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is time-consuming and temperature-dependent in addition to 
being offline. It also requires additional laboratory testing, 
which drives up the cost. Neural Networks (NNs) [8-10], 
Kalman filter (KF), and KF extensions for nonlinear systems 
such as the extended Kalman filter (EKF) and the sigma-point 
KF (SPKF) are other techniques for SOC estimation which 
outperform the traditional techniques [11-19]. 

 The EKF technique, unlike classical estimation methods 
of SOC (such as the ampere-hour integration method), does 
not rely on the initial value of SOC and has no accumulated 
error, making it ideal for actual EV operating conditions. EKF 
is a model-based method, and thus, the prediction error of the 
SOC is highly dependent on the accuracy of the battery model 
and model parameters. The characteristics of Li-ion batteries 
change due to a variety of factors and indicate considerable 
nonlinearity and variance over time. The battery is 
approximated as a linear, time-invariant system in a typical 
EKF technique; however, this approach presents estimation 
errors [11-19]. So far, a set of methods for measuring or 
estimating SOC is presented, which is summarized in [20]. 
Among these methods, a number have been used, such as the 
KF-based methods in BMS. 

 To eliminate the aforementioned problems and improve 
SOC estimation accuracy, this paper presents an estimation 
technique that integrates time-varying battery parameters into 
the EKF algorithm. The proposed method is based on the 
Proximal Policy Optimization (PPO) to carefully optimize the 
model in the EKF algorithm for SOC estimation. 

II. BATTERY MODELING

Fig.1 depicts a second-order RC equivalent circuit model 
(ECM) of a Li-ion battery. Voltages, resistors, and capacitors 
are employed in the model. The polarization response of the 
battery is represented by RC structures. The terminal voltage, 
measured directly at either end, is denoted by ��.
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�� and �� denote the cell polarization voltages, respectively;���  denotes the first derivative of �� ; ���  denotes the first
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I. INTRODUCTION 

Today, due to the large number of cars and the increase in 
the consumption of fossil fuels in them and, consequently, the 
increase in air pollution, the question arises as to how long the 
environment can withstand these conditions. Transportation 
electrification is an effective way to cut down pollution caused 
by the mobility sector. In this pathway, Lithium-ion (Li-ion) 
batteries play a crucial role. The battery pack in Electric 
Vehicles (Evs) is composed of a large number of cells that are 
operated based on the Battery Management System (BMS). 
To effectively control and protect the batteries, it is essential 
to estimate their State-of-Charge (SoC) in the BMS. The 
information will be subsequently used to operate the battery 
within the safe charge limits, predict the driving range, etc. 
Various methods have been presented for estimating the 
battery SOC. Coulomb counting [1-3] is one of the simplest 
techniques, where SOC is computed by integrating the 
measured current. Another simple approach is the open-circuit 
voltage (OCV) technique, where the SOC is calculated using 
the OCV-SOC relation [4-6]. However, these methods are 
unsuitable because error accumulation in the Coulomb 
counting method results in inaccurate SOC estimation, and the 
OCV technique is ineffective when EV is in use because the 
battery must be disconnected from the circuit to let it rest. 
Impedance spectroscopy is also used to determine the SOC of 
the battery by correlating the recorded impedances of the 
battery at different SOC values [7]. However, this technique 



derivative of ��; and��� ���� denotes the state variable. The
output equation of the model is: 

�� = ��� − �� − �� − ��� (2) 

III. SOC AND EXTENDED KALMAN FILTER

A summary of EKF in SOC estimation is shown in Fig. 2. 
A nonlinear system and the observation model can be 
described by the state space as: 

X! = f#X!$�% + W!$� (3) 

Z! = h#X!% + V! (4) *+  is the system's state vector with n dynamic variables,

while f#∙%  and h#∙%  are nonlinear vector functions that
represent the system and observation, respectively. Process 

and measurement noises are represented by -+ and �+, while

observation error is specified by .+.

The system has a random initial state X� with the mean and

covariance of μ� and P� with the definition of:

μ� = E�X�� (5) 

P� = E�#X� − μ�%#X� − μ�%2� (6) 

where E�*�� shows the expected value operator and the term3  represents the transforming factor. W!  and V!  are
uncorrelated white noises and so, E�W!� = 0, E�V!� = 0, andE4W!V526 = 0  for all 7  and 8 . The covariance matrices are

defined as Q! = E4W!W!26 and R! = E4V!V!26. With the only

available information on the mean and the covariance of the 
initial state, the first optimal state estimation would be X�; = μ� = E�X��. By continuing iteratively, optimal estimates asX!$�; =  E�X!$�|Z!$��  with the covariance of P!$�  the
following states would be obtained as: 

X!> = E�f#X!$�%|Z!$�� (7) 

f#∙% can be approximated by Taylor Series expansion about theX!$� point:

f#X!$�%  ≡  f#X!$�; % + @>#X!$�; %#X!$� −  X!$�; % + H. O. T.  (8)

where @>  is the Jacobian of f#∙% , and H. O. T.  denotes the
higher-order terms. Considering negligible H. O. T.  and the
definition of e!$� = X!$� − X!$�;  , (8) can be rewritten as:

f#X!$�%  F  f#X!$�; % + @>#X!$�; %e!$� (9) 

Considering (9), applying the expected value on (10), and that E�e!$�|Z!$�� = 0, then the forecast state  X!>  , the error e!> ,

and covariance P!>would be estimated as follows:

X!> F f#X!$�; % (10) e!> ≡ X! − X!>  = f#X!$�% + W!$� − f#X!$�; %F @>#X!$�; %e!$� + W!$�
(11) 

P!> ≡ E Ge!> He!> I2J
=  @>#X!$�; %E Ge!$�> He!$�> I2J @>2#X!$�; %

+ E4W!$�W!$�2 6=  @>#X!$�; %P!$�@>2#X!$�; % + Q!$�

(12) 

A linear equation of X!; and Z!  to estimate the states:

X!; = a + K!Z! (13) 

To obtain the parameter M, the following term should provide
the condition of unbiasedness: 

E�X! − X!;|Z!� =
= E4HX!> + e!> I − #a + K!h#X!% + K!V!%|Z!6 

= X!> − a−K!E�h#X!%|Z!�
(14)

a = X!> − K!E�h#X!%|Z!� (15)

Substituting a  from (15) in (13) would be X!; = X!> +K!#Z! − E�h#X!%|Z!�% . Expanding h#∙%  in Taylor Series

about x!>  using the same methods as in the model forecast
phase yields: 

h#X!% ≡ hHX!> I + @>HX!> IHX! − X!> I + H. O. T. (16) 

Using (16) and applying the expected value to (17), and 

assuming E�e!> |Z!%� = 0, the forecast state X!;, error e!, and
posterior covariance P! are calculated as follows:

X!; F X!> + K! OZ! − hHX!> IP (17) 

e! ≡ X! − X!; 

F OI − K!JSHX!> IP @>#X!$�; %e!$� + OI −
K!JSHX!> IP W!$� − K!V!

(18) 

P! ≡ E4e!e!26
=  P!> − K!@SHX!> IP!> − P!>@S2HX!> IK!2+ K!@SHX!> IP!>@S2HX!> IK!2+ K!R!K!2

(19) 

Kalman gain is obtained as follows by optimizing (20) with 
respect to K!.

K! = P!>@S2HX!> IH@SHX!> IP!> + R!I$�
(20) 

P! would then be rewritten as:

P! = #I − K!@SHX!> I%P!> (21) 

Fig. 1. Second-order RC ECM of the Li-ion battery 

Fig. 2. EKF in SOC estimation scheme 



IV. PROXIMAL POLICY-BASED OPTIMIZATION

In the Reinforcement Learning (RL) context, tasks are 

defined using a quintuple { T , U , V , W , X }, where T Y ℝ[
represents the states space, U Y ℝ\  represents the action

space, V: T × U → ℝ  represents the function of reward,W: T × U × T → �0,1� represents the transition function that

determines the transfer probability of a new state abc� ,

resulting M  reward V  under execution. The RL aims to

optimize the acquired rewards d�∑ XbVbfbg� � using the starting

state ab, which is a random set.
PPO (Proximal Policy Optimization) acts on an MDP 

(Mixed Distributed Proximal) environment by following an 
optimum policy. In many scenarios, the hyper parameters of 
the PPO converge very fast. 

The primary objective of policy gradient techniques is to 
decrease the variation of gradient estimations, resulting in 
more consistent progress. The Actor-Critic architecture has a 
substantial influence on this approach since it represents a new 
definition of value function: 

hi#a, M% =  j dik��#ab, Mb%|a. M�
b

(22) 

�i#a% =  j dik��#ab, Mb%|a�
b

(23) 

Ui#a, M% =  hi#a, M% − �i#a% (24) 

The advantage function Ui#a, M%  determines how
advantageous an action is in comparison to the other options 
accessible in a given condition. �#a% is a value function that
determines how nice it is to be in that state. By evaluating the 
cumulative receiving rewards, the Critic network is trained to 
anticipate the value function. As one of the most effective 
Actor-Critical techniques, the PPO seeks to maximize the 
objective function, which is expressed as follows: 

l#m% =  dnb�min #Vb#m%Urb , stuW#Vb#m% ,1 − Y , 1 +  Y%Urb%� (25) 

in which U  and v  are, respectively, the advantage function
and expectation estimations and Vb#m%  is the ratio of
probability formulated as: 

Vanilla policy gradients need instances of optimized 
policymaking which are inapplicable to the changed policy 
upon every optimization cycle. Significance of sampling is 
used by PPO to determine the samples' expected number from 
a previous policy under the next policy. Every single sample 
may be utilized for many gradient ascent steps for this 
purpose. Whenever the next policy is modified, the previous 
and next policies diverge, causing the estimation variance to 
grow. The previous policy will also be changed to the next 
policy. A comparable function for state transition must exist 
to fulfil this aim, which herein is guaranteed by dividing the 
ratio of probability to the area �1 − Y , 1 + Y�.

V. PPO-BASED BATTERY MODEL PARAMETER TUNER

The PPO technique is considered in this paper as a 
mechanism to adaptively tune and update the RC model's 
parameters by utilising the RL's real-time learning and 

model-independency properties. The ��, ��, ��, �� and ��
are regarded as the design deciding parameters' objectives in 
the proposed approach, and the tuning algorithm modifies the 

values by real-time learning of the NNs. Fig. 3 shows the 
suggested ULM adaptive controller based on the PPO tuner. 

The PPO generates the commands �w��#x%   w��#x%   w��#x%  w��#x%  w��#x%�  to modify the
values using the Actor and Critic NNs, as shown in Fig. 3. As 
these parameters are generally non-zero, the updating 
parameters structure is constructed as follows: 

�y#x + 1% = �y#x% + w�y#x%,   u = 0,1,2
�{#x + 1% = �{#x% + w�{#x%,   8 =  1,2

The PPO agent seeks to decrease the error between the 
calculated battery voltage in the RC model and its real value 
from the applied data sets by training the coefficients of Actor 
and Critic NNs. The current from data set � , the battery's
output voltage |� , the error } of |� , and the battery voltage

from data set  |~�b� (} =  |� − |~�b�) and their derivation e

and |�, i.e. axMx} =  ��, |�, O~��~b P , }, O~�
~bP�. In order to make

up the output voltage, PPO algorithm's reward function Vb is
adjusted to: Vb = −}b� (29) 

The Critic and Actor NNs are created with four completely 
connected HLs with 50 neurons. For all HLs in the NNs, the 
mapping function is considered to be nonlinear and based on 
the rectified linear unit (ReLU). Detailed list of the 
algorithmic parameters including the PPO and NNs (as 
configured in Fig. 4) are provided in Table I. 

CRITIC

ACTOR

R0

R1

C1

C2

C3

Fig. 3. The ULM controller according to the PPO tuning 

TABLE I 
THE SETTINGS OF THE PPO 

Parameter Value Parameter Value 

Length of training episode 
in PPO 

1800 ts Factor of discount  0.9 

Size of batch 1024 eps Rate of learning 0.001 

Rate of learning in Actor 0.008 MC cycles 1000 

Rate of learning in Critic 0.008 

�#m% =  d�~ik#�% �j �#ab, Mb%
b

� = d�~ik#�%��#�%� (27)

∇��#m% =  d�~ik#�% �#j ∇�
�

bg�
t����#Mb|ab%�#�%� (28)

Vb#m% =  ��#Mb, ab%�����#Mb, ab% (26) 



Fig. 4. Configuring the PPO algorithm and the NNs 

VI. RESULTS AND DISCUSSIONS

To determine the battery parameters, the model values of RC 
networks are determined experimentally under different SOC 
and C rates. The parameter identification results are entered 
into a lookup table, and in the EKF system matrix, the battery 
parameters are updated by matching the values in the table. 
Moreover, using the error analysis to estimate the charge 
level, one also obtains an estimate of the nonlinear part of the 
battery model, and by adding this nonlinear part to the linear 
model, one obtains a more accurate model of the battery. The 
accuracy of the SOC, which is estimated using this approach, 
is direct and depends on the precision of the battery model 
and model parameters. 
One of the KF requirements is to know the covariance noise 
matrices of measurement and process. Nonetheless, the 
covariance matrices are difficult to obtain in real life. In case 
of incorrect tuning of Q and R matrices, the filter's 
performance is affected, the accuracy of estimating the 
charge status is reduced, and the filter could diverge. To 
address this issue, the performance of the KF estimator is 
monitored through a designed algorithm. Accordingly, the 
algorithm adjusts the covariance matrices R and Q such that 
the filter achieves a good performance.  
The proposed model and the EKF-based SOC estimation 
technique are implemented, and the model parameters were 
experimentally obtained by considering various SOC and C-
rates. The following steps were then taken: 

1. The outcomes of the parameter identification were
entered into a lookup table,

2. In the EKF system matrix, the battery parameters are
updated by matching the values in the table;

3. Estimate the charge level using the error analysis;
4. Obtains an estimate of the nonlinear part of the battery

model;
5. Adding the nonlinear part to the linear model;

To validate the presented method, the experimental data 
obtained through various validation tests based on DST and 
US06 were applied. The tests were performed at two SOC 
levels, including 0.5 and 0.8, and three discharge pulses were 
investigated for each SOC condition. At three test 
temperatures 0°C, 25°C, and 45°C the tests were iterated. 
Fig. 5 shows the estimated SOC using EKF with the time-
varying model parameters at 0°C, 25°C, and 45°C for the 

three experimental data, i.e., DST and US06. The outcomes 
indicate that the estimations of SOC in each temperature are 
accurate. A comparison of the estimation results with the 
actual results shows the efficiency of the proposed method in 
estimating the charge level of cells and, thus, the actual 
charge level of a battery pack. In Fig. 5, the predicted voltage 
is compared to the observed voltage. With less than a 30 mV 
discrepancy, it is reasonable to assume that the real and 
predicted voltage are well matched. 

It is compared to conventional techniques to assess the 
accuracy of the suggested approach. The results confirm the 
effectiveness of the suggested algorithm compared to the 
existing techniques. As the results show, the estimation error 
of the SOC in all conditions remains low with the proposed 
method, while the prediction error with other techniques 
increases when the statistical features of the covariance 
matrices are unknown. 

The process and measurement noise are known, and 
unknown statistical characteristics remain low. In contrast, 
when the statistical characteristics of process noise and 
measurement are unknown, accuracy is reduced in other 
methods. 

(a) 

(b) 

(c) 

(d) 
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Fig. 5. (a) comparison of the real SOC and EKF estimation at 25℃ tested 
under DSTC and US06C. (b) tests of the SOC at 25℃ and 45℃ at 0.5 SOC 
for the data of DSTC and US06C. (c) comparison of the real voltage and the 
model voltage of the data of DSTC and US06C. (d) the obtained voltage at 
0.8 SOC at 0℃, 25℃, and 45℃ for the data of DSTC and US06C. 

The results confirm that the SOC estimation is robust in 
different operating conditions, including different C-rates and 
temperature conditions. Likewise, the SOC estimation error 
in the low-SOC region is relatively lower than the 
conventional methods. 

VII. CONCLUSION

In this paper, the KF algorithm is presented to improve the 
SOC estimation accuracy in EVs. Although the proposed 
method has a higher computational burden compared to 
classical SOC estimators, the SOC estimation accuracy 
considering the initial error, is improved. In addition, the 
results show that in situations where the assumptions and 
initial information are unknown, the performance of the model 
does not change when the information is correctly available, 
thus providing optimal performance for the system. The 
proposed method is validated using experimental data of a 
typical Li-ion battery cell. The results of experimental tests 
indicate the proper performance of the proposed method in 
estimating the battery SOC. 
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