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a b s t r a c t

In this paper, the problem of observer design for a class of 1D nonlinear heat equations with
pointwise in-domain temperature measurements is addressed. A pointwise measurement injection
observer is designed and the robust convergence of its estimation error in presence of bounded
distributed perturbations is established by verifying input-to-state stability. The obtained convergence
conditions express the underlying interplay between heat conduction and radiation and include specific
dependencies on the sensor locations which are the main degrees of freedom in the design approach.
The theoretical results are experimentally validated on a semiconductor wafer processing unit.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The increasing demand for semiconductor components con-
inues worldwide, as more and more computing power and data
torage space are required in all areas of our life. The fast techno-
ogical progress and the imposed requirements on device perfor-
ance create new challenges for the semiconductor industry. The
roduction of modern microchips involves hundreds of process
teps such as photolithography, ion implantation, and etching.
hese steps are repeated and carried out cyclically. For the pro-
uction of complex integrated circuits, single-wafer processing is
referred over batch processes, as these processes enable much
iner features.

Heat and mass transfer mechanisms frequently occur in a
umber of silicon wafer production steps and, in particular, the
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temperature of the process fluids or materials involved often has
a significant influence on the quality of the final product. In single
wafer spin clean or wet chemical etching it is often necessary
to heat up the wafer to a predefined temperature, e.g., to re-
move condensation from the wafer surface prior processing or to
chemically treat the surface of silicon wafers with highly reactive
gases. The latter belong to the so-called rapid thermal processing
(RTP), which typically requires high temperatures, often in the
range of 300-400 ◦C or even higher [1,2]. The former process,
i.e. the removal of condensation, takes place at lower tempera-
tures, usually around 150 ◦C, and is known as baking. The heating
is achieved by halogen lamps or by a large number high power
LEDs placed beneath the wafer [3,4]. To avoid thermal stress in
the wafer during heat up, large temperature gradients in the
wafer need to be avoided. This issue requires precise temperature
control. However, the establishment of a feedback temperature
controller is challenging as in most applications the contactless
in-situ measurement of the entire surface temperature is not
available. Thermal imaging cameras, for example, fail to precisely
measure the temperature of low-doped wafers, due to their low
emissivity. For most RTP or low temperature thermal processes,
the temperature cannot be measured at all or only pointwise on
the wafer surface.

However, the design and implementation of a feedback con-
troller often requires full state information, i.e. the availability of
the entire radial wafer surface temperature or the temperature
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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easured at several points along the radius of the wafer, see,
.g., [5,6]. Thus, the realization of such controllers in a production
ool often requires the implementation of a state observer, i.e., an
stimator that provides the spatial and temporal evolution of the
afer surface temperature from available measurements.
The temperature of the wafer surface depends on time and

pace and thus is a distributed parameter system (DPS). The
ynamic behavior of such a system are governed by partial dif-
erential equations (PDEs). When following a model based design
aradigm, an observer for a DPS can, in principle, either be
esigned based on an approximation via a lumped parameter sys-
em or by directly using the PDE. The first approach, which also is
eferred to as early lumping, is generally accompanied by a loss
f relevant information about the system dynamics. This issue is
elicate in that stability results obtained for finite-dimensional
pproximations do not necessarily hold for the PDE model. Fur-
hermore, the finite-dimensional approximations typically are of
igh system order. The order of the model determines in many
esign approaches also the order of the observer. For finite-
imensional approximations of PDEs, this can lead to high-order
lgorithms demanding large computational effort.
In recent years, late lumping has been extensively developed

s an intriguing alternative to early lumping design as the above
entioned drawbacks do not exist. The approximation, which is

inally required for the implementation in a real-time setup is
arried out at the stage of implementation. As long as the approx-
mation yields stable and robustness preserving results, robust
tability obtained for the original PDE model also hold true for
he lumped model. The observer and controller design can thus be
arried out exploiting the particular PDE structure, independent
f the final approximation technique. For linear DPSs the asso-
iated theory for 1D spatial domains has been well-developed,
.g., in [7–9]. Particular approaches to be mentioned here include
odal (or spectral) decompositions [10,11], backstepping [9,12–
4] and high-gain observers [15]. The backstepping approach has
lso been extended to several spatial dimensions [16,17]. For
emilinear and nonlinear PDE models literature is more sparse.
n [16,18] an extended Luenberger observer design has been
roposed. Variable structure estimation schemes have been de-
eloped, e.g., in [19]. Observers based on nonlinear evolution
quations and absolute stability have been investigated in [20,
1]. For transport–reaction systems with unknown reaction rate
symptotic observers have been addressed in [22]. High-gain
bservers have been used in [23] and matrix inequality-based de-
igns have been studied in [11,24,25]. The backstepping approach
as been further extended for some classes of semilinear and
uasilinear systems [26–30]. Dissipativity-based observer design
pproaches have been discussed in [31,32]. Eventhough these
esults show the great potential of applying late-lumping design
pproaches, they all involve a substantial amount of prelimi-
ary analysis and design steps requiring a deep knowledge of
DE theory. A rather simple design approach, requiring only
ssential knowledge about PDEs is the pointwise measurement
njection observer design that has been proposed in [33] for 1D
emilinear heat equations and has been extended in [34,35] to
lasses of semilinear parabolic systems, and in [36] to a class of
D parabolic transport–reaction systems with unknown inputs.
he design resembles a reduced-order observation scheme from
inite-dimensional systems [37,38] in which the measurement
nformation is imposed in form of an algebraic constraint. This
pproach has already been used for nonlinear heat equations
n [39] considering a single in-domain measurement and a per-
ect, unperturbed model. In [39] the observer design has been
arried out after applying a Kirchhoff state transformation and
he temperature estimate is obtained after retransformation.
35
In this paper, an observer for systems governed by a nonlinear
perturbed 1D heat equation in cylindrical coordinates with in-
domain measurements is designed. The design of the observer is
required for the estimation of the temperature of silicon wafers in
semiconductor production, its application is obviously not limited
to this specific example. The proposed observer is an extension of
the pointwise measurement injection observer [33,34,36,39] and
takes into account different nonlinearities. Imposing practically
reasonable assumptions on the system dynamics, the observer es-
timation error converges to zero exponentially which is formally
proven by Lyapunov techniques. The observer is robust with
respect to pointwise disturbances acting directly at the sensor
location. In the presence of non-vanishing bounded distributed
disturbances, the estimation error dynamics are shown to be
input-to-state stable. Finally, the proposed observer scheme is
validated experimentally on a semiconductor processing tool. To
that end a mathematical model of the process is derived. It is
based on the model proposed in [4,40] where focus is placed
on modeling the input shape functions relating the electrical
power supplied to the heating device, i.e., the actuator with the
heat flux density introduced to the wafer. The tool used for
validation is equipped with a thermographic camera capable of
measuring the entire wafer surface temperature of wafers with a
high dopant level. Having a distributed measurement of the radial
temperature enables computing the spatio temporal evolution of
the estimation error. Furthermore, in principle, any number of
pointwise sensors can be emulated with this setup. The exper-
imental results confirm the theoretical findings, show that the
assumptions placed in the stability analysis are reasonable, and
confirm that a good trade-off between convergence speed and
implementation effort is achieved.

In contrast to [39] in the present paper (i) multiple in-domain
temperature measurements are considered, (ii) an unperfect
model with distributed perturbation is considered and robust
convergence is established in the sense of input-to-state stability,
(iii) the design is carried out in the original coordinates and the
Kirchhoff transformation is employed only for the convergence
assessment and (iv) the theoretical results are experimentally
validated on a semiconductor wafer processing unit. Thus the re-
sults of the present paper generalize, extend and experimentally
validate the preliminary ones in [39].

The paper is structured as follows. In Section 2 the problem
statement is presented. In Section 3 the pointwise measurement
injection observer is designed. In Section 4 sufficient conditions
for the observer estimation error convergence are established. In
Section 5, the observer is used to estimate the temperature of a
silicon wafer, for which a mathematical model of the process is
first derived. Experimental results are presented at the end of this
section. Section 6 concludes the paper.

Notation

The absolute value of a scalar c is denoted by |c|. For functions
u, v ∈ L2(a, b) a weighted inner product is denoted by ⟨u, v⟩z =

b
a zu(z)v(z)dz and the induced norm by ∥v∥z =

√
⟨v, v⟩z . The

obolev space H2(a, b) is accordingly defined as H2(a, b) = {v ∈
2(a, b) | v(k) ∈ L2(a, b) for k = 0, 1, 2} where v(k) =

∂k

∂zk
v(z).

atrices and vectors are denoted by boldface letters.

. Nonlinear heat equation and problem formulation

Consider the following nonlinear heat equation (see, e.g., [41])

cp(T )∂tT =
1
r
∂r [rk(T )∂rT ] + γ (T ) +

q∑
bνuν + w (1a)
ν=1
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or t > 0, r ∈ (0, R), temperature T (r, t), with distributed
perturbation w, boundary conditions

∂rT (0, t) = ∂rT (R, t) = 0 (1b)

for t > 0 and initial temperature profile

T (r, 0) = T0(r), r ∈ [0, R]. (1c)

urthermore m ∈ N pointwise temperature measurements

i(t) = T (ϱi, t), i = 1, . . . ,m, t ≥ 0 (1d)

ith the measurement locations ϱi ∈ (0, R) are considered.
n the above equations the parameter ρ is the density, cp ∈

C1([Tmin,∞)) is the heat capacity, k ∈ C1([Tmin,∞)) represents
the heat conductivity. The function γ encompasses (nonlinear)
ource terms due to convective heat transfer and thermal radi-
tion and it is assumed that γ ∈ C1([Tmin,∞)) with bounded

derivative γ ′, so that γ is Lipschitz continuous. The spatially
distributed disturbance w(·, t) ∈ L2(0, R) is bounded so that

sup
t≥0

max
r∈(0,R)

|w(r, t)| ≤ w+ (1e)

olds true. The characteristic shape functions of the q ∈ N
actuators with input signal uν are denoted by bν ∈ L2([0, R]), ν =

1, . . . , q. A specific application example will be discussed in Sec-
tion 5.

In the following the existence of a unique solution T : [0,∞)×
[0, R] → R for which (1) holds true for all initial profiles T0 ∈

L2(0, R) is assumed.
The goal of the subsequent observer design is to provide an

estimate T̂ (·, t) of the temperature profile T (·, t) at time t ≥ 0
by combining the pointwise measurements yi(t) = T (ϱi, t), i =

1, . . . ,m and the model (1), so that the associated observation
error

T̃ (·, t) = T̂ (·, t) − T (·, t) (2)

is input-to-state stable (ISS) [42–44], i.e., there exist comparison
functions α ∈ KL and β ∈ K∞ so that

∥T̃ (·, t)∥r ≤ α(∥T̃0∥r , t) + β(w+). (3)

3. Pointwise measurement injection observer

In this section, the pointwise measurement injection observer
design proposed in [33,34,36,39] is followed to design an expo-
nentially convergent observer for the system (1).

The observer is set up as a copy of the plant (1) driven by the
measurement signals at the measurement points, i.e.,

ρcp(T̂ )∂t T̂ =
1
r
∂r

[
rk(T̂ )∂r T̂

]
+ γ (T̂ ) +

q∑
ν=1

bνuν (4a)

or t > 0, r ∈ (0, R)\{ϱ1, . . . , ϱm},

r T̂ (0, t) = ∂r T̂ (R, t) = 0 (4b)

or t > 0 and
ˆ (r, 0) = T̂0(r), r ∈ [0, R] (4c)

riven by the measurements at r = ϱi with

ˆ (ϱi, t) = yi(t), t ≥ 0, i = 1, . . . ,m. (4d)

t can be clearly seen that the only design degrees of freedom in
his observer structure are the measurement locations entering
n the algebraic conditions (4d).

With the observation error T̃ = T̂ − T defined in (2), the
irect pointwise injection of the measurement signal at the m

measurement points (4d) implies that
˜
T (ϱi, t) = 0, t ≥ 0, i = 1, . . . ,m. (5)

36
Denoting ϱ0 = 0, ϱm+1 = R the constraints (5) actually imply that
the observation error can be decomposed over the m+1 intervals

J1 = [0, ϱ1], Jj = (ϱj−1, ϱj], j = 2, . . . ,m + 1, (6a)

according to

T̃ (r, t) =

{
T̃j(r, t), r ∈ Jj, j ∈ {1, . . . ,m + 1}
0, r = ϱi, i ∈ {1, . . . ,m}.

(6b)

Remark 1. Note that for simplicity no measurements at the
boundary are considered. As will become clear in the sequel the
results can be easily adapted to include boundary measurements.

In each interval Jj the error dynamics is governed by a PDE

∂t T̃j =
1

ρcp(T + T̃j)

(1
r
∂r

(
rk(T + T̃j)∂r (T + T̃j)

)
+ γ (T + T̃j)

+

q∑
ν=1

bνuν
)

−
1

ρcp(T )

(1
r
∂r (rk(T )∂r (T ))+ γ (T ) +

q∑
ν=1

bνuν + w

)
(7a)

or r ∈ Jj, t > 0, j = 1, . . . ,m + 1 with boundary conditions

∂r T̃1(0, t) = 0, T̃1(ϱ1, t) = 0 (7b)

T̃j(ϱi, t) = 0, j = 2, . . . ,m, i = j − 1, j (7c)

T̃m+1(ϱm, t) = 0, ∂r T̃m+1(R, t) = 0. (7d)

Note that, due to the nonlinearity, the error dynamics explicitly
depends on the (unknown) solution T : [0, R] × [0,∞) →

[Tmin,∞).
In the subsequent section it is shown that by adequately

choosing the measurement locations ϱi, i = 1, . . . ,m the ob-
servation error (2) robustly converges in the norm ∥ · ∥r .

Remark 2. In the case that a boundary measurement is con-
sidered at r = 0, in (7b) the condition changes to T̃1(0, t) =

0. For a boundary measurement at r = R correspondingly the
condition (7d) changes to T̃m(R, t) = 0.

4. Convergence assessment

In this section, the convergence of the observation errors
of the proposed pointwise measurement injection observer (4)
is established in dependency of the measurement locations us-
ing Lyapunov’s direct method. For the convergence analysis the
following assumption is made.

Assumption 1. The thermal diffusivity α =
k(T )
ρcp(T )

is constant

or T ∈ [Tmin,∞). This assumption goes along with the standard
assumptions in the literature on nonlinear heat conduction pro-
cesses and is fulfilled with sufficient accuracy in many application
scenarios [39,41,45,46].

Remark 3. Note that for the implementation of the observer
the thermal diffusivity α does not have to be constant and can
depend on the temperature. The same holds for the density and
the specific heat capacity.

Theorem 1 (Proof in Appendix). Consider the nonlinear heat Eq. (1)
with a bounded disturbance supt≥0 maxz∈(0,R) |w(r, t)| ≤ w+, m
measurements at ϱi ∈ (0, R), i = 1, . . . ,m and the pointwise
measurement injection observer (4). Let α > 0 be the thermal
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iffusivity, Lγ denote the Lipschitz constant of γ in (1) and let the
eat conductivity k be positive and bounded. In consequence the
unction

(T̃ ; T ) =

∫ T+T̃

T
k(τ )dτ , (8)

s invertible and its inverse ψ−1 is Lipschitz continuous with Lips-
hitz constant Lψ−1 . Consider further the operators Aj defined by

Ajϵj =
α

r
∂r
(
r∂rϵj

)
, j = 1, . . . ,m + 1 (9)

D(Aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{v ∈ H2([0, ϱ1]) | ∂rv(0) = 0, j = 1
v(ϱ1) = 0},
{v ∈ H2([ϱj, ϱj+1]) | v(ϱj) = 0 j = 2, . . . ,m
= v(ϱj+1)},
{v ∈ H2([ϱm, R]) | v(ϱm) = 0, j = m + 1
∂rv(R) = 0},

with eigenvalues λn(Aj), n ∈ N. Then the associated observation
error T̃ defined in (2) is ISS in the sense of (3) if the measurement
locations are chosen such that

κ > L̄ + 1/2 (10)

with L̄ = αLγ Lψ−1 and κ given by

− κ = max
j=1,...,m+1

sup
n∈N

λn(Aj). (11)

Remark 4. As noted above the main degree of freedom in the de-
sign is the choice of the number and location of the sensors. This
choice influences the value of κ in the preceeding considerations.
If for a given number of sensors it is not possible to achieve the
inequality (10) then one can consider additional sensors, which
directly yields a larger value of κ .

Remark 5. If measurements on the boundary are considered
the main difference in the preceding considerations consists in
the different domains of the operators Aj, j = 1,m for which
the modified boundary conditions (Dirichlet instead of Neumann)
have to be considered in the definition of their respective do-
mains D(Aj). Note that this will lead to different dominant eigen-
values λn(Aj), j = 1,m and thus will influence the conver-
gence condition. In general, in comparison between Neumann
and Dirichlet boundary conditions the convergence condition im-
proves for the latter ones.

Remark 6. The consideration of Assumption 1 could be leveraged
by setting α(T ) = ᾱ + α̃(T ) with a constant (e.g., mean) value
ᾱ and the term α̃ accounting for deviations from ᾱ. Setting up
the observer with ᾱ would lead to an additional error term
proportional to α̃(T ), which could be included into the nonlinear
and perturbation part in the above analysis. From a practical
point of view this is anyway not necessary, as commented in
Assumption 1.

5. Application to silicon wafer processing

In this section, the proposed observer scheme is applied for the
purpose of wafer temperature estimation. After a brief introduc-
tion to the process under consideration, a mathematical model,
in accordance with the generic model presented in Section 2,
is derived. An experimental evaluation of the proposed observer

rounds up this section.

37
Fig. 1. Schematic of the considered silicon wafer production process.

5.1. Process description

A schematic drawing of the considered setup is shown in Fig. 1.
The silicon wafer is held by a so-called wafer-chuck which rotates
with a process specific speed. While the chuck, and thus the wafer
rotates, the bottom side of the wafer is heated contactlessly via
a stationary heating plate. In the system at hand the heating
plate consists of more than 1000 high power LEDs which are
grouped into q = 20 concentrically arranged rings equipped
with pµ, µ = 1, . . . , q, LEDs. All pµ LEDs within one ring are
synchronized, i.e., they are actuated simultaneously and with
the same electrical power, whereas each ring can be actuated
individually. This design enables targeted heating with respect to
the radial coordinate. Furthermore, the temperature is measured
contact-free at selected points on the wafer’s surface.

For validation of this observer a thermographic camera is
installed. The camera is capable of measuring the entire surface
temperature of wafers with a high dopant level. To design the
observer a model describing the dynamics of the outlined process
is derived in a first step.

5.2. Mathematical model

The temperature of the wafer, denoted by T (x, t) for x =

[x y]T ∈ Ω = {x ∈ R2
| ∥x∥ ≤ R2

}, t > 0, and T : Ω × [0,∞) →

0,∞) satisfies (see, e.g., [41,46])

ρcp(T )∂tT = div (k(T )grad T )+ Γ (T ) + Ẇ (12)

or x ∈ Ω = {x ∈ R2
| ∥x∥ < R2

}, t > 0

xT · n = 0 (13)

or x ∈ δΩ , t > 0 with n being the outward normal unit vector
along the boundary δΩ = Ω\Ω , and

T (x, 0) = T0(x) (14)

or x ∈ Ω . The function Γ ∈ C1([0,∞)) encompasses convective
heat transfer and thermal radiation and Ẇ ∈ L2([0, R]) denotes
the heat source, i.e., volumetric heat introduced to the system by
the LED heater.

To model the heat source, consider the heat flux density q̇0ν,µ
introduced by the µth LED of the νth ring. It is described mathe-
matically by the two-dimensional Gaussian distribution

q̇0ν,µ(x) =
ηPelu0

ν,µ
√ e−

1
2 (x−x̄ν,µ)T δ−1(x−x̄ν,µ) (15)
2π det(δ)
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here Pel is the electrical power supplied to the LED, u0
ν,µ ∈ [0, 1]

is the actuating signal, η is an efficiency factor, and x̄ν,µ =

[x̄ν,µ ȳν,µ]T with x̄ν,µ and ȳν,µ denoting the position of the LED.
The position of the LED is expressed in polar coordinates

x̄ν,µ = r̄ν cos(φ̄µ), (16a)

ȳν,µ = r̄ν sin(φ̄µ), ν = 1 . . . q, µ = 1 . . . pν (16b)

where r̄ν and φ̄µ are distance and angle w.r.t. the center of the
LED, respectively. The matrix δ describes the radiation pattern
of the LED. Assuming symmetric radiation, i.e., matrix δ satisfies
δ = δ2I, δ ∈ R \ {0} where I ∈ R2 is the identity matrix, provides
for the simplification

q̇0ν,µ(x) =
ηPelu0

ν,µ

2πδ2
e−

1
2δ2

[
(x−x̄ν,µ)2+(y−ȳν,µ)2

]
. (17)

Furthermore, assuming angularly homogeneous initial tempera-
ture profiles and taking into account that all actuators are syn-
chronized along circles, i.e., u0

ν,µ = uν angularly homogeneous
profiles are obtained, i.e.,

T (xi, t) = T (xj, t) for all xi, xj : ∥xi∥ = ∥xj∥

and t ≥ 0. The overall heat flux density introduced by one entire
LED ring therefore is written as

q̇ν(x) =

pν∑
µ=1

q̇0ν,µ(x) (18)

which, using (17), yields

q̇ν(x) =
ηPeluν
2πδ2

pν∑
µ=1

e−
1

2δ2

[
(x−x̄ν,µ)2+(y−ȳν,µ)2

]
. (19)

Fig. 2 shows the simulated heat flux density when one single LED
is actuated,3 whereas Fig. 3 shows the heat flux density when
all LEDs in one ring are actuated. In cylindrical coordinates and
considering (16a), (16b) gives

q̇ν(x(r, φ)) =
ηPeluν
2πδ2

pν∑
µ=1

e−
1

2δ2

[
r2+x̄2ν,µ+ȳ2ν,µ−2r(x̄ν,µ cos(φ)+ȳν,µ sin(φ))

]

=
ηPeluν
2πδ2

pν∑
µ=1

e−
1

2δ2

[
r2+r̄2ν−2r r̄ν cos(φ−φ̄ν,µ)

]
. (20)

As the LEDs are packed quite dense within one ring and,
ssuming a sufficiently large value of δ, the variation of the heat
lux density along the angular coordinate is small, see Fig. 3. This
ustifies to approximate the heat flux density (20) by its average
along the angular coordinate) which yields

˙̄
ν(r) =

1
2πr

∫ 2π

0
q̇ν(x(r, φ))r dφ

=
1

2πr
ηPeluν
2πδ2

∫ 2π

0

pν∑
µ=1

e−
1

2δ2

[
r2+r̄2ν−2r r̄ν cos(φ−φ̄ν,µ)

]
r dφ

=
ηPeluν
(2πδ)2

pν∑
µ=1

∫ 2π

0
e−

1
2δ2

[
r2+r̄2ν−2r r̄ν cos(φ−φ̄ν,µ)

]
dφ

=
ηPeluν
(2πδ)2

pν∑
µ=1

e−
1

2δ2

(
r2+r̄2ν

) ∫ 2π

0
e

r r̄ν
δ2

cos(φ−φ̄ν,µ) dφ

=
ηPeluν
2(πδ)2

pν∑
µ=1

e−
1

2δ2

(
r2+r̄2ν

) ∫ π

0
e

r r̄ν
δ2

cos(φ) dφ (21)

3 Note that this is for illustration purposes only as the actuation of one single
ED is not possible with the actual actuator.
 f

38
Fig. 2. One single LED actuated with u0
10,1 = 1.

Fig. 3. Entire LED ring actuated with u10 = 1.

where the last line is due to periodicity of the integrand. Note that
the integral in the above function, scaled by 1/π , is an integral
representation of the modified Bessel function of the first kind
(in the following denoted by I0), i.e.,∫ π

0
e

r r̄ν
δ2

cos(φ) dφ = π I0

(
r r̄ν
δ2

)
, (22)

see, [47]. Substituting (22) into (21) yields

˙̄qν(r) =
ηPeluν
2πδ2

pν∑
µ=1

I0

(
r r̄ν
δ2

)
e−

1
2δ2

(
r2+r̄2ν

)

=
ηPeluν
2πδ2

pν I0

(
r r̄ν
δ2

)
e−

1
2δ2

(
r2+r̄2ν

)
. (23)

Introducing the scaled Bessel function

I∗0 (ξ ) = I0(ξ )e−|Re{ξ}| (24)

eads to

˙̄
ν(r) =

ηPeluν
2πδ2

pν I∗0

(
r̄νr
δ2

)
e−

(r−r̄ν )2

2δ2 . (25)

ote that the averaged heat flux density only depends on the
adial coordinate. The averaged heat flux densities given in (25)
re plotted in Fig. 5 for the parameters provided in Table 1. The
irst ring is located at r̄ = 16 mm and the following rings are
1
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Fig. 4. Randomly actuated LED heater.

Fig. 5. Input shape functions.

istributed (almost) equidistantly over the radius of the wafer.
he number of LEDs per ring is the same for certain rings, i.e,
ν = m1 for ν ∈ {1, 2, 3}, pν = m2 for ν ∈ {4, 5, 6, 7}, pν = m3
or ν ∈ {8, . . . , 12}, pν = m4 for ν ∈ {13, . . . , 16} and pν = m1
or ν ∈ {17, . . . , 20}. Due to confidentiality reasons, specific
arameters of the LED heating device, such as r̄ν , pν , η and Pel
annot be given here. The overall heat flux density is depicted
n Fig. 4 for a random actuation uν ∈ [0, 1]. The computed
veraged heat flux density, i.e.,

∑q
ν=1

˙̄qν(r) with ˙̄qν(r) given in
25) is plotted in the same figure (black dashed line) and shows
ood agreement.
In view of these considerations, assuming an initial tempera-

ure profile T0 which is homogeneous in the angular direction,
.e. T0(x) = T0(r) for all r = ∥x∥ ∈ [0, R], the dynamics of
he system can be modeled in cylindrical coordinates. Thus the
ystem model can be represented by (1) with the volumetric heat
lux taking the form

˙ =
1
h

q∑
ν=1

˙̄qν(r) =

q∑
ν=1

bν(r)uν(t) (26)

here h is the thickness of the wafer. The input shape functions
re obtained by substituting the averaged heat flux density (25)
nto (26) and solving for bν(r) yielding

ν(r) =
ηPel

2πδ2h
pν I∗0

(
r̄νr
δ2

)
e−

(r−r̄ν )2

2δ2 . (27)

It can be seen in Fig. 5, that for rings equipped with the same
number of LEDs, the maximum of the heat flux density decreases
for rings having larger diameters.
39
Table 1
System parameters.
Parameter Description Value Unit

Tr Ambient temperature 293.15 K
h Wafer thickness 1550 · 10−6 m
R Wafer radius 0.15 m
σsb Stefan–Boltzmann constant 5.6704 · 10−8 W/(m2 K4)
a Heat transfer coefficient 4.7 W/(m2 K)
δ Variance 0.015 m
ε Total emissivity 0.95 –

The heat losses are considered in γ (T ) in the PDE (1) and
odeled by

(T ) =
a
h
(Tr − T )+ 2

εσsb

h

(
T 4
r − T 4) (28)

hich takes into account convective and radiative heat transfer
here Tr denotes the ambient temperature, a is a heat transfer

coefficient and σsb represents the Stefan–Boltzmann constant. The
parameter ε is the total emissivity. Note that according to (28) the
unction γ is locally Lipschitz continuous.

The dependency of the specific heat capacity cp as well as the
thermal conductivity k on the wafer’s temperature T are modeled
by

cp(T ) = 703 +
255

( T
300

)1.85
− 1( T

300

)1.85
+

255
703

, (29)

and

k(T ) = 150
(

T
300

)−1.3

, (30)

respectively, see, e.g., [48,49]. The constant system parameters
are summarized in Table 1.

5.3. Experimental validation of the observer

The observer for the considered process is given by (4) with
(27), (28), (29) and (30). For the implementation of the observer
there are in principal two approaches: to directly discretize the
observer, or, to apply in advance the so-called Kirchhoff trans-
formation to simplify the governing PDE of the observer, see,
e.g., [39,50]. The latter approach yields an equivalent observer
which is simpler to discretize in space. The estimated tempera-
ture is obtained by applying the inverse Kirchhoff transformation
to the estimate of the transformed observer. The results pre-
sented in the following have been derived by exploiting the
second approach. In the implementation of the observer, the
temperature dependencies of the thermal conductivity and the
heat capacity are taken into account according to (29) and (30),
respectively. The observer has been discretized by replacing the
spatial derivatives by finite differences where the number of
segments is set to 50. The resulting system of ODEs, i.e., ϑ̇(t) =

f (ϑ(t), u(t)) where the state vector ϑ includes the estimated
temperature (in transformed coordinates) at the grid points and
u denotes the (transformed) external inputs to the observer, has
been discretized in time by applying the implicit Euler scheme.
Thus, one obtains the difference equation ϑk = ϑk−1 +Tsf (ϑk, uk)
for the estimated temperature at time step k = 1, 2, 3 . . .. The
time step is set to Ts = 0.2 s which is equal to the sampling time
used to record the measured temperature. The finite difference
equations were solved in Matlab using the build in nonlinear
equations solver fsolve. As mentioned above, for the validation of
the proposed observer a thermographic camera was installed. In
this experiment, the pointwise measurements are emulated by
taking only selected points from the camera image.
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Fig. 6. System excitation.

Fig. 7. Measured temperature.

During the experiment the heater is excited randomly. The
ctuating signal is illustrated in Fig. 6. The plot shows the heater
ower in percent for all 20 rings over time where, as can be seen
n the bar beside the plot, dark gray fields correspond to larger
eating power.
The plot in Fig. 7 shows the corresponding spatial and tem-

oral evolution of the radial temperature measured by the ther-
ographic camera. Two experiments are carried out. In the first
xperiment only one temperature measurement is considered in
he observer whereas in the second experiment two pointwise
easurements are taken into account. For the first experiment

he measurement is taken at ϱ1 = 0.036 m. The temporal
volution of the temperature at this point is depicted as blue line
n Fig. 7. In the second experiment an additional measurement at
2 = 0.114 m is assumed. The temperature at this point is drawn
s red colored line in Fig. 7. It is noteworthy that the observer is
xecuted offline which allows to take the same measurement set
n both experiments.

The resulting spatial and temporal evolution of the estimation
rror for the first experiment is depicted in Fig. 8. For visual-
zation purposes the data have been downsampled (in the time
oordinate). The observer was initialized with T̂0 = 0. It can be
seen, that the estimation error converges to a vicinity of zero
as ensured by the discussed ISS property. Thus, the observer
provides accurate estimates of the wafer temperature. The result
with the additional measurement is given in Fig. 9. Compared
to the first experiment, the convergence is significantly faster.
This can be seen in Fig. 10 which shows the evolution the es-
timation error norm for both experiments. In either case, the
norm of the estimation error converges towards zero and remains
40
Fig. 8. Estimation error with one sensor.

Fig. 9. Estimation error with two sensors.

Fig. 10. Norm of the estimation error.

bounded as demonstrated in Section 4. However, after transients
have vanished, the estimation error is in the same range for
both experiments and the additional second measurement does
not significantly improve the estimation accuracy. This is mainly
attributed to the fact that model uncertainties and disturbances
act in a distributed manner over the entire spatial domain.
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Table 2
Comparison of numerical schemes (one sensor).
Numerical scheme Spatial segments Time step (s) RMS error (◦C)

Explicit, variable step (ODE45) 25 – 3.21
Explicit Euler 25 0.0001 3.21
Implicit Euler 25 0.2 3.22

Explicit, variable step (ODE45) 50 – 3.28
Explicit Euler 50 0.0001 3.28
Implicit Euler 50 0.2 3.29

Explicit, variable step (ODE45) 100 – 3.44
Explicit Euler 100 0.0001 3.44
Implicit Euler 100 0.2 3.45
T
a

w

k

=

N

α

a

k

H

Table 2 compares the root mean square (RMS) estimation
rror4 for different numerical schemes and with finer and wider
patial grid, respectively. For the simulation with the variable step
ize solver and the forward Euler scheme, where the step size is
maller than the sampling time Ts = 0.2 s, the inputs are kept
constant over the sampling interval. It can be seen, that these
variations have a small impact on the result (as long as the time
step is kept small).

6. Conclusion

A pointwise measurement injection observer was designed for
a 1D nonlinear heat conduction problem considering in-domain
measurements. In particular the heat equation in polar coordi-
nates with nonlinear dependency of the thermal conductivity on
temperature as well as nonlinear heat loss terms is considered.
The problem is motivated by silicon wafer production processes
that require estimation of the wafers surface temperature from
point-wise measurements. The input-to-state stability of dynam-
ics of the observation error in presence of distributed bounded
disturbances is established using an ISS Lyapunov functional in
combination with the nonlinear Kirchhoff transformation. Explicit
conditions for ISS are established in terms of the sensor locations
and the Lipschitz conditions for the involved nonlinearities under
the mild and practically feasible assumption of constant thermal
diffusivity. The observer has been tested using measurements
from a real silicon wafer production tool. The experimental re-
sults agree with theoretical findings and show the effectiveness
of the observer.

Future studies will combine the proposed observer scheme
with state-feedback control algorithms.
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Appendix. Proof of Theorem 1

Consider the positive definite candidate Lyapunov functional

V (T̃ ) =
1
2

∫ R

0
r

(∫ T+T̃

T
k(τ )dτ

)2

dr. (A.1)

he rate of change of V along solutions of the error dynamics (7)
re given by

d
dt

V (T̃ ) =

∫ R

0
r

(∫ T+T̃

T
k(τ )dτ

)(
k(T + T̃ )∂t (T + T̃ )− k(T )∂tT

)
dr

here, according to (6b) and (7) it holds that

(T + T̃ )∂t (T + T̃ ) − k(T )∂tT

k(T + T̃ )

ρcp(T + T̃ )

(1
r
∂r

(
rk(T + T̃ )∂r (T + T̃ )

)
+ γ (T + T̃ )

+

q∑
ν=1

bνuν
)

−
k(T )
ρcp(T )

( 1
r
∂r (rk(T )∂r (T ))+ γ (T )

+

q∑
ν=1

bνuν + w

)
.

otice that according to Assumption 1

=
k(T + T̃ )

ρcp(T + T̃ )
=

k(T )
ρcp(T )

= const.

nd that for any constant Tmin it holds, by virtue of the Leibnitz
integral rule, that

k(T )∂rT = ∂r

∫ T

Tmin

k(τ )dτ ,

(T + T̃ )∂r (T + T̃ ) = ∂r

∫ T+T̃

Tmin

k(τ )dτ . (A.2)

ence it follows that

k(T + T̃ )∂ (T + T̃ ) − k(T )∂ T
t t
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ϕ

A

N
f

φ

D

ϵ

f
t
ψ

a
t

T

λ

F
t

⟨

a

∥

I

F
p
d

V

a

w

N
t

= α

(
1
r
∂r

(
r∂r

∫ T+T̃

Tmin

k(τ )dτ

)
+ γ (T + T̃ ) +

q∑
ν=1

bνuν

)

− α

(
1
r
∂r

(
r∂r

∫ T

Tmin

k(τ )dτ
)

+ γ (T )

+

q∑
ν=1

bνuν + w

)

=
α

r
∂r

(
r∂r

∫ T+T̃

Tmin

k(τ )dτ − r∂r

∫ T

Tmin

k(τ )dτ

)

+ α

(
γ (T + T̃ ) +

q∑
ν=1

bνuν − γ (T )

−

q∑
ν=1

bνuν − w

)

=
α

r
∂r

(
r∂r

∫ T+T̃

T
k(τ )dτ

)
+ ϕ(T̃ ; T ) − αw

with

ϕ(T̃ ; T ) := α

(
γ (T + T̃ ) − γ (T )

)
,

(0; T ) = 0, ∀ T ∈ [Tmin,∞). (A.3)

ccordingly it holds that

d
dt

V (T̃ ) =∫ R

0
r

(∫ T+T̃

T
k(τ )dτ

)(
α

r
∂r

(
r∂r

∫ T+T̃

T
k(τ )dτ

)

+ϕ(T̃ ; T ) − αw

)
dr

ote that (A.2) actually gives rise to the so-called Kirchhoff trans-
ormation [41, Chapt. 7]

(T ) :=

∫ T

Tmin

k(τ )dτ . (A.4)

efine

(T̃ ; T ) :=

∫ T+T̃

T
k(τ )dτ , ϵj(T̃j; T ) :=

∫ T+T̃j

T
k(τ )dτ , (A.5)

or j = 1, . . . ,m + 1. Recall the function ψ defined in (8). Note
hat (see, e.g., [39]) φ and thus ψ are both invertible and further
−1 is Lipschitz continuous with Lipschitz constant Lψ−1 as long
s k is strictly positive and bounded. In consequence it holds true
hat

˜ = ψ−1(ϵ), T̃j = ψ−1(ϵj). (A.6)

Considering no measurement at r = 0 one can thus write

d
dt

V (T̃ ) =

∫ R

0
rϵ
(α
r
∂r (r∂rϵ)+ ϕ(T̃ ; T ) − αw

)
dr

=

m∑
j=0

∫ ϱj+1

ϱj

rϵj
(α
r
∂r
(
r∂rϵj

)
+ ϕ(T̃j; T ) − αw

)
dr.

Recall the definition of the operators Aj, j = 1, . . . ,m + 1 from
(9). Note that according to [51] all the −Aj are Sturm–Liouville
operators with eigenvalues −λn(Aj) n ∈ N satisfying 0 > λ1 >

> · · · and lim λ (A ) = −∞ for all j = 1, . . . ,m + 1.
2 n→∞ n j w

42
urthermore, let u, v ∈ L2([ϱj, ϱj+1]) and equip L2([ϱj, ϱj+1]) with
he inner product

u, v⟩r,j =

∫ ϱj+1

ϱj

ru(r)v(r)dr

nd induced norm

v∥r,j =

√
⟨v, v⟩r,j.

For all v ∈ D(Aj) it holds that⟨
v,Ajv

⟩
r,j ≤ sup

n∈N
λn(Aj)∥v∥2

r,j. (A.7)

Let κ be the maximum of the suprema of the eigenvalues λn(Aj),
i.e.,

− κ = max
j=1,...,m+1

sup
n∈N

λn(Aj). (A.8)

t holds that κ > 0 and accordingly that for w = 0

d
dt

V =

m+1∑
j=1

∫ ϱj

ϱj−1

(
rϵjAjϵj + rϵjϕ(T̃j; T )

)
dr

=

m+1∑
j=1

⟨
ϵj,Ajϵj

⟩
r,j +

m+1∑
j=1

∫ ϱj

ϱj−1

rϵjϕ(T̃j; T )dr

≤

m+1∑
j=1

sup
n∈N

λn(Aj)∥ϵj∥2
r,j +

∫ R

0
rϵϕ(T̃ ; T )dr

≤ −κ

m+1∑
j=1

∫ ϱj

ϱj−1

rϵ2j dr +

∫ R

0
r|ϵ| |ϕ(T̃ ; T )|dr

≤ −κ

∫ R

0
rϵ2dr +

∫ R

0
r|ϵ| |ϕ(T̃ ; T )|dr.

urthermore, notice that the functional V can be directly ex-
ressed in terms of the transformed observation error ϵ(T̃ ; T )
efined in (A.5) and it holds true that

(T̃ ) =
1
2

∫ R

0
rϵ2(T̃ ; T )dr =

1
2
∥ϵ(T̃ ; T )∥2

r ,

∥T̃∥
2
r ≤ V (T̃ ) ≤ b∥T̃∥

2
r (A.9)

for all a ≤ (1/2Lψ−1 )2 and b ≥ (Lψ )2/2, since this implies that

a∥T̃∥
2
r = a∥ψ−1(ϵ)∥2

r ≤ a
(
Lψ−1

)2
∥ϵ∥2

r ≤
1
2
∥ϵ∥2

r = V (T̃ )

and

V (T̃ ) =
1
2
∥ϵ∥2

r =
1
2
∥ψ(T̃ )∥2

r ≤
1
2

(
Lψ
)2

∥T̃∥
2
r ≤ b∥T̃∥

2
r .

Recall that γ is Lipschitz continuous and let Lγ denote its Lips-
chitz constant. In consequence, recalling the definition (A.3) of ϕ
it follows that for all T̃ = ψ−1(ϵ) and T ∈ [Tmin,∞) one has

|ϕ(T̃ ; T )| ≤ αLγ |T̃ | = αLγ |ψ−1(ϵ)| ≤ αLγ Lψ−1 |ϵ| = L̄|ϵ|

ith L̄ = αLγ Lψ−1 , so that

d
dt

V ≤ −κ

∫ R

0
rϵ2dr +

∫ R

0
r|ϵ| |ϕ(T̃ ; T )|dr

≤ −2κV + L̄
∫ R

0
r|ϵ|2dr

= −2κV + L̄∥ϵ∥2
r = −2

(
κ − L̄

)
V .

ote that this property together with (A.9) implies the exponen-
ial stability of T̃ = 0 in the norm ∥ · ∥r as long as κ > L̄ and

= 0 (cp. the complementary analysis in [39]). For a bounded
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d
t

T
p
v
t

R

isturbance 0 ̸= w with bound w+ defined in (1e) it further holds
rue that

d
dt

V (T̃ ) ≤ −
(
κ − L̄

)
∥ϵ∥2

r −

∫ R

0
rϵαwdr

≤ −
(
κ − L̄

)
∥ϵ∥2

r +
1
2

(
∥ϵ∥2

r + α2(w+)2
)

= −

(
κ − L̄ −

1
2

)
∥ϵ∥2

r +
α2

2
(w+)2.

his property together with (A.9) implies that V is an ISS Lya-
unov functional [42–44] and thus the ISS (see (3)) of the obser-
ation error dynamics (7) follows for all κ > L̄+ 1/2, as stated in
he theorem. □
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