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Abstract Data science’s rapid development in a dynamically growing data
environment endows it with unique characteristics among scientific disciplines,
juxtaposing challenges typically encountered in theoretical as well as empirical
sciences. This raises questions as to the identification of the most pressing
problems for data science, as well as to what constitutes its theoretical foundations.
In this contribution, we first describe data science from the perspective of
philosophy of science. We argue that the current mode of development of
data science is adequately described by what we term the differentiational-
expansionist mode. This leads us to conclude that data science concerns the
acquisition of scientific theories relating to the application of methods, workflows
and algorithms that generate value for users – which we term the integrative
view. This definition emphasizes the interdependent nature of human and
algorithmic elements in complex data workflows. We then offer four challenges
for the future of the field. We conclude that since full control of entire data
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workflows is unfeasible, attention should be redirected towards the creation of
an infrastructure by which data workflows will self-organize in a useful manner.

1 Introduction

In the past decades, profound advances in technology have brought about shifts
in how and at what scale information is processed, thereby giving rise to data
science. Cheaper and more accurate sensors have facilitated the gathering of vast
amounts of data often termed a “data deluge” (Cao, 2018; Manyika et al., 2011;
Bell et al., 2009). Stark reductions in the cost of computation have allowed
for those data’s exploration and analysis and has spawned new avenues for
knowledge acquisition from data (De Roure, 2010).

In the wake of these developments, data science has emerged as a unique
juxtaposition of elements from various disciplines (Braschler et al., 2019b).
Dhar defines data science as “the science of identifying generalizable knowledge
from data” (Dhar, 2013), in other words, as the science (Heilbron, 2003) of
learning from data. In the following, we will use this definition of data science
as the standard definition of data science. According to Dhar, data science draws
from heterologous and unstructured data and therefore utilizes methods that are
adequate for the data sizes to allow for knowledge discovery (Dhar, 2013).

In contrast to the hypothesis-testing machinery at the heart of statistics, data
science is geared towards discovery of patterns in large amounts of data and
intends to find interesting and robust patterns that satisfy the data (Leek, 2013;
Dhar, 2013). Here, with “interesting data”, Dhar means data that are actionable
(Davenport and Patil, 2012) and unexpected (Leek, 2013; Dhar, 2013).
Actionable data hold predictive power, where the outcome expected from an
action can be relied upon to appear with high confidence (Popper, 2014). Robust
patterns are patterns that are expected to reoccur in the future (Perlich et al., 2003;
Dhar, 2011; Meinshausen, 2007). Crucially, data science employs methods
that allow the researcher to analyse data without strong apriori assumptions
about the relationships between the variables (Dhar, 2013).

Some of these features are in line with a prescient analysis by De Roure
(De Roure, 2010), which in 2010 heralded the advent of a new mode of
conducting science. The digitization of almost all data measured by researchers
has brought about an automation of scientific practice that he termed e-Science.
He surmised that this shift should change the relationship between hypotheses
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and data. When data were scarce, hypothesis formation was the dominant
partner in this relationship: Hypotheses directed researchers’ search for data.
The abundance and ubiquity of data shifted dominance towards data: Data now
guide research towards the most plausible hypotheses.

Thus, data science is not just the statistics of large data sets (Dhar, 2013;
Braschler et al., 2019a). Two main aspects that separate it from statistics are, first,
that its central focus lies in pattern discovery, that is, in the discovery of hypothe-
ses that are compatible with the data and perhaps satisfy additional conditions
(Dhar, 2013). Second, that especially those parts of machine learning that are
concerned with exploratory data analysis through unsupervised learning deviate
from classical computational statistics (Bishop, 2006; Friedman, 1998).

As data science has emerged and established itself as a scientific discipline in
its own right, it has embarked on a fruitful process of maturation, but particularly
of differentiation and expansion. By maturation we mean a process by which
a body of theory is assembled and continually refined (Rheinberger, 2008).
Concepts are sharpened, theory made more rigorous and consistent, and the
understanding of problems is deepened by novel methods of analysis. This
mode of scientific development is described by Kuhn as a period of “normalcy”
under an existing paradigm (Kuhn, 1962). The differentiation and expansion
of a scientific discipline denotes two complementary processes that refer to
one another (Rheinberger, 2008). The differentiational aspect refers to the
emergence of novel subbranches of the discipline around practical problems
of particular interest and depth. As this differentiation occurs, the scientific
discipline integrates these objects of study into its body of knowledge, which is
understood as an expansion into novel territory by the discipline. This second
differentiational-expansional mode of scientific development has been described
in detail by Fleck (Fleck, 2019), and more generally by Bachelard (Bachelard
and Lepenies, 2016; Bachelard, 1988, 2015), and has been termed the “process
character” of science (Rheinberger, 2008). Importantly, it is driven by the
encounter with practical problems arising from the application of commonplace
instruments and methods within a discipline to some initially fringe case.

Data science possesses the distinct peculiarity that it is the differentiational-
expansional mode that dominates its development today, and with it, the
problems that arise from data science’s application in real-world contexts. For
instance, the rapid adoption of data science methods in many business domains
has unearthed many new challenges that have fed back into its theoretical
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development (Cao, 2018), such as self-driving cars (Saha and De, 2022), video
games (Silver et al., 2017) and protein folding (Jumper et al., 2021). In this
–very strict– sense, we observe a transition towards practicality within data
science and relative to other sciences.

The shift towards practicality that follows from the particular expansion-
dominated course of data science’s development results in a tension. This is a
tension between data science’s unifying thread at its inception (Dhar, 2013) with
today’s reality of everyday data science. To use a geographical metaphor, the
process of differentiation has spread the activity in data science across such a vast
territory that a reexamination of what unites these colonies is warranted.

This current state of affairs has considerable disadvantages. For instance, it
can cause confusion about what actually constitutes a data science project, which
entails a risk of resource misallocation. In national research funding bodies,
as well as enterprises, resources may be directed away from the resolution of
pressing problems because these are not recognized as pertaining to the field of
data science. Furthermore, individuals or organizations engaged in data science
may not be recognized as doing so. Most importantly, a discipline’s self-image
affects the vision of its future development, and where the greatest effort should
collectively be directed. To circumvent these issues, it is worthwhile to ask
whether the current state may not be better encompassed by an alternative
conception of data science.

To address these issues and to accommodate for these novel developments
within it, here we propose to extend the definition of data science as follows: Data
science is the study of interdependent data workflows embedded in real-world
processes. We argue that this outline of data science allows us to resolve some
of the tension we diagnose as arising from its current understanding. It shifts
the emphasis of data science into the domain in which most practical activity
is located. It permits to subsume a wide range of activities under a unifying
paradigm. It redirects our view towards the next necessary steps for data science’s
development. And lastly, it helps to clear the view for the main challenges ahead
and assists us in the preparation of students to future work environments.

In the following, we will give a more detailed and founded account of our
proposition for the refocusing of data science. We will additionally present a
set of challenges to achieve more beneficial and useful digital products via the
utilization of data science.



The Sciences of Data – Moving Towards a Comprehensive Systems Perspective 5

2 Data Science’s Object of Study: The Interdependent
Data Workflow Embedded in Real-World Processes

In this section, we recapitulate in greater detail why we believe that data science’s
scope ought to be expanded and embed these arguments into the broader context
of the history and philosophy of science.

We first begin by describing some of the pertinent characteristics of data
science’s rapid development as we perceive them. Subsequently, we place data
science in the space that is spanned between two established descriptions of the
process of scientific evolution. We proceed to draw conclusions with regards to
a useful definition of data science on the basis of this placement.

The main source of phenomena that may act as midwives to new branches
of data science today stem from practical problems from industry and related
contexts (Cao, 2018). This is a development that has also been observed in other
scientific disciplines. In physics, for instance, the development of statistical
mechanics was influenced by analysis of movements of suspended particles in a
liquid – termed Brownian motion (Rigden, 2005). Similarly, the development of
special relativity was heavily influenced by patent applications on the synchro-
nization of clocks by means of electrical signals (Galison et al., 2004).

This cross-pollination from practical problems has been studied in depth in
the past. In the philosophy of science of both Gaston Bachelard and Ludwig
Fleck, practical problems act as crystallization points, as seeds, for new branches
of science (Rheinberger, 2008, 2006a; Bachelard, 2015). For Bachelard, there
does not exist a theoretical system of philosophy that may encompass the breadth
of phenomena studied under science (Bachelard, 1988). This process is due to
two distinct factors acting in unison. The first factor, he argues, is the direct result
of the inherent intertwinedness of experience and thought, reality and reason:
These categories refer to each other and thus coexist in a semantic circularity
(Bachelard, 1988). This intertwinedness precludes the clean separation of
these aspects without contaminating one partner with remnants of the other
(Rheinberger, 2008).

The systems analyzed in science share the same property, which Bachelard
calls complementarity. Complementary indicates that a system cannot be
reduced into individual qualities or properties without suffering a loss to
its full description. This vantage point leads Bachelard to conclude that the
appropriate object of study of philosophy of science is “phenomenotechnology”
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(Bachelard, 1988), a self-recursive system of experimental instruments and
methods that generates knowledge that in turn feeds back into the preconditions
of its further development.

Within the framework of phenomenotechnology, scientific insights are not
discovered in a Platonic or Cartesian sense. Instead, scientific facts and insights
are created, or “realized” within a phenomenotechnological system (Rhein-
berger, 2008). They are forced into existence by the coupling of the technical
assortment of instruments with the thought process.

The second factor generating differentiation within scientific disciplines,
Bachelard asserts, is that by necessity scientific insights must carry a social
component and will therefore be contingent on their past developmental trajectory
(Bachelard, 1988). This social constitution of science is also mirrored in science’s
tendency to fragment into separate fields of work. This differentiation is the
necessary consequence of the character of experimentation, since it revolves
around concrete and particular issues and concerns. This gives rise to an
“epistemology of detail” (Bachelard, 2015). It is this process of realization that
manifests novel scientific facts, and lies at the root of new disciplines.

Fleckian sociology of science mirrors these observations by Bachelard.
Epistemology cannot be built from the individuum up, but is a holistic, social
and historically determined process in which single individuals participate
(Fleck, 2019). The experience of the scientists as a community is indispensable
to obtain an accurate picture of the reality of scientific activity. This experience
relates to the everyday practice of science making, and not to its written and
digital traces in the literature (Rheinberger, 2008). It is thus a profoundly cultural
phenomenon, and driven by contact with the object of study (Fleck, 2019;
Rheinberger, 2008).

Thus, according to Fleck, science proceeds “like the river that forms its
riverbed” (Fleck, 2019) – in a manner similar to the process emphasized by
Bachelard. The process is contingent on the previously taken trajectory, and
thus deeply historical (Rheinberger, 2008). Further developments depend on
the order of previously realized steps, and may thus lead to bifurcations in
the research interests of the scientific community, differentiating it further.
Revisiting the river metaphore, the stream is in a process of perpetual division
into substreams. This “inner historicity” (Rheinberger, 2008) endows the
process with a unique quality that is independent of the individual, and emerges
as an entity onto its own.
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In contrast to Bachelard and Fleck, Pierre Duhem has emphasized processes
that enhance the internal conceptual order and consistency of bodies of theory
(Duhem, 1892), which we term the maturation mode of scientific development
and which we review in the following.

According to Duhem, the mind comes into contact with the world, that
is physics, all the time. The resulting observations form a body or a set of
experimental facts. These facts cannot stand alone for themselves. Conceptions
attached to each of them are going to be set into some sort of relation to
each other by the mind. Therefore, through induction, the mind constructs
experimental laws out of these facts. To Duhem, the purpose of this inductive
process is plain:

“ Theoretical science has as its aim to relieve the memory and to assist it in retaining
more easily the multitude of experimental laws.” Duhem (1996, p.2)

The mathematical theory that ultimately describes the processes of interest is
therefore a form of summarization and classifications of experimental laws. This
solely is the aim for the construction of a mathematically formulated theory.

Thus, according to Duhem, a theory does not need to relate directly with the
world as it is. It is a relative entity, a convention on how to represent the world.
That is why physicists should look for a “systematic coordination” of laws in a
theory, and not for explanations: Physicists “wish to clarify laws, not to reveal
causes.” Duhem (1996, p.17)

Hence, Duhem sees theory-building as a kind of housekeeping, a consolidation
and tidying of the preexisting concepts associated with experimental facts. It is
in this sense that Duhem’s mode of scientific evolution can also be interpreted
to give rise to a maturation of science: By enhancing a body of theory’s internal
coherency and facilitating its applicability to the user.

Similarly to this notion of a maturation process, the philosopher of science
Thomas Kuhn describes a mode of development of science that predominates in
between phases that he terms paradigm shifts (Kuhn, 1962). According to Kuhn,
science does not develop in the form of a gradual accumulation of knowledge
alone. Its development is discontinuous, characterized by interspersed, profound
disruptions and revolutions. Revolutions establish new scientific paradigms
around which scientific communities organize. These paradigms must be open
enough to point to a range of problems that can be expected to be addressed
or solved by means of the tools contained in the paradigm. However, once
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established, the scientific community will begin to apply the newly created
framework to open problems, cementing the paradigm and strengthening internal
coherency – that is, maturating the paradigm.

These observations lead us to conclude that there exist at least two modes of
scientific development that we refer to as the differentiation-expansion mode and
the maturation mode of the evolution of science. The differentiation-expansion
process can be understood as being shaped by a cultural process and by real-
world phenomena. Duhem and Kuhn, on the other hand, identify efforts within
scientific developments that are aimed at generating an internal consistency
within the body of ideas that represent science, thereby maturing them.

These prerequisites allow us to place data science within a framework
of established descriptions of the nature of scientific enquiry. Although the
differentiational-expansional and the maturation modes are no logical opposites,
they nevertheless emphasize distinct, and to a degree mutually exclusive aspects
of development: One is oriented towards integration of novel phenomena into
the existing body of knowledge, and the other is oriented towards the integration
of existing knowledge into a conceptual superstructure. In the following, we
will use these as reference points for our reasoning about the present challenges
of data science.

Here, we argue that current data science is engaged in an intense process
of differentiation-expansion. Data science today is awash with problems from
practice that may serve as crystallization points for new branches (Cao, 2018).
This is evidenced by the cross-pollination between academic data science and
applied data science in industry, in particular where it concerns automation of
the scientific workflow (Foster and Kesselmann, 1999; De Roure, 2010).

Industrial and business applications are providing a steady stream of problems
and challenges that require ingenious approaches for their resolution (Cao, 2018;
De Roure, 2010). For instance, the startup GainForest based in Zurich, Switzer-
land, is utilizing data science approaches to monitor sustainable land use – for
example by validating reforestation efforts – by means of satellite, drone and
field imagery (Dao, 2022; Masterson, 2021). This business application poses
new, very specific problems on how to evaluate images for sustainable land
usage that are blurred or contorted by high cloud coverage and sparse imagery.
Their solutions feed back into the existing knowledge.

That a novel scientific discipline should expand is inherent in its natural
developmental course (Niiniluoto, 2019; Schickore, 2018). However, data
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science’s largely differentiational-expansionally driven mode of development
constitutes an idiosyncratic evolutionary path. The requirements imposed on
practitioners of data science by real-world problems overshadow the need
for internal theoretical coherency. Indeed, the collections of challenges and
problems in the literature that are readily subsumed under the umbrella term
of data science is growing steadily (Davenport and Patil, 2012; Braschler
et al., 2019b; Cao, 2018).

Summarizing, our review of some schools of thought about the mode of
evolution of scientific disciplines leads us to believe that data science is engaged
in an intense differentiation-expansionist mode of evolution. This mode gives
rise to the emergence of novel branches of data science around particular
problem stems from a vast array of applications –the crystallization points–,
ranging from industrial applications to academic projects, that cross-pollinate.
This raises the question of whether these disparate areas are still united by a
common theme, a common element contained within all these distinct efforts:
What is it that makes these activities precisely data science?

The Bachelardian and Fleckian views of science suggest a fundamental
reflexivity in data science that may serve as starting point for the identification
of a unifying theme: The knowledge required to devise and operate an analytical
instrument appropriately is precisely the knowledge that these instruments
are meant to uncover (Wind, 2000). This circularity forces the epistemic
science into a mode of perpetual self-adjustment, and is the driving force that
governs its evolution (Rheinberger, 2008, 2006b). In data science, this translates
to a perpetual feedback-loop, where the knowledge contained in the data is
needed to adequately design the methods utilized to acquire that knowledge
in the first place.

For instance, in physics, the prevailing understanding of the physical laws that
govern microscopic environments enter the design of the instruments for studying
these same environments, such as for example quantum mechanics is necessary
to conceive of the scanning tunneling microscope. These devices then sense
phenomena within their respective environments, generating data that may spark
a reinterpretation of the prevailing understanding, and thus give rise to novel
devices that accommodate for such new understanding. Analogously, in data
science, “sensing” devices are deployed to extract knowledge from data that are
based on core assumptions. As vast swaths of data are explored by means of these
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devices, the limitations of their underlying assumptions are gradually revealed,
giving rise to novel, better adapted knowledge extraction devices.

Here, we argue that it is this circular self-referentiality that lies at the heart
of data science. We argue that this is not merely the consequence of disparate
conventions, but that it points to novel territory of thought and intellectual
engagement with a fertile landscape of new challenges. Thus, we propose that an
appropriate object of study in data science is the question of how real-world data
workflows arise from interdependent combinations of algorithmic computation
and thought. We term this the integrative view of data science.

This perspective has two major ramifications on our understanding of data
science. First, it continues to reflect the idea that data science is an applied
science discipline; that is, it examines urgent or awkward problems (for in-
stance, “genuine problems in real industrial contexts for which someone will
pay for the development of a solution”, see Brodie, 2019a) that arise from
everyday life (Braschler et al., 2019b). It thus retains key aspects of the
standard definition of data science.

Second, and crucially, it enables us to expand the standard definition of data
science in a coherent fashion, integrating further notions and objects of study.
Studies in the wild of data and applications require an understanding of that
wild environment, i.e., the context in which the data were created, processed,
or used. Thus, the object of the science is not only the data themselves, but
how we come into contact with them, how they are created, manipulated for
knowledge generation and how they affect our perspective towards them. Thus,
our perspective naturally expands the view of data science as a science that
studies how all components in the production process of the digital product
interact to derive value from data.

Such a perspective does considerably increase the complexity of the
object of study. While the machine learning component is currently of-
ten viewed as the heart of a workflow in data science projects, this aug-
mented complexity requires a shifting of the focus to a more comprehensive
understanding of data science.

Based on these assumptions, in the following, we will formulate four chal-
lenges regarding the development of data science from this new vantage point.
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3 Towards a Comprehensive Complex Systems
Perspective: Four Challenges on Current Data Science

3.1 Challenge I: Perform Data Workflow and Pipeline Engineering
at a Formal Level

Data workflows are connected to and embedded in many real world applications,
and practicability requires that they become more and more automated (see
e.g. Masterson, 2021; De Roure, 2010). To diminish the level of complexity
experienced by humans, data and data workflows should be represented in
abstract ways. For instance, automated workflows consist of algorithmic building
blocks such as automated application programming interfaces (APIs). These
elements conceal an ever larger amount of technicality and detail to allow for an
abstract treatment of the element and thus to assure the element’s function.

In the future, data science practice will thus be less about manually preparing
data and training algorithms, and more about workflow design tasks at a high
level of abstraction. Data science will become the art of adapting and optimizing
schemes of data workflows for specific applications.

According to what we call the integrative view of the data science work-
flow (illustrated in Figure 1) at a very high-level of abstraction the workflow
consists of a set of elements or protagonists whose omission greatly dimin-
ishes the workflows’s ability to fulfill its purpose. Furthermore, also societal
and environmental boundary conditions and requirements such as regulations
ought to be accounted for.

To achieve these modeling goals, researchers may draw from a tradition
of well-established modeling concepts and approaches (Zeigler et al., 2019;
Zeigler, 1970, 1971) and enrich them with own solutions that account for the
particularities of the challenge.
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Figure 1: Integrative view of the data science workflow. Users, domain experts, data scientists and
business owners influence the outcome of the data science process with their knowledge, motivations,
and biases. Their roles should be explicitly addressed in a view that goes beyond the narrow view of
the “inner” (classic) workflow. In a fully developed data science perspective, the (data) scientist’s task
is thus not only to develop data workflows, but also to reflect on the surrounding spheres of influence
and underlying conditions.
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3.2 Challenge II: Integrate the “Human in the Loop” Perspective
into the Workflow Design

A recently published survey gives a series of instances where humans-in-the-
loop are leveraged to improve utility (Wu et al., 2022). For instance, within
object detection, humans are still employed to correct annotations proposed by
a machine learning detector in images in an approach termed interactive object
detection. In this approach, human expertise is utilized to annotate images with
the maximum predicted annotation cost to achieve the greatest gain for the
overall object detection pipeline (Yao et al., 2012).

The survey therefore suggests that humans remain essential agents and
participants in many data science workflows. As the data workflow is perfected,
they actively learn and develop their skills in unison with machine learning
algorithms. This “human in the loop” perspective changes the way workflows
need to be framed, designed and analysed. In this framework, a data workflow
should no longer be considered as a sequence that is processed in a strictly linear
temporal order. Rather, the workflow may be more appropriately described
as a complex, self-organizing network of value adding processes that may be
operating simultaneously or in sequence. Singular process nodes may receive
data from or export data to other singular processes, sets of processes or the
whole network itself.

The challenge for data science will lie in adopting the notion of data workflows
as self-organizing, adaptive complex systems and how to account for the role of
humans within them. In fact, within such a network, the human data scientist will
have to fulfil different roles at different levels. On the one hand, data scientists
must be seen as part of the loop interacting with the inner workflow (see Figure 1).
On the other hand, they must assume the role of a meta-level supervisor who
critically reflects on and defines their own function in the workflow.

For instance, during the Covid-19 pandemic, scientists from ETH Zurich
created a web-application and dashboard to visualize the current and predict
the future epidemiological status in Switzerland (ETH Zurich, 2020). Parts
of this application were later taken up by Swiss health authorities and their
results made publicly available in governments websites. In these applications,
epidemiological models were fitted to current Covid-19 case data and utilized
to estimate the effective reproductive rates of the virus, amongst other relevant
information. In this workflow network, humans occupied different roles. On the
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one hand, they perform non-automatizable tasks necessary for the pipeline to
work, such as taking the test swabs from patients, sending the paperwork to
health authorities, setting up a model and fitting it to data to obtain a prediction.
On the other hand, they also take on roles as workflow soundness reviewers
–meta-level supervisors–, verifying that the chain of information transmission
is working, that measurement instruments measure what they intend to, and
that reporting delays do not unduly bias model estimates. They run plausibility
checks on the estimates, and constantly monitor whether some fundamental
aspect of transmissibility has changed, such as for instance immune evasiveness
(Salathé et al., 2020). If any of that is the case, model parameters or architecture
are adapted to the new reality, as well as other components of the workflow. In
summary, in such a workflow network, humans occupy different crucial roles in
data processing at different levels of abstraction. Many roles may require similar
qualifications, such that a single individual may play all of them if desired.
However, other roles may require more specialized knowledge and be unique to
the workflow network.

3.3 Challenge III: Create New Disciplinary Branches at the
Intersection of Domains

As data science evolves along the mode of differentiation and expansion, new
roles for data scientists will emerge at the seed points of emerging sub-disciplines.
These novel, more specialized disciplines will most likely emerge at the inter-
section between different domains and data science. It is at these intersections
where unique problems present themselves that may be initially addressed
with the tool set of data science. For instance, the intersection of data science
and epidemiology has given rise to the field of digital epidemiology (Salathé
et al., 2012). Data science methods may be deployed for early disease detection
with Twitter-data (Bodnar and Salathé, 2013), harnessing and leveraging an
entirely novel data type for epidemiological purposes (Paul et al., 2014). In such
novel applications, concepts and theories of the domain will most likely merge
with methods and tools from data science, entering a self-adjusting feedback
loop and spawning a novel discipline.

The challenge will lie in providing a robust tool set for a broad set of potential
researchable phenomena. We expect that most of these new data science
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disciplines will integrate knowledge on the statistics of adaptive complex
systems (Jensen, 2009; Thurner et al., 2018; Ladyman et al., 2013). This
includes challenges such as how to analyze systems that are governed by
non-linear feedback loops and in which interactions between components are
strong and cannot be neglected, how to account for fluctuations, how to derive
probability distributions that are broad and contain information about extreme
events and how to account for differing scales of time evolution of single system
components (Jensen, 2009).

New job profiles will develop at these intersections, e.g. the life science
data scientists, health data scientists, environmental data scientists, digital
epidemiologists, business data scientists, etc. Data science will transform into
a field of multiple sciences of data with with their own blends of scientific
theories and methods.

We expect that such approaches will prove most fruitful where they can
leverage information theory (Ladyman et al., 2013), since it provides a common
denominator between data science and complexity theory and thus naturally
bridges both domains. Data science will then be utilized to perfect our analysis
of complex data (“data produced by complex systems”) by means of complex
methods (“the methods appropriate to studying those systems”) (Ladyman
et al., 2013). How to recognize how complex a system is, and indeed, whether
a system is complex, remains a subject of investigation (Ladyman et al., 2013).
Nonetheless, significant research advances in the field of statistics of complex
systems are being achieved (Shalizi, 2006; Gerlach and Altmann, 2019).

3.4 Challenge IV: Design Self-Organising Workflow Networks That
Evolve into Stable States

Human top-down supervision of a workflow network will most likely be
insufficient to ensure its seamless functioning over time. As complexity increases,
the feedback loops and dependencies between parts of a data workflow and its
environment will undermine the notion of complete predictability and thus, of
top-down control of such data workflow systems (Thurner et al., 2018).

Thus, a major milestone to achieve this challenge will be to find viable descrip-
tions of data workflow systems with humans in the loop (Wu et al., 2022; Deng
et al., 2020) as well as supervisors, that are embedded in broader techno-social
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contexts (Martin Jr et al., 2020). In our view, a possible route to approaching this
challenge is to interpret data workflow systems as complex systems themselves
(Ladyman et al., 2013), and specifically, networks (Newman, 2003). In other
words, the challenge will consist in integrating our improving understanding
of the behavior of complex systems that contain humans as agents with data
science and its tool set.

On this major issue of appropriate modeling, we believe that much can be
learned from research on techno-social systems from a networks standpoint,
and in particular from economic systems modeling (Schweitzer et al., 2009) or
research and development networks (König et al., 2012, 2019, 2011). These
approaches are also employed to characterize techno-social systems, and partic-
ularly, to predict their behavior (Barabási and Albert, 1999; Newman, 2003;
Barrat et al., 2008; Vespignani, 2009).

A particular difficulty is the accounting for the reflexive aspect of interdepen-
dent data workflow systems, that is, the circularity between cause and effect that
arises from meta-level human agents – that are also localized in the “loop” –
influencing the data workflow architecture on the grounds of its behavior. In
other words, humans that form part of the data workflow will sometimes analyze
its behavior in the role of a supervisor, and then decide to implement architec-
tural changes to the network. Perhaps this aspect may be partially addressed by
implementing insights from multiscale-networks (Vespignani, 2009), which
evolve at multiple time and length scales. Supervisory influences may then be
thought of as acting at longer time scales, and to only exert a structural effect
after large amounts of experience have been accumulated.

Humans, algorithms and data are increasingly becoming interdependent parts
of an overall system, interacting within and across a hierarchy of different levels
of emergent functionalities and abstraction (Vespignani, 2009). A key element
of their future management will be their design and how this design ensures a
useful and fair functioning of the network.

To address this crucial challenge, a possible route may be again to draw
from other emerging disciplines such as complex systems theory. Complex
networks are known to self-organize (Barabási and Albert, 1999; Newman
et al., 2006; Newman, 2003; Barrat et al., 2008), giving rise to patterns that
are often unintended by and independent of their planners and engineers. Thus,
an improved description of how individual components are linked and how the
system is embedded within its social context will magnify our capability to
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realistically simulate possible evolutionary pathways of these systems. Time-
tested methods such as those developed by Y. Sinai and colleagues in the field of
ergodic theory, such as for example the Sinai-Kolmogorov-complexity measure
(Sinai, 2009), may give crucial insights into the qualitative time-evolution of such
systems (Koralov and Sinai, 2007; Sinai, 2009; Cornfeld et al., 2012). A growing
body of theory and experience in the field of experimental algorithmics may be
deployed to investigate how these systems do operate in reality (McGeoch, 2012).
Major efforts are also underway to minimize the risk that data scientific products
generate outcomes that deviate from ethical norms in what is termed the
alignment problem (Christian, 2020). Recently, Martin et al. proposed a three
sub-component system to address this issue, notably implementing complex
systems approaches (Martin Jr et al., 2020).

In summary, we believe that the use of self-organization and evolution
principles will lead to novel ways of organizing these systems, at both the single
algorithm (e.g. Raghavan and Thomson, 2019) and system or network levels
(Gross and Blasius, 2008; Pfeifer et al., 2007).

4 Conclusion

Based on the observation that data science as a scientific discipline is confronted
with open questions regarding its practice and its theoretical foundation, we
have argued for an integrative view of what we consider to be a central object of
study, namely data workflows.

This object of study, is understood to be reflexive and self-referential: It acts
upon itself and it contains itself as an object of study. This aspect is reflected
in the role of the data scientists as they, like other human agents, become an
integral part of the data workflow while simultaneously being called upon to
contemplate their role from outside of the system.

Our line of argumentation comes with some caveats. We have reviewed
a series of schools of thought in the philosophy of science that concern the
evolution of science, and found that one in particular, appears to match our
perception of the current mode of data science’s evolution. We then proceed to
give an account of what the consequences for data science would be based on
such a correspondence. However, it is possible that data science may represent
a completely novel paradigm of scientific evolution, not encompassed by any
previously developed school of thought.
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Nevertheless, we believe that the integrative view can serve the purpose of a
sharpening and refinement as well as augmentation of the role of data science.
Its adoption would inevitably increase the complexity of data science as a
discipline. This has led us to derive four challenges about the development of
data science, essentially expressing two lines of thought.

First, an increase in complexity of data workflows requires means to cope
with it. In this respect, we have identified a) a need for a more abstract view of
the elements of a data workflow (Challenge I) and b) the necessity to guide a
general tendency toward diversification of disciplines towards the intersection
between domains and data science (Challenge III).

Second, the increase in complexity is not just gradual. It is due to a qualitative
transition that leads to considering data workflows as complex networks that
include the interdependent activities of human and algorithmic protagonists.
This must lead to c) a rethinking of the design of data workflows (Challenge II)
and d) in the long-term to new design principles (Challenge IV).

Notably, techno-societal and biologically inspired bottom-up principles of
development or learning in networks offer a complement to top-down design
principles. These include rules of pattern formation through self-organization or
local learning rules in neuronal networks. Likewise, phenomena of formation,
cooperation or specialization of subsystems in the structure of an entire organism
do not follow explicit blueprints in nature, but unfold on the basis of typically
locally mediated mechanisms. The homeostasis of such systems of systems often
requires a dynamic rebalancing of goals in the sense of an objective function that
accounts for several critical goals, which may serve as a paradigm for the design
of complex data workflows. This is particularly the case when data workflow
products are embedded in social contexts in which notions of what is ethically
acceptable or legal norms change with time (Martin Jr et al., 2020).

Such principles are an admission that the full human control of entire
data workflows is not possible. This central limitation should refocus our
attention onto managing the dynamics that govern the self-organization of data
workflows. Data workflows are the combined result of infrastructure conditions
and incentives. Their prescient design and optimization will set data workflows
onto the course towards useful (see Sterman, 2000, Chapters 1 and 2 for
examples) or harmful (see Sterman, 2000, for instance Part II, Chapter 7.2)
operating equilibria.
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