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Karlsruhe, 2022



Für Romy und Papa



List of included papers

Paper A

F. Oechsle, T. Setzer, and S. M. Blanc, “On the assumptions of true lift models
for churn prevention”, in Multikonferenz Wirtschaftsinformatik (MKWI)2016,
Technische Universität Ilmenau, 09.-11. März 2016, Band 2. Hrsg.: V. Nissen,
pp. 1233–1244, Universitätsverlag Ilmenau, 2016
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Part I.

Overview



Chapter 1.

Introduction

1.1. Motivation and Research Goal

The amount of generated digital data rises year over year according to an exponen-
tial growth (Jan et al., 2019). In parallel the availability of suitable hardware for
processing data steadily increases. Computing power and storage capacity improve
rapidly (Foerster-Metz et al., 2018). Simultaneously the legal framework gets up-
dated. After more than 20 years of no changes in regulations as of May 25, 2018
the European so called General Data Protection Regulation went into effect. This
regulation replaces the former Data Protection Directive of 1995. It was passed
by the European Parliament as a contemporary legal framework appropriate to the
digital age. To summarize there is an environment, which boosts the development
and importance of analytical customer relationship management in the business-to-
consumer segment even further.

On the other hand a quite large toolbox is available for data driven decision-making
concerning several business-to-consumer use cases. There are established methods
for tackling diverse challenges along the customer lifecycle especially in industries
with contractual relations. It begins with the acquisition of new customers, leads
to cross and upselling or customer experience and finally to churn management. At
the majority of these central moments the necessary tools are available for practice,
especially prediction modeling techniques. In sales for example there are custom
response models for the prediction of purchasing probabilities. Oftentimes the more
elaborated uplift modeling approaches are already applied. But when it comes to
churn uplift concepts either do not reliably achieve the desired impact.
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So far no best practice for customer churn prevention measures has evolved based
on predicted churn probabilities, neither via response models nor via uplift models.
Frequently churn prevention campaigns even increase churn (Radcliffe, 2007b; As-
carza, 2018), which is exactly the access point for this thesis. The goal of the thesis
is correspondingly to point out what the root causes are for this observation. In
a second step it aims on developing solutions for robust, reliably churn decreasing,
churn prevention actions for practice.

1.2. Business Context Churn

Churn broadly means the loss of customers, which can be the non-appearence of
anew purchases or the churn announcements of consisting contracts (Pejić Bach
et al., 2021). For the first variant no contractual relation is needed. The second
variant is the classic churn use case in the subscription economy.

As attested by typical empirical churn ratios, churn is a relatively seldom event.
In the telecommunications sector for instance those quotas are in the region of up to
3.5% per month (Verbraken et al., 2014). 3.5% per month in a short term predictive
modeling perspective represent a challenging imbalance of the sample and a signif-
icantly reduced random hit rate of customers who are likely to churn. But in the
long term this circumstance is more than sufficient to make churn a commercially
important topic for companies, since over the course of one year this ratio per month
leads to up to 40% customers who are likely to leave.

Churn management covers measures to reduce customer churn. Apart from ac-
tions that serve the general customer satisfaction, there are two churn management
disciplines. On the one hand churn prevention and on the other hand customer re-
tention. Prevention means a prophylactic avoidance of churn, while retention stands
for winning back customers after cancellation or at least cancellation announcement.
Prevention thereby is the methodically more challenging part, since the cancellation
has to be anticipated and respectively predicted. In the retention case the customer
triggers the start of the action. The thesis focuses on the prevention case.
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1.3. Literature Review

There are several research papers which lay the foundation for uplift modeling con-
cepts while they are considering the underlying probability estimation problem of
two not simultaneously observable events (Chickering and Heckerman, 2000; Han-
sotia and Rukstales, 2002; Lo, 2002). Within those papers the work of Lo (2002)
particularly attracted interest. His "True Lift Model" is the starting point for this
thesis. Regardless of the detailed concept, it is a matter of estimating a difference
between two probabilities. Those concepts can essentially be classified into two cate-
gories: 1.) methods that estimate the target uplift directly within one single predic-
tion model and 2.) approaches using two distinct models to separately estimate the
likelihoods which are then combined to uplift. The direct approach is the superior
one (Radcliffe and Surry, 2011; Zhao et al., 2017). While the theoretical concepts
may be very clear and straight forward, in practice track records are missing. Cur-
rent research takes account of this fact and addresses towards uplift modeling first
and foremost disturbance, noise, estimation errors or similar priorities arising from
practical application. A main difficulty of research on that is the non-availability of
publicly accessible real world datasets. This thesis examines the causes for uncer-
tainty like disturbance, noise and others. It models them and evaluates the impact
depending on several customer selection methods for churn prevention campaigns on
a real world dataset. The thesis therefore works exactly on the current challenges of
uplift modeling research. Those obstacles are accentuated by further barriers, which
as described come along with the field of churn.



Chapter 2.

Summary of the included papers

Table 2.1.: Connection of included papers

Paper A Paper B Paper C

Business context Churn Churn Churn

Uplift modeling direct direct direct
& indirect

Used dataset simulated simulated real world
(300k obs.) (225k obs.) (64k obs.)

Estimation of Uplift none geometrically designed via decision tree

Feature space none 2 dimensions 7 dimensions

Noise & disturbance in general local spatial errors local spatial errors
(circular, 3 radii) (circular, 8 radii)

Selection methods none 5 6
(excl. additional splits) (incl. additional splits)

Simulation none Monte Carlo Monte Carlo
(250 runs per radius) (1000 runs per radius)

5
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2.1. Connection

The overlap of the three listed papers mainly consists of the underlying business
challenge. All of them are triggered and motivated by the nonexistent best practice
in the churn management subdiscipline prevention. As distinguished from the second
subdiscipline retention there is no sample solution available for churn prevention via
predictive modeling. Namely it exists no proven method which reliably accounts
for achieving the business goal of churn minimization. That applies to both uplift
modeling techniques and especially response modeling approaches. The three papers
highlight fundamental assumptions on which current concepts of uplift modeling are
based on (esp. paper A), debate alternative ideas based on decision trees (esp. paper
B) and show by using real world data that those novel approaches in error-prone
scenarios are more promising (esp. paper C).

Paper A builds the foundation through basal thoughts towards the inherent as-
sumptions of uplift modeling approaches for the considerations following in paper
B and paper C. So far there is no specific focus on either direct or indirect uplift
modeling as common concepts. It rather provides a general view on potential root
causes for estimation errors, without an indeed operated uplift estimation.

Paper B deals with the suggestions of paper A and transfers them to an approach
containing local spatial estimation errors, circular with three different radii. It un-
dertakes a quantitative analysis via Monte Carlo simulation on a synthetically gen-
erated dataset with two dimensions and 225.000 observations. Therefore alternative
distance respecting selection methods are introduced and first indicators are carved
out, showing that those novel methods could be able to dominate the classic method.
Preliminary the used uplift estimations are constructed by geometric design.

Lastly paper C follows up on paper B and enhances it with another five radii
and an extra selection method which uses additional splits. It particularly includes
an evaluation on a 64.000 observations containing real world dataset by means of a
Monte Carlo simulation with four times the number of runs. Moreover the employed
uplift estimations are engineered by decision tree on this real world dataset using
seven features.
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2.2. Paper A: On the assumptions of true lift

models for churn prevention

This research focuses on missing success stories of churn prevention in a very basic
manner as it fathoms and challenges the assumptions underlying the current uplift
modeling approaches. The issue of estimating the treatment effect of a customer
relationship management (CRM) campaign (particularly churn) is constituted with
the help of Lo (2002) and his "True Lift Model", while simultaneously the concept
itself is introduced. Additionally the typical nomenclature is specified (CRM, churn,
prevention, retention) and the existence of two only asynchronously observable events
(customer reaction when treated, customer reaction when not treated, uplift as their
difference) is identified as nonsolvable constraint which complicates the estimation
of the two corresponding probabilities.

Finally four groups of customers are defined according to their churn probability
characteristics, following the thoughts of Radcliffe and Simpson (2008). That is the
Persuadables which should be addressed, the Sleeping Dogs who are not to be ad-
dressed, the Lost Causes and the Sure Things. The Persuadables are the customers
who can be convinced by the campaign or significantly reduce their churn probabili-
ties with treatment. In contrast to that the campaign addressing the Sleeping Dogs
provokes churn, that is their churn probabilities significantly increase when treated.
Referring to this the paper also depicts that wrong decisions most likely come along
with highly detrimental consequences since every addressed Sleeping Dog implies a
potential churn increase.

The paper mentions both known approaches of uplift modeling, which are the
direct estimation of uplift as well as the separate calculation of two models and
a subtraction of probabilities afterwards. In doing so it falls into place, that the
academic foundation is comprehensible and the selection method with respect to the
True Lift concept is theoretically straightforward. But the adjacent considerations
of the paper indicate that the underlying assumptions could be not met in real
world business scenarios, which is described consolidatingly as a nonobservance of
the established bias-variance tradeoff. The thereby emerging and ignored uncertainty
is characterized as the decisive argument for the non-existent success stories.

Lastly it is concluded that future approaches for uplift modeling and particularly
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for churn prevention measures should factor in the contempt of the bias-variance
tradeoff and the interconnected disturbance. The paper builds the foundation for
further investigations regarding advanced uplift models. At the same time it pro-
vides a first stimulus towards game-changing events through local spatial errors by
referencing Manahan (2005) and his implicit suggestion to incorporate offer attrac-
tiveness as predictor. Paper B, as described in the next subsection, then seizes this
impulse.

2.3. Paper B: Towards more robust uplift modeling

for churn prevention in the presence of

negatively correlated estimation errors

Paper B approaches the importance of churn management and highlights churn pre-
vention procedures through a subscription business perspective. It accentuates that
despite of the tremendous growth of the subscription economy, reliable uplift model-
ing concepts for churn prevention are still missing. In principle the research as well
takes the "True Lift Model" of Lo (2002) as a basis and defines uplift as the difference
of the churn probabilities dependent on the (non-) participation in a corresponding
campaign. Backed up with sources (Radcliffe and Surry, 2011; Zhao et al., 2017),
it declares the direct prediction as the superior method and thus disregards the in-
direct prediction via two separate models. The paper is inspired by recent research
regarding estimation errors and primarily paper A. Besides the per se existing issue
of predicting two not at once observable events, inconsistent estimations elicited by
game-changing events are mentioned as major reason for futile churn prevention up-
lift models. In the worst case scenarios they even boost churn. Cited examples of
game-changing events that affect particular customer segments, are price increases,
product migrations or tariff launches of competitors.

Emanating from a two-dimensional feature space those events are assumed to be
local and spatially bounded in a circular shape distinguished by an error seed and
an error radius. The impact of a specific event fades with cumulative distance to the
error seed until it vanishes once the distance excels the error radius. Accordingly in
a next step spatial neighbourhood of customers in the feature space is depicted as
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fraught with risk when it comes to customer selection. Concretely it is described that
oftentimes similar customers in terms of feature values, which defines spatial neigh-
bourhood, collectively are selected assuming that they possess appropriate churn
probability uplifts. A later occurrence of a spatial error could then be devastating
whether it locates in the selected neighbourhood. As the paper explains in an ad-
verse setting plenty of customers who are affected by negatively correlated estimation
errors would take part in the corresponding churn prevention campaign.

In the evaluation chapter of the research the painted situation is quantified with
the help of a Monte Carlo simulation. Therefore the two-dimensional feature space is
artificially subdivided in nine rectangles, and consequently in leaves of a decision tree,
once regularly once randomly. Afterwards values �i 2 (0; 1] for i = 1, 2, 3 and �i 2 [-
1; 0] for i = 4, 5, .., 9 are randomly assigned to the rectangles and accepted to be the
correct estimations of uplifts belonging to the corresponding leaves and the contained
customers. Next several distance respecting selection methods are introduced for
challenging the classic selection approach which concentrates exclusively on uplift
and ignores distance in the feature space. In a completive step the discussed local
spatial and more precisely circular errors are created in order to retroactively bias
the correct and thus applied for selection uplift estimations. The performance of
the different selection approaches is evaluated based on 250 runs per error radius
embedded in a Monte Carlo simulation.

With regard to the results of the carried out simulations it becomes apparent in
this research that in an as per description disadvantageous scenario and decision trees
with regular leaves it can be promising to use selection methods which trade off uplift
against distance in the feature space. It may be profitable not to follow the classic
method depending on the error radius. Practically this is documented by lowered
probabilities for ending up with churn increasing churn prevention campaigns. En-
couraged by this insight the paper finally motivates to think about additional splits
man-made integrated in the underlying decision tree with the aim to gain more dis-
tance amongst the selected customers. Indeed this is just what is implemented in
paper C on a real world dataset.
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2.4. Paper C: Increasing the robustness of uplift

modeling using additional splits and diversified

leaf select

Paper C addresses the subject via the current Covid crisis and the thereby further-
more taking place growth acceleration of the eCommerce and subscription business.
The considered business sector is again churn, whereat churn explicitly is defined
as not only cancellation of subscriptions but also not continuing online purchases.
Accordingly the general increment of subscriptions and online purchases in sum is
mentioned as a factor which increases the importance of churn management and es-
pecially churn prevention. Consistent with papers A and B, this paper has to state
that notwithstanding the current macroeconomic trend there still is no robust uplift
modeling solution for churn prevention. Similarly the conventional impediments like
two not at once observable rare events or additional churn provoking errors are listed.

For the basic setup the concept of paper B is adopted. That is a) usage of True Lift
approach, b) focus on direct uplift modeling, c) intervention in a previously generated
decision tree which is assumed to be able to correctly estimate churn uplifts, d)
occurrence of local spatial and circular errors of same architecture characterized by
error seed, error radius and distance of the individual customer to the error seed and
e) concluding evaluation via Monte Carlo simulation. This procedure is motivated by
the latest research on uplift modeling which predominantly examines the robustness
of estimations depending on disturbance and in particular by paper B.

Compared to paper B this research and therefore a substantial portion of its contri-
bution consists of a) the upgrading of the selection methods with a new diversifying
portfolio approach by means of additional splits, b) a more extensive Monte Carlo
Simulation (8 radii, 1000 runs pro radius), c) a rising number of dimensions (from
two to seven) spanning the feature space and d) the usage of the publicly available
real world Hillstrom dataset. This very dataset upfront is fitted to a churn scenario
and enables the paper to implement an uplift estimation per decision tree. Coming
from this estimation the known methodology of paper B is adapted by employing
the noted modifications. Especially the missing research on the basis of real world
datasets is depicted as a contemplated central problem in the literature towards
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uplift modeling.
The present study concludes that depending on the magnitude of bias and dis-

turbance situations exist in which it is necessary or at least recommendable not to
comply with the classic selection approach of uplift modeling. At the same time
it is carved out that the diversifying portfolio approach including additional splits
produces desired outcomes. This circumstance is quantified through lower spread
of average uplift per selected customer, less failures (churn aggravating churn pre-
vention campaigns) and less grave failures. Though the classic selection method in
the contained evaluations permanently achieves the highest expected uplift E[�],
the add split method partly demands a marginal risk premium in terms of E[�]
for the obtained robustness and planning certainty. The research suggests to apply
this knowledge gain in practice and perceives that it is a valuable instrument for
particularly eCommerce and subscription business use cases.



Chapter 3.

Conclusion

3.1. Summary of Contributions

The thesis questions the assumptions of current uplift modeling approaches and
hence reveals weaknesses, which can arise in practice. It formalizes the problem
of noise, disturbance, estimation errors or dependency on behaviour of local neigh-
bours as mentioned by numerous research papers (Dasgupta et al., 2008; Kusuma
et al., 2013; Droftina et al., 2015a,b; Athey et al., 2015; Lo and Pachamanova, 2015;
Oechsle et al., 2016; Athey and Imbens, 2016; Zhao et al., 2017; Rößler et al., 2021)
via its spatial error concept. This research introduces new selection methods, which
deviate from the classical approach. They do not only consider expected churn prob-
abilities but also the spatial distance in the feature space as decision criterion. The
superior selection method with incorporated additional splits can be interpreted as
an intervention in the construction of the underlying decision tree. Its dominance in
settings sufficiently affected by errors, is clearly determined on Hillstroms real world
dataset. The results show a reduced likelihood of churn increasing churn prevention
campaigns in relevant error-prone situations when not sticking to the classic method,
especially with the additional split variant. Moreover the less frequent failures are
of lower extent and the risk premium is acceptable. The thesis thus supplies a tool
for practicioners to develop their churn prevention measures to more robustness.
Obviously users from other industries can adapt the insights as well.

12
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3.2. Critical Appraisal and Outlook

An arguable assumption of this thesis and respectively of the three included papers
is the concept of radially spreading local errors, following a cosine behaviour. While
other research supports the idea of locally bounded errors (Dasgupta et al., 2008;
Kusuma et al., 2013; Droftina et al., 2015a,b), the cosine behaviour is disputable.
This manner is not inviolably deduced but follows the intuition that the error impact
should fade from the seed to the edge. However it can be said that most probably the
spatial confinement is way more important than the actual way of diffusion within
the error area.

Another downside associated with the error construction concept is that the errors
are simulated in retrospect. Even though this is then applied to a real world dataset,
the generation of errors is simulated. To compensate this a real world dataset with
observations at all necessary time points would be desirable. This aspect is one part
of the frequently mentioned need for real world data and supports its relevance for
future research. The used data sets can obviously be more extensive than the 64k
sample used by Hillstrom, as indicated by Diemert et al. (2018), or originate directly
from the subscription business.

Concerning the used selection methods the application of a new metric regarding
the Euclidean distance should be considered to evaluate if comparable or even better
results can be achieved. Even though using Euclidean distance was successful in the
current thesis, there are no arguments against considering different metrics in future
research.

Finally this research solely focuses on problem solving by using decision trees.
Neither random forests as a combination of several decision trees nor completely
different machine learning methods are evaluated. This is not mandatory since the
goal is reached by the presented approach, but it should still be used as connection
point for potential future successes in the area of uplift modeling.
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Abstract 
Preventing customer churn by subjecting carefully selected customers to customer relationship 
management activities is of crucial importance to many service industries. A promising selection 
of customers can be achieved using so called true lift or incremental models, which focus on 
customers at high churn risk, that are also likely to be persuadable through appropriate campaigns. 
In comparison to simpler models, true lift modeling however not only requires estimating churn 
probabilities of untreated customers but also their churn probabilities when treated. We argue that 
the estimation of the latter probabilities introduces a novel source of uncertainty not considered in 
state-of-the-art true lift models. In this paper, we assess the consequences of these uncertainties for 
true lift modeling. We identify assumptions regarding distribution of churn probabilities made by 
true lift models and argue that these assumptions are most likely not met in any practical setting. 
As a result, churn prevention campaigns can easily fail and even increase total churn rate, which 
might provide an explanation for the very few published empirical success stories on true lift 
models. 

1 Introduction 
A broad spectrum of scientific literature discusses customer relationship management (CRM) along 
the lifecycle of a typical customer, including customer identification, attraction, development, churn 
prevention and retention (Ngai et al. 2009). Prevention as well as retention campaigns aim at 
reducing the number of contract cancellations. In contrast to retention, which aims at winning the 
customer back after announcement, prevention precedes the churn announcement and aims at 
reducing churn announcement probabilities. In the telecommunications sector with annual churn 
rates estimated at up to 20% and more (Tamaddoni Jahromi et al. 2010) and low marginal costs per 
customer, churn prevention is of crucial importance. Numerous works studying the determinants of 
churn risk (for instance Kim and Yoon 2004, Ahn et al. 2006, Keramati and Ardabili 2011, Lu 2002, 
Zhang et al. 2012) highlight its importance. See Hadden et al. (2007) for a comprehensive overview 
on churn management. 
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A key question in customer churn management is which customers to address in CRM activities 
aiming at churn prevention. Based upon churn probability with and without treatment, customers 
can be grouped into segments of different relevance, as illustrated in Figure 1. Customers for whom 
the churn probability can be noticeably reduced by a treatment (referred to as Persuadables) are of 
great interest and should be subject to treatment. Obviously, a treatment can also lead to the opposite 
effect for other customers labeled Sleeping Dogs, who should not be subject to CRM activities. 
Customers with approximately equal churn probability with and without treatment (Lost Causes 
and Sure Things) are not of particular interest for churn prevention activities.  

 

Figure 1: Definition of Customer Segments according to Radcliffe and Simpson (2007) 

The aim of true lift models is consequently to select the Persuadables for treatment while avoiding 
to select Sleeping Dogs. To discriminate the customers of both segments, it is intuitive to use the 
difference of the churn probabilities with and without treatment.  

In practice, the churn risks of individual customers (with and without treatment) are predicted using 
data mining techniques. However, while it has been shown that churn probability predictions of 
untreated customers are quite accurate (like other predictions of probabilities using data mining 
techniques), targeting the customers who can be positively influenced by a treatment has proved to 
be much more challenging and only few success stories have been reported on this important topic.  

In this paper, we argue that the low number of success stories might be a result of the implicit 
assumptions of true lift models, which are likely to be violated in practice. In particular, we 
demonstrate that true lift models assume that (a) the uncertainty in churn probability estimates is 
equal for all probabilities and that (b) estimates of churn probabilities with and without treatment 
are equally distributed and uncorrelated.  

Both assumptions can easily be violated since customers with high churn probability are much less 
frequent than customers with low churn probability. In fact, customers with high churn probabilities 
must be seldom, since simply because they have high churn probabilities, it is likely that they 
already have churned. As a result, the number of customers available for probability estimation 
decreases with churn probability ascending, which in turn increases uncertainty in churn probability 
estimates (as the statistical support for probability estimates decreases).  
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Because of this uncertainty, a Sleeping Dog can easily be misclassified as a Persuadable. This is 
even more likely if churn probabilities are on average larger with than without treatment. 

The remainder of the paper is structured as follows. We first review related work on true lift 
modeling. We then identify the implicit assumptions underlying true lift models in Section 3. These 
assumptions are then compared to conditions in real world applications in Section 4, and effects of 
violating the assumptions are discussed in Section 5. We finally conclude and debate our results as 
well as their implications for future true lift modeling efforts. 

2 Related Work 
The concept of true lift was first introduced by Lo (2002), who defined the true lift as a novel 
measure of campaign effectiveness. The true lift is based on the idea that a method of selecting 
customers for treatment in a marketing campaign should not only increase the probability of a 
desired outcome (e.g. a sale or a prevented churn) but must also outperform a random selection. 
This is illustrated in Table 1, where campaign results for a segmentation suggested by a model are 
presented in the Model row. In contrast, results for a random selection are displayed in the Random 
row. In both cases, the Treatment (Control) column indicates results for the customers that are (not) 
subject to the campaign. Consequently four groups with different cumulative responses (denoted 
A, B, C and D) exist. A customer selection method should increase the increment A-B, i.e., lead to 
better results for treated compared to untreated customers, and simultaneously outperform a random 
selection. Overall, true lift models are aimed at maximizing (A-B)-(C-D), whereas classic response 
models focus on maximizing A-C. 

 Treatment Control  Increment 

Model A B A-B 

Random C D C-D 

Delta A-C B-D (A-B)-(C-D) 

Table 1: Definition of True Lift, following Lo (2002) 

The concept of the true lift was motivated by Chickering and Heckerman (2000), who first not only 
modeled the expected response of a treatment. For an advertisement campaign for MSN 
subscriptions with 110,000 customers, two separate models for the expected profit with and without 
sending of a mail were built. The approach however only slightly outperformed an off-the shelf 
response model. In contrast, Hansotia and Rukstales (2002) found that increments of the response 
probabilities could be predicted with good accuracy in a direct marketing campaign with 282,277 
customers of a major retailer. 

In a simulation study, Lo (2002) showed that a standard response model merely marginally 
outperforms a true lift model regarding the response rate rank order. True lift models however 
clearly perform best with respect to the true lift. For example the top decile of the response (true 
lift) model generates a treatment response rate of 0.93 (approximately 0.7) whereas, in the same 
decile, the response rate difference to the untreated group is roughly 0.3 (0.41).  

For the wireless telecommunications industry, Manahan (2005) aimed to reduce customer loss by 
contacting selected customers with a contract renewal offer. The model (a logistic model with cubic 
splines) did however not perform well, which the authors attributed to missing predictors, such as 
regarding the attractiveness of the offer. 
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Overall, empirical results for true lift models are assorted and did not robustly lead to satisfying 
results across different works. This result is quite surprising in the light of the intuitive and 
promising theoretical foundation of true lift models. Understanding the issues with true lift models 
leading to decreased performance is consequently of great importance. 

Improving the predictive accuracy of the applied prediction models is an obvious starting point for 
increasing the performance of true lift models. For instance Rzepakowski and Jaroszewicz (2010) 
proposed technical modifications to decision trees for better performance in uplift modeling, which 
are found to be beneficial for the selection of patients for medical treatments.  

Furthermore, Radcliffe and Surry (2011) noted that previous works predicted the treated and 
untreated probabilities separately and proposed to directly predict the difference between the 
probabilities in one single model. Based on case studies illustrating the effectiveness of the 
approach, the authors recommend this model as the superior approach. Rzepakowski and 
Jaroszewicz (2012) applied this approach in an email campaign with 64,000 customers using a 
special tree-based classifier. The model outperformed classic response models as well as common 
uplift models. Similarly, Zaniewicz and Jaroszewicz (2013) surpassed other uplift models (with 
decision trees and standard support vector machines) using a support vector machine in a medical 
scenario. 

In summary, customers are selected in a way to optimize the difference A-B (see Table 1) in all 
models. The difference between probabilities with and without treatment is consequently a 
reasonable basis for the selection. However, empirical results are mixed when the probabilities are 
predicted separately. While technical improvements and directly predicting the difference of 
probabilities in one single model increased performance, the surprisingly small performance 
increase of basic models is still unexplained.  

In this paper, we investigate the assumptions underlying prevalent true lift models, which were 
implicitly assumed to be satisfied to date, as a cause of the astonishingly low empirical performance 
of true lift models. The new insights provide sound guidance for future research on true lift models, 
which afterwards can be applied with higher performance in practice. 

3 Assumptions of Current True Lift Models 
Reconsidering the illustration of Radcliffe and Simpson (2007) in Figure 1, the common selection 
method using the difference between probabilities, starts choosing customers in the lower-right 
corner (p_untreated = 1 and p_treated = 0), where the increment (p_untreated - p_treated) is 
maximal. If customers with lower increments (denoted Δ) are also chosen, the lines separating 
selected from not selected customers are displayed in Figure 2. All lines are parallel to the bisecting 
line of the first quadrant (which corresponds to Δ 0 . The angle bisector is, from a probabilistic 
perspective using the expected value, the barrier where selection begins to make sense, because 
churn rates can be expected to decrease when treated for higher (and thus positive) values of Δ.  

The line representing the border of the Persuadables-triangle in the illustration of Radcliffe and 
Simpson (2007) is one of the parallel lines. The line indicates the optimal threshold for selection in 
terms of Radcliffe and Simpson, if prevention comes along with costs (transaction, offer, etc.). 
Otherwise it would be optimal to contact every customer below the bisecting line of the first 
quadrant. 
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Figure 2: Graphical Illustration of Selection by Delta 

Obviously, the true churn probabilities of customers are unknown and selection would otherwise 
be trivial. The probabilities are consequently predicted using data mining techniques. 

In order to ensure that the selection by delta minimizes expected churn, the expected values of the 
probability estimates must be equal to the correct values, i.e., EV_treated = p_treated and 
EV_untreated = p_untreated (Assumption 1). 

To fulfill the bias-variance trade-off of statistical learning theory, the uncertainty in the churn 
probability estimates must furthermore be equal for all probabilities (Assumption 2). Statistical 
learning theory clearly indicates that ignoring the variance is most likely not optimal. 

For the purpose of achieving Assumption 2, the uncertainty in the predicted churn probability must 
be independent of the probability itself (Assumption 2a). In addition, every combination of churn 
probability of treated and corresponding churn probability of untreated customers exists and is of 
the same frequency (Assumption 2b) to ensure equal support for all estimates. 

Lastly, the likelihood of wrong decisions because of estimation errors must not exceed the 
likelihood of beneficial decisions to ensure optimality of selection by the difference of probabilities. 
For this reason, treated and untreated churn probabilities must be unrelated, in particular churn 
probabilities with treatment must not be systematically larger than untreated probabilities 
(Assumption 3). 

Overall, while the selection by difference of treated and untreated churn probabilities is, from a 
theoretical point of view, clearly the optimal criterion to minimize the expected number of churning 
customers, several assumptions have to be satisfied to ensure this optimality. In the next section, 
we compare these assumptions to conditions in real-world applications to determine which of them 
are likely to be satisfied or violated. 

4 True Lift Assumptions in Practice 
The considerations of the previous section, together with their implications for customer targeting 
according to the expected value theory, did not result in a substantial number of empirical success 
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stories with delta-based true lift models so far. We argue that a major issue with such approaches is 
that the implicit requirements regarding distributions of probabilities and their relations will most 
likely be violated in practical settings, which will now be discussed in detail.  

First, reconsidering Figure 1, the fundament for targeting customers are the relations of ‘churn 
probability if untreated’  and ‘churn probability if treated’, while the uncertainty in probability 
estimates is not explicitly considered. State-of-the art data mining and predictive modeling 
techniques are however able to quite reliably predict the correct value on average. The expected 
value of predictions can therefore be assumed to be equal to the correct probabilities. Assumption 
1 is consequently most likely satisfied and true lift models can accordingly also be applied to the 
estimated instead of the correct churn probabilities. 

Before we discuss the other assumptions of true lift models, we first derive realistic assumptions 
regarding the distribution of churn probabilities amongst customers as a basis for the in-depth 
discussion. 

Churn probabilities cannot be expected to be uniformly distributed between zero and one, neither 
for untreated customers, nor for treated customers. For instance, a uniform distribution of churn 
probabilities of untreated customers would mean an average annual churn rate of approximately 
50% – an extraordinary high percentage value even in “churn intensive” industries such as 
telecommunications. In general, empirical observations indicate that we are likely to find more 
customers with low churn probabilities (those who remain loyal), while many customers with high 
churn probabilities already left the company. 

More realistic distributions of churn probabilities with and without treatment are presented in Figure 
3. The plot on the left-hand side shows churn probability distributions for 300,000 customers with 
and without treatment, following different beta distributions. The corresponding parameters in this 
case are alpha_untreated = 1, beta_untreated = 32, alpha_treated = 2 (= 2 * alpha_untreated), 
beta_treated = 31 (= beta_untreated - alpha_untreated). 

 

Figure 3: Challenging Distribution of Churn Probabilities 

The average churn probability when treated clearly exceeds the average churn probability without 
treatment for the chosen distribution parameters. It is often observed in practice that subjecting a 
customer to a treatment, for instance a churn prevention telephone call, actually on average 
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increases the churn probability. This finding can be explained easily since customers are actively 
reminded of their contract as well as the contract runtime and will, with high probability, re-evaluate 
the contract as a result of the churn prevention activity. Furthermore, if campaigns on average 
decreased probabilities, churn prevention would be comparatively easy. In contrast, we have a more 
challenging scenario where a random selection would actually increase churn. We can consequently 
directly reject the appropriateness of Assumption 3. 

It is additionally intuitive to suppose a correlation between a customer’s churn probabilities when 
treated and when untreated. For our considerations, we assume a rather moderate correlation of 0.5. 
This yields to the bivariate distribution illustrated on the right-hand side in Figure 3.  

We can now analyze the delta-based customer selection criterion in the introduced setting in order 
to assess the validity of the other assumptions.  

Clearly, the most interesting customers for churn prevention activities, i.e., customers with high 
churn probability when untreated but a probability approaching zero otherwise, are in the lowest 
lower-right corner and have the highest delta values. 

However, we observe that – while we see many customers with low delta values – we hardly find 
any customers with large deltas. Hence, high deltas are estimated using relatively few data points 
and, thus, the churn probability reduction has increasingly lower statistical support. Consequently, 
the delta criterion prefers customers in regions where the statistical support is comparatively low. 
This coherence becomes even more tangible when rasterizing the two-dimensional space of 
probabilities. For this purpose we first subdivide the data display in the right part of Figure 3 into 
squares of side length 0.005, and count the observations belonging to a square (sub-segment). We 
then compute the differences between the probabilities (treated and untreated) of the particular 
segment centers and respectively assign the resulting value as the concerning square’s delta. Figure 
4 shows the resulting boxplot depicting the distributions of support depending on the delta. The 
figure illustrates the decay of support per sub-segment with increasing delta. While support is in 
many cases high for low delta values, support is very low for deltas larger 0.05. 

 

Figure 4: Decreasing Sample Size with increasing Delta 

As a consequence, we can conclude that Assumption 2b is most likely not met. The support for 
statistical inference strongly varies for diverse (combinations of) probabilities. This in turn leads to 
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differing variance of estimates, since estimations with high support exhibit low variance while 
decreasing support substantially increases variance. This is further illustrated in Figure 5, where the 
distributions of estimated probabilities are depicted for three segments with sample sizes 10, 100 
and 1,000 as well as an average churn rate (our proxy for the mean churn probability in a segment) 
of p=0.1. Clearly, the smaller the sample size, the higher the variance of estimates.  

 

Figure 5: Probability of wrong Decisions dependent on Support 

Another issue arises, from a statistical point of view, when preferring customers with higher 
untreated churn probabilities over those with lower untreated churn probabilities, even when the 
mean delta and the support are identical in both segments. This is illustrated in Figure 6. 

 

Figure 6: Probability of wrong Decisions depending on Churn Probability   

Figure 6 shows the distribution of the estimated churn probabilities for treated customers in three 
different segments with sample size n = 50 but different original churn probabilities p = 0.03, 0.15, 
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0.45 (the dashed vertical lines in the plot). The figure displays a simple and well-known statistical 
truth: the higher the mean churn ratio (the probability parameter in a Bernoulli distribution), the 
wider the distribution spreads. In our case, the implication is, that the risk of actually increasing the 
churn ration by a treatment, equals the share of the cumulated distributions exceeding the original 
probabilities (the dashed lines), increases with p. 

Obviously, Assumption 2a is in practice also violated, plainly because of basic statistical properties 
of estimators for ratios or probabilities. 

Overall, several assumptions of true lift models are most likely not satisfied in practice. In 
particular, the basic bias-variance trade-off of statistical learning is not explicitly considered in the 
models, which can again lead to decreased model performance. 

5 Impact of Violated Assumptions 
After our in-depth analysis of the assumptions of true lift models in practice, we now discuss the 
consequences of the violation of these assumptions. 

The effect of the skewed probability distribution regarding the uncertainty of probability estimates 
is definitely of particular interest. Supervised analytical procedures usually determine churn 
probabilities by grouping similar customers (customers with similar attribute values according to a 
predefined distance metric) and then computing the ratio of observed churners and non-churners in 
the individual groups. However, as the customer density decreases with increasing churn 
probability, for higher probability values the number of similar customers grouped together – and 
thus the support for the ratio-based probability estimates – declines, and therefore leads to 
increasingly unstable probability estimates. We will now debate why the resulting probability-
specific uncertainties are critical in true lift modeling.  

The churn probability of a customer follows a particular binomial distribution when treated, and 
probably another binomial distribution if untreated (excluding the consideration of priors as used 
in Bayesian approaches, which are out of scope of this paper), with the number of customers in the 
group and the group-specific churn rate (of treated customers only, of untreated customers only) as 
parameters. 

The selection via the delta criterion prefers customers with high initial churn probabilities in regions 
with poor statistical support, as detailed in the previous sections. As a corollary, the two statistical 
effects of increasing uncertainty for lower sample size and for increased probabilities apply at the 
same time for the customers who are most likely selected. The total effect is depicted in figure 7. 
The figure shows the distribution of estimated churn probabilities (treated versus untreated) for two 
segments that are promising in general, as the mean churn probability of treated customers 
respectively is much smaller than the one of untreated customers. On the left-hand side, with 
n=1000, p_untreated=0.03 and p_treated=0.02, the overlap of both distributions is relatively small, 
while it is large on the right hand side for the distributions with n=20, p_untreated=0.3 and 
p_treated=0.2, indicating that the risk of wrong targeting is much higher in the second segment. 
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Figure 7: Probability of wrong Decisions depending on Support and Churn Probability  

Evidently, making wrong decisions should be avoided whenever possible. In the challenging case 
of churn prevention with a higher overall churn probability when customers are randomly treated, 
wrong decision-making is particularly critical due to the fact that we have to assume a correlation 
between the probabilities, and the opportunities for improvement are seldom compared to the more 
frequently appearing hazards. Thus wrong decisions usually are likely to get penalized, all the more 
as only a small portion of a few percent of the customer base is subject to a prevention campaign.  

6 Summary, Conclusion and Outlook 
In summary, targeting customers with current state-of-the-art true lift models ignores the bias-
variance trade-off and can lead to very poor customer selection. Above all, the uncertainty in the 
prediction of churn probabilities and its dependence on the probability itself is not considered, as 
the implicit assumption of the selection criteria in true lift models is a uniform distribution of churn 
probabilities as well as a statistical independence of probabilities of customers with and without 
treatment.  

In this paper we argue that these assumptions are hardly met in practical settings, since probabilities 
cannot be expected to be distributed uniformly between 0 and 100% (nor in any other intervals) – 
thus leads to varying support for statistical churn probability estimation procedures. Moreover, 
original churn probabilities are likely to be correlated with those after treating customers. In fact, it 
is much more appropriate to assume right-skewed, long-tailed probability distributions in almost 
any setting of practical relevance.  

As a consequence, the probability estimates for lower churn probabilities will be far more stable 
than estimates of high churn probability. In other words, the probability or risk of choosing wrong 
customers and increasing churn rates is higher when targeting customers with high initial churn 
probability. We argue that this uncertainty needs to be appropriately considered in customer 
targeting models for churn prevention, although this requires more complex approaches than basic 
true lift models. 
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Furthermore, correlated churn probabilities (treated / untreated) in combination with a right-tailed 
distribution of basic (untreated) churn probabilities, increases the likelihood of targeting the wrong 
customers, when using the assumed decay in churn probability caused by treatment (the delta) as 
selection criterion. Overall, the risk of wrong decisions is high with current true lift modeling 
approaches, which can easily lead to an increased churn rate when conducting a churn prevention 
campaign. This result most likely explains the low number of success stories published to date. 

We conclude that other approaches that appropriately consider the uncertainty in probability 
estimates are required to construct successful churn prevention models. The aim of this paper is to 
emphasize the problem with current methods from a statistical perspective in order to provide the 
basis for future work on this important issue of customer targeting in churn prevention campaigns 
and in other applications. 
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Abstract

The subscription economy is rapidly growing,
boosting the importance of churn prevention. However,
current true lift models often lead to poor outcomes in
churn prevention campaigns. A vital problem seems to
lie in instable estimations due to dynamic surrounding
parameters such as price increases, product migrations,
tariff launches of a competitor, or other events
with uncertain consequences. The crucial challenge
therefore is to make churn prevention measures more
reliable in the presence of game-changing events. In
this paper, we assume such events to be spatially finite in
feature space, an assumption which leads to particularly
bad churn prevention results if the selected customers
lump in an affected region of the feature space. We
then introduce novel methods which trade off uplift
for reduced similarity in feature space when selecting
customers for churn prevention campaigns and show
that these methods can improve the robustness of uplift
modeling.

1. Introduction

Referring to McKinsey’s survey of US shoppers
"Thinking inside the subscription box: New research
on e-commerce consumers" [1], "the subscription
e-commerce market has grown by more than 100
percent a year over the past five years. The largest
such retailers generated more than $2.6 billion in
sales in 2016, up from a mere $57.0 million in
2011". This survey was carried out in the end of
the year 2017 and was published in the beginning
of the year 2018. A similar development for the
German subscription market is described by billwerk in
their 2019 published white paper "subscription based
services" [2]. They highlight that the revenues of
German vendors of subscription-based services since
2015 are exponentially growing by more than 100
percent per year. At any rate, the subscription business
is an economy gaining in importance, and is after the

big successes in North America now conquering the
European market. In consequence, churn management,
and with it the subdomain churn prevention, will
become of paramount prominence.

Yet, state-of-the-art uplift models often lead to poor
outcomes in churn prevention campaigns, like any other
common churn prevention approach as well. The crucial
question thus is how to do churn prevention in a more
reliable way, i.e., in a way that the benefit of a campaign
is more probable. A churn managing company basically
would like to know how each of their customers will
react when being targeted within the scope of a churn
prevention campaign such as a phone call with a specific
contract renewal offer, in comparison to their behaviour
when they are not targeted. At this context "reaction"
or "behaviour" means in particular to announce churn or
not to announce churn.

The underlying challenge is thus to predict the
probability of a customer to announce churn, depending
on the participation in a (specific) churn prevention
campaign. This probability consists of two different
probabilities, namely the probability of churning
without being contacted and the probability of churning
when being contacted. Even if only one of the
probabilities is notably misestimated, the success of the
whole churn prevention campaign is in danger.

The issue of estimating these probabilities is further
aggravated by the rarity of churn per se, which
implies that successful churn prevention cases are even
rarer. Accordingly, the estimation of the probability
of customers that can be successfully prevented
from announcing churn when receiving an appropriate
measure is both challenging and crucial, since failure
provokes the opposite of the aimed target. Thus
even partial failure in estimating churn probabilities
can lead to increased churn rates, which is eminently
adverse since it is much more expensive to acquire new
customers than retaining the inventory customers [3].
Consequently, we need an approach that ensures the
absence of failure as far as possible while still realizing
existing chances of churn reduction.
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In this paper, we explore the effect of game-changing
events such as tariff launches of a competitor on uplift
modeling. We assume these events to be spatially
finite in feature space and evaluate different customer
selection methods based on decision trees via Monte
Carlo simulations, including novel selection methods
which trade off uplift against more diversity in feature
space and prove to be more robust in the presence of
such events.

Note that when we use the term churn in this paper,
we mean churn announcement. Only if a company’s
efforts in retaining the churn announcing customers are
of no avail this results in churn. At this point, churn
management is divided into prevention and retention.
We clearly concentrate on churn prevention in this paper.

2. Related work

The basic theory underlying Lo’s true lift model [4]
is quite intuitive and well-defined, but surprisingly does
not reliably succeed in the churn context. The definition
according to Table 1 is neat and in essence considers
the incremental effect a campaign has on the selected
customers, whereas in the context of a traditional
response model the focus is only on the response after
the campaign (treatment) devoid of checking what it
would have been without the campaign (control), that
is maximizing the difference A � C. For instance A,
B, C and D could denote the probability of purchase or
churn for the corresponding customer segment.

Table 1. Definition of true lift, following Lo [4].

Treatment Control Increment

Model-guided A B A-B
Unguided C D C-D
Difference A-C B-D (A-B)-(C-D)

The true lift approach consequently results in a
different selection method compared to the classic
response model in that it selects by the delta of the
customers churn probabilities when treated (= received
the campaign treatment) or untreated (= not received
the campaign treatment), that is the uplift. The uplift
is calculated as

� = p0 � p1, (1)

where p0 and p1 are the churn probabilities without
respectively with treatment. The selection method
according to the uplift is illustrated in Figure 1. There,
the lower-right corner represents the optimal point for
selection (highest churn probability if untreated but
lowest if treated, i.e. maximal �). The lower the

value of the � selection threshold (e.g. due to higher
available budget), the more customers are covered in the
campaign treatment.

Figure 1. Graphical illustration of selection by delta

from Oechsle et al. [5].

Even though the available research relating to
uplift modeling is not inexhaustible, there is definitely
adequate knowledge about predicting those increments
used in Lo’s true lift model. Kane et al. [6] depict
this in a comprehensive way as well as Guelman et
al. [7] do. Hence, the direct prediction of the difference
between the probabilities in particular seems to be a
mature approach. The leading alternative would be
to predict the two probabilities separately, building the
uplift afterwards via subtraction.

Nevertheless, empirical results are not satisfying.
This picture emerges by for example comparing the
corresponding work of Chickering and Heckerman [8],
Hansotia and Rukstales [9], Manahan [10],
Rzepakowski and Jaroszewicz [11], Radcliffe and
Surry [12], Rzepakowski and Jaroszewicz [13] or
Zaniewicz and Jaroszewicz [14]. The nonexistent
established success stories in practice encourage this
point of view.

Consequently, the focus of the most recent studies is
uncertainty and estimation errors as a central root cause
for the observed phenomenon of missing best practices
in terms of churn prevention via uplift modeling. While
Lo [15] accounts for the variability in estimates in a
marketing context, Oechsle et al. [5] address estimation
risks in the subscription business when it comes to
churn. Athey and Imbens [16] analyse in general
the increasing uncertainty in estimations arising from
a smaller sample size. As they deal with decision
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trees, they propose to use different subsamples for
splitting and estimating and try to control their results
via confidence intervals. This approach appears not
intuitive in so far as it multiplies the initial problem of
small leaf size by further splits.

In the remainder of the paper, we pick up this latter
stream and investigate the effect of suddenly upcoming
estimation errors due to moving environments in the
subscription business. We thereby contribute insight
concerning the question why churn prevention all too
often fails and how it can be done better.

3. Negatively correlated estimation errors

due to uncontrollable events

The above mentioned moving environment
accumulates dynamic surrounding parameters, which
can be on the one hand company-intern changes such
as mandatory price increases or product migrations
owing to technical improvement, and on the other hand
external factors like tariff launches of a competitor
or other specific events influencing customer groups
in undetermined ways. This fluctuation leads to
instable estimations and suboptimal decisions at least.
In the worst case, these dynamic parameters can
lead to negatively correlated estimation errors within
homogenous customer segments.

Consider, for instance, a company whose portfolio
includes the cheapest tariff for the entire branch
linked with a competitive common service package,
and therefore successfully contracted bargain hunters.
Consider further that it is suddenly confronted with a
competitor launching an even cheaper tariff of adequate
quality. In this case it is possible that the just very
loyal (low p0, high p1) bargain hunters abruptly turn to
unfaithful (high p0, low p1), change-oriented customers.
Let now the prevention campaign process be at a point
where this could not be recognized and incorporated
any more, then it ends up in probability estimations
that still pretend loyal bargain hunters but rather belong
to potential churners. In other words underestimated
p0 and overestimated p1, that is, negatively correlated
estimation errors.

Such game-changing events can burst in on a
prevention campaign at all times and cannot always
be anticipated nor reliably excluded by, for example,
smart definition of the target group of the prevention
campaign. Their effect can only reasonably be assumed
to be spatially finite, i.e. locally bounded with respect to
their diffusion in feature space. The most detrimental
impact of these events occurs when the customers
that seem to be the most promising (and which are
therefore selected for treatment) lump in a certain

region of feature space which is affected by the
upcoming game-changing event in such a way that
the overall treatment effect is reversed. Consequently,
targeting churn prevention measures at a customer group
characterized by their similarity in feature space poses
a potential threat to the success of these measures and
should hence be penalized or avoided.

In this paper, we evaluate the effect of such
game-changing events via Monte Carlo simulations and
propose alternative strategies for customer selection,
which are more robust to aforementioned events. To
this end, we consider a two-dimensional feature space,
sketched in Figure 2a). Note that the features are
assumed to be normalized, such that the range of
the feature values fall within the range [0, 1]. This
feature space is then divided into rectangles, which is
the general concept of decision trees, and afterwards,
likewise typical for tree-based methods, each of the
rectangles sustains a constant (often between 0 and
1 reflecting a relative frequency) representing the
"model" according to the leaf. We further assume
a game-changing event to have significant impact on
customers at a specific, randomly selected point (E) in
feature space as well as a distance-dependent impact
on surrounding customers (or users U ) that is spatially
confined within a distance R from E.

More specifically, assume � to be the real and
correctly estimated effect of the churn prevention
campaign per customer in the absence of the upcoming
game-changing event. For a customer with distance r
to the center E of the game-changer, we calculate the
modified effect �0 of the churn prevention campaign in
the presence of the game-changer according to

�0 =

(
� r > R,

�
⇥
1� 2 cos

�
⇡r
2R

�⇤
, r  R

(2)

where R is the radius of the circle of influence of the
game-changer and r specifies the Euclidean distance of
the customer U to the center E of the game-changer.
Hence, the effect of a game-changer is maximal for
customers close-by while it decreases radially up to
a distance R, where its effect vanishes, following
the above cosine behaviour. At the center E of the
game-changer, the true effect of the churn prevention
campaign changes sign. For example, when the real and
estimated effect of the prevention campaign would be
0.5 reduction of churn probability, it would switch to
�0.5 reduction for a customer lying at the center of the
game-changer, but only for the real effect. The estimated
effect would still be 0.5.

This modeling is motivated by the fact that � is
the difference between the churn probability without
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additional random splits for artificially gaining more
distance amongst the leaves, combined by an uplift and
distance tradeoff selection method. A novel pruning
approach we are currently considering is to aggregate
partitions with low similarity respectively high distance
in feature space and churn probabilities (or at least
uplifts) that are as identical as possible.

We will witness the development of the subscription
economy and how it influences the research on uplift
modeling in the churn context. The curiosity about
dependable solutions for the churn prevention challenge
will certainly increase in the face of the current
development.
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Table 2. Summary of simulation results. E[�] denotes the expectation value, Successes and Failures correspond

to simulation runs with � > 0 and �  0, respectively.

R/dL Splits Selection Method E[�] # Successes E[�] Successes # Failures E[�] Failures

1/2 regular classic 0.66 244 0.67 6 -0.12
1/2 regular best 2 0.55 250 0.55 0 –
1/2 regular best 3 0.44 250 0.44 0 –
1/2 regular max dist 0.49 250 0.49 0 –
1/2 regular tradeoff 0.54 250 0.54 0 –

1/2 random classic 0.52 250 0.52 0 –
1/2 random best 2 0.52 249 0.52 1 -0.20
1/2 random best 3 0.42 250 0.42 0 –
1/2 random max dist 0.46 250 0.46 0 –
1/2 random tradeoff 0.50 250 0.50 0 –

2/3 regular classic 0.61 230 0.68 20 -0.24
2/3 regular best 2 0.48 246 0.49 4 -0.07
2/3 regular best 3 0.40 248 0.40 2 -0.06
2/3 regular max dist 0.45 244 0.47 6 -0.11
2/3 regular tradeoff 0.48 247 0.49 3 -0.09

2/3 random classic 0.46 237 0.49 13 -0.11
2/3 random best 2 0.45 237 0.48 13 -0.11
2/3 random best 3 0.36 244 0.37 6 -0.13
2/3 random max dist 0.41 241 0.43 9 -0.12
2/3 random tradeoff 0.45 240 0.47 10 -0.13

1 regular classic 0.44 212 0.57 38 -0.29
1 regular best 2 0.36 231 0.40 19 -0.12
1 regular best 3 0.28 239 0.30 11 -0.07
1 regular max dist 0.33 231 0.36 19 -0.09
1 regular tradeoff 0.35 235 0.38 15 -0.13

1 random classic 0.36 220 0.44 30 -0.25
1 random best 2 0.38 219 0.46 31 -0.16
1 random best 3 0.31 229 0.35 21 -0.13
1 random max dist 0.33 215 0.41 35 -0.16
1 random tradeoff 0.37 216 0.45 34 -0.15
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Abstract

While the COVID-19 pandemic negatively affects
the world economy in general, the crisis accelerates
concurrently the rapidly growing subscription
business (Zuora, 2020) and online purchases (Gu
et al., 2021). This provokes a steadily increasing
demand of reliable measures to prevent customer
churn which unchanged is not covered. The research
analyses how preventive uplift modeling approaches
based on decision trees can be modified. Thereby it
aims to reduce the risk of churn increases in scenarios
with systematically occurring local estimation errors.
Additionally it compares several novel spatial distance
and churn likelihood respecting selection methods
applied on a real world dataset. In conclusion it is a
procedure with incorporated additional and artificial
decision tree splits that dominates the results of an
appropriate Monte Carlo simulation.

Keywords: churn; prevention; uplift modeling;
local errors; decision trees; additional splits

1. Introduction

Pejić Bach et al. (2021, p. 1) define churn as
"a situation when customer stops buying products
or using services from a company". Regarding
the telecommunication industry they correspondingly
describe that "churn management aims to minimize
the churn using various retention strategies to prevent
customers from cancelling subscriptions, such as
offering new devices or services". With an even more
detailed view one can differentiate between the two
churn management disciplines prevention and retention
depending on the moment of churn announcement.
Prevention combines churn avoiding measures that
take place before the customer announces churn
while retention means the bunch of actions in the
period between churn announcement and expiration of
the contract. Companies naturally want preferably

narrow churn funnels, which first of all is less churn
announcements and therefore less churn. Thus a
critical factor for success in the upcoming (subscription)
business era will be a strong churn management, as far
as possible in a preventive way.

However in practice there is still no trusted concept
of reducing churn in a preventive measure. That
applies to uplift techniques, which are comparing the
customers responses depending on the inclusion in a
churn prevention campaign and all the more to response
modeling. One reason is the rarity of the event churn
in comparison to e.g. purchase, which complicates its
prediction. Another challenging aspect is that failures
tend to generate additional churn (Radcliffe, 2007b).
Failures means false selections in terms of customers
would not have churned if they would not have received
emails or any other contacting. This results in at least
futile churn prevention efforts (Ascarza, 2018).

The paper counteracts those momentous
misjudgements of probabilities with a diversifying
portfolio approach. This concept by dint of additional
and artificial decision tree splits trades in expected
churn probability for distance in the feature space.
Simultaneously it is able to reduce the risk of churn
increasing churn prevention campaigns considerably in
a setting with systematically assumed local estimation
errors.

The fundamental idea of the line of thought is
the true lift model of Lo (2002), which considers
the incremental impact of an action towards the
target variable, in this case churn, as the guide for
decision-making. In order to train a decision tree to
estimate churn probability increments as defined by Lo
the paper uses and adapts the real world dataset of
Kevin Hillstrom (2008) provided in The minethatdata
e-mail analytics and data mining challenge. Hence
it obtains a partition of the feature space in which
it randomly incorporates the local errors mentioned
above in a next step. Finally it exercises different
campaign-selection methods within the framework of a
Monte Carlo simulation. The results of this simulation



demonstrate the superiority of the portfolio approach in
a scenario as described, notably in comparison to the
classic approach.

2. Related work

The prediction of uplifts as per Lo is theoretically
clear and sufficiently comprehensible (Radcliffe, 2007b;
Kane et al., 2014; Guelman et al., 2015). However,
with a few mixed exceptions (Manahan, 2005; Radcliffe,
2007b; Devriendt et al., 2021) empirical results as well
as best practices and track records in business are not
existing in the churn context.

Concerning this matter, Diemert et al. (2018,
2021) quote missing publicly available real world
datasets as a fundamental problem for the research on
successful usage of uplift models (UM) in general and
moreover provide a very large dataset (25M rows, 12
features). Additionally they mention Hillstroms dataset
as "the second largest and most popular uplift prediction
dataset" (Diemert et al., 2018, p. 3) and note that "in
the field of UM a notable exception to private datasets
is the Hillstrom study (64,000 samples) collecting the
sales results of an e-mail marketing campaign from the
2000’s" (Diemert et al., 2021, p. 2). This research will
base the simulations on this exact Hillstrom dataset in
the remainder of the paper.

Radcliffe (2007b, p. 13) uses the same line when
he says "performance of uplift models on fabricated test
data is often a particularly unreliable indicator of likely
performance on real world data. A significant challenge
is therefore to find suitable data that can be made
publicly available for benchmarking." Not related to this
he brings up that "in practice, most of the real difficulties
with uplift modeling derive from noise" (Radcliffe,
2007b, p. 13). He describes several reasons for this noise
(addition of estimation errors while fitting a difference,
considerably unbalanced treated and control population,
uplift phenomenon way smaller than absolute outcome
rates) and states "a wide variety of methods to control
noise, including careful variable selection and binning
methodologies, bagging, stratified sampling and k-way
cross-validation methods" (Radcliffe, 2007b, p. 13).

Shaar et al. (2016) underline Radcliffe’s perception
with their statements "uplift models show high
sensitivity to noise and disturbance, which leads to
unreliable results" (Shaar et al., 2016, p. 1) and "most
of real world datasets contains noise and disturbances,
specially for uplift modeling, as uplift effects tend to
be smaller than the real treatment effect" (Shaar et al.,
2016, p. 9). They allow for that with their disturbance
effects minimizing approach called Pessimistic Uplift
Modeling. Furthermore they show amongst others using

Hillstroms dataset "that our approach outperforms the
existing approaches, especially in the case of high noise
data environment" (Shaar et al., 2016, p. 1). Their
procedure is geared to Lai (2006), who wants to
maximize the probability that customers belong to the
group that shows the desired response when treated
or that does not show the desired response when not
treated. Furthermore it supplements Lai’s method with
weights representing the predicted cases proportions
of the whole population. Thus Shaar et al. (2016)
generate additional certainty on the expected outcomes
by incorporating the overall frequency of an event.

The latest research towards uplift modeling
mainly focuses on noise, disturbance, uncertainty
and estimation errors (Athey et al., 2015; Lo and
Pachamanova, 2015; Oechsle et al., 2016; Athey and
Imbens, 2016; Zhao et al., 2017; Rößler et al., 2021).
Summing up Zhao et al. (2017, p. 8) put it in a nutshell
while describing that their contribution is in a first step
to "present a way to obtain an unbiased estimate of the
expected response under an uplift model which has not
been available in the literature".

Whereas aforesaid papers attend to the uplift
modeling challenges from a technical and engineering
emphasis, Oechsle and Schönleber (2020) examine
the problem of unreliable expected outcomes to a
greater extent from a business perspective, in this
case churn business. They "investigate the effect of
suddenly upcoming estimation errors due to moving
environments in the subscription business" (Oechsle
and Schönleber, 2020, p. 3). As a moving
environment they subsume "dynamic surrounding
parameters" like "company-intern changes such as
mandatory price increases, product migrations owing to
technical improvement, tariff launches of competitors
or other specific events influencing customer groups in
undetermined ways" (Oechsle and Schönleber, 2020,
p. 3). They suppose those "game-changing events" to
systematically generate estimation errors, which in the
uplift and churn context can be very disadvantageous,
exceedingly when similar customers, that is local
neighbours in the feature space, are selected. Concretely
they define circles with radius R around random error
seeds E and attribute the users (or customers) U with
Euclidean distance r to E an unnoticed change in
expected uplift � to �0 appropriate to

�0 =

(
� r > R,

�
⇥
1� 2 cos

�
⇡r
2R

�⇤
, r  R

(1)

Finally they indicate supported by simulations that it
can be beneficial in defective scenarios to use distance
regarding customer selection techniques.



The idea of locally occurrent unanticipated
changes in churn probabilities is supported by several
publications concerning the topic of churn in the
neighbourhood of influential churners (Dasgupta et al.,
2008; Kusuma et al., 2013; Droftina et al., 2015a,b).
For example (Droftina et al., 2015b, p. 1) assert that
"highly influential customers deserve special attention,
since their churns can also trigger churns of their peers".
Correspondingly Kusuma et al. (2013) show on a real
world data set that when 50 percent of the peers of users
yet churned, those users’ churn rate is two times the
overall churn rate amongst all users.

This paper picks up the idea of noise and uncertainty
typified by spatially specified sources of error and
exert it on a real world dataset (Hillstrom), which
previously is tailored to a churn scenario. A decision
tree is trained on that dataset and it is acted upon the
splitting/pruning via novel selection methods targeted
to a predefined churn prevention campaign. The
introduced methods are meant to regard distance in the
feature space, which is well able to be done per decision
tree. Besides that established decision trees employed
for uplift modeling only use differences of probabilities
for splitting, that is particularly they disregard distances,
nor do they use pruning (Rzepakowski and Jaroszewicz,
2010). Thus common decision trees, as well as
various other procedures, have an issue with locally
occurring errors. The research randomly incorporates
these errors in a concluding Monte Carlo Simulation and
provides evidence for the superiority of its approach.
Certainly even a perfectly engineered prediction model
experiences problems if the described errors arise after
a perfect estimation process. Hence the focus is not
to derive the most accurate prediction model, in this
case the most sophisticated decision tree, but rather to
reliably implement an arbitrary proper decision tree for
using the novel selection methods. In the following third
chapter the methodology will be described in-depth.

The contribution of the research therefore consists
of a) a publicly available uplift analysis on a real
world dataset and b) a straight forward feasible and
nevertheless promising approach for daily practice c)
based on decision trees combined with a distance
respecting course of action d) in the rarely considered
and eminently fraught with risk uplift modeling field
churn, which intensifies some of the general problems
uplift modeling has to deal with.

3. Methodology

As seen in the comparing work of Zhao et al.
(2017), Oechsle and Schönleber (2020) or Radcliffe
and Surry (2011), the direct path is the superior one

of the two popular uplift modeling approaches (direct
uplift modeling versus two separate models subtracted
afterwards). Thus let there be a decision tree with I 2 N
leaves for the direct estimation of the uplift

� = p0 � p1, (2)

of a churn prevention campaign whereas p0 respectively
p1 displays the churn probability without respectively
with treatment. Let further �i for i = 1, 2, .., I
be the (correctly) estimated and therefore expected
uplift for the customers enclosed in leaf i, whereat
w.l.o.g. for simplification only positive uplifts �i are
assumed. Leaves with estimated negative uplifts would
be excluded from the first for every respectable churn
prevention campaign. Let in addition Ci be the center of
the leaf i consisting of the average values of all features
across the customers of the leaf i. Then the distance dij
of two leaves i and j pursuant to an arbitrary metric, e.g.
Minkowski, is defined as the distance of their centers Ci

and Cj appropriate to this very metric. Also let the best
leaf b be defined as the leaf with the highest dedicated
uplift

�b = max
i=1,..,I

�i (3)

and the contained customers equivalently stand for the
best customers in the same vein.

Typically for a churn prevention campaign, as well
as for every other uplift campaign, the best customers
are selected as far as the allocated budget allows it. That
is one ignores distances and absolutely concentrates on
uplifts. However, the paper presents selection methods
(best k, max dist, tradeoff and add split), which take
account of distances as well. Some of them are recent
(best k for k > 3 and especially add split), while
some of them were already introduced by Oechsle and
Schönleber (2020). The subsequent listing defines them
and distinguishes the classic selection method.

classic selects all the customers in the best leaf b and
thus focuses on uplift.

best k randomly selects 1/k of the customers in the
k best leaves and thus trades off uplift against
diversification.

max dist randomly selects half of the customers in the
best leaf b, and half of the customers in the leaf i
where the distance to leaf b is maximal. Thus it
focuses on distance.

tradeoff randomly selects half of the customers in the
best leaf b, and half of the customers in the leaf t
which is defined via

�t = min
i=1,..,I

�b ��i

dbi
(4)



Thus it considers likewise distance and uplift.

add split artificially conducts an additional split in
the best leaf b just as in the second best
leaf, which respectively bisect the corresponding
leaves concerning the quantity of customers. That
is it selects half of the customers in the best
leaf and half of the customers in the second best
leaf with the pairwise highest distance. Thus it
considers likewise distance and uplift.

4. Numerical evaluation

The minethatdata e-mail analytics and data mining
challenge of Kevin Hillstrom (2008) marks the starting
basis for our research. It is inspired by Diemert et al.
(2018, 2021), Shaar et al. (2016) and the winning entry
of Radcliffe (2008), who approached the exercise via
uplift modeling. His underlying thoughts, independent
of the won competition, are illustrated in a separate
paper (Radcliffe, 2007a), albeit he zooms in on sales
instead of churn.

Hillstroms dataset includes the results of an email
marketing campaign relating to the customer behaviour
in terms of website visits and purchasing. More
precisely it contains 64.000 customers who last
purchased within twelve months and afterwards were
involved in an e-mail test (2/3 were randomly chosen
to receive an e-mail campaign featuring merchandise,
1/3 were randomly chosen to not receive an e-mail
campaign). During a period of two weeks following the
e-mail campaign anew purchases were tracked.

Therefore in the following research Churn is defined
as did not buy again in a certain period of time, which
is represented by the binary target variable conversion.
Its two possible values, 1 for customer purchased again
within two weeks after the email campaign took place
and 0 for customer did not purchase again within two
weeks after the email campaign took place, provide a
churn prediction target as per definition of Pejić Bach
et al. (2021) introduced in the first chapter. 578 out of
Hillstroms 64.000 customers purchased again within the
above mentioned two weeks. This is a conversion rate
of 0.9% which fits to the rareness of the prediction target
in ordinary churn prevention cases.

Against this background a decision tree has been
developed on Hillstrom’s dataset. Preparative tasks
have been a) engineering of features to result in only
dealing with numeric input variables (seven features),
b) calculation of z-Scores for standardisation of the
predictors and c) explicit exclusion of the information
whether a customer was targeted by the e-mail campaign
or not. Finally the tree itself was built on a 80/20
training/validation split of the sample.

There is no more model-tuning since the research
does not seek for the best predicting model but one
reasonable partitioning of the feature space into leaves in
order to utilize the selection methods specific to decision
trees.

So the feature space of Hillstroms dataset was
sectioned into subareas: the leaves of the decision
tree. Every single customer, also the 20% in the
validation subset, could be assigned to its corresponding
leaf. Casually spoken the whole dataset was scored
with the on itself derived model. For this purpose
the relative frequency of the value 1 of the binary
target variable among the customers of the dedicated
leaf defines the estimation of the conversion probability
per leaf respectively its customers. Vice versa the
complementary probability represents the likelihood
of the above defined event churn according to the
customers in that specific leaf.

To obtain the basic framework for the hereinafter
described simulations the differentiation between the
customers that received an email and those who did not
preliminary was performed. That is the conversion or
rather the churn probability grouped by email recipients
and non email recipients was computed per leaf. By
subtraction of the churn probability with email from
the churn probability without email, � [cf. Eq. (2)]
was generated as the real and correctly estimated effect
of the churn prevention campaign per customer, in the
absence of noise and uncertainty typified by spatially
specified sources of error. For the generation of these
errors the simulations adapt the concept of Oechsle and
Schönleber (2020), which was previously outlined and
discussed [cf. Eq. (1)].

As described above based on Hillstroms dataset a
decision tree is engineered, which complies with the
requirements of the methodology introduced in the third
section. Concretely the tree consists of I = 9 leaves
with �i > 0 for i = 1, 2, .., 9, whereas the uplifts
represent the reduction in likelihood of churn (did not
buy again) due to the email campaign in Hillstroms
scenario. The chosen metric is the Euclidean distance.

In the following passage the selection methods as
listed in section 3 are compared by a Monte Carlo
simulation predicated on the described decision tree. An
additional construction detail is the stipulated minimal
leaf size of 4800 customers, which represents 7.5%
of the whole dataset and respectively 9.4% of the
training dataset. The reason is that this is an in
practice imaginable campaign size and the quantitative
comparability of the leaf sizes supports the elucidated
selection methods.

Eight miscellaneous radii are used for the
construction of the circularly occurring errors [cf.. (1)]



as listed in Table 2. The error radius R ranges from
zero to two times d?C b , which is defined as the average
Euclidean distance per customer to the center Cb of the
best leaf b. While R = 0 serves as a baseline without
failures, R = 2d?C b somehow will mark a break
even point when it comes to the economic logic of the
prevention campaign.

The research performs 1000 runs per error radius
and with it benchmarks six selection methods (classic,
best k for k = 2, best k for k = 3, max dist,
tradeoff, add split) by means of the expected � values
per customer. The underlying decision tree is always the
same, while the position of the error seed E randomly
alters. Figure 1 visualizes the statistical distributions of
the results, explicitly the distributions of the achieved
average uplift per selected customer and per employed
selection method. Table 1 depicts the averages per
selection method (for the eight times 1000 runs) of
achieved (and therefore expected) uplift, number of
failures and achieved uplift among failures. More
precisely E[�] specifies the average (per 1000 runs)
carried out average uplift per selected customer. The
runs among the each undertaken 1000 runs overall
that produce negative average uplifts per customer are
counted as failures. Vice versa the complementary
runs are counted as successes, which later will be
relevant for the reading of Table 2. E[�]Successes
and E[�]Failures consequently denote the respective
average of the average uplifts generated by the dedicated
successes and accordingly failures.

In Figure 1 it is very striking that the classic
selection approach comes along with the highest level
of uncertainty. That is the results of the classic selection
method are furthest spread as measured by values of �.
Conversely the alternative methods, second to none best
3, generate more dense ranges of outcomes. Particularly,
as consolidated can be seen in Table 1, in comparison the
classic approach not only most frequently (separate from
best 3) led to failures, namely negative values of average
uplift per customer (�), but also induced clearly more
grave failures. This circumstance becomes even more
apparent in Table 2 whose composition will be explained
below.

Table 2 consists of 48 rows (eight radii times six
selection methods), which respectively represent the
results of the according unique radius and selection
method combination in the above described each 1000
runs. To that effect column one and two identify the
radii (as a multiple of d?C b ) and the selection methods.
E[�], E[�]Successes and E[�]Failures, and therefore
columns three to seven, have already been explained
with Table 1. Concluding the column campaign
size contains the number of contacted customers

per selection method, which due to the simulation
construction does not vary within the different runs.
The analysis controls for this dimension to ensure
comparability of the selection methods.

In the first column, as previously mentioned, the
error radius varies from R = 0 to R = 2d?C b . While
R = 0 constitutes a perfect surrounding with no need
to deviate from the classic proceeding, R = 2d?C b

delivers failures with nearly every second run (469 out
of 1000 for the classic method) and thus contests the
general idea of preventing churn.

In-between these boundaries the superiority of the
classic approach becomes apparent in terms of E[�].
But it is also the approach with the permanently lowest
E[�] Failures and an oftentimes highest number of
failures. The alternative selection methods lower these
effects. By doing so the add split approach is most
suitable since it creates considerably the fewest failures.
Additionally these few failures come along with the
highest E[�] Failures. Above all the add split selection
demands the lowest risk premium (as measured by
E[�]) for the gained robustness in results. In the case
of R/d?C b= 7/4 even none.

5. Conclusion and discussion

The research described in this paper illustrates the
in the subscription business well-known challenges with
churn prevention campaigns on a real world dataset.
It shows with the help of the previously churn-tailored
Hillstrom dataset that noise and uncertainty represented
by local spatial errors pose a veritable problem, which
can economically destroy whole churn campaigns,
especially with the classic selection approach. Thereby
it naturally plays a decisive role how voluminous
relevant arising errors are. Lastly it is demonstrated
that there exist distance respecting alternative selection
methods that largely give better results, dependent on
the emergence of errors in terms of error radius R.

The most remarkable insight finally came from the
add split selection. This method artificially conducts
additional splits in the best leaves before it selects
the customers in the thereby arising sub-areas with
the pairwise highest Euclidean distance. It directly
influences the generation of the decision tree itself,
because depending on the interpretation of the dodge
it either steps in the splitting rules or it intervenes in
the pruning of the tree. By all means the add split
selection method revealed the most promising results.
That implies that there are situations in which it can be
beneficial to diverge from common ways of decision tree
construction by for example adding supposedly (by the
textbook) needless splits. By departing from the concept



of expected values this strategy evidently helps reducing
abortive churn prevention campaigns.

In less risky scenarios (R/d?C b<= 1) there
is no reason for not choosing the classic selection
approach. However, in error-prone settings (R/d?C b>
1) distance respecting selection approaches based on
decision trees are able to outperform the classic way.
This appears in the reduced number of churn increasing
churn prevention campaigns, as well as in the reduced
extent of failures. In only slightly more inconvenient
settings (9/8 <= R/d?C b<= 5/4) it is possible to
reduce failures by switching from the classic method
respectively even to avoid failures completely by using
selection method add split. In clearly more inconvenient
settings (11/8 <= R/d?C b<= 3/2) solely add split
yields a respectable reduction to an acceptable level of
uncertainty. In adverse surroundings (R/d?C b>= 7/4)
the distance based methods again outperform the classic
approach. Only the rationale of the campaign on the
whole is questioned by a failure quota of 1/3 to 1/2.

In an overall view the findings can lead to feasible
concepts for uplift modeling in general and especially
in the churn prevention context, which will be of
highest interest for the in all likelihood still growing
subscription economy and the e-commerce business. At
this juncture the methodology equipes each technically
correct evolved decision tree with more reliability in
practical applications and thus is a valuable tool for
every practitioner.
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Churn management in telecommunications: Hybrid
approach using cluster analysis and decision
trees. Journal of Risk and Financial Management,
14(11):544.

Radcliffe, N. (2007a). Generating incremental sales:
Maximizing the incremental impact of cross-selling,
up-selling and deep-selling through uplift modelling.
Stochastic Solutions, pages 1–10.

Radcliffe, N. (2007b). Using control groups to target on
predicted lift: Building and assessing uplift model.
Direct Marketing Analytics Journal, pages 14–21.

Radcliffe, N. J. (2008). Hillstrom’s minethatdata
email analytics challenge: An approach using uplift
modelling. Stochastic Solutions Limited, 1:1–19.

Radcliffe, N. J. and Surry, P. D. (2011). Real-world
uplift modelling with significance-based uplift trees.
White Paper TR-2011-1, Stochastic Solutions, pages
1–33.

Rößler, J., Tilly, R., and Schoder, D. (2021). To treat,
or not to treat: Reducing volatility in uplift modeling
through weighted ensembles. In Proceedings of
the 54th Hawaii International Conference on System
Sciences, page 1601.

Rzepakowski, P. and Jaroszewicz, S. (2010). Decision
trees for uplift modeling. In 2010 IEEE International
Conference on Data Mining, pages 441–450. IEEE.

Shaar, A., Abdessalem, T., and Segard, O. (2016).
Pessimistic uplift modeling. arXiv preprint
arXiv:1603.09738.

Zhao, Y., Fang, X., and Simchi-Levi, D. (2017).

Uplift modeling with multiple treatments and general
response types. In Proceedings of the 2017 SIAM
International Conference on Data Mining, pages
588–596. SIAM.

Zuora (2020). Zuora subscribed institute: Subscription
economy index.



Table 1. Quintessence of runs with R > 0.

Selection Method ?E[�] ?# Failures ?E[�] Failures

classic 0.008 181.7 -0.0039

best 2 0.0063 178.1 -0.0028

best 3 0.0058 190.1 -0.0024

max dist 0.0044 164.9 -0.0017

tradeoff 0.0063 178.9 -0.0029

add split 0.0069 143.4 -0.0022



Table 2. Summary of simulation results.

R/d?C b Selection Method E[�] # Successes E[�] Successes # Failures E[�] Failures campaign size

0 classic 0.012 1000 0.012 0 – 6055
0 best 2 0.01 1000 0.01 0 – 6008
0 best 3 0.008 1000 0.008 0 – 6964
0 max dist 0.006 1000 0.006 0 – 6894
0 tradeoff 0.01 1000 0.01 0 – 5965
0 add split 0.01 1000 0.01 0 – 6084

1 classic 0.012 999 0.012 1 -0.001 6055
1 best 2 0.009 1000 0.009 0 – 6008
1 best 3 0.007 1000 0.007 0 – 6964
1 max dist 0.006 1000 0.006 0 – 6894
1 tradeoff 0.009 1000 0.009 0 – 5965
1 add split 0.01 1000 0.01 0 – 6084

9/8 classic 0.011 981 0.011 19 -0.001 6055
9/8 best 2 0.008 991 0.008 9 -0.001 6008
9/8 best 3 0.007 991 0.007 9 0.00 6964
9/8 max dist 0.006 997 0.006 3 0.00 6894
9/8 tradeoff 0.008 991 0.008 9 -0.001 5965
9/8 add split 0.009 1000 0.009 0 – 6084

5/4 classic 0.009 928 0.01 72 -0.002 6055
5/4 best 2 0.007 935 0.008 65 -0.001 6008
5/4 best 3 0.006 925 0.007 75 -0.001 6964
5/4 max dist 0.005 955 0.005 45 -0.001 6894
5/4 tradeoff 0.007 932 0.008 68 -0.001 5965
5/4 add split 0.008 999 0.008 1 0.00 6084

11/8 classic 0.008 862 0.01 138 -0.003 6055
11/8 best 2 0.007 859 0.008 141 -0.001 6008
11/8 best 3 0.005 822 0.007 178 -0.001 6964
11/8 max dist 0.005 877 0.005 123 -0.001 6894
11/8 tradeoff 0.007 858 0.008 142 -0.002 5965
11/8 add split 0.007 937 0.008 63 -0.001 6084

3/2 classic 0.007 790 0.01 210 -0.003 6055
3/2 best 2 0.006 770 0.008 230 -0.002 6008
3/2 best 3 0.005 724 0.007 276 -0.002 6964
3/2 max dist 0.004 798 0.005 202 -0.001 6894
3/2 tradeoff 0.006 766 0.008 234 -0.002 5965
3/2 add split 0.006 842 0.008 158 -0.001 6084

7/4 classic 0.005 637 0.01 363 -0.004 6055
7/4 best 2 0.004 635 0.009 365 -0.003 6008
7/4 best 3 0.004 629 0.007 371 -0.003 6964
7/4 max dist 0.003 650 0.006 350 -0.002 6894
7/4 tradeoff 0.004 635 0.009 365 -0.003 5965
7/4 add split 0.005 655 0.008 345 -0.002 6084

2 classic 0.004 531 0.011 469 -0.005 6055
2 best 2 0.003 563 0.009 437 -0.004 6008
2 best 3 0.003 578 0.007 422 -0.003 6964
2 max dist 0.002 569 0.006 431 -0.002 6894
2 tradeoff 0.003 566 0.009 434 -0.004 5965
2 add split 0.003 563 0.009 437 -0.003 6084
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