation over long-term monitoring, stochastic models ideally 

should be supported by experimental data and physical explanation. However, 

there is a lack of such data. It is recommended that long-term field test or 

acceleration tests should be carried out on commonly used sensor types to 

continually improve the sensor performance degradation model.  

 Fatigue crack length is measured using digital microscope in this study which is 

very labour intensive during the long fatigue test period. Sensor based 

measurement technique without human intervention has yet to be improved in 

enhancing accuracy and lowering cost. Candidates include acoustic emission 

sensor, eddy current sensor, while their performance varies with type of structures 

to be monitored. Future work is recommended to use damage index damage from 

continuously operated sensors.   
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Appendices 

Appendix A:  Equations for Calculating Magnification Factors in the LEFM Model 

Equations for calculating Mkb and Mkm at the deepest point of the semi-elliptical 

surface crack are presented below. For nomenclature, please refer to Figure 3.4. 

These equations are adapted from the reference by Bowness and Lee (1999) 

1. Mk for an as-welded joint: Deepest point under Bending loading (Mkb). 

For 0.005 / 0.5a T  ,  

1 2 3, , , ,b

a a a a L
Mk f f f

T c T T T
 

     
       

     
  

Where 

3

1 2[ ] 0.10364

1 4( , ) 0.065916 0.52086exp

A
a

A A
Ta a a a

f A
T c T T

  
   

       
      

     

  

   
2

1 0.014992 / 0.021401 / 0.23851A a c a c      

1.0278

2 0.61775( / )A a c    

 3 0.00013242 / 1.4744A a c   

     
3 2

4 0.28783 / 0.58706 / 0.37198 / 0.89887A a c a c a c      

6 8

2 5 7( , ) 1

A A
a a a

f A A
T T T


   

        
 

2

5 0.11052 0.19007 0.059156A      

2

6 15.124 15.459 0.0036148A       

2

7 0.047620 0.16780 0.081012A       
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   
2

8 17.195 / 12.468 / 0.51662A a T a T     

2
10 11 12 14( ) 2

3 9 13 15 16 17( , , )

A A A A
a L a a a a

f A A A A A
T T T T T T

 



          
            

         

 

2

9 0.75722 1.8264 1.2008A      

     
3 2

10 0.013885 / 0.014872 / 0.55052 / 0.072404A L T L T L T      

     
3 2

11 0.065232 / 0.54052 / 1.8188 / 0.0022170A L T L T L T      

   
2

12 0.034436 / 0.28669 / 0.36546A L T L T     

2

13 0.61998 1.4489 0.90380A       

2

14 0.43912 1.3345 0.57647A      

   
2

15 0.35848 / 1.3975 / 1.7535A L T L T     

   
2

16 0.31288 / 1.3599 / 1.6611A L T L T    

   
2

17 0.0014701 / 0.0025074 / 0.0089846A L T L T     

For 0.5 / 1.0a T  , 

1.0bMk     
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2. Mk for an as-welded joint: Deepest point under Membrane loading (Mkm). 

1 2 3, , , ,m

a a a a L
Mk f f f

T c T T T
 

     
       

     
  

Where 

3

1 2[ ] 0.050966

1 4( , ) 0.43358 0.93163exp

A
a

A A
Ta a a a

f A
T c T T

  
   

       
      

     

  

   
2

1 1.0343 / 0.15657 / 1.3409A a c a c      

0.61153

2 1.3218( / )A a c    

 3 0.87238 / 1.2788A a c    

     
3 2

4 0.46190 / 0.67090 / 0.37571 / 4.6511A a c a c a c      

6 0.10740( )

2 5 7( , ) 1

a
A

Ta a a
f A A

T T T




   
     

   
 

2

5 0.00038737 0.64771 0.72368A       

2

6 0.24183 176.23A    

2

7 0.00027743 2.8143A     

2
9 10 11 13( ) 2

1 8 12 14 15 16( , , )

A A A A
a L a a a a

f A A A A A
T T T T T T

 



          
            

         

 

2

8 0.082502 0.0084862 0.38417A       

     
3 2

9 0.010766 / 0.060159 / 0.13667 / 0.023400A L T L T L T     

     
3 2

10 0.028378 / 0.16489 / 0.35584 / 0.00024554A L T L T L T      
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   
2

11 0.0015061 / 0.023369 / 0.23124A L T L T     

2

12 0.051554 0.025447 1.8975A      

2

13 0.12914 0.21863 0.13798A       

   
2

14 0.20136 / 0.93311 / 0.41496A L T L T     

   
2

15 0.20188 / 0.97857 / 0.068225A L T L T    

   
2

16 0.027338 / 0.12551 / 11.218A L T L T     
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Appendix B:  Equations for Calculating Correction Factors in the LEFM Model 

Equations for calculating Yb and Ym at the deepest point of the semi-elliptical surface 

crack are presented below. For nomenclature, please refer to Figure 3.5. Ym=FH, 

Yb=F. These equations are adapted from the reference by Newman and Raju (1981) 

2 4

1 2 3 w

a a
F M M M f gf

T T


    
      

     

                                    

Where 

1 1.13 0.09
a

M
c

 
   

 
 

2

0.89
0.54

0.2 ( / )
M

a c
  


 

24

3

1.0
0.5 14 1.0

0.65 ( / )

a
M

a c c

 
    

  
 

 
2

2
1 0.1 0.35 1 sin

a
g

T


  
     

   

  

In Eqn. (1), 

f  is an angular function from the embedded elliptical-crack solution, it is calculated 

as: 

1/4
2

2 2cos sin
a

f
c

  
  

   
   

 

The function wf , a finite-width correction is expressed as: 

1/2

sec( )
2

w

c a
f

b T

 
  
 
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The function H is assumed to have the form of Eqn. (2): 

1 2 1( )sin pH H H H                                              

Where 

0.2 0.6
a a

p
c T

    

1 1 0.34 0.11 ( )
a a a

H
T c T

    

2

2 1 21 ( ) ( )
a a

H G G
T T

    

In the above equation for H2 

1 1.22 0.12
a

G
c

    

0.75 1.5

2 0.55 1.05 0.47
a a

G
c c

   
     

   
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Appendix C:  MATLAB code of MCMC sampling for the example on fatigue life 

prognosis of the Yellow Mill Pond Bridge, Connecticut, USA 

This section presents the MATLAB codes used for MCMC sampling for fatigue life 

prognosis of the Yellow Mill Pond Bridge in this dissertation (MATLAB R2011b). A 

total of five MATLAB files are listed below, which are labeled as C.1-C.5 

respectively. C.1 Maincode.m is the main code which calls functions from C.2-C.5 to 

draw samples from the posterior distribution of stochastic parameters using the 

Metropolis- Hastings algorithm. 

C.1 Maincode 

This MATLAB code: Maincode.m, implements the Bayesian updating and MCMC 

sampling for stochastic parameters in the degradation model (Metropolis et al 1953; 

Hastings 1970). 

% Main code for Bayesian Updating of Fatigue Crack length growth model using MCMC 

% unit: m, MPa, second 

% last revised: April 7, 2013 

 

clear all; 

close all; 

clc; 

tic 

 

%% Parameters Values Assignments 

% C_old, C_new: old and new-proposed values in MCMC for the material related constant C 

%   in Paris Law 

% a0: initial crack length 

% m: material related constant m factor in the Paris Law 

% Sa: equivalent stress range (e.g., calculated using rainflow counting) 

% miu_C, sigma_C: parameters for initial lognormal distribution of C factor 

% miu_a0, sigma_a0: parameters for initial lognormal distribution of a0 

% A_crck: crack length measurements; 

% N_ldcycl: load cycle at crack length measurements; 

% Y_ldcycl: year in service at crack length measurements 

% VarMsm: variance of Brownian motion (Wiener Process) for measurement 

%   error 
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% VarMdl: variance of Gaussian process for model error 

% N_sample: total number of samples to be generated by MCMC method 

 

m = 3;    %(Yazdani and Albrecht 1987) 

Sa = 13.1;      %(Fisher, 1984)   

A_crck = [0.9525*1e-2,1.27e-2];   %(Fisher et al 1981) 

N_ldcycl = [2.65e7,3.35e7]; 

Y_ldcycl = trafficmodel(N_ldcycl);  %(Fisher et al 1981) 

N_msample = numel(A_crck)-1; 

VarMsm = (1e-4)^2;    % Wiener process for measurement error (Gebraeel et al 2005)  

VarMdl = (1.5e-4)^2;  % Gussian process for model error    

VAR_VEC = [VarMsm,VarMdl]; 

 

a0 = 0.0508e-2; % starting value of initial crack length for MCMC sampling 

Cm = 3.92e-12; % starting value of material related constant C for MCMC sampling 

 

[miu_a0,sigma_a0] = lognormal(0.0508e-2,(0.0508e-2*0.5)^2);  % Yazdani and Albrecht 

(1987) 

% Calculate mu and sigma of lognormal distribution parameters from mean and variance of 

a0 

 

[miu_C,sigma_C] = lognormal(3.92e-12,(3.92e-12*0.63)^2); % Yazdani and Albrecht (1987) 

% Calculate mu and sigma of lognormal distribution parameters from mean 

%   and variance of C 

 

N_sample = 100000;  

 

C_vec = zeros(N_sample,1);   % initialize space allocation for statistical sample generation of 

C factor  

a0_vec = zeros(N_sample,1); % initialize space allocation for statistical sample generation of 

a0 factor  

 

L1 = Cm; % distance coefficient for C factor in the Metropolis algorithm 

L2 = a0; % distance coefficient for a0 factor in the Metropolis algorithm 

reject = 0; % reject: number of rejected moves 

 

 

%% Metropolis Algorithm for generating samples for a0 and C from posterior distribution 

% Please refer to "Figure 5.2 Single loop of MCMC" in dissertation for details of the 

algorithm   

 

for simun = 1:N_sample 

     

    %%%%% Metropolis algorithm (Start) (Metropolis et al 1953; Hastings 1970)  

 

    % propose a move 

    C_old = Cm; 

    a0_old = a0; 

    rndnum = 2*rand(1,2)-1;   % random # (1x2 matrix) generation, uniform distribution [-1, 1] 

 

    C_new = Cm+0.05*rndnum(1,1)*L1; % C_new is the new value for C, 0.05 chosen from a 
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trial and error process 

    a0_new = a0_old+0.3*rndnum(1,2)*L2; % a0_new is the new value for a0, 0.3 chosen 

from a trial and error process 

    %--------------------------------accept or reject the move 

    if C_new <= 0 || a0_new <= 0,  

        Cm = C_old; 

        a0 = a0_old;  

        reject = reject+1; 

    else 

         

    % generate a random # (uniform distribution)  

    U = rand(1);  

 

    % calculate f(a0',C' ...)/f(a0,C ...) 

    a0_R = [a0_old,a0_new]; 

    C_R = [C_old,C_new]; 

    lklhd = LKD(A_crck,Y_ldcycl,N_ldcycl,VAR_VEC,a0_R,C_R,N_msample); 

    pdf_new = lognpdf(C_new,miu_C,sigma_C)*lognpdf(a0_new,miu_a0,sigma_a0); 

    pdf_old = lognpdf(C_old,miu_C,sigma_C)*lognpdf(a0_old,miu_a0,sigma_a0); 

    ffratio = lklhd*(pdf_new/pdf_old);  %  Eqn (5.11) in dissertation 

         

    % with probability min(1,ffratio), accept proposed move, otherwise, reject 

    if ffratio > U 

        Cm = C_new;  

        a0 = a0_new;  

    else  

        Cm = C_old;  

        a0 = a0_old;  

        reject = reject+1; 

    end 

    %%%%% Metropolis algorithm (End) 

 

    end 

 

    C_vec(simun) = Cm; 

    a0_vec(simun) = a0; 

    disp(simun); 

 

end 

toc 

 

C.2 Function: LKD 

This function LKD.m is called by maincode.m to calculate the likelihood function 

ratio between that of proposed new parameters values and old parameter values in 

MCMC sampling.  
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function [lklhd]=LKD(A_crck,Y_ldcycl,N_ldcycl,VAR_VEC,a0_R,C_R,N_msample) 

% LKD is used to calculate the likelihood function value for Bayesian updating 

% last revised: April 7, 2013  

 

% C_old, C_new: old and proposed values for the material constant, C factor 

% a0_old, a0_new: old and proposed values for initial crack length 

% A_crck: crack length measurement vector; 

% N_ldcycl: No. of load cycles; 

% lklhd: likelihood function ratio in MCMC 

% VarMsm: variance of Brownian motion (Wiener Process) for measurement 

%   error 

% VarMdl: variance of Gaussian process for model error 

 

C_old = C_R(1); 

C_new = C_R(2); 

a0_old = a0_R(1); 

a0_new = a0_R(2); 

VarMsm = VAR_VEC(1); 

VarMdl = VAR_VEC(2); 

a_old = crackestimate(C_old,a0_old,N_ldcycl); % a_old, a_new: crack lengths from fatigue 

model calculation. 

a_new = crackestimate(C_new,a0_new,N_ldcycl); % a_old, a_new: crack lengths from 

fatigue model calculation. 

 

% crack length increment Ad,adold,adnew calculation 

Yd_ldcycl = zeros(N_msample,1); 

Ad_crck = zeros(N_msample,1); 

ad_old = zeros(N_msample,1); 

ad_new = zeros(N_msample,1); 

 

for i = 1:N_msample      

 Yd_ldcycl(i) = Y_ldcycl(i+1)-Y_ldcycl(i); 

 Ad_crck(i) = A_crck(i+1)-A_crck(i); 

 ad_old(i) = a_old(i+1)-a_old(i); 

 ad_new(i) = a_new(i+1)-a_new(i); 

end 

 

% likelihood function ratio 

lklhd = exp((-sum((Ad_crck-

ad_new).^2./(2*(VarMsm*Yd_ldcycl+2*VarMdl))))+sum((Ad_crck-

ad_old).^2./(2*(VarMsm*Yd_ldcycl+2*VarMdl))))... 

    *exp(-(A_crck(1)-a_new(1)).^2./(2*VarMsm*Y_ldcycl(1)+2*VarMdl)+(A_crck(1)-

a_old(1)).^2./(2*VarMsm*Y_ldcycl(1)+2*VarMdl)); 

 

C.3 Function: crackestimate 

This function crackestimate.m is called by LKD.m to calculate the crack length given 

the values for the parameters of the degradation model.  
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function [a] = crackestimate(C,a0,N) 

% crackestimate(C,a0,N) is to calculate crack length as given loading cycle using 

% Paris Law 

% Last revised: April 8.2013 

 

%% Parameter assignments 

% C: material property of coefficient C; 

% a0: initial crack length a0; 

% N: load cycle; 

% k: number of data points; 

% Sa:equivalent stress range; 

Sa = 13.1; 

m = 3; 

k = numel(N); %Length of measurements vector 

 

%% crack length estimation by fzero command. 

val = C*Sa^m*N;  

a = zeros(1,k); 

 

warning off %#ok<WNOFF> 

for i = 1:k 

    yu = val(i);                  % Right of equation: CS^m(N-N0) 

    g = @(x)quadl('crctfct',a0,x)-yu; % Left of equation:  integration of 

da/[(F(a,Y)*sqrt(Pi*a)]^m 

    x = fzero(g,[a0+0.00001,a0+500]);    % crack lengths calculation from fatigue model given 

No. of cycles 

    a(i) = x; 

end 

 

 

C.4 Function: crctfct 

 

This function crctfct.m is called by crackestiamte.m to calculate the correction factor 

and then get the whole integar for Paris Law equation.  

function f = crctfct(x) 

% crctfct(x) is to calculate the correction factor and then get the whole integar for Paris Law 

equation  

% Last revised: April.07 2013 

 

%% correction factor calculation  

% c=5.457*a^1.133: aspect ratio relation 

% Fe:elliptical crack front correction;1/E(k); curve fitting equation used 

% Fs:front free surface correction factor; 1.211-0.186*sqrt(a/b); 

% Fw:back free surface correction factor; 1.0 

% Fg:stress gradient correction factor; SCF/(1+6.789*(a/Tf)^0.4348); 

% SCF=-3.539*log(Z/Tf)+1.981*log(Tcp/Tf)+5.798; 

% x: miner axis of the semi-elliptical crack (i.g., crack depth) 
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% Z:weld leg size. Tcp=cover-plate thickness; Tf=flange thickness 

% Fe, Fs, Fw, Fg, refer to Fisher 1984 

 

Z = 0.6*0.0254; 

Tf = 1.26*0.0254; 

Tcp = 1.25*0.0254; 

Fe = 1./(7.5925e5*x.^4-6.0615e4*x.^3+1.7536e3*x.^2-23.4131*x+1.2976); 

Fs = 1.211-0.186*sqrt(x./(5.457.*x.^1.133)); 

Fw = 1; 

SCF = -3.539.*log(Z./Tf)+1.981.*log(Tcp./Tf)+5.798; 

Fg = SCF./(1+6.789.*(x./Tf).^0.4348); 

 

%% whole integar: da/[(F(a,Y)*sqrt(Pi*a)]^m  

f = (Fe.*Fs.*Fw.*Fg.*sqrt(pi.*x)).^-3; 

 

C.5 Function: trafficmodel 

This function trafficmodel.m is to transfer fatigue load cycle into years. 

function [Yrs] = trafficmodel(CycleT) 

% trafficmodel is used to transfer load cycle into years interval. 

% for Yellow Mill Pond Bridge. 

% Last revised: April.7.2013 

 

% Exponential Traffic Growth Model is used. Annual Traffic increase rate is 

% set as 3.47%  @1970: ADTT=5660; @2008: ADTT=20692;  

 

a1 = 5660*1.0347^(-1970+1958); % 3760is the ADTT at the 1st year(1958). 

q = 1.0347;  % 

% M = a1*q.^(n-1)*365;  % Yearly total load cycle vector      

% S = a1*(1-q.^n)/(1-q)*365;  % Total load cycle up to year vector  

 

Yrs = zeros(1,numel(CycleT)); 

 

for i = 1:numel(CycleT) 

    g = @(x)a1*(1-q.^x)/(1-q)-CycleT(i)/365;  

    x = fzero(g,[-1 2000]);  

    Yrs(i) = x;  

end 

 

C.6 Function: lognormal 

This function lognormal.m is to calculate the coefficients for lognormal distribution. 

function [miu,sigma] = lognormal(Ex,Varx) 

% lognormal is used to calculate the coefficients for lognormal distribution 

% Last revised: June.16.2010 

% Ex, Varx: mean value and variance for lognormal distribution 



 

 168 

 

% miu, sigma: coefficients for lognormal distribution 

 

miu = log(Ex)-0.5*log(1+Varx/Ex^2); 

sigma = sqrt(log(1+Varx/Ex^2)); 
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