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Covalent histone modifications constitute a complex network of transcriptional 

regulation involved in diverse biological processes ranging from stem cell 

differentiation to immune response. The advent of modern sequencing technologies 

enables one to query the locations of histone modifications across the genome in an 

efficient manner. However, inherent biases in the technology and diverse enrichment 

patterns complicate data analysis. Marek’s disease (MD) is an acute, lymphoma-

inducing disease of chickens with disease outcomes affected by multiple host and 

environmental factors. Inbred chicken lines 63 and 72 share the same major 



  

histocompatibility complex haplotype, but have contrasting responses to MD. This 

dissertation presents novel methods for analysis of genome-wide histone modification 

data and application of new and existing methods to the investigation of epigenetic 

effects of MD on these lines. First, we present WaveSeq, a novel algorithm for 

detection of significant enrichments in ChIP-Seq data. WaveSeq implements a 

distribution-free approach by combining the continuous wavelet transform with 

Monte Carlo sampling techniques for effective peak detection. WaveSeq 

outperformed existing tools particularly for diffuse histone modification peaks 

demonstrating that restrictive distributional assumptions are not necessary for 

accurate ChIP-Seq peak detection. Second, we investigated latent MD in thymus 

tissues by profiling H3K4me3 and H3K27me3 in infected and control birds from 

lines 63 and 72. Several genes associated with MD, e.g. MX1 and CTLA-4, along with 

those linked with human cancers, showed line-specific and condition-specific 

enrichments. One of the first studies of histone modifications in chickens, our work 

demonstrated that MD induced widespread epigenetic variations. Finally, we 

analyzed the temporal evolution of histone modifications at distinct phases of MD 

progression in the bursa of Fabricius. Genes involved in several important pathways, 

e.g. apoptosis and MAPK signaling, and various immune-related miRNAs showed 

differential histone modifications in the promoter region. Our results indicated 

heightened inflammation in the susceptible line during early cytolytic MD, while 

resistant birds showed recuperative symptoms during early MD and epigenetic 

silencing during latent infection. Thus, although further elucidation of underlying 



  

mechanisms is necessary, this work provided the first definitive evidence of the 

epigenetic effects of MD.  
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1. Literature Review 

Introduction 

The term ‘epigenetics’ can be loosely defined as the study of changes in the 

phenotype of an individual caused by mechanisms other than underlying DNA 

sequence. One of the first indications that there was more to gene regulation than 

DNA sequence was the discovery of histone modifications and their possible effects 

on transcriptional regulation [1]. The involvement of DNA methylation in various 

regulatory functions [2, 3] further confirmed the presence of significant epigenetic 

mechanisms in transcriptional control. Subsequent studies have shown that epigenetic 

mechanisms are associated with a multitude of critical biological processes, such as, 

X chromosome inactivation, stem cell differentiation and immune response. The 

advent of next-generation sequencing technology has revolutionized the field, making 

it possible to investigate histone modification profiles in a genome-wide manner. 

However, the enormity of associated data sets has posed new challenges in data 

analysis and interpretation that are far from being solved. 

Epigenetic processes play major roles in various human diseases. Cancer cells 

demonstrate major variations in DNA methylation, e.g. large-scale demethylation in 

tumor cells is concurrent with hypermethylation at specific promoters [2, 3]. Histone 

modification changes are observed in conjunction with aberrant DNA methylation in 

various cancers [4, 5]. However, further study has suggested that variations in histone 

modifications are important prognostic markers for cancer [6-8]. Recent studies have 

also shown that histone modifications can interact with and regulate viral processes 
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[9]. Herpesviruses, in particular, appear to be affected by cellular chromatin 

machinery. For instance, a transcriptional activator HCF-1 (host cell factor 1), which 

is associated with several chromatin-modifying enzymes [10], controls the early 

transcriptional program of the herpes simplex virus [11]. Kaposi’s sarcoma-associated 

herpesvirus (KSHV) exhibits increased activating and repressive histone marks 

during latent infection [12]. Thus, histone modifications are epigenetic indicators of 

the adverse effect of various diseases, and further study is necessary to delineate their 

particular roles in the process. 

Histone Modifications 

DNA is packaged in the form of chromatin, with the DNA double helix wound 

around an octamer of four core histone proteins (H3, H4, H2A and H2B). A 147 

nucleotide-long fragment of DNA, together with the histone proteins it is wrapped 

around, constitutes the nucleosome, the fundamental unit of chromatin. Eukaryotic 

nucleosomes also contain lower levels of histone variants with specialized functions, 

e.g. the histone variant H2A.Z, which occurs within nucleosomes adjacent to the 

transcription start site (TSS) of genes [13]. Chromatin can be structurally and 

functionally separated into two forms: euchromatin and heterochromatin. 

Euchromatin is conformationally open, relatively rich in genes, and conducive to 

active transcription, while the highly-condensed heterochromatin is relatively 

inaccessible to transcription factors and hence, constitutively silent [14]. 

DNA exists primarily in the form of heterochromatin during certain cellular processes 

such as mitosis and meiosis which lack DNA regulatory activity [15]. On the other 

hand, the loose conformation of euchromatin allows the dynamic control of 
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transcription, with various activating and silencing mechanisms at play. However, in 

spite of the relatively low density of euchromatin, it is still refractory to essential 

cellular processes and must be relaxed for easier access by the transcriptional 

machinery. This need has resulted in the evolution of a wide array of chromatin-

modifying mechanisms, including chromatin remodeling, an ATP-dependent process 

which alters the structure, composition and position of nucleosomes, and covalent 

post-translational modification of histones by particular enzymes. 

Histone modifications occur primarily on the unstructured N-terminal tails of histone 

proteins, which contain several residues that are subject to various modifications, 

such as, methylation, acetylation and phosphorylation. Eight classes of histone 

modifications occurring on over 60 different residues have been discovered, with 

histone methylation and acetylation the two most common and well-studied 

modifications. Several histone marks have been associated with regulatory roles such 

as transcription, replication and DNA repair [16]. For instance, the trimethylation of 

the lysine residue at the fourth position of the histone H3 (H3K4me3) is associated 

with the TSS of active genes [17], while the trimethylation of lysine 36 (H3K36me3) 

is found on exons and introns of actively transcribing genes [18]. On the other hand, 

certain modifications are associated with gene silencing. These changes include 

H3K9 trimethylation, which is highly associated with heterochromatin, and 

H3K27me3, which is associated with the chromatin-modifying Polycomb repressive 

complexes (PRCs) [19]. Multiple histone modifications with seemingly contrasting 

functions have been observed on the same gene. For example, certain key 

developmental genes display both the active H3K4me3 and repressive H3K27me3 
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marks in embryonic stem cells (ESCs) suggesting a possible ‘bivalence’ depending 

upon lineage-determination [20]. In some cases, different modifications of the same 

histone residue perform contrasting functions. For instance, in T helper cells, H3K9 

trimethylation and acetylation mark the promoters of repressed and active genes, 

respectively [21]. Certain lysine and arginine residues can also display varying levels 

of methylation (mono-, di- or tri- in the case of lysines and mono- or di- in the case of 

arginines), which, in turn, could be associated with different functions. For example, 

H3K4me3, as mentioned above, is associated with the promoters of active genes 

while H3K4me1 is highly enriched on promoter-distal enhancers [22]. Thus, histone 

modifications encode tremendous diversity into the genome and their dynamic nature 

plays major roles in a wide range of biological processes ranging from development 

to disease response. Also, owing to the diversity of function encompassed by histone 

methylation (activation, repression, transcription elongation and enhancers), we 

discuss this class of modifications in greater detail throughout this review. 

Mechanisms of Formation 

The majority of histone modifications are dynamic. A class of enzymes, called the 

histone-modifying enzymes, catalyzes the addition or removal of specific 

modifications from histone proteins. A host of such enzymes have been identified 

recently [23-31]. For instance, histone methylation can occur on lysines and arginines 

and is carried out by three classes of enzymes:  

1) Histone methyltransferases (HMTs), which contain the lysine-specific SET 

(Su(var)3-9, Enhancer of Zeste [E(Z)], and Trithorax) domain, and can 
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methylate lysines 4, 9, 27 and 36 of histone H3 and lysine 20 of histone H4 

[23, 24]. 

2) Non-SET domain-containing HMTs methylate the lysine 79 of histone H3 and 

consist of the evolutionarily conserved protein Dot1 (disrupter of telomeric 

silencing, also known as Kmt4) [25]. 

3) Protein arginine methyltransferases (PRMTs) methylate arginines 2, 17 and 26 

of histone H3 and also arginine 3 of histone H4 [26]. 

Similarly, enzymes that remove methyl groups from lysine residues of histone 

proteins have also been the subjects of great interest. An amine oxidase, lysine-

specific histone demethylase 1 (LSD1), was the first protein found to possess histone 

demethylase activity. LSD1 primarily demethylates H3K4 [27], but can also target 

H3K9 when complexed with the androgen receptor [28]. However, the enzymatic 

action of LSD1 requires the presence of a protonated methyl-ammonium group, and 

therefore, it can only demethylate mono- and dimethylated lysines. Two years after 

the discovery of LSD1, a class of proteins containing the Jumonji C (JmjC) catalytic 

domain was discovered and shown to demethylate trimethylated lysines [29]. Indeed, 

the demethyase activity of JmjC-containing enzymes is amenable to mono-, di- and 

trimethylated lysines but appears to favour trimethylated residues [30]. Moreover, 

JmjC proteins have also been shown to demethylate arginine residues [31]. Out of 27 

known members of the Jumonji family about 15 possess demethylase activity, further 

emphasizing the importance of this family of chromatin-modifying enzymes. 

Other major histone-modifying enzymes include the activating histone 

acetyltransferases (HATs) and repressive histone deacetylases (HDACs). Similar to 
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HMTs, HATs and HDACs have been the subject of intense study leading to the 

discovery of a large number of members of each class. The addition of the ubiquitin 

moiety (ubiquitylation) is carried out by members of an enzymatic pathway including 

ubiquitin activating (E1), conjugating (E2) and ligase (E3) enzymes [32]. E2 and E3 

enzymes largely determine the specificity of the modification [33]. SUMOylation 

consists of the addition of a small ubiquitin-related modifier (SUMO) protein by the 

E1-E2-E3 enzymes which can also be removed by specific proteases [34]. 

Biological Functions 

Covalent histone modifications can function in two major ways. First, they can affect 

the high-level interaction between neighboring nucleosomes or between the DNA and 

chromatin, leading to the ‘unraveling’ of nucleosomes. For instance, histone 

acetylation has a strong activating effect as it neutralizes the basic charge on the 

lysine residues producing electrostatic repulsive forces between the histone protein 

and the negatively charged DNA. The second and better characterized mode of 

function for histone modifications is the recruitment of non-histone proteins in what 

is believed to be a highly ordered and coordinated manner. For example, the addition 

of a methyl group does not affect the charge on the histone protein and hence, has no 

effect on chromatin-DNA interactions. However, methylation of specific residues 

exhibits affinity towards particular proteins (which can act as either activators or 

repressors), thereby influencing the transcriptional regulation of underlying DNA. 

Ubiquitylation and SUMOylation involve the addition of large covalent groups to the 

chromatin, which can affect chromatin structure via steric effects. SUMOylation is 

primarily repressive, interfering with activating marks like acetylation by the 
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recruitment of HDACs [35]. However, histone ubiquitylation, like methylation, can 

have diverse outcomes. For example, addition of multiple ubiquitin groups marks a 

protein for proteasomal degradation, while monoubiquitylation alters protein 

function. However, the latter modification can produce different effects on histones, 

e.g. lysine residues in the C-termini of H2A and H2B correlate with activation and 

repression, respectively. 

 

Figure 1.1 Chromatin model of transcriptional regulation (from [36]). 

(a) Silenced state: Repressor factors (REP) bound at an upstream repressor site (URS) 

recruit negative modifiers like histone deacetylase (HDAC) which removes the acetyl 

group from histone H3/H4. (b) Active state: Activating transcription factors (ACT) 

bound at an upstream activation site (UAS), induces H3/H4 acetylation by HATs in 

the promoter region, while RNA polymerase (POL) induces methylation at lysine 4 

by SET1 (part of the COMPASS complex) and lysine 79 by DOT1. Later, the POL 

recruits SET2, which induces methylation of lysine 36 during elongation.  
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Non-histone proteins bind to specific histone residues with the help of particular 

protein domains, e.g. methylation is bound by proteins containing domains of the 

Royal family similar to chromo-domains, and distinct PHD domains, while 

acetylation is bound by bromodomains. A schematic model of chromatin regulation 

of transcriptional is shown in Figure 1.1 [24]. Briefly, activating histone marks appear 

on gene promoters and transcription start sites in response to cellular stimulus, 

through recruitment of enzymes by activating transcription factors and RNA 

polymerase. In contrast, repressive marks are established through the action of DNA-

bound repressors or heterochromatic regions. Since a major focus of our studies has 

been histone methylations, in particular trimethylations of H3K4 and H3K27, it is 

worthwhile to examine their mechanisms of action in some detail. 

H3K4 and H3K27 Methylation 

The positive correlation between H3K4 methylation and active genes suggested that 

this histone modification attracts activating factors for binding. This was proved to be 

true by the discovery of several such proteins including chromatin-remodeling 

enzyme CHD1 [37], nucleosome remodeling factor (NURF) [38] and PHD domain-

containing Yng1 protein in the NuA3 (nucleosomal acetyltransferase of histone H3) 

[39]. The latter two are specific to H3K4me3, while CHD1 recognizes either di- or 

trimethylated H3K4. Surprisingly, H3K4 methylation also associates with repressive 

protein complexes. The Sin3-Hdac1 complex, which functions as a deacetylase, binds 

to H3K4me3, thereby stabilizing its recruitment to target genes and leading to the 

repression of proliferation-inducing genes in response to DNA damage [40]. Also, 
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H3K4me3 is believed to recruit the lysine demethylase JMJD2A, which demethylates 

H3K9me3 and H3K36me3 and causes gene repression [41]. Thus, H3K4 methylation 

is apparently context-specific and can lead to varying outcomes in terms of 

transcriptional control. 

The methylation of H3K27, however, is undoubtedly repressive in nature, and was 

found to be associated with Polycomb-group (PcG) silencing [19]. Polycomb group 

proteins, discovered in Drosophila melanogaster, are repressors of homeobox (Hox) 

genes, transcription factors crucial to the determination of cell fate during embryonic 

development. These proteins are essential for maintenance of the transcriptional 

status of Hox genes after initial developmental cues, and bind to regulatory elements 

called Polycomb repressive elements (PREs) [42]. Subsequent studies identified the 

roles of PcG proteins in diverse biological contexts, such as, X chromosome 

inactivation [43], cell proliferation [44] and cancer [45], in vertebrates, plants and 

mammals. One of the Polycomb repressive complexes, PRC2, methylates H3K27, 

and subsequently, this histone mark is recognized by PRC1, which results in gene 

silencing. However, the mechanism of H3K27me3 and PRC1-mediated silencing is 

still unclear, as PRC1 is not found in several organisms, such as plants [46]. 

H3K27me3 is also found on broad swathes of the genome, which is believed to be the 

key to epigenetic inheritance of PcG silencing. 

Another intriguing subplot to the functional consequences of H3K4 and H3K27 

methylation is the interplay of the respective methylating protein complexes. H3K4 

methylation is carried out by proteins belonging to the Trithorax group (TxG), which 

appear to act in an opposing manner to the PcG complexes and hence, contribute to 
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the determination of transcriptional fate [47, 48]. In summary, these two histone 

marks encompass a remarkable diversity of function in a variety of biological 

contexts, but further study is necessary for a clearer understanding of the associated 

regulatory mechanisms. 

Detection using Chromatin Immunoprecipitation (ChIP) 

The functional importance of histone modifications made it important to develop 

assays that could pinpoint the genomic locations of particular histone marks. 

Chromatin immunoprecipitation (ChIP) is a robust technique of studying DNA-

protein interactions [49]. Originally developed to study the association of RNA 

polymerase and active genes in bacteria [50], this method has been subsequently used 

across a wide range of organisms, including Drosophila [51] and humans [52]. In 

brief, ChIP involves the use of a crosslinking agent, to preserve protein-DNA 

interactions, either irreversibly by ultraviolet radiation [53] or reversibly by 

formaldehyde [54]. Shearing via sonication or restriction enzyme digestion follows 

crosslinking and subsequently, antibodies specific to the protein of interest, e.g. 

modified histones, are used to immunoprecipitate the cross-linked protein-DNA 

complexes. The precipitated products are purified, the crosslinks reversed and DNA 

fragments analyzed using Southern blot or polymerase chain reaction (PCR). If so 

desired, the ChIP experiment could also be performed without a crosslinking step 

(native ChIP) to assay stable DNA-protein interactions. While highly specific and 

robust, this technique is only suitable for analyzing known regions of interest at a 

limited number of loci. Therefore, efforts were made to extend this method to 

genome-wide analyses. 
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The development of microarray technology provided a significant advance [55]. 

Microarrays consist of several thousand oligonucleotide sequences or ‘probes’, 

chosen to complement specific genomic regions, attached to a solid surface 

(Affymetrix or Agilent) or microscopic beads (Illumina). The test sample is 

fluorescently labeled before hybridization to the microarray and laser scanning. The 

fluorescent intensity at each spot of the microarray is assumed to be proportional to 

the number of molecules hybridizing to the probe specific to the spot, and provides a 

measure of the representation of the associated genomic region in the test sample. 

Thus, microarrays simultaneously query several thousand loci across the genome and, 

when combined with ChIP (ChIP-on-chip), vastly increases throughput [52]. 

However, this technique suffers from certain drawbacks. Microarrays and other 

fluorescence-based detection systems have a fixed dynamic range, with reduced 

sensitivity at upper and lower extremes of detectable signal amplitudes [56]. ChIP-on-

chip depends on the availability of a suitable microarray for performing the 

experiment, e.g. a high-density tiling array, which consists of overlapping probes 

placed at a fixed distance from each other. While the possible resolution is high, so is 

the cost, due to the necessity of biological replicates and multiple arrays for large 

genome sizes. The design of the tiling array depends on a high-quality genome 

assembly and hence, has reduced accuracy and limited applicability for non-

traditional model organisms. Also, repetitive regions are usually not represented on 

ChIP-on-chip arrays, and a relatively high amount of ChIP DNA (~several g) is 

required.  
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Combination with Next-Generation Sequencing 

The advent of modern sequencing technologies was the next big step forward. Next-

generation sequencing (NGS) enables one to obtain the DNA sequence of millions of 

short fragments or reads from across the genome in a massively parallel manner. 

There are multiple such sequencers currently available, but since we used the 

Illumina sequencers for our experiments, I will discuss their experimental workflow 

in some detail (Figure 1.2). 

 

Figure 1.2 Overview of Illumina Sequencing protocol (modified from [57]).  
The major steps include fragmentation, size-selection, library construction, bridge 

amplification and sequencing-by-synthesis. 

 

Illumina Sequencer 

DNA fragmentation 
Size selection 

Library construction 

 

 

Illumina flowcell 

Bridge amplification 

Sequencing-by-synthesis 
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The Illumina sequencing protocol utilizes reversible DNA terminators in a 

sequencing-by-synthesis procedure. Initial library preparation involves the repair of 

DNA fragment-pairs, attachment of an Adenine overhang and ligation of Illumina 

adaptors. The DNA sample is amplified using PCR to ensure enough starting material 

and fragments of suitable size are selected from the amplified sample. The next step, 

called cluster generation, involves use of a ‘flowcell’, a glass surface with eight 

channels, each containing adhered adaptors, complementary to those attached to the 

DNA fragments during library preparation. The size-selected DNA fragments are 

hybridized to the flowcell and extended by polymerases. Subsequently, the double-

stranded DNA is denatured and the original template washed away. The free ends of 

the DNA molecules randomly attach to neighboring complementary adaptors, 

forming a ‘bridge’, and the extension procedure is repeated. This so-called ‘bridge-

PCR’ step, thus, effectively amplifies several million DNA fragments in parallel, and 

the iteration of hybridization and bridge-PCR results in ‘clusters’ containing forward 

and reverse DNA fragments. The reverse strands are cleaved and washed away, 

leaving several million clusters spread across the surface of the flowcell, each 

containing approximately 1000 identical DNA fragments. In the final step, 

sequencing primers are attached to the free ends of the clustered DNA strands, and 

four fluorescently-labeled NTP terminators and polymerases are added to the reaction 

mixture. Each cluster incorporates a fluorescent NTP terminator, which represents the 

corresponding complementary nucleotide of its constituent DNA strands on the 

detected image. The terminator and fluorescent groups are subsequently cleaved and 

the sequencing reaction repeated a desired number of cycles. 
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The above process is highly efficient, dramatically reducing the overall cost of 

sequencing experiments, leading to a wide array of applications including whole-

genome sequencing [58], transcriptomics [59, 60], structural variant detection [61], 

epigenomics [62-64] and metagenomics [65, 66]. The combination of ChIP and next-

generation sequencing, called ChIP-Seq, resulted in a powerful new experimental 

technique of detecting genome-wide histone modification profiles [67-70]. ChIP-Seq 

offers several advantages over the microarray-based ChIP-on-chip. ChIP-Seq 

protocols typically require lower amounts of starting DNA (~ng range) and 

amplification. Several repetitive regions can be assayed, particularly with longer 

reads and paired-end sequencing. ChIP-Seq does not suffer from a fixed dynamic 

range and has single nucleotide resolution. Moreover, with the improvement of 

associated technologies, sequencing yield has dramatically increased, allowing the 

use of multiplexing, a technique whereby multiple ‘bar-coded’ samples can be 

sequenced simultaneously. For instance, the Illumina Genome Analyzer II.x yields a 

maximum of 40 million reads per lane, while the newer HiSeq 2000 can generate up 

to 187 million reads per lane at a comparable cost. Thus, four lanes of the earlier 

platform could be replaced by just one lane of the latter reducing the sequencing costs 

by 1/4. 
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Figure 1.3. Overview of a ChIP-Seq experiment [71]. Using this technique, DNA 

associated with histones displaying covalent modifications or non-histone proteins, 

e.g. transcription factors, are obtained using specific antibodies. After subsequent 

purification the enriched DNA fragments are subjected to next-generation sequencing 

using one of various platforms, such as, Illumina. The short reads are further analyzed 

to investigate biological relevance.  
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ChIP Followed by Next-Generation Sequencing (ChIP-Seq) 

At the time of the writing of this introduction, a major limitation of NGS technology 

is the prohibitive cost of sequencing. However, recent improvements, such as, 

increases in sequencing yield and development of multiplexing protocols, have 

resulted in significantly reduced costs. The bigger issue at present is data analysis, as 

improvements in computing power cannot keep pace with the exponential increase in 

sequence data. Therefore, a growing need exists for efficient analysis strategies. 

ChIP-Seq experiments generate millions of short DNA sequence reads representing 

the locations of proteins of interest, such as, histone modifications or transcription 

factors, distributed across the genome. The key steps of ChIP-Seq data analysis are 

outlined here. 

First, the reads are mapped to a reference genome of the organism in question. Once 

considered a bottleneck in NGS analysis, recent advances have led to the 

development of several efficient and accurate mapping tools that have greatly sped up 

this process. The initial mapping step is followed by the detection of peaks signifying 

enrichments of histone modifications, a process known as ‘peak-calling’. To 

investigate the biological function of observed peaks, the flanking regions of called 

peaks are often searched for coding or non-coding transcripts. The resulting lists of 

genes analyzed for evidence of enriched functional terms or pathways using various 

databases, such as, gene ontology (GO) or Kyoto Encyclopedia for Genes and 

Genomes (KEGG). Genes associated with biologically relevant pathways can be 

further examined, e.g. ChIP-Seq profiles in the promoter region can be compared 

between different experimental treatments to uncover its epigenetic effects. Limiting 
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factors of such analyses include large sample size – each ChIP-Seq profile may have 

several thousand loci of interest; incomplete genome annotation that may require the 

integration of information from several existing databases, and relative lack of 

existing statistical literature. Before examining the various steps of ChIP-Seq analysis 

in detail, let us first look at some of the accompanying issues. 

Challenges Associated with Analysis 

NGS technology is subject to biases dependent on technical aspects of the 

experiments and varied genomic context [71-73]. For instance, the ‘mappability’ of a 

genomic region measures the likelihood of sequences from this region being uniquely 

mapped. Mappability depends on read length, because longer reads have a greater 

likelihood of mapping uniquely to most regions of the genome. A highly mappable 

genomic region could, therefore, have higher read counts purely as a result of the 

sequencing process. Nucleotide composition could be another source of sequencing 

bias, because Illumina sequencers, for example, favor guanine-cytosine (GC)-rich 

regions [74]. Copy-number variations can lead to fluctuations in the expected 

numbers of reads from a genomic region that may not be observed in the ChIP 

sample. These sources of variation contribute to the ‘background’ signal that is non-

stochastic [75, 76] and present significant modeling difficulties. The ChIP-Seq assay 

is also prone to amplification bias; PCR amplification is a part of the standard ChIP-

Seq protocol to ensure enough starting material, but can lead to preferential 

amplification of abundant species. The more serious problem, however, is the 

variation in sampling rates due to differences in chromatin accessibility. In other 

words, regions having a loose chromatin conformation are more accessible to 
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restriction enzyme or micrococcal nuclease digestion, compared to regions having 

compact chromatin. While the former scales with fragment abundance, the latter 

depends on the particular library and is unpredictable. It is impossible to distinguish 

between the two at a sequence level and thus, it is considered prudent to discard 

redundant reads as a pre-processing step. 

Negative controls can be used to partially account for the above factors. Examples 

include input DNA (normal sample preparation but no ChIP), non-specific antibodies, 

such as, immunoglobulin G (IgG), or ChIP without antibodies (mock IP). The 

suitability of such controls is a topic of continuing debate. Of the above three, input 

DNA is used most often and can correct biases in shearing and amplification. 

However, since input DNA fragments are spread across the genome, increased depth 

of sequencing may be necessary for improved coverage. A region of non-specific IgG 

binding can be a true binding site for a particular transcription factor and the rejection 

of such a site constitutes a false negative. Mock IP results in very low pull down and 

corresponding results are difficult to replicate [71]. Thus, there are obvious 

drawbacks of each method, which underlines the importance of accurate estimation of 

background variation. 

A major difficulty of ChIP-Seq analysis is the diversity of patterns observed in 

enrichment regions. The detection of such enrichments, termed peak-calling, is not a 

trivial problem, as ChIP-Seq profiles demonstrate remarkable diversity, ranging from 

the sharp, punctate peaks of transcription factor data to broad, diffuse enrichments 

characteristic of certain histone modifications (Figure 1.4). This variability in the 

definition of peaks translates to modeling complexity, which is perhaps why there is 
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still no undisputed numero uno when it comes to peak-calling algorithms, in spite of 

much recent interest. A favored approach is to model ChIP-Seq data using a fitted 

discrete distribution (see below), but such approaches have their shortcomings [77]. 

Thus, there is a need for accurate methods of ChIP-Seq peak-calling free of limiting 

assumptions that is robust to diversity in binding profiles. 

 

Figure 1.4. Diverse histone modification profiles observed on FoxP1 in murine 

embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs) (from [69]). 

H3K4me3 exhibits punctate peaks at TSS regions while H3K36me3 enrichment is 

broad and diffuse. FoxP1 has one high CpG (HCP) and one low CpG promoter 

(LCP). An additional promoter 500 kb upstream of the HCP appears to be bivalent as 

it shows peaks of H3K4me3 and H3K27me3. 

Genomic Mapping of Sequence Reads 

As mentioned above, one of the first steps of NGS analysis is the mapping of 

sequence reads to the reference genome. A hot topic of research in the past few years, 

read mapping tools have made great strides in recent years, and as a result, a large 

number of mapping softwares are currently available, e.g. MAQ [78], RMAP [79], 

Bowtie [80], BWA [81], BFAST [82] and BLAT [83]. In spite of the bewildering 
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profusion of sequence aligners, a majority of available tools can be broadly divided 

into two groups based on underlying principles – hash tables and suffix arrays 

(reviewed in [84]). In both cases, the key to computational efficiency is the creation 

of an index either for the sequence reads or the reference genome, to enable fast 

matching.  

Methods Based on Hash Tables 

Hash tables are computational data structures that utilize index-key pairs to enable 

fast searching of lists. In other words, given a list of sequences, a hash table can be 

used to store the location (index) of each unique sequence (key) in the list. This idea 

can be easily extended to the genomic mapping of short sequence reads where the 

reference genome or sequence reads represent a searchable list, while unique k-mers 

of nucleotides and their locations represent key-index pairs. The iconic BLAST [85, 

86] tool utilizes this approach; the query is first hashed into its constituent k-mers 

(keys), following which database lookup for matches is performed for each key. 

Exact matches (seeds) are joined before being refined and extended to produce the 

final alignment result, in an approach termed seed-and-extend. 

BLAST requires k consecutive exact matches (default = 11) which represents a seed 

of ‘11111111111’. However, allowing for mismatches in the seed was found to 

increase sensitivity [87], thus lending credence to the use of spaced seeds. For 

example, a seed of ‘110110111101101’, which looks for matches of length 15 while 

allowing for 4 mismatches, will find alignments with up to three mismatches in the 

first 11 positions, none of which can be detected using an unspaced seed. 
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MAQ [78], which stands for mapping and alignment with quality, was one of the first 

widely-used short-read alignment programs that employed spaced seeds. The 

mapping algorithm is applicable for k mismatches, but to avoid prohibitive memory 

requirements the default policy of MAQ ensures maximum sensitivity for up to two 

mismatches in the first 28 bp of Illumina reads. Two mismatches can be divided 

between four sections of a read in 
4
C2 ways; thus, full sensitivity for at most two 

mismatches is achieved using six spaced seeds, MAQ provided various other 

advances such as the concept of mapping quality, an estimate of the error probability 

of an alignment based on sequencing qualities at mismatched bases, and also output a 

consensus sequence which could be used for variant detection and genotyping. 

Moreover, the gapped alignment used by MAQ is robust to indels (insertion-

deletions). However, the memory requirements of holding a hash table in memory are 

large. Also, increasing sequencing yields and read lengths are likely to impact 

processing time as MAQ hashes the sequence reads. 

Methods Based on Suffix Arrays 

A suffix array is a data structure that consists of a sorted list of all suffixes of a string. 

A close relative of the suffix tree, the suffix array has lower space constraints and is 

easier to construct and implement [88]. Moreover, when combined with additional 

enhancements, such as, the full-text minute-space (FM) index [89], which enables 

efficient string matching in an array compressed using the Burrows-Wheeler 

Transform (BWT), the suffix array provides a significant improvement in speed. 

Identical substrings of the search space are collapsed and hence, alignment to such 
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regions need only be performed once, while in the case of hash table-based methods, 

explicit matching would be necessary for each occurrence.  

The most commonly used tool in this category is Bowtie [80]. Default parameters of 

this program are similar to MAQ, with at most two mismatches allowed in an 

acceptable alignment. However, in contrast to MAQ, Bowtie indexes the reference 

genome and has a low memory footprint. Also, multiple CPU cores are utilized, if 

available, to further accelerate the alignment. At the time of its release, Bowtie was 

several orders of magnitude faster than MAQ or SOAP under similar conditions and, 

thus, represented a sizeable step forward. Other implementations of BWT and FM-

index, such as, BWA [81] and SOAP2 [90], have since been released. However, 

despite obvious speed advantages, the sensitivity of this approach is reduced in the 

presence of indels. Recent tools, such as, Bowtie 2 [91] seeks to overcome this 

weakness by combining the efficiency of suffix arrays with the sensitivity of spaced 

seeds. 

Peak Detection in ChIP-Seq Data 

Following the accurate mapping of sequence reads to the reference genome, there 

needs to be a quantification step to determine regions that exhibit marked enrichment 

of reads or peaks. The challenges associated with peak calling, as mentioned above, 

have led to great interest in recent years to develop efficient, accurate and sensitive 

peak callers. As a result, a large number of peak-calling algorithms encompassing a 

great variety of techniques are currently available [92-103]. Although efforts to 

benchmark these algorithms have been carried out, there are no clear winners [104-

106]. A majority of the methods showed comparable sensitivity and specificity when 
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tested on a limited number of qPCR-validated sites, although a great deal of variation 

in the number of called peaks was observed. However, comparisons of peak sites 

revealed significant overlap – smaller peak sets called by more conservative 

algorithms were usually contained within larger sets output by less stringent methods 

[105]. Often, the default parameters of a program are tuned to specific training data 

sets and therefore, results from different methods diverge considerably in general 

usage. Peak lengths for different methods on the same data set also display marked 

differences. 

Despite major differences in algorithm design and performance, the primary 

workflow of most ChIP-Seq peak callers involves an initial modeling or training step, 

followed by peak detection either in the presence or absence of negative control data. 

Each peak is, then, assigned a significance score or p-value, an estimate of the 

likelihood of it being a ‘true’ enrichment versus an artifact. 

Data Preprocessing 

Raw sequence data needs to be preprocessed before being subjected to peak calling. 

As sequencing occurs in the 5’-3’ direction, sequence reads represent the 5’ end of 

the sequenced DNA fragment. For a more representative view, reads can be ‘shifted’ 

towards the 3’ end to represent the middle of the fragment [92, 98, 101, 102], or 

extended to the length of the entire fragment [93, 95]. Some methods model the 

fragment length empirically. For instance, as sequencing of a DNA fragment is 

independent of the original strand, clusters (peaks) of sense and anti-sense reads 

usually flank bona fide transcription factor-binding sites (TFBSs). The distance 

between the sense and anti-sense peaks offers an empirical estimate of the fragment 
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length [92, 93], which can also be determined experimentally. However, sequenced 

fragment lengths usually consist of a spread of values and a point estimate is only a 

rough approximation. 

After adjusting for fragment length, most algorithms produce an estimate of the read 

density across the genome, which is then analyzed for peak detection. Some tools 

partition the genome into bins or windows and calculate the distribution of reads. For 

instance, the number of ‘shifted’ reads falling within each window can be used to 

produce a read count histogram. This mode ensures the unambiguous representation 

of each read, but can suffer from edge effects depending on the size of the window. 

Counting the number of overlaps between extended reads or reads within a 

predetermined distance (sliding window) produces a smoother profile. The latter 

approach, while less susceptible to edge effects, contains some redundancy as a read 

can overlap more than one window. Smoothing techniques, such as, kernel density 

estimation (see below), can be used to produce a continuous probabilistic estimate of 

read density after one of the above steps. However, the degree of smoothing needs to 

be monitored closely to avoid removal of low intensity peaks.  

Background Correction 

As discussed above, NGS data is subject to multiple sources of background variation 

and bias, and accurate discrimination of ChIP-Seq peaks against the background is 

one of the foremost challenges of analysis. Negative controls have been used for the 

purposes of background correction, but, it is difficult to decide the appropriate control 

for a particular study, each of which has its own weaknesses. For instance, the 

increased depth of sequencing required for input DNA controls make it infeasible to 
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have a matching input library for each sample in a large sequencing experiment. 

Thus, even though it is recommended, many studies do not include negative controls. 

Consequently, accurate modeling of the background from the ChIP-Seq data is 

extremely important. A common assumption for this step is that genomic regions with 

lower read counts are likely to be part of the background signal. Thus, several 

methods approximate the background as a random variable that follows a discrete 

distribution, such as, Poisson [64, 101, 107] or negative binomial (NB) [96, 103], 

fitted to genomic regions with low read densities. The Poisson distribution can be 

used to model the probability of observing counts y, and has a probability density 

function (pdf) defined as follows: 

 

where, is both the mean and variance of the distribution. This assumption is 

inadequate for NGS data as the observed variance (also called dispersion) can be 

much higher than the mean [108]. A variation of the Poisson model to allow for 

greater dispersion include the generalized Poisson model which has the pdf [109], 

 

where, 

 

The mean of the generalized Poisson distribution is  and variance is 
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parameter α controls dispersion with α > 0 modeling overdispersion and α = 0 
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distribution which includes a dispersion parameter  and can be represented as a 

mixture of the Poisson and Gamma distributions [110]. If observed counts are 

distributed as y ~ Poisson(), but  is itself a random variable with a Gamma 

distribution, 

               

 

where,  is called the shape parameter and  represents the scale parameter. The 

mean of the above distribution is  and variance is 

. Then, the probability mass 

function of y is negative binomial as, 

 

The mean of the above distribution is  and variance is 

. For statistical 

modeling, an alternate parameterization is used: y ~ NB(, where  and 

, so that the mean of the distribution is  and variance is 

. This model 

also reduces to the Poisson model when . The dispersion parameter can be 

estimated from the data using maximum likelihood and allows greater dispersion than 

allowed by the Poisson model.  

However, given that the background signal has been shown to be non-random the 

above models are often inadequate [77] and as a result the associated methods tend to 

call more false positives [111]. Thus, it is clear that the existing approaches for 

background correction are not perfect and there is definite room for improvement. 
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Methods of Peak Detection 

Peak-calling algorithms, as mentioned above, are extremely diverse. A majority of 

methods are aimed at detecting TFBSs [64, 92, 93, 98], while a relative few focus on 

histone modification data [100-102]. However, underlying modeling philosophies 

share some similarities and can be loosely grouped under the following headings: 

1. Simple threshold 

2. Local measures of enrichment 

3. Kernel density estimation 

4. Hidden Markov models 

5. Incorporation of additional covariates 

I will now discuss the characteristics of each category and give a brief overview of 

some tools within each class.  

Methods Based on a Simple Threshold 

The number of reads within a putative enrichment region is often used as an estimate 

of significance and thus, early peak calling methods utilized a simple read-height 

threshold T to call peaks [68]. However, this simplistic approach can be difficult to 

apply as peak heights observed in a ChIP-Seq sample are subject to sequencing depth, 

antibody quality and data characteristics. ChIP-Seq profiles for transcription factor 

binding are usually sharp and well defined, and thus, the choice of a suitable 

threshold may be evident from the data. However, the same cannot be said of most 

histone modifications and even certain proteins, such as, growth-associated binding 

protein (GABP), which produce more diffuse peaks. Secondly, an antibody that 

exhibits some non-specific binding is especially vulnerable to threshold effects. Low 
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affinity binding sites can be mistaken for background, although, in this case, a 

majority of peak callers would have difficulty in distinguishing these peaks from true 

peaks. Finally, the sequencing depth varies from one sample to another and thus, 

appropriate thresholds have to be different for different samples in a single 

sequencing experiment. 

FindPeaks [93], a widely used tool, is based on this approach. Briefly, sequence reads 

are extended to represent their estimated fragment length and the peaks of overlapped 

read profiles are used for peak detection. This initial step can be followed by peak 

refinement via ‘trimming’ and segmentation into sub-peaks. An empirical estimate of 

false discovery rate (FDR) is obtained using Monte Carlo simulations. FindPeaks 

boasts a modular design with various user options to tweak performance. However, 

the lack of a user guide to choose a suitable threshold is a major drawback. 

Another method that utilizes a height threshold in peak detection is cisGenome [96], a 

tool capable of analyzing both ChIP-on-chip and ChIP-Seq data. CisGenome 

implements a two-pass peak detection procedure. In the first pass, genome-wide read 

counts are obtained using a sliding window and those above a user-defined threshold 

are called as putative peaks. High confidence peaks obtained from the first pass are 

used to estimate DNA fragment size; subsequently, sequence reads are shifted to 

represent the center of the fragment and the peak detection process is repeated. In the 

absence of negative control data, cisGenome estimates FDR by fitting a NB 

distribution to low read-count windows in the ChIP sample. If a negative control is 

present, cisGenome calculates binomial p-values as a measure of significant 

enrichment. If there are T ChIP reads and C control reads in a putative peak, the 
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proportion of successes p = T/(C+T). Then the binomial probability of observing at 

least T successes in t = C + T trials under the null hypothesis H0: p = 0.5, is, 

                                 ∑(
 
 
)           

 

   

  

In contrast to FindPeaks, the user-defined cutoff used in cisGenome is associated with 

an FDR level making it easier for the user to choose a suitable value. Other 

innovations include the application of the NB distribution, shown to be a better fit to 

the background than the Poisson distribution, and a graphical user interface (GUI) for 

clickable data analysis and visualization. 

Local Measures of Enrichment 

The gradual increase in sophistication of peak calling algorithms saw tools utilizing 

local features of the data to detect peaks. The so-called ‘directional methods’ 

leveraged the distance between nearby peaks of sense and anti-sense reads to serve as 

an indication of the existence of a TFBS. Kharchenko et al.’s spp package [111], 

contains a collection of measures most of which depend on the strand-specific read 

density. For instance, window tag density (WTD) scores each window based on sense 

and anti-sense read counts within a user-specified distance. Peaks are called based on 

local maxima of score profiles and FDR calculated as a ratio of the number of peaks 

detected in the test sample versus that in a negative control. SiSSRs (Site 

Identification from Short Sequence Reads) [64, 94], uses a similar idea. First, strand 

specific read count profiles are calculated with a sliding window approach. Sense and 

anti-sense read counts are assigned positive and negative scores, respectively, and a 

composite count is calculated for each window. Putative binding sites are predicted at 

the points where the composite count transitions from positive to negative. These 
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TFBS predictions are further filtered for total read counts and FDR estimated as a 

ratio of the number of peaks with the same number of reads in the background 

(Poisson distribution or negative control), to that observed in the ChIP sample. 

Directional models are simple and thus, efficient and easy to implement. However, 

the assumption of proximal sense and anti-sense peaks flanking a binding site is less 

applicable to broad enrichment regions and results in lower sensitivity. 

The widely used tool, MACS [92], also uses local modeling of the data to detect 

peaks. Similar to cisGenome, MACS uses a two-pass approach to peak calling. 

Sequence reads are shifted to represent the center of the fragment and read count 

profiles are calculated based on a sliding window scan. In the first pass, MACS fits a 

global Poisson model (global) to the ChIP data and calls putative peaks based on a 

specified p-value cutoff. The second pass is used to capture local biases by fitting 

Poisson models to regions of varying length (k, 5k, 10k) flanking the putative 

peaks. For each peak, a dynamic Poisson parameter local is defined as, 

       {
   (                    )                                  

   (                )                                       
 

and used to assign a p-value. The latter process is designed to model the background 

and is performed in a control data set or in the ChIP data in the absence of a control.  

Note that 1k is not used in the absence of control data ensuring that local variations 

in the ChIP sample In the presence of a control data set, MACS also calculates the 

FDR as follows: the peak calling procedure is performed in the ChIP sample versus 

control, and again in control vs ChIP. The FDR is then estimated as the ratio of 

control peaks to the ChIP peaks. MACS has performed well for several different 
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ChIP-Seq data sets and has thus, been widely adopted, particularly for TFBS 

prediction [112].  

Kernel Density Estimation 

Kernel density estimation (KDE) is a non-parametric procedure to estimate the pdf of 

a data set. Widely used for data smoothing, KDE involves sampling a set of points 

within a specified distance that are weighted based on a predefined function referred 

to as the ‘kernel’. If y represents the observed counts, a kernel density estimator of the 

‘true’ ChIP-Seq profile F at i could be represented by, 

 

where, n points on either side of i are sampled to produce the estimate, K is the kernel 

function and h is the bandwidth. The kernel defines the shape of the smoothed data, 

while the ‘bandwidth’ determines the degree of smoothing, with larger values 

resulting in greater smoothing. Since the shearing of DNA is a random process, the 

shape of ChIP-Seq peaks resembles a Gaussian distribution, making a Gaussian 

kernel suitable for ChIP-Seq data analysis.  

 

KDE produces a continuous smoothed estimate of the data, and enables easier 

visualization of various genomic patterns. However, it is important to choose a 

suitable bandwidth, since too much smoothing could markedly reduce the signal from 

smaller peaks, thus reducing sensitivity. 

Several methods employed the above statistical framework to detect peaks in NGS 

data, such as, GeneTrack [113] and F-Seq [97], but the first one to be used widely for 
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ChIP-Seq data was QuEST (Quantitative Enrichment of Short Tags) [98]. This tool 

first generates a KDE profile for each strand, before combining them into a single 

profile for detecting local maxima. QuEST enforces a fold-change requirement for 

peak calls, i.e. ChIP reads have to be at least a certain fold (specified by the user) 

greater than a control sample. Peaks satisfying the above criteria are marked as 

putative enrichments and an FDR estimate is calculated based on the negative control. 

Briefly, the control sample is randomly divided into two parts, and the peak-calling 

procedure is performed on one part of the control sample with the other serving as the 

background. The ratio between the number of control and ChIP peaks serves as an 

estimate of FDR. QuEST implements some stringent restrictions, which limit its 

applicability. The FDR estimation step is only performed if the control sample 

contains at least twice as many reads as the ChIP sample. Also, experiments without a 

negative control are not supported. 

Another method that employs KDE is SICER (Spatial clustering approach for the 

Identification of ChIP-Enriched Regions) [101], although at a different stage of peak 

calling. First, shifted reads are partitioned into non-overlapping windows and a 

Poisson model is used to mark windows with significantly elevated read counts 

(eligible). Windows containing non-significant read counts are called ‘gaps’ and the 

maximum number of allowable gaps in a peak (g) can be set by the user. Putative 

peaks are scored with the negative logarithm of the product of window p-values with 

gaps contributing 0. The likelihood of observing the score distribution is modeled 

using KDE with a kernel that assumes exponential decay, 
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where, the fitting coefficient α is modeled from the data. The expected number of 

peaks in a random background model (E-value) is used to control for false positives. 

In the presence of negative control data, the number of reads within each peak is 

compared to that in the control sample using a binomial test. SICER was one of the 

first peak callers aimed at histone modifications and the ‘gap’ parameter allowed the 

detection of broader enrichment regions. 

KDE is the most commonly used technique for ChIP-Seq peak detection due in part 

to its flexibility and statistical properties. However, the choice of bandwidth is critical 

and should match the DNA fragment length from the sequencing experiment. 

Hidden Markov Models 

A random process is said to have the Markov property if the state of the process at 

any time t only depends on its state at the immediately preceding time point t – 1. A 

hidden Markov model (HMM) is a probabilistic statistical framework used for 

modeling a random Markov process with unobserved (hidden) states. The most 

important parameters associated with an HMM are the number of states of the process 

N, state transition probabilities A and emission probabilities E (the probability of 

observing an output value given a specific state). The HMM framework has seen 

wide application in pattern recognition across a variety of fields [114].  

Given its properties some methods have applied HMMs to ChIP-Seq data by likening 

the analysis to a classification problem: by observing a sequence of counts we want to 

infer the (hidden) state of the system, whether enriched or not. BayesPeak [103], uses 

the above framework, employing an HMM that can assume one of two states: a true 

binding site or background. Read density profiles are generated for sense and anti-
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sense strands using the 5’ ends of sequence reads. The emission probabilities are 

modeled using the NB distribution and parameters are estimated in a fully Bayesian 

manner using Markov chain Monte Carlo (MCMC) sampling techniques. HPeak [99] 

also models the data with a two-state HMM, but emission probabilities are based on 

generalized Poisson (enrichment) or zero-inflated Poisson distributions (background). 

Parameters for the HMM are estimated using the Viterbi algorithm [115] and the read 

counts in predicted peaks are compared with that in a control sample using a 
2
 test. 

A more recent method, RSEG [100], uses HMMs to detect broad enrichment regions 

characteristic of several histone modifications, such as, H3K27me3 and H3K36me3. 

Although RSEG also applies a two-state HMM to the problem of ChIP-Seq peak 

detection, it focuses on the detection of boundaries between regions of significant 

enrichment and background. Like BayesPeak, the emission probabilities of the two 

states are modeled using the NB distribution. The empirical distribution of transition 

probabilities is used to find windows with a high likelihood of being points of 

transition from an enrichment region to background and vice-versa. Other innovations 

include the development of a novel distribution for the difference between two 

independent random variables that follow the NB distribution (NBDiff), which is 

used for comparisons with a control. In the latter case, the HMM has three states 

corresponding to no difference between ChIP and control, greater enrichment and 

lower enrichment in the ChIP sample, respectively. 

The greater algorithmic complexity of HMMs makes the implementation of the above 

methods more difficult. BayesPeak, owing to its generalized design, requires 

extensive simulations for parameter estimation and training, which, in turn, results in 
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high computational demands [116]. HPeak is simpler in comparison and hence more 

efficient, although the Poisson models implemented in the algorithm might not 

provide a very good fit for the background. RSEG, by design, is well suited to the 

detection of broad peaks, but this may limit its applicability to TFBS prediction. 

Methods Incorporating Additional Covariates 

As mentioned above, accounting for sources of technical variation in NGS data is 

necessary for the accurate discrimination of peaks from background. Therefore, it is 

reasonable to expect that the incorporation of additional covariates, e.g. mappability 

and G/C content, into the peak-calling procedure can improve accuracy. PeakSeq [95] 

was one of the first methods to adopt this approach by accounting for mappability in 

its peak-calling procedure. First, read density maps are created by calculating 

overlaps between reads extended to their fragment length. Each chromosome is 

divided into segments and a random distribution of reads mapping to these segments 

is generated using the Poisson distribution, taking into account the number of 

mappable bases in the segment. This procedure is similar to the dynamic Poisson 

model used in MACS, although the recommended segment is much larger (1 Mb) and 

the effective segment size accounts for mappability. In the first pass, a set of putative 

peaks are generated using a read count threshold, which is calculated separately for 

individual segments using the fitted Poisson model. This threshold when applied to 

negative control data also provides an estimate of the FDR and can be adjusted to 

user specifications. Linear regression is used to normalize the ChIP sample to a 

control and binomial p-values calculated to denote statistical significance of a peak. 
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A recent method, ZINBA (Zero-Inflated Negative Binomial Algorithm), further 

generalizes the process of including covariates in the peak detection procedure [102]. 

ZINBA uses a mixture regression approach to classify windowed read-counts into 

one of three components – enrichment, background and zero. The third component is 

introduced due to the presence of large numbers of zero-count windows in sparse 

ChIP-Seq data sets, either due to inherent characteristics of the data or low 

sequencing depth. ZINBA employs an expectation-maximization (EM) algorithm to 

estimate the probability of component membership of each window, with enrichment 

and background read counts modeled using the NB distribution. Moreover, the 

relative contributions of covariates (including interactions) can be estimated and the 

important factors chosen using a model selection procedure based on the Bayesian 

information criterion (BIC). Windows having probability of enrichment greater than a 

specified threshold (default 0.95) are marked as putative peaks and adjacent enriched 

windows are merged. A further setting enables the concatenation of peaks within a 

fixed distance for broad enrichment regions. ZINBA provides an important advance 

in the field of ChIP-Seq peak-calling by jointly modeling ChIP-Seq data with 

genomic covariates. However, increased complexity, e.g. in the computationally 

intensive model-selection step, results in high computational demands. 

Detection of Differential Binding 

The accurate detection of enrichment regions in ChIP-Seq data may be sufficient for 

most exploratory analyses. However, at times it may be informative to compare ChIP-

Seq profiles across different experimental conditions. Possible questions include, for 

example, the variation of transcription factor binding in response to a disease or the 
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dynamics of histone modifications during stem cell differentiation. The prohibitive 

cost of next generation sequencing at the time of its introduction, served as a deterrent 

for such extensive epigenetic studies. However, with the gradual reduction of 

sequencing cost, the use of intricate experimental designs for epigenetics assays has 

become more prevalent, with the detection of ‘differential’ binding or enrichment a 

topic of interest. 

ChipDiff [117] was an early attempt at the detection of differential histone 

modification enrichments. This method uses a three-state HMM to compare two 

sequencing libraries L1 and L2 using fold-changes of normalized read counts. Similar 

to the two-sample analysis in RSEG, the three states correspond to no difference 

between the two samples, higher enrichment in L1 and higher enrichment in L2, 

respectively. Windows with a high probability of being in one of the latter two states 

are marked as putative points of differential histone marks with adjacent sites being 

merged. The fold-change approach used by ChipDiff can be prone to large variations 

particularly at low signal strength while a fixed window size of 1 kb causes lowered 

resolution. Moreover, ChipDiff only supports two ChIP-Seq libraries and thus, has 

limited applicability to more complex experimental designs. 

Rapid advances in the field of mRNA sequencing (RNA-Seq) analysis saw the 

development of suitable statistical methodology and the development of two popular 

tools, edgeR [118] and DESeq [119]. Both these methods utilize the NB distribution 

to model read counts although the respective implementations are somewhat 

different. EdgeR adopts the classical NB distribution wherein the mean  and 

variance 

are related as 22

. The dispersion parameter  is estimated for 



 

 38 

 

each gene using conditional maximum likelihood, while an empirical Bayes 

procedure is employed to enable the shrinkage of dispersions. Since  is the only 

parameter to be estimated per gene, edgeR can be applied to experiments with smaller 

numbers of replicates, as is often the case in sequence-based assays. 

DESeq extends the model used by edgeR with a more flexible data-driven approach. 

The ‘true’ fragment count for each gene is assumed to be proportional to the observed 

count scaled by a normalization factor dependent on the library size. The raw 

variance of each gene is assumed to be a smooth function of the read count of each 

gene, which is estimated using local regression. The local regression approach uses 

genes of similar expression level to predict gene-wise variances and as a result 

DESeq is applicable to experiments having small numbers of replicates.  

Although both edgeR and DESeq were developed for gene expression assays, they 

can be extended to other NGS applications, such as, ChIP-Seq. However, due to 

major differences in the applied protocols, relevant results may need to be treated 

with some caution. For instance, the RNA-Seq is less susceptible to amplification bias 

and thus, raw reads can be used directly with the above tools for differential 

expression analysis, while redundant reads need to be removed from ChIP-Seq data. 

In summary, ChIP-Seq analysis is a complicated process comprising several 

important steps. The maturation of next-generation sequencing technologies and 

development of efficient software has meant that the computationally intensive read-

mapping step is no longer the bottleneck of the analysis. Also, statistical methodology 

suited to analysis of count data has made it easier to perform differential analyses. 

However, in spite of the availability of several peak-callers, virtually every algorithm 
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makes distributional assumptions for computational efficiency that have been shown 

to be inadequate. The added complexity of diverse enrichment patterns observed in 

ChIP-Seq data means that there is a continuing need for accurate peak-calling 

algorithms, robust to background variations and sensitive to diverse binding patterns. 

Marek’s Disease 

Marek’s disease (MD) is a highly contagious, lymphoproliferative disease of chickens 

caused by an herpesvirus, Marek’s disease virus (MDV). MD was initially 

described and characterized in 1907 by eminent Polish veterinarian, József Marek, as 

a ‘polyneuritis’, but was later found to also cause lymphomas. The discovery of the 

causative agent, MDV, in the 1960s proved to be the next major step forward, 

occurring soon after the economic boom of the poultry industry [120]. The ubiquitous 

nature of MDV results in exposure for virtually all chickens from birth, and the acute 

forms of the disease became a particular cause for concern to the industry during 

expansion and increased production of that decade. The introduction of a successful 

vaccine in 1969 [121] temporarily allayed fears, but also led to increased virulence of 

the virus. Further development of vaccines followed [122], but resulted in even 

greater levels of virulence [123], as it became clear that alternative sustainable 

methods were necessary for controlling MD in the long term. 

Genetic resistance to MD provides such an alternative. Natural resistance to MD was 

observed in commercial flocks of chicken as early as 1932 [124] and the breeding of 

chicken lines selected for resistance or susceptibility to MD had been shown to be 

possible in 1947 [125], even before the discovery of MDV as its causative agent. 

Subsequently, two independent research groups selected and bred MD-resistant and 
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susceptible lines – lines N and P selected by the above researchers at Cornell 

University and lines 6 and 7 selected by Stone at East Lansing. The above two 

unrelated groups of inbred lines have since been the center of extensive study and are 

the primary source of the current understanding of MD-resistance and susceptibility. 

Marek’s disease has several interesting features. It is the only known lymphomatous 

disease that has been successfully controlled by a vaccine. Three closely related 

serotypes of MDV exist – MDV-1, MDV-2 and herpesvirus of turkeys (HVT). MDV-

2 and HVT are usually non-pathogenic, but MDV-1 causes acute lymphomas in 

susceptible birds. Neoplastically transformed cells in MD tumors have been found to 

overexpress CD30 antigen [126] and thus, MD is a natural model for Hodgkin’s 

lymphoma in humans [127]. Also, the outcome of MDV infection depends on various 

host, viral and environmental factors; non-oncogenic strains of MDV can become 

oncogenic under certain conditions, such as, stress. Thus, it is a great animal model 

for the study of host-pathogen interactions, in general, and virus-induced lymphoma 

formation, in particular. Also, the populations of inbred lines can help understand the 

genetic basis of resistance and susceptibility to a cancer-causing agent. 

Marek’s Disease Pathogenesis 

MDV exhibits a complex life cycle in host cells involving an initial cytolytic phase, a 

latent phase, a late cytolytic phase and transformation. Initial infection is believed to 

occur when the birds inhale the virus particles. Once in the respiratory tract, the virus 

is phagocytosed by macrophages or dendritic cells (DCs) that, as a result, become 

infected. The phagocytosis might occur directly or after replication in epithelial cells. 

The MDV-infected macrophages or DCs enter circulation and carry the virus to the 
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major lymphatic organs of the bird, and within 24 hours of infection the virus is 

detectable in the spleen, thymus and bursa of Fabricius.  

During the early cytolytic infection that follows, the virus first targets B lymphocytes 

which likely surround infected ellipsoid-associated reticular cells (EARCs) in the 

spleen [128]. This phenomenon is also the reason why B lymphocytes are the primary 

targets of MDV at the cytolytic stage of infection. Subsequently, the infection spreads 

to other lymphoid tissues, such as, bursa and thymus, that lag behind the spleen by a 

day. In each of these organs, B lymphocytes form the largest proportion of infected 

cells, along with smaller numbers of CD4+ and CD8+ T lymphocytes [129]. 

Cytolytic infection can cause major atrophy of bursa and thymus, accompanied by 

immunosuppression, in contrast to the spleen which shows slightly increased weight 

and greater virus load. Interestingly, T lymphocytes activated as a consequence of 

MDV infection of B cells renders them susceptible to infection, while naïve T 

lymphocytes are relatively immune [130]. This has led to the suggestion of an MDV 

receptor expressed on the surface of CD4+ T lymphocytes, but in the absence of 

further evidence this remains a matter of conjecture. 

At 6-7 days post infection (dpi), the infection enters latency during which the viral 

genome is present in host cells but no viral antigens are expressed in lymphoid tissue 

and no viral replication observed. By this time, most cytolytically infected B cells are 

dead and CD4+ T lymphocytes form the bulk of the infected cell population. Latently 

infected T lymphocytes may be transformed in latter stages of the disease and go on 

to form lymphomas, and the relationship between these two stages is poorly 

understood. Latency is a hallmark of many herpesvirus infections and the switch from 
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cytolytic to latent infection is believed to be influenced by host factors. The time of 

incidence of latency coincides with the establishment of the host immune response. 

Also, the reemergence of cytolytic infection in susceptible genotypes is likely 

concurrent with immunosuppression in the host. Various host cytokines such as 

interleukin (IL)-6, IL-18 and interferon (IFN)- and other cell signaling molecules 

such as nitric oxide (NO) are believed to play major roles in the establishment and 

maintenance of latency [131]. Certain virus genes such as a group of latency 

associated transcripts (LATs) and Meq are important players in latency. MDV LATs 

include three RNAs that interfere with MDV immediate-early gene ICP4 and inhibit 

translation of the ICP4 protein resulting in abrogation of lytic infection and onset of 

latency [132]. Meq blocks apoptosis of latently infected CD4+ T lymphocytes and 

transactivates latent gene expression [133], thereby helping maintain latency. In 

resistant chickens, latent infection persists at low levels in circulating lymphocytes 

without reactivation, while inflammatory changes in lymphoid tissues gradually 

recede. 

In susceptible chickens, latency is followed by a second phase of cytolytic infection 

2-3 weeks after initial infection [134]. This late phase of infection affects immune 

organs of thymus and bursa, along with epithelial tissues, such as, kidney. It appears 

that latently infected lymphocytes circulate the virus to different parts of the body 

such as, brain, nerves and skin before reactivating as a result of immunosuppression 

[134]. Following reactivation of the virus there is heightened inflammation, necrosis 

of infected lymphocytes, infiltration of mononuclear cells into infected tissue and 

major atrophy of bursa and thymus. Virus particles carried to the skin result in 
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infection of the feather follicle epithelium, which is fully productive, i.e. there is 

widespread release of infectious, cell-free virus particles and apoptosis of infected 

follicular cells. The feather follicle epithelium is the site of continued expression of 

MDV antigens and persistence of virus particles in resistant and susceptible birds 

alike. 

The final stage of MDV infection is the transformation and proliferation of latently 

infected cells into lymphomas. The major site of proliferation appears to be the 

spleen, although it is not believed to be essential for the formation of lymphomas 

[135]. About 21 dpi, large increases in T cells that are possible precursors of 

transformed cells, are observed in the spleen [136]. Cells expressing high levels of 

CD30 antigen are detected in blood and spleen of both resistant and susceptible birds 

at the end of the early cytolytic infection [129]. This marker, encoded by the host and 

expressed in MD tumors and cell lines, is found only on a small population of MDV-

free lymphocytes [126] and not expressed on naïve CD4+ T lymphocytes. Thus, it is 

likely that the CD30+ T lymphocytes in spleen are precursors of the transforming cell 

population. Soon after, infected T lymphocytes migrate to visceral organs and 

peripheral nerves where they proliferate into tumors. Approximately three-quarters of 

cells found in MD tumors are CD4+ T lymphocytes with the rest being B 

lymphocytes. However, almost all cells showing non-productive infection are CD4+ 

T lymphocytes [137], indicating that these cells form the bulk of the neoplastic cell 

population in lymphomas. In susceptible genotypes, the above CD4+ T lymphocytes 

undergo major proliferation, going on to form mature lymphomas. However, in 
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resistant chickens, cytotoxic CD8+ T lymphocytes appear to keep proliferation in 

check, resulting in apoptosis and regression of MD lesions [138]. 

Immunity to Marek’s Disease 

Host responses to Marek’s disease are determined by innate and acquired immune 

responses. The two major components of innate immunity are macrophages and NK 

cells. Macrophages play an important role in innate immune response and adaptive 

immunity by functioning as antigen-presenting cells (APCs). As mentioned above, 

macrophages engulf virus particles in the respiratory tract and transport them to 

lymphoid tissue where cytolytic infection is initiated. Initial studies in vitro suggested 

that macrophages were resistant to MDV infection [139], but subsequent studies 

showed that splenic macrophages express MDV antigens, consistent with virus 

replication [140]. Macrophages also recognize antigens via pattern recognition 

receptors, release cytokines and soluble factors (e.g. NO) that aid in defense against 

infections. Recent reports have suggested that NO produced by inducible nitric oxide 

synthetase (iNOS) can inhibit MDV replication in early cytolytic and latent phases of 

infection [131]. Higher levels of NO are observed in MD-resistant chickens at early 

stages, and possibly contribute to lowered viral load in these genotypes. Further 

support for the above was obtained when studies found increased tumor incidence and 

viral load after treatments to reduce macrophage numbers [141] and vice-versa [142]. 

Thus, macrophages play an important role in reducing viral load during early 

cytolytic infection possibly via the secretion of NO. 

NK cells constitute another important component of innate defense mechanisms 

through their ability to respond to the secretion of chemokines and cytokines. This 
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property of NK cells is shared with T lymphocytes even though they are non-

phagocytic and do not express antigen receptors. In normal individuals, NK cells are 

found only in peripheral blood, spleen and bone marrow, but can move quickly to 

sites of inflammation upon induction by various chemotactic molecules. Various 

reports have suggested the possible involvement of NK cells in MDV infection. NK 

cells isolated from spleen of normal chickens lysed cells from a MD tumor cell line 

[143]. NK cell activity increased 7 days after MDV infection in both resistant and 

susceptible chickens [144]. MD-resistant line N chickens exhibited higher and more 

sustained NK cell activity than susceptible line P chickens [145]. Also, a genomic 

region strongly associated with MD-resistance was found to be syntenic to human and 

murine NK cell clusters [146]. All in all, NK cells appear to be involved in protective 

immunity against MDV and are possibly most active during the early cytolytic phase 

of infection. However, their mechanism of action remains unclear as the 

characterization of NK cells is hindered by the lack of available markers [147]. 

The major components of the acquired immune response are CD8+ cytotoxic T 

lymphocytes (CTLs) and CD4+ T helper cells that secrete cytokines. CTLs are 

associated with MD-resistance in line N chickens as they interact with and 

subsequently remove MDV ICP4 through the action of specific receptors [148].  

CTLs help in reducing MDV replication, transmission and persistence. The role of 

cytokines in MD has been the subject of intense study in the past few years. As 

mentioned above, several cytokines such as IFN-IL-1and iNOS were 

preferentially upregulated in spleen from line N chickens from early stages of 

infection [131]. More comprehensive studies of cytokine responses found 
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upregulation of IFN-  in all infected chickensconsistent with the previous study, 

along with inflammatory cytokines IL-6 and IL-18, in susceptible birds during early 

cytolytic infection. In addition to the above host factors, a virus-encoded IL-8 

homolog (vIL-8) has also been found [149]. Since IL-8 acts as a chemoattractant for 

T lymphocytes, the above finding has led to speculation that the viral homolog 

attracts T cells to sites of infection. However, vIL-8 shares greater homology with a B 

lymphocyte chemoattractant and can be better categorized as a CXC chemokine. The 

precise role of vIL-8, therefore, remains unclear. 

Marek’s Disease Resistance and Susceptibility 

The first major step towards understanding the mechanisms behind MD resistance 

was provided by the observed association between MD resistance and inheritance of 

the B blood group locus [150]. Since this locus was a known marker for the chicken 

major histocompatibility complex (MHC), the above observation gave rise to the 

possibility that genes found within the chicken MHC could be responsible. Several 

subsequent studies confirmed this finding, although it did not preclude the possibility 

that other genes might also be involved. Based on this and further experiments, 

genetic resistance to MD can be subdivided into two categories – MHC-associated 

and non-MHC associated resistance. 

Several known haplotypes of the B locus provide varying levels of resistance, such 

as, B
21

 confers high resistance irrespective of genetic background, and B
19

 is 

associated with susceptibility. However, certain other haplotypes, e.g. B
2
, can have 

widely varying effects on MD-resistance depending on other factors. It was shown 

that the differential susceptibility of the lines N and P mentioned above is largely 
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correlated with their B haplotype [151]. Line N possesses the B
21

 haplotype 

associated with high resistance while line P contains the B
19

 haplotype which confers 

high susceptibility. The mechanism behind MHC-associated MD resistance has been 

elucidated to some degree. MDV infection is believed to induce low levels of CTLs 

that are specific for certain proteins encoded by MDV. For instance, CTL specific to 

the viral immediate-early protein ICP4 were found in MD-resistant line N chickens 

carrying the B
21

 haplotype, but not in line P [152]. It was suggested recently that 

natural killer (NK) cells may be involved in the process [145]. Also, class I MHC 

molecules had varying levels of expression on the cell surface of uninfected cells, 

with B
19

 having the highest expression and B
21

 the lowest [153]. This raised the 

possibility that NK cells are major effectors in MD, as in mammals they can detect 

differences in cell surface expression. Alternatively, CTLs and NK cells can both 

confer some level of protection from infection. 

In contrast to lines N and P, lines 6 and 7 both carry the B
2
 haplotype and thus, 

differences in MD resistance observed in these lines depend on factors outside the 

chicken MHC. This situation is also true of several outbred and commercial flocks of 

chickens whose resistance or susceptibility to MD cannot be fully explained on the 

basis of their B haplotypes alone. Many other genes could possibly be involved in this 

form of MD resistance and several different approaches have been used to investigate 

the underlying mechanisms. 

Early studies reported differences in viral replication between the two lines, with the 

susceptible line 7 showing higher rates of viral replication and subsequent viral load. 

MDV-infected lymphocytes from this line contained high numbers of virus particles 
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from the early stages of infection which was maintained throughout their lifetime. 

Resistant line 6 chickens, on the other hand, showed a gradual increase in viral load 

which peaked around 10 dpi before falling to low levels. The early differences 

between the two lines suggested differences in innate rather than adaptive immune 

response. The clearance of infection observed in line 6 at later stages of MD suggests 

an adaptive response, although the inability of line 7 to mount a successful defense 

could either be due to greater injury to the immune system during early cytolytic 

infection [136] or inherent differences in immune response [154]. 

Lymphocyte surface markers were believed to be partly responsible for the 

differential disease in the two lines. Investigations led to the discovery of three 

alloantigens designated as Ly-4 [155], Bu-1 and Th-1 [156], each of which showed a 

certain degree of association with MD resistance. Genomic mapping revealed 14 

genomic regions associated with disease resistance [157, 158]. Further attempts to 

map resistance loci using a backcross population [146] resulted in the discovery of a 

region on chromosome 1 with a strong association with MD-resistance. This region 

appeared to control viremia and shared homology with human and mouse NK cell 

clusters. One putative resistance gene present in this region was identified and 

designated MDV1. Subsequent studies using microarrays [159] identified several 

immune-related genes, such as, IFN- that showed significant differences in 

expression in the two lines, located in genomic regions associated with MD 

resistance. Recent studies of host responses to MDV infection have further expanded 

current knowledge [160, 161]. However, given the obvious complexity of the disease, 
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the focus has gradually shifted to systems analyses to uncover pathways associated 

with MD [162, 163].  

Thus, non-MHC associated MD resistance is influenced by many genetic and 

environmental factors. Studies attempting to map the MD-resistance observed in 

these lines to specific genomic regions have met with moderate success, while the 

investigation of the transcriptional effects of MDV have revealed differential 

expression of certain important host cytokines and viral genes. However, none of 

these loci can completely explain the mechanism of MD-resistance and susceptibility. 

Also, environmental factors can have a major impact on the outcome of infection, 

which suggests that epigenetic processes play an important role in MD progression. 

Therefore, this is a great animal model to study epigenetic effects of a lymphomatous 

virus and the epigenetics of disease resistance. We propose to investigate one aspect 

of this by studying histone modifications induced by MDV in line 63 and line 72 

chickens at various time points of the disease. Our results could have potentially far-

reaching consequences on our understanding of the epigenetics of disease resistance. 

Rationale and Significance 

ChIP-Seq combines traditional ChIP with next-generation sequencing to form a 

powerful experimental framework that targets specific histone modifications across 

the genome. This technique is highly efficient and suited to the study of complex 

biological phenomena, such as, MD. Methods of ChIP-Seq analysis often make 

assumptions about the distribution of ChIP-Seq data for computational efficiency. 

These assumptions have been shown to be inadequate, which limit their sensitivity to 

diverse enrichment patterns observed in the data. It is necessary to develop an 
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advanced method or strategy to overcome the unreasonable distribution inference. 

Thus, the first goal of this project is to develop an efficient and sensitive method of 

ChIP-Seq analysis that does not make any distributional assumptions. This goal can 

be achieved with the help of spectral analysis techniques, such as, the wavelet 

transform and Monte Carlo sampling procedures. Further, our experimental model of 

MD resistant and susceptible inbred chicken lines provides a unique data set that we 

can use to validate this method. 

Highly inbred chicken lines with drastically different responses to MDV infection, 

originating from the lines 6 and 7 described above, have been developed in the Avian 

Disease and Oncology Laboratory (ADOL), USDA, Michigan – Line 63 shows high 

MD-resistance with very few birds (0-3%) developing tumors; Line 72 exhibits MD-

susceptibility with virtually all individuals (99-100%) developing tumors. The 

investigation of histone modification profiles in this unique population of chickens 

can provide an insight into the epigenetic effects of MDV infection and factors 

influencing disease predisposition. Thus, the second goal of this work is to investigate 

genome-wide chromatin signatures induced by MDV infection in this population, 

with a view to a greater understanding of associated epigenetic factors. This goal can 

be achieved by the application of existing and novel methods to the analysis of 

histone modification data generated from the population of inbred chicken lines. 

The outcomes of this project will further our understanding of histone modifications 

in poultry, in general, and the effect of MDV infection on host chromatin signatures, 

in particular. The development of a robust, sensitive and accurate algorithm for ChIP-
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Seq analysis will greatly benefit the scientific community and be useful for many 

future applications. Hence this project consists of the following 3 parts: 

1. To develop a novel method of detecting significant peaks in ChIP-Seq data  

2. To investigate the epigenetic differences induced by MDV infection in the thymus 

3. To apply existing and novel methods to conduct a temporal analysis of chromatin 

signatures in the bursa of Fabricius 
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2. WaveSeq: A Novel Data-driven Method of Detecting Histone 

Modification Enrichments using Wavelets  

Abstract 

Chromatin immunoprecipitation followed by next-generation sequencing is a 

genome-wide analysis technique that can be used to detect various epigenetic 

phenomena such as, transcription factor binding sites and histone modifications. 

Histone modification profiles can be either punctate or diffuse which makes it 

difficult to distinguish regions of enrichment from background noise. With the 

discovery of histone marks having a wide variety of enrichment patterns, there is an 

urgent need for analysis methods that are robust to various data characteristics and 

capable of detecting a broad range of enrichment patterns. 

To address these challenges we propose WaveSeq, a novel data-driven method of 

detecting regions of significant enrichment in ChIP-Seq data. Our approach utilizes 

the wavelet transform, is free of distributional assumptions and robust to diverse data 

characteristics such as low signal-to-noise ratios and broad enrichment patterns. 

Using publicly available datasets we showed that WaveSeq compares favorably with 

other published methods, exhibiting high sensitivity and precision for both punctate 

and diffuse enrichment regions even in the absence of a control data set. The 

application of our algorithm to a complex histone modification data set helped make 

novel functional discoveries which further underlined its utility in such an 

experimental setup. 
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WaveSeq is a highly sensitive method capable of accurate identification of enriched 

regions in a broad range of data sets. WaveSeq can detect both narrow and broad 

peaks with a high degree of accuracy even in low signal-to-noise ratio data sets. 

WaveSeq is also suited for application in complex experimental scenarios, helping 

make biologically relevant functional discoveries. 

Introduction  

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-

Seq) is a powerful experimental framework that enables genome-wide detection of 

epigenetic phenomena such as histone modifications. Histone modification profiles 

have diverse characteristics ranging from sharp well-defined peaks surrounding 

transcription start sites of genes to broad diffuse marks on large genomic regions. 

This inherent variability makes it difficult to distinguish regions of true enrichment 

from background noise.  

There have been several attempts at solving the problem of finding statistically 

enriched peaks in ChIP-Seq data. One class of methods focuses on transcription 

factor ChIP-Seq experiments and uses various features of the data to predict binding 

regions. For instance, FindPeaks [93] adopts a height threshold together with a 

simulated random background to find significant peaks, while MACS [92] uses a 

local Poisson p-value to detect chromatin enrichments. Most of these methods have 

comparable sensitivity in detecting transcription factor binding sites (TFBSs) and are 

often used in conjunction with motif-finding algorithms. 
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While the success of the above set of methods in finding transcription factor binding 

patterns from ChIP-Seq data is undeniable, histone modification data pose new 

challenges. Utilization of local features to detect histone modification peaks is 

difficult due to the relative diffuseness of enrichment patterns. Also, common 

assumptions of such analyses may not hold in this case. For instance, TFBSs cover a 

small proportion of the genome, but certain histone marks can be present on much 

larger genomic fractions. Strong TFBSs are flanked by clusters of sense and anti-

sense reads and this information can be leveraged to predict the location of the 

binding site. However, the diffuse nature of most histone modifications renders this 

impossible. A combination of such factors has led to a relative paucity of methods to 

analyze histone modification data. A commonly used tool, SICER [101], fits a 

Poisson distribution before employing kernel density estimation to predict enriched 

regions, while a recent study employed a negative binomial regression framework and 

incorporated genomic covariates to improve ChIP-Seq peak detection [102]. 

However, with the discovery of an ever-increasing number of histone marks that 

encompass a wide variety of enrichment patterns, there is a continuing need for 

improved methods robust to a range of data characteristics. 

Wavelets belong to a class of spectral analysis techniques that can extract meaningful 

information from data by decomposing it into its underlying patterns. The versatility 

of wavelets has seen them being used in a wide variety of disciplines ranging from 

image processing to medical diagnostics. Recently, we applied this technique to the 

analysis of comparative genomics hybridization data [164], utilizing the wavelet 

property of global pattern quantification to find evolutionary relationships between 
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copy-number profiles in human and bovine populations. However, wavelets also have 

excellent spatial resolution and comparing data sets one can not only find differences 

in frequencies of global patterns but also the precise locations of such variations. This 

property is highly desirable for genome-wide analyses and is the primary motivation 

for this work. 

We present WaveSeq, a novel data-driven method of ChIP-Seq analysis that utilizes 

the wavelet power spectrum to detect statistically significant peaks in ChIP-Seq data 

having punctate or broad enrichment patterns. WaveSeq employs Monte Carlo 

sampling in the wavelet space to predict regions of true enrichment in ChIP-Seq data. 

In the absence of a control, a randomized algorithm constrained by the length 

distribution of putative peaks is used to estimate the background read distribution and 

predict regions of significant enrichment. The non-parametric modeling approach 

ensures that WaveSeq is robust to variations in data characteristics (e.g. genome 

coverage) and produces accurate peak calls for a wide variety of data types.  

WaveSeq was applied to ChIP-Seq data of Growth-associated binding protein 

(GABP), Neuron restrictive silencing factor (NRSF) and trimethylations of histone 

H3 at lysine 4 (H3K4me3), lysine 27 (H3K27me3) and lysine 36 (H3K36me3), which 

were chosen to capture significant diversity of enrichment patterns and signal-to-

noise ratios (SNRs). We demonstrated that WaveSeq peak calls have high sensitivity 

and precision for narrow and broad regions over a range of SNRs even in the absence 

of a control data set. We further exhibited the utility of our approach in a complex 

experimental setting by analyzing H3K4me3 data from genetically similar chicken 

lines that exhibit divergent responses to a lymphomatous virus. Differentially marked 
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regions detected by WaveSeq revealed functional differences between the lines that 

could contribute to differences in disease prognosis. Thus, we conclude that WaveSeq 

is a highly sensitive algorithm for ChIP-Seq analysis, with applicability for a diverse 

range of enrichment patterns. 

Materials and Methods 

H3K4me3 data from chicken bursa 

Two specific-pathogen-free inbred lines of White Leghorn chickens either resistant 

(63) or susceptible (72) to MD were hatched, reared and maintained in the Avian 

Disease and Oncology Laboratory (ADOL, Michigan, USDA). The chickens were 

injected intra-abdominally with a partially attenuated very virulent plus strain of 

MDV (648A passage 40) at 5 days after hatch with a viral dosage of 500 plaque-

forming units (PFU). Chickens were terminated at 5dpi to collect bursa tissues. All 

procedures followed the standard animal ethics and use guidelines of ADOL. 

Chromatin immunoprecipitation (ChIP) was carried out using bursa from MDV 

infected and controls birds. About 30 mg bursa samples were collected from three 

individuals, cut into small pieces (1 mm
3
) and digested with MNase to obtain 

mononucleosomes. PNK and Klenow enzymes (NBE, Ipswich, MA, USA) were used 

to repair the ChIP DNA ends pulled down by the antibody. A 3′ adenine was added 

using Taq polymerase and Illumina adaptors ligated to the repaired ends. Seventeen 

cycles of PCR was performed on ChIP DNA using the adaptor primers and fragments 

with a length of about 190 bp (mononucleosome + adaptors) were isolated from 

agarose gel. Subsequently, cluster generation and sequencing using the purified DNA 
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was performed on the Illumina Genome Analyzer IIx following manufacturer 

protocols. Sequence reads of length 25 bp were aligned to the May 2006 version of 

the chicken genome (galGal3) using bowtie version 0.12.7 [80]. Default alignment 

policies of bowtie were enforced. The antibodies used and the total number of reads 

obtained for all samples are listed in Appendix I. 

Published datasets used in this study 

We used five ChIP-Seq data sets for benchmarking purposes [69, 98]. The GABP and 

NRSF (monoclonal) ChIP-Seq data sets were produced from the human Jurkat cell 

line while a negative control data set was obtained by reverse crosslinking extracted 

DNA without the subsequent immunoprecipitation step (RX-NoIP). The H3K4me3, 

H3K27me3 and H3K36me3 data sets were obtained from murine embryonic 

fibroblast (MEF) cells. We also utilized a previously published synthetic spike-in data 

set for testing precision and recall [107]. For two-sample ChIP-Seq analyses of 

GABP and NRSF, we used the RX-NoIP data set as control. The spike-in data 

consisted of a human input control data set which was randomly divided into three 

subsets; reads corresponding to the spikes were added to one of the subsets which 

constituted the mock ChIP sample while a second subset (without the spike-in reads) 

served as the control. For the MEF histone modification data no control data sets 

were used to assess algorithm performance in the absence of control. 

The GABP and NRSF data from human Jurkat cells were downloaded from: 

 http://mendel.stanford.edu/SidowLab/downloads/quest/  

H3K4me3, H3K36me3 and H3K27me3 data from MEFs were downloaded from: 

http://mendel.stanford.edu/SidowLab/downloads/quest/
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 http://www.broadinstitute.org/scientific-

community/science/programs/epigenomics/chip-seq-data 

The list of qPCR validated sites for GABP and NRSF were obtained from [105]. The 

synthetic spike-in data were downloaded from: 

 http://bioserver.hci.utah.edu/SupplementalPaperInfo/2008/Nix_EmpiricalMethods/ 

The “JohnsonSpikeDataHg17Low” data set used for specificity benchmarks was 

generated using human input control data from [68]. All data was downloaded in 

aligned format with read lengths of 25 bp for the GABP and NRSF data and 

approximately 32 bp for the H3K4me3 and H3K27me3 data. All analyses were 

performed on a 2.66 GHz dual core desktop computer running Windows Vista with 3 

GB of RAM, a licensed copy of Matlab v7.4 (R2007a) with the Wavelet Toolbox and 

R version 2.13.0 [165]. 

Analysis parameters 

Downloaded data consisting of aligned sequence reads were converted to the browser 

extensible data (BED) format. Redundancies were removed before subsequent 

analysis. Sequence reads were shifted by 95 bp from the 5’ end to represent the center 

of the DNA fragments obtained from the nucleosome and the linker DNA (≈ 190 bp). 

Summary read counts were calculated using non-overlapping windows of 200 bp for 

visualization and normalized to per million mapped reads in each sample. 

Five methods were chosen for benchmarking: MACS [92] version 1.3.7.1, FindPeaks 

[93] version 4.0.15, SiSSRs [64] version 1.4, SICER [101] version 1.1 and RSEG 

[100]. We downloaded and configured the tested algorithms as follows: 

http://www.broadinstitute.org/scientific-community/science/programs/epigenomics/chip-seq-data
http://www.broadinstitute.org/scientific-community/science/programs/epigenomics/chip-seq-data
http://bioserver.hci.utah.edu/SupplementalPaperInfo/2008/Nix_EmpiricalMethods/


 

 59 

 

1) FindPeaks v 4.0.15 was downloaded as part of the Vancouver Short Read Analysis 

Toolkit (VSRAT) from http://vancouvershortr.sourceforge.net. The reads in BED 

format were first separated into chromosomes using SeparateReads.jar. The following 

parameters were then used for FindPeaks.jar: 

-aligner bed 

-dist_type 0 190 

2) MACS v 1.3.7.1 was downloaded from http://liulab.dfci.harvard.edu/MACS/. The 

following parameters were used: 

--shiftsize=95 

--nomodel True 

For applying MACS to histone modification data sets, we used the additional 

parameter --nolambda as recommended by [166].  

3) SiSSRs v 1.4 was downloaded from http://sissrs.rajajothi.com/. The following 

parameters were used: 

-F 190 

4) SICER v 1.1 was downloaded from http://home.gwu.edu/~wpeng/Software.htm. 

The following parameters were used: 

Gap size = 2 (H3K4me3), 5 (H3K36me3) and 10 (H3K27me3) 

E-value = 100 

Window size = 200 

5) RSEG was downloaded from http://smithlab.usc.edu/histone/rseg/. The following 

parameters were used: 

-i 20 

http://vancouvershortr.sourceforge.net/
http://liulab.dfci.harvard.edu/MACS/
http://sissrs.rajajothi.com/
http://home.gwu.edu/~wpeng/Software.htm
http://smithlab.usc.edu/histone/rseg/
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For the transcription factor binding site detection all methods were configured to have 

p-value < 0.001 in single sample experiments and p < 0.01 in the presence of matched 

controls. For uniformity, we set genome size = 3,107,000,000 bp for the GABP and 

NRSF (hg18) data sets and 2,725,000,000 bp for murine embryonic fibroblast (mm8) 

histone modification data. Recommended values were used for all other parameters. 

Gene annotation and functional analysis of differentially marked 

regions (DMRs) 

RefSeq and Ensembl gene annotations for the chicken genome (galGal3) were 

downloaded from the UCSC genome browser [167]. Gene promoters were searched 

for overlaps with DMRs and all gene names were converted to their Ensembl IDs 

using the biomart data retrieval system from Ensembl [168, 169]. This unified list of 

gene IDs was then analyzed for functional annotation enrichment with DAVID [170]. 

Default parameters were used for DAVID analyses. 

Software implementation 

Data pre-processing, Monte Carlo estimation of wavelet coefficient thresholds and 

peak-calling modules of WaveSeq were implemented in Matlab. FDR estimation in 

the presence and absence of control was performed in R. We are currently working on 

a unified R implementation of the software for public release. WaveSeq can be run on 

a standard desktop computer with at least 3 GB of RAM and a 2 GHz processor. The 

software can be used on any species with a sequenced genome. WaveSeq has been 

tested on Windows, UNIX and MAC OSX and available from the authors on request. 
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Results 

Wavelets for ChIP-Seq analysis 

The wavelet transform has great utility in data compression and pattern finding, the 

latter involving the choice of a suitable ‘mother’ wavelet ψ to best capture underlying 

patterns in the data. An example of a mother wavelet is the Morlet wavelet, defined as 

the product of a Gaussian envelope and a cosine wave: 
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where, t is the genomic location and 0  is the non-dimensional frequency (Figure 

2.1A). The wavelet transform may be either continuous or discrete – the continuous 

wavelet transform (CWT) is highly redundant and resistant to data loss while the 

discrete transform is less computationally intensive but more prone to information 

loss. The peaks observed in ChIP-Seq data are relatively smooth, making it better 
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where, (*) indicates the complex conjugate, s is the wavelet scale and t’ denotes 

translation along the genome. The wavelet scale s is representative of the size of the 

scaled wavelet and the mathematical formulation of the transform implies an inverse 

relationship, i.e. the higher the scale, the smaller the scaled wavelet. The wavelet 

decomposition produces a series of ‘wavelet coefficients’, real numbers that indicate 
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the correlation between the mother wavelet and the data, which may be either positive 

or negative. This is also a multi-scale decomposition, i.e. the coefficients at different 

scales represent the correlation of scaled versions of the wavelet to the signal. 

Therefore, smaller localized patterns are likely to be captured by higher scales of the 

transform and vice-versa. 

A natural way of quantifying the wavelet decomposition is the wavelet power 

spectrum, defined as the square of the wavelet coefficients, and synonymous with the 

‘energy density’. A contour plot of the wavelet power spectrum for ChIP-Seq data 

revealed hot-spots that correlated with peaks (Figures 2.1 B, C). This suggested that 

wavelets could be used to detect enrichment regions in this type of data and inspired 

us to use this approach for ChIP-Seq analysis. 

WaveSeq overview 

We introduce WaveSeq, a novel method of ChIP-Seq peak detection that utilizes the 

wavelet power spectrum (Figure 2.1 D). Sequence reads are first ‘shifted’ to represent 

the center of DNA fragments obtained from the ChIP experiment. The genome is 

divided into non-overlapping windows and read counts for each window calculated. 

The summary read counts are the primary input data format used by WaveSeq. 

Typical analyses can be of two types: (i) single sample experiment – without control, 

and (ii) two-sample experiment – with matched control samples.  
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Figure 2.1. WaveSeq utilizes the continuous wavelet power spectrum to detect 

peaks in ChIP-Seq data.  
(a)  A scaled representation of the morlet wavelet. (b & c) H3K4me3 data and a 

contour plot of the associated wavelet power spectrum shows hot spots that correlate 

with ChIP enrichments. The ChIP-Seq data represents the 15,756,800 – 15,758,200 

bp region of the mouse chromosome 1 from the MEF H3K4me3 data set.  (d) A 

schematic of the WaveSeq analysis pipeline. The workflow consists of two major 

modules: (i) the Monte Carlo background estimation step and (ii) significance 

estimation from randomized algorithm using the peak length distribution (one-sample 

experiment) or an exact binomial test (two-sample experiment). 

For both analyses, we first employ a Monte Carlo sampling technique for modeling 

the data [171]. N random samples are drawn from the ChIP-Seq data and the wavelet 

power calculated for each instance. A slice of the power spectrum at a fixed point of 

each random sample is used to generate an empirical distribution of wavelet powers 

for each scale. This distribution enables us to obtain a suitable significance threshold, 

which is applied to the wavelet transform of read count profiles to detect windows 
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having significant enrichment. Our thresholding procedure is, therefore, dependent on 

the wavelet fit to the data at a particular position and distinct from a simple read-count 

cutoff.

 

Figure 2.2. Peak length distributions of tested methods when applied to histone 

modification data.  
A comparison of peak length distributions for the top 15000 peaks called from the (a) 

H3K4me3, (b) H3K36me3 and (c) H3K27me3 data. (a) SICER and MACS have 

similar peak lengths in the H3K4me3 data, followed by WaveSeq. RSEG peak 

lengths are almost uniformly distributed between 0 and 20 kb. (b) MACS and RSEG 

called relatively short peaks for H3K36me3 while SICER and WaveSeq detected 

greater peak lengths. (c) WaveSeq called the longest peaks when applied to 

H3K27me3 data followed by SICER and RSEG. 

To further account for broad peaks seen in histone modification data, our algorithm 

implements a ‘gap’ parameter, g. We define a ‘gap’ as a window having a non-

significant wavelet power (non-significant window); for example, if g is set to two, 

peaks separated by at most two non-significant windows are aggregated together. 

This parameter is necessary for two reasons: (i) chromatin enrichments, especially 

broad marks, such as, H3K36me3 and H3K27me3, can be discontinuous and (ii) 

wavelets are very sensitive to boundary events and local fluctuations. A strong 

enrichment region interspersed with areas of low read counts could, therefore, result 

in multiple peak calls and the gap parameter of WaveSeq helps to reduce the effect of 

this scenario. This parameter is similar in principle to that used in SICER, but with 
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one major distinction. SICER also imposes an upper limit on allowable non-

significant windows within a significant peak. While this results in an elegant closed 

form expression for estimating statistical significance from the score distribution, in 

practice, this results in smaller peak lengths for the same value of g (Figure 2.2). 

One-sample experiment 

The estimation of statistical significance is crucial to ChIP-Seq analysis approaches to 

filter the results of genome-wide studies, particularly in the absence of a control. For 

a single-sample experiment, WaveSeq utilizes the length distribution of putative 

peaks to estimate the likelihood of observing a peak with a given number of reads. 

A large number of peaks, P, are sampled with replacement from the length 

distribution of putative peaks, and their positions on the genome randomized. The 

number of reads within each randomized peak is counted, generating the empirical 

distribution, F(R), for the number of peaks having a given read count R. The 

probability of observing a peak with read count r is: 
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The p-values are subsequently corrected for multiple-testing using the Benjamini-

Hochberg FDR procedure [172]. 

Most ChIP-Seq experiments produce sparse enrichment regions covering a small 

fraction of the genome and therefore, only few of the randomized peak locations 
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would be likely to overlap significantly enriched regions. However, this is not always 

the case – histone modifications such as, H3K27me3, mark large regions for silencing 

and could occupy a significantly greater genomic fraction. In the latter case, a higher 

proportion of randomized peaks would potentially overlap ‘true’ enrichment regions – 

but this is a fair reflection of a relatively low SNR data set where the boundaries 

between true signal and background are blurred. 

Thus, it is important to note that in predicting areas of true enrichment in ChIP-Seq 

data, we do not make any assumptions about the read distribution, instead relying on 

Monte Carlo sampling techniques – first, to construct the empirical distribution of 

wavelet coefficients and second, to assign significance scores to predicted enriched 

regions using a randomized algorithm constrained by the peak length distribution. In 

addition, the association of statistical significance of a peak with its read count 

provides a natural and interpretable criterion for thresholding genome-wide analyses 

where the number of reads mapping to a region is often indicative of the presence of a 

true biological signal. 

Two-sample experiment 

If a ChIP-Seq experiment has matched controls, WaveSeq uses the binomial 

distribution to compare read counts between normalized test and control samples. For 

each putative peak, reads in the corresponding region of the control data (C) are 

counted and compared to the test sample (T) using a two-sided exact binomial test. A 

putative peak can be considered to be a Bernoulli experiment with t = (C + T) trials 

wherein the number of reads in the test sample T is the number of successes. The 

proportion of successes, p = T/(C+T) and failures, q = 1 – p. In this case, the 
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probability of observing at least T successes in t trials under the null hypothesis, H0: p 

= 0.5, is given by the expression, 
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The p-values for the list of putative peaks are subsequently corrected for multiple 

testing as above [172]. 

Choice of parameters 

Systematic tuning of the WaveSeq peak-calling algorithm was carried out. We 

applied several different wavelet mother functions to ChIP-Seq data e.g. Morlet, 

Coiflets 1 and 2 and Mexican hat, to find the wavelets most suited to the data sets. All 

wavelets performed comparably when applied to punctate ChIP-Seq data sets but the 

morlet wavelet outperformed the others in detecting enrichment regions upto ~10kb 

while the Mexican hat wavelet was the most effective in calling very broad peaks 

(e.g. H3K27me3). A comparison of the energies at the various scales of the wavelet 

transform showed a higher density in a smaller band for the morlet wavelet and a 

more uniform distribution for the Mexican hat wavelet (Figure 2.3). The energy 

compression characteristic of the morlet wavelet represents a higher discriminative 

power over a smaller subset of scales and explains its performance for relatively 

strong enrichment patterns. The diffuse distribution of Mexican hat, however, is a 

better fit for the dispersed H3K27me3 marks as evidenced by its greater sensitivity 

for this dataset. Therefore, we used the morlet wavelet for GABP, NRSF, H3K4me3 

and H3K36me3 data and the Mexican hat wavelet for the H3K27me3 data.  
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Figure 2.3. Comparison of wavelet energies for different wavelets.  
A comparison of wavelet energies shows a higher density in a smaller band of scales 

for the Morlet wavelet as shown by the arrow-head. Other wavelets have more 

broadly distributed energy densities. Bursa H3K4me3 data from chromosome 2 of the 

S.inf group was used to obtain the above. 

We assessed the effect of the number of samples (N) in the Monte Carlo threshold 

estimation step. The wavelet coefficient thresholds quickly reached saturation for all 

scales (Figure 2.4). Therefore, we chose N = 5000 for optimal accuracy and speed. 

The sampling was performed chromosome-by-chromosome. There was marked 

variation in wavelet coefficient thresholds for different chromosomes at a specified p-

value (Figure 2.5). There are two possible reasons for this: the number of enrichments 

on a specific chromosome and the chromosome size. The first arises out of the natural 

variation of different data sets and the latter out of the particular choice of the length 

and number of samples. In either case, this variation represents important information 

about the data and we account for it in our algorithm as follows: The mean and 

standard deviation of wavelet coefficient thresholds for each scale across the 

chromosomes were calculated and wavelet coefficients from the wavelet transform of 
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the data were considered significant at the specified p-value if it was greater than the 

mean + standard deviation. The p-value for a significant wavelet power at a window 

was chosen to be pthres = 0.2 for punctate data sets (transcription factors and 

H3K4me3) and pthres = 0.4 for broad marks (H3K36me3 and H3K27me3).  

 

Figure 2.4. Wavelet coefficient thresholds reach saturation quickly. Morlet 

wavelet thresholds at p < 0.001 of H3K4me3 data from chromosome 1 in the chicken 

bursal samples (S.inf group, window size = 200 bp). 
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Figure 2.5. Comparison of wavelet coefficient thresholds for different 

chromosomes (p = 0.2). A variation is observed in the wavelet coefficient thresholds 

for different chromosomes of the chicken genome. Various factors may be 

responsible for this observation ranging from different chromosome lengths, the 

number of enrichment regions and the choices of size and number of samples. Bursa 

H3K4me3 data from the S.inf group was used for the above plot. 

 

Wavelet coefficient thresholds were larger for greater sample sizes but the effect was 

more pronounced for smaller chromosomes (Figure 2.6). This was possibly due to 

oversampling effects as the increase in wavelet coefficients was inversely correlated 

with chromosome size. We found a strong negative power law correlation between 

chromosome size and wavelet coefficient thresholds for sample length 2
15

 (R
2
 = 

0.7765, Figure 2.7) which was absent for smaller samples (2
12

: R
2
 = 0.0299; 2

10
: R

2
 = 

0.1198). Greater sample lengths, therefore, are biased by chromosome size that could 

lead to large variations in coefficient thresholds. A smaller sample, on the other hand, 

could lead to lower thresholds and possibly more false positives. These two effects 

appeared to be reduced at a sample size of 2
12

 and hence we chose this for subsequent 
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experiments. To further minimize the effect of chromosome size, we only considered 

chromosomes that have at least twice the length of the sample. 

 

Figure 2.6. Effect of sample length on wavelet coefficient thresholds (p = 0.2).  
At higher sample sizes, wavelet coefficient thresholds are larger but the effect is only 

noticeable for the smaller chromosomes (13-20) of the chicken genome and is 

possibly due to oversampling. There is little difference between sample size of 2
10

 

and 2
12

. The error bars depict the standard errors over 9 scales (4-12) for sample 

lengths 2
12

 and 2
15

 and 7 scales (4-10) for sample length 2
10

. The data corresponds to 

bursa H3K4me3 from the S.inf group. 

 

The minimum scale considered for peak calling was s = 4, since lower scales are 

representative of broader patterns that are more likely to be background noise. We 

also noticed that a significant ChIP-Seq peak was significant at several scales 

simultaneously (See Figures 2.1 B, C) while localized peaks had fewer significant 

scales. Therefore, to further eliminate spurious peak calls due to local fluctuations, a 

window was considered significant only if there were at least 2 significant scales for 

the window. For estimating FDR in one-sample analyses, we used number of 

simulated peaks, P = 10
6
.  
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Figure 2.7. Correlation of chromosome size and wavelet coefficient thresholds. 

Large sample lengths have a strong negative correlation with chromosome size which 

follows a power law distribution. This correlation is absent for smaller samples. The 

dotted lines represent power law regression lines for different sample lengths. The 

data corresponds to bursa H3K4me3 from the S.inf group. 

 

Figure 2.8. The effect of increasing gap sizes on read coverage of top peaks.  
The fraction of reads covered by the top N peaks saturates at larger gap sizes. This 

saturation is almost immediate for H3K4me3, intermediate for H3K36me3 and more 

gradual for H3K27me3. In the case of H3K4me3, N = 20000, while for H3K36me3 

and H3K27me3, N = 40000. The window size is 200 bp. 
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The choice of a suitable gap size is dependent upon multiple factors including histone 

mark characteristics and sequencing depth. The read coverage fractions for different 

histone marks appear to saturate with increasing gap sizes (Figure 2.8). However, the 

saturation rate is highly variable between marks - H3K4me3 shows little change with 

increasing gap sizes, H3K27me3 exhibits a gradual increase while the pattern for 

H3K36me3 is intermediate between the two, in keeping with the intermediate 

characteristics of the mark. The above comparison shows that a gap size of 0 to 400 

bp (0-2 200 bp windows) would be suitable for the H3K4me3 data set while larger 

gap sizes may be more appropriate for the broader histone marks e.g. g = 5 for 

H3K36me3 and g = 10 for H3K27me3. A similar comparison of read coverage 

saturation rates can, therefore, help the user choose a gap size appropriate for a 

particular data set. 

Comparison with other methods using published data 

Recent studies have compared the performance of several published ChIP-Seq peak 

calling algorithms [104, 105]. From the list of methods tested in the above studies, we 

chose five commonly used tools: FindPeaks, MACS and SiSSRs [64], which were 

developed primarily for detecting transcription factor binding sites (TF-methods) 

along with SICER and RSEG [100] which were specifically aimed at chromatin 

enrichment data (CH-methods). A variety of ChIP-Seq data sets were selected to 

compare the performance of WaveSeq with the above methods including GABP, 

NRSF [98], H3K4me3, H3K27me3, H3K36me3 [69] and a synthetic spike-in data set 

[107].  
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Figure 2.9. WaveSeq has high sensitivity and precision for punctate data sets. 
(a & b) Plots of peak ranks against the fraction of validated sites detected by 

WaveSeq, FindPeaks, MACS and SiSSRs for the (a) GABP and (b) NRSF data sets. 

(c) A plot of the fraction of true positives (precision) against the fraction of recovered 

peaks (recall) for the synthetic spike-in data set. (d & e) Sensitivity plots for the (d) 

GABP and (e) NRSF data sets shows that WaveSeq has high sensitivity for these data 

sets even in the absence of control.  

 

WaveSeq has high sensitivity 

Several GABP and NRSF binding sites have been validated with qPCR [105] 

allowing us to compare the sensitivities of the TF-methods with that of WaveSeq 

using the corresponding ChIP-Seq data. The peaks called by each TF-method were 

ranked by significance scores output by the method and tested for overlap with the 

validated sites. Subsequently, we plotted the peak rank against the fraction of 

validated sites detected by each algorithm (Figures 2.9 A, B). 

WaveSeq had the highest sensitivity among tested methods for both data sets. In the 

case of GABP, WaveSeq had the best performance closely followed by MACS which 
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had slightly lower recall. SiSSRs came in third but still significantly outperformed 

FindPeaks which had low sensitivity for this data set. On the other hand, all the 

methods had similar performance on the NRSF data. WaveSeq showed marginally 

higher sensitivity with MACS, FindPeaks and SiSSRs performing comparably. A 

further comparison of peak lengths showed that MACS, FindPeaks and WaveSeq had 

similar peak length distributions while a majority of SiSSRs peaks were very small 

(Figure 2.10).  

 

Figure 2.10. WaveSeq has comparable peak lengths to MACS and FindPeaks in 

punctate data sets.  
A comparison of peak length densities of the top 20000 peaks for the (a) GABP and 

(b) NRSF data sets for WaveSeq, MACS, FindPeaks and SiSSRs. 

WaveSeq has good precision 

It is difficult to evaluate the specificity of ChIP-Seq peak-calling algorithms due to 

the unavailability of adequate ‘true-negative’ binding sites for systematic analysis. 

However, one can estimate the false positive rates using synthetic data sets which 

contain simulated binding events. For this analysis we utilized a published synthetic 

data set generated from human input control data that was ‘spiked’ with simulated 
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reads at fixed locations [107]. We applied WaveSeq and the TF-methods to this data 

set and plotted the proportion of recovered peaks (recall) against the fraction of true 

positives (precision) (Figure 2.9 C). 

MACS had the best combination of precision (0.724) and recall (0.799), closely 

followed by WaveSeq which had slightly better precision (0.728) but lower recall 

(0.716). However, FindPeaks had a very high number of false positives (precision = 

0.06) in this test while SiSSRs failed to detect any peaks.  

WaveSeq performs well even without a control data set 

The data from a matched input control sample is considered to improve the power of 

a ChIP-Seq experiment by reducing systematic biases [77]. However, matching input 

controls are often not available and negative controls such as IgG that bind in a non-

specific manner, can give rise to additional sources of error. Moreover, it is not clear 

if the use of input alone can offset the effect of various confounding factors such as 

mappability and G/C content. Therefore, it is important to assess the performance of 

ChIP-Seq peak callers in the absence of a matched control. 

We compared the sensitivity of TF-methods and WaveSeq using the GABP and 

NRSF data sets as above, but without the use of control data (Figures 2.9 D, E). 

WaveSeq again had high sensitivity for both data sets, almost identical to FindPeaks 

which performed much better on these data sets without control. SiSSRs and MACS 

had mixed results; the former had similar performance to FindPeaks and WaveSeq for 

the NRSF data set, but lower sensitivity for the GABP data, while the situation was 
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reversed for MACS. Thus, WaveSeq has high accuracy for punctate peaks and was 

the only method that performed consistently well for the tested data sets. 

WaveSeq improves detection of broad histone modification peaks 

A lack of adequate validated sites for histone modification data makes it difficult to 

assess the performance of analysis methods on these data sets. However, we can 

argue that if multiple methods of analysis based on different detection algorithms 

predicted significant enrichment in a particular region, it was more likely that a true 

region of enrichment existed in that region. Indeed, studies have shown that a smaller 

number of peaks generated by certain methods were largely contained within larger 

peak lists called by other methods, indicating a common set of peaks detected by 

most algorithms [105]. With the above intuition we ran the CH-methods on the MEF 

histone modification data sets. We included MACS in the latter as it has been used for 

broad peak calling [166], even though it was originally developed for the analysis of 

transcription factor ChIP-Seq data. The top peaks (15000 for H3K4me3 and 20000 

for H3K36me3 and H3K27me3) called by each of the above programs were 

compared and regions detected by at least two peak-callers were defined as putative 

‘true positives’. When calculating putative true positive peaks, we did not enforce any 

restrictions on the overlap, i.e. if there was even a single bp overlap between two peak 

calls, these regions were merged together (union) into a putative positive peak. This is 

because peak-calling algorithms will sometimes call only part of a putative histone 

modification enrichment as a peak, and merging adjacent peak-calls is likely to 

produce a better reflection of enrichment patterns. 
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Figure 2.11. WaveSeq improves detection of histone modification peaks.  

(a, b & c) Plots of peak ranks against the fraction of putative ‘true positive’ sites 

detected by WaveSeq, SICER, RSEG and MACS for the (a) H3K4me3, (b) 

H3K36me3 and (c) H3K27me3 data sets. (d) A plot of the fraction of true positives 

(precision) from the top 10000 peaks detected by the above four methods in the MEF 

histone modification data sets.  

 

The above procedure yielded 8592, 7522 and 5463 peaks for the H3K4me3, 

H3K36me3 and H3K27me3 data sets, respectively. These peaks were compared with 

the peak lists from all methods (SICER, RSEG, MACS and WaveSeq) and relative 

performance was assessed by comparing the fraction of recovered peaks against peak 

ranks (Figures 2.310 A-C). For punctate H3K4me3 data, all methods apart from 

RSEG performed well, with near-identical recall rates. WaveSeq had the best 

sensitivity on the H3K36me3 and H3K27me3 data sets with SICER coming in 

second. MACS showed lower recall rates for these two data sets while RSEG 
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detected the top peaks with good accuracy but was unable to detect any peaks in 

chromosomes 10-19. A fFurther, WaveSeq had the highest precision in all three data 

sets analysis of precision (Figure 2.310 D) showed that WaveSeq had the highest 

performance in all three data sets. 

Pair-wise comparisons between peaks detected by WaveSeq and those called by 

SICER and MACS showed a high degree of overlap (98-100%) across all the data 

sets. In the case of RSEG the overlap was lower (20-68%) but closer examination 

revealed that a majority of regions not called by WaveSeq, particularly in the 

H3K4me3 and H3K36me3 data sets, had low average read counts and were possibly 

false positives (Appendix II). WaveSeq also called larger peaks on average compared 

to SICER, particularly in the H3K27me3 and H3K4me3 data sets (Figure 2.2). 

However, RSEG detected very broad regions in both H3K27me3 and H3K4me3 data. 

Since this algorithm was developed with the express purpose of detecting dispersed 

chromatin domains, the above behavior is expected, although very long peaks in 

punctate ChIP-Seq data may not be desirable. Also, somewhat surprisingly, WaveSeq 

and SICER had greater average peak lengths compared to RSEG for the H3K36me3 

data. MACS, on the other hand, detected very small peaks in all the data sets, proving 

its general unsuitability for broad histone marks. 

Thus, WaveSeq once again showed the highest sensitivity of all tested methods across 

a variety of histone modification data sets. While there was little to choose between 

the different algorithms for the punctate high SNR H3K4me3 data, WaveSeq 

outperformed the other tested methods in the analysis of broad enrichment regions 

characteristic of broad marks such as H3K27me3 and H3K36me3. SICER comes in 
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second while MACS has low sensitivity for diffuse data. RSEG has good sensitivity 

for the strongest peaks but has low recall, failing to detect any peaks in chromosomes 

10-19. 

Analysis of complex histone modification data 

The bursa of Fabricius is a specialized immune organ that is the site of 

haematopoiesis and B cell development in chickens. This tissue is one of the first 

targets of Marek’s disease virus (MDV), a herpesvirus that induces T-cell lymphomas 

in susceptible birds. Genetically similar lines of chickens that show differential 

resistance to Marek’s disease (MD) have been developed and studied for decades, but 

the exact causes of the divergent response have not been found, although it is 

believed that epigenetic factors play an important role in determining the level of 

resistance of an individual. This is an interesting epigenetic model for human cancers 

as individuals having high genetic similarity exhibit natural resistance to a cancer-

causing agent. Moreover, this is a complex ChIP-Seq experiment representing studies 

in non-traditional systems that are becoming more prevalent with the plummeting 

costs of sequencing. To demonstrate the utility of WaveSeq in such an experimental 

scenario we used it to analyze H3K4me3 profiles in matched infected and control 

birds from inbred chicken lines having diverse responses to MD. 

WaveSeq detects differential H3K4me3 marks induced by virus infection 

We generated H3K4me3 ChIP-Seq data from inbred chicken lines – line 63 is highly 

resistant while line 72 is highly susceptible to MD – in matched infected and control 

groups. In the subsequent discussion, we refer to the resistant line 63 and susceptible 
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line 72 as R and S groups, respectively. We first analyzed the infected group with the 

non-infected group as control. The samples were then swapped to account for 

significant peaks in the control that were absent in the infected group. This is in 

contrast to traditional ChIP-Seq experiments where peaks detected in an input control 

represent false positives and are removed from subsequent analyses. Statistical 

significance for differentially marked regions (DMRs) was defined at a false 

discovery rate of 5% (FDR < 0.05). DMRs were compared across the control-

swapped comparisons and merged into a single non-redundant list. 

WaveSeq detected a comparable number of peaks in the two groups, with 25050 and 

27169 peaks in the R and S groups, respectively. The resistant line did not show any 

differential H3K4me3 marks at the predefined significance level. In contrast, there 

were 310 H3K4me3 DMRs in the susceptible line, all but five of which were more 

enriched in infected individuals. This confirmed the presence of dramatic differences 

in the epigenetic effects of MDV on the two lines, with a predominantly activating 

effect of the virus infection. 

Table 2.1. Functional annotation of genes having H3K4me3 DMRs 

Gene Ontology Term Count p-value FDR (%) 

GO:0002520: Immune system development 15 1.91 x 10
-8 

3.02 x 10
-5

 

GO:0030097: Hemopoiesis 14 2.16 x 10
-8 

3.41 x 10
-5

 

GO:0048534: Hemopoietic or lymphoid organ 

development 

14 8.76 x 10
-8 

1.38 x 10
-4

 

GO:0045580: Regulation of T cell differentiation 7 8.60 x 10
-7 

0.001359 

GO:0002521: Leukocyte differentiation 10 1.11 x 10
-6

 0.001747 

GO:0045582: Positive regulation of T cell differentiation 6 1.23 x 10
-6

 0.001951 

GO:0045321: Leukocyte activation 11 1.70 x 10
-6

 0.002693 

GO:0045619: Regulation of lymphocyte differentiation 7 2.39 x 10
-6

 0.003781 

GO:0002684: Positive regulation of immune system 

process 

10 2.73 x 10
-6

 0.004309 

GO:0045621: Positive regulation of lymphocyte 

differentiation 

6 3.33 x 10
-6

 0.005262 
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GO:0046649: Lymphocyte activation 10 4.70 x 10
-6

 0.007428 

GO:0050870: Positive regulation of T cell activation 8 5.53 x 10
-6

 0.008734 

GO:0001775: Cell activation 11 6.17 x 10
-6

 0.009752 

GO:0051251: Positive regulation of lymphocyte activation 8 8.08 x 10
-6

 0.012774 

GO:0002696: Positive regulation of leukocyte activation 8 1.16 x 10
-5

 0.018257 

GO:0050867: Positive regulation of cell activation 8 1.62 x 10
-5

 0.025558 

GO:0050863: Regulation of T cell activation 8 1.62 x 10
-5

 0.025558 

GO:0030098: Lymphocyte differentiation 8 1.90 x 10
-5

 0.030027 

GO:0051249: Regulation of lymphocyte activation 8 2.59 x 10
-5

 0.040908 

GO:0030217: T cell differentiation 7 2.76 x 10
-5

 0.04356 

GO:0002694: Regulation of leukocyte activation 8 4.00 x 10
-5

 0.063158 

GO:0045058: T cell selection 5 6.65 x 10
-5

 0.105094 

GO:0050865: Regulation of cell activation 8 6.80 x 10
-5

 0.107401 

GO:0002252: Immune effector process 6 1.38 x 10
-4

 0.218176 

GO:0033077: T cell differentiation in the thymus 5 2.30 x 10
-4

 0.362727 

GO:0042110: T cell activation 7 2.43 x 10
-4

 0.38295 

GO:0042981: Regulation of apoptosis 14 2.47 x 10
-4

 0.389793 

GO:0043067: Regulation of programmed cell death 14 2.98 x 10
-4

 0.469488 

GO:0010941: Regulation of cell death 14 3.12 x 10
-4

 0.491456 

GO:0033554: Cellular response to stress 12 4.00 x 10
-4

 0.629557 

GO:0045061: Thymic T cell selection 4 4.06 x 10
-4

 0.639966 

The top functional categories (FDR < 1%) enriched among genes having H3K4me3 

DMRs from DAVID shows a large number of immune-related functions. Count refers 

to the number of genes in the gene list annotated with the given GO ID. P-values 

were obtained from a modified Fisher exact test performed by DAVID which tests the 

enrichment of the corresponding functional category in the given gene list against the 

population (chicken genome). FDR correction was performed using the Benjamini-

Hochberg procedure [172].  
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Figure 2.12. Differentially marked regions detected by WaveSeq suggest 

increased B cell activation in susceptible chickens. 

Several genes involved in the B cell activation such as LYN (a), SYK (b), RAC2 (c), 

PTPRC (d), BLNK (e) and GRB2 (f) show increased levels of H3K4me3 in infected 

birds from the S group as shown by the arrowheads. In contrast, there are no 

significant changes in the R group. *** p < 0.001; **  p < 0.01; *  p < 0.05. S.inf = 

infected S group, S.ctl = control S group, R.inf = infected R group, R.ctl = control R 

group. 

 

Increased B cell activation in susceptible birds as a result of MD 

To investigate the functional implications of observed epigenetic differences, we 

searched for overlaps between H3K4me3 DMRs and gene promoters and were able to 

map 241 regions to 310 Ensembl genes (Appendix III). Functional annotation of these 

genes with DAVID [170] revealed significant enrichment of various immune-related 

functions, such as, hemopoeisis, positive regulation of lymphocyte activation, 

response to DNA damage stimulus and regulation of apoptosis (Table 2.1). Thus, 
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there appeared to be a significant activation of the immune system in infected birds of 

the S group, consistent with the observed response at the early cytolytic stage of the 

disease in susceptible birds.  

Several genes having H3K4me3 DMRs were involved in the PANTHER [173] B-cell 

signalling pathway (p = 1.3 x 10
-3

) such as LYN, SYK, GRB2, PTPRC, RAC2 and 

BLNK, indicative of increased B cell activation in the infected S group. The signalling 

molecules CD45, Lyn and Syk, gene products of PTPRC, LYN and SYK, respectively, 

are major players in the early stages of B cell antigen receptor signalling. These genes 

work together with BLNK and GRB2 to activate B cells via the NF-κB mediated 

pathway while BLNK and RAC2 may also activate B cells via the ERK, p38 or jun 

signalling cascades. H3K4me3 levels on all these genes were unchanged in the R 

group but were significantly higher in the infected S group after MDV infection 

(Figure 2.12). Three of these genes – LYN, SYK and RAC2 – had reported expression 

in bursal cells [174] which suggests that the tissue-specific activation of these genes 

in the bursa might lead to increased B cell activation in susceptible birds. 

MDV primarily targets B cells during early stages of the disease as these cells provide 

the first line of defence via the host humoral immune response. B cells surround the 

invading virus particles and have increased rates of infection and atrophy. The 

infection of B cells, in turn, induces the activation of CD4+ T cells which 

consequently become more vulnerable to virus infection [130]. The increase in B cell 

activation indicated by elevated levels of H3K4me3 on key genes involved in the 

pathway suggests the presence of an increased number of activated B cells in 

susceptible birds and a possible increase in the number of activated CD4+ T 
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lymphocytes. The larger population of cells vulnerable to infection by MDV at the 

early cytolytic stage of the disease in susceptible birds, could, therefore, result in 

increased levels of infection and higher mortality in the latter stages of the disease. 

Discussion  

The analysis of ChIP-Seq data poses several challenges including a diverse array of 

enrichment patterns, the lack of true biological controls and confounding factors such 

as sequencing depth, mappability and G/C content. In the presence of these sources of 

bias, it is important to have methods of analysis robust to various data characteristics 

that also preserve prediction accuracy. In response to these issues, we have developed 

a novel data-driven ChIP-Seq analysis algorithm named WaveSeq which is capable of 

detecting both punctate and diffuse enrichment regions and is free of distributional 

assumptions. WaveSeq utilizes non-parametric modeling of ChIP-Seq data using 

Monte Carlo sampling and a randomized algorithm to accurately estimate the 

empirical distribution of reads in the absence of a control. 

With the aid of a variety of public data sets we were able to demonstrate that 

WaveSeq has high accuracy and performs favourably in comparison with several 

published methods of analysis in detecting punctate and diffuse enrichment regions 

(Figure 2.13). WaveSeq also performed with comparable accuracy in the absence of 

control data. Previous studies have observed that the background signal of ChIP-Seq 

data is non-random [77] and the ability to distinguish regions of true signal from 

background could be potentially improved if this non-randomness is accounted for. 

The improved detection capacity exhibited by WaveSeq in the absence of a control 
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data set suggests that the non-parametric modeling approach is successful in 

capturing the data characteristics leading to higher prediction accuracy. 

 

Figure 2.13 WaveSeq detects a broad variety of enrichment regions with high 

accuracy. Examples of WaveSeq peak calls on MEF histone modification data. (a) 

WaveSeq detects H3K4me3 and H3K36me3 marks on the housekeeping gene Polm 

located on chromosome 11 and (b) a broad peak of H3K27me3 on the developmental 

transcription factor Cdx4 which is silenced in differentiated cell populations. 

The rapid advance of epigenetics and the advent of cost-effective next-generation 

sequencing technologies have led to complex experimental designs being employed 

to investigate various topics such as the epigenetics of disease response. WaveSeq is 

capable of being used in such an experimental setting and helps make relevant 

biological discoveries. We illustrate this by using our algorithm to analyze a complex 

H3K4me3 data set to investigate the differences in the epigenetic effects of MDV 

infection in inbred chicken lines having divergent responses to MD. WaveSeq detects 

the presence of H3K4me3 DMRs on key genes involved in the B cell activation 
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pathway suggesting the presence of increased numbers of activated B cells in infected 

individuals of the susceptible line. B cells are the primary targets of MDV at the early 

cytolytic stage of the disease and infection of these cells by the virus leads to 

activation of CD4+ T cells which are more vulnerable to infection than naive T cells. 

Consequently, an increase in the number of MDV-infected cells at this stage of the 

disease could translate to an increased viral load and a worse prognosis in susceptible 

birds at the latter stages of infection. Thus, epigenetic differences between the two 

lines could have a major impact on disease progression indicating that epigenetic 

marks play an important role in regulating disease response. 

The absence of distributional assumptions in WaveSeq makes it potentially applicable 

to other forms of next-generation sequencing data. The detection of the genomic 

locations of nucleosomes is one such area of current interest. A nucleosome 

positioning experiment typically consists of the sequencing of DNA fragments 

associated with mono-nucleosomes across the whole genome. The data consists of 

broad diffuse regions with peaks that repeat approximately every 147 bp, the length 

of DNA associated with single nucleosomes. Regions of active transcription have 

lower nucleosome enrichment while high nucleosome density is associated with silent 

heterochromatin. Thus, differences in nucleosome density between samples could be 

predictive of transcriptional differences. Sequencing data having such underlying 

patterns could be highly suited to the wavelet transform framework employed by 

WaveSeq. 

One of the primary drawbacks of WaveSeq is the relatively high number of peak calls 

for low SNR data such as H3K27me3, which is an unfortunate side-effect of the 
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sensitivity of the algorithm. However, since peak calls are ranked by FDR, a more 

stringent criterion can be used to circumvent this issue. Moreover, increased 

sequencing depth significantly improves discriminative power and is highly 

recommended particularly for data having diffuse enrichments. 

Conclusions  

ChIP-Seq experiments having a wide variety of enrichment patterns and a lack of true 

biological controls pose significant challenges for analysis and interpretation. 

WaveSeq is a highly sensitive, data-driven method capable of detecting significantly 

enriched regions in data having diverse characteristics. WaveSeq can detect both 

punctate and diffuse regions with a high degree of accuracy even in low SNR data 

sets. Moreover, it performs with comparable accuracy in the absence of control data. 

WaveSeq is suited for application in complex experimental scenarios, helping make 

biologically relevant functional discoveries and compares favourably with existing 

methods of analysis over a broad variety of data types. 
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3. Marek’s Disease Virus Infection Induces Widespread 

Differential Chromatin Marks in Inbred Chicken Lines 

Abstract 

Marek’s disease (MD) is a neoplastic disease in chickens caused by the MD virus 

(MDV). Successful vaccine development against MD has resulted in increased 

virulence of MDV and the understanding of genetic resistance to the disease is, 

therefore, crucial to long-term control strategies. Also, epigenetic factors are believed 

to be one of the major determinants of disease response.  

Here, we carried out comprehensive analyses of the epigenetic landscape induced by 

MDV, utilizing genome-wide histone H3 lysine 4 and lysine 27 trimethylation maps 

from chicken lines with varying resistance to MD. Differential chromatin marks were 

observed on genes previously implicated in the disease such as MX1 and CTLA-4 and 

also on genes reported in other cancers including IGF2BP1 and GAL. We detected 

bivalent domains on immune-related transcriptional regulators BCL6, CITED2 and 

EGR1, which underwent dynamic changes in both lines as a result of MDV infection. 

In addition, putative roles for GAL in the mechanism of MD progression were 

revealed.  

Our results confirm the presence of widespread epigenetic differences induced by 

MD in chicken lines with different levels of genetic resistance. A majority of 

observed epigenetic changes were indicative of increased levels of viral infection in 

the susceptible line symptomatic of lowered immunocompetence in these birds 
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caused by early cytolytic infection. The GAL system that has known anti-proliferative 

effects in other cancers is also revealed to be potentially involved in MD progression. 

Our study provides further insight into the mechanisms of MD progression while 

revealing a complex landscape of epigenetic regulatory mechanisms that varies 

depending on host factors. 

Introduction 

Rapid advances in epigenetics have led to the discovery of complex mechanisms of 

gene regulation involving phenomena such as DNA methylation and chromatin 

modifications. Methylation of particular histone residues has been found to correlate 

with specific and often opposing cellular functions, e.g. trimethylation of histone H3 

lysine 4 (H3K4me3) is associated with transcriptional start sites (TSSs) of active 

genes while trimethylation of histone H3 lysine 27 (H3K27me3) is found to mark 

broad genomic regions for repression. Recent studies have also suggested that 

characteristic combinations of histone modifications or ‘chromatin states’ define 

functional elements of the genome and determine their contribution to transcriptional 

regulation [175-177]. Moreover, the epigenetic state of host genes can be affected by 

viral infection leading to tumors in humans [178-180]. Thus, epigenetics constitute a 

dynamic regulatory framework linking genotypes with environmental factors that 

could play a major role in differential disease responses among individuals having 

high genetic similarity. 

Marek’s disease (MD) is a highly contagious disease caused by an oncogenic α-

herpesvirus MD virus (MDV) and characterized by T-cell lymphomas in chickens 

[123]. Major losses to the poultry industry as a result of MD have largely been 
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averted due to the success of various vaccination strategies which, remarkably, is also 

the first instance of the successful control of a natural cancer-causing agent using 

vaccines [121, 181, 182]. However, the virulence of the virus may have progressively 

increased as a consequence of vaccine development [183-185]. Several reported 

instances of vaccine breaks or reduced efficacy of vaccination, therefore, underlines 

the importance of investigating resistance to the disease as a long-term strategy to 

control MDV.  

Natural resistance to MDV can be divided into two categories: major 

histocompatibility complex (MHC)-associated resistance, wherein different MHC 

haplotypes at the B blood group locus confer varying levels of resistance and non-

MHC associated resistance in which birds having the same MHC haplotype exhibit 

vastly different responses to MDV infection. Inbred lines 63 and 72 developed at the 

Avian Disease and Oncology Laboratory (ADOL, East Lansing, MI) that we used in 

this study, fall into the latter category. These lines share a high degree of genetic 

similarity but have divergent responses to MDV infection completely independent of 

the MHC. Several studies have attempted to pinpoint factors responsible for 

conferring resistance [186-188], but confounding factors, such as, tissue types, virus 

strains and ages of birds have made it difficult to find a consensus. Multiple risk 

elements are possibly at play in this complex disease, and increased resistance or 

susceptibility is likely to be produced by a combination of such factors. In this study, 

we take a closer look at epigenetic factors behind different responses to MD with a 

view to a deeper understanding of the broader genomic impact of MDV infection. 
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We utilized the above population of inbred chickens – line 63 is highly resistant to 

MD, while line 72 is highly susceptible – and compared the epigenetic effects of MD. 

Genome-wide maps of H3K4me3 and H3K27me3 in thymus tissues of birds from 

these chicken lines at the latent stage of MDV infection were generated. We carried 

out systematic analyses to find differential chromatin marks induced by MDV 

infection. We also investigated co-localization patterns of the two chromatin 

modifications to detect putative bivalent domains and the effect of MDV on such 

domains. The results of our study confirm that Marek’s disease has far-reaching 

effects on the epigenetic landscape of chicken lines with diverse responses to the 

virus and, thus, furthers our understanding of this complex disease. 

Methods 

Animals and Viruses 

Two specific-pathogen-free inbred lines of White Leghorn either resistant (63) or 

susceptible (72) to MD were hatched, reared and maintained in Avian Disease and 

Oncology Laboratory (ADOL, Michigan, USDA). Four chickens from each line were 

injected intra-abdominally with a partially attenuated very virulent plus strain of 

MDV (648A passage 40) at 5 days after hatch with a viral dosage of 500 plaque-

forming units (PFU). Infected and control chickens from both lines (n = 4) were 

terminated at 10dpi to collect thymus tissues. All procedures followed the standard 

animal ethics and use guidelines of ADOL. 
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Quantification of MDV loads in Thymus 

The MDV gene ICP4 was used for quantification of viral genomic DNA in thymus as 

previously described [189]. Quantitative PCR was performed by using 100 ng/μl of 

genomic DNA on the iCycler iQ PCR system (Bio-Rad, USA) and QuantiTect SYBR 

Green PCR Kit (Qiagen, USA) (Figure 3.1). The relative MDV loads were 

determined by normalizing to a single-copy gene Vim (vimentin) [190]. The primers 

for Vim are as follows: Forward: 5’-CAGCCACAGAGTAGGGTAGTC-3’; Reverse: 

5’-GAATAGGGAAGAACAGGAAAT-3’. 

 

Figure 3.1. Quantification of viral loads in the MDV-challenge experiment using 

quantitative RT-PCR. The relative virus load is calculated by quantifying viral ICP4 

normalized to the single-copy Vim gene (mean ± SEM, n = 4). (a) Only infected birds 

from the two lines exhibit measurable virus loads, with (b) the susceptible line 72 

having a significantly higher number of virus particles (p < 0.001). 

Chromatin Immunoprecipitation and Illumina Sequencing 

Chromatin immunoprecipitation (ChIP) was carried out using thymus samples from 

MDV infected and controls birds [191]. About 30 mg thymus samples from three 

individuals were cut into small pieces (1 mm
3
) and digested with MNase to obtain 

mononucleosomes. PNK and Klenow enzymes (NBE, Ipswich, MA, USA) were used 

to repair the ChIP DNA ends pulled down by the specific antibody. A 3′ adenine was 

then added using Taq polymerase and a pair of Solexa adaptors (Illumina, USA) 

A B

A 
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ligated to the repaired ends. Seventeen cycles of PCR was performed on ChIP DNA 

using the adaptor primers and fragments with a length of about 190 bp 

(mononucleosome + adaptors) were isolated from agarose gel. Subsequently, cluster 

generation and ChIP-sequencing (ChIP-Seq) using the purified DNA was performed 

on the Solexa 1G Genome Analyzer (Illumina, USA) following manufacturer 

protocols. The antibodies used and the total number of reads obtained for each sample 

is listed in Appendix IV. 

Read Mapping and Summary Counts 

Sequence reads obtained from the Illumina 1G Genome Analyzer were aligned to the 

May 2006 version of the chicken genome (galGal3) using Maq version 0.7.1 [78]. 

Default alignment policies of Maq were enforced: a valid alignment could have a 

maximum of two mismatches and if a read aligned equally well to multiple places in 

the genome, one was chosen at random. If multiple reads mapped to the same 

genomic location only one was kept to avoid amplification bias. Summary read 

counts were calculated using non-overlapping windows of 200 bp for visualization 

and normalized to per million mapped reads in each sample for the purpose of 

comparisons. 

Identification of Significantly Enriched Regions (SERs) 

Summarized read counts were subjected to peak calling with SICER [101]. The 

source code was modified to include support for the chicken genome. Fragment 

length was specified to be 190. A window size of 200 bp and gap size of 400 bp was 

used for the analysis. The E-value for estimating significant peaks was set to 100. For 
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the purposes of comparing different samples, SERs found in similar genomic regions 

of different samples were merged to obtain a consolidated list as follows: SERs from 

one sample were used to initialize the list. For each such region M, we searched for 

overlapping SERs in the next sample. In the case of an overlap between M and a 

significant region, S, the merged region was updated to include both M and S. This 

procedure was iterated over all samples to obtain a consolidated list of merged SERs. 

Gene Annotation and Genomic Distribution of SERs 

RefSeq and Ensembl gene annotations were downloaded from UCSC genome 

browser [167]. As there were only 4306 RefSeq genes in the database, we included 

Ensembl genes in our analysis to improve genome-wide coverage. There were 17858 

annotated genes in the Ensembl database, which include validated and predicted 

genes. Redundancies between the databases were listed and accounted for, yielding a 

non-redundant list of 18198 genes with 4306 RefSeq genes and 13892 Ensembl 

genes. We then searched for overlaps between merged SERs and the non-redundant 

list of annotated genes. For H3K4me3, an SER was annotated with a gene if it 

overlapped the TSS region of the gene whereas in the case of H3K27me3, a valid 

overlap constituted an SER overlapping the gene body. To calculate the genomic 

distribution we counted all SERs having an overlap with one of the following regions: 

promoter (TSS ± 1 kb), exons, introns, 5’ UTR and 3’ UTR. 

Histone Modification Profiles and Differential Chromatin Marks 

Genes were divided into 10 sets based on their absolute expression and representative 

sets corresponding to high, medium, low and no expression were chosen for 



 

 96 

 

visualization. We defined the gene body as the region between the transcription start 

site (TSS) and the transcription termination site (TTS). Histone modification profiles 

surrounding the gene body were calculated in 3 distinct regions: 5000 bp upstream of 

the 5’ end, gene body and 5000 bp downstream of the 3’ end of the gene. For reads 

falling within the gene body, read counts were obtained in bins 5% of the gene length 

while 1000 bp windows were used for the 5’ and 3’ flanking regions. The read counts 

in all cases were normalized to the total number of genes in the categories and total 

number of reads in the sample. We also compared gene expression to histone 

modification levels by plotting normalized microarray data (Zhang, H. unpublished 

data) against reads mapping to (i) TSS ± 500 bp and (ii) the gene body for each gene. 

Reads mapping to merged SERs were tested for epigenetic changes induced by MDV 

infection in lines 63 and 72 using DESeq [119]. We used the method ‘blind’ for 

variance estimation and p-values were corrected for multiple testing using the 

Benjamini-Hochberg FDR procedure [172]. Statistical significance was defined using 

a false discovery rate (FDR) threshold of 0.4. 

Validation of ChIP, ChIP-Seq and Gene Transcription by Q-PCR 

Quantitative real-time RT-PCR was used to validate the quality of the ChIP and gene 

transcript levels on the iCycler iQ PCR system (Bio-Rad, Hercules, CA, USA). The 

real-time RT-PCR reactions were performed with a QuantiTect SYBR Green PCR 

Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. An 

online primer system (http://frodo.wi.mit.edu/primer3/) was used to design the 

http://frodo.wi.mit.edu/primer3/
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primers and four biological and four technical replicates were performed. The primer 

sequences are shown in Appendix V. 

Data Access 

Raw and processed ChIP-Seq data discussed in this manuscript were deposited in the 

NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under 

Series accession number GSE33541. 

Results 

Genome-wide Distribution of H3K4me3 and H3K27me3 

We performed ChIP-Seq experiments on infected and uninfected birds from lines 63 

and 72 to investigate the epigenetic effects of MDV infection. More than 76 million 

reads from eight samples were mapped to the chicken genome yielding 14418 and 

24950 significantly enriched regions (SERs) for H3K4me3 and H3K27me3, 

respectively (Table 3.1). We further classified these regions as follows: Ubiquitous 

SERs were found in all samples and were likely due to similarities in the genetic 

background of the chickens. Line-specific SERs were present in only one line either 

before or after MDV infection, while condition-specific SERs appeared in both lines 

but only in individuals with the same infection status. 

Ubiquitous SERs formed the largest percentage of all enriched regions, accounting 

for 74.2% and 23.3% in H3K4me3 and H3K27me3 samples, respectively. In the case 

of H3K4me3, there were large differences in the number of specific SERs - more than 

2000 line-specific SERs were found in line 63, compared to about 300 in line 72. 

http://www.ncbi.nlm.nih.gov/geo/
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Similarly, we found 50% more line-specific SERs of H3K27me3 in line 63 (6568) 

compared to line 72 (4494). However, upon closer examination, most of the line-

specific and condition-specific SERs were revealed to have low read counts 

(Appendix V1) corresponding to regions of low enrichment. 

Table 3.1. Significantly enriched regions (SERs) and associated genes in each sample. 

  H3K4me3  H3K27me3  

 Samples SERs (%) Genes SERs (%) Genes 

Line-Specific 63I 647 (4.5) 78 3477 (13.9) 615 

 63N 594 (4.1) 71 2514 (10.1) 896 

 63I,63N 924 (6.4) 190 577 (2.3) 150 

 72I 105 (0.7) 16 1658 (6.6) 451 

 72N 126 (0.9) 11 2506 (10) 346 

 72I,72N 73 (0.5) 17 330 (1.3) 89 

Condition-specific 63I,72I 97 (0.7) 35 2061 (8.3) 579 

 63N,72N 47 (0.3) 9 66 (0.3) 22 

Ubiquitous 63I,63N,72I,72N 10691 (74.2) 9475 5831 (23.4) 2942 

 Total 14418 10206 24950 7904 

63I: line 63 infected, 63N: line 63 control, 72I: line 72 infected, 72N: line 72 control. 
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Figure 3.2. Genomic distribution of SERs and relationship between histone 

marks and gene expression.  

(a) Distribution of SERs over different genomic elements. (b-e) Relationship between 

gene expression and histone marks in infected line 63 birds. Plots of histone 

modifications around the gene body (b, c) in genes having high (blue), medium (red), 

low (green) and no activity (brown). (d,e) A comparison of epigenetic marks and 

transcriptional levels. Similar trends were observed in other experimental groups 

(Appendices VIII-X). 

 

Genes were divided into five regions – promoter, 5’ untranslated region (UTR), 

exons, introns and 3’ UTR – and the distribution of SERs across these elements was 

probed (Figure 3.2 A). We found a large number of intergenic regions marked by 

H3K27me3, consistent with high levels of this mark associated with areas of silent 

heterochromatin. In the case of H3K4me3, a larger proportion of SERs were found 

around the promoter, exons and the 5’ UTR, while similar proportions of H3K4me3 

and H3K27me3 SERs were present in introns and 3’ UTRs. A comparison of the 

genomic distributions of SERs in the different samples (Figures 3.3 A, B) showed a 
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similar number of H3K4me3 SERs across the promoter, exons and the 5’ and 3’ 

UTRs of genes. Line 63 contained a higher number of intronic and intergenic SERs as 

compared to line 72 although this did not appear to change as a result of MDV 

infection. On the other hand, a greater number of H3K27me3 SERs were found in the 

infected samples although these levels were similar in the two different lines. 

 
Figure 3.3. Distribution of SERs over different genomic elements.  

(a) H3K4me3 and (b) H3K27me3 SERs separated by samples. 63_inf: line 63 

infected, 63_non: line 63 control, 72_inf: line 72 infected, 72_non: line 72 control. 

 

To analyze the relationship between histone modifications and gene expression, 

histone modification profiles surrounding the TSS and gene body were plotted for 

genes ranked by their expression level (Figures 3.2 B-E and appendices VII-X). As 

expected, a strong positive correlation was observed between gene expression and 

H3K4me3 marks with a distinct peak around the TSS and little to no enrichment 

within the gene body. On the other hand, H3K27me3 showed negative correlation 

with gene expression with a peak near the TSS followed by a broad plateau across the 

gene body. However, the latter relationship was non-linear – genes with lower 

expression had similar levels of H3K27me3 marks and levels were markedly distinct 

only at higher expression levels (Figure 3.2 C, E). 
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Table 3.2 Differential SERs identified in thymus 

 H3K4me3 H3K27me3 

Comparison Differential 

SERs* 

Genes Differential 

SERs* 

Genes 

63I vs 63N 9 4 42 1 

72I vs 72N 30 13 5 0 

63N vs 72N 148 46 1094 65 

Total 179 59† 1116 66 

*FDR < 0.4. † Some genes are shared between different comparisons. 63I: line 63 

infected, 63N: line 63 control, 72I: line 72 infected, 72N: line 72 control. 

Differential H3K4me3 Marks on Genes Related to MD 

We conducted a comprehensive analysis of genome-wide chromatin marks to find 

significant differences in MDV-induced responses in line 63 and 72. We used two sets 

of comparisons: First, to assess the influence of MDV infection within each line, we 

compared the infected and the non-infected samples from the same line. Secondly, the 

non-infected samples from the two lines were compared to detect line-specific effects. 

As a result of this analysis we found 179 differential H3K4me3 SERs and 1116 

differential H3K27me3 SERs that mapped to 59 and 66 genes, respectively (Table 

3.2). A majority of differential SERs were found in the comparison between non-

infected samples of the two lines (Appendix X, XI) with several observed on genes 

that have been associated with MDV infection. 

MX1 is a zinc-finger transcription factor that has antiviral properties against a large 

number of viruses. MX1 was upregulated after MDV infection [192] although its 

contribution to MD progression is unknown. MDV infection induced a highly 

significant increase in H3K4me3 enrichment in the promoter region of MX1 in both 

lines (line 63: p = 1.28x10
-7

, line 72: p = 4.26x10
-9

; Figure 3.4 A).  We observed a 

concurrent increase in transcript levels after MDV infection in line 72 (p = 0.0264; 
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Figure 3.4 B); MX1 expression in line 63 showed a similar trend (fold change = 38.22, 

p=0.085) although mRNA levels were much lower. 

 
Figure 3.4. Genes related to MD show differential H3K4me3 marks.  

MX1 (a, b) and CTLA-4 (c, d) show increased H3K4me3 marks and higher expression 

in infected individuals from both lines; MMP2 (e, f) exhibits higher levels of 

H3K4me3 in susceptible line 72. n = 4; * = significant at p < 0.05; ** = significant at 

p < 0.01; *** = significant at p < 0.001. 

CTLA-4 is a cell surface glycoprotein expressed on CD4+ and CD8+ T lymphocytes 

that is a powerful negative regulator of T-cell activation [193]. The CTLA4 protein is 

expressed on T lymphocytes soon after activation and regulates T-cell proliferation, 

production of IL-2 and also supports the function of Treg cells that suppress immune 

response [194]. Previous studies have reported an increase in CTLA-4 expression after 

MDV infection [195]. We found an increase in H3K4me3 enrichment in line 72 as a 

result of MDV infection (p = 0.0003) and there was a similar trend in line 63 (Figure 

3.4 C). Consistent with the above, there was a significant increase in transcript levels 

after MDV infection in line 72 (p = 0.04) and a small increase in line 63 (Figure 3.4 

D). 
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MMP2 plays a key role in the degradation of the extra-cellular matrix, and an increase 

in expression has been associated with increasing tumor cell migration and tumor 

angiogenesis [196, 197]. MMP2 was upregulated during the neoplastic stage of MD 

infection in susceptible birds [198] but downregulated in response to MDV infection 

during early lytic infection in susceptible and resistant chickens [192]. We observed a 

slight increase in H3K4me3 enrichment after MDV infection in both lines, while line 

72 exhibited significantly lower levels than line 63 (p = 0.0016; Figure 3.4 E). This 

was coupled with increased MMP2 expression in line 63 after infection (p = 0.0068) 

while there was no such change in line 72 (Figure 3.4 F).  

Genes Related to Cancers Show Epigenetic Changes in Response to 

MD 

We observed differential histone marks on several genes that have been associated 

with other cancers but not in the context of MDV infection. Insulin-like growth factor 

2 binding protein 1 (IGF2BP1) is an RNA-binding factor that regulates the translation 

of mRNAs produced by certain genes like IGF2 and ACTB. Increased expression of 

IGF2BP1 has been implicated in the development and progression of cancers of 

various organs, e.g. lung, brain, breast and colon [199-202]. There was no change in 

the H3K4me3 enrichment levels induced by MDV infection although a significantly 

higher level of enrichment was present in line 72 (p = 4.21x10
-13

; Figure 3.5A). 

Transcript levels in line 72 were much higher than in line 63, but reduced in response 

to MDV infection (p = 0.044) (Figure 3.5 B).  
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Figure 3.5. MD induces epigenetic changes in genes related to various cancers. 

IGF2BP1 (a, b) shows differential H3K4me3 marks and increased expression in 

susceptible birds while EAF2 (c, d) and GAL (e, f) have differential H3K27me3 levels 

on the gene body. n = 4; * = significant at p < 0.05; ** = significant at p < 0.01; *** = 

significant at p < 0.001. 

 

ELL associated factor 2 (EAF2) is a testosterone regulated apoptosis inducer and 

tumor suppressor. Inactivation of EAF2 has been shown to lead to tumors in multiple 

organs [167]. There was a significant increase in H3K27me3 levels after MDV 

infection in line 63 (p = 0.0414) while among uninfected chickens these levels were 

markedly higher in line 72 (p = 0.0138; Figure 3.5 C). However, EAF2 expression was 

drastically reduced after MDV infection in line 72 (p=0.0016) but showed only a 

small decrease in line 63 (Figure 3.5 D).  



 

 105 

 

 
Figure 3.6. Significant H3K4me3 and H3K27me3 enrichment around GALR1 

and GALR2. 

(a) The anti-proliferative GAL receptor GALR1 exhibited both active and repressive 

marks. There is no change in H3K4me3 levels but a definite increase in H3K27me3 

levels after infection in line 72. (b) No significant histone marks observed on GALR2. 

 

Galanin (GAL) is a neuropeptide that modulates various physiological functions, such 

as, inhibition of insulin secretion and stimulation of growth hormone secretion. Three 

galanin receptors are known (GALR1, 2 and 3): the expression of GALR1 has anti-

proliferative effects while GALR2 can be both anti- or pro-proliferative in function. 

Therefore, the GAL system is considered to be a promising candidate for detection 

and treatment of various cancers [203, 204]. We observed an increase in H3K27me3 

levels on GAL after infection in both lines (Figure 3.5 E). Also, expression levels 

were significantly lowered after MDV infection in line 72 (p = 0.00087) while there 

was a similar trend in line 63 (p = 0.051; Figure 3.5 F). Interestingly, GALR1 had both 

H3K4me3 and H3K27me3 enrichments (Figure 3.6 A) although GALR2 showed no 

significant histone marks (Figure 3.6 B). 
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Chromatin Co-localization Patterns Reveal Putative Bivalent Genes 

Regions of chromatin having both active and repressive marks are said to be bivalent 

and have been shown to play important roles in development and genetic imprinting 

[20, 205]. For example, bivalent domains have been shown to mark promoters of 

genes that are subsequently silenced in tumors by DNA hypermethylation indicating 

their importance in cancer [206]. A mono-allelic bivalent chromatin domain that 

controls tissue-specific genomic imprinting at a specific locus was recently found in 

mice [205]. To investigate the presence of such bivalent chromatin states and the 

possible effect of MDV infection, we defined bivalent genes as those having 

H3K4me3 reads (TSS ± 500 bp) greater than 30 reads per million mapped reads 

(RPM) and H3K27me3 reads (gene body) greater than 2 RPM, respectively (~85
th

 

percentile). This filtering process yielded a list of 99 putative bivalent genes 

(Appendix XII). 

Functional annotation clustering of the above genes using DAVID [170, 207] 

revealed significant enrichment of several immune-related functions. These included 

transcription factor EGR1 which is reported to have tumor suppressor properties, 

genes involved in lymphocyte activation and differentiation such as BCL6, CD4 and 

SMAD3 and genes TLR3 and TIRAP that are part of the toll-like receptor signaling 

pathway. Bivalent domains were also present on a variety of transcription factors with 

immune-related functions such as CITED2, a transactivator that regulates NF-κB, 

MYC a transcription factor associated with hematopoetic tumors and RHOB a Ras 

family homolog that mediates apoptosis in tumor cells after DNA damage. Moreover, 
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all genes involved in the top five functional annotation clusters showed higher 

chromatin levels in line 72 primarily after MDV infection (Appendix XIII). 

Bivalent Domains are Altered in Response to MD  

We further investigated the effect of MD on bivalent chromatin domains observed on 

BCL6, CITED2, EGR1, CD4 and TLR3 (Figures 3.7 and 3.8). Interestingly, three of 

these genes, CITED2, BCL6 and EGR1, showed identical epigenetic and 

transcriptional signatures. 

 

Figure 3.7. Bivalent domains on transcriptional regulators are altered by MD. 

H3K4me3 (orange) and H3K27me3 (green) profiles and associated transcript levels 

of BCL6 (a, b), EGR1 (c, d) and CITED2 (e, f). In all three cases we observe a slight 

increase in H3K27me3 induced by MDV infection in line 72 and a concurrent 

significant decrease in transcript levels while increase in active and repressive marks 

appear to cancel each other out in line 63. 
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CITED2 is a member of the p300/CBP co-activator family that has intrinsic histone 

acetyltransferase activity and plays a major role in regulating and coordinating 

multiple complex cellular signals to determine the expression level of a gene [208]. 

B-cell CLL/lymphoma 6 (BCL6) is a zinc finger protein that functions as a 

transcriptional repressor which was downregulated at 15 dpi in spleen tissues from F1 

progeny (15I5 X 71) of MD-susceptible chickens [195]. EGR1 belongs to a group of 

early response genes induced by a variety of signaling molecules such as growth 

factors, hormones and neurotransmitters that is believed to play a major role in cell 

proliferation and apoptosis [209]. Overexpression of EGR1 promotes tumor growth in 

kidney cells [210] but suppresses growth and transformation in other cell types, e.g. 

fibroblasts and glioblastoma cells [211]. 

In each of the above genes, both active and repressive chromatin marks were 

increased in response to infection in line 63 chickens. However, in line 72, there was a 

definite increase in H3K27me3 marks but no change in H3K4me3 (Figures 3.7 A, C, 

E). Transcript levels were in agreement with this observation: infected line 72 

chickens showed a significant downregulation (CITED2: p=0.0004; BCL6: p=0.0048; 

EGR1: p=0.0005; Figures 3.7 B, D, F), while there were no such changes in line 63.  

On the other hand, TLR3 and CD4 showed a slight increase in H3K4me3 marks after 

MDV infection while there were no appreciable changes in H3K27me3 levels. In 

keeping with the epigenetic changes, there was a small increase in gene expression in 

infected birds from both lines (Figure 3.8). 
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Figure 3.8. Bivalent domains on some genes are unaffected by virus infection. 

MDV infection has no effect on the bivalent domains or transcription levels of CD4 

and TLR3. 

Discussion 

Immune parameters that are known to play a major role in genetic resistance to MDV 

are correlated with innate immune responses, such as NK cell activity, production of 

nitric oxide and cytokines, such as, interferons. Recent studies have identified host 

cytokines such as IL-18 and IFN-γ that contribute to the initiation and continuation of 

latency [212]. However, cytokine levels can undergo rapid flux in response to 

infection, and consistent with this, we did not observe any epigenetic changes 

associated with these genes in the MHC-congenic lines used in our study (Figure 3.9). 

This suggests the existence of other extrinsic factors responsible for transcriptional 

variations between resistant and susceptible chickens at this stage of the disease. 
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Figure 3.9. Epigenetic profiles of host cytokines (a) IL-18 and (b) IFN-γ.  
IL-18 does not show any notable changes in response to MDV infection while IFN-γ 

does not show any SER.  

 

A global comparison of histone modification levels in the two inbred chicken lines 

yielded some interesting results. As expected, a majority of SERs were found in all 

the experimental groups, indicating a high level of epigenetic similarity between the 

lines in addition to inherent genetic similarity. In the case of H3K27me3, the 

percentage of ubiquitous SERs was relatively low (23.4%), although this was likely 

due to lower precision of the peak caller for broad chromatin marks. Besides, most of 

the SERs detected in a subset of samples corresponded to regions of low enrichment, 

which may also be the reason behind the relatively low number of differential SERs 

detected in our study.  

Genes that have been previously associated with MD and various other cancers 

showed differential marks that are either MD-induced (MX1, CTLA-4, EAF2 and 

GAL) or line-specific (IGF2BP1 and MMP2). The increase in H3K4me3 marks 
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around the TSS of MX1, a gene with known antiviral properties, appeared to be 

correlated with upregulated expression in both lines in response to MDV infection. 

However, lowered overall mRNA levels in the resistant line suggest additional factors 

could be involved in the regulation of this gene. Similarly, increased mRNA levels of 

the lymphocyte surface marker CTLA4 is possibly due to the presence of larger 

numbers of T cells in MDV infected birds as a result of higher levels of infection. 

EAF2 functions as an apoptosis inducer in addition to being a tumor suppressor, and 

therefore, its downregulation could contribute to higher tumor incidence rates in line 

72. However, it is not clear why a significant increase in H3K27me3 levels did not 

have any effect on transcript levels in the resistant line. 

IGF2BP1 is believed to act by stabilizing the mRNA of the c-myc oncogene and 

therefore, the higher expression of this gene and a more stable c-myc gene product 

might play a role in increasing MD susceptibility in line 72 birds via increased cell 

proliferation and transformation. The matrix metalloprotease MMP2 is upregulated 

after infection in the resistant line 63, similar to the previously observed increase at 

the neoplastic stage of MD. However, mRNA levels were similar in the two lines 

before infection contrary to the difference in H3K4me3 levels suggesting that 

additional factors are responsible for regulating this gene. 

The correlation between observed differential histone marks and transcript levels was 

moderate at best. Indeed, differential H3K4me3 marks were strongly predictive of 

gene expression levels but the correlation between H3K27me3 and mRNA levels was 

relatively poor. There could be various reasons for this – indeed, H3K27me3 levels 

had a non-linear relationship with gene expression with higher marks showing little 
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difference in the effect on expression. Therefore, in this tissue, the levels of 

H3K27me3 may not be a very good indicator of gene expression levels. Also, the 

transcription of these genes might be controlled by other factors with the change in 

H3K27me3 levels only incidental. 

Bivalent domains were detected on transcriptional regulators BCL6, CITED2 and 

EGR1 and the galanin receptor GALR1. The epigenetic and transcriptional signatures 

observed on these genes indicated that they were poised at the latent stage of the 

disease, but with crucial differences in the two lines. Increased repressive marks in 

the susceptible line correlated with significant downregulation of the genes, while in 

line 63, the increase in both marks appeared to compensate for each other with no 

eventual effect on gene transcription. This suggests that some ‘poised’ bivalent genes 

can become highly repressed even with a relatively small increase in H3K27me3 

marks. The change in the chromatin levels could also be correlated with an increase 

in cell populations having the repressive mark. Taken together, the above findings 

point towards the existence of finely balanced epigenetic control of transcription, 

which may be necessary to mount a rapid response by the immune system. However, 

this machinery could potentially be hijacked by a pathogen and result in an aberrant 

phenotype. The effect of MDV infection on the bivalent domain on GALR1, in 

particular, suggests the repression and potential loss of its anti-proliferative effects. 

Thus, the galanin system possibly plays an important and hitherto unknown role in 

MD progression and could be a novel target for long-term control of the disease. 

One of the major players in MDV-induced malignant transformation is Meq, a virus-

encoded oncoprotein that has diverse functions, e.g. transactivation, chromatin 
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remodeling and regulation of transcription. Meq interacts with and sequesters the 

tumor suppressor protein p53, resulting in the dysregulation of cell-cycle control 

[123] and inhibition of the transcriptional and apoptotic activities of the protein [213]. 

Several genes that show epigenetic changes in response to MDV infection have been 

associated with p53. Downregulation of CITED2 stabilizes the p53 protein leading to 

its accumulation [214]. The BCL6 gene product is believed to contribute to 

lymphomagenesis by inactivation of p53 [215]. Besides, EAF2 has also been shown 

to interact with and suppress the function of p53 [167]. The downregulation of all of 

the above genes in susceptible birds after MDV infection points towards the increased 

production of p53 and a robust anti-tumor response. That we still observe higher 

tumor incidence rates in this line, suggests the presence of large amounts of 

inactivating viral Meq protein which, in turn, indicates that increased numbers of 

MD-infected cells are present in the susceptible line at this stage of the disease. A 

majority of tumors are believed to result from the viral transformation of CD4+ T 

cells some of which are infected at the latent stage of MD [216]. The larger number 

of virus-infected cells produced in the susceptible line is possibly due to lowered 

immunocompetence as a result of the early stages of infection. Thus, a more detailed 

investigation of the early cytolytic stage of MD is necessary to shed further light on 

the causes behind the divergent response to MD observed in these birds. 

Whole tissues represent a mixture of various cell populations, and observed 

epigenetic changes might be due to a change in chromatin marks in a particular cell 

type or a variation in the relative number of cells carrying active or repressive histone 

marks. However, such in vivo studies are representative of the host response at a 
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systems level wherein different cell types might interact in a cooperative manner to 

fight infection. Thus, while the study of pure cell populations is likely to yield greater 

discriminative power, the investigation of tissue macroenvironments is, perhaps, 

closer to reality. 

This study focused on the thymus tissue as it is a major immune organ and contains a 

significant population of T lymphocytes in various stages of differentiation. Our 

earlier study of the MDV-induced transcriptome in these birds indicated the presence 

of line-specific differences at the latent stage of MD [217]. In addition, birds 

susceptible to MD suffer thymic atrophy during the early stages of infection [218], 

indicating the importance of understanding changes in this organ to elucidate the 

mechanisms involved in disease progression. Ongoing studies in our lab include other 

tissues, e.g. spleen [219], and a time-course through the various stages of infection, to 

further investigate the systemic effects of MD and the epigenetic basis of MD 

resistance. 

Conclusions 

We studied the effect of latent MDV infection on two chromatin modifications in 

inbred chicken lines exhibiting different degrees of resistance to MD. Several genes 

showed changes in histone enrichment and this response was often significantly 

different between the two chicken lines. A detailed analysis of co-localization 

patterns of the chromatin marks revealed the presence of bivalent domains on a 

number of immune-related transcriptional regulators. More importantly, these 

domains showed marked changes in response to MDV infection and provide further 

evidence of the far-reaching epigenetic effects of MD. Our results suggest putative 
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roles for the GAL system in MD progression. A majority of the differential chromatin 

marks are also suggestive of increased levels of viral infection in the susceptible line 

symptomatic of lowered immunocompetence in these birds at early stages of the 

disease. In summary, our study provides further insight into the mechanisms of MD 

progression while revealing a complex landscape of epigenetic regulatory 

mechanisms. Further work is necessary to fully elucidate the underlying mechanisms 

of MD, but our results suggest that this is a promising step towards a deeper 

understanding of this complex disease. 
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4. Temporal Chromatin Signatures Induced by Marek’s 

Disease Virus Infection in Bursa of Fabricius 

Abstract 

Marek’s disease (MD) is a highly contagious, lymphomatous disease of chickens 

induced by a herpesvirus, Marek’s disease virus (MDV) that causes major annual 

losses to the poultry industry. Similar to other herpesviral infections, MD 

pathogenesis involves multiple stages including early cytolytic and latency, and 

transitions between these stages are governed by several host and environmental 

factors. The success of vaccination strategies has led to increased virulence of MDV 

and selective breeding of naturally resistant chickens is seen as a viable alternative. 

While multiple gene expression studies have been performed in resistant and 

susceptible populations little is known about the epigenetic effects of infection. Thus, 

in this study, we investigated temporal chromatin signatures induced by MDV by 

analyzing early cytolytic and latent phases of infection in the bursa of Fabricius of 

MD-resistant and –susceptible birds. Several pathways that have been previously 

reported in connection with MD, including apoptosis, p53 signaling and cytokine 

cytokine receptor-interaction, displayed changes in histone modification marks. In 

addition, several novel pathways were enriched. The neuroactive ligand receptor-

interaction pathway showed marked reductions in H3K4me3 marks, particularly in 

MD-resistant chickens and several genes belonging to the spliceosome pathway 

showed increased H3K4me3 marks in resistant birds at the latent stage of infection. 
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Variations in chromatin marks suggest greater inflammation in susceptible chickens 

at the early cytolytic stage of infection, while the resistant line exhibited recuperative 

symptoms. During latent MD, the resistant line showed widespread reduction in 

H3K4me3 marks suggesting epigenetic silencing. Our observations regarding 

chromatin profiles were also largely in agreement with previous reports.  The 

temporal analysis of chromatin signatures, therefore, revealed further clues about the 

epigenetic effects of MDV infection. Further studies are necessary to understand the 

functional implications of the observed variations in histone modifications. 

Introduction 

Marek’s disease (MD) is a highly infectious disease caused by an α-herpesvirus, 

Marek’s disease virus (MDV), that affects chickens worldwide. MD pathogenesis can 

be divided into three major stages: an early cytolytic phase, which occurs between 3 

and 6 days post infection (dpi), is characterized by the infection of B lymphocytes, 

the first major targets of MDV. The infected B cells enter circulation and induce the 

activation of CD4+ T cells which in turn become infected. In subsequent stages of the 

disease, CD4+ T cells form the primary vehicle for MDV multiplication and 

dissemination, along with a smaller percentage of other cells including B and CD8+ T 

lymphocytes. Around 7 dpi, the infection enters a latent phase defined by the absence 

of expressed viral antigens and virus production. This switch to latency is believed to 

be governed by many viral and host factors, such as, viral interleukin (vIL)-8, which 

acts as a chemoattractant for T lymphocytes [220], and upregulated chicken major 

histocompatibility complex (MHC) class II molecules on infected cells promoting the 

initiation of host immune response [221]. In MD-resistant chickens, latent infection 
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persists at a low level in lymphoid tissues and CD4+ T lymphocytes. However, in 

MD-susceptible genotypes, a second cytolytic phase occurs 2-3 weeks after the 

primary infection, wherein latently infected lymphocytes are transformed and 

proliferate rapidly to form tumors in various tissues. 

The primary lymphoid organs of spleen, thymus and the bursa of Fabricius, are 

important focal points of MD progression. Cytolytic infection initiates in the spleen 

before spreading to other lymphoid organs, which lag behind by a day. This is 

accompanied by significant cytolysis of B and T lymphocytes in addition to varying 

levels of inflammatory response. Bursal follicles and the thymic cortex undergo 

regressive changes in this stage of MD leading to organ weight loss, while there is 

massive apoptosis of thymocytes. In the spleen, however, inflammation results in an 

increase in organ weight. The above changes are reduced within two weeks of 

infection, with the organs almost returning to their normal form and structure. 

However, in MD-susceptible chickens, a second wave of cytolytic infection around 

14-21 dpi results in marked inflammation, severe atrophy of bursa and thymus and 

permanent immunosuppression.  

There have been several studies of the effect of MD, particularly in the spleen, but 

relatively few concerning the bursa of Fabricius [222, 223]. The latter is a primary 

lymphoid organ evolutionarily unique to birds and critical to the development of the 

B cell lineage [224]. B lymphocytes in all the major lymphoid organs, as mentioned 

above, are the primary targets of the virus in the early stages of the disease [129]. 

Embryonal bursectomy resulted in the abolition of early lytic infection along with 

reduced viremia and tumor formation, in spite of comparable MD incidence [223]. 
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Bursal atrophy was observed in MD-susceptible line L72 chickens with the effect 

reduced in the MD-resistant line L63 individuals [129], while the bursa-dependent 

immune system was impaired in infected chickens [225]. It is, therefore, evident that 

the bursa of Fabricius plays an important role in MD pathogenesis, and it is vitally 

important to understand the effect of MDV on this organ. 

In this study, we used chromatin immunoprecipitation followed by sequencing (ChIP-

Seq) to analyze temporal chromatin marks induced by MDV infection. For this work, 

we utilized a population of inbred chicken lines having contrasting responses to the 

disease and focused on the bursa of Fabricius. In doing so, we extended our previous 

studies [219, 226] to include both the cytolytic and latent phases of MD. Our primary 

goal was to investigate the dynamic changes of chromatin induced by MDV infection 

to uncover the biological pathways that could be affected by variations in histone 

modification enrichments. The biological consequences of chromatin profiles are 

context-specific and similar patterns can lead to a variety of outcomes [227]. 

Therefore, we focused on changes of chromatin enrichments as evidence of possible 

epigenetic regulation. 

Materials and Methods 

Animals and viruses 

Two specific-pathogen-free inbred lines of White Leghorn, either resistant (L63) or 

susceptible (L72) to MD, were hatched, reared and maintained in Avian Disease and 

Oncology Laboratory (ADOL, Michigan, USDA). Eight chickens from each line 

were injected intra-abdominally with a partially attenuated very virulent plus strain of 
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MDV (648A passage 40) at 14 days after hatch with a viral dosage of 500 plaque-

forming units (PFU). Another eight chickens were not infected as age-matched 

controls. Infected and control chickens (n=4) from both lines were terminated at 5 or 

10dpi to collect bursa tissues. All procedures followed the standard animal ethics and 

use guidelines of ADOL. 

Analysis of ChIP-Seq data 

Chromatin immunoprecipitation (ChIP) was carried out using bursa samples from 

MDV infected and controls birds as described elsewhere [8]. Briefly, about 30 mg 

bursa samples were digested with micrococcal nuclease followed by end-repair with 

PNK and Klenow enzymes (NBE, Ipswich, MA, USA) and ChIP with the specific 

antibody. This was followed by addition of 3’ adenine, Illumina adaptor ligation, 

PCR amplification (17 cycles) and size-selection (~ 150 bp). This was followed by 

cluster generation and sequencing on the Illumina Hi-Seq 2000. The antibodies used 

and the total number of reads obtained for each sample is listed in Appendix XIV. 

Sequence reads were aligned to the May 2006 version of the chicken genome 

(galGal3) using bowtie version 0.12.7 [80]. Default alignment policies of bowtie were 

enforced: a valid alignment could have a maximum of two mismatches and if a read 

aligned equally well to multiple places in the genome, one was chosen at random. If 

multiple reads mapped to the same genomic location, only one was kept to avoid 

amplification bias. 
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Promoter Clustering 

Promoters were defined as a 2 kb region surrounding the transcription start site (TSS) 

of a gene, e.g. TSS ± 1000 bp. Reads mapping to promoter regions of Ensembl genes 

[228] were tabulated into a matrix and analyzed using edgeR [118]. Separate analyses 

were performed for H3K4me3 and H3K27me3. Diffscores for each gene g were 

calculated as: 

       (      )           

where, sgn(*) is the signum function, logFCg and pg are the log-fold change and p-

values calculated by edgeR. Hierarchical clustering was performed in R [229] with 

the hclust() function using the Ward’s minimum variance method to calculate 

distances. Clustering heatmaps were generated using the package ggplot [230]. For 

visualization purposes, DS values greater than 2 were replaced by 2 and those less 

than -2 by -2. 

RNA-Seq Data Analysis 

RNA-Seq reads obtained from Illumina Hi-Seq 2000 were analyzed as above. 

Detailed analysis of this data set can be found elsewhere (Fei, Z. et al. unpublished). 

Transcript abundances were approximated by the numbers of reads mapping to exons. 

As we did not intend to perform transcriptome assembly as part of this work, we did 

not perform splice-junction mapping. Read counts for Ensembl genes were extracted 

and tabulated for analysis with edgeR as above. Note that several transcripts had no 

mapped reads, indicating undetectable levels of expression. The DS scores were 

calculated as for the ChIP-Seq data. Hierarchical clustering was performed with the 
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Ward’s minimum distance criterion and the clustering dendrogram was cut at height 

150 to produce 19 clusters. 

Co-clustering Analysis 

We compared the RNA-Seq and ChIP-Seq clustering results by adopting the 

technique used in [38]. Briefly, overlaps between each pair of RNA-Seq and ChIP-

Seq clusters were tabulated and tested for independence using a 

-test with simulated 

p-values (10000 iterations). Simulated p-values were used as the table of counts was 

likely to contain several zero counts in which case the test may be rendered 

inappropriate. 

Results 

Promoter clustering by dynamic chromatin changes 

We sampled two critical time-points of MD progression, 5 and 10 dpi, representing 

early cytolytic and latent stages of MD, respectively. ChIP-Seq was performed on 

bursal tissues obtained from MD-resistant line L63 and MD-susceptible line L72 

chickens. Two histone H3 trimethylation marks having opposing effects on gene 

regulation were profiled – H3 lysine 4 trimethylation (H3K4me3), which is associated 

with the 5’ end of active genes, and H3 lysine 27 trimethylation (H3K27me3) which 

marks broad regions for silencing. To uncover gene promoters with similar dynamic 

patterns of chromatin we examined the 2 kb region centered around the transcription 

start sites (TSSs) of 16426 annotated genes in the chicken genome from the Ensembl 

database [228], which included most of the RefSeq genes in addition to predicted 
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genes and miRNAs. The promoter read counts were compared between infected and 

control groups within each line using edgeR [118]. We quantified the differences 

between MD-infected and control individuals by using log-fold changes (logFC) and 

p-values output by edgeR to score each promoter (diffscore). Thus, a p-value of 0.001 

with a negative fold-change was scored as -2, while the same p-value with a positive 

fold-change was scored as +2. Subsequently, hierarchical clustering of diffscores was 

performed using the Ward’s minimum distance criterion. A traditional threshold-

based approach attempts to discover the largest variations. In contrast, our measure 

was aimed at being more inclusive as we were interested in finding enriched 

pathways. We believe this approach increases the sensitivity of our analysis towards 

detecting subtle variations in chromatin marks, which might still have an important 

role in determining transcriptional regulation.  

We manually curated the clustering dendrogram and chose a cut height of 400 to 

obtain a list of 14 clusters (A-N; Figure 4.1). Two of the clusters (F, H) showed finer 

patterns that were revealed using a cut height of 150 on each clustering sub-tree and 

resulted in 3 (F1, F2, F3) and 2 (H1, H2) clusters, respectively. In addition, cluster C 

contained only 2 genes and was subsequently dropped from the analysis. Thus, the 

hierarchical clustering of diffscores resulted in a set of 16 clusters of promoters 

showing distinct dynamic patterns of H3K4me3 and H3K27me3. 
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Figure 4.1. Hierarchical clustering of diffscores reveals dynamic chromatin 

changes. Unsupervised clustering of diffscores reveals striking patterns of chromatin 

as distinct clusters of promoters exhibit strong trends at each time-point. Line L63 

shows a dramatic decrease in H3K4me3 marks at 10 dpi (clusters L, M, N), while 

both lines display corresponding changes at 5 dpi. 

 

Several interesting trends were apparent from the above analysis. Distinct clusters of 

promoters exhibited changes in chromatin enrichment at the cytolytic and latent 

phases of infection. Moreover, disjoint sets of genes shared similar chromatin 

signatures in the two inbred chicken lines. For instance, cluster B consisted of genes 

showing a significant increase in H3K4me3 enrichment in L63 at 5 dpi, while cluster 

H1 demonstrated the opposite trend in the same line. In contrast, cluster F1 genes 

displayed increased H3K4me3 enrichment in L72 at the same time-point, while 

cluster A showed a decrease in promoter H3K4me3. Thus, the chromatin landscape 

revealed the dynamic nature of the epigenetic response in the two chicken lines at 

different stages of MD. 
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We conducted functional analysis of the clustered genes to uncover biological 

pathways and other functional terms associated with differences in chromatin 

enrichment induced by MDV infection. Clusters displaying similar trends were 

grouped together (Table 4.1) before gene set enrichment analysis with DAVID [170, 

207].  

Table 4.1. Cluster grouping based on similar chromatin trends. 

DPI Line Trend* Clusters 

5 63 H3K4me3 ↑ B 

  H3K4me3 ↓ H1 

  H3K27me3 ↑ E 

  H3K27me3 ↓ F2 

 72 H3K4me3 ↑ F1, J 

  H3K4me3 ↓ A 

  H3K27me3 ↑ D 

10 63 H3K4me3 ↑ F3, K 

  H3K4me3 ↓ L, M, N 

 72 H3K4me3 ↑ H2 

*The trends summarized above are based on strong observed patterns in the 

corresponding clusters. 

Apoptosis and p53 pathways show early H3K4me3 changes 

particularly in MD-susceptible chickens 

At the early cytolytic stage, genes involved in the p53 signaling pathway (KEGG: 

gga04115) in both the resistant and susceptible lines displayed changes in H3K4me3 

enrichment (Figure 4.2). However, there were several key differences. In line L72, 

genes associated with stress signals such as DNA damage, e.g. ATM, CHEK2 and 

STT3A, exhibited increased H3K4me3 marks, while downstream p53 targets which 

induce the apoptosis pathway, e.g. ZMAT3 and CYCS, showed similar chromatin 

patterns.  In the resistant line, increased H3K4me3 enrichment was present on genes 

which are also involved in increased apoptosis (CASP3, CASP8, BID and SHISA5), 
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while upstream genes (CHEK2, STT3A) mirrored the changes observed in the 

susceptible line only at the later time-point. Moreover, in line L63, we saw increased 

H3K4me3 on genes associated with inhibition of angiogenesis and metastasis 

(CD82), and those that can promote DNA repair and damage prevention (RRM2 and 

SESN1), which were absent in the susceptible line.  

 

 

Several genes associated with the apoptosis pathway (KEGG: gga04210), displayed 

perturbed chromatin marks in response to cytolytic infection in line L72 (Figure 4.3). 

A B

A 

Figure 4.2. The p53 pathway displays 

significant changes in H3K4me3 

marks at 5 dpi in both lines. 

(a) MD-susceptible line L72 shows 

evidence of greater DNA damage, while 

line L63 exhibits downstream 

recuperative effects. (b) Clustering of 

diffscores for genes associated with p53 

pathway. 

L72 

L63 

H3K4me3 ↑ 

B

A 
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The pro-inflammatory cytokine IL1B and downstream gene MYD88, which can 

induce the NF-B signaling pathway, along with genes involved in PI3K-Akt 

signaling, such as, the nerve growth factor NGFB, showed increased H3K4me3 on 

their promoters. However, other genes exhibited contrasting signals. For instance, 

there was increased promoter H3K4me3 on PI3KR2, but a reduction on PI3KCG, an 

increase on cAMP-dependent protein kinase PRKAR1B, but a corresponding 

reduction on PRKACB. Other important genes associated with the apoptosis pathway, 

FADD and CFLAR, exhibited reduced H3K4me3 marks in the susceptible line while 

apoptosis-inhibitor BIRC2 exhibited the same trend in both lines at 5 dpi. 

 

Figure 4.3. Apoptosis pathway shows H3K4me3 changes in line L72 at 5 dpi. (a) 

KEGG pathway and (b) clustering heatmap. Members of the NF-B signaling 
pathway display increased H3K4me3 enrichment at 5 dpi, while apoptosis-related 

genes FADD, CFLAR and BIRC2, have reduced promoter H3K4me3. 

Interestingly, the ubiquitin-mediated proteolysis pathway (KEGG: gga04120), which 

has been linked to the regulation of p53, also displayed significant changes in 

H3K4me3 marks in the susceptible line (Appendix XV). All three classes of enzymes 

involved in ubiquitination: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating 

↓ 

↑ 

H3K4me3 

A B

A 
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enzymes (E2s) and ubiquitin-protein ligases (E3s) showed increased H3K4me3 

enrichment in infected individuals including UBA3, 7 (E1), UBE2A, 2R2 (E2) and 

multiple classes of E3 enzymes and associated complex subunits, e.g. ITCH (HECT-

type), CBL (U-box type), PIAS4 (single RING-finger type), SKP1, FBXO2 and 

SOCS3 (multiple subunit RING-finger type).  

Highly perturbed chromatin on the neuroactive ligand-receptor 

interaction pathway in MD-resistant chickens 

Several genes involved in the neuroactive ligand-receptor interaction pathway 

(KEGG: gga04080), which is a collection of neural stimulatory molecules and their 

receptors, displayed striking changes in chromatin marks in the resistant line L63, at 

both stages of the disease (Figure 4.4). 

Certain components of the pathway showed reduced H3K4me3 enrichment in the 

resistant line at 5 dpi. This included various G-protein coupled receptors (GPCRs), 

such as, the dopamine receptors (DRD4, DRD5), histamine receptor HRH4, 5-

hydroxytryptamine (5-HT) receptor HTR2A, etc. However, a larger proportion of 

associated molecules demonstrated H3K4me3 reductions at the latent stage of MD 

including virtually all classes of GPCRs, (e.g. DRD2, HTR1D, 1E and 1F), among a 

variety of others, e.g. GABA receptors (GABRA2, B2, D and G1) and the growth 

hormone receptor GHR. In addition, several genes belonging to this pathway also 

displayed increased H3K27me3 marks at this time-point. 
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Thus, various members of the NLR interaction pathway displayed H3K4me3 

reductions at either time-point or increased promoter H3K27me3 at 10 dpi, each 

suggesting possible repression. Some genes belonging to this pathway were also 

previously reported to be associated with MD. For instance, the proinflammatory 

Figure 4.4. Neuroactive ligand-

receptor interaction pathway 

displays marked reduction of 

H3K4me3 in line L63 at 10 dpi. 

(a) KEGG pathway map and (b) 

diffscore clustering heatmap. Several 

classes of genes involved in the 

neuroactive ligand-receptor pathway 

display striking reductions in promoter 

H3K4me3 and increases in H3K27me3 

indicating large-scale repression during 

latent MD in MD-resistant L63 birds. 

A 

B

A 
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protease granzyme A (GZMA) has been shown to be upregulated during early 

cytolytic MD in susceptible chickens [162]. We found a significant reduction of 

H3K4me3 on the promoter of GZMA in line L63 at 5 dpi, while an increase was 

evident in susceptible chickens. Also, the growth hormone gene GH1 has been 

associated with MD resistance [187], and shown to be upregulated in susceptible 

chickens [186]. Interestingly, the growth hormone receptor GHR displayed reduced 

promoter H3K4me3 in infected L63 chickens at 10 dpi while a slight increase was 

evident at 5 dpi in susceptible birds. 

Signature cytokines and cytokine receptors show H3K4me3 

alterations at the latent stage 

Several cytokines and cytokine receptors (CCR interaction pathway, KEGG: 

gga04060) showed changes in H3K4me3 marks at 10 dpi (Figure 4.5). This included 

notable chemokine IL8, fractalkine receptor CX3CR1 and interferons IFNA 

(LOC768614) and IFNB, all of which had reduced H3K4me3 in response to infection 

in the resistant line L63. Certain subfamilies were especially well-represented in this 

group, such as, hematopoietic interleukins (IL7, 12B, 15, PRL and TPO), and 

receptors LEPR, OSMR and PRLR; platelet-derived growth factors (PDGFs) FIGF 

and HGF, and PDGF receptors (FLT1, KDR, KIT and MET); IL-1 family receptors 

(IL1R1, 2 and IL18RAP) and TGFβ family receptors ACVR2B and BMPR2. In 

contrast, some components of this pathway displayed increased promoter H3K4me3 

in line L72 at this time-point, which included the inflammatory cytokine IL6, 

interleukin receptors IL7R and 21R, TNF superfamily receptors TNFRSF1B, 11B and 

FASLG, IL-10 family receptor IL22RA1 and TGFβ receptor II-like LOC424261.  
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The expression profiles of host cytokines in response to MDV infection has been 

studied previously [131, 160, 161]. The interleukin IL6 is upregulated in MD-

susceptible chickens [160] while inducible nitric oxide synthetase (iNOS) is higher in 

MD-resistant than susceptible chickens after 5 dpi [141]. Our observations of 

increased H3K4me3 on IL6 in the MD-susceptible line suggesting activation, and an 

Figure 4.5. Cytokine-cytokine 

receptor-interaction pathway exhibits 

marked changes in H3K4me3 marks 

in both lines at 10 dpi. 

(a) KEGG pathway map and (b) 

diffscore clustering heatmap. Several 

notable cytokines, e.g. IL8, had reduced 

promoter H3K4me3 in line L63, while 

others, such as, IL6, displayed the 

opposite trend in L72. 

A B

A 

B
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evident reduction on iNOS at 5 dpi indicating repression, thus, appear to be consistent 

with the above. Moreover, there were several novel genes showing marked 

differences between the two lines. The chemokine receptor CX3CR1, displayed 

significantly increased promoter H3K4me3 in the susceptible line at 10 dpi, while the 

reverse was true of L63. The interleukin receptor IL11RA showed a marked increase 

in H3K4me3 enrichment in infected L72 chickens similar to IL6 and IL7R, while the 

resistant line showed no change. On the other hand, IL6ST receptors LEPR, OSMR, 

TGF family receptors ACVR2B, BMPR2, and interleukin IL12B demonstrated 

reduced H3K4me3 in line L63 at both time-points. Notable similarities were also 

apparent between the two lines, e.g. LOC424261 and FASLG, showed increased 

H3K4me3 in both lines at 10 dpi, while EGF displayed corresponding reductions. 

MAPK signaling pathway displays H3K27me3 changes in both lines 

Among the relatively few promoters with striking changes in H3K27me3 marks, 

several were associated with the MAPK signaling pathway (KEGG: gga04010) in 

both lines (Figure 4.6). In line L72 at the early cytolytic stage, this included elements 

of the classical MAPK pathway, such as, PDGFA, a growth factor involved in cell 

proliferation and migration, various Ras-related genes e.g. RASA1 and MRAS, 

tyrosine kinase receptor NTRK2 and transmembrane calcium channel CACNG4. In 

addition, multiple components of the JNK and p38 MAPK pathways also appeared to 

have perturbed levels of H3K27me3, such as, the proliferation-regulatory cytokine 

TGFB2, the p38 MAP kinase MAPK12, Ras-related small GTPase RAC2, and the 

myocyte transcription enhancer factor MEF2C. 
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In the resistant line, increased H3K27me3 marks were observed at 10 dpi on several 

components of this pathway. This included several fibroblast growth factors (FGFs; 

FGF1, 3, 16, 19 and 20), PDGFB and transmembrane calcium channels (CACNA1D, 

1E, 1G and 2D1), which were part of the classical pathway. However, a significant 

proportion of associated genes also belonged to p38 and JNK MAPK signaling, such 

Figure 4.6. MAPK signaling pathway 

demonstrates increased promoter 

H3K27me3. 

(a) KEGG pathway map and (b) diffscore 

clustering heatmap. Several genes 

involved in the MAPK signaling 

pathway displayed increased promoter 

H3K27me3 in L72 at 5 dpi and L63 at 10 

dpi. 

A 

B
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as, TGFβ family receptor ACVR1C, p38 MAP kinase MAPK13, dual-specificity 

phosphatase DUSP6, MAPK-activated protein kinases (MAPKAPK2, 3) and 

NFATC2. 

Multiple genes showed similar signatures at different time-points in the two lines. For 

instance, the TGF family receptor ACVR1C had increased promoter H3K27me3 in 

line L72 at 5 dpi and line L63 at 10 dpi. This was also true of several other genes, such 

as, growth factors FGF1, 3, 16 and 19, calcium channels CACN1G and E, TGFB2 

and MAP kinase MAPK12. Interestingly, RASA1 and MEF2C, which showed 

increased H3K27me3 in line L72 at both time-points, also exhibited H3K4me3 

increases at 5 dpi, but not at 10 dpi. Similarly, TGFB2, PDGFB, DUSP6 and 

NFATC2, which displayed higher promoter H3K27me3, particularly at 10 dpi in line 

L63, demonstrated increased H3K4me3 in the susceptible line at the same time-point. 

Taken together, our results suggest overall silencing of this pathway in the susceptible 

line during cytolytic infection, which is abrogated by the latent stage. In contrast, the 

silencing occurs in the resistant line at a later stage of infection. 

Novel pathways display chromatin variations 

At the latent stage of the disease, the focal adhesion pathway (KEGG: gga04510), 

which consists of several sub-pathways, such as, extra-cellular matrix (ECM) 

interaction, CCR interaction and MAPK signaling, was highly represented in the 

resistant line L63 (Appendix XVI). The genes displaying reduced H3K4me3 marks 

included several collagens (COL4A1, 4A2, 5A2 and 11A1), laminins (LAMA1, 2), 

thrombospondins (THBS1, 4) and integrins (ITGA1, A4, B1, B6 and B8). In addition, 

various components of the actin cytoskeleton regulatory mechanism such as 
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ARHGAP5 and RHOA, cytoskeletal protein VCL, protein kinases ROCK1 and 

ROCK2, and other elements of the focal adhesion pathway such as AKT kinases 

(AKT1, 2) and adherens junction component CTNNB1 (catenin-), displayed reduced 

H3K4me3 enrichment. Decreased H3K4me3 marks were also present on growth 

factor IGF1, IGF-1 receptor (IGF1R), oncogene FYN and SHC signaling adaptors 

SHC3 and SHC4. Integrin signaling is believed to play an important role in MDV 

transformation [231], while some collagens are downregulated during lytic MD in 

MD-susceptible chickens [162]. Our results suggest that this pathway might undergo 

epigenetic regulation in response to MDV infection. Moreover, reduced H3K4me3 

and possible downregulation of pro-neoplastic IGF1 and its receptor, along with 

oncogene FYN, in the resistant line is also an interesting finding. 

Another interesting pathway that contained a large number of genes with increased 

H3K4me3 marks, particularly in line L63 at 10 dpi, was the spliceosome pathway 

(KEGG: gga03040; Figure 4.7), which consists of molecules that regulate pre-mRNA 

splicing, such as, small nuclear ribonucleoproteins (snRNPs) U1-U6 and 

spliceosome-associated proteins (SAPs). Genes belonging to each of the above 

components of this pathway displayed increased H3K4me3 marks in response to 

MDV infection, e.g. SNRPD1 and D3 (U1), SF3A1 and PHF5A (U2), PRPF4 and 

PPIH (U4/6), EFTUD2 (U3) and BCAS2 (Prp19 complex). Some of these genes, such 

as, ZMAT2, EFTUD2 and PRPF8, also demonstrated increased promoter H3K4me3 

in the susceptible line at 5 dpi, further evidence of a possible ‘phase-difference’ in 

epigenetic response to the disease depending on the level of MD-susceptibility. 
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Moreover, this is a novel pathway, which, to the best of our knowledge, has not been 

previously reported in the context of MD progression.  

     

Figure 4.7. The spliceosome pathway shows increased H3K4me3 marks 

particularly in L63 at 10 dpi. 

(a) KEGG pathway map and (b) diffscore clustering heatmap. Several genes 

belonging to this pathway had increased promoter H3K4me3 in resistant birds during 

latent infection, while some showed the same trend at the earlier time-point in 

susceptible L72 chickens. 

Immune-related microRNAs demonstrate characteristic signatures 

MicroRNAs (miRNAs) are short, non-coding RNAs that play a major role in post-

transcriptional regulation via translational repression or mRNA destabilization. 

Several miRNAs have been shown to play major roles in immune response, e.g. miR-

146 is a possible tumor suppressor [232] and along with miR-155 is believed to 

contribute to innate immunity [233]. The miR-17~92 cluster is thought to function as 

an oncogene, promoting cell proliferation and suppressing apoptosis [234]. We 

extracted a list of 449 chicken miRNAs and clustered their promoters using 

diffscores. The miRNAs formed characteristic clusters as observed in the case of 

coding transcripts (data not shown). To examine the broader epigenetic effect of MD, 

A B
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we compiled a list of candidate miRNAs from various reports [235-238] and 

examined their temporal chromatin profiles (Figure 4.8). 

 

Figure 4.8. Selected immune-related miRNAs display repressive changes in 

chromatin marks. 

Several members of the let-7 family had reduced promoter H3K4me3 marks in line 

L63 birds either at 5 or 10 dpi, while other important miRNAs, e.g. gga-mir-21 and 

gga-mir-155 displayed reductions in H3K4me3 in line L72 at 5 dpi. 

 

Several miRNAs displayed predominantly repressive changes in chromatin in both 

lines. Multiple immune-related miRNAs gga-mir-155 [239], gga-mir-21 [240] and 

gga-let-7i [241] had reduced promoter H3K4me3 in the susceptible line at 5 dpi, but 

in the case of gga-mir-21 and gga-let-7i, this trend was reversed at 10 dpi. Several 

other members of the let-7 family displayed reduced H3K4me3 in the resistant line 

L63 at the two time-points: gga-let-7a-2, j and k at 5 dpi and gga-let-7a-1, a-3, b, c, d 

and f at 10 dpi. Gga-mir-125b, which has been linked to certain cancers [242, 243], 
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showed reduced H3K4me3 in line L63 at both time-points. At 10 dpi, gga-mir-101, 

which can play a role in curbing autoimmune reactions [244], had reduced 

H3K27me3 marks in line L63, while other immune-related miRNAs, gga-mir-10b, 

124a-2 and 146b displayed the reverse trend. The inhibition of miR-10b has been 

associated with reduced metastasis [245], while loss of miR-124a functions as a 

tumor suppressor [246]. Interestingly, both these miRNAs displayed increased 

H3K27me3 only in the resistant line, suggesting line-specific silencing. 

Chromatin signatures distinguish genes with similar expression 

patterns 

We compared the chromatin marks with RNA-Seq data from the same tissue to look 

for possible correlations. The expression data was analyzed with edgeR, as above, 

and diffscores obtained from the comparison of infected and control samples were 

clustered to obtain a set of 19 groups (Appendix XVII). The two clustering results 

showed definite correlation (

-test, p < 10-6). The 


-residuals were subsequently 

plotted (Figure 4.9). 
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Figure 4.9. Hierarchical clustering of diffscores for RNA-Seq data and co-

clustering with ChIP clusters. 

Co-clustering analysis reveals that genes with the same expression profiles can have 

diverse chromatin signatures. 

 

We found that genes with similar temporal expression patterns displayed remarkable 

diversity in chromatin marks and vice-versa. There were a few clusters that showed a 

certain level of correlation between the chromatin marks and expression. For 

example, chromatin clusters F1 and J which displayed increased H3K4me3 marks in 

the susceptible line at 5 dpi overlapped expression clusters 7 and 9 which consisted of 

genes upregulated at that time-point in the same line. However, such correlations 

were largely low. This is consistent with several prior reports [247] that emphasize 

the diversity of the epigenetic regulatory landscape as evidenced by the expanding 

array of histone modifications with specific roles. 
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Discussion 

The histone code is a universal, multi-layered guide to the transcriptional regulatory 

machinery that allows tremendous diversity to be encoded into the genome, while 

providing an essential link between the genetic material and environmental cues. 

Interpreting the biological consequences of variations in chromatin marks is 

exceedingly complex and can be likened to an attempt to discern the outcome of a 

voluminous treatise from the preface. The task of understanding the broader genomic 

effects of a complex disease, such as MD, from epigenetic profiling is a similarly 

daunting undertaking. Our prior studies of the epigenetic effects of latent MD on 

resistant and susceptible chicken lines [219, 226] have provided us with some 

perspective. However, the chromatin landscape is dynamic and temporal analyses of 

histone modification profiles are necessary to obtain a more complete picture. Thus, 

in contrast to the candidate gene approach of the earlier studies, we conducted a more 

comprehensive functional analysis of chromatin variations induced by MD. 

Major functional differences in response to MDV infection 

There were broad similarities, together with striking differences, between the resistant 

and susceptible lines in response to MD. The most striking difference was the NLR 

interaction pathway, with variations in chromatin marks on a wide variety of genes. 

We have previously reported the possible association of this pathway to MD response 

via miRNAs [219], but the sheer number of differentially-marked genes suggests a 

significantly greater level of  involvement and warrants further investigation. Several 

cytokines and cytokine receptors showed reductions in promoter H3K4me3 in MD-
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resistant chickens, while others displayed the reverse trend in the susceptible line. The 

MAPK signaling pathway, which had significant representation in the proteome of an 

MDV-transformed cell line [231], displayed H3K27me3 increases predominantly in 

the resistant line at 10 dpi.  Also, several genes in the spliceosome pathway showed 

increased promoter H3K4me3 in line L63.  

Interestingly, in the latter two cases, certain genes shared similar chromatin profiles in 

both lines, but at different time-points. This suggests a possible ‘phase-difference’ in 

the epigenetic response to MD depending on the level of susceptibility of the 

chickens. Also, a large proportion of chromatin changes were repressive in nature 

(H3K4me3 ↓, H3K27me3 ↑), and appeared at a later stage of the disease in the 

resistant line. Epigenetic reprogramming of host genes by viruses and other 

pathogenic microbes has been associated with gene silencing [248] and it is possible 

that this is another example of such a phenomenon. 

Apoptosis in both lines during lytic MD 

Virus-induced apoptosis or programmed cell death can occur either as a result of host 

defense mechanisms eliminating infected cells or as a mode of increased replication 

and spread of virus particles [249]. We observed an enrichment of the apoptosis 

pathway among differentially marked promoters in line L72 during lytic infection, 

with possible involvement of NF-B signaling (IL1B and MYD88). However, certain 

other genes, which are also critical for inducing apoptosis, e.g. caspases CASP3, 

CASP8, Bcl-2 family death regulator BID, and SHISA5, which can induce apoptosis 

in a p53-dependent manner, displayed increased H3K4me3 marks in the resistant line 

at the same time-point. NF-B signaling is an important component of host immune 
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response to infection, and is frequently associated with inflammatory diseases and 

tumors [250]. NF-B also plays a major role in MDV-induced transformation of 

CD30+ lymphocytes [163]. Early stages of MD have been associated with 

inflammatory changes in susceptible chickens [251], and the activation of NF-B 

signaling could be part of an inflammatory response in line L72 chickens. Therefore, 

while higher levels of apoptosis are possibly clearing greater numbers of infected 

cells and thus, lowering viral load in line L63 chickens, the activation of a different 

subset of genes could be causing inflammatory response in line L72. 

At the early cytolytic stage, the p53 pathway demonstrated significant changes in 

H3K4me3 in both lines, but the genes differentially marked in each line suggested 

contrasting outcomes – the susceptible line displayed signs of greater DNA damage, 

while the resistant line showed evidence of increased DNA repair and recuperative 

effects. The p53 protein functions as a tumor suppressor and is known to be targeted 

and inhibited by the viral oncoprotein Meq [123, 213]. We have previously observed 

variations in chromatin profiles of genes associated with p53 [226], but this is the first 

direct evidence of multiple components of this pathway undergoing epigenetic 

variations at early stages of MD. The E3 ubiquitin ligase, Mdm2 [252], responsible 

for p53 degradation did not exhibit epigenetic changes suggesting activation (cluster 

F2), but several other components of the ubiquitin-mediated proteolysis pathway 

displayed increased H3K4me3 in the susceptible line, suggesting possible activation 

of this pathway during cytolytic infection.  
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Novel candidates for epigenetic regulation 

The variations in chromatin profiles of some MD-associated genes, such as, IL6 and 

GZMA (increased H3K4me3 in line L72), which were upregulated in susceptible 

chickens [160, 162], suggested epigenetic regulation in response to virus infection. 

We also observed increased H3K4me3 around the pro-inflammatory cytokine IL1B 

(line L72 at 5 dpi), which was upregulated in brain tissue of chickens infected with 

MDV [251]. In addition, several novel candidates were also revealed. For instance, 

CX3CR1, which is important for efficient chemotaxis of macrophages to apoptotic 

lymphocytes [253], displayed contrasting trends in the two lines. Various cytokines 

sharing the IL6ST subunit have been found to induce proliferation in cases of 

multiple myeloma [254]. Receptors belonging to the above class showed changes in 

chromatin marks, e.g. IL11RA in line L72 and LEPR, OSMR in line L63. Previous 

reports have also indicated the involvement of the pro-inflammatory cytokine induced 

gene IRG1 in MD susceptibility. This gene is preferentially upregulated in susceptible 

chickens [162] and involved in inflammatory response via the action of MYD88 

which displayed increased promoter H3K4me3 (and mRNA levels) in the susceptible 

line at 5 dpi. MYD88 is an essential regulator of immunity to invading microbes, 

particularly the activation of T cell responses [255] and, thus, could be an interesting 

candidate for further study. Moreover, the increase of both H3K4me3 and H3K27me3 

in line L72 on RASA1 and MEF2C suggest their involvement in MD-susceptibility. 

The let-7 family of miRNAs have diverse physiological roles and its deregulation has 

been associated with many human cancers [241]. Several members of this family 

exhibited striking reductions in promoter H3K4me3, primarily in the resistant line 
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(except gga-let-7i), which suggested possible epigenetic silencing in response to 

MDV infection. Oncomir gga-mir-21, which has also been associated with several 

cancers [240, 256, 257], displayed H3K4me3 variations in the susceptible line 

(decrease at 5 dpi and increase at 10 dpi). Also, H3K27me3 appeared to target certain 

immune-related miRNAs, e.g. gga-mir-10b and gga-mir-124a-2, only in the resistant 

line suggesting their involvement in MD-resistance. Previous studies of miRNA 

expression profiles conducted in our lab [238] suggested large scale down-regulation 

of host miRNAs during late cytolytic MD (spleen, 21 dpi) in susceptible chickens. 

Our results indicate a different scenario at the early stages of MD which further 

underlines the importance of temporal analyses to uncover a truer picture of 

transcriptional regulation. 

Conclusions 

In summary, we conducted a comprehensive analysis of the temporal chromatin 

landscape induced by MDV in two inbred chicken lines with contrasting responses to 

the disease. We investigated the variations in chromatin marks in response to virus 

infection to uncover biological pathways possibly under epigenetic control. In doing 

so, we eschewed a traditional threshold-based analysis, instead utilizing the entire 

gene set and unsupervised clustering to find groups of promoters that displayed 

similar patterns of chromatin. Our approach revealed several interesting pathways 

with large proportions of genes displaying variations in chromatin, such as 

neuroactive ligand-receptor interaction and apoptosis. Epigenetic variations suggested 

a heightened inflammatory response during lytic MD in the susceptible line while 

there appeared to be increased apoptosis and greater virus clearance in the resistant 
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line. At the latent stage of infection, the resistant line demonstrated widespread 

reduction in promoter H3K4me3 suggesting epigenetic silencing. Our observations 

with regard to certain MD-related genes were largely in agreement with previous 

reports. In addition, we uncovered several novel genes and miRNAs that undergo 

epigenetic regulation and are possibly associated with MD-resistance or 

susceptibility. 
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5. Conclusions and Future Directions 

The long-term objective of our laboratory is to understand the epigenetics of MD, the 

complex disease of poultry, and the mechanisms of MD-resistance and susceptibility. 

Our chosen model to achieve this goal is a population of inbred chicken lines 63 and 

72 from ADOL, MI that are naturally either highly MD-resistant or highly MD-

susceptible. In keeping with this, the focus of my graduate research has been two-

fold: the development of novel methods for analyzing genome-wide epigenetic data, 

e.g. histone modifications, and the application of these and other methods to the data 

generated from the above chicken population. The works presented here constitute 

novel contributions in both these areas. 

We developed WaveSeq, a novel algorithm for peak-detection in ChIP-Seq data that 

is accurate, sensitive and robust to diverse enrichment patterns. Our approach is 

unique as we do not make any restrictive (and erroneous) assumptions about the data 

distribution, which is a feature of virtually all existing tools primarily for the purposes 

of computational efficiency. The accuracy of our method relies on the discriminative 

power of wavelets for pattern recognition. We employed Monte Carlo sampling 

techniques to estimate the distribution of wavelet coefficients, effectively 

constraining the wavelet space for pattern detection. Finally, we assign significance 

scores to predicted peaks by utilizing a novel permutation procedure. WaveSeq 

performed favorably in comparison with existing methods, particularly for diffuse 

histone modification data. We believe our method addresses a long-unfulfilled need 
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of the scientific community and we are working towards a full release on the R 

platform free for public use. 

In conjunction with the development of WaveSeq, we embarked on our study of the 

histone modification landscape in our chosen animal model. Our work in spleen and 

thymus tissues of MD-resistant and susceptible chickens resulted in the first 

publications related to chromatin marks in poultry [219, 226]. Due to the novelty of 

our approach, these studies have a strong exploratory element. In our investigations of 

latent MD in thymus, we employed ChIP-Seq to profile H3K4me3 and H3K27me3 in 

matched infected and control birds from lines 63 and 72. Several genes previously 

implicated in MD progression, e.g. MX1 and CTLA-4, and others associated with 

various cancers, such as, IGF2BP1 and GAL, exhibited line-specific or condition-

specific enrichments. Moreover, bivalent chromatin domains, thought to be 

predominantly associated with developmental genes, were observed on several genes. 

Three of these genes were p53-associated transcription factors, EGR1, BCL6 and 

CITED2, and associated chromatin signatures showed identical responses to MDV 

infection. Thus, we demonstrated that MDV induces large-scale variations in 

chromatin marks, with differential effects in resistant and susceptible chickens. 

The next step in our journey was the extension of our efforts to the temporal 

evolution of chromatin marks in response to MDV infection. We conducted this 

experiment only 12 months after our initial studies and even within this short interval, 

Illumina sequencers had improved by several orders of magnitude making it possible 

to include multiplexing in our protocol. As a result, we were able to generate a much 

more comprehensive data set, including two time-points of MD progression and two 
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biological replicates in our experimental design. As histone modifications are 

context-specific, we reasoned that changes in chromatin enrichment are evidence of 

epigenetic regulation. Following this intuition, we analyzed promoter regions of 

annotated genes and miRNAs for differential H3K4me3 and H3K27me3 enrichments. 

The results of this analysis were quantified using a measure we termed ‘diffscore’, 

which we subjected to hierarchical clustering for evidence of coregulation. Functional 

analysis of clustered promoters revealed several interesting features: during early 

cytolytic MD, the susceptible line showed evidence of greater DNA damage and 

inflammation (possibly via NK-B signaling), while resistant chickens appeared to 

have higher apoptosis rates and recuperative symptoms (downstream p53 targets). At 

the latent stage, line L63 displayed marked repressive changes on the neuroactive 

ligand-receptor interaction pathway. Several immune-related miRNAs, e.g. multiple 

members of the let-7 miRNA family, showed reduced H3K4me3 at 10 dpi in line 63, 

while others, such as, gga-mir-21 and gga-mir-155 displayed similar trends in the 

susceptible line at the earlier time-point. In addition, various MD-associated genes, 

e.g. IL6, GZMA and IL1B, displayed repressive changes in the susceptible line after 

infection, consistent with reported trends. Thus, this extensive study gave us further 

insights into the epigenetic effects of MD, although further work is necessary to 

confirm some of these findings. 

In many of our studies, we adopted the commonly-used approach of assigning 

functional significance to chromatin marks by annotating putative enrichments with 

adjacent genes. Whilst analysis of such gene lists for functional enrichment can well 

serve as indications of biological involvement, there is always the possibility that 
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there are additional factors that determine the biological outcome. For instance, 

assaying a representative set of histone modifications is a valid approach to 

investigate the chromatin landscape. However, the transience of a majority of histone 

marks suggests that such a view is nothing more than a snapshot of a dynamic system 

under a specific set of conditions and definitive predictions based on such a fleeting 

picture is fraught with the possibility of error. Therefore, extensive temporal analyses 

are necessary as the maturation of NGS technology makes such experimental designs 

more accessible. However, the validation of ChIP-Seq findings remains difficult and 

time-consuming, with causal relationships nearly impossible to prove.  

The discovery of numerous histone modifications led to the ‘histone code’ 

hypothesis, which proposed the existence of a system of epigenetic marks that can 

define the functional elements of the genome in a combinatorial and deterministic 

manner. However, over the years this simplistic view has been replaced by the 

understanding that chromatin signatures comprise a nuanced and subtle network, 

which only forms part of the transcriptional regulation machinery. Instead of studying 

each such component in isolation, integrative approaches are necessary, wherein 

multiple sources of information, such as, transcription factor binding, DNA 

methylation, copy number variations and gene expression, are studied together with 

histone modifications. The recent tool, ZINBA [102], attempts to provide a general 

solution to the problem by using a mixture regression approach. However, the 

extensive computational requirements are major limiting factors for such analyses and 

can only be justified by a sizeable improvement in accuracy. Thus, amidst the 
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profusion of peak callers there is an urgent need for large-scale benchmarking efforts 

in order to make the choice of a suitable method a little easier.  
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Appendices 

 

Appendix I. Sequencing results showing the antibody used and read 

numbers for each sample from bursa of Fabricius at 5 days post 

infection. 

Antibody Sample Raw  Mapped Mapped% Non-

redundant 

Non-

redundant% 

H3K4me3 R.ctl 9623392 6284246 65.30178 5483970 56.98583 

(Millipore,  R.inf 5589297 4641859 83.04907 3763076 67.32646 

Cat. #17- 614) S.ctl 8333094 4790077 57.48257 4432040 53.18601 

 S.inf 7298525 5189925 71.10923 4479908 61.38101 

        
                  

           
;               

                         

              
  

R.ctl = line 63 control, R.inf = line 63 infected, S.ctl = line 72 control, S.inf = line 72 

infected. 
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Appendix II. RSEG peaks not detected by WaveSeq have low 

average read counts and are possibly false positives. 

Average read counts within RSEG peaks (a, b & c) and peak length distributions (d, e 

& f) in the H3K4me3 (a & d), H3K36me3 (b & e) and H3K27me3 (c & f) data. The 

solid lines correspond to all peaks called by RSEG (All Peaks) and the dashed lines 

represent those peaks that are not detected by WaveSeq (No overlaps). These plots 

show that WaveSeq detects a majority of large RSEG peaks in the H3K27me3 and 

H3K36me3 data. However, most of the H3K4me3 peaks detected by RSEG are very 

large and appear to be false positives. The average read counts output by the program 

were plotted. 
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Appendix III. List of H3K4me3 DMRs and overlapping genes 

The chromosome, start and end columns refer to the significant DMRs detected by 

WaveSeq. The columns S.inf and S.ctl contain the normalized reads (per million) 

mapped to the DMRs in the infected and control samples of the S group, respectively. 

P-values are calculated by WaveSeq using an exact binomial test and fold change = 

(S.inf+1)/(S.ctl+1). The columns RefSeq_ID and Ensembl_ID contain RefSeq and 

Ensembl genes that overlap the corresponding DMRs. 

Chr Start End RefSeq_ID Ensembl_ID S.inf S.ctl FC p-value FDR 

chr1 9000 20199 CD69 ENSGALG00000009761 119.86 64.03 1.86 5.82E-05 0.009021 

chr1 5832600 5843199 - ENSGALG00000006713 135.05 82.70 1.63 0.000391 0.029701 

chr1 14735200 14746199 - ENSGALG00000008167 186.45 125.47 1.48 0.000645 0.039621 

chr1 15029200 15038799 - - 66.59 32.37 2.03 0.00077 0.043481 

chr1 15388000 15397999 PIK3CG ENSGALG00000008081 220.33 135.15 1.63 7.52E-06 0.002114 

chr1 28607600 28615199 - ENSGALG00000009443 114.25 51.04 2.21 1.04E-06 0.000451 

chr1 32535200 32546799 - ENSGALG00000009665 167.99 111.05 1.51 0.000938 0.048411 

chr1 35649000 35656599 - - 78.21 131.31 0.60 0.000301 0.043824 

chr1 46275800 46287999 - ENSGALG00000019338 214.26 144.84 1.48 0.000255 0.023634 

chr1 48574800 48582599 - ENSGALG00000011516 

ENSGALG00000011531 

67.06 32.84 2.01 0.000562 0.037928 

chr1 52668000 52674199 - ENSGALG00000023146 101.17 53.16 1.89 0.000136 0.0155 

chr1 53366800 53374799 CYTH4 ENSGALG00000012454 

ENSGALG00000012490 

136.22 84.35 1.61 0.000555 0.037928 

chr1 53379200 53385599 RAC2 ENSGALG00000012456 122.90 73.72 1.66 0.000553 0.037928 

chr1 61677000 61684599 - - 99.53 56.00 1.76 0.00049 0.035743 

chr1 63058000 63067799 ADIPOR2 ENSGALG00000013000 134.12 75.85 1.76 5.42E-05 0.008658 

chr1 64218000 64224999 - ENSGALG00000013057 97.90 26.46 3.60 7.97E-11 1.73E-07 

chr1 69309800 69325199 - ENSGALG00000014011 240.66 136.57 1.76 9.05E-08 6.87E-05 

chr1 70414000 70423799 PPFIBP1 ENSGALG00000014106 117.29 61.67 1.89 3.26E-05 0.006499 

chr1 71352400 71360599 - ENSGALG00000014203 87.15 46.78 1.84 0.000477 0.035335 

chr1 75541600 75547199 CCND2 ENSGALG00000017283 91.59 50.56 1.80 0.000699 0.040987 

chr1 78757000 78769599 FOXM1 ENSGALG00000013424 

ENSGALG00000013420 

132.71 82.46 1.60 0.000771 0.043481 

chr1 79043200 79047599 AICDA ENSGALG00000014280 135.05 82.70 1.63 0.000391 0.029701 

chr1 80183600 80188799 - - 144.86 81.52 1.77 3.20E-05 0.006499 

chr1 80320800 80330199 MLF2 ENSGALG00000014468 145.10 92.62 1.56 0.000698 0.040987 

chr1 80674800 80685199 ZYX ENSGALG00000014688 154.91 90.26 1.71 5.02E-05 0.008282 

chr1 81189400 81201199 - - 227.81 142.48 1.59 1.13E-05 0.002901 

chr1 92041400 92056799 - ENSGALG00000015398 373.84 253.53 1.47 1.84E-06 0.000682 

chr1 94886400 94900399 - - 242.76 153.35 1.58 8.77E-06 0.002377 

chr1 95046800 95056999 - - 182.48 121.69 1.50 0.000545 0.037807 

chr1 95259600 95270999 LOC396098 ENSGALG00000015461 369.40 245.26 1.50 6.36E-07 0.000292 

chr1 101540800 101552599 SAMSN1 ENSGALG00000015679 190.42 121.69 1.56 0.000109 0.013225 

chr1 109612200 109622399 RUNX1 ENSGALG00000016022 142.53 83.64 1.70 0.000101 0.01283 
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chr1 116747800 116754799 - ENSGALG00000016261 103.51 57.18 1.80 0.000344 0.028366 

chr1 119277200 119286199 - - 82.48 43.95 1.86 0.000618 0.039418 

chr1 125765800 125777399 MOSPD2 

FANCB 

ENSGALG00000016569 146.73 83.17 1.76 3.77E-05 0.007225 

chr1 126826000 126835199 TLR7 ENSGALG00000016590 146.50 86.24 1.69 9.88E-05 0.012633 

chr1 129227600 129244599 - ENSGALG00000021892 135.05 85.53 1.57 0.000912 0.047596 

chr1 140524800 140538599 - - 96.96 52.69 1.82 0.000373 0.029344 

chr1 144368400 144377599 TNFSF13B ENSGALG00000016852 166.83 104.20 1.60 0.000194 0.020125 

chr1 144389600 144403199 ABHD13 

LIG4 

ENSGALG00000016853 

ENSGALG00000016854 

194.63 121.69 1.59 4.63E-05 0.007893 

chr1 170074000 170090599 - ENSGALG00000016947 371.04 233.21 1.59 2.17E-08 2.73E-05 

chr1 170225000 170237199 - ENSGALG00000016954 227.57 148.62 1.53 5.31E-05 0.008567 

chr1 170986400 170988799 - ENSGALG00000016964 12.29 38.08 0.34 0.000306 0.044243 

chr1 172334400 172345599 LCP1 ENSGALG00000016986 146.73 85.77 1.70 7.22E-05 0.010434 

chr1 172404000 172418999 - ENSGALG00000016988 179.21 101.60 1.76 3.66E-06 0.001156 

chr1 173527200 173532399 - ENSGALG00000019094 50.00 21.74 2.24 0.000767 0.043481 

chr1 173562400 173571599 - ENSGALG00000017008 85.28 45.37 1.86 0.000572 0.038095 

chr1 173671800 173675199 - - 11.81 36.22 0.34 0.000346 0.046853 

chr1 174685200 174694799 CKAP2 ENSGALG00000017025 

ENSGALG00000017026 

116.59 67.10 1.73 0.00036 0.029344 

chr1 178865000 178878399 BRCA2 

ZAR1L 

ENSGALG00000017073 

ENSGALG00000017074 

169.16 97.82 1.72 1.20E-05 0.003024 

chr1 183458400 183467199 PSPC1 ENSGALG00000017142 107.01 63.80 1.67 0.000919 0.047759 

chr1 183588800 183597199 PARP4 ENSGALG00000017146 

ENSGALG00000017148 

125.24 75.85 1.64 0.000499 0.036272 

chr1 183916600 183922399 - - 82.48 43.48 1.88 0.000618 0.039418 

chr1 185429600 185435999 - ENSGALG00000017174 69.16 32.37 2.10 0.000296 0.026037 

chr1 193389200 193400599 - ENSGALG00000017247 178.74 105.15 1.69 1.69E-05 0.003902 

chr10 1013400 1022399 - - 122.67 70.41 1.73 0.000215 0.021151 

chr10 6554200 6560799 - ENSGALG00000003809 115.42 69.23 1.66 0.00086 0.045898 

chr10 13802400 13821199 - - 319.63 195.17 1.63 5.01E-08 4.01E-05 

chr10 14303800 14313599 - ENSGALG00000006505 109.58 63.80 1.71 0.000561 0.037928 

chr10 16315600 16324799 - - 156.08 91.21 1.70 4.24E-05 0.007537 

chr10 16330400 16340199 - ENSGALG00000006949 63.80 123.37 0.52 1.29E-05 0.005 

chr11 1044000 1050999 - ENSGALG00000021442 64.02 30.48 2.07 0.000588 0.038465 

chr11 3337200 3348599 - - 106.54 59.54 1.78 0.000314 0.026814 

chr11 18750000 18760399 COTL1 ENSGALG00000017644 

ENSGALG00000020995 

ENSGALG00000005651 

178.04 99.71 1.78 2.39E-06 0.000865 

chr12 4733000 4745199 VGLL4 ENSGALG00000004937 199.77 137.28 1.45 0.000849 0.04571 

chr12 6958200 6972799 - ENSGALG00000005237 235.99 134.45 1.75 1.63E-07 0.000103 

chr12 7464200 7474199 - ENSGALG00000005385 88.09 44.18 1.97 0.00016 0.017498 

chr12 9208600 9224399 IP6K2 ENSGALG00000005701 360.76 227.30 1.58 4.48E-08 3.78E-05 

chr12 11063800 11071799 CHCHD4 ENSGALG00000006328 

ENSGALG00000006345 

117.53 69.23 1.69 0.000533 0.03747 

chr12 13862800 13871199 - - 95.56 51.75 1.83 0.000339 0.02831 
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chr13 2220200 2234199 MATR3 ENSGALG00000002478 177.57 105.15 1.68 2.14E-05 0.004852 

chr13 3876800 3889799 - ENSGALG00000002080 167.29 101.60 1.64 6.63E-05 0.009773 

chr13 8409200 8425199 CSNK1A1 ENSGALG00000001364 154.68 99.71 1.55 0.000657 0.040051 

chr13 8509000 8515399 - ENSGALG00000001210 54.21 14.89 3.48 1.11E-06 0.000468 

chr13 10681400 10695999 UBLCP1 ENSGALG00000003672 

ENSGALG00000003691 

108.18 60.49 1.78 0.000264 0.023821 

chr13 11470600 11481399 - ENSGALG00000003818 100.94 57.18 1.75 0.00075 0.043081 

chr13 13217800 13228399 RPS14 

CD74 

ENSGALG00000004588 

ENSGALG00000004594 

57.89 109.35 0.53 6.65E-05 0.015909 

chr13 13655800 13670199 HNRNPH1 ENSGALG00000005955 183.88 103.49 1.77 2.59E-06 0.000895 

chr13 13690400 13701799 - ENSGALG00000005989 192.99 126.65 1.52 0.000255 0.023634 

chr13 17015400 17030599 - - 201.17 126.88 1.58 3.97E-05 0.007269 

chr13 17456800 17463199 IRF1 ENSGALG00000006785 40.66 14.18 2.74 0.000535 0.03747 

chr14 34400 41999 - ENSGALG00000002796 88.79 41.82 2.10 4.27E-05 0.007537 

chr14 820400 829999 PARN ENSGALG00000003091 

ENSGALG00000003111 

104.21 58.36 1.77 0.000375 0.029344 

chr14 2322400 2336999 - - 174.30 113.89 1.53 0.00038 0.029563 

chr14 3478000 3486799 CARD11 ENSGALG00000004398 143.46 82.46 1.73 5.75E-05 0.009018 

chr14 3538000 3546599 SDK1 ENSGALG00000004420 124.54 71.36 1.73 0.000181 0.019029 

chr14 6167200 6179399 TBL3 ENSGALG00000005458 

ENSGALG00000005465 

ENSGALG00000025687 

ENSGALG00000005558 

122.20 70.18 1.73 0.000215 0.021151 

chr14 6639200 6652599 LCMT1 ENSGALG00000005962 

ENSGALG00000005973 

173.37 116.25 1.49 0.000955 0.048948 

chr14 9155000 9169599 SOCS1 ENSGALG00000007158 148.60 84.83 1.74 3.17E-05 0.006499 

chr15 4994400 5009799 DDX55 ENSGALG00000003298 

ENSGALG00000003314 

104.68 57.65 1.80 0.000263 0.023821 

chr15 5463000 5469199 - ENSGALG00000003863 58.41 26.70 2.14 0.000628 0.039475 

chr15 5752200 5765599 - ENSGALG00000004379 125.00 76.08 1.63 0.000672 0.040492 

chr15 5954600 5963399 - ENSGALG00000004493 

ENSGALG00000004515 

103.04 58.13 1.76 0.000487 0.035682 

chr15 6355200 6364599 NAA25 

TRAFD1 

ENSGALG00000004780 

ENSGALG00000004802 

101.40 55.76 1.80 0.000287 0.025728 

chr15 6479000 6489399 PTPN11 ENSGALG00000023491 85.52 46.78 1.81 0.000832 0.045331 

chr15 8923800 8933199 - ENSGALG00000006695 169.86 109.64 1.54 0.000384 0.029701 

chr16 60000 65999 BMA1 

TAPBP 

ENSGALG00000000158 

ENSGALG00000008022 

70.56 35.21 1.98 0.000821 0.045177 

chr17 5462600 5470999 FAM102A ENSGALG00000005074 107.95 61.67 1.74 0.000481 0.035409 

chr18 6990600 7001199 KPNA2 ENSGALG00000003584 108.18 60.72 1.77 0.000264 0.023821 

chr18 10739400 10756399 GRB2 ENSGALG00000008016 175.47 110.82 1.58 0.000141 0.015755 

chr19 1228400 1234199 - - 88.55 45.84 1.91 0.000242 0.022787 

chr19 3094400 3108999 - ENSGALG00000001410 179.44 114.83 1.56 0.000175 0.018648 

chr19 7315200 7323999 MIR21 ENSGALG00000021733 180.61 112.23 1.60 8.24E-05 0.011372 

chr19 8979800 9002399 EVI2A ENSGALG00000005588 320.33 200.13 1.60 1.60E-07 0.000103 

chr19 9776000 9787599 - ENSGALG00000006005 

ENSGALG00000006011 

135.28 84.35 1.60 0.000693 0.040987 

chr19 9867600 9874199 - ENSGALG00000006048 132.01 73.25 1.79 4.56E-05 0.007868 
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chr2 10329200 10337599 - ENSGALG00000006723 105.84 60.25 1.74 0.000572 0.038095 

chr2 19928000 19939599 RSU1 ENSGALG00000008720 144.86 87.19 1.65 0.000214 0.021151 

chr2 22863400 22871199 - ENSGALG00000009479 60.52 10.87 5.18 8.00E-10 1.22E-06 

chr2 25992400 25999999 - - 75.24 38.75 1.92 0.000641 0.039537 

chr2 26788000 26797199 - ENSGALG00000010777 105.84 58.83 1.79 0.000288 0.025728 

chr2 39805400 39818399 TGFBR2 ENSGALG00000011442 222.67 143.19 1.55 4.18E-05 0.007537 

chr2 41617800 41627999 - ENSGALG00000011574 127.57 77.74 1.63 0.000569 0.038095 

chr2 46427200 46435599 ELMO1 ENSGALG00000012093 149.30 87.90 1.69 6.55E-05 0.009773 

chr2 51290400 51298199 PSMA2 ENSGALG00000019598 

ENSGALG00000012337 

116.36 61.67 1.87 4.32E-05 0.007542 

chr2 51745000 51759599 - - 200.94 138.93 1.44 0.00088 0.046554 

chr2 60674600 60679999 - - 55.14 22.92 2.35 0.000217 0.021151 

chr2 63051600 63064399 RBM24 ENSGALG00000012712 155.14 101.84 1.52 0.000889 0.046703 

chr2 82940600 82957199 IKZF1 ENSGALG00000013086 426.64 264.16 1.61 7.42E-10 1.22E-06 

chr2 91573200 91582599 INVS ENSGALG00000013441 

ENSGALG00000013452 

111.68 62.38 1.78 0.000241 0.022787 

chr2 92042400 92047799 ISG12-2 ENSGALG00000013575 45.56 13.47 3.22 3.01E-05 0.006349 

chr2 92549400 92568199 - ENSGALG00000013628 130.66 213.79 0.61 8.67E-06 0.003529 

chr2 92807000 92817599 - - 83.88 42.06 1.97 0.00031 0.026638 

chr2 98936800 98945399 C2H18orf1 ENSGALG00000013886 118.46 65.21 1.80 0.000109 0.013225 

chr2 109884800 109893599 - - 138.55 86.72 1.59 0.000623 0.039475 

chr2 114789000 114816799 LYN ENSGALG00000018967 401.41 254.71 1.57 1.02E-08 1.40E-05 

chr2 129130000 129140599 NBN ENSGALG00000015912 

ENSGALG00000015913 

84.11 40.40 2.06 9.65E-05 0.012633 

chr2 154012200 154019999 LY6E ENSGALG00000016152 77.34 33.79 2.25 3.30E-05 0.006499 

chr20 6692000 6696799 - ENSGALG00000004859 59.58 15.36 3.70 2.55E-07 0.000155 

chr20 8313200 8319399 - ENSGALG00000005609 52.57 21.50 2.38 0.000371 0.029344 

chr20 8425800 8435999 SLC17A9 ENSGALG00000005711 131.78 81.05 1.62 0.000727 0.042269 

chr20 9705200 9712599 - - 40.89 14.18 2.76 0.000535 0.03747 

chr20 9975200 9991399 BCL2L1 

TPX2 

ENSGALG00000006211 

ENSGALG00000006267 

253.28 150.04 1.68 3.26E-07 0.000171 

chr20 10800000 10810199 - - 97.20 55.76 1.73 0.000825 0.045191 

chr20 11580000 11588199 - ENSGALG00000007640 133.18 76.79 1.72 9.79E-05 0.012633 

chr20 11977600 11988599 - ENSGALG00000007757 

ENSGALG00000007768 

109.11 63.80 1.70 0.000561 0.037928 

chr20 12030000 12042999 - ENSGALG00000020895 229.91 139.41 1.64 3.14E-06 0.001059 

chr20 12509600 12520999 - - 178.98 111.05 1.61 9.68E-05 0.012633 

chr21 1741400 1750199 SKI ENSGALG00000001229 90.19 45.60 1.96 0.000134 0.015386 

chr21 1906400 1913999 GNB1 ENSGALG00000001334 82.01 43.95 1.85 0.000618 0.039418 

chr21 2677400 2691199 LOC419429 ENSGALG00000002005 252.34 150.04 1.68 4.12E-07 0.000208 

chr21 4799200 4810199 NBL1 ENSGALG00000004043 98.60 47.97 2.03 2.76E-05 0.00589 

chr22 307600 318799 ARHGAP25 ENSGALG00000000132 74.53 36.86 2.00 0.000371 0.029344 

chr22 336000 350599 PCNA 

C22H20orf30 

ENSGALG00000000165 

ENSGALG00000000169 

ENSGALG00000000171 

142.76 82.94 1.71 7.37E-05 0.010555 

chr22 2445400 2456199 PLEKHA2 ENSGALG00000003349 118.69 64.74 1.82 7.64E-05 0.010684 
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chr23 99600 108599 - - 130.61 73.01 1.78 7.67E-05 0.010684 

chr23 176000 188999 - ENSGALG00000000519 141.83 84.12 1.68 0.000176 0.018648 

chr23 248400 257799 - ENSGALG00000000562 151.87 80.57 1.87 3.48E-06 0.001147 

chr23 4078800 4085399 - ENSGALG00000002021 236.22 145.55 1.62 3.63E-06 0.001156 

chr23 5896400 5903799 SRSF10 ENSGALG00000004133 74.53 38.75 1.90 0.000861 0.045898 

chr24 4347800 4358599 POU2AF1 ENSGALG00000006809 207.01 124.05 1.66 5.91E-06 0.001759 

chr24 5704600 5720999 DDX6 

CXCR5 

ENSGALG00000021251 

ENSGALG00000007675 

235.29 133.03 1.76 1.17E-07 8.09E-05 

chr26 2975200 2983799 - ENSGALG00000001373 93.46 52.22 1.77 0.000833 0.045331 

chr26 3369000 3371199 MOV10 ENSGALG00000023899 6.38 27.10 0.26 0.000324 0.044602 

chr3 2365000 2372799 XPO1 ENSGALG00000004377 128.74 77.97 1.64 0.000451 0.033709 

chr3 7631800 7645199 EHD3 ENSGALG00000009086 141.12 89.79 1.57 0.000736 0.042668 

chr3 17525200 17536799 SRSF7 ENSGALG00000013825 

ENSGALG00000023495 

ENSGALG00000013821 

ENSGALG00000013819 

120.10 72.54 1.65 0.000655 0.040051 

chr3 23135000 23144799 - ENSGALG00000009828 71.03 36.86 1.90 0.000923 0.047825 

chr3 23424800 23439399 TRAF5 ENSGALG00000009864 197.67 129.96 1.52 0.000197 0.020321 

chr3 24231000 24236399 - - 98.83 55.05 1.78 0.000637 0.039537 

chr3 28942600 28952199 - - 150.47 85.77 1.75 2.67E-05 0.00579 

chr3 31412600 31420399 - ENSGALG00000010149 86.92 27.88 3.04 2.34E-08 2.73E-05 

chr3 32338800 32348799 RASGRP3 ENSGALG00000010435 179.44 117.91 1.52 0.000375 0.029344 

chr3 33238000 33247199 EIF2AK2 ENSGALG00000023188 

ENSGALG00000010560 

150.47 54.58 2.73 1.21E-11 3.06E-08 

chr3 34825000 34834799 - ENSGALG00000010612 110.28 63.56 1.72 0.000437 0.03283 

chr3 39374400 39383199 GPR137B ENSGALG00000010843 161.45 102.31 1.57 0.000331 0.027882 

chr3 40011800 40016799 - - 56.08 25.75 2.13 0.000752 0.043081 

chr3 44712200 44724199 - ENSGALG00000020005 133.18 82.70 1.60 0.000616 0.039418 

chr3 47834000 47842799 - - 110.28 49.38 2.21 1.47E-06 0.000558 

chr3 49995400 50006399 - ENSGALG00000012359 91.12 48.67 1.85 0.000333 0.027921 

chr3 58815600 58824999 STX7 ENSGALG00000002930 122.43 71.12 1.71 0.000297 0.026037 

chr3 62261000 62271399 NCOA7 ENSGALG00000014834 136.45 82.94 1.64 0.000311 0.026638 

chr3 62284400 62292599 - - 128.04 73.25 1.74 0.000128 0.014869 

chr3 66395400 66404799 - ENSGALG00000014937 

ENSGALG00000014940 

99.30 57.42 1.72 0.000966 0.049211 

chr3 66447400 66454199 - - 44.16 13.94 3.02 4.71E-05 0.007944 

chr3 66455000 66465999 FAM26E ENSGALG00000014961 190.42 106.56 1.78 1.20E-06 0.000493 

chr3 77930400 77938399 - - 77.57 40.64 1.89 0.0008 0.044674 

chr3 85865600 85873199 LMBRD1 ENSGALG00000016174 107.01 62.38 1.70 0.000668 0.040379 

chr3 97873800 97877799 - ENSGALG00000016398 33.41 10.87 2.90 0.000606 0.039317 

chr3 97880800 97884199 - ENSGALG00000016400 21.26 4.25 4.24 0.000911 0.047596 

chr3 100739400 100749599 TRIB2 ENSGALG00000016457 146.26 84.59 1.72 5.23E-05 0.008543 

chr3 110034800 110045999 - - 153.98 91.68 1.67 8.69E-05 0.011881 

chr4 1435200 1443199 GPR174 ENSGALG00000004111 87.85 47.02 1.85 0.000695 0.040987 

chr4 1457800 1463599 ITM2A ENSGALG00000004107 116.82 69.94 1.66 0.000678 0.040688 
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chr4 11303800 11313399 - ENSGALG00000007482 61.92 29.30 2.08 0.000973 0.049383 

chr4 12993800 13009999 MAGT1 ENSGALG00000007861 

ENSGALG00000023641 

ENSGALG00000007863 

ENSGALG00000007902 

159.82 101.37 1.57 0.000388 0.029701 

chr4 18848000 18856399 - ENSGALG00000009177 87.39 47.73 1.81 0.000695 0.040987 

chr4 21107600 21114799 TLR2-2 ENSGALG00000009239 148.83 82.46 1.80 1.61E-05 0.003902 

chr4 33107000 33118799 - ENSGALG00000010022 

ENSGALG00000010031 

102.10 56.00 1.81 0.000219 0.021151 

chr4 36092800 36102799 - ENSGALG00000010324 99.53 54.82 1.80 0.000343 0.028366 

chr4 36171000 36181399 - ENSGALG00000020220 72.67 21.50 3.27 1.04E-07 7.51E-05 

chr4 47665200 47674599 - - 205.14 133.03 1.54 0.000106 0.013225 

chr4 50710200 50723799 TMEM66 

SRP72 

ENSGALG00000011395 

ENSGALG00000024482 

ENSGALG00000011403 

100.70 57.89 1.73 0.00075 0.043081 

chr4 56545800 56554399 METTL14 ENSGALG00000012000 153.74 98.53 1.55 0.000625 0.039475 

chr4 58662600 58671799 - ENSGALG00000012048 

ENSGALG00000012063 

110.52 60.25 1.82 0.000155 0.017164 

chr4 61723000 61732799 DAPP1 ENSGALG00000000056 88.32 48.44 1.81 0.000763 0.043481 

chr4 64244000 64254399 - - 160.98 100.66 1.59 0.000239 0.022787 

chr4 70911800 70930799 - - 299.31 187.61 1.59 4.27E-07 0.000209 

chr4 71445000 71450999 - - 167.53 96.40 1.73 1.42E-05 0.003527 

chr4 85898200 85907199 - ENSGALG00000015690 208.18 133.50 1.56 5.76E-05 0.009018 

chr4 86948600 86959599 SLBP ENSGALG00000015712 105.14 39.22 2.64 3.53E-08 3.15E-05 

chr4 86991000 87006399 FAM53A ENSGALG00000015713 283.88 181.70 1.56 2.52E-06 0.000888 

chr4 88807800 88817199 KDM3A ENSGALG00000015803 123.83 71.59 1.72 0.000232 0.022266 

chr4 88860000 88873199 RNF103 

RMND5A 

ENSGALG00000015809 

ENSGALG00000015815 

98.13 55.05 1.77 0.000637 0.039537 

chr5 11410200 11415799 - - 114.25 68.76 1.65 0.000804 0.044699 

chr5 14740200 14749599 CD81 ENSGALG00000006546 162.15 107.27 1.51 0.000958 0.048954 

chr5 15723400 15732999 BRSK2 ENSGALG00000006681 125.24 69.23 1.80 7.06E-05 0.010304 

chr5 16703800 16711799 - ENSGALG00000006841 91.12 45.37 1.99 9.90E-05 0.012633 

chr5 20523600 20535799 CD44 ENSGALG00000007849 256.55 164.93 1.55 8.31E-06 0.002293 

chr5 25090200 25099999 SPI1 ENSGALG00000008127 205.61 141.53 1.45 0.000685 0.040931 

chr5 27791600 27798999 GANC ENSGALG00000009018 

ENSGALG00000009036 

116.36 67.10 1.72 0.00036 0.029344 

chr5 30238600 30247399 - - 169.40 98.29 1.72 1.65E-05 0.003902 

chr5 36498000 36504599 G2E3  99.77 51.75 1.91 0.00011 0.013225 

chr5 45570200 45582199 ZC3H14 ENSGALG00000010616 

ENSGALG00000010622 

117.99 66.16 1.77 0.000201 0.020456 

chr5 47503200 47513199 LOC423422 ENSGALG00000017387 126.87 76.08 1.66 0.000533 0.03747 

chr5 48531200 48542199 GLRX5 ENSGALG00000011079 93.93 51.98 1.79 0.000585 0.038465 

chr5 50600600 50606999 - ENSGALG00000011139 103.74 60.72 1.70 0.000944 0.048588 

chr5 50899400 50908799 EVL ENSGALG00000011209 133.88 83.41 1.60 0.000816 0.045177 

chr5 52993200 53001999 XRCC3 ENSGALG00000011533 

ENSGALG00000011534 

103.51 55.29 1.86 0.000166 0.018016 

chr5 60273400 60280199 ARF6 ENSGALG00000012267 135.98 81.52 1.66 0.000291 0.025822 
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ENSGALG00000012268 

chr6 5447400 5459999 - ENSGALG00000002414 

ENSGALG00000024347 

123.37 73.25 1.68 0.000436 0.03283 

chr6 11716200 11725799 DNA2 ENSGALG00000004037 149.30 95.46 1.56 0.000661 0.040118 

chr6 16445600 16453799 - - 109.11 64.74 1.67 0.000774 0.043491 

chr6 17827200 17845399 PIK3AP1 ENSGALG00000005547 361.69 235.57 1.53 2.77E-07 0.000162 

chr6 19510800 19527199 - - 241.36 162.56 1.48 9.74E-05 0.012633 

chr6 19856200 19867999 - ENSGALG00000006254 185.28 106.56 1.73 4.24E-06 0.001314 

chr6 20438400 20448799 - ENSGALG00000006384 96.73 19.38 4.80 1.45E-13 4.39E-10 

chr6 22375200 22386999 BLNK ENSGALG00000006973 250.71 162.80 1.54 1.70E-05 0.003902 

chr6 24225200 24236599 - ENSGALG00000007753 180.84 121.45 1.49 0.000801 0.044674 

chr6 24987600 24994799 - - 49.62 93.46 0.54 0.000278 0.041705 

chr6 25713000 25725799 - - 176.41 108.22 1.62 6.51E-05 0.009773 

chr6 28162800 28172799 ACSL5 ENSGALG00000008840 96.26 52.22 1.83 0.000373 0.029344 

chr6 29022200 29032599 DCLRE1A 

NHLRC2 

ENSGALG00000008938 

ENSGALG00000008946 

143.69 86.24 1.66 0.000201 0.020456 

chr6 29163800 29176399 - ENSGALG00000008971 117.76 68.52 1.71 0.000389 0.029701 

chr7 4553400 4566599 UBE2F ENSGALG00000003812 96.26 53.64 1.78 0.000536 0.03747 

chr7 7149800 7156399 ITGB2 ENSGALG00000007511 125.00 71.59 1.74 0.00014 0.015755 

chr7 8893600 8903599 STAT1 ENSGALG00000007651 107.95 40.88 2.60 3.04E-08 2.88E-05 

chr7 12449200 12466199 CFLAR ENSGALG00000008239 

ENSGALG00000008240 

197.90 126.18 1.56 9.25E-05 0.012429 

chr7 12500800 12511999 CASP8 ENSGALG00000008355 184.12 116.72 1.57 0.000103 0.012915 

chr7 15658000 15667999 UBE2E3 ENSGALG00000020793 211.92 145.31 1.46 0.000553 0.037928 

chr7 18007200 18018999 - - 78.74 41.59 1.87 0.000888 0.046703 

chr7 22601800 22610999 IFIH1 ENSGALG00000011089 96.26 19.38 4.77 1.45E-13 4.39E-10 

chr7 29843600 29847599 - ENSGALG00000012072 38.55 9.69 3.70 2.49E-05 0.005479 

chr7 32372600 32382799 - - 125.24 74.67 1.67 0.000368 0.029344 

chr7 34326800 34344399 ARHGAP15 ENSGALG00000012421 245.80 154.53 1.59 6.06E-06 0.00177 

chr8 1933800 1944399 - - 182.01 114.36 1.59 9.22E-05 0.012429 

chr8 2083400 2096399 PTPRC ENSGALG00000002192 214.96 141.06 1.52 0.000126 0.01485 

chr8 3630200 3648599 - - 198.60 123.58 1.60 3.36E-05 0.006531 

chr8 4002200 4014599 - ENSGALG00000021112 117.06 70.88 1.64 0.000726 0.042269 

chr8 6853200 6863599 - - 134.82 81.75 1.64 0.000367 0.029344 

chr8 7374200 7384599 - - 118.69 67.34 1.75 0.000218 0.021151 

chr8 8331000 8338999 FAM129A ENSGALG00000004812 102.81 58.83 1.73 0.000629 0.039475 

chr8 10178800 10187799 C8H1orf27 ENSGALG00000005080 

ENSGALG00000005105 

88.32 47.73 1.83 0.000527 0.03747 

chr8 15813800 15822599 - - 145.56 89.31 1.62 0.000305 0.026604 

chr8 25134000 25143599 ORC1 ENSGALG00000010623 

ENSGALG00000010627 

169.86 103.49 1.64 7.52E-05 0.010671 

chr8 25179000 25195199 GPX7 ENSGALG00000010629 

ENSGALG00000010633 

119.63 52.22 2.27 3.21E-07 0.000171 

chr9 3527800 3547399 KLHL6 ENSGALG00000002263 316.36 216.67 1.46 1.68E-05 0.003902 

chr9 6137800 6151199 BOK ENSGALG00000005772 270.57 155.71 1.73 2.66E-08 2.88E-05 
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chr9 11264000 11273399 - - 209.35 137.75 1.52 0.000128 0.014869 

chr9 25418800 25425399 - - 64.25 30.48 2.07 0.000588 0.038465 

chrZ 861200 868399 ACAA2 ENSGALG00000002793 

ENSGALG00000002777 

60.98 27.88 2.15 0.000524 0.03747 

chrZ 961600 973599 TLX3 ENSGALG00000024979 

ENSGALG00000002696 

ENSGALG00000021762 

ENSGALG00000024938 

ENSGALG00000021750 

ENSGALG00000018565 

96.03 46.55 2.04 3.29E-05 0.006499 

chrZ 1553800 1565799 PIAS2 ENSGALG00000001851 

ENSGALG00000001843 

84.58 39.93 2.09 6.10E-05 0.009352 

chrZ 8422800 8427599 CD72 ENSGALG00000021353 94.63 41.59 2.25 5.87E-06 0.001759 

chrZ 8786200 8794999 - - 172.43 74.67 2.29 3.67E-10 6.97E-07 

chrZ 9086200 9092599 - - 111.68 61.91 1.79 0.00017 0.018263 

chrZ 9915000 9927399 BRIX1 ENSGALG00000003365 

ENSGALG00000003373 

ENSGALG00000003387 

110.98 49.38 2.22 1.47E-06 0.000558 

chrZ 10322400 10330999 LMBRD2 

SKP2 

ENSGALG00000013377 

ENSGALG00000003547 

68.93 30.01 2.26 0.000156 0.017176 

chrZ 10932400 10940199 WDR70 ENSGALG00000003688 

ENSGALG00000003708 

54.67 23.63 2.26 0.000539 0.037514 

chrZ 13075800 13081399 HMGCS1 ENSGALG00000014862 78.27 34.02 2.26 3.91E-05 0.007239 

chrZ 17652400 17658399 - ENSGALG00000014727 52.57 20.56 2.49 0.000208 0.02088 

chrZ 19978000 19985599 CENPK ENSGALG00000014753 

ENSGALG00000014756 

73.13 34.73 2.07 0.000206 0.02088 

chrZ 20015000 20023799 CZH5orf44 ENSGALG00000014765 

ENSGALG00000014767 

ENSGALG00000020567 

75.47 38.99 1.91 0.000641 0.039537 

chrZ 21011200 21014199 - - 99.53 49.86 1.98 4.83E-05 0.008055 

chrZ 22870600 22882999 F2RL1 ENSGALG00000014984 137.85 66.16 2.07 6.98E-07 0.000312 

chrZ 23296000 23302799 - - 71.50 35.92 1.96 0.000606 0.039317 

chrZ 25974000 25977999 - - 60.75 28.35 2.10 0.000846 0.04571 

chrZ 26494000 26500999 CBWD1 ENSGALG00000010147 60.98 28.35 2.11 0.000846 0.04571 

chrZ 26522600 26529799 - ENSGALG00000010156 104.68 52.93 1.96 3.81E-05 0.007225 

chrZ 27926200 27956199 - ENSGALG00000023324 18.22 106.56 0.18 2.31E-16 1.17E-12 

chrZ 27952200 27956199 - - 10.05 89.08 0.12 5.52E-17 4.19E-13 

chrZ 27962800 27966999 - ENSGALG00000018479 21.03 3.74 4.65 0.000277 0.041705 

chrZ 27968600 27973199 - ENSGALG00000018479 38.75 5.61 6.02 2.50E-07 0.000252 

chrZ 33393000 33402199 PLIN2 ENSGALG00000015090 80.38 38.51 2.06 0.000138 0.015659 

chrZ 37218800 37226199 - - 101.87 47.73 2.11 1.07E-05 0.002796 

chrZ 37696800 37702599 - - 42.99 16.30 2.54 0.000862 0.045898 

chrZ 40796200 40807199 DAPK1 ENSGALG00000012608 173.84 84.35 2.05 2.97E-08 2.88E-05 

chrZ 41465800 41473399 - ENSGALG00000012621 75.00 34.73 2.13 0.000107 0.013225 

chrZ 41665200 41674599 - - 65.89 29.06 2.22 0.000262 0.023821 

chrZ 42824600 42836199 - ENSGALG00000010693 

ENSGALG00000010694 

171.03 92.15 1.85 1.27E-06 0.000507 

chrZ 43327200 43335199 SYK ENSGALG00000015216 153.74 77.03 1.98 6.07E-07 0.000288 
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chrZ 44067800 44077599 - ENSGALG00000017686 125.47 56.94 2.18 3.14E-07 0.000171 

chrZ 44165800 44173999 HINT1 ENSGALG00000000428 93.46 47.73 1.94 0.000126 0.01485 

chrZ 45132000 45138399 - - 69.39 31.90 2.14 0.000183 0.019172 

chrZ 45245400 45250399 - - 60.75 26.94 2.21 0.000317 0.026881 

chrZ 55077800 55084199 LMNB1 ENSGALG00000014692 48.60 19.38 2.43 0.000522 0.03747 

chrZ 56311400 56320199 ARSK ENSGALG00000014672 

ENSGALG00000014670 

78.27 34.50 2.23 3.91E-05 0.007239 

chrZ 58562000 58569599 - ENSGALG00000014648 55.38 21.74 2.48 0.000121 0.014418 

chrZ 59123800 59137999 - ENSGALG00000014645 419.40 204.86 2.04 4.69E-18 7.12E-14 

chrZ 61615400 61623199 TMEM167A ENSGALG00000015619 57.95 26.70 2.13 0.000878 0.046554 

chrZ 62751200 62760399 - ENSGALG00000015576 64.49 30.48 2.08 0.000588 0.038465 

chrZ 62771400 62778799 LOC425215 

RAD17 

ENSGALG00000020534 

ENSGALG00000015571 

69.86 29.06 2.36 6.57E-05 0.009773 

chrZ 65032800 65037799 SMC2 

PTGR1 

ENSGALG00000015691 118.93 61.20 1.93 2.45E-05 0.005477 

chrZ 66784000 66792199 - ENSGALG00000001765 69.86 33.55 2.05 0.000469 0.034867 

chrZ 67021800 67029999 - ENSGALG00000001864 68.23 31.43 2.13 0.000255 0.023634 

chrZ 69690600 69699599 - - 83.18 42.53 1.93 0.00031 0.026638 

chrZ 69701800 69704199 - - 6.38 32.24 0.22 2.43E-05 0.00824 

chrZ 72281400 72288199 - ENSGALG00000008204 114.02 55.05 2.05 6.64E-06 0.001901 

chrZ 73532600 73536399 - ENSGALG00000005316 70.56 35.21 1.98 0.000821 0.045177 

chrZ 74298400 74309999 - - 85.75 36.62 2.31 9.81E-06 0.002614 
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Appendix IV. Sequencing results showing raw and mapped reads for 

from thymus samples. 

Chicken 

Line 

Status Raw  Mapped  Mapped 

% 

Non-

redundant 

Non-redundant 

% 

63 Infected 13188253 10008826 75.892 4559032 0.455501175 

 Control 11901057 10019594 84.1908 5615896 0.560491373 

72 Infected  10716016 7417387 69.2178 2850746 0.384332919 

 Control 6046819 4520471 74.7578 2365956 0.523387054 

63 Infected  12496897 10152490 81.2401 7523315 0.74103151 

 Control 9010579 7471261 82.9165 6836444 0.915032148 

72 Infected  8754256 7082681 80.9056 5933170 0.837701147 

 Control 7838478 5921978 75.5501 3603345 0.608469839 

        
                  

           
;               
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Appendix V. Primers used for quantitative PCR validation. 

Genes Purpose Primers Sequence 

CTLA-4 Gene expression F 5’- TCAAACAGACAGGCGACAAG-3’ 

  R 5’- GGGCTAACATGGCACTGAAT-3’ 

BCL6 Gene expression F 5’- ATCCAGTTCACCCGCCACGC-3’ 

  R 5’- AGAGGCCACTGCAGGCCATCA-3’ 

CITED2 Gene expression F 5’- CACGTCAGCCCGGGAGAGGA-3’ 

  R 5’- TTCCGCCATCTCCCACCTCCC-3’ 

EGR1 Gene expression F 5’- AGCACCTTGCGGCAGACACTT-3’ 

  R 5’- GGAGAAGCGCCCCGTGTAGG-3’ 

TLR3 Gene expression F 5’- CCATGGTGCAGGAAGTTTAAGGTGC-3’ 

  R 5’- CTGGCCAGTTCAAGATGCAGCA-3’ 

MX1 Gene expression F 5’- TGGAGGAGCCAGCTGTTGCG-3’ 

  R 5’- ATTCTGGCCTGAGCAGCGTTGT-3’ 

MMP2 Gene expression F 5’- GCTTTCTGCTTAGGCATTGG-3’ 

  R 5’- GCATTGGCATTTCATGTTTG-3’ 

IGF2BP1 Gene expression F 5’- GCGTGACTCCGGCCGACTTG-3’ 

  R 5’- TGCAGCTCCACTTTCCCCGAA-3’ 

TNFSF1A Gene expression F 5’- CTGCGTCGCTGGCTTCTCTCC-3’ 

  R 5’- GTTAGGATAACCGTCCCCAGCGA-3’ 

GAL Gene expression F 5’- GCTCCCTGCGAGACACCGTT-3’ 

  R 5’- GGTTATCTACTGCATGTGGCCCAAG-3’ 

EAF2 Gene expression F 5’- GCGGGCCATGGTGTGAGGTG-3’ 

  R 5’- AGTCATAGCGCACGGTGTGGAA-3’ 

HAPLN1 Gene expression F 5’- GCGCATCTCGACTTGGGAGCT-3’ 

  R 5’- GGCGGGGTCCATTTTCTTCTTGGA-3’ 

CD4 Gene expression F 5’- TGTCAACGCCGGATGTATAA -3’ 

  R 5’- CTTGTCCATTGGCTCCTCTC -3’ 

GAPDH Gene expression F 5’-GAGGGTAGTGAAGGCTGCTG-3’ 

  R 5’-ACCAGGAAACAAGCTTGACG-3’ 

GAPDH-

ChIP 

ChIP validation F 5’-GTCACGTCCCAGGAGCAG-3’ 

  R 5’-AGGACCGTGCTAATGAGGAA-3’ 

MyoD-ChIP ChIP validation F 5’-TTGGTGGAGATCATGCCATA-3’ 

  R 5’-GTTGTGGGCCAGAAACAAGT-3’ 

K4-Peak-2 ChIP-Seq 

validation 

F 5’-TCCTCCTTATGTGGGGAGTG-3’ 

  R 5’-GGACCTGTACTCGCAAGCTC-3’ 

F: forward, R: reverse 
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Appendix VI. Probability densities of peak length distributions in 

different classes of SERs.  

Line-specific and condition-specific SERs predominantly correspond to low 

enrichment regions for both H3K4me3 (a-d) and H3K27me3 (e-h).  

63_inf: line 63 infected, 63_non: line 63 control, 72_inf: line 72 infected, 72_non: line 

72 control. 
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Appendix VII. Relationship between gene expression and histone 

marks in line 63 control samples.  

Plots of histone modifications around the gene body (a & b) in genes having high 

(blue), medium (red), low (green) and no activity (brown). We also compared 

epigenetic marks with transcriptional levels: H3K4me3 shows positive correlation 

with gene expression levels (c) while H3K27me3 exhibits a negative relationship (d).  
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Appendix VIII. Relationship between gene expression and histone 

marks in line 72 control samples.  

Plots of histone modifications around the gene body (a & b) in genes having high 

(blue), medium (red), low (green) and no activity (brown). We also compared 

epigenetic marks with transcriptional levels: H3K4me3 shows positive correlation 

with gene expression levels (c) while H3K27me3 exhibits a negative relationship (d).  
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Appendix IX. Relationship between gene expression and histone 

marks in line 72 infected samples.  

Plots of histone modifications around the gene body (a & b) in genes having high 

(blue), medium (red), low (green) and no activity (brown). We also compared 

epigenetic marks with transcriptional levels: H3K4me3 shows positive correlation 

with gene expression levels (c) while H3K27me3 exhibits a negative relationship (d).  
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Appendix X. Differential H3K4me3 marks.  

Genome-wide differential H3K4me3 marks produced by DESeq (FDR < 0.4) and 

associated genes. P-values from three contrasts are displayed as follows: 63: 63I vs 

63N, 72: 72I vs 72N, 63v72N: 63N vs 72N.  

 

SER Samples 63 63v72N 72 Genes 

chr1:51052800-51055599 72 0.716728 0.667995 3.82E-06 ENSGALG00000019325 

chr1:170985000-170989599 72 0.002904 0.306603 4.55E-06 ENSGALG00000016964 

chr1:53428200-53431799 72 0.052888 0.30538 0.000259 ENSGALG00000012472 

chr5:25094000-25097799 72 0.449986 0.005768 0.000298 SPI1 

chr7:14495200-14497999 72 0.170978 0.209627 0.000303 CTLA4 

chr2:37739800-37741599 72 0.570832 0.021549 0.000589 ENSGALG00000011298 

chr1:133186800-133192199 72 0.180816 0.034588 0.000633 P2RY8 

chr20:6692200-6696799 72 0.012873 0.337854 0.000765 ENSGALG00000004859 

chr6:20438000-20445599 72 0.000887 0.407654 0.000803 ENSGALG00000006384 

chr1:112367400-112371799 63,72 1.28E-07 0.415314 4.26E-09 MX1 

chrZ:27968600-27972599 63,72 3.41E-06 0.220991 1.41E-05 ENSGALG00000018479 

chrZ:27964800-27967199 63,72 7.99E-05 0.982308 1.99E-06 ENSGALG00000018479 

chr2:92042800-92046599 63,72 0.000149 0.469067 5.88E-05 ISG12-2 

chr2:22865400-22868199 63,72 0.000232 0.015605 6.48E-09 ENSGALG00000009479 

chr8:17511400-17515199 63v72N 0.479617 1.59E-15 0.664428 ENSGALG00000008854 

chr27:3433400-3435399 63v72N 0.770916 4.21E-13 0.854824 IGF2BP1 

chr19:8963800-8966399 63v72N 1 3.22E-12 0.757603 ENSGALG00000005578 

chr20:8475000-8478399 63v72N 0.609497 5.00E-08 0.551674 BHLHB4 

chr2:42132800-42135999 63v72N 0.885306 5.45E-08 0.11767 ENSGALG00000011613 

chr2:125007000-125012399 63v72N 0.606371 1.12E-06 0.653623 ENSGALG00000015732 

chr17:2454000-2459199 63v72N 0.257894 2.32E-06 0.969863 ENSGALG00000008472 

chr15:11138400-11145599 63v72N 0.348842 3.37E-06 0.669509 ENSGALG00000007891 

chr1:34419600-34421399 63v72N 0.326263 7.36E-06 0.0056 NM_205429 

chr5:9146600-9149999 63v72N 0.574535 8.79E-06 1 ENSGALG00000005569 

chr9:24010000-24011399 63v72N 0.691296 1.19E-05 1 ENSGALG00000009651 

chr18:2129800-2131199 63v72N 0.065392 1.84E-05 0.782984 ENSGALG00000001261 

chr1:58694400-58697399 63v72N 0.86674 2.08E-05 1 ENSGALG00000012842 

chr6:20700600-20706799 63v72N 0.98773 3.56E-05 0.542148 ENSGALG00000006478 

chr1:16635600-16638799 63v72N 0.34467 7.53E-05 0.967558 ENSGALG00000007025 

chr4:88993400-88995799 63v72N 0.450676 0.000352 0.616238 RHACD8-4 

chr2:31255200-31257599 63v72N 0.754165 0.00045 0.501096 ENSGALG00000010977 

chr3:78289800-78291599 63v72N 0.400008 0.000464 0.868325 ENSGALG00000015768 

chr4:89068600-89071199 63v72N 0.536311 0.000498 0.198913 ENSGALG00000015900 

chr16:254000-260599 63v72N 0.167746 0.000532 0.727697 ENSGALG00000024350 

chr28:2385800-2387599 63v72N 0.056255 0.000752 0.475928 HMHA1 

chr9:24282200-24286799 63v72N 1 0.000792 0.194649 PTX3 
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chr5:21118200-21127599 63v72N 0.442807 0.000858 0.974084 ENSGALG00000007920 

chr4:35196200-35199399 63v72N 0.668563 0.00089 0.08687 ENSGALG00000010119 

chr1:86640200-86646399 63v72N 0.702909 0.001168 0.47306 ENSGALG00000015152 

chr1:73596000-73597999 63v72N 0.292515 0.001353 0.354935 ENSGALG00000009702 

chr1:493800-497599 63v72N 0.828115 0.001482 0.011776 ENSGALG00000013772 

chr3:91008600-91012999 63v72N 0.914485 0.001541 0.222185 ENSGALG00000016313 

chr28:950600-953199 63v72N 0.065569 0.001577 0.216139 LOC429451 

chr11:3713800-3717199 63v72N 0.937602 0.001624 0.144532 MMP2 

chr9:6356600-6361199 63v72N 0.286756 0.001771 0.380294 ENSGALG00000024277 

chr11:18834600-18838599 63v72N 0.236689 0.001905 0.69083 ENSGALG00000021839 

chr5:9901200-9904599 63v72N 0.285583 0.001913 0.59137 ENSGALG00000005662 

chr24:5576000-5580199 63v72N 0.410471 0.00203 0.210206 ENSGALG00000024072 

chr3:8004400-8011999 63v72N 0.245685 0.002035 0.364679 LBH 

chr7:11293600-11296999 63v72N 0.899936 0.002137 0.02535 ENSGALG00000008118 

chr5:60369200-60372999 63v72N 0.56105 0.002249 0.180948 ENSGALG00000012295 

chr9:18230200-18232799 63v72N 0.203495 0.002359 0.183201 ENSGALG00000008852 

chr16:287400-289799 63v72N 0.101651 0.002374 0.836484 YFV 

chr6:20271600-20273799 63v72N 0.601004 0.002532 0.389374 ENSGALG00000006315 

chr1:80088400-80090199 63v72N 0.036097 0.002575 0.50626 GAPDH 

chr17:2197800-2203399 63v72N 0.203224 0.003068 0.72636 ENSGALG00000008623 

chr11:540400-541799 63v72N 0.446134 0.003207 0.041007 ENSGALG00000001149 

chr6:21718400-21721199 63v72N 0.5093 0.003402 0.723345 CYP26A1 

chr1:80531600-80534199 63v72N 0.112136 0.003602 0.417485 ENSGALG00000014570 

chr27:4011000-4012599 63v72N 0.027087 0.003641 0.880761 RPL19 

63I: line 63 infected, 63N: line 63 control, 72I: line 72 infected, 72N: line 72 control. 
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Appendix XI. Differential H3K27me3 marks.  

Genome-wide differential H3K27me3 marks produced by DESeq (FDR < 0.4) and 

the associated genes. P-values from three contrasts are displayed as follows: 63: 63I 

vs 63N, 72: 72I vs 72N, 63v72N: 63N vs 72N.  

 

SER Samples 63 63v72N 72 Genes 

chrZ:61242600-61246599 63 0.000433 0.020859 0.950978 HAPLN1 

chr1:200341000-200346199 63v72N 0.005362 8.03E-06 0.004025 PLEKHB1 

chr20:13944200-13946199 63v72N 0.011424 0.000339 0.07724 ENSGALG00000021818 

chr6:3937800-3940599 63v72N 0.086992 0.000453 0.024937 CHAT 

chr1:56375000-56377399 63v72N 0.303852 0.000477 0.000864 SLC41A2 

chr4:68468600-68471999 63v72N 0.316764 0.000736 0.015472 CNGA1 

chr2:105030600-105041199 63v72N 0.005641 0.001004 0.599687 YES1 

chr5:53554000-53556399 63v72N 0.141409 0.001085 0.705233 LOC396507 

chrZ:14565400-14567599 63v72N 0.455076 0.001942 0.127439 ISL1 

chr9:22131400-22134199 63v72N 0.062622 0.001942 0.013793 SERPINI1 

chrZ:53399000-53401399 63v72N 0.453352 0.002075 0.039701 LPL 

chr3:83227600-83228999 63v72N 0.298938 0.002459 0.054133 MYO6 

chr4:61633000-61634799 63v72N 0.136925 0.002736 0.016587 MTTP 

chr15:1026600-1029599 63v72N 0.062622 0.002745 0.173465 TXNRD2 

chr17:10782800-10784999 63v72N 0.015864 0.00291 0.604932 LMX1B 

chr1:34734400-34739999 63v72N 0.170909 0.003188 0.049861 USP15 

chr2:142382800-142388799 63v72N 0.036544 0.003623 0.241009 COL14A1 

chr7:38258000-38260599 63v72N 0.635254 0.003987 0.005603 BAZ2B 

chr12:13025200-13035799 63v72N 0.248088 0.004195 0.359076 PTPRG 

chr1:86479600-86480599 63v72N 0.385484 0.004399 1 CLDND1 

chr2:9614800-9616999 63v72N 0.24546 0.004417 0.132706 VIPR2 

chr20:13529400-13532599 63v72N 0.346345 0.004507 0.048222 PARD6B 

chr8:10056400-10060999 63v72N 0.120295 0.004617 0.611896 PTGS2 

chrZ:73849400-73853199 63v72N 0.725354 0.005114 0.001516 SNX2 

chr8:25401600-25405399 63v72N 0.058472 0.005189 0.34897 LRP8 

chr3:83220400-83222599 63v72N 0.298938 0.005312 0.138533 MYO6 

chr12:20438000-20440399 63v72N 0.302634 0.00538 0.063607 ENSGALG00000008546 

chr8:10061600-10063599 63v72N 0.919869 0.005598 0.091557 PTGS2 

chr20:13611000-13614599 63v72N 0.156188 0.005903 0.04699 PTPN1 

chr3:107835800-107838599 63v72N 0.038119 0.006081 1 SELI 

chr14:3565400-3566399 63v72N 0.661808 0.006367 0.076777 SDK1 

chr19:9934600-9937199 63v72N 0.012778 0.006736 0.684263 ENSGALG00000024472 

chr2:19019200-19020999 63v72N 0.657886 0.006888 0.156392 ARL5B 

chr3:98841000-98849999 63v72N 0.037394 0.006998 0.200231 MBOAT2 

chrZ:31223800-31228399 63v72N 0.539413 0.007079 0.040181 NFIB 

chr3:83237600-83239199 63v72N 0.01338 0.007223 0.012756 MYO6 
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chr5:32322800-32325799 63v72N 0.138907 0.007372 0.157171 LOC423287 

chr1:136063000-136065199 63v72N 1 0.007507 0.122353 CNGA3 

chr1:119394000-119397399 63v72N 0.338779 0.007685 0.84737 NR0B1 

chr1:82674400-82681599 63v72N 0.021767 0.007708 0.839856 TNFRSF1A 

chr13:12341200-12342999 63v72N 0.236329 0.008054 0.184991 MFAP3 

chr1:82682800-82684999 63v72N 0.09838 0.009211 0.557042 TNFRSF1A 

chr4:12203800-12206399 63v72N 0.285549 0.00941 0.072009 CDX4 

chr11:3259800-3261399 63v72N 0.221089 0.00946 0.119613 RBM35B 

chr15:3199600-3202399 63v72N 0.413584 0.009922 0.151783 STX2 

chr5:17802200-17813599 63v72N 0.07643 0.010175 0.161937 GAL,GAL 

chr2:142391600-142393199 63v72N 0.924871 0.01037 0.124309 COL14A1 

chr7:13565400-13567999 63v72N 0.326274 0.01084 0.087589 ADAM23 

chr3:98829000-98834999 63v72N 0.065783 0.01114 0.067188 MBOAT2 

chr21:2663200-2673399 63v72N 0.819859 0.011482 0.032016 LOC419429 

chr2:32833000-32834599 63v72N 0.426118 0.011758 0.176766 HIBADH 

chr20:13521000-13522799 63v72N 0.657886 0.011758 0.065858 PARD6B 

chr10:464600-471199 63v72N 0.275583 0.011908 0.056682 RBPMS2 

chr9:6139600-6145199 63v72N 0.660708 0.012047 0.012202 BOK 

chr9:25551600-25554399 63v72N 0.086893 0.012453 0.023952 ENSGALG00000023481 

chr9:22134600-22157599 63v72N 0.105332 0.012688 0.351075 PDCD10 

chr10:12022000-12024199 63v72N 0.30003 0.01291 0.54086 GALK2 

chr11:10590400-10593399 63v72N 0.108908 0.013312 0.370375 NUDT19 

chr23:2790000-2791599 63v72N 0.270433 0.013363 0.000515 PTPRU 

chr3:57077400-57080199 63v72N 0.083218 0.013476 0.173465 MAP7 

chr15:2961000-2962399 63v72N 0.183799 0.013643 0.08126 STX2 

chr2:119649400-119658799 63v72N 0.14125 0.013823 0.172635 COPS5 

chr7:27897400-27900599 63v72N 0.041375 0.013832 0.528546 EAF2 

chr1:199701000-199703999 63v72N 0.417345 0.014276 0.024195 MAP6 

chr1:200229400-200232599 63v72N 0.084398 0.015005 0.817811 PLEKHB1 

chr10:9020600-9022599 63v72N 0.773433 0.01506 0.077735 PRTG 

chr2:34385400-34391599 63v72N 0.379072 0.015335 0.053537 DAZL 

chr14:8924600-8928999 63v72N 0.224468 0.015342 0.566168 CDR2 

chr2:32821200-32824599 63v72N 0.136263 0.015538 0.160668 HIBADH 

chr19:9764800-9766799 63v72N 0.837869 0.015928 0.066012 ENSGALG00000005995 

chr24:932800-935599 63v72N 0.189546 0.016521 0.765579 TNIP1 

chr7:12495800-12498999 63v72N 0.369589 0.017077 0.599676 CASP18 

chr1:174433000-174438599 63v72N 0.335686 0.017193 0.755401 WDFY2 

chr3:81190800-81193199 63v72N 0.473563 0.017221 0.28765 LOC421845 

chr15:2944400-2947999 63v72N 0.497322 0.017263 0.033 STX2 

chr3:11203000-11210399 63v72N 0.098602 0.017496 0.181967 PPP3R1 

63I: line 63 infected, 63N: line 63 control, 72I: line 72 infected, 72N: line 72 control. 
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Appendix XII. Putative bivalent genes from colocalization analysis of 

H3K4me3 and H3K27me3. 

Gene Alternative Name Samples 

CITED2 ENSGALG00000013818 L63_inf,L72_inf 

BCL6 ENSGALG00000007357 L63_inf,L72_inf,L72_non 

EGR1 ENSGALG00000007669 L63_inf,L72_inf,L72_non 

TLR3 ENSGALG00000013468 L63_inf,L72_inf,L72_non 

ST6GAL1 ENSGALG00000005550 L63_non,L72_inf 

TIRAP ENSGALG00000001077 L72_inf 

NECAP2 ENSGALG00000003745 L72_inf 

UBB ENSGALG00000004509 L72_inf 

SMAD3 ENSGALG00000007870 L72_inf 

ANXA5 ENSGALG00000011885 L72_inf 

GCH1 ENSGALG00000012200 L72_inf 

YFV ENSGALG00000024344 L72_inf 

LOC417083 ENSGALG00000024350 L72_inf 

LOC378902 ENSGALG00000006407 L72_inf,L72_non 

ST3GAL6 ENSGALG00000015252 L72_inf,L72_non 

RHOB ENSGALG00000016485 L72_inf,L72_non 

CD4 ENSGALG00000014477 L72_non 

PLS1 ENSGALG00000002647 L63_inf 

ENSGALG00000008952 ENSGALG00000008952 L63_inf 

RAB33B ENSGALG00000009790 L63_inf 

C9orf18 ENSGALG00000001352 L63_inf,L63_non,L72_inf,L72_non 

ENSGALG00000003545 ENSGALG00000003545 L63_inf,L63_non,L72_inf,L72_non 

PFN2 ENSGALG00000010410 L63_inf,L63_non,L72_inf,L72_non 

PLEKHA8 ENSGALG00000011185 L63_inf,L63_non,L72_inf,L72_non 

ENSGALG00000011364 ENSGALG00000011364 L63_inf,L63_non,L72_inf,L72_non 

SIX1 ENSGALG00000022994 L63_inf,L63_non,L72_inf,L72_non 

BTBD14A ENSGALG00000001728 L63_inf,L72_inf 

STK10 ENSGALG00000002816 L63_inf,L72_inf 

LOC768803 ENSGALG00000003048 L63_inf,L72_inf 

CDC25A ENSGALG00000004934 L63_inf,L72_inf 

RAP1GAP2 ENSGALG00000005868 L63_inf,L72_inf 

REEP6 ENSGALG00000015189 L63_inf,L72_inf 

ENSGALG00000020995 ENSGALG00000020995 L63_inf,L72_inf 

ENSGALG00000023324 ENSGALG00000023324 L63_inf,L72_inf 

RAB33A ENSGALG00000024049 L63_inf,L72_inf 

LOC419892 ENSGALG00000002568 L63_inf,L72_inf,L72_non 

AGPHD1 ENSGALG00000003063 L63_inf,L72_inf,L72_non 

ENSGALG00000003598 ENSGALG00000003598 L63_inf,L72_inf,L72_non 

SOX30 ENSGALG00000003723 L63_inf,L72_inf,L72_non 
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ENSGALG00000004884 ENSGALG00000004884 L63_inf,L72_inf,L72_non 

IL13RA1 ENSGALG00000006032 L63_inf,L72_inf,L72_non 

GLT8D4 ENSGALG00000007804 L63_inf,L72_inf,L72_non 

ENSGALG00000007909 ENSGALG00000007909 L63_inf,L72_inf,L72_non 

C10orf26 ENSGALG00000008119 L63_inf,L72_inf,L72_non 

ENSGALG00000009816 ENSGALG00000009816 L63_inf,L72_inf,L72_non 

SPP1 ENSGALG00000010926 L63_inf,L72_inf,L72_non 

PRRG4 ENSGALG00000012032 L63_inf,L72_inf,L72_non 

C11orf54 ENSGALG00000017219 L63_inf,L72_inf,L72_non 

C1orf190 ENSGALG00000017379 L63_inf,L72_inf,L72_non 

LOC768635 ENSGALG00000019568 L63_inf,L72_inf,L72_non 

ENSGALG00000023347 ENSGALG00000023347 L63_inf,L72_inf,L72_non 

MACROD2 ENSGALG00000023773 L63_inf,L72_inf,L72_non 

ENSGALG00000023864 ENSGALG00000023864 L63_inf,L72_inf,L72_non 

PDE8A ENSGALG00000005992 L63_inf,L72_non 

RAB3B ENSGALG00000010567 L63_inf,L72_non 

MIB1 ENSGALG00000014974 L63_inf,L72_non 

PLEKHF2 ENSGALG00000015988 L63_inf,L72_non 

TAF12 ENSGALG00000000991 L63_non 

RPLP1 ENSGALG00000016172 L63_non 

BATF ENSGALG00000010323 L63_non,L72_inf 

ZDHHC18 ENSGALG00000000869 L72_inf 

ORAI2 ENSGALG00000001837 L72_inf 

TRIM65 ENSGALG00000002209 L72_inf 

GSTT1 ENSGALG00000005204 L72_inf 

GFI1 ENSGALG00000005940 L72_inf 

SLC24A6 ENSGALG00000008337 L72_inf 

KCNMB4 ENSGALG00000010044 L72_inf 

CYP46A1 ENSGALG00000011162 L72_inf 

MYC ENSGALG00000016308 L72_inf 

ENSGALG00000020271 ENSGALG00000020271 L72_inf 

ENSGALG00000022653 ENSGALG00000022653 L72_inf 

TPCN3  L72_inf 

RAB40B ENSGALG00000001545 L72_inf,L72_non 

SPTAN1 ENSGALG00000004719 L72_inf,L72_non 

GSTT1 ENSGALG00000006344 L72_inf,L72_non 

CCDC40 ENSGALG00000007042 L72_inf,L72_non 

NELF ENSGALG00000008681 L72_inf,L72_non 

C14orf174 ENSGALG00000010457 L72_inf,L72_non 

CSTB ENSGALG00000014410 L72_inf,L72_non 

LOC421845 ENSGALG00000015865 L72_inf,L72_non 

CRYL1 ENSGALG00000017135 L72_inf,L72_non 

TMEM22 ENSGALG00000001285 L72_non 
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DYDC1 ENSGALG00000002432 L72_non 

ACSBG1 ENSGALG00000003286 L72_non 

PTGS2 ENSGALG00000005069 L72_non 

DHRS11 ENSGALG00000005403 L72_non 

C16orf45 ENSGALG00000006456 L72_non 

C22orf36 ENSGALG00000006588 L72_non 

CCDC104 ENSGALG00000008064 L72_non 

ENSGALG00000010412 ENSGALG00000010412 L72_non 

TPMT ENSGALG00000012687 L72_non 

ENSGALG00000014777 ENSGALG00000014777 L72_non 

SNX3 ENSGALG00000015304 L72_non 

CCDC125 ENSGALG00000015572 L72_non 

TP53I3 ENSGALG00000016502 L72_non 

N6AMT2 ENSGALG00000017133 L72_non 

ENSGALG00000021811 ENSGALG00000021811 L72_non 

ENSGALG00000024306 ENSGALG00000024306 L72_non 

SLMAP  L72_non 

63_inf: line 63 infected, 63_non: line 63 control, 72_inf: line 72 infected, 72_non: line 

72 control. 
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Appendix XIII. Functional annotation clustering of bivalent genes. 

Top 5 functional annotation clusters from enrichment analysis of putative bivalent 

genes using DAVID. P-values were generated by the program and FDR calculated 

using the Benjamini-Hochberg procedure. 

 
Annotation Cluster 1     Enrichment Score: 2.1845463098819007    

Term Count P-Value FDR 

GO:0006955~immune response 7 1.98E-04 0.110468 

GO:0045087~innate immune response 3 0.012582 0.656019 

GO:0006952~defense response 3 0.111974 0.834128 

    

Annotation Cluster 2     Enrichment Score: 1.6487663600383535    

Term Count P-Value FDR 

GO:0046649~lymphocyte activation 4 0.007963 0.692509 

GO:0045321~leukocyte activation 4 0.011364 0.674961 

GO:0001775~cell activation 4 0.016505 0.706945 

GO:0030097~hemopoiesis 4 0.019778 0.657496 

GO:0048534~hemopoietic or lymphoid organ development 4 0.026651 0.735031 

GO:0010604~positive regulation of macromolecule metabolic 

process 

6 0.028689 0.733148 

GO:0002520~immune system development 4 0.030149 0.700043 

GO:0030098~lymphocyte differentiation 3 0.030369 0.679294 

GO:0042110~T cell activation 3 0.033032 0.688318 

GO:0002521~leukocyte differentiation 3 0.047625 0.729812 

  

Annotation Cluster 3     Enrichment Score: 1.6398579175050156    

Term Count P-Value FDR 

GO:0010033~response to organic substance 5 0.00998 0.693819 

GO:0010604~positive regulation of macromolecule metabolic 

process 

6 0.028689 0.733148 

GO:0044093~positive regulation of molecular function 4 0.042032 0.718255 

    

Annotation Cluster 4     Enrichment Score: 1.1692334713765171    

Term Count P-Value FDR 

GO:0070085~glycosylation 3 0.046075 0.734266 

GO:0006486~protein amino acid glycosylation 3 0.046075 0.734266 

GO:0043413~biopolymer glycosylation 3 0.046075 0.734266 

GO:0009101~glycoprotein biosynthetic process 3 0.055656 0.727326 

GO:0009100~glycoprotein metabolic process 3 0.067634 0.736268 

GO:0031090~organelle membrane 5 0.123709 0.999998 

GO:0012505~endomembrane system 4 0.143513 0.993977 
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Annotation Cluster 5     Enrichment Score: 1.1590029316201944    

Term Count P-Value FDR 

GO:0010604~positive regulation of macromolecule metabolic 

process 

6 0.028689 0.733148 

GO:0009967~positive regulation of signal transduction 3 0.103793 0.825775 

GO:0010647~positive regulation of cell communication 3 0.111974 0.834128 
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Appendix XIV. Sequencing results showing read numbers for each 

sample from bursa of Fabricius at 5 and 10 days post infection. 

 

Histone DPI Line Status Replicate Total Mapped Mapped% Non-

redundant 

Non-

redundant% 

H3K4me3 5 L63 inf 1 10146707 9469948 93.33026 5990070 63.25346 

    2 13131449 12144366 92.48306 7392050 60.86814 

   non 1 16445821 15134536 92.02664 9744869 64.38829 

    2 17765727 16502268 92.88822 12311597 74.60548 

  L72 inf 1 13685625 12397340 90.58658 8567829 69.11022 

    2 15693208 14242909 90.75843 9231076 64.81173 

   non 1 22800222 11537587 50.60296 7102076 61.55599 

    2 23472442 12579614 53.59312 8094915 64.34947 

 10 L63 inf 1 11207008 10454772 93.28781 7216101 69.02208 

    2 8743345 8174684 93.49607 5686370 69.56073 

   non 1 16180287 15023018 92.84766 11294506 75.18134 

    2 13562130 12506700 92.21782 9863369 78.86468 

  L72 inf 1 17597960 15956904 90.67474 10980332 68.81242 

    2 15109789 13756612 91.04437 10963779 79.69825 

   non 1 20238612 1872581 9.252517 985452 52.62533 

    2 21964876 11188450 50.93792 8784442 78.51348 

H3K27me3 5 L63 inf 1 13033297 12535093 96.17745 9701319 77.39328 

    2 9233419 8823724 95.56291 7086270 80.30929 

   non 1 14458859 13576043 93.89429 11482089 84.57611 

    2 12628694 11812297 93.53538 10014981 84.78436 

  L72 inf 1 17480503 16641372 95.19962 14810698 88.99926 

    2 15159625 14573824 96.13578 12974760 89.02784 

   non 1 22208836 11979948 53.94226 10340280 86.31323 

    2 24457902 17323581 70.8302 14925120 86.15494 

 10 L63 inf 1 8915797 8521946 95.58255 6299382 73.91952 

    2 10798509 10335407 95.71143 7510955 72.67208 

   non 1 13943995 13132816 94.18259 11627720 88.53943 

    2 11968746 11235976 93.87764 9362469 83.32582 

  L72 inf 1 15202340 14301081 94.07158 12719372 88.93993 

    2 13530768 12757146 94.2825 11426112 89.56637 

   non 1 24191568 9603288 39.69684 5565871 57.95797 

    2 21476908 11605789 54.03845 10150591 87.46145 

        
                  

           
;               
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Appendix XV. Ubiquitin-mediated proteolysis pathway displays 

increased H3K4me3 marks in line L72 at 5 dpi.  

(a) KEGG pathway map and (b) diffscore clustering heatmap. All classes of enzymes, 

E1, E2 and E3, exhibit increased promoter H3K4me3 indicating up-regulation. 

 

 

B

A 
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Appendix XVI. Focal adhesion pathway displays reduced H3K4me3 

marks in line L63 at 10 dpi. 

(a) KEGG pathway map and (b) diffscore clustering heatmap. Several members of the 

focal adhesion pathway demonstrate reductions in promoter H3K4me3 in resistant 

birds during latent infection. 
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A 

A 



 

 180 

 

Appendix XVII. Hierarchical clustering of diffscores from 

differential analysis of RNA-Seq data from Bursa. 

Heatmap of clustered diffscores with green denoting upregulation and red 

representing downregulation after MDV infection. Blank rows in cluster 17 

correspond to genes with no mapped reads. 
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